SemaTemplate.cpp revision ff3f7ef339ee1c531015fbd17016013d469d538f
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/ParsedTemplate.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "llvm/ADT/StringExtras.h"
28using namespace clang;
29using namespace sema;
30
31/// \brief Determine whether the declaration found is acceptable as the name
32/// of a template and, if so, return that template declaration. Otherwise,
33/// returns NULL.
34static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
35                                           NamedDecl *Orig) {
36  NamedDecl *D = Orig->getUnderlyingDecl();
37
38  if (isa<TemplateDecl>(D))
39    return Orig;
40
41  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
42    // C++ [temp.local]p1:
43    //   Like normal (non-template) classes, class templates have an
44    //   injected-class-name (Clause 9). The injected-class-name
45    //   can be used with or without a template-argument-list. When
46    //   it is used without a template-argument-list, it is
47    //   equivalent to the injected-class-name followed by the
48    //   template-parameters of the class template enclosed in
49    //   <>. When it is used with a template-argument-list, it
50    //   refers to the specified class template specialization,
51    //   which could be the current specialization or another
52    //   specialization.
53    if (Record->isInjectedClassName()) {
54      Record = cast<CXXRecordDecl>(Record->getDeclContext());
55      if (Record->getDescribedClassTemplate())
56        return Record->getDescribedClassTemplate();
57
58      if (ClassTemplateSpecializationDecl *Spec
59            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
60        return Spec->getSpecializedTemplate();
61    }
62
63    return 0;
64  }
65
66  return 0;
67}
68
69static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
70  // The set of class templates we've already seen.
71  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
72  LookupResult::Filter filter = R.makeFilter();
73  while (filter.hasNext()) {
74    NamedDecl *Orig = filter.next();
75    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
76    if (!Repl)
77      filter.erase();
78    else if (Repl != Orig) {
79
80      // C++ [temp.local]p3:
81      //   A lookup that finds an injected-class-name (10.2) can result in an
82      //   ambiguity in certain cases (for example, if it is found in more than
83      //   one base class). If all of the injected-class-names that are found
84      //   refer to specializations of the same class template, and if the name
85      //   is followed by a template-argument-list, the reference refers to the
86      //   class template itself and not a specialization thereof, and is not
87      //   ambiguous.
88      //
89      // FIXME: Will we eventually have to do the same for alias templates?
90      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
91        if (!ClassTemplates.insert(ClassTmpl)) {
92          filter.erase();
93          continue;
94        }
95
96      // FIXME: we promote access to public here as a workaround to
97      // the fact that LookupResult doesn't let us remember that we
98      // found this template through a particular injected class name,
99      // which means we end up doing nasty things to the invariants.
100      // Pretending that access is public is *much* safer.
101      filter.replace(Repl, AS_public);
102    }
103  }
104  filter.done();
105}
106
107TemplateNameKind Sema::isTemplateName(Scope *S,
108                                      CXXScopeSpec &SS,
109                                      bool hasTemplateKeyword,
110                                      UnqualifiedId &Name,
111                                      ParsedType ObjectTypePtr,
112                                      bool EnteringContext,
113                                      TemplateTy &TemplateResult,
114                                      bool &MemberOfUnknownSpecialization) {
115  assert(getLangOptions().CPlusPlus && "No template names in C!");
116
117  DeclarationName TName;
118  MemberOfUnknownSpecialization = false;
119
120  switch (Name.getKind()) {
121  case UnqualifiedId::IK_Identifier:
122    TName = DeclarationName(Name.Identifier);
123    break;
124
125  case UnqualifiedId::IK_OperatorFunctionId:
126    TName = Context.DeclarationNames.getCXXOperatorName(
127                                              Name.OperatorFunctionId.Operator);
128    break;
129
130  case UnqualifiedId::IK_LiteralOperatorId:
131    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
132    break;
133
134  default:
135    return TNK_Non_template;
136  }
137
138  QualType ObjectType = ObjectTypePtr.get();
139
140  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
141                 LookupOrdinaryName);
142  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
143                     MemberOfUnknownSpecialization);
144  if (R.empty()) return TNK_Non_template;
145  if (R.isAmbiguous()) {
146    // Suppress diagnostics;  we'll redo this lookup later.
147    R.suppressDiagnostics();
148
149    // FIXME: we might have ambiguous templates, in which case we
150    // should at least parse them properly!
151    return TNK_Non_template;
152  }
153
154  TemplateName Template;
155  TemplateNameKind TemplateKind;
156
157  unsigned ResultCount = R.end() - R.begin();
158  if (ResultCount > 1) {
159    // We assume that we'll preserve the qualifier from a function
160    // template name in other ways.
161    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
162    TemplateKind = TNK_Function_template;
163
164    // We'll do this lookup again later.
165    R.suppressDiagnostics();
166  } else {
167    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
168
169    if (SS.isSet() && !SS.isInvalid()) {
170      NestedNameSpecifier *Qualifier
171        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
172      Template = Context.getQualifiedTemplateName(Qualifier,
173                                                  hasTemplateKeyword, TD);
174    } else {
175      Template = TemplateName(TD);
176    }
177
178    if (isa<FunctionTemplateDecl>(TD)) {
179      TemplateKind = TNK_Function_template;
180
181      // We'll do this lookup again later.
182      R.suppressDiagnostics();
183    } else {
184      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
185      TemplateKind = TNK_Type_template;
186    }
187  }
188
189  TemplateResult = TemplateTy::make(Template);
190  return TemplateKind;
191}
192
193bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
194                                       SourceLocation IILoc,
195                                       Scope *S,
196                                       const CXXScopeSpec *SS,
197                                       TemplateTy &SuggestedTemplate,
198                                       TemplateNameKind &SuggestedKind) {
199  // We can't recover unless there's a dependent scope specifier preceding the
200  // template name.
201  // FIXME: Typo correction?
202  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
203      computeDeclContext(*SS))
204    return false;
205
206  // The code is missing a 'template' keyword prior to the dependent template
207  // name.
208  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
209  Diag(IILoc, diag::err_template_kw_missing)
210    << Qualifier << II.getName()
211    << FixItHint::CreateInsertion(IILoc, "template ");
212  SuggestedTemplate
213    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
214  SuggestedKind = TNK_Dependent_template_name;
215  return true;
216}
217
218void Sema::LookupTemplateName(LookupResult &Found,
219                              Scope *S, CXXScopeSpec &SS,
220                              QualType ObjectType,
221                              bool EnteringContext,
222                              bool &MemberOfUnknownSpecialization) {
223  // Determine where to perform name lookup
224  MemberOfUnknownSpecialization = false;
225  DeclContext *LookupCtx = 0;
226  bool isDependent = false;
227  if (!ObjectType.isNull()) {
228    // This nested-name-specifier occurs in a member access expression, e.g.,
229    // x->B::f, and we are looking into the type of the object.
230    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
231    LookupCtx = computeDeclContext(ObjectType);
232    isDependent = ObjectType->isDependentType();
233    assert((isDependent || !ObjectType->isIncompleteType()) &&
234           "Caller should have completed object type");
235  } else if (SS.isSet()) {
236    // This nested-name-specifier occurs after another nested-name-specifier,
237    // so long into the context associated with the prior nested-name-specifier.
238    LookupCtx = computeDeclContext(SS, EnteringContext);
239    isDependent = isDependentScopeSpecifier(SS);
240
241    // The declaration context must be complete.
242    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
243      return;
244  }
245
246  bool ObjectTypeSearchedInScope = false;
247  if (LookupCtx) {
248    // Perform "qualified" name lookup into the declaration context we
249    // computed, which is either the type of the base of a member access
250    // expression or the declaration context associated with a prior
251    // nested-name-specifier.
252    LookupQualifiedName(Found, LookupCtx);
253
254    if (!ObjectType.isNull() && Found.empty()) {
255      // C++ [basic.lookup.classref]p1:
256      //   In a class member access expression (5.2.5), if the . or -> token is
257      //   immediately followed by an identifier followed by a <, the
258      //   identifier must be looked up to determine whether the < is the
259      //   beginning of a template argument list (14.2) or a less-than operator.
260      //   The identifier is first looked up in the class of the object
261      //   expression. If the identifier is not found, it is then looked up in
262      //   the context of the entire postfix-expression and shall name a class
263      //   or function template.
264      if (S) LookupName(Found, S);
265      ObjectTypeSearchedInScope = true;
266    }
267  } else if (isDependent && (!S || ObjectType.isNull())) {
268    // We cannot look into a dependent object type or nested nme
269    // specifier.
270    MemberOfUnknownSpecialization = true;
271    return;
272  } else {
273    // Perform unqualified name lookup in the current scope.
274    LookupName(Found, S);
275  }
276
277  if (Found.empty() && !isDependent) {
278    // If we did not find any names, attempt to correct any typos.
279    DeclarationName Name = Found.getLookupName();
280    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
281                                                false, CTC_CXXCasts)) {
282      FilterAcceptableTemplateNames(Context, Found);
283      if (!Found.empty()) {
284        if (LookupCtx)
285          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
286            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
287            << FixItHint::CreateReplacement(Found.getNameLoc(),
288                                          Found.getLookupName().getAsString());
289        else
290          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
291            << Name << Found.getLookupName()
292            << FixItHint::CreateReplacement(Found.getNameLoc(),
293                                          Found.getLookupName().getAsString());
294        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
295          Diag(Template->getLocation(), diag::note_previous_decl)
296            << Template->getDeclName();
297      }
298    } else {
299      Found.clear();
300      Found.setLookupName(Name);
301    }
302  }
303
304  FilterAcceptableTemplateNames(Context, Found);
305  if (Found.empty()) {
306    if (isDependent)
307      MemberOfUnknownSpecialization = true;
308    return;
309  }
310
311  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
312    // C++ [basic.lookup.classref]p1:
313    //   [...] If the lookup in the class of the object expression finds a
314    //   template, the name is also looked up in the context of the entire
315    //   postfix-expression and [...]
316    //
317    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
318                            LookupOrdinaryName);
319    LookupName(FoundOuter, S);
320    FilterAcceptableTemplateNames(Context, FoundOuter);
321
322    if (FoundOuter.empty()) {
323      //   - if the name is not found, the name found in the class of the
324      //     object expression is used, otherwise
325    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
326      //   - if the name is found in the context of the entire
327      //     postfix-expression and does not name a class template, the name
328      //     found in the class of the object expression is used, otherwise
329    } else if (!Found.isSuppressingDiagnostics()) {
330      //   - if the name found is a class template, it must refer to the same
331      //     entity as the one found in the class of the object expression,
332      //     otherwise the program is ill-formed.
333      if (!Found.isSingleResult() ||
334          Found.getFoundDecl()->getCanonicalDecl()
335            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
336        Diag(Found.getNameLoc(),
337             diag::ext_nested_name_member_ref_lookup_ambiguous)
338          << Found.getLookupName()
339          << ObjectType;
340        Diag(Found.getRepresentativeDecl()->getLocation(),
341             diag::note_ambig_member_ref_object_type)
342          << ObjectType;
343        Diag(FoundOuter.getFoundDecl()->getLocation(),
344             diag::note_ambig_member_ref_scope);
345
346        // Recover by taking the template that we found in the object
347        // expression's type.
348      }
349    }
350  }
351}
352
353/// ActOnDependentIdExpression - Handle a dependent id-expression that
354/// was just parsed.  This is only possible with an explicit scope
355/// specifier naming a dependent type.
356ExprResult
357Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
358                                 const DeclarationNameInfo &NameInfo,
359                                 bool isAddressOfOperand,
360                           const TemplateArgumentListInfo *TemplateArgs) {
361  NestedNameSpecifier *Qualifier
362    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
363
364  DeclContext *DC = getFunctionLevelDeclContext();
365
366  if (!isAddressOfOperand &&
367      isa<CXXMethodDecl>(DC) &&
368      cast<CXXMethodDecl>(DC)->isInstance()) {
369    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
370
371    // Since the 'this' expression is synthesized, we don't need to
372    // perform the double-lookup check.
373    NamedDecl *FirstQualifierInScope = 0;
374
375    return Owned(CXXDependentScopeMemberExpr::Create(Context,
376                                                     /*This*/ 0, ThisType,
377                                                     /*IsArrow*/ true,
378                                                     /*Op*/ SourceLocation(),
379                                                     Qualifier, SS.getRange(),
380                                                     FirstQualifierInScope,
381                                                     NameInfo,
382                                                     TemplateArgs));
383  }
384
385  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
386}
387
388ExprResult
389Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
390                                const DeclarationNameInfo &NameInfo,
391                                const TemplateArgumentListInfo *TemplateArgs) {
392  return Owned(DependentScopeDeclRefExpr::Create(Context,
393               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
394                                                 SS.getRange(),
395                                                 NameInfo,
396                                                 TemplateArgs));
397}
398
399/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
400/// that the template parameter 'PrevDecl' is being shadowed by a new
401/// declaration at location Loc. Returns true to indicate that this is
402/// an error, and false otherwise.
403bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
404  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
405
406  // Microsoft Visual C++ permits template parameters to be shadowed.
407  if (getLangOptions().Microsoft)
408    return false;
409
410  // C++ [temp.local]p4:
411  //   A template-parameter shall not be redeclared within its
412  //   scope (including nested scopes).
413  Diag(Loc, diag::err_template_param_shadow)
414    << cast<NamedDecl>(PrevDecl)->getDeclName();
415  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
416  return true;
417}
418
419/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
420/// the parameter D to reference the templated declaration and return a pointer
421/// to the template declaration. Otherwise, do nothing to D and return null.
422TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
423  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
424    D = Temp->getTemplatedDecl();
425    return Temp;
426  }
427  return 0;
428}
429
430static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
431                                            const ParsedTemplateArgument &Arg) {
432
433  switch (Arg.getKind()) {
434  case ParsedTemplateArgument::Type: {
435    TypeSourceInfo *DI;
436    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
437    if (!DI)
438      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
439    return TemplateArgumentLoc(TemplateArgument(T), DI);
440  }
441
442  case ParsedTemplateArgument::NonType: {
443    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
444    return TemplateArgumentLoc(TemplateArgument(E), E);
445  }
446
447  case ParsedTemplateArgument::Template: {
448    TemplateName Template = Arg.getAsTemplate().get();
449    return TemplateArgumentLoc(TemplateArgument(Template),
450                               Arg.getScopeSpec().getRange(),
451                               Arg.getLocation());
452  }
453  }
454
455  llvm_unreachable("Unhandled parsed template argument");
456  return TemplateArgumentLoc();
457}
458
459/// \brief Translates template arguments as provided by the parser
460/// into template arguments used by semantic analysis.
461void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
462                                      TemplateArgumentListInfo &TemplateArgs) {
463 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
464   TemplateArgs.addArgument(translateTemplateArgument(*this,
465                                                      TemplateArgsIn[I]));
466}
467
468/// ActOnTypeParameter - Called when a C++ template type parameter
469/// (e.g., "typename T") has been parsed. Typename specifies whether
470/// the keyword "typename" was used to declare the type parameter
471/// (otherwise, "class" was used), and KeyLoc is the location of the
472/// "class" or "typename" keyword. ParamName is the name of the
473/// parameter (NULL indicates an unnamed template parameter) and
474/// ParamName is the location of the parameter name (if any).
475/// If the type parameter has a default argument, it will be added
476/// later via ActOnTypeParameterDefault.
477Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
478                               SourceLocation EllipsisLoc,
479                               SourceLocation KeyLoc,
480                               IdentifierInfo *ParamName,
481                               SourceLocation ParamNameLoc,
482                               unsigned Depth, unsigned Position,
483                               SourceLocation EqualLoc,
484                               ParsedType DefaultArg) {
485  assert(S->isTemplateParamScope() &&
486         "Template type parameter not in template parameter scope!");
487  bool Invalid = false;
488
489  if (ParamName) {
490    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
491                                           LookupOrdinaryName,
492                                           ForRedeclaration);
493    if (PrevDecl && PrevDecl->isTemplateParameter())
494      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
495                                                           PrevDecl);
496  }
497
498  SourceLocation Loc = ParamNameLoc;
499  if (!ParamName)
500    Loc = KeyLoc;
501
502  TemplateTypeParmDecl *Param
503    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
504                                   Loc, Depth, Position, ParamName, Typename,
505                                   Ellipsis);
506  if (Invalid)
507    Param->setInvalidDecl();
508
509  if (ParamName) {
510    // Add the template parameter into the current scope.
511    S->AddDecl(Param);
512    IdResolver.AddDecl(Param);
513  }
514
515  // Handle the default argument, if provided.
516  if (DefaultArg) {
517    TypeSourceInfo *DefaultTInfo;
518    GetTypeFromParser(DefaultArg, &DefaultTInfo);
519
520    assert(DefaultTInfo && "expected source information for type");
521
522    // C++0x [temp.param]p9:
523    // A default template-argument may be specified for any kind of
524    // template-parameter that is not a template parameter pack.
525    if (Ellipsis) {
526      Diag(EqualLoc, diag::err_template_param_pack_default_arg);
527      return Param;
528    }
529
530    // Check the template argument itself.
531    if (CheckTemplateArgument(Param, DefaultTInfo)) {
532      Param->setInvalidDecl();
533      return Param;
534    }
535
536    Param->setDefaultArgument(DefaultTInfo, false);
537  }
538
539  return Param;
540}
541
542/// \brief Check that the type of a non-type template parameter is
543/// well-formed.
544///
545/// \returns the (possibly-promoted) parameter type if valid;
546/// otherwise, produces a diagnostic and returns a NULL type.
547QualType
548Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
549  // We don't allow variably-modified types as the type of non-type template
550  // parameters.
551  if (T->isVariablyModifiedType()) {
552    Diag(Loc, diag::err_variably_modified_nontype_template_param)
553      << T;
554    return QualType();
555  }
556
557  // C++ [temp.param]p4:
558  //
559  // A non-type template-parameter shall have one of the following
560  // (optionally cv-qualified) types:
561  //
562  //       -- integral or enumeration type,
563  if (T->isIntegralOrEnumerationType() ||
564      //   -- pointer to object or pointer to function,
565      T->isPointerType() ||
566      //   -- reference to object or reference to function,
567      T->isReferenceType() ||
568      //   -- pointer to member.
569      T->isMemberPointerType() ||
570      // If T is a dependent type, we can't do the check now, so we
571      // assume that it is well-formed.
572      T->isDependentType())
573    return T;
574  // C++ [temp.param]p8:
575  //
576  //   A non-type template-parameter of type "array of T" or
577  //   "function returning T" is adjusted to be of type "pointer to
578  //   T" or "pointer to function returning T", respectively.
579  else if (T->isArrayType())
580    // FIXME: Keep the type prior to promotion?
581    return Context.getArrayDecayedType(T);
582  else if (T->isFunctionType())
583    // FIXME: Keep the type prior to promotion?
584    return Context.getPointerType(T);
585
586  Diag(Loc, diag::err_template_nontype_parm_bad_type)
587    << T;
588
589  return QualType();
590}
591
592Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
593                                          unsigned Depth,
594                                          unsigned Position,
595                                          SourceLocation EqualLoc,
596                                          Expr *Default) {
597  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
598  QualType T = TInfo->getType();
599
600  assert(S->isTemplateParamScope() &&
601         "Non-type template parameter not in template parameter scope!");
602  bool Invalid = false;
603
604  IdentifierInfo *ParamName = D.getIdentifier();
605  if (ParamName) {
606    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
607                                           LookupOrdinaryName,
608                                           ForRedeclaration);
609    if (PrevDecl && PrevDecl->isTemplateParameter())
610      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
611                                                           PrevDecl);
612  }
613
614  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
615  if (T.isNull()) {
616    T = Context.IntTy; // Recover with an 'int' type.
617    Invalid = true;
618  }
619
620  NonTypeTemplateParmDecl *Param
621    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
622                                      D.getIdentifierLoc(),
623                                      Depth, Position, ParamName, T, TInfo);
624  if (Invalid)
625    Param->setInvalidDecl();
626
627  if (D.getIdentifier()) {
628    // Add the template parameter into the current scope.
629    S->AddDecl(Param);
630    IdResolver.AddDecl(Param);
631  }
632
633  // Check the well-formedness of the default template argument, if provided.
634  if (Default) {
635    TemplateArgument Converted;
636    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
637      Param->setInvalidDecl();
638      return Param;
639    }
640
641    Param->setDefaultArgument(Default, false);
642  }
643
644  return Param;
645}
646
647/// ActOnTemplateTemplateParameter - Called when a C++ template template
648/// parameter (e.g. T in template <template <typename> class T> class array)
649/// has been parsed. S is the current scope.
650Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
651                                           SourceLocation TmpLoc,
652                                           TemplateParamsTy *Params,
653                                           IdentifierInfo *Name,
654                                           SourceLocation NameLoc,
655                                           unsigned Depth,
656                                           unsigned Position,
657                                           SourceLocation EqualLoc,
658                                       const ParsedTemplateArgument &Default) {
659  assert(S->isTemplateParamScope() &&
660         "Template template parameter not in template parameter scope!");
661
662  // Construct the parameter object.
663  TemplateTemplateParmDecl *Param =
664    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
665                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
666                                     Depth, Position, Name,
667                                     (TemplateParameterList*)Params);
668
669  // If the template template parameter has a name, then link the identifier
670  // into the scope and lookup mechanisms.
671  if (Name) {
672    S->AddDecl(Param);
673    IdResolver.AddDecl(Param);
674  }
675
676  if (!Default.isInvalid()) {
677    // Check only that we have a template template argument. We don't want to
678    // try to check well-formedness now, because our template template parameter
679    // might have dependent types in its template parameters, which we wouldn't
680    // be able to match now.
681    //
682    // If none of the template template parameter's template arguments mention
683    // other template parameters, we could actually perform more checking here.
684    // However, it isn't worth doing.
685    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
686    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
687      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
688        << DefaultArg.getSourceRange();
689      return Param;
690    }
691
692    Param->setDefaultArgument(DefaultArg, false);
693  }
694
695  return Param;
696}
697
698/// ActOnTemplateParameterList - Builds a TemplateParameterList that
699/// contains the template parameters in Params/NumParams.
700Sema::TemplateParamsTy *
701Sema::ActOnTemplateParameterList(unsigned Depth,
702                                 SourceLocation ExportLoc,
703                                 SourceLocation TemplateLoc,
704                                 SourceLocation LAngleLoc,
705                                 Decl **Params, unsigned NumParams,
706                                 SourceLocation RAngleLoc) {
707  if (ExportLoc.isValid())
708    Diag(ExportLoc, diag::warn_template_export_unsupported);
709
710  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
711                                       (NamedDecl**)Params, NumParams,
712                                       RAngleLoc);
713}
714
715static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
716  if (SS.isSet())
717    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
718                        SS.getRange());
719}
720
721DeclResult
722Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
723                         SourceLocation KWLoc, CXXScopeSpec &SS,
724                         IdentifierInfo *Name, SourceLocation NameLoc,
725                         AttributeList *Attr,
726                         TemplateParameterList *TemplateParams,
727                         AccessSpecifier AS) {
728  assert(TemplateParams && TemplateParams->size() > 0 &&
729         "No template parameters");
730  assert(TUK != TUK_Reference && "Can only declare or define class templates");
731  bool Invalid = false;
732
733  // Check that we can declare a template here.
734  if (CheckTemplateDeclScope(S, TemplateParams))
735    return true;
736
737  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
738  assert(Kind != TTK_Enum && "can't build template of enumerated type");
739
740  // There is no such thing as an unnamed class template.
741  if (!Name) {
742    Diag(KWLoc, diag::err_template_unnamed_class);
743    return true;
744  }
745
746  // Find any previous declaration with this name.
747  DeclContext *SemanticContext;
748  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
749                        ForRedeclaration);
750  if (SS.isNotEmpty() && !SS.isInvalid()) {
751    SemanticContext = computeDeclContext(SS, true);
752    if (!SemanticContext) {
753      // FIXME: Produce a reasonable diagnostic here
754      return true;
755    }
756
757    if (RequireCompleteDeclContext(SS, SemanticContext))
758      return true;
759
760    LookupQualifiedName(Previous, SemanticContext);
761  } else {
762    SemanticContext = CurContext;
763    LookupName(Previous, S);
764  }
765
766  if (Previous.isAmbiguous())
767    return true;
768
769  NamedDecl *PrevDecl = 0;
770  if (Previous.begin() != Previous.end())
771    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
772
773  // If there is a previous declaration with the same name, check
774  // whether this is a valid redeclaration.
775  ClassTemplateDecl *PrevClassTemplate
776    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
777
778  // We may have found the injected-class-name of a class template,
779  // class template partial specialization, or class template specialization.
780  // In these cases, grab the template that is being defined or specialized.
781  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
782      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
783    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
784    PrevClassTemplate
785      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
786    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
787      PrevClassTemplate
788        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
789            ->getSpecializedTemplate();
790    }
791  }
792
793  if (TUK == TUK_Friend) {
794    // C++ [namespace.memdef]p3:
795    //   [...] When looking for a prior declaration of a class or a function
796    //   declared as a friend, and when the name of the friend class or
797    //   function is neither a qualified name nor a template-id, scopes outside
798    //   the innermost enclosing namespace scope are not considered.
799    if (!SS.isSet()) {
800      DeclContext *OutermostContext = CurContext;
801      while (!OutermostContext->isFileContext())
802        OutermostContext = OutermostContext->getLookupParent();
803
804      if (PrevDecl &&
805          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
806           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
807        SemanticContext = PrevDecl->getDeclContext();
808      } else {
809        // Declarations in outer scopes don't matter. However, the outermost
810        // context we computed is the semantic context for our new
811        // declaration.
812        PrevDecl = PrevClassTemplate = 0;
813        SemanticContext = OutermostContext;
814      }
815    }
816
817    if (CurContext->isDependentContext()) {
818      // If this is a dependent context, we don't want to link the friend
819      // class template to the template in scope, because that would perform
820      // checking of the template parameter lists that can't be performed
821      // until the outer context is instantiated.
822      PrevDecl = PrevClassTemplate = 0;
823    }
824  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
825    PrevDecl = PrevClassTemplate = 0;
826
827  if (PrevClassTemplate) {
828    // Ensure that the template parameter lists are compatible.
829    if (!TemplateParameterListsAreEqual(TemplateParams,
830                                   PrevClassTemplate->getTemplateParameters(),
831                                        /*Complain=*/true,
832                                        TPL_TemplateMatch))
833      return true;
834
835    // C++ [temp.class]p4:
836    //   In a redeclaration, partial specialization, explicit
837    //   specialization or explicit instantiation of a class template,
838    //   the class-key shall agree in kind with the original class
839    //   template declaration (7.1.5.3).
840    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
841    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
842      Diag(KWLoc, diag::err_use_with_wrong_tag)
843        << Name
844        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
845      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
846      Kind = PrevRecordDecl->getTagKind();
847    }
848
849    // Check for redefinition of this class template.
850    if (TUK == TUK_Definition) {
851      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
852        Diag(NameLoc, diag::err_redefinition) << Name;
853        Diag(Def->getLocation(), diag::note_previous_definition);
854        // FIXME: Would it make sense to try to "forget" the previous
855        // definition, as part of error recovery?
856        return true;
857      }
858    }
859  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
860    // Maybe we will complain about the shadowed template parameter.
861    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
862    // Just pretend that we didn't see the previous declaration.
863    PrevDecl = 0;
864  } else if (PrevDecl) {
865    // C++ [temp]p5:
866    //   A class template shall not have the same name as any other
867    //   template, class, function, object, enumeration, enumerator,
868    //   namespace, or type in the same scope (3.3), except as specified
869    //   in (14.5.4).
870    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
871    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
872    return true;
873  }
874
875  // Check the template parameter list of this declaration, possibly
876  // merging in the template parameter list from the previous class
877  // template declaration.
878  if (CheckTemplateParameterList(TemplateParams,
879            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
880                                 TPC_ClassTemplate))
881    Invalid = true;
882
883  if (SS.isSet()) {
884    // If the name of the template was qualified, we must be defining the
885    // template out-of-line.
886    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
887        !(TUK == TUK_Friend && CurContext->isDependentContext()))
888      Diag(NameLoc, diag::err_member_def_does_not_match)
889        << Name << SemanticContext << SS.getRange();
890  }
891
892  CXXRecordDecl *NewClass =
893    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
894                          PrevClassTemplate?
895                            PrevClassTemplate->getTemplatedDecl() : 0,
896                          /*DelayTypeCreation=*/true);
897  SetNestedNameSpecifier(NewClass, SS);
898
899  ClassTemplateDecl *NewTemplate
900    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
901                                DeclarationName(Name), TemplateParams,
902                                NewClass, PrevClassTemplate);
903  NewClass->setDescribedClassTemplate(NewTemplate);
904
905  // Build the type for the class template declaration now.
906  QualType T = NewTemplate->getInjectedClassNameSpecialization();
907  T = Context.getInjectedClassNameType(NewClass, T);
908  assert(T->isDependentType() && "Class template type is not dependent?");
909  (void)T;
910
911  // If we are providing an explicit specialization of a member that is a
912  // class template, make a note of that.
913  if (PrevClassTemplate &&
914      PrevClassTemplate->getInstantiatedFromMemberTemplate())
915    PrevClassTemplate->setMemberSpecialization();
916
917  // Set the access specifier.
918  if (!Invalid && TUK != TUK_Friend)
919    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
920
921  // Set the lexical context of these templates
922  NewClass->setLexicalDeclContext(CurContext);
923  NewTemplate->setLexicalDeclContext(CurContext);
924
925  if (TUK == TUK_Definition)
926    NewClass->startDefinition();
927
928  if (Attr)
929    ProcessDeclAttributeList(S, NewClass, Attr);
930
931  if (TUK != TUK_Friend)
932    PushOnScopeChains(NewTemplate, S);
933  else {
934    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
935      NewTemplate->setAccess(PrevClassTemplate->getAccess());
936      NewClass->setAccess(PrevClassTemplate->getAccess());
937    }
938
939    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
940                                       PrevClassTemplate != NULL);
941
942    // Friend templates are visible in fairly strange ways.
943    if (!CurContext->isDependentContext()) {
944      DeclContext *DC = SemanticContext->getRedeclContext();
945      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
946      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
947        PushOnScopeChains(NewTemplate, EnclosingScope,
948                          /* AddToContext = */ false);
949    }
950
951    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
952                                            NewClass->getLocation(),
953                                            NewTemplate,
954                                    /*FIXME:*/NewClass->getLocation());
955    Friend->setAccess(AS_public);
956    CurContext->addDecl(Friend);
957  }
958
959  if (Invalid) {
960    NewTemplate->setInvalidDecl();
961    NewClass->setInvalidDecl();
962  }
963  return NewTemplate;
964}
965
966/// \brief Diagnose the presence of a default template argument on a
967/// template parameter, which is ill-formed in certain contexts.
968///
969/// \returns true if the default template argument should be dropped.
970static bool DiagnoseDefaultTemplateArgument(Sema &S,
971                                            Sema::TemplateParamListContext TPC,
972                                            SourceLocation ParamLoc,
973                                            SourceRange DefArgRange) {
974  switch (TPC) {
975  case Sema::TPC_ClassTemplate:
976    return false;
977
978  case Sema::TPC_FunctionTemplate:
979    // C++ [temp.param]p9:
980    //   A default template-argument shall not be specified in a
981    //   function template declaration or a function template
982    //   definition [...]
983    // (This sentence is not in C++0x, per DR226).
984    if (!S.getLangOptions().CPlusPlus0x)
985      S.Diag(ParamLoc,
986             diag::err_template_parameter_default_in_function_template)
987        << DefArgRange;
988    return false;
989
990  case Sema::TPC_ClassTemplateMember:
991    // C++0x [temp.param]p9:
992    //   A default template-argument shall not be specified in the
993    //   template-parameter-lists of the definition of a member of a
994    //   class template that appears outside of the member's class.
995    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
996      << DefArgRange;
997    return true;
998
999  case Sema::TPC_FriendFunctionTemplate:
1000    // C++ [temp.param]p9:
1001    //   A default template-argument shall not be specified in a
1002    //   friend template declaration.
1003    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1004      << DefArgRange;
1005    return true;
1006
1007    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1008    // for friend function templates if there is only a single
1009    // declaration (and it is a definition). Strange!
1010  }
1011
1012  return false;
1013}
1014
1015/// \brief Checks the validity of a template parameter list, possibly
1016/// considering the template parameter list from a previous
1017/// declaration.
1018///
1019/// If an "old" template parameter list is provided, it must be
1020/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1021/// template parameter list.
1022///
1023/// \param NewParams Template parameter list for a new template
1024/// declaration. This template parameter list will be updated with any
1025/// default arguments that are carried through from the previous
1026/// template parameter list.
1027///
1028/// \param OldParams If provided, template parameter list from a
1029/// previous declaration of the same template. Default template
1030/// arguments will be merged from the old template parameter list to
1031/// the new template parameter list.
1032///
1033/// \param TPC Describes the context in which we are checking the given
1034/// template parameter list.
1035///
1036/// \returns true if an error occurred, false otherwise.
1037bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1038                                      TemplateParameterList *OldParams,
1039                                      TemplateParamListContext TPC) {
1040  bool Invalid = false;
1041
1042  // C++ [temp.param]p10:
1043  //   The set of default template-arguments available for use with a
1044  //   template declaration or definition is obtained by merging the
1045  //   default arguments from the definition (if in scope) and all
1046  //   declarations in scope in the same way default function
1047  //   arguments are (8.3.6).
1048  bool SawDefaultArgument = false;
1049  SourceLocation PreviousDefaultArgLoc;
1050
1051  bool SawParameterPack = false;
1052  SourceLocation ParameterPackLoc;
1053
1054  // Dummy initialization to avoid warnings.
1055  TemplateParameterList::iterator OldParam = NewParams->end();
1056  if (OldParams)
1057    OldParam = OldParams->begin();
1058
1059  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1060                                    NewParamEnd = NewParams->end();
1061       NewParam != NewParamEnd; ++NewParam) {
1062    // Variables used to diagnose redundant default arguments
1063    bool RedundantDefaultArg = false;
1064    SourceLocation OldDefaultLoc;
1065    SourceLocation NewDefaultLoc;
1066
1067    // Variables used to diagnose missing default arguments
1068    bool MissingDefaultArg = false;
1069
1070    // C++0x [temp.param]p11:
1071    // If a template parameter of a class template is a template parameter pack,
1072    // it must be the last template parameter.
1073    if (SawParameterPack) {
1074      Diag(ParameterPackLoc,
1075           diag::err_template_param_pack_must_be_last_template_parameter);
1076      Invalid = true;
1077    }
1078
1079    if (TemplateTypeParmDecl *NewTypeParm
1080          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1081      // Check the presence of a default argument here.
1082      if (NewTypeParm->hasDefaultArgument() &&
1083          DiagnoseDefaultTemplateArgument(*this, TPC,
1084                                          NewTypeParm->getLocation(),
1085               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1086                                                       .getSourceRange()))
1087        NewTypeParm->removeDefaultArgument();
1088
1089      // Merge default arguments for template type parameters.
1090      TemplateTypeParmDecl *OldTypeParm
1091          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1092
1093      if (NewTypeParm->isParameterPack()) {
1094        assert(!NewTypeParm->hasDefaultArgument() &&
1095               "Parameter packs can't have a default argument!");
1096        SawParameterPack = true;
1097        ParameterPackLoc = NewTypeParm->getLocation();
1098      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1099                 NewTypeParm->hasDefaultArgument()) {
1100        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1101        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1102        SawDefaultArgument = true;
1103        RedundantDefaultArg = true;
1104        PreviousDefaultArgLoc = NewDefaultLoc;
1105      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1106        // Merge the default argument from the old declaration to the
1107        // new declaration.
1108        SawDefaultArgument = true;
1109        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1110                                        true);
1111        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1112      } else if (NewTypeParm->hasDefaultArgument()) {
1113        SawDefaultArgument = true;
1114        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1115      } else if (SawDefaultArgument)
1116        MissingDefaultArg = true;
1117    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1118               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1119      // Check the presence of a default argument here.
1120      if (NewNonTypeParm->hasDefaultArgument() &&
1121          DiagnoseDefaultTemplateArgument(*this, TPC,
1122                                          NewNonTypeParm->getLocation(),
1123                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1124        NewNonTypeParm->removeDefaultArgument();
1125      }
1126
1127      // Merge default arguments for non-type template parameters
1128      NonTypeTemplateParmDecl *OldNonTypeParm
1129        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1130      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1131          NewNonTypeParm->hasDefaultArgument()) {
1132        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1133        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1134        SawDefaultArgument = true;
1135        RedundantDefaultArg = true;
1136        PreviousDefaultArgLoc = NewDefaultLoc;
1137      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1138        // Merge the default argument from the old declaration to the
1139        // new declaration.
1140        SawDefaultArgument = true;
1141        // FIXME: We need to create a new kind of "default argument"
1142        // expression that points to a previous template template
1143        // parameter.
1144        NewNonTypeParm->setDefaultArgument(
1145                                         OldNonTypeParm->getDefaultArgument(),
1146                                         /*Inherited=*/ true);
1147        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1148      } else if (NewNonTypeParm->hasDefaultArgument()) {
1149        SawDefaultArgument = true;
1150        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1151      } else if (SawDefaultArgument)
1152        MissingDefaultArg = true;
1153    } else {
1154      // Check the presence of a default argument here.
1155      TemplateTemplateParmDecl *NewTemplateParm
1156        = cast<TemplateTemplateParmDecl>(*NewParam);
1157      if (NewTemplateParm->hasDefaultArgument() &&
1158          DiagnoseDefaultTemplateArgument(*this, TPC,
1159                                          NewTemplateParm->getLocation(),
1160                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1161        NewTemplateParm->removeDefaultArgument();
1162
1163      // Merge default arguments for template template parameters
1164      TemplateTemplateParmDecl *OldTemplateParm
1165        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1166      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1167          NewTemplateParm->hasDefaultArgument()) {
1168        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1169        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1170        SawDefaultArgument = true;
1171        RedundantDefaultArg = true;
1172        PreviousDefaultArgLoc = NewDefaultLoc;
1173      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1174        // Merge the default argument from the old declaration to the
1175        // new declaration.
1176        SawDefaultArgument = true;
1177        // FIXME: We need to create a new kind of "default argument" expression
1178        // that points to a previous template template parameter.
1179        NewTemplateParm->setDefaultArgument(
1180                                          OldTemplateParm->getDefaultArgument(),
1181                                          /*Inherited=*/ true);
1182        PreviousDefaultArgLoc
1183          = OldTemplateParm->getDefaultArgument().getLocation();
1184      } else if (NewTemplateParm->hasDefaultArgument()) {
1185        SawDefaultArgument = true;
1186        PreviousDefaultArgLoc
1187          = NewTemplateParm->getDefaultArgument().getLocation();
1188      } else if (SawDefaultArgument)
1189        MissingDefaultArg = true;
1190    }
1191
1192    if (RedundantDefaultArg) {
1193      // C++ [temp.param]p12:
1194      //   A template-parameter shall not be given default arguments
1195      //   by two different declarations in the same scope.
1196      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1197      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1198      Invalid = true;
1199    } else if (MissingDefaultArg) {
1200      // C++ [temp.param]p11:
1201      //   If a template-parameter has a default template-argument,
1202      //   all subsequent template-parameters shall have a default
1203      //   template-argument supplied.
1204      Diag((*NewParam)->getLocation(),
1205           diag::err_template_param_default_arg_missing);
1206      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1207      Invalid = true;
1208    }
1209
1210    // If we have an old template parameter list that we're merging
1211    // in, move on to the next parameter.
1212    if (OldParams)
1213      ++OldParam;
1214  }
1215
1216  return Invalid;
1217}
1218
1219/// \brief Match the given template parameter lists to the given scope
1220/// specifier, returning the template parameter list that applies to the
1221/// name.
1222///
1223/// \param DeclStartLoc the start of the declaration that has a scope
1224/// specifier or a template parameter list.
1225///
1226/// \param SS the scope specifier that will be matched to the given template
1227/// parameter lists. This scope specifier precedes a qualified name that is
1228/// being declared.
1229///
1230/// \param ParamLists the template parameter lists, from the outermost to the
1231/// innermost template parameter lists.
1232///
1233/// \param NumParamLists the number of template parameter lists in ParamLists.
1234///
1235/// \param IsFriend Whether to apply the slightly different rules for
1236/// matching template parameters to scope specifiers in friend
1237/// declarations.
1238///
1239/// \param IsExplicitSpecialization will be set true if the entity being
1240/// declared is an explicit specialization, false otherwise.
1241///
1242/// \returns the template parameter list, if any, that corresponds to the
1243/// name that is preceded by the scope specifier @p SS. This template
1244/// parameter list may be have template parameters (if we're declaring a
1245/// template) or may have no template parameters (if we're declaring a
1246/// template specialization), or may be NULL (if we were's declaring isn't
1247/// itself a template).
1248TemplateParameterList *
1249Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1250                                              const CXXScopeSpec &SS,
1251                                          TemplateParameterList **ParamLists,
1252                                              unsigned NumParamLists,
1253                                              bool IsFriend,
1254                                              bool &IsExplicitSpecialization,
1255                                              bool &Invalid) {
1256  IsExplicitSpecialization = false;
1257
1258  // Find the template-ids that occur within the nested-name-specifier. These
1259  // template-ids will match up with the template parameter lists.
1260  llvm::SmallVector<const TemplateSpecializationType *, 4>
1261    TemplateIdsInSpecifier;
1262  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1263    ExplicitSpecializationsInSpecifier;
1264  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1265       NNS; NNS = NNS->getPrefix()) {
1266    const Type *T = NNS->getAsType();
1267    if (!T) break;
1268
1269    // C++0x [temp.expl.spec]p17:
1270    //   A member or a member template may be nested within many
1271    //   enclosing class templates. In an explicit specialization for
1272    //   such a member, the member declaration shall be preceded by a
1273    //   template<> for each enclosing class template that is
1274    //   explicitly specialized.
1275    //
1276    // Following the existing practice of GNU and EDG, we allow a typedef of a
1277    // template specialization type.
1278    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1279      T = TT->LookThroughTypedefs().getTypePtr();
1280
1281    if (const TemplateSpecializationType *SpecType
1282                                  = dyn_cast<TemplateSpecializationType>(T)) {
1283      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1284      if (!Template)
1285        continue; // FIXME: should this be an error? probably...
1286
1287      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1288        ClassTemplateSpecializationDecl *SpecDecl
1289          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1290        // If the nested name specifier refers to an explicit specialization,
1291        // we don't need a template<> header.
1292        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1293          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1294          continue;
1295        }
1296      }
1297
1298      TemplateIdsInSpecifier.push_back(SpecType);
1299    }
1300  }
1301
1302  // Reverse the list of template-ids in the scope specifier, so that we can
1303  // more easily match up the template-ids and the template parameter lists.
1304  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1305
1306  SourceLocation FirstTemplateLoc = DeclStartLoc;
1307  if (NumParamLists)
1308    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1309
1310  // Match the template-ids found in the specifier to the template parameter
1311  // lists.
1312  unsigned Idx = 0;
1313  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1314       Idx != NumTemplateIds; ++Idx) {
1315    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1316    bool DependentTemplateId = TemplateId->isDependentType();
1317    if (Idx >= NumParamLists) {
1318      // We have a template-id without a corresponding template parameter
1319      // list.
1320
1321      // ...which is fine if this is a friend declaration.
1322      if (IsFriend) {
1323        IsExplicitSpecialization = true;
1324        break;
1325      }
1326
1327      if (DependentTemplateId) {
1328        // FIXME: the location information here isn't great.
1329        Diag(SS.getRange().getBegin(),
1330             diag::err_template_spec_needs_template_parameters)
1331          << TemplateId
1332          << SS.getRange();
1333        Invalid = true;
1334      } else {
1335        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1336          << SS.getRange()
1337          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1338        IsExplicitSpecialization = true;
1339      }
1340      return 0;
1341    }
1342
1343    // Check the template parameter list against its corresponding template-id.
1344    if (DependentTemplateId) {
1345      TemplateParameterList *ExpectedTemplateParams = 0;
1346
1347      // Are there cases in (e.g.) friends where this won't match?
1348      if (const InjectedClassNameType *Injected
1349            = TemplateId->getAs<InjectedClassNameType>()) {
1350        CXXRecordDecl *Record = Injected->getDecl();
1351        if (ClassTemplatePartialSpecializationDecl *Partial =
1352              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1353          ExpectedTemplateParams = Partial->getTemplateParameters();
1354        else
1355          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1356            ->getTemplateParameters();
1357      }
1358
1359      if (ExpectedTemplateParams)
1360        TemplateParameterListsAreEqual(ParamLists[Idx],
1361                                       ExpectedTemplateParams,
1362                                       true, TPL_TemplateMatch);
1363
1364      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1365    } else if (ParamLists[Idx]->size() > 0)
1366      Diag(ParamLists[Idx]->getTemplateLoc(),
1367           diag::err_template_param_list_matches_nontemplate)
1368        << TemplateId
1369        << ParamLists[Idx]->getSourceRange();
1370    else
1371      IsExplicitSpecialization = true;
1372  }
1373
1374  // If there were at least as many template-ids as there were template
1375  // parameter lists, then there are no template parameter lists remaining for
1376  // the declaration itself.
1377  if (Idx >= NumParamLists) {
1378    // Silently drop template member friend declarations.
1379    // TODO: implement these
1380    if (IsFriend && NumParamLists) Invalid = true;
1381
1382    return 0;
1383  }
1384
1385  // If there were too many template parameter lists, complain about that now.
1386  if (Idx != NumParamLists - 1) {
1387    while (Idx < NumParamLists - 1) {
1388      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1389      Diag(ParamLists[Idx]->getTemplateLoc(),
1390           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1391                               : diag::err_template_spec_extra_headers)
1392        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1393                       ParamLists[Idx]->getRAngleLoc());
1394
1395      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1396        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1397             diag::note_explicit_template_spec_does_not_need_header)
1398          << ExplicitSpecializationsInSpecifier.back();
1399        ExplicitSpecializationsInSpecifier.pop_back();
1400      }
1401
1402      // We have a template parameter list with no corresponding scope, which
1403      // means that the resulting template declaration can't be instantiated
1404      // properly (we'll end up with dependent nodes when we shouldn't).
1405      if (!isExplicitSpecHeader)
1406        Invalid = true;
1407
1408      ++Idx;
1409    }
1410  }
1411
1412  // Silently drop template member template friend declarations.
1413  // TODO: implement these
1414  if (IsFriend && NumParamLists > 1)
1415    Invalid = true;
1416
1417  // Return the last template parameter list, which corresponds to the
1418  // entity being declared.
1419  return ParamLists[NumParamLists - 1];
1420}
1421
1422QualType Sema::CheckTemplateIdType(TemplateName Name,
1423                                   SourceLocation TemplateLoc,
1424                              const TemplateArgumentListInfo &TemplateArgs) {
1425  TemplateDecl *Template = Name.getAsTemplateDecl();
1426  if (!Template) {
1427    // The template name does not resolve to a template, so we just
1428    // build a dependent template-id type.
1429    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1430  }
1431
1432  // Check that the template argument list is well-formed for this
1433  // template.
1434  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1435                                        TemplateArgs.size());
1436  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1437                                false, Converted))
1438    return QualType();
1439
1440  assert((Converted.structuredSize() ==
1441            Template->getTemplateParameters()->size()) &&
1442         "Converted template argument list is too short!");
1443
1444  QualType CanonType;
1445
1446  if (Name.isDependent() ||
1447      TemplateSpecializationType::anyDependentTemplateArguments(
1448                                                      TemplateArgs)) {
1449    // This class template specialization is a dependent
1450    // type. Therefore, its canonical type is another class template
1451    // specialization type that contains all of the converted
1452    // arguments in canonical form. This ensures that, e.g., A<T> and
1453    // A<T, T> have identical types when A is declared as:
1454    //
1455    //   template<typename T, typename U = T> struct A;
1456    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1457    CanonType = Context.getTemplateSpecializationType(CanonName,
1458                                                   Converted.getFlatArguments(),
1459                                                   Converted.flatSize());
1460
1461    // FIXME: CanonType is not actually the canonical type, and unfortunately
1462    // it is a TemplateSpecializationType that we will never use again.
1463    // In the future, we need to teach getTemplateSpecializationType to only
1464    // build the canonical type and return that to us.
1465    CanonType = Context.getCanonicalType(CanonType);
1466
1467    // This might work out to be a current instantiation, in which
1468    // case the canonical type needs to be the InjectedClassNameType.
1469    //
1470    // TODO: in theory this could be a simple hashtable lookup; most
1471    // changes to CurContext don't change the set of current
1472    // instantiations.
1473    if (isa<ClassTemplateDecl>(Template)) {
1474      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1475        // If we get out to a namespace, we're done.
1476        if (Ctx->isFileContext()) break;
1477
1478        // If this isn't a record, keep looking.
1479        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1480        if (!Record) continue;
1481
1482        // Look for one of the two cases with InjectedClassNameTypes
1483        // and check whether it's the same template.
1484        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1485            !Record->getDescribedClassTemplate())
1486          continue;
1487
1488        // Fetch the injected class name type and check whether its
1489        // injected type is equal to the type we just built.
1490        QualType ICNT = Context.getTypeDeclType(Record);
1491        QualType Injected = cast<InjectedClassNameType>(ICNT)
1492          ->getInjectedSpecializationType();
1493
1494        if (CanonType != Injected->getCanonicalTypeInternal())
1495          continue;
1496
1497        // If so, the canonical type of this TST is the injected
1498        // class name type of the record we just found.
1499        assert(ICNT.isCanonical());
1500        CanonType = ICNT;
1501        break;
1502      }
1503    }
1504  } else if (ClassTemplateDecl *ClassTemplate
1505               = dyn_cast<ClassTemplateDecl>(Template)) {
1506    // Find the class template specialization declaration that
1507    // corresponds to these arguments.
1508    void *InsertPos = 0;
1509    ClassTemplateSpecializationDecl *Decl
1510      = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
1511                                          Converted.flatSize(), InsertPos);
1512    if (!Decl) {
1513      // This is the first time we have referenced this class template
1514      // specialization. Create the canonical declaration and add it to
1515      // the set of specializations.
1516      Decl = ClassTemplateSpecializationDecl::Create(Context,
1517                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1518                                                ClassTemplate->getDeclContext(),
1519                                                ClassTemplate->getLocation(),
1520                                                ClassTemplate,
1521                                                Converted, 0);
1522      ClassTemplate->AddSpecialization(Decl, InsertPos);
1523      Decl->setLexicalDeclContext(CurContext);
1524    }
1525
1526    CanonType = Context.getTypeDeclType(Decl);
1527    assert(isa<RecordType>(CanonType) &&
1528           "type of non-dependent specialization is not a RecordType");
1529  }
1530
1531  // Build the fully-sugared type for this class template
1532  // specialization, which refers back to the class template
1533  // specialization we created or found.
1534  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1535}
1536
1537TypeResult
1538Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1539                          SourceLocation LAngleLoc,
1540                          ASTTemplateArgsPtr TemplateArgsIn,
1541                          SourceLocation RAngleLoc) {
1542  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1543
1544  // Translate the parser's template argument list in our AST format.
1545  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1546  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1547
1548  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1549  TemplateArgsIn.release();
1550
1551  if (Result.isNull())
1552    return true;
1553
1554  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1555  TemplateSpecializationTypeLoc TL
1556    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1557  TL.setTemplateNameLoc(TemplateLoc);
1558  TL.setLAngleLoc(LAngleLoc);
1559  TL.setRAngleLoc(RAngleLoc);
1560  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1561    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1562
1563  return CreateParsedType(Result, DI);
1564}
1565
1566TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1567                                        TagUseKind TUK,
1568                                        TypeSpecifierType TagSpec,
1569                                        SourceLocation TagLoc) {
1570  if (TypeResult.isInvalid())
1571    return ::TypeResult();
1572
1573  // FIXME: preserve source info, ideally without copying the DI.
1574  TypeSourceInfo *DI;
1575  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1576
1577  // Verify the tag specifier.
1578  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1579
1580  if (const RecordType *RT = Type->getAs<RecordType>()) {
1581    RecordDecl *D = RT->getDecl();
1582
1583    IdentifierInfo *Id = D->getIdentifier();
1584    assert(Id && "templated class must have an identifier");
1585
1586    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1587      Diag(TagLoc, diag::err_use_with_wrong_tag)
1588        << Type
1589        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1590      Diag(D->getLocation(), diag::note_previous_use);
1591    }
1592  }
1593
1594  ElaboratedTypeKeyword Keyword
1595    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1596  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1597
1598  return ParsedType::make(ElabType);
1599}
1600
1601ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1602                                                 LookupResult &R,
1603                                                 bool RequiresADL,
1604                                 const TemplateArgumentListInfo &TemplateArgs) {
1605  // FIXME: Can we do any checking at this point? I guess we could check the
1606  // template arguments that we have against the template name, if the template
1607  // name refers to a single template. That's not a terribly common case,
1608  // though.
1609
1610  // These should be filtered out by our callers.
1611  assert(!R.empty() && "empty lookup results when building templateid");
1612  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1613
1614  NestedNameSpecifier *Qualifier = 0;
1615  SourceRange QualifierRange;
1616  if (SS.isSet()) {
1617    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1618    QualifierRange = SS.getRange();
1619  }
1620
1621  // We don't want lookup warnings at this point.
1622  R.suppressDiagnostics();
1623
1624  bool Dependent
1625    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1626                                              &TemplateArgs);
1627  UnresolvedLookupExpr *ULE
1628    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1629                                   Qualifier, QualifierRange,
1630                                   R.getLookupNameInfo(),
1631                                   RequiresADL, TemplateArgs,
1632                                   R.begin(), R.end());
1633
1634  return Owned(ULE);
1635}
1636
1637// We actually only call this from template instantiation.
1638ExprResult
1639Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1640                                   const DeclarationNameInfo &NameInfo,
1641                             const TemplateArgumentListInfo &TemplateArgs) {
1642  DeclContext *DC;
1643  if (!(DC = computeDeclContext(SS, false)) ||
1644      DC->isDependentContext() ||
1645      RequireCompleteDeclContext(SS, DC))
1646    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1647
1648  bool MemberOfUnknownSpecialization;
1649  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1650  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1651                     MemberOfUnknownSpecialization);
1652
1653  if (R.isAmbiguous())
1654    return ExprError();
1655
1656  if (R.empty()) {
1657    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1658      << NameInfo.getName() << SS.getRange();
1659    return ExprError();
1660  }
1661
1662  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1663    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1664      << (NestedNameSpecifier*) SS.getScopeRep()
1665      << NameInfo.getName() << SS.getRange();
1666    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1667    return ExprError();
1668  }
1669
1670  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1671}
1672
1673/// \brief Form a dependent template name.
1674///
1675/// This action forms a dependent template name given the template
1676/// name and its (presumably dependent) scope specifier. For
1677/// example, given "MetaFun::template apply", the scope specifier \p
1678/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1679/// of the "template" keyword, and "apply" is the \p Name.
1680TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1681                                                  SourceLocation TemplateKWLoc,
1682                                                  CXXScopeSpec &SS,
1683                                                  UnqualifiedId &Name,
1684                                                  ParsedType ObjectType,
1685                                                  bool EnteringContext,
1686                                                  TemplateTy &Result) {
1687  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1688      !getLangOptions().CPlusPlus0x)
1689    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1690      << FixItHint::CreateRemoval(TemplateKWLoc);
1691
1692  DeclContext *LookupCtx = 0;
1693  if (SS.isSet())
1694    LookupCtx = computeDeclContext(SS, EnteringContext);
1695  if (!LookupCtx && ObjectType)
1696    LookupCtx = computeDeclContext(ObjectType.get());
1697  if (LookupCtx) {
1698    // C++0x [temp.names]p5:
1699    //   If a name prefixed by the keyword template is not the name of
1700    //   a template, the program is ill-formed. [Note: the keyword
1701    //   template may not be applied to non-template members of class
1702    //   templates. -end note ] [ Note: as is the case with the
1703    //   typename prefix, the template prefix is allowed in cases
1704    //   where it is not strictly necessary; i.e., when the
1705    //   nested-name-specifier or the expression on the left of the ->
1706    //   or . is not dependent on a template-parameter, or the use
1707    //   does not appear in the scope of a template. -end note]
1708    //
1709    // Note: C++03 was more strict here, because it banned the use of
1710    // the "template" keyword prior to a template-name that was not a
1711    // dependent name. C++ DR468 relaxed this requirement (the
1712    // "template" keyword is now permitted). We follow the C++0x
1713    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1714    bool MemberOfUnknownSpecialization;
1715    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1716                                          ObjectType, EnteringContext, Result,
1717                                          MemberOfUnknownSpecialization);
1718    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1719        isa<CXXRecordDecl>(LookupCtx) &&
1720        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1721      // This is a dependent template. Handle it below.
1722    } else if (TNK == TNK_Non_template) {
1723      Diag(Name.getSourceRange().getBegin(),
1724           diag::err_template_kw_refers_to_non_template)
1725        << GetNameFromUnqualifiedId(Name).getName()
1726        << Name.getSourceRange()
1727        << TemplateKWLoc;
1728      return TNK_Non_template;
1729    } else {
1730      // We found something; return it.
1731      return TNK;
1732    }
1733  }
1734
1735  NestedNameSpecifier *Qualifier
1736    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1737
1738  switch (Name.getKind()) {
1739  case UnqualifiedId::IK_Identifier:
1740    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1741                                                              Name.Identifier));
1742    return TNK_Dependent_template_name;
1743
1744  case UnqualifiedId::IK_OperatorFunctionId:
1745    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1746                                             Name.OperatorFunctionId.Operator));
1747    return TNK_Dependent_template_name;
1748
1749  case UnqualifiedId::IK_LiteralOperatorId:
1750    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1751
1752  default:
1753    break;
1754  }
1755
1756  Diag(Name.getSourceRange().getBegin(),
1757       diag::err_template_kw_refers_to_non_template)
1758    << GetNameFromUnqualifiedId(Name).getName()
1759    << Name.getSourceRange()
1760    << TemplateKWLoc;
1761  return TNK_Non_template;
1762}
1763
1764bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1765                                     const TemplateArgumentLoc &AL,
1766                                     TemplateArgumentListBuilder &Converted) {
1767  const TemplateArgument &Arg = AL.getArgument();
1768
1769  // Check template type parameter.
1770  switch(Arg.getKind()) {
1771  case TemplateArgument::Type:
1772    // C++ [temp.arg.type]p1:
1773    //   A template-argument for a template-parameter which is a
1774    //   type shall be a type-id.
1775    break;
1776  case TemplateArgument::Template: {
1777    // We have a template type parameter but the template argument
1778    // is a template without any arguments.
1779    SourceRange SR = AL.getSourceRange();
1780    TemplateName Name = Arg.getAsTemplate();
1781    Diag(SR.getBegin(), diag::err_template_missing_args)
1782      << Name << SR;
1783    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1784      Diag(Decl->getLocation(), diag::note_template_decl_here);
1785
1786    return true;
1787  }
1788  default: {
1789    // We have a template type parameter but the template argument
1790    // is not a type.
1791    SourceRange SR = AL.getSourceRange();
1792    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1793    Diag(Param->getLocation(), diag::note_template_param_here);
1794
1795    return true;
1796  }
1797  }
1798
1799  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1800    return true;
1801
1802  // Add the converted template type argument.
1803  Converted.Append(
1804                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1805  return false;
1806}
1807
1808/// \brief Substitute template arguments into the default template argument for
1809/// the given template type parameter.
1810///
1811/// \param SemaRef the semantic analysis object for which we are performing
1812/// the substitution.
1813///
1814/// \param Template the template that we are synthesizing template arguments
1815/// for.
1816///
1817/// \param TemplateLoc the location of the template name that started the
1818/// template-id we are checking.
1819///
1820/// \param RAngleLoc the location of the right angle bracket ('>') that
1821/// terminates the template-id.
1822///
1823/// \param Param the template template parameter whose default we are
1824/// substituting into.
1825///
1826/// \param Converted the list of template arguments provided for template
1827/// parameters that precede \p Param in the template parameter list.
1828///
1829/// \returns the substituted template argument, or NULL if an error occurred.
1830static TypeSourceInfo *
1831SubstDefaultTemplateArgument(Sema &SemaRef,
1832                             TemplateDecl *Template,
1833                             SourceLocation TemplateLoc,
1834                             SourceLocation RAngleLoc,
1835                             TemplateTypeParmDecl *Param,
1836                             TemplateArgumentListBuilder &Converted) {
1837  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1838
1839  // If the argument type is dependent, instantiate it now based
1840  // on the previously-computed template arguments.
1841  if (ArgType->getType()->isDependentType()) {
1842    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1843                                      /*TakeArgs=*/false);
1844
1845    MultiLevelTemplateArgumentList AllTemplateArgs
1846      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1847
1848    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1849                                     Template, Converted.getFlatArguments(),
1850                                     Converted.flatSize(),
1851                                     SourceRange(TemplateLoc, RAngleLoc));
1852
1853    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1854                                Param->getDefaultArgumentLoc(),
1855                                Param->getDeclName());
1856  }
1857
1858  return ArgType;
1859}
1860
1861/// \brief Substitute template arguments into the default template argument for
1862/// the given non-type template parameter.
1863///
1864/// \param SemaRef the semantic analysis object for which we are performing
1865/// the substitution.
1866///
1867/// \param Template the template that we are synthesizing template arguments
1868/// for.
1869///
1870/// \param TemplateLoc the location of the template name that started the
1871/// template-id we are checking.
1872///
1873/// \param RAngleLoc the location of the right angle bracket ('>') that
1874/// terminates the template-id.
1875///
1876/// \param Param the non-type template parameter whose default we are
1877/// substituting into.
1878///
1879/// \param Converted the list of template arguments provided for template
1880/// parameters that precede \p Param in the template parameter list.
1881///
1882/// \returns the substituted template argument, or NULL if an error occurred.
1883static ExprResult
1884SubstDefaultTemplateArgument(Sema &SemaRef,
1885                             TemplateDecl *Template,
1886                             SourceLocation TemplateLoc,
1887                             SourceLocation RAngleLoc,
1888                             NonTypeTemplateParmDecl *Param,
1889                             TemplateArgumentListBuilder &Converted) {
1890  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1891                                    /*TakeArgs=*/false);
1892
1893  MultiLevelTemplateArgumentList AllTemplateArgs
1894    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1895
1896  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1897                                   Template, Converted.getFlatArguments(),
1898                                   Converted.flatSize(),
1899                                   SourceRange(TemplateLoc, RAngleLoc));
1900
1901  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1902}
1903
1904/// \brief Substitute template arguments into the default template argument for
1905/// the given template template parameter.
1906///
1907/// \param SemaRef the semantic analysis object for which we are performing
1908/// the substitution.
1909///
1910/// \param Template the template that we are synthesizing template arguments
1911/// for.
1912///
1913/// \param TemplateLoc the location of the template name that started the
1914/// template-id we are checking.
1915///
1916/// \param RAngleLoc the location of the right angle bracket ('>') that
1917/// terminates the template-id.
1918///
1919/// \param Param the template template parameter whose default we are
1920/// substituting into.
1921///
1922/// \param Converted the list of template arguments provided for template
1923/// parameters that precede \p Param in the template parameter list.
1924///
1925/// \returns the substituted template argument, or NULL if an error occurred.
1926static TemplateName
1927SubstDefaultTemplateArgument(Sema &SemaRef,
1928                             TemplateDecl *Template,
1929                             SourceLocation TemplateLoc,
1930                             SourceLocation RAngleLoc,
1931                             TemplateTemplateParmDecl *Param,
1932                             TemplateArgumentListBuilder &Converted) {
1933  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1934                                    /*TakeArgs=*/false);
1935
1936  MultiLevelTemplateArgumentList AllTemplateArgs
1937    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1938
1939  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1940                                   Template, Converted.getFlatArguments(),
1941                                   Converted.flatSize(),
1942                                   SourceRange(TemplateLoc, RAngleLoc));
1943
1944  return SemaRef.SubstTemplateName(
1945                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1946                              Param->getDefaultArgument().getTemplateNameLoc(),
1947                                   AllTemplateArgs);
1948}
1949
1950/// \brief If the given template parameter has a default template
1951/// argument, substitute into that default template argument and
1952/// return the corresponding template argument.
1953TemplateArgumentLoc
1954Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1955                                              SourceLocation TemplateLoc,
1956                                              SourceLocation RAngleLoc,
1957                                              Decl *Param,
1958                                     TemplateArgumentListBuilder &Converted) {
1959  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1960    if (!TypeParm->hasDefaultArgument())
1961      return TemplateArgumentLoc();
1962
1963    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1964                                                      TemplateLoc,
1965                                                      RAngleLoc,
1966                                                      TypeParm,
1967                                                      Converted);
1968    if (DI)
1969      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1970
1971    return TemplateArgumentLoc();
1972  }
1973
1974  if (NonTypeTemplateParmDecl *NonTypeParm
1975        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1976    if (!NonTypeParm->hasDefaultArgument())
1977      return TemplateArgumentLoc();
1978
1979    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1980                                                        TemplateLoc,
1981                                                        RAngleLoc,
1982                                                        NonTypeParm,
1983                                                        Converted);
1984    if (Arg.isInvalid())
1985      return TemplateArgumentLoc();
1986
1987    Expr *ArgE = Arg.takeAs<Expr>();
1988    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1989  }
1990
1991  TemplateTemplateParmDecl *TempTempParm
1992    = cast<TemplateTemplateParmDecl>(Param);
1993  if (!TempTempParm->hasDefaultArgument())
1994    return TemplateArgumentLoc();
1995
1996  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1997                                                    TemplateLoc,
1998                                                    RAngleLoc,
1999                                                    TempTempParm,
2000                                                    Converted);
2001  if (TName.isNull())
2002    return TemplateArgumentLoc();
2003
2004  return TemplateArgumentLoc(TemplateArgument(TName),
2005                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
2006                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2007}
2008
2009/// \brief Check that the given template argument corresponds to the given
2010/// template parameter.
2011bool Sema::CheckTemplateArgument(NamedDecl *Param,
2012                                 const TemplateArgumentLoc &Arg,
2013                                 TemplateDecl *Template,
2014                                 SourceLocation TemplateLoc,
2015                                 SourceLocation RAngleLoc,
2016                                 TemplateArgumentListBuilder &Converted,
2017                                 CheckTemplateArgumentKind CTAK) {
2018  // Check template type parameters.
2019  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2020    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2021
2022  // Check non-type template parameters.
2023  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2024    // Do substitution on the type of the non-type template parameter
2025    // with the template arguments we've seen thus far.
2026    QualType NTTPType = NTTP->getType();
2027    if (NTTPType->isDependentType()) {
2028      // Do substitution on the type of the non-type template parameter.
2029      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2030                                 NTTP, Converted.getFlatArguments(),
2031                                 Converted.flatSize(),
2032                                 SourceRange(TemplateLoc, RAngleLoc));
2033
2034      TemplateArgumentList TemplateArgs(Context, Converted,
2035                                        /*TakeArgs=*/false);
2036      NTTPType = SubstType(NTTPType,
2037                           MultiLevelTemplateArgumentList(TemplateArgs),
2038                           NTTP->getLocation(),
2039                           NTTP->getDeclName());
2040      // If that worked, check the non-type template parameter type
2041      // for validity.
2042      if (!NTTPType.isNull())
2043        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2044                                                     NTTP->getLocation());
2045      if (NTTPType.isNull())
2046        return true;
2047    }
2048
2049    switch (Arg.getArgument().getKind()) {
2050    case TemplateArgument::Null:
2051      assert(false && "Should never see a NULL template argument here");
2052      return true;
2053
2054    case TemplateArgument::Expression: {
2055      Expr *E = Arg.getArgument().getAsExpr();
2056      TemplateArgument Result;
2057      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2058        return true;
2059
2060      Converted.Append(Result);
2061      break;
2062    }
2063
2064    case TemplateArgument::Declaration:
2065    case TemplateArgument::Integral:
2066      // We've already checked this template argument, so just copy
2067      // it to the list of converted arguments.
2068      Converted.Append(Arg.getArgument());
2069      break;
2070
2071    case TemplateArgument::Template:
2072      // We were given a template template argument. It may not be ill-formed;
2073      // see below.
2074      if (DependentTemplateName *DTN
2075            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2076        // We have a template argument such as \c T::template X, which we
2077        // parsed as a template template argument. However, since we now
2078        // know that we need a non-type template argument, convert this
2079        // template name into an expression.
2080
2081        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2082                                     Arg.getTemplateNameLoc());
2083
2084        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2085                                                    DTN->getQualifier(),
2086                                               Arg.getTemplateQualifierRange(),
2087                                                    NameInfo);
2088
2089        TemplateArgument Result;
2090        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2091          return true;
2092
2093        Converted.Append(Result);
2094        break;
2095      }
2096
2097      // We have a template argument that actually does refer to a class
2098      // template, template alias, or template template parameter, and
2099      // therefore cannot be a non-type template argument.
2100      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2101        << Arg.getSourceRange();
2102
2103      Diag(Param->getLocation(), diag::note_template_param_here);
2104      return true;
2105
2106    case TemplateArgument::Type: {
2107      // We have a non-type template parameter but the template
2108      // argument is a type.
2109
2110      // C++ [temp.arg]p2:
2111      //   In a template-argument, an ambiguity between a type-id and
2112      //   an expression is resolved to a type-id, regardless of the
2113      //   form of the corresponding template-parameter.
2114      //
2115      // We warn specifically about this case, since it can be rather
2116      // confusing for users.
2117      QualType T = Arg.getArgument().getAsType();
2118      SourceRange SR = Arg.getSourceRange();
2119      if (T->isFunctionType())
2120        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2121      else
2122        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2123      Diag(Param->getLocation(), diag::note_template_param_here);
2124      return true;
2125    }
2126
2127    case TemplateArgument::Pack:
2128      llvm_unreachable("Caller must expand template argument packs");
2129      break;
2130    }
2131
2132    return false;
2133  }
2134
2135
2136  // Check template template parameters.
2137  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2138
2139  // Substitute into the template parameter list of the template
2140  // template parameter, since previously-supplied template arguments
2141  // may appear within the template template parameter.
2142  {
2143    // Set up a template instantiation context.
2144    LocalInstantiationScope Scope(*this);
2145    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2146                               TempParm, Converted.getFlatArguments(),
2147                               Converted.flatSize(),
2148                               SourceRange(TemplateLoc, RAngleLoc));
2149
2150    TemplateArgumentList TemplateArgs(Context, Converted,
2151                                      /*TakeArgs=*/false);
2152    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2153                      SubstDecl(TempParm, CurContext,
2154                                MultiLevelTemplateArgumentList(TemplateArgs)));
2155    if (!TempParm)
2156      return true;
2157
2158    // FIXME: TempParam is leaked.
2159  }
2160
2161  switch (Arg.getArgument().getKind()) {
2162  case TemplateArgument::Null:
2163    assert(false && "Should never see a NULL template argument here");
2164    return true;
2165
2166  case TemplateArgument::Template:
2167    if (CheckTemplateArgument(TempParm, Arg))
2168      return true;
2169
2170    Converted.Append(Arg.getArgument());
2171    break;
2172
2173  case TemplateArgument::Expression:
2174  case TemplateArgument::Type:
2175    // We have a template template parameter but the template
2176    // argument does not refer to a template.
2177    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2178    return true;
2179
2180  case TemplateArgument::Declaration:
2181    llvm_unreachable(
2182                       "Declaration argument with template template parameter");
2183    break;
2184  case TemplateArgument::Integral:
2185    llvm_unreachable(
2186                          "Integral argument with template template parameter");
2187    break;
2188
2189  case TemplateArgument::Pack:
2190    llvm_unreachable("Caller must expand template argument packs");
2191    break;
2192  }
2193
2194  return false;
2195}
2196
2197/// \brief Check that the given template argument list is well-formed
2198/// for specializing the given template.
2199bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2200                                     SourceLocation TemplateLoc,
2201                                const TemplateArgumentListInfo &TemplateArgs,
2202                                     bool PartialTemplateArgs,
2203                                     TemplateArgumentListBuilder &Converted) {
2204  TemplateParameterList *Params = Template->getTemplateParameters();
2205  unsigned NumParams = Params->size();
2206  unsigned NumArgs = TemplateArgs.size();
2207  bool Invalid = false;
2208
2209  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2210
2211  bool HasParameterPack =
2212    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2213
2214  if ((NumArgs > NumParams && !HasParameterPack) ||
2215      (NumArgs < Params->getMinRequiredArguments() &&
2216       !PartialTemplateArgs)) {
2217    // FIXME: point at either the first arg beyond what we can handle,
2218    // or the '>', depending on whether we have too many or too few
2219    // arguments.
2220    SourceRange Range;
2221    if (NumArgs > NumParams)
2222      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2223    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2224      << (NumArgs > NumParams)
2225      << (isa<ClassTemplateDecl>(Template)? 0 :
2226          isa<FunctionTemplateDecl>(Template)? 1 :
2227          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2228      << Template << Range;
2229    Diag(Template->getLocation(), diag::note_template_decl_here)
2230      << Params->getSourceRange();
2231    Invalid = true;
2232  }
2233
2234  // C++ [temp.arg]p1:
2235  //   [...] The type and form of each template-argument specified in
2236  //   a template-id shall match the type and form specified for the
2237  //   corresponding parameter declared by the template in its
2238  //   template-parameter-list.
2239  unsigned ArgIdx = 0;
2240  for (TemplateParameterList::iterator Param = Params->begin(),
2241                                       ParamEnd = Params->end();
2242       Param != ParamEnd; ++Param, ++ArgIdx) {
2243    if (ArgIdx > NumArgs && PartialTemplateArgs)
2244      break;
2245
2246    // If we have a template parameter pack, check every remaining template
2247    // argument against that template parameter pack.
2248    if ((*Param)->isTemplateParameterPack()) {
2249      Converted.BeginPack();
2250      for (; ArgIdx < NumArgs; ++ArgIdx) {
2251        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2252                                  TemplateLoc, RAngleLoc, Converted)) {
2253          Invalid = true;
2254          break;
2255        }
2256      }
2257      Converted.EndPack();
2258      continue;
2259    }
2260
2261    if (ArgIdx < NumArgs) {
2262      // Check the template argument we were given.
2263      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2264                                TemplateLoc, RAngleLoc, Converted))
2265        return true;
2266
2267      continue;
2268    }
2269
2270    // We have a default template argument that we will use.
2271    TemplateArgumentLoc Arg;
2272
2273    // Retrieve the default template argument from the template
2274    // parameter. For each kind of template parameter, we substitute the
2275    // template arguments provided thus far and any "outer" template arguments
2276    // (when the template parameter was part of a nested template) into
2277    // the default argument.
2278    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2279      if (!TTP->hasDefaultArgument()) {
2280        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2281        break;
2282      }
2283
2284      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2285                                                             Template,
2286                                                             TemplateLoc,
2287                                                             RAngleLoc,
2288                                                             TTP,
2289                                                             Converted);
2290      if (!ArgType)
2291        return true;
2292
2293      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2294                                ArgType);
2295    } else if (NonTypeTemplateParmDecl *NTTP
2296                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2297      if (!NTTP->hasDefaultArgument()) {
2298        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2299        break;
2300      }
2301
2302      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2303                                                              TemplateLoc,
2304                                                              RAngleLoc,
2305                                                              NTTP,
2306                                                              Converted);
2307      if (E.isInvalid())
2308        return true;
2309
2310      Expr *Ex = E.takeAs<Expr>();
2311      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2312    } else {
2313      TemplateTemplateParmDecl *TempParm
2314        = cast<TemplateTemplateParmDecl>(*Param);
2315
2316      if (!TempParm->hasDefaultArgument()) {
2317        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2318        break;
2319      }
2320
2321      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2322                                                       TemplateLoc,
2323                                                       RAngleLoc,
2324                                                       TempParm,
2325                                                       Converted);
2326      if (Name.isNull())
2327        return true;
2328
2329      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2330                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2331                  TempParm->getDefaultArgument().getTemplateNameLoc());
2332    }
2333
2334    // Introduce an instantiation record that describes where we are using
2335    // the default template argument.
2336    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2337                                        Converted.getFlatArguments(),
2338                                        Converted.flatSize(),
2339                                        SourceRange(TemplateLoc, RAngleLoc));
2340
2341    // Check the default template argument.
2342    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2343                              RAngleLoc, Converted))
2344      return true;
2345  }
2346
2347  return Invalid;
2348}
2349
2350/// \brief Check a template argument against its corresponding
2351/// template type parameter.
2352///
2353/// This routine implements the semantics of C++ [temp.arg.type]. It
2354/// returns true if an error occurred, and false otherwise.
2355bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2356                                 TypeSourceInfo *ArgInfo) {
2357  assert(ArgInfo && "invalid TypeSourceInfo");
2358  QualType Arg = ArgInfo->getType();
2359
2360  // C++03 [temp.arg.type]p2:
2361  //   A local type, a type with no linkage, an unnamed type or a type
2362  //   compounded from any of these types shall not be used as a
2363  //   template-argument for a template type-parameter.
2364  // C++0x allows these, and even in C++03 we allow them as an extension with
2365  // a warning.
2366  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2367  if (!LangOpts.CPlusPlus0x) {
2368    const TagType *Tag = 0;
2369    if (const EnumType *EnumT = Arg->getAs<EnumType>())
2370      Tag = EnumT;
2371    else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2372      Tag = RecordT;
2373    if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2374      SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2375      Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2376        << QualType(Tag, 0) << SR;
2377    } else if (Tag && !Tag->getDecl()->getDeclName() &&
2378               !Tag->getDecl()->getTypedefForAnonDecl()) {
2379      Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2380      Diag(Tag->getDecl()->getLocation(),
2381           diag::note_template_unnamed_type_here);
2382    }
2383  }
2384
2385  if (Arg->isVariablyModifiedType()) {
2386    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2387  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2388    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2389  }
2390
2391  return false;
2392}
2393
2394/// \brief Checks whether the given template argument is the address
2395/// of an object or function according to C++ [temp.arg.nontype]p1.
2396static bool
2397CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2398                                               NonTypeTemplateParmDecl *Param,
2399                                               QualType ParamType,
2400                                               Expr *ArgIn,
2401                                               TemplateArgument &Converted) {
2402  bool Invalid = false;
2403  Expr *Arg = ArgIn;
2404  QualType ArgType = Arg->getType();
2405
2406  // See through any implicit casts we added to fix the type.
2407  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2408    Arg = Cast->getSubExpr();
2409
2410  // C++ [temp.arg.nontype]p1:
2411  //
2412  //   A template-argument for a non-type, non-template
2413  //   template-parameter shall be one of: [...]
2414  //
2415  //     -- the address of an object or function with external
2416  //        linkage, including function templates and function
2417  //        template-ids but excluding non-static class members,
2418  //        expressed as & id-expression where the & is optional if
2419  //        the name refers to a function or array, or if the
2420  //        corresponding template-parameter is a reference; or
2421  DeclRefExpr *DRE = 0;
2422
2423  // In C++98/03 mode, give an extension warning on any extra parentheses.
2424  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2425  bool ExtraParens = false;
2426  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2427    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
2428      S.Diag(Arg->getSourceRange().getBegin(),
2429             diag::ext_template_arg_extra_parens)
2430        << Arg->getSourceRange();
2431      ExtraParens = true;
2432    }
2433
2434    Arg = Parens->getSubExpr();
2435  }
2436
2437  bool AddressTaken = false;
2438  SourceLocation AddrOpLoc;
2439  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2440    if (UnOp->getOpcode() == UO_AddrOf) {
2441      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2442      AddressTaken = true;
2443      AddrOpLoc = UnOp->getOperatorLoc();
2444    }
2445  } else
2446    DRE = dyn_cast<DeclRefExpr>(Arg);
2447
2448  if (!DRE) {
2449    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2450      << Arg->getSourceRange();
2451    S.Diag(Param->getLocation(), diag::note_template_param_here);
2452    return true;
2453  }
2454
2455  // Stop checking the precise nature of the argument if it is value dependent,
2456  // it should be checked when instantiated.
2457  if (Arg->isValueDependent()) {
2458    Converted = TemplateArgument(ArgIn->Retain());
2459    return false;
2460  }
2461
2462  if (!isa<ValueDecl>(DRE->getDecl())) {
2463    S.Diag(Arg->getSourceRange().getBegin(),
2464           diag::err_template_arg_not_object_or_func_form)
2465      << Arg->getSourceRange();
2466    S.Diag(Param->getLocation(), diag::note_template_param_here);
2467    return true;
2468  }
2469
2470  NamedDecl *Entity = 0;
2471
2472  // Cannot refer to non-static data members
2473  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2474    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2475      << Field << Arg->getSourceRange();
2476    S.Diag(Param->getLocation(), diag::note_template_param_here);
2477    return true;
2478  }
2479
2480  // Cannot refer to non-static member functions
2481  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2482    if (!Method->isStatic()) {
2483      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2484        << Method << Arg->getSourceRange();
2485      S.Diag(Param->getLocation(), diag::note_template_param_here);
2486      return true;
2487    }
2488
2489  // Functions must have external linkage.
2490  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2491    if (!isExternalLinkage(Func->getLinkage())) {
2492      S.Diag(Arg->getSourceRange().getBegin(),
2493             diag::err_template_arg_function_not_extern)
2494        << Func << Arg->getSourceRange();
2495      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2496        << true;
2497      return true;
2498    }
2499
2500    // Okay: we've named a function with external linkage.
2501    Entity = Func;
2502
2503    // If the template parameter has pointer type, the function decays.
2504    if (ParamType->isPointerType() && !AddressTaken)
2505      ArgType = S.Context.getPointerType(Func->getType());
2506    else if (AddressTaken && ParamType->isReferenceType()) {
2507      // If we originally had an address-of operator, but the
2508      // parameter has reference type, complain and (if things look
2509      // like they will work) drop the address-of operator.
2510      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2511                                            ParamType.getNonReferenceType())) {
2512        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2513          << ParamType;
2514        S.Diag(Param->getLocation(), diag::note_template_param_here);
2515        return true;
2516      }
2517
2518      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2519        << ParamType
2520        << FixItHint::CreateRemoval(AddrOpLoc);
2521      S.Diag(Param->getLocation(), diag::note_template_param_here);
2522
2523      ArgType = Func->getType();
2524    }
2525  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2526    if (!isExternalLinkage(Var->getLinkage())) {
2527      S.Diag(Arg->getSourceRange().getBegin(),
2528             diag::err_template_arg_object_not_extern)
2529        << Var << Arg->getSourceRange();
2530      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2531        << true;
2532      return true;
2533    }
2534
2535    // A value of reference type is not an object.
2536    if (Var->getType()->isReferenceType()) {
2537      S.Diag(Arg->getSourceRange().getBegin(),
2538             diag::err_template_arg_reference_var)
2539        << Var->getType() << Arg->getSourceRange();
2540      S.Diag(Param->getLocation(), diag::note_template_param_here);
2541      return true;
2542    }
2543
2544    // Okay: we've named an object with external linkage
2545    Entity = Var;
2546
2547    // If the template parameter has pointer type, we must have taken
2548    // the address of this object.
2549    if (ParamType->isReferenceType()) {
2550      if (AddressTaken) {
2551        // If we originally had an address-of operator, but the
2552        // parameter has reference type, complain and (if things look
2553        // like they will work) drop the address-of operator.
2554        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2555                                            ParamType.getNonReferenceType())) {
2556          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2557            << ParamType;
2558          S.Diag(Param->getLocation(), diag::note_template_param_here);
2559          return true;
2560        }
2561
2562        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2563          << ParamType
2564          << FixItHint::CreateRemoval(AddrOpLoc);
2565        S.Diag(Param->getLocation(), diag::note_template_param_here);
2566
2567        ArgType = Var->getType();
2568      }
2569    } else if (!AddressTaken && ParamType->isPointerType()) {
2570      if (Var->getType()->isArrayType()) {
2571        // Array-to-pointer decay.
2572        ArgType = S.Context.getArrayDecayedType(Var->getType());
2573      } else {
2574        // If the template parameter has pointer type but the address of
2575        // this object was not taken, complain and (possibly) recover by
2576        // taking the address of the entity.
2577        ArgType = S.Context.getPointerType(Var->getType());
2578        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2579          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2580            << ParamType;
2581          S.Diag(Param->getLocation(), diag::note_template_param_here);
2582          return true;
2583        }
2584
2585        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2586          << ParamType
2587          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2588
2589        S.Diag(Param->getLocation(), diag::note_template_param_here);
2590      }
2591    }
2592  } else {
2593    // We found something else, but we don't know specifically what it is.
2594    S.Diag(Arg->getSourceRange().getBegin(),
2595           diag::err_template_arg_not_object_or_func)
2596      << Arg->getSourceRange();
2597    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2598    return true;
2599  }
2600
2601  if (ParamType->isPointerType() &&
2602      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2603      S.IsQualificationConversion(ArgType, ParamType)) {
2604    // For pointer-to-object types, qualification conversions are
2605    // permitted.
2606  } else {
2607    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2608      if (!ParamRef->getPointeeType()->isFunctionType()) {
2609        // C++ [temp.arg.nontype]p5b3:
2610        //   For a non-type template-parameter of type reference to
2611        //   object, no conversions apply. The type referred to by the
2612        //   reference may be more cv-qualified than the (otherwise
2613        //   identical) type of the template- argument. The
2614        //   template-parameter is bound directly to the
2615        //   template-argument, which shall be an lvalue.
2616
2617        // FIXME: Other qualifiers?
2618        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2619        unsigned ArgQuals = ArgType.getCVRQualifiers();
2620
2621        if ((ParamQuals | ArgQuals) != ParamQuals) {
2622          S.Diag(Arg->getSourceRange().getBegin(),
2623                 diag::err_template_arg_ref_bind_ignores_quals)
2624            << ParamType << Arg->getType()
2625            << Arg->getSourceRange();
2626          S.Diag(Param->getLocation(), diag::note_template_param_here);
2627          return true;
2628        }
2629      }
2630    }
2631
2632    // At this point, the template argument refers to an object or
2633    // function with external linkage. We now need to check whether the
2634    // argument and parameter types are compatible.
2635    if (!S.Context.hasSameUnqualifiedType(ArgType,
2636                                          ParamType.getNonReferenceType())) {
2637      // We can't perform this conversion or binding.
2638      if (ParamType->isReferenceType())
2639        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2640          << ParamType << Arg->getType() << Arg->getSourceRange();
2641      else
2642        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2643          << Arg->getType() << ParamType << Arg->getSourceRange();
2644      S.Diag(Param->getLocation(), diag::note_template_param_here);
2645      return true;
2646    }
2647  }
2648
2649  // Create the template argument.
2650  Converted = TemplateArgument(Entity->getCanonicalDecl());
2651  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
2652  return false;
2653}
2654
2655/// \brief Checks whether the given template argument is a pointer to
2656/// member constant according to C++ [temp.arg.nontype]p1.
2657bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2658                                                TemplateArgument &Converted) {
2659  bool Invalid = false;
2660
2661  // See through any implicit casts we added to fix the type.
2662  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2663    Arg = Cast->getSubExpr();
2664
2665  // C++ [temp.arg.nontype]p1:
2666  //
2667  //   A template-argument for a non-type, non-template
2668  //   template-parameter shall be one of: [...]
2669  //
2670  //     -- a pointer to member expressed as described in 5.3.1.
2671  DeclRefExpr *DRE = 0;
2672
2673  // In C++98/03 mode, give an extension warning on any extra parentheses.
2674  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2675  bool ExtraParens = false;
2676  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2677    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
2678      Diag(Arg->getSourceRange().getBegin(),
2679           diag::ext_template_arg_extra_parens)
2680        << Arg->getSourceRange();
2681      ExtraParens = true;
2682    }
2683
2684    Arg = Parens->getSubExpr();
2685  }
2686
2687  // A pointer-to-member constant written &Class::member.
2688  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2689    if (UnOp->getOpcode() == UO_AddrOf) {
2690      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2691      if (DRE && !DRE->getQualifier())
2692        DRE = 0;
2693    }
2694  }
2695  // A constant of pointer-to-member type.
2696  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2697    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2698      if (VD->getType()->isMemberPointerType()) {
2699        if (isa<NonTypeTemplateParmDecl>(VD) ||
2700            (isa<VarDecl>(VD) &&
2701             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2702          if (Arg->isTypeDependent() || Arg->isValueDependent())
2703            Converted = TemplateArgument(Arg->Retain());
2704          else
2705            Converted = TemplateArgument(VD->getCanonicalDecl());
2706          return Invalid;
2707        }
2708      }
2709    }
2710
2711    DRE = 0;
2712  }
2713
2714  if (!DRE)
2715    return Diag(Arg->getSourceRange().getBegin(),
2716                diag::err_template_arg_not_pointer_to_member_form)
2717      << Arg->getSourceRange();
2718
2719  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2720    assert((isa<FieldDecl>(DRE->getDecl()) ||
2721            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2722           "Only non-static member pointers can make it here");
2723
2724    // Okay: this is the address of a non-static member, and therefore
2725    // a member pointer constant.
2726    if (Arg->isTypeDependent() || Arg->isValueDependent())
2727      Converted = TemplateArgument(Arg->Retain());
2728    else
2729      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2730    return Invalid;
2731  }
2732
2733  // We found something else, but we don't know specifically what it is.
2734  Diag(Arg->getSourceRange().getBegin(),
2735       diag::err_template_arg_not_pointer_to_member_form)
2736      << Arg->getSourceRange();
2737  Diag(DRE->getDecl()->getLocation(),
2738       diag::note_template_arg_refers_here);
2739  return true;
2740}
2741
2742/// \brief Check a template argument against its corresponding
2743/// non-type template parameter.
2744///
2745/// This routine implements the semantics of C++ [temp.arg.nontype].
2746/// It returns true if an error occurred, and false otherwise. \p
2747/// InstantiatedParamType is the type of the non-type template
2748/// parameter after it has been instantiated.
2749///
2750/// If no error was detected, Converted receives the converted template argument.
2751bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2752                                 QualType InstantiatedParamType, Expr *&Arg,
2753                                 TemplateArgument &Converted,
2754                                 CheckTemplateArgumentKind CTAK) {
2755  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2756
2757  // If either the parameter has a dependent type or the argument is
2758  // type-dependent, there's nothing we can check now.
2759  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2760    // FIXME: Produce a cloned, canonical expression?
2761    Converted = TemplateArgument(Arg);
2762    return false;
2763  }
2764
2765  // C++ [temp.arg.nontype]p5:
2766  //   The following conversions are performed on each expression used
2767  //   as a non-type template-argument. If a non-type
2768  //   template-argument cannot be converted to the type of the
2769  //   corresponding template-parameter then the program is
2770  //   ill-formed.
2771  //
2772  //     -- for a non-type template-parameter of integral or
2773  //        enumeration type, integral promotions (4.5) and integral
2774  //        conversions (4.7) are applied.
2775  QualType ParamType = InstantiatedParamType;
2776  QualType ArgType = Arg->getType();
2777  if (ParamType->isIntegralOrEnumerationType()) {
2778    // C++ [temp.arg.nontype]p1:
2779    //   A template-argument for a non-type, non-template
2780    //   template-parameter shall be one of:
2781    //
2782    //     -- an integral constant-expression of integral or enumeration
2783    //        type; or
2784    //     -- the name of a non-type template-parameter; or
2785    SourceLocation NonConstantLoc;
2786    llvm::APSInt Value;
2787    if (!ArgType->isIntegralOrEnumerationType()) {
2788      Diag(Arg->getSourceRange().getBegin(),
2789           diag::err_template_arg_not_integral_or_enumeral)
2790        << ArgType << Arg->getSourceRange();
2791      Diag(Param->getLocation(), diag::note_template_param_here);
2792      return true;
2793    } else if (!Arg->isValueDependent() &&
2794               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2795      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2796        << ArgType << Arg->getSourceRange();
2797      return true;
2798    }
2799
2800    // From here on out, all we care about are the unqualified forms
2801    // of the parameter and argument types.
2802    ParamType = ParamType.getUnqualifiedType();
2803    ArgType = ArgType.getUnqualifiedType();
2804
2805    // Try to convert the argument to the parameter's type.
2806    if (Context.hasSameType(ParamType, ArgType)) {
2807      // Okay: no conversion necessary
2808    } else if (CTAK == CTAK_Deduced) {
2809      // C++ [temp.deduct.type]p17:
2810      //   If, in the declaration of a function template with a non-type
2811      //   template-parameter, the non-type template- parameter is used
2812      //   in an expression in the function parameter-list and, if the
2813      //   corresponding template-argument is deduced, the
2814      //   template-argument type shall match the type of the
2815      //   template-parameter exactly, except that a template-argument
2816      //   deduced from an array bound may be of any integral type.
2817      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
2818        << ArgType << ParamType;
2819      Diag(Param->getLocation(), diag::note_template_param_here);
2820      return true;
2821    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2822               !ParamType->isEnumeralType()) {
2823      // This is an integral promotion or conversion.
2824      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
2825    } else {
2826      // We can't perform this conversion.
2827      Diag(Arg->getSourceRange().getBegin(),
2828           diag::err_template_arg_not_convertible)
2829        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2830      Diag(Param->getLocation(), diag::note_template_param_here);
2831      return true;
2832    }
2833
2834    QualType IntegerType = Context.getCanonicalType(ParamType);
2835    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2836      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2837
2838    if (!Arg->isValueDependent()) {
2839      llvm::APSInt OldValue = Value;
2840
2841      // Coerce the template argument's value to the value it will have
2842      // based on the template parameter's type.
2843      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2844      if (Value.getBitWidth() != AllowedBits)
2845        Value.extOrTrunc(AllowedBits);
2846      Value.setIsSigned(IntegerType->isSignedIntegerType());
2847
2848      // Complain if an unsigned parameter received a negative value.
2849      if (IntegerType->isUnsignedIntegerType()
2850          && (OldValue.isSigned() && OldValue.isNegative())) {
2851        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
2852          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2853          << Arg->getSourceRange();
2854        Diag(Param->getLocation(), diag::note_template_param_here);
2855      }
2856
2857      // Complain if we overflowed the template parameter's type.
2858      unsigned RequiredBits;
2859      if (IntegerType->isUnsignedIntegerType())
2860        RequiredBits = OldValue.getActiveBits();
2861      else if (OldValue.isUnsigned())
2862        RequiredBits = OldValue.getActiveBits() + 1;
2863      else
2864        RequiredBits = OldValue.getMinSignedBits();
2865      if (RequiredBits > AllowedBits) {
2866        Diag(Arg->getSourceRange().getBegin(),
2867             diag::warn_template_arg_too_large)
2868          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2869          << Arg->getSourceRange();
2870        Diag(Param->getLocation(), diag::note_template_param_here);
2871      }
2872    }
2873
2874    // Add the value of this argument to the list of converted
2875    // arguments. We use the bitwidth and signedness of the template
2876    // parameter.
2877    if (Arg->isValueDependent()) {
2878      // The argument is value-dependent. Create a new
2879      // TemplateArgument with the converted expression.
2880      Converted = TemplateArgument(Arg);
2881      return false;
2882    }
2883
2884    Converted = TemplateArgument(Value,
2885                                 ParamType->isEnumeralType() ? ParamType
2886                                                             : IntegerType);
2887    return false;
2888  }
2889
2890  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
2891
2892  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
2893  // from a template argument of type std::nullptr_t to a non-type
2894  // template parameter of type pointer to object, pointer to
2895  // function, or pointer-to-member, respectively.
2896  if (ArgType->isNullPtrType() &&
2897      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
2898    Converted = TemplateArgument((NamedDecl *)0);
2899    return false;
2900  }
2901
2902  // Handle pointer-to-function, reference-to-function, and
2903  // pointer-to-member-function all in (roughly) the same way.
2904  if (// -- For a non-type template-parameter of type pointer to
2905      //    function, only the function-to-pointer conversion (4.3) is
2906      //    applied. If the template-argument represents a set of
2907      //    overloaded functions (or a pointer to such), the matching
2908      //    function is selected from the set (13.4).
2909      (ParamType->isPointerType() &&
2910       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2911      // -- For a non-type template-parameter of type reference to
2912      //    function, no conversions apply. If the template-argument
2913      //    represents a set of overloaded functions, the matching
2914      //    function is selected from the set (13.4).
2915      (ParamType->isReferenceType() &&
2916       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2917      // -- For a non-type template-parameter of type pointer to
2918      //    member function, no conversions apply. If the
2919      //    template-argument represents a set of overloaded member
2920      //    functions, the matching member function is selected from
2921      //    the set (13.4).
2922      (ParamType->isMemberPointerType() &&
2923       ParamType->getAs<MemberPointerType>()->getPointeeType()
2924         ->isFunctionType())) {
2925
2926    if (Arg->getType() == Context.OverloadTy) {
2927      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
2928                                                                true,
2929                                                                FoundResult)) {
2930        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2931          return true;
2932
2933        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2934        ArgType = Arg->getType();
2935      } else
2936        return true;
2937    }
2938
2939    if (!ParamType->isMemberPointerType())
2940      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2941                                                            ParamType,
2942                                                            Arg, Converted);
2943
2944    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
2945      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
2946    } else if (!Context.hasSameUnqualifiedType(ArgType,
2947                                           ParamType.getNonReferenceType())) {
2948      // We can't perform this conversion.
2949      Diag(Arg->getSourceRange().getBegin(),
2950           diag::err_template_arg_not_convertible)
2951        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2952      Diag(Param->getLocation(), diag::note_template_param_here);
2953      return true;
2954    }
2955
2956    return CheckTemplateArgumentPointerToMember(Arg, Converted);
2957  }
2958
2959  if (ParamType->isPointerType()) {
2960    //   -- for a non-type template-parameter of type pointer to
2961    //      object, qualification conversions (4.4) and the
2962    //      array-to-pointer conversion (4.2) are applied.
2963    // C++0x also allows a value of std::nullptr_t.
2964    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
2965           "Only object pointers allowed here");
2966
2967    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2968                                                          ParamType,
2969                                                          Arg, Converted);
2970  }
2971
2972  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2973    //   -- For a non-type template-parameter of type reference to
2974    //      object, no conversions apply. The type referred to by the
2975    //      reference may be more cv-qualified than the (otherwise
2976    //      identical) type of the template-argument. The
2977    //      template-parameter is bound directly to the
2978    //      template-argument, which must be an lvalue.
2979    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
2980           "Only object references allowed here");
2981
2982    if (Arg->getType() == Context.OverloadTy) {
2983      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
2984                                                 ParamRefType->getPointeeType(),
2985                                                                true,
2986                                                                FoundResult)) {
2987        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2988          return true;
2989
2990        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2991        ArgType = Arg->getType();
2992      } else
2993        return true;
2994    }
2995
2996    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2997                                                          ParamType,
2998                                                          Arg, Converted);
2999  }
3000
3001  //     -- For a non-type template-parameter of type pointer to data
3002  //        member, qualification conversions (4.4) are applied.
3003  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3004
3005  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3006    // Types match exactly: nothing more to do here.
3007  } else if (IsQualificationConversion(ArgType, ParamType)) {
3008    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3009  } else {
3010    // We can't perform this conversion.
3011    Diag(Arg->getSourceRange().getBegin(),
3012         diag::err_template_arg_not_convertible)
3013      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3014    Diag(Param->getLocation(), diag::note_template_param_here);
3015    return true;
3016  }
3017
3018  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3019}
3020
3021/// \brief Check a template argument against its corresponding
3022/// template template parameter.
3023///
3024/// This routine implements the semantics of C++ [temp.arg.template].
3025/// It returns true if an error occurred, and false otherwise.
3026bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3027                                 const TemplateArgumentLoc &Arg) {
3028  TemplateName Name = Arg.getArgument().getAsTemplate();
3029  TemplateDecl *Template = Name.getAsTemplateDecl();
3030  if (!Template) {
3031    // Any dependent template name is fine.
3032    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3033    return false;
3034  }
3035
3036  // C++ [temp.arg.template]p1:
3037  //   A template-argument for a template template-parameter shall be
3038  //   the name of a class template, expressed as id-expression. Only
3039  //   primary class templates are considered when matching the
3040  //   template template argument with the corresponding parameter;
3041  //   partial specializations are not considered even if their
3042  //   parameter lists match that of the template template parameter.
3043  //
3044  // Note that we also allow template template parameters here, which
3045  // will happen when we are dealing with, e.g., class template
3046  // partial specializations.
3047  if (!isa<ClassTemplateDecl>(Template) &&
3048      !isa<TemplateTemplateParmDecl>(Template)) {
3049    assert(isa<FunctionTemplateDecl>(Template) &&
3050           "Only function templates are possible here");
3051    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3052    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3053      << Template;
3054  }
3055
3056  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3057                                         Param->getTemplateParameters(),
3058                                         true,
3059                                         TPL_TemplateTemplateArgumentMatch,
3060                                         Arg.getLocation());
3061}
3062
3063/// \brief Given a non-type template argument that refers to a
3064/// declaration and the type of its corresponding non-type template
3065/// parameter, produce an expression that properly refers to that
3066/// declaration.
3067ExprResult
3068Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3069                                              QualType ParamType,
3070                                              SourceLocation Loc) {
3071  assert(Arg.getKind() == TemplateArgument::Declaration &&
3072         "Only declaration template arguments permitted here");
3073  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3074
3075  if (VD->getDeclContext()->isRecord() &&
3076      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3077    // If the value is a class member, we might have a pointer-to-member.
3078    // Determine whether the non-type template template parameter is of
3079    // pointer-to-member type. If so, we need to build an appropriate
3080    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3081    // would refer to the member itself.
3082    if (ParamType->isMemberPointerType()) {
3083      QualType ClassType
3084        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3085      NestedNameSpecifier *Qualifier
3086        = NestedNameSpecifier::Create(Context, 0, false,
3087                                      ClassType.getTypePtr());
3088      CXXScopeSpec SS;
3089      SS.setScopeRep(Qualifier);
3090      ExprResult RefExpr = BuildDeclRefExpr(VD,
3091                                           VD->getType().getNonReferenceType(),
3092                                                  Loc,
3093                                                  &SS);
3094      if (RefExpr.isInvalid())
3095        return ExprError();
3096
3097      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3098
3099      // We might need to perform a trailing qualification conversion, since
3100      // the element type on the parameter could be more qualified than the
3101      // element type in the expression we constructed.
3102      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3103                                    ParamType.getUnqualifiedType())) {
3104        Expr *RefE = RefExpr.takeAs<Expr>();
3105        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3106        RefExpr = Owned(RefE);
3107      }
3108
3109      assert(!RefExpr.isInvalid() &&
3110             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3111                                 ParamType.getUnqualifiedType()));
3112      return move(RefExpr);
3113    }
3114  }
3115
3116  QualType T = VD->getType().getNonReferenceType();
3117  if (ParamType->isPointerType()) {
3118    // When the non-type template parameter is a pointer, take the
3119    // address of the declaration.
3120    ExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
3121    if (RefExpr.isInvalid())
3122      return ExprError();
3123
3124    if (T->isFunctionType() || T->isArrayType()) {
3125      // Decay functions and arrays.
3126      Expr *RefE = (Expr *)RefExpr.get();
3127      DefaultFunctionArrayConversion(RefE);
3128      if (RefE != RefExpr.get()) {
3129        RefExpr.release();
3130        RefExpr = Owned(RefE);
3131      }
3132
3133      return move(RefExpr);
3134    }
3135
3136    // Take the address of everything else
3137    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3138  }
3139
3140  // If the non-type template parameter has reference type, qualify the
3141  // resulting declaration reference with the extra qualifiers on the
3142  // type that the reference refers to.
3143  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
3144    T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
3145
3146  return BuildDeclRefExpr(VD, T, Loc);
3147}
3148
3149/// \brief Construct a new expression that refers to the given
3150/// integral template argument with the given source-location
3151/// information.
3152///
3153/// This routine takes care of the mapping from an integral template
3154/// argument (which may have any integral type) to the appropriate
3155/// literal value.
3156ExprResult
3157Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3158                                                  SourceLocation Loc) {
3159  assert(Arg.getKind() == TemplateArgument::Integral &&
3160         "Operation is only value for integral template arguments");
3161  QualType T = Arg.getIntegralType();
3162  if (T->isCharType() || T->isWideCharType())
3163    return Owned(new (Context) CharacterLiteral(
3164                                             Arg.getAsIntegral()->getZExtValue(),
3165                                             T->isWideCharType(),
3166                                             T,
3167                                             Loc));
3168  if (T->isBooleanType())
3169    return Owned(new (Context) CXXBoolLiteralExpr(
3170                                            Arg.getAsIntegral()->getBoolValue(),
3171                                            T,
3172                                            Loc));
3173
3174  return Owned(IntegerLiteral::Create(Context, *Arg.getAsIntegral(), T, Loc));
3175}
3176
3177
3178/// \brief Determine whether the given template parameter lists are
3179/// equivalent.
3180///
3181/// \param New  The new template parameter list, typically written in the
3182/// source code as part of a new template declaration.
3183///
3184/// \param Old  The old template parameter list, typically found via
3185/// name lookup of the template declared with this template parameter
3186/// list.
3187///
3188/// \param Complain  If true, this routine will produce a diagnostic if
3189/// the template parameter lists are not equivalent.
3190///
3191/// \param Kind describes how we are to match the template parameter lists.
3192///
3193/// \param TemplateArgLoc If this source location is valid, then we
3194/// are actually checking the template parameter list of a template
3195/// argument (New) against the template parameter list of its
3196/// corresponding template template parameter (Old). We produce
3197/// slightly different diagnostics in this scenario.
3198///
3199/// \returns True if the template parameter lists are equal, false
3200/// otherwise.
3201bool
3202Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3203                                     TemplateParameterList *Old,
3204                                     bool Complain,
3205                                     TemplateParameterListEqualKind Kind,
3206                                     SourceLocation TemplateArgLoc) {
3207  if (Old->size() != New->size()) {
3208    if (Complain) {
3209      unsigned NextDiag = diag::err_template_param_list_different_arity;
3210      if (TemplateArgLoc.isValid()) {
3211        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3212        NextDiag = diag::note_template_param_list_different_arity;
3213      }
3214      Diag(New->getTemplateLoc(), NextDiag)
3215          << (New->size() > Old->size())
3216          << (Kind != TPL_TemplateMatch)
3217          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3218      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3219        << (Kind != TPL_TemplateMatch)
3220        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3221    }
3222
3223    return false;
3224  }
3225
3226  for (TemplateParameterList::iterator OldParm = Old->begin(),
3227         OldParmEnd = Old->end(), NewParm = New->begin();
3228       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3229    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3230      if (Complain) {
3231        unsigned NextDiag = diag::err_template_param_different_kind;
3232        if (TemplateArgLoc.isValid()) {
3233          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3234          NextDiag = diag::note_template_param_different_kind;
3235        }
3236        Diag((*NewParm)->getLocation(), NextDiag)
3237          << (Kind != TPL_TemplateMatch);
3238        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3239          << (Kind != TPL_TemplateMatch);
3240      }
3241      return false;
3242    }
3243
3244    if (TemplateTypeParmDecl *OldTTP
3245                                  = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3246      // Template type parameters are equivalent if either both are template
3247      // type parameter packs or neither are (since we know we're at the same
3248      // index).
3249      TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3250      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3251        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3252        // allow one to match a template parameter pack in the template
3253        // parameter list of a template template parameter to one or more
3254        // template parameters in the template parameter list of the
3255        // corresponding template template argument.
3256        if (Complain) {
3257          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3258          if (TemplateArgLoc.isValid()) {
3259            Diag(TemplateArgLoc,
3260                 diag::err_template_arg_template_params_mismatch);
3261            NextDiag = diag::note_template_parameter_pack_non_pack;
3262          }
3263          Diag(NewTTP->getLocation(), NextDiag)
3264            << 0 << NewTTP->isParameterPack();
3265          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3266            << 0 << OldTTP->isParameterPack();
3267        }
3268        return false;
3269      }
3270    } else if (NonTypeTemplateParmDecl *OldNTTP
3271                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3272      // The types of non-type template parameters must agree.
3273      NonTypeTemplateParmDecl *NewNTTP
3274        = cast<NonTypeTemplateParmDecl>(*NewParm);
3275
3276      // If we are matching a template template argument to a template
3277      // template parameter and one of the non-type template parameter types
3278      // is dependent, then we must wait until template instantiation time
3279      // to actually compare the arguments.
3280      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3281          (OldNTTP->getType()->isDependentType() ||
3282           NewNTTP->getType()->isDependentType()))
3283        continue;
3284
3285      if (Context.getCanonicalType(OldNTTP->getType()) !=
3286            Context.getCanonicalType(NewNTTP->getType())) {
3287        if (Complain) {
3288          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3289          if (TemplateArgLoc.isValid()) {
3290            Diag(TemplateArgLoc,
3291                 diag::err_template_arg_template_params_mismatch);
3292            NextDiag = diag::note_template_nontype_parm_different_type;
3293          }
3294          Diag(NewNTTP->getLocation(), NextDiag)
3295            << NewNTTP->getType()
3296            << (Kind != TPL_TemplateMatch);
3297          Diag(OldNTTP->getLocation(),
3298               diag::note_template_nontype_parm_prev_declaration)
3299            << OldNTTP->getType();
3300        }
3301        return false;
3302      }
3303    } else {
3304      // The template parameter lists of template template
3305      // parameters must agree.
3306      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3307             "Only template template parameters handled here");
3308      TemplateTemplateParmDecl *OldTTP
3309        = cast<TemplateTemplateParmDecl>(*OldParm);
3310      TemplateTemplateParmDecl *NewTTP
3311        = cast<TemplateTemplateParmDecl>(*NewParm);
3312      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3313                                          OldTTP->getTemplateParameters(),
3314                                          Complain,
3315              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3316                                          TemplateArgLoc))
3317        return false;
3318    }
3319  }
3320
3321  return true;
3322}
3323
3324/// \brief Check whether a template can be declared within this scope.
3325///
3326/// If the template declaration is valid in this scope, returns
3327/// false. Otherwise, issues a diagnostic and returns true.
3328bool
3329Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3330  // Find the nearest enclosing declaration scope.
3331  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3332         (S->getFlags() & Scope::TemplateParamScope) != 0)
3333    S = S->getParent();
3334
3335  // C++ [temp]p2:
3336  //   A template-declaration can appear only as a namespace scope or
3337  //   class scope declaration.
3338  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3339  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3340      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3341    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3342             << TemplateParams->getSourceRange();
3343
3344  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3345    Ctx = Ctx->getParent();
3346
3347  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3348    return false;
3349
3350  return Diag(TemplateParams->getTemplateLoc(),
3351              diag::err_template_outside_namespace_or_class_scope)
3352    << TemplateParams->getSourceRange();
3353}
3354
3355/// \brief Determine what kind of template specialization the given declaration
3356/// is.
3357static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3358  if (!D)
3359    return TSK_Undeclared;
3360
3361  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3362    return Record->getTemplateSpecializationKind();
3363  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3364    return Function->getTemplateSpecializationKind();
3365  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3366    return Var->getTemplateSpecializationKind();
3367
3368  return TSK_Undeclared;
3369}
3370
3371/// \brief Check whether a specialization is well-formed in the current
3372/// context.
3373///
3374/// This routine determines whether a template specialization can be declared
3375/// in the current context (C++ [temp.expl.spec]p2).
3376///
3377/// \param S the semantic analysis object for which this check is being
3378/// performed.
3379///
3380/// \param Specialized the entity being specialized or instantiated, which
3381/// may be a kind of template (class template, function template, etc.) or
3382/// a member of a class template (member function, static data member,
3383/// member class).
3384///
3385/// \param PrevDecl the previous declaration of this entity, if any.
3386///
3387/// \param Loc the location of the explicit specialization or instantiation of
3388/// this entity.
3389///
3390/// \param IsPartialSpecialization whether this is a partial specialization of
3391/// a class template.
3392///
3393/// \returns true if there was an error that we cannot recover from, false
3394/// otherwise.
3395static bool CheckTemplateSpecializationScope(Sema &S,
3396                                             NamedDecl *Specialized,
3397                                             NamedDecl *PrevDecl,
3398                                             SourceLocation Loc,
3399                                             bool IsPartialSpecialization) {
3400  // Keep these "kind" numbers in sync with the %select statements in the
3401  // various diagnostics emitted by this routine.
3402  int EntityKind = 0;
3403  bool isTemplateSpecialization = false;
3404  if (isa<ClassTemplateDecl>(Specialized)) {
3405    EntityKind = IsPartialSpecialization? 1 : 0;
3406    isTemplateSpecialization = true;
3407  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3408    EntityKind = 2;
3409    isTemplateSpecialization = true;
3410  } else if (isa<CXXMethodDecl>(Specialized))
3411    EntityKind = 3;
3412  else if (isa<VarDecl>(Specialized))
3413    EntityKind = 4;
3414  else if (isa<RecordDecl>(Specialized))
3415    EntityKind = 5;
3416  else {
3417    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3418    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3419    return true;
3420  }
3421
3422  // C++ [temp.expl.spec]p2:
3423  //   An explicit specialization shall be declared in the namespace
3424  //   of which the template is a member, or, for member templates, in
3425  //   the namespace of which the enclosing class or enclosing class
3426  //   template is a member. An explicit specialization of a member
3427  //   function, member class or static data member of a class
3428  //   template shall be declared in the namespace of which the class
3429  //   template is a member. Such a declaration may also be a
3430  //   definition. If the declaration is not a definition, the
3431  //   specialization may be defined later in the name- space in which
3432  //   the explicit specialization was declared, or in a namespace
3433  //   that encloses the one in which the explicit specialization was
3434  //   declared.
3435  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
3436    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3437      << Specialized;
3438    return true;
3439  }
3440
3441  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3442    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3443      << Specialized;
3444    return true;
3445  }
3446
3447  // C++ [temp.class.spec]p6:
3448  //   A class template partial specialization may be declared or redeclared
3449  //   in any namespace scope in which its definition may be defined (14.5.1
3450  //   and 14.5.2).
3451  bool ComplainedAboutScope = false;
3452  DeclContext *SpecializedContext
3453    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3454  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3455  if ((!PrevDecl ||
3456       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3457       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3458    // C++ [temp.exp.spec]p2:
3459    //   An explicit specialization shall be declared in the namespace of which
3460    //   the template is a member, or, for member templates, in the namespace
3461    //   of which the enclosing class or enclosing class template is a member.
3462    //   An explicit specialization of a member function, member class or
3463    //   static data member of a class template shall be declared in the
3464    //   namespace of which the class template is a member.
3465    //
3466    // C++0x [temp.expl.spec]p2:
3467    //   An explicit specialization shall be declared in a namespace enclosing
3468    //   the specialized template.
3469    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
3470        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
3471      bool IsCPlusPlus0xExtension
3472        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
3473      if (isa<TranslationUnitDecl>(SpecializedContext))
3474        S.Diag(Loc, IsCPlusPlus0xExtension
3475                      ? diag::ext_template_spec_decl_out_of_scope_global
3476                      : diag::err_template_spec_decl_out_of_scope_global)
3477          << EntityKind << Specialized;
3478      else if (isa<NamespaceDecl>(SpecializedContext))
3479        S.Diag(Loc, IsCPlusPlus0xExtension
3480                      ? diag::ext_template_spec_decl_out_of_scope
3481                      : diag::err_template_spec_decl_out_of_scope)
3482          << EntityKind << Specialized
3483          << cast<NamedDecl>(SpecializedContext);
3484
3485      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3486      ComplainedAboutScope = true;
3487    }
3488  }
3489
3490  // Make sure that this redeclaration (or definition) occurs in an enclosing
3491  // namespace.
3492  // Note that HandleDeclarator() performs this check for explicit
3493  // specializations of function templates, static data members, and member
3494  // functions, so we skip the check here for those kinds of entities.
3495  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3496  // Should we refactor that check, so that it occurs later?
3497  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3498      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3499        isa<FunctionDecl>(Specialized))) {
3500    if (isa<TranslationUnitDecl>(SpecializedContext))
3501      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3502        << EntityKind << Specialized;
3503    else if (isa<NamespaceDecl>(SpecializedContext))
3504      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3505        << EntityKind << Specialized
3506        << cast<NamedDecl>(SpecializedContext);
3507
3508    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3509  }
3510
3511  // FIXME: check for specialization-after-instantiation errors and such.
3512
3513  return false;
3514}
3515
3516/// \brief Check the non-type template arguments of a class template
3517/// partial specialization according to C++ [temp.class.spec]p9.
3518///
3519/// \param TemplateParams the template parameters of the primary class
3520/// template.
3521///
3522/// \param TemplateArg the template arguments of the class template
3523/// partial specialization.
3524///
3525/// \param MirrorsPrimaryTemplate will be set true if the class
3526/// template partial specialization arguments are identical to the
3527/// implicit template arguments of the primary template. This is not
3528/// necessarily an error (C++0x), and it is left to the caller to diagnose
3529/// this condition when it is an error.
3530///
3531/// \returns true if there was an error, false otherwise.
3532bool Sema::CheckClassTemplatePartialSpecializationArgs(
3533                                        TemplateParameterList *TemplateParams,
3534                             const TemplateArgumentListBuilder &TemplateArgs,
3535                                        bool &MirrorsPrimaryTemplate) {
3536  // FIXME: the interface to this function will have to change to
3537  // accommodate variadic templates.
3538  MirrorsPrimaryTemplate = true;
3539
3540  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3541
3542  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3543    // Determine whether the template argument list of the partial
3544    // specialization is identical to the implicit argument list of
3545    // the primary template. The caller may need to diagnostic this as
3546    // an error per C++ [temp.class.spec]p9b3.
3547    if (MirrorsPrimaryTemplate) {
3548      if (TemplateTypeParmDecl *TTP
3549            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3550        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3551              Context.getCanonicalType(ArgList[I].getAsType()))
3552          MirrorsPrimaryTemplate = false;
3553      } else if (TemplateTemplateParmDecl *TTP
3554                   = dyn_cast<TemplateTemplateParmDecl>(
3555                                                 TemplateParams->getParam(I))) {
3556        TemplateName Name = ArgList[I].getAsTemplate();
3557        TemplateTemplateParmDecl *ArgDecl
3558          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3559        if (!ArgDecl ||
3560            ArgDecl->getIndex() != TTP->getIndex() ||
3561            ArgDecl->getDepth() != TTP->getDepth())
3562          MirrorsPrimaryTemplate = false;
3563      }
3564    }
3565
3566    NonTypeTemplateParmDecl *Param
3567      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3568    if (!Param) {
3569      continue;
3570    }
3571
3572    Expr *ArgExpr = ArgList[I].getAsExpr();
3573    if (!ArgExpr) {
3574      MirrorsPrimaryTemplate = false;
3575      continue;
3576    }
3577
3578    // C++ [temp.class.spec]p8:
3579    //   A non-type argument is non-specialized if it is the name of a
3580    //   non-type parameter. All other non-type arguments are
3581    //   specialized.
3582    //
3583    // Below, we check the two conditions that only apply to
3584    // specialized non-type arguments, so skip any non-specialized
3585    // arguments.
3586    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3587      if (NonTypeTemplateParmDecl *NTTP
3588            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3589        if (MirrorsPrimaryTemplate &&
3590            (Param->getIndex() != NTTP->getIndex() ||
3591             Param->getDepth() != NTTP->getDepth()))
3592          MirrorsPrimaryTemplate = false;
3593
3594        continue;
3595      }
3596
3597    // C++ [temp.class.spec]p9:
3598    //   Within the argument list of a class template partial
3599    //   specialization, the following restrictions apply:
3600    //     -- A partially specialized non-type argument expression
3601    //        shall not involve a template parameter of the partial
3602    //        specialization except when the argument expression is a
3603    //        simple identifier.
3604    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3605      Diag(ArgExpr->getLocStart(),
3606           diag::err_dependent_non_type_arg_in_partial_spec)
3607        << ArgExpr->getSourceRange();
3608      return true;
3609    }
3610
3611    //     -- The type of a template parameter corresponding to a
3612    //        specialized non-type argument shall not be dependent on a
3613    //        parameter of the specialization.
3614    if (Param->getType()->isDependentType()) {
3615      Diag(ArgExpr->getLocStart(),
3616           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3617        << Param->getType()
3618        << ArgExpr->getSourceRange();
3619      Diag(Param->getLocation(), diag::note_template_param_here);
3620      return true;
3621    }
3622
3623    MirrorsPrimaryTemplate = false;
3624  }
3625
3626  return false;
3627}
3628
3629/// \brief Retrieve the previous declaration of the given declaration.
3630static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3631  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3632    return VD->getPreviousDeclaration();
3633  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3634    return FD->getPreviousDeclaration();
3635  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3636    return TD->getPreviousDeclaration();
3637  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3638    return TD->getPreviousDeclaration();
3639  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3640    return FTD->getPreviousDeclaration();
3641  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3642    return CTD->getPreviousDeclaration();
3643  return 0;
3644}
3645
3646DeclResult
3647Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3648                                       TagUseKind TUK,
3649                                       SourceLocation KWLoc,
3650                                       CXXScopeSpec &SS,
3651                                       TemplateTy TemplateD,
3652                                       SourceLocation TemplateNameLoc,
3653                                       SourceLocation LAngleLoc,
3654                                       ASTTemplateArgsPtr TemplateArgsIn,
3655                                       SourceLocation RAngleLoc,
3656                                       AttributeList *Attr,
3657                               MultiTemplateParamsArg TemplateParameterLists) {
3658  assert(TUK != TUK_Reference && "References are not specializations");
3659
3660  // Find the class template we're specializing
3661  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3662  ClassTemplateDecl *ClassTemplate
3663    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3664
3665  if (!ClassTemplate) {
3666    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3667      << (Name.getAsTemplateDecl() &&
3668          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3669    return true;
3670  }
3671
3672  bool isExplicitSpecialization = false;
3673  bool isPartialSpecialization = false;
3674
3675  // Check the validity of the template headers that introduce this
3676  // template.
3677  // FIXME: We probably shouldn't complain about these headers for
3678  // friend declarations.
3679  bool Invalid = false;
3680  TemplateParameterList *TemplateParams
3681    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3682                        (TemplateParameterList**)TemplateParameterLists.get(),
3683                                              TemplateParameterLists.size(),
3684                                              TUK == TUK_Friend,
3685                                              isExplicitSpecialization,
3686                                              Invalid);
3687  if (Invalid)
3688    return true;
3689
3690  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
3691  if (TemplateParams)
3692    --NumMatchedTemplateParamLists;
3693
3694  if (TemplateParams && TemplateParams->size() > 0) {
3695    isPartialSpecialization = true;
3696
3697    // C++ [temp.class.spec]p10:
3698    //   The template parameter list of a specialization shall not
3699    //   contain default template argument values.
3700    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3701      Decl *Param = TemplateParams->getParam(I);
3702      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3703        if (TTP->hasDefaultArgument()) {
3704          Diag(TTP->getDefaultArgumentLoc(),
3705               diag::err_default_arg_in_partial_spec);
3706          TTP->removeDefaultArgument();
3707        }
3708      } else if (NonTypeTemplateParmDecl *NTTP
3709                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3710        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3711          Diag(NTTP->getDefaultArgumentLoc(),
3712               diag::err_default_arg_in_partial_spec)
3713            << DefArg->getSourceRange();
3714          NTTP->removeDefaultArgument();
3715        }
3716      } else {
3717        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3718        if (TTP->hasDefaultArgument()) {
3719          Diag(TTP->getDefaultArgument().getLocation(),
3720               diag::err_default_arg_in_partial_spec)
3721            << TTP->getDefaultArgument().getSourceRange();
3722          TTP->removeDefaultArgument();
3723        }
3724      }
3725    }
3726  } else if (TemplateParams) {
3727    if (TUK == TUK_Friend)
3728      Diag(KWLoc, diag::err_template_spec_friend)
3729        << FixItHint::CreateRemoval(
3730                                SourceRange(TemplateParams->getTemplateLoc(),
3731                                            TemplateParams->getRAngleLoc()))
3732        << SourceRange(LAngleLoc, RAngleLoc);
3733    else
3734      isExplicitSpecialization = true;
3735  } else if (TUK != TUK_Friend) {
3736    Diag(KWLoc, diag::err_template_spec_needs_header)
3737      << FixItHint::CreateInsertion(KWLoc, "template<> ");
3738    isExplicitSpecialization = true;
3739  }
3740
3741  // Check that the specialization uses the same tag kind as the
3742  // original template.
3743  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3744  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
3745  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3746                                    Kind, KWLoc,
3747                                    *ClassTemplate->getIdentifier())) {
3748    Diag(KWLoc, diag::err_use_with_wrong_tag)
3749      << ClassTemplate
3750      << FixItHint::CreateReplacement(KWLoc,
3751                            ClassTemplate->getTemplatedDecl()->getKindName());
3752    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3753         diag::note_previous_use);
3754    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3755  }
3756
3757  // Translate the parser's template argument list in our AST format.
3758  TemplateArgumentListInfo TemplateArgs;
3759  TemplateArgs.setLAngleLoc(LAngleLoc);
3760  TemplateArgs.setRAngleLoc(RAngleLoc);
3761  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3762
3763  // Check that the template argument list is well-formed for this
3764  // template.
3765  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3766                                        TemplateArgs.size());
3767  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3768                                TemplateArgs, false, Converted))
3769    return true;
3770
3771  assert((Converted.structuredSize() ==
3772            ClassTemplate->getTemplateParameters()->size()) &&
3773         "Converted template argument list is too short!");
3774
3775  // Find the class template (partial) specialization declaration that
3776  // corresponds to these arguments.
3777  if (isPartialSpecialization) {
3778    bool MirrorsPrimaryTemplate;
3779    if (CheckClassTemplatePartialSpecializationArgs(
3780                                         ClassTemplate->getTemplateParameters(),
3781                                         Converted, MirrorsPrimaryTemplate))
3782      return true;
3783
3784    if (MirrorsPrimaryTemplate) {
3785      // C++ [temp.class.spec]p9b3:
3786      //
3787      //   -- The argument list of the specialization shall not be identical
3788      //      to the implicit argument list of the primary template.
3789      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3790        << (TUK == TUK_Definition)
3791        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3792      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3793                                ClassTemplate->getIdentifier(),
3794                                TemplateNameLoc,
3795                                Attr,
3796                                TemplateParams,
3797                                AS_none);
3798    }
3799
3800    // FIXME: Diagnose friend partial specializations
3801
3802    if (!Name.isDependent() &&
3803        !TemplateSpecializationType::anyDependentTemplateArguments(
3804                                             TemplateArgs.getArgumentArray(),
3805                                                         TemplateArgs.size())) {
3806      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3807        << ClassTemplate->getDeclName();
3808      isPartialSpecialization = false;
3809    }
3810  }
3811
3812  void *InsertPos = 0;
3813  ClassTemplateSpecializationDecl *PrevDecl = 0;
3814
3815  if (isPartialSpecialization)
3816    // FIXME: Template parameter list matters, too
3817    PrevDecl
3818      = ClassTemplate->findPartialSpecialization(Converted.getFlatArguments(),
3819                                                 Converted.flatSize(),
3820                                                 InsertPos);
3821  else
3822    PrevDecl
3823      = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
3824                                          Converted.flatSize(), InsertPos);
3825
3826  ClassTemplateSpecializationDecl *Specialization = 0;
3827
3828  // Check whether we can declare a class template specialization in
3829  // the current scope.
3830  if (TUK != TUK_Friend &&
3831      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3832                                       TemplateNameLoc,
3833                                       isPartialSpecialization))
3834    return true;
3835
3836  // The canonical type
3837  QualType CanonType;
3838  if (PrevDecl &&
3839      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3840               TUK == TUK_Friend)) {
3841    // Since the only prior class template specialization with these
3842    // arguments was referenced but not declared, or we're only
3843    // referencing this specialization as a friend, reuse that
3844    // declaration node as our own, updating its source location to
3845    // reflect our new declaration.
3846    Specialization = PrevDecl;
3847    Specialization->setLocation(TemplateNameLoc);
3848    PrevDecl = 0;
3849    CanonType = Context.getTypeDeclType(Specialization);
3850  } else if (isPartialSpecialization) {
3851    // Build the canonical type that describes the converted template
3852    // arguments of the class template partial specialization.
3853    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3854    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3855                                                  Converted.getFlatArguments(),
3856                                                  Converted.flatSize());
3857
3858    // Create a new class template partial specialization declaration node.
3859    ClassTemplatePartialSpecializationDecl *PrevPartial
3860      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3861    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
3862                            : ClassTemplate->getNextPartialSpecSequenceNumber();
3863    ClassTemplatePartialSpecializationDecl *Partial
3864      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
3865                                             ClassTemplate->getDeclContext(),
3866                                                       TemplateNameLoc,
3867                                                       TemplateParams,
3868                                                       ClassTemplate,
3869                                                       Converted,
3870                                                       TemplateArgs,
3871                                                       CanonType,
3872                                                       PrevPartial,
3873                                                       SequenceNumber);
3874    SetNestedNameSpecifier(Partial, SS);
3875    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
3876      Partial->setTemplateParameterListsInfo(Context,
3877                                             NumMatchedTemplateParamLists,
3878                    (TemplateParameterList**) TemplateParameterLists.release());
3879    }
3880
3881    if (!PrevPartial)
3882      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
3883    Specialization = Partial;
3884
3885    // If we are providing an explicit specialization of a member class
3886    // template specialization, make a note of that.
3887    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3888      PrevPartial->setMemberSpecialization();
3889
3890    // Check that all of the template parameters of the class template
3891    // partial specialization are deducible from the template
3892    // arguments. If not, this class template partial specialization
3893    // will never be used.
3894    llvm::SmallVector<bool, 8> DeducibleParams;
3895    DeducibleParams.resize(TemplateParams->size());
3896    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3897                               TemplateParams->getDepth(),
3898                               DeducibleParams);
3899    unsigned NumNonDeducible = 0;
3900    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3901      if (!DeducibleParams[I])
3902        ++NumNonDeducible;
3903
3904    if (NumNonDeducible) {
3905      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3906        << (NumNonDeducible > 1)
3907        << SourceRange(TemplateNameLoc, RAngleLoc);
3908      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3909        if (!DeducibleParams[I]) {
3910          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3911          if (Param->getDeclName())
3912            Diag(Param->getLocation(),
3913                 diag::note_partial_spec_unused_parameter)
3914              << Param->getDeclName();
3915          else
3916            Diag(Param->getLocation(),
3917                 diag::note_partial_spec_unused_parameter)
3918              << "<anonymous>";
3919        }
3920      }
3921    }
3922  } else {
3923    // Create a new class template specialization declaration node for
3924    // this explicit specialization or friend declaration.
3925    Specialization
3926      = ClassTemplateSpecializationDecl::Create(Context, Kind,
3927                                             ClassTemplate->getDeclContext(),
3928                                                TemplateNameLoc,
3929                                                ClassTemplate,
3930                                                Converted,
3931                                                PrevDecl);
3932    SetNestedNameSpecifier(Specialization, SS);
3933    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
3934      Specialization->setTemplateParameterListsInfo(Context,
3935                                                  NumMatchedTemplateParamLists,
3936                    (TemplateParameterList**) TemplateParameterLists.release());
3937    }
3938
3939    if (!PrevDecl)
3940      ClassTemplate->AddSpecialization(Specialization, InsertPos);
3941
3942    CanonType = Context.getTypeDeclType(Specialization);
3943  }
3944
3945  // C++ [temp.expl.spec]p6:
3946  //   If a template, a member template or the member of a class template is
3947  //   explicitly specialized then that specialization shall be declared
3948  //   before the first use of that specialization that would cause an implicit
3949  //   instantiation to take place, in every translation unit in which such a
3950  //   use occurs; no diagnostic is required.
3951  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3952    bool Okay = false;
3953    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3954      // Is there any previous explicit specialization declaration?
3955      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3956        Okay = true;
3957        break;
3958      }
3959    }
3960
3961    if (!Okay) {
3962      SourceRange Range(TemplateNameLoc, RAngleLoc);
3963      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3964        << Context.getTypeDeclType(Specialization) << Range;
3965
3966      Diag(PrevDecl->getPointOfInstantiation(),
3967           diag::note_instantiation_required_here)
3968        << (PrevDecl->getTemplateSpecializationKind()
3969                                                != TSK_ImplicitInstantiation);
3970      return true;
3971    }
3972  }
3973
3974  // If this is not a friend, note that this is an explicit specialization.
3975  if (TUK != TUK_Friend)
3976    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3977
3978  // Check that this isn't a redefinition of this specialization.
3979  if (TUK == TUK_Definition) {
3980    if (RecordDecl *Def = Specialization->getDefinition()) {
3981      SourceRange Range(TemplateNameLoc, RAngleLoc);
3982      Diag(TemplateNameLoc, diag::err_redefinition)
3983        << Context.getTypeDeclType(Specialization) << Range;
3984      Diag(Def->getLocation(), diag::note_previous_definition);
3985      Specialization->setInvalidDecl();
3986      return true;
3987    }
3988  }
3989
3990  // Build the fully-sugared type for this class template
3991  // specialization as the user wrote in the specialization
3992  // itself. This means that we'll pretty-print the type retrieved
3993  // from the specialization's declaration the way that the user
3994  // actually wrote the specialization, rather than formatting the
3995  // name based on the "canonical" representation used to store the
3996  // template arguments in the specialization.
3997  TypeSourceInfo *WrittenTy
3998    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
3999                                                TemplateArgs, CanonType);
4000  if (TUK != TUK_Friend) {
4001    Specialization->setTypeAsWritten(WrittenTy);
4002    if (TemplateParams)
4003      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
4004  }
4005  TemplateArgsIn.release();
4006
4007  // C++ [temp.expl.spec]p9:
4008  //   A template explicit specialization is in the scope of the
4009  //   namespace in which the template was defined.
4010  //
4011  // We actually implement this paragraph where we set the semantic
4012  // context (in the creation of the ClassTemplateSpecializationDecl),
4013  // but we also maintain the lexical context where the actual
4014  // definition occurs.
4015  Specialization->setLexicalDeclContext(CurContext);
4016
4017  // We may be starting the definition of this specialization.
4018  if (TUK == TUK_Definition)
4019    Specialization->startDefinition();
4020
4021  if (TUK == TUK_Friend) {
4022    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4023                                            TemplateNameLoc,
4024                                            WrittenTy,
4025                                            /*FIXME:*/KWLoc);
4026    Friend->setAccess(AS_public);
4027    CurContext->addDecl(Friend);
4028  } else {
4029    // Add the specialization into its lexical context, so that it can
4030    // be seen when iterating through the list of declarations in that
4031    // context. However, specializations are not found by name lookup.
4032    CurContext->addDecl(Specialization);
4033  }
4034  return Specialization;
4035}
4036
4037Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4038                              MultiTemplateParamsArg TemplateParameterLists,
4039                                    Declarator &D) {
4040  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4041}
4042
4043Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4044                               MultiTemplateParamsArg TemplateParameterLists,
4045                                            Declarator &D) {
4046  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4047  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4048         "Not a function declarator!");
4049  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4050
4051  if (FTI.hasPrototype) {
4052    // FIXME: Diagnose arguments without names in C.
4053  }
4054
4055  Scope *ParentScope = FnBodyScope->getParent();
4056
4057  Decl *DP = HandleDeclarator(ParentScope, D,
4058                              move(TemplateParameterLists),
4059                              /*IsFunctionDefinition=*/true);
4060  if (FunctionTemplateDecl *FunctionTemplate
4061        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4062    return ActOnStartOfFunctionDef(FnBodyScope,
4063                                   FunctionTemplate->getTemplatedDecl());
4064  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4065    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4066  return 0;
4067}
4068
4069/// \brief Strips various properties off an implicit instantiation
4070/// that has just been explicitly specialized.
4071static void StripImplicitInstantiation(NamedDecl *D) {
4072  D->dropAttrs();
4073
4074  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4075    FD->setInlineSpecified(false);
4076  }
4077}
4078
4079/// \brief Diagnose cases where we have an explicit template specialization
4080/// before/after an explicit template instantiation, producing diagnostics
4081/// for those cases where they are required and determining whether the
4082/// new specialization/instantiation will have any effect.
4083///
4084/// \param NewLoc the location of the new explicit specialization or
4085/// instantiation.
4086///
4087/// \param NewTSK the kind of the new explicit specialization or instantiation.
4088///
4089/// \param PrevDecl the previous declaration of the entity.
4090///
4091/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4092///
4093/// \param PrevPointOfInstantiation if valid, indicates where the previus
4094/// declaration was instantiated (either implicitly or explicitly).
4095///
4096/// \param HasNoEffect will be set to true to indicate that the new
4097/// specialization or instantiation has no effect and should be ignored.
4098///
4099/// \returns true if there was an error that should prevent the introduction of
4100/// the new declaration into the AST, false otherwise.
4101bool
4102Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4103                                             TemplateSpecializationKind NewTSK,
4104                                             NamedDecl *PrevDecl,
4105                                             TemplateSpecializationKind PrevTSK,
4106                                        SourceLocation PrevPointOfInstantiation,
4107                                             bool &HasNoEffect) {
4108  HasNoEffect = false;
4109
4110  switch (NewTSK) {
4111  case TSK_Undeclared:
4112  case TSK_ImplicitInstantiation:
4113    assert(false && "Don't check implicit instantiations here");
4114    return false;
4115
4116  case TSK_ExplicitSpecialization:
4117    switch (PrevTSK) {
4118    case TSK_Undeclared:
4119    case TSK_ExplicitSpecialization:
4120      // Okay, we're just specializing something that is either already
4121      // explicitly specialized or has merely been mentioned without any
4122      // instantiation.
4123      return false;
4124
4125    case TSK_ImplicitInstantiation:
4126      if (PrevPointOfInstantiation.isInvalid()) {
4127        // The declaration itself has not actually been instantiated, so it is
4128        // still okay to specialize it.
4129        StripImplicitInstantiation(PrevDecl);
4130        return false;
4131      }
4132      // Fall through
4133
4134    case TSK_ExplicitInstantiationDeclaration:
4135    case TSK_ExplicitInstantiationDefinition:
4136      assert((PrevTSK == TSK_ImplicitInstantiation ||
4137              PrevPointOfInstantiation.isValid()) &&
4138             "Explicit instantiation without point of instantiation?");
4139
4140      // C++ [temp.expl.spec]p6:
4141      //   If a template, a member template or the member of a class template
4142      //   is explicitly specialized then that specialization shall be declared
4143      //   before the first use of that specialization that would cause an
4144      //   implicit instantiation to take place, in every translation unit in
4145      //   which such a use occurs; no diagnostic is required.
4146      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4147        // Is there any previous explicit specialization declaration?
4148        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4149          return false;
4150      }
4151
4152      Diag(NewLoc, diag::err_specialization_after_instantiation)
4153        << PrevDecl;
4154      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4155        << (PrevTSK != TSK_ImplicitInstantiation);
4156
4157      return true;
4158    }
4159    break;
4160
4161  case TSK_ExplicitInstantiationDeclaration:
4162    switch (PrevTSK) {
4163    case TSK_ExplicitInstantiationDeclaration:
4164      // This explicit instantiation declaration is redundant (that's okay).
4165      HasNoEffect = true;
4166      return false;
4167
4168    case TSK_Undeclared:
4169    case TSK_ImplicitInstantiation:
4170      // We're explicitly instantiating something that may have already been
4171      // implicitly instantiated; that's fine.
4172      return false;
4173
4174    case TSK_ExplicitSpecialization:
4175      // C++0x [temp.explicit]p4:
4176      //   For a given set of template parameters, if an explicit instantiation
4177      //   of a template appears after a declaration of an explicit
4178      //   specialization for that template, the explicit instantiation has no
4179      //   effect.
4180      HasNoEffect = true;
4181      return false;
4182
4183    case TSK_ExplicitInstantiationDefinition:
4184      // C++0x [temp.explicit]p10:
4185      //   If an entity is the subject of both an explicit instantiation
4186      //   declaration and an explicit instantiation definition in the same
4187      //   translation unit, the definition shall follow the declaration.
4188      Diag(NewLoc,
4189           diag::err_explicit_instantiation_declaration_after_definition);
4190      Diag(PrevPointOfInstantiation,
4191           diag::note_explicit_instantiation_definition_here);
4192      assert(PrevPointOfInstantiation.isValid() &&
4193             "Explicit instantiation without point of instantiation?");
4194      HasNoEffect = true;
4195      return false;
4196    }
4197    break;
4198
4199  case TSK_ExplicitInstantiationDefinition:
4200    switch (PrevTSK) {
4201    case TSK_Undeclared:
4202    case TSK_ImplicitInstantiation:
4203      // We're explicitly instantiating something that may have already been
4204      // implicitly instantiated; that's fine.
4205      return false;
4206
4207    case TSK_ExplicitSpecialization:
4208      // C++ DR 259, C++0x [temp.explicit]p4:
4209      //   For a given set of template parameters, if an explicit
4210      //   instantiation of a template appears after a declaration of
4211      //   an explicit specialization for that template, the explicit
4212      //   instantiation has no effect.
4213      //
4214      // In C++98/03 mode, we only give an extension warning here, because it
4215      // is not harmful to try to explicitly instantiate something that
4216      // has been explicitly specialized.
4217      if (!getLangOptions().CPlusPlus0x) {
4218        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4219          << PrevDecl;
4220        Diag(PrevDecl->getLocation(),
4221             diag::note_previous_template_specialization);
4222      }
4223      HasNoEffect = true;
4224      return false;
4225
4226    case TSK_ExplicitInstantiationDeclaration:
4227      // We're explicity instantiating a definition for something for which we
4228      // were previously asked to suppress instantiations. That's fine.
4229      return false;
4230
4231    case TSK_ExplicitInstantiationDefinition:
4232      // C++0x [temp.spec]p5:
4233      //   For a given template and a given set of template-arguments,
4234      //     - an explicit instantiation definition shall appear at most once
4235      //       in a program,
4236      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4237        << PrevDecl;
4238      Diag(PrevPointOfInstantiation,
4239           diag::note_previous_explicit_instantiation);
4240      HasNoEffect = true;
4241      return false;
4242    }
4243    break;
4244  }
4245
4246  assert(false && "Missing specialization/instantiation case?");
4247
4248  return false;
4249}
4250
4251/// \brief Perform semantic analysis for the given dependent function
4252/// template specialization.  The only possible way to get a dependent
4253/// function template specialization is with a friend declaration,
4254/// like so:
4255///
4256///   template <class T> void foo(T);
4257///   template <class T> class A {
4258///     friend void foo<>(T);
4259///   };
4260///
4261/// There really isn't any useful analysis we can do here, so we
4262/// just store the information.
4263bool
4264Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4265                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4266                                                   LookupResult &Previous) {
4267  // Remove anything from Previous that isn't a function template in
4268  // the correct context.
4269  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4270  LookupResult::Filter F = Previous.makeFilter();
4271  while (F.hasNext()) {
4272    NamedDecl *D = F.next()->getUnderlyingDecl();
4273    if (!isa<FunctionTemplateDecl>(D) ||
4274        !FDLookupContext->InEnclosingNamespaceSetOf(
4275                              D->getDeclContext()->getRedeclContext()))
4276      F.erase();
4277  }
4278  F.done();
4279
4280  // Should this be diagnosed here?
4281  if (Previous.empty()) return true;
4282
4283  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4284                                         ExplicitTemplateArgs);
4285  return false;
4286}
4287
4288/// \brief Perform semantic analysis for the given function template
4289/// specialization.
4290///
4291/// This routine performs all of the semantic analysis required for an
4292/// explicit function template specialization. On successful completion,
4293/// the function declaration \p FD will become a function template
4294/// specialization.
4295///
4296/// \param FD the function declaration, which will be updated to become a
4297/// function template specialization.
4298///
4299/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4300/// if any. Note that this may be valid info even when 0 arguments are
4301/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4302/// as it anyway contains info on the angle brackets locations.
4303///
4304/// \param PrevDecl the set of declarations that may be specialized by
4305/// this function specialization.
4306bool
4307Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4308                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4309                                          LookupResult &Previous) {
4310  // The set of function template specializations that could match this
4311  // explicit function template specialization.
4312  UnresolvedSet<8> Candidates;
4313
4314  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4315  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4316         I != E; ++I) {
4317    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4318    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4319      // Only consider templates found within the same semantic lookup scope as
4320      // FD.
4321      if (!FDLookupContext->InEnclosingNamespaceSetOf(
4322                                Ovl->getDeclContext()->getRedeclContext()))
4323        continue;
4324
4325      // C++ [temp.expl.spec]p11:
4326      //   A trailing template-argument can be left unspecified in the
4327      //   template-id naming an explicit function template specialization
4328      //   provided it can be deduced from the function argument type.
4329      // Perform template argument deduction to determine whether we may be
4330      // specializing this template.
4331      // FIXME: It is somewhat wasteful to build
4332      TemplateDeductionInfo Info(Context, FD->getLocation());
4333      FunctionDecl *Specialization = 0;
4334      if (TemplateDeductionResult TDK
4335            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4336                                      FD->getType(),
4337                                      Specialization,
4338                                      Info)) {
4339        // FIXME: Template argument deduction failed; record why it failed, so
4340        // that we can provide nifty diagnostics.
4341        (void)TDK;
4342        continue;
4343      }
4344
4345      // Record this candidate.
4346      Candidates.addDecl(Specialization, I.getAccess());
4347    }
4348  }
4349
4350  // Find the most specialized function template.
4351  UnresolvedSetIterator Result
4352    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4353                         TPOC_Other, FD->getLocation(),
4354                  PDiag(diag::err_function_template_spec_no_match)
4355                    << FD->getDeclName(),
4356                  PDiag(diag::err_function_template_spec_ambiguous)
4357                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4358                  PDiag(diag::note_function_template_spec_matched));
4359  if (Result == Candidates.end())
4360    return true;
4361
4362  // Ignore access information;  it doesn't figure into redeclaration checking.
4363  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4364  Specialization->setLocation(FD->getLocation());
4365
4366  // FIXME: Check if the prior specialization has a point of instantiation.
4367  // If so, we have run afoul of .
4368
4369  // If this is a friend declaration, then we're not really declaring
4370  // an explicit specialization.
4371  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4372
4373  // Check the scope of this explicit specialization.
4374  if (!isFriend &&
4375      CheckTemplateSpecializationScope(*this,
4376                                       Specialization->getPrimaryTemplate(),
4377                                       Specialization, FD->getLocation(),
4378                                       false))
4379    return true;
4380
4381  // C++ [temp.expl.spec]p6:
4382  //   If a template, a member template or the member of a class template is
4383  //   explicitly specialized then that specialization shall be declared
4384  //   before the first use of that specialization that would cause an implicit
4385  //   instantiation to take place, in every translation unit in which such a
4386  //   use occurs; no diagnostic is required.
4387  FunctionTemplateSpecializationInfo *SpecInfo
4388    = Specialization->getTemplateSpecializationInfo();
4389  assert(SpecInfo && "Function template specialization info missing?");
4390
4391  bool HasNoEffect = false;
4392  if (!isFriend &&
4393      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4394                                             TSK_ExplicitSpecialization,
4395                                             Specialization,
4396                                   SpecInfo->getTemplateSpecializationKind(),
4397                                         SpecInfo->getPointOfInstantiation(),
4398                                             HasNoEffect))
4399    return true;
4400
4401  // Mark the prior declaration as an explicit specialization, so that later
4402  // clients know that this is an explicit specialization.
4403  if (!isFriend) {
4404    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4405    MarkUnusedFileScopedDecl(Specialization);
4406  }
4407
4408  // Turn the given function declaration into a function template
4409  // specialization, with the template arguments from the previous
4410  // specialization.
4411  // Take copies of (semantic and syntactic) template argument lists.
4412  const TemplateArgumentList* TemplArgs = new (Context)
4413    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4414  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4415    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4416  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4417                                        TemplArgs, /*InsertPos=*/0,
4418                                    SpecInfo->getTemplateSpecializationKind(),
4419                                        TemplArgsAsWritten);
4420
4421  // The "previous declaration" for this function template specialization is
4422  // the prior function template specialization.
4423  Previous.clear();
4424  Previous.addDecl(Specialization);
4425  return false;
4426}
4427
4428/// \brief Perform semantic analysis for the given non-template member
4429/// specialization.
4430///
4431/// This routine performs all of the semantic analysis required for an
4432/// explicit member function specialization. On successful completion,
4433/// the function declaration \p FD will become a member function
4434/// specialization.
4435///
4436/// \param Member the member declaration, which will be updated to become a
4437/// specialization.
4438///
4439/// \param Previous the set of declarations, one of which may be specialized
4440/// by this function specialization;  the set will be modified to contain the
4441/// redeclared member.
4442bool
4443Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4444  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4445
4446  // Try to find the member we are instantiating.
4447  NamedDecl *Instantiation = 0;
4448  NamedDecl *InstantiatedFrom = 0;
4449  MemberSpecializationInfo *MSInfo = 0;
4450
4451  if (Previous.empty()) {
4452    // Nowhere to look anyway.
4453  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4454    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4455           I != E; ++I) {
4456      NamedDecl *D = (*I)->getUnderlyingDecl();
4457      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4458        if (Context.hasSameType(Function->getType(), Method->getType())) {
4459          Instantiation = Method;
4460          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4461          MSInfo = Method->getMemberSpecializationInfo();
4462          break;
4463        }
4464      }
4465    }
4466  } else if (isa<VarDecl>(Member)) {
4467    VarDecl *PrevVar;
4468    if (Previous.isSingleResult() &&
4469        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4470      if (PrevVar->isStaticDataMember()) {
4471        Instantiation = PrevVar;
4472        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4473        MSInfo = PrevVar->getMemberSpecializationInfo();
4474      }
4475  } else if (isa<RecordDecl>(Member)) {
4476    CXXRecordDecl *PrevRecord;
4477    if (Previous.isSingleResult() &&
4478        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4479      Instantiation = PrevRecord;
4480      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4481      MSInfo = PrevRecord->getMemberSpecializationInfo();
4482    }
4483  }
4484
4485  if (!Instantiation) {
4486    // There is no previous declaration that matches. Since member
4487    // specializations are always out-of-line, the caller will complain about
4488    // this mismatch later.
4489    return false;
4490  }
4491
4492  // If this is a friend, just bail out here before we start turning
4493  // things into explicit specializations.
4494  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4495    // Preserve instantiation information.
4496    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4497      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4498                                      cast<CXXMethodDecl>(InstantiatedFrom),
4499        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4500    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4501      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4502                                      cast<CXXRecordDecl>(InstantiatedFrom),
4503        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4504    }
4505
4506    Previous.clear();
4507    Previous.addDecl(Instantiation);
4508    return false;
4509  }
4510
4511  // Make sure that this is a specialization of a member.
4512  if (!InstantiatedFrom) {
4513    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4514      << Member;
4515    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4516    return true;
4517  }
4518
4519  // C++ [temp.expl.spec]p6:
4520  //   If a template, a member template or the member of a class template is
4521  //   explicitly specialized then that spe- cialization shall be declared
4522  //   before the first use of that specialization that would cause an implicit
4523  //   instantiation to take place, in every translation unit in which such a
4524  //   use occurs; no diagnostic is required.
4525  assert(MSInfo && "Member specialization info missing?");
4526
4527  bool HasNoEffect = false;
4528  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4529                                             TSK_ExplicitSpecialization,
4530                                             Instantiation,
4531                                     MSInfo->getTemplateSpecializationKind(),
4532                                           MSInfo->getPointOfInstantiation(),
4533                                             HasNoEffect))
4534    return true;
4535
4536  // Check the scope of this explicit specialization.
4537  if (CheckTemplateSpecializationScope(*this,
4538                                       InstantiatedFrom,
4539                                       Instantiation, Member->getLocation(),
4540                                       false))
4541    return true;
4542
4543  // Note that this is an explicit instantiation of a member.
4544  // the original declaration to note that it is an explicit specialization
4545  // (if it was previously an implicit instantiation). This latter step
4546  // makes bookkeeping easier.
4547  if (isa<FunctionDecl>(Member)) {
4548    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4549    if (InstantiationFunction->getTemplateSpecializationKind() ==
4550          TSK_ImplicitInstantiation) {
4551      InstantiationFunction->setTemplateSpecializationKind(
4552                                                  TSK_ExplicitSpecialization);
4553      InstantiationFunction->setLocation(Member->getLocation());
4554    }
4555
4556    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4557                                        cast<CXXMethodDecl>(InstantiatedFrom),
4558                                                  TSK_ExplicitSpecialization);
4559    MarkUnusedFileScopedDecl(InstantiationFunction);
4560  } else if (isa<VarDecl>(Member)) {
4561    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4562    if (InstantiationVar->getTemplateSpecializationKind() ==
4563          TSK_ImplicitInstantiation) {
4564      InstantiationVar->setTemplateSpecializationKind(
4565                                                  TSK_ExplicitSpecialization);
4566      InstantiationVar->setLocation(Member->getLocation());
4567    }
4568
4569    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4570                                                cast<VarDecl>(InstantiatedFrom),
4571                                                TSK_ExplicitSpecialization);
4572    MarkUnusedFileScopedDecl(InstantiationVar);
4573  } else {
4574    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4575    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4576    if (InstantiationClass->getTemplateSpecializationKind() ==
4577          TSK_ImplicitInstantiation) {
4578      InstantiationClass->setTemplateSpecializationKind(
4579                                                   TSK_ExplicitSpecialization);
4580      InstantiationClass->setLocation(Member->getLocation());
4581    }
4582
4583    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4584                                        cast<CXXRecordDecl>(InstantiatedFrom),
4585                                                   TSK_ExplicitSpecialization);
4586  }
4587
4588  // Save the caller the trouble of having to figure out which declaration
4589  // this specialization matches.
4590  Previous.clear();
4591  Previous.addDecl(Instantiation);
4592  return false;
4593}
4594
4595/// \brief Check the scope of an explicit instantiation.
4596///
4597/// \returns true if a serious error occurs, false otherwise.
4598static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4599                                            SourceLocation InstLoc,
4600                                            bool WasQualifiedName) {
4601  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
4602  DeclContext *CurContext = S.CurContext->getRedeclContext();
4603
4604  if (CurContext->isRecord()) {
4605    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
4606      << D;
4607    return true;
4608  }
4609
4610  // C++0x [temp.explicit]p2:
4611  //   An explicit instantiation shall appear in an enclosing namespace of its
4612  //   template.
4613  //
4614  // This is DR275, which we do not retroactively apply to C++98/03.
4615  if (S.getLangOptions().CPlusPlus0x &&
4616      !CurContext->Encloses(OrigContext)) {
4617    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
4618      S.Diag(InstLoc,
4619             S.getLangOptions().CPlusPlus0x?
4620                 diag::err_explicit_instantiation_out_of_scope
4621               : diag::warn_explicit_instantiation_out_of_scope_0x)
4622        << D << NS;
4623    else
4624      S.Diag(InstLoc,
4625             S.getLangOptions().CPlusPlus0x?
4626                 diag::err_explicit_instantiation_must_be_global
4627               : diag::warn_explicit_instantiation_out_of_scope_0x)
4628        << D;
4629    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4630    return false;
4631  }
4632
4633  // C++0x [temp.explicit]p2:
4634  //   If the name declared in the explicit instantiation is an unqualified
4635  //   name, the explicit instantiation shall appear in the namespace where
4636  //   its template is declared or, if that namespace is inline (7.3.1), any
4637  //   namespace from its enclosing namespace set.
4638  if (WasQualifiedName)
4639    return false;
4640
4641  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
4642    return false;
4643
4644  S.Diag(InstLoc,
4645         S.getLangOptions().CPlusPlus0x?
4646             diag::err_explicit_instantiation_unqualified_wrong_namespace
4647           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
4648    << D << OrigContext;
4649  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4650  return false;
4651}
4652
4653/// \brief Determine whether the given scope specifier has a template-id in it.
4654static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4655  if (!SS.isSet())
4656    return false;
4657
4658  // C++0x [temp.explicit]p2:
4659  //   If the explicit instantiation is for a member function, a member class
4660  //   or a static data member of a class template specialization, the name of
4661  //   the class template specialization in the qualified-id for the member
4662  //   name shall be a simple-template-id.
4663  //
4664  // C++98 has the same restriction, just worded differently.
4665  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4666       NNS; NNS = NNS->getPrefix())
4667    if (Type *T = NNS->getAsType())
4668      if (isa<TemplateSpecializationType>(T))
4669        return true;
4670
4671  return false;
4672}
4673
4674// Explicit instantiation of a class template specialization
4675DeclResult
4676Sema::ActOnExplicitInstantiation(Scope *S,
4677                                 SourceLocation ExternLoc,
4678                                 SourceLocation TemplateLoc,
4679                                 unsigned TagSpec,
4680                                 SourceLocation KWLoc,
4681                                 const CXXScopeSpec &SS,
4682                                 TemplateTy TemplateD,
4683                                 SourceLocation TemplateNameLoc,
4684                                 SourceLocation LAngleLoc,
4685                                 ASTTemplateArgsPtr TemplateArgsIn,
4686                                 SourceLocation RAngleLoc,
4687                                 AttributeList *Attr) {
4688  // Find the class template we're specializing
4689  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4690  ClassTemplateDecl *ClassTemplate
4691    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4692
4693  // Check that the specialization uses the same tag kind as the
4694  // original template.
4695  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4696  assert(Kind != TTK_Enum &&
4697         "Invalid enum tag in class template explicit instantiation!");
4698  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4699                                    Kind, KWLoc,
4700                                    *ClassTemplate->getIdentifier())) {
4701    Diag(KWLoc, diag::err_use_with_wrong_tag)
4702      << ClassTemplate
4703      << FixItHint::CreateReplacement(KWLoc,
4704                            ClassTemplate->getTemplatedDecl()->getKindName());
4705    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4706         diag::note_previous_use);
4707    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4708  }
4709
4710  // C++0x [temp.explicit]p2:
4711  //   There are two forms of explicit instantiation: an explicit instantiation
4712  //   definition and an explicit instantiation declaration. An explicit
4713  //   instantiation declaration begins with the extern keyword. [...]
4714  TemplateSpecializationKind TSK
4715    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4716                           : TSK_ExplicitInstantiationDeclaration;
4717
4718  // Translate the parser's template argument list in our AST format.
4719  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4720  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4721
4722  // Check that the template argument list is well-formed for this
4723  // template.
4724  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4725                                        TemplateArgs.size());
4726  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4727                                TemplateArgs, false, Converted))
4728    return true;
4729
4730  assert((Converted.structuredSize() ==
4731            ClassTemplate->getTemplateParameters()->size()) &&
4732         "Converted template argument list is too short!");
4733
4734  // Find the class template specialization declaration that
4735  // corresponds to these arguments.
4736  void *InsertPos = 0;
4737  ClassTemplateSpecializationDecl *PrevDecl
4738    = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
4739                                        Converted.flatSize(), InsertPos);
4740
4741  TemplateSpecializationKind PrevDecl_TSK
4742    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
4743
4744  // C++0x [temp.explicit]p2:
4745  //   [...] An explicit instantiation shall appear in an enclosing
4746  //   namespace of its template. [...]
4747  //
4748  // This is C++ DR 275.
4749  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4750                                      SS.isSet()))
4751    return true;
4752
4753  ClassTemplateSpecializationDecl *Specialization = 0;
4754
4755  bool ReusedDecl = false;
4756  bool HasNoEffect = false;
4757  if (PrevDecl) {
4758    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4759                                               PrevDecl, PrevDecl_TSK,
4760                                            PrevDecl->getPointOfInstantiation(),
4761                                               HasNoEffect))
4762      return PrevDecl;
4763
4764    // Even though HasNoEffect == true means that this explicit instantiation
4765    // has no effect on semantics, we go on to put its syntax in the AST.
4766
4767    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
4768        PrevDecl_TSK == TSK_Undeclared) {
4769      // Since the only prior class template specialization with these
4770      // arguments was referenced but not declared, reuse that
4771      // declaration node as our own, updating the source location
4772      // for the template name to reflect our new declaration.
4773      // (Other source locations will be updated later.)
4774      Specialization = PrevDecl;
4775      Specialization->setLocation(TemplateNameLoc);
4776      PrevDecl = 0;
4777      ReusedDecl = true;
4778    }
4779  }
4780
4781  if (!Specialization) {
4782    // Create a new class template specialization declaration node for
4783    // this explicit specialization.
4784    Specialization
4785      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4786                                             ClassTemplate->getDeclContext(),
4787                                                TemplateNameLoc,
4788                                                ClassTemplate,
4789                                                Converted, PrevDecl);
4790    SetNestedNameSpecifier(Specialization, SS);
4791
4792    if (!HasNoEffect && !PrevDecl) {
4793      // Insert the new specialization.
4794      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4795    }
4796  }
4797
4798  // Build the fully-sugared type for this explicit instantiation as
4799  // the user wrote in the explicit instantiation itself. This means
4800  // that we'll pretty-print the type retrieved from the
4801  // specialization's declaration the way that the user actually wrote
4802  // the explicit instantiation, rather than formatting the name based
4803  // on the "canonical" representation used to store the template
4804  // arguments in the specialization.
4805  TypeSourceInfo *WrittenTy
4806    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4807                                                TemplateArgs,
4808                                  Context.getTypeDeclType(Specialization));
4809  Specialization->setTypeAsWritten(WrittenTy);
4810  TemplateArgsIn.release();
4811
4812  // Set source locations for keywords.
4813  Specialization->setExternLoc(ExternLoc);
4814  Specialization->setTemplateKeywordLoc(TemplateLoc);
4815
4816  // Add the explicit instantiation into its lexical context. However,
4817  // since explicit instantiations are never found by name lookup, we
4818  // just put it into the declaration context directly.
4819  Specialization->setLexicalDeclContext(CurContext);
4820  CurContext->addDecl(Specialization);
4821
4822  // Syntax is now OK, so return if it has no other effect on semantics.
4823  if (HasNoEffect) {
4824    // Set the template specialization kind.
4825    Specialization->setTemplateSpecializationKind(TSK);
4826    return Specialization;
4827  }
4828
4829  // C++ [temp.explicit]p3:
4830  //   A definition of a class template or class member template
4831  //   shall be in scope at the point of the explicit instantiation of
4832  //   the class template or class member template.
4833  //
4834  // This check comes when we actually try to perform the
4835  // instantiation.
4836  ClassTemplateSpecializationDecl *Def
4837    = cast_or_null<ClassTemplateSpecializationDecl>(
4838                                              Specialization->getDefinition());
4839  if (!Def)
4840    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4841  else if (TSK == TSK_ExplicitInstantiationDefinition) {
4842    MarkVTableUsed(TemplateNameLoc, Specialization, true);
4843    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
4844  }
4845
4846  // Instantiate the members of this class template specialization.
4847  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4848                                       Specialization->getDefinition());
4849  if (Def) {
4850    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
4851
4852    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
4853    // TSK_ExplicitInstantiationDefinition
4854    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
4855        TSK == TSK_ExplicitInstantiationDefinition)
4856      Def->setTemplateSpecializationKind(TSK);
4857
4858    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4859  }
4860
4861  // Set the template specialization kind.
4862  Specialization->setTemplateSpecializationKind(TSK);
4863  return Specialization;
4864}
4865
4866// Explicit instantiation of a member class of a class template.
4867DeclResult
4868Sema::ActOnExplicitInstantiation(Scope *S,
4869                                 SourceLocation ExternLoc,
4870                                 SourceLocation TemplateLoc,
4871                                 unsigned TagSpec,
4872                                 SourceLocation KWLoc,
4873                                 CXXScopeSpec &SS,
4874                                 IdentifierInfo *Name,
4875                                 SourceLocation NameLoc,
4876                                 AttributeList *Attr) {
4877
4878  bool Owned = false;
4879  bool IsDependent = false;
4880  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
4881                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
4882                        MultiTemplateParamsArg(*this, 0, 0),
4883                        Owned, IsDependent, false,
4884                        TypeResult());
4885  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4886
4887  if (!TagD)
4888    return true;
4889
4890  TagDecl *Tag = cast<TagDecl>(TagD);
4891  if (Tag->isEnum()) {
4892    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4893      << Context.getTypeDeclType(Tag);
4894    return true;
4895  }
4896
4897  if (Tag->isInvalidDecl())
4898    return true;
4899
4900  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4901  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4902  if (!Pattern) {
4903    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4904      << Context.getTypeDeclType(Record);
4905    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4906    return true;
4907  }
4908
4909  // C++0x [temp.explicit]p2:
4910  //   If the explicit instantiation is for a class or member class, the
4911  //   elaborated-type-specifier in the declaration shall include a
4912  //   simple-template-id.
4913  //
4914  // C++98 has the same restriction, just worded differently.
4915  if (!ScopeSpecifierHasTemplateId(SS))
4916    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
4917      << Record << SS.getRange();
4918
4919  // C++0x [temp.explicit]p2:
4920  //   There are two forms of explicit instantiation: an explicit instantiation
4921  //   definition and an explicit instantiation declaration. An explicit
4922  //   instantiation declaration begins with the extern keyword. [...]
4923  TemplateSpecializationKind TSK
4924    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4925                           : TSK_ExplicitInstantiationDeclaration;
4926
4927  // C++0x [temp.explicit]p2:
4928  //   [...] An explicit instantiation shall appear in an enclosing
4929  //   namespace of its template. [...]
4930  //
4931  // This is C++ DR 275.
4932  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4933
4934  // Verify that it is okay to explicitly instantiate here.
4935  CXXRecordDecl *PrevDecl
4936    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4937  if (!PrevDecl && Record->getDefinition())
4938    PrevDecl = Record;
4939  if (PrevDecl) {
4940    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4941    bool HasNoEffect = false;
4942    assert(MSInfo && "No member specialization information?");
4943    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4944                                               PrevDecl,
4945                                        MSInfo->getTemplateSpecializationKind(),
4946                                             MSInfo->getPointOfInstantiation(),
4947                                               HasNoEffect))
4948      return true;
4949    if (HasNoEffect)
4950      return TagD;
4951  }
4952
4953  CXXRecordDecl *RecordDef
4954    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4955  if (!RecordDef) {
4956    // C++ [temp.explicit]p3:
4957    //   A definition of a member class of a class template shall be in scope
4958    //   at the point of an explicit instantiation of the member class.
4959    CXXRecordDecl *Def
4960      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
4961    if (!Def) {
4962      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4963        << 0 << Record->getDeclName() << Record->getDeclContext();
4964      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4965        << Pattern;
4966      return true;
4967    } else {
4968      if (InstantiateClass(NameLoc, Record, Def,
4969                           getTemplateInstantiationArgs(Record),
4970                           TSK))
4971        return true;
4972
4973      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4974      if (!RecordDef)
4975        return true;
4976    }
4977  }
4978
4979  // Instantiate all of the members of the class.
4980  InstantiateClassMembers(NameLoc, RecordDef,
4981                          getTemplateInstantiationArgs(Record), TSK);
4982
4983  if (TSK == TSK_ExplicitInstantiationDefinition)
4984    MarkVTableUsed(NameLoc, RecordDef, true);
4985
4986  // FIXME: We don't have any representation for explicit instantiations of
4987  // member classes. Such a representation is not needed for compilation, but it
4988  // should be available for clients that want to see all of the declarations in
4989  // the source code.
4990  return TagD;
4991}
4992
4993DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4994                                            SourceLocation ExternLoc,
4995                                            SourceLocation TemplateLoc,
4996                                            Declarator &D) {
4997  // Explicit instantiations always require a name.
4998  // TODO: check if/when DNInfo should replace Name.
4999  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5000  DeclarationName Name = NameInfo.getName();
5001  if (!Name) {
5002    if (!D.isInvalidType())
5003      Diag(D.getDeclSpec().getSourceRange().getBegin(),
5004           diag::err_explicit_instantiation_requires_name)
5005        << D.getDeclSpec().getSourceRange()
5006        << D.getSourceRange();
5007
5008    return true;
5009  }
5010
5011  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5012  // we find one that is.
5013  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5014         (S->getFlags() & Scope::TemplateParamScope) != 0)
5015    S = S->getParent();
5016
5017  // Determine the type of the declaration.
5018  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5019  QualType R = T->getType();
5020  if (R.isNull())
5021    return true;
5022
5023  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5024    // Cannot explicitly instantiate a typedef.
5025    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5026      << Name;
5027    return true;
5028  }
5029
5030  // C++0x [temp.explicit]p1:
5031  //   [...] An explicit instantiation of a function template shall not use the
5032  //   inline or constexpr specifiers.
5033  // Presumably, this also applies to member functions of class templates as
5034  // well.
5035  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5036    Diag(D.getDeclSpec().getInlineSpecLoc(),
5037         diag::err_explicit_instantiation_inline)
5038      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5039
5040  // FIXME: check for constexpr specifier.
5041
5042  // C++0x [temp.explicit]p2:
5043  //   There are two forms of explicit instantiation: an explicit instantiation
5044  //   definition and an explicit instantiation declaration. An explicit
5045  //   instantiation declaration begins with the extern keyword. [...]
5046  TemplateSpecializationKind TSK
5047    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5048                           : TSK_ExplicitInstantiationDeclaration;
5049
5050  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5051  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5052
5053  if (!R->isFunctionType()) {
5054    // C++ [temp.explicit]p1:
5055    //   A [...] static data member of a class template can be explicitly
5056    //   instantiated from the member definition associated with its class
5057    //   template.
5058    if (Previous.isAmbiguous())
5059      return true;
5060
5061    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5062    if (!Prev || !Prev->isStaticDataMember()) {
5063      // We expect to see a data data member here.
5064      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5065        << Name;
5066      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5067           P != PEnd; ++P)
5068        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5069      return true;
5070    }
5071
5072    if (!Prev->getInstantiatedFromStaticDataMember()) {
5073      // FIXME: Check for explicit specialization?
5074      Diag(D.getIdentifierLoc(),
5075           diag::err_explicit_instantiation_data_member_not_instantiated)
5076        << Prev;
5077      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5078      // FIXME: Can we provide a note showing where this was declared?
5079      return true;
5080    }
5081
5082    // C++0x [temp.explicit]p2:
5083    //   If the explicit instantiation is for a member function, a member class
5084    //   or a static data member of a class template specialization, the name of
5085    //   the class template specialization in the qualified-id for the member
5086    //   name shall be a simple-template-id.
5087    //
5088    // C++98 has the same restriction, just worded differently.
5089    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5090      Diag(D.getIdentifierLoc(),
5091           diag::ext_explicit_instantiation_without_qualified_id)
5092        << Prev << D.getCXXScopeSpec().getRange();
5093
5094    // Check the scope of this explicit instantiation.
5095    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5096
5097    // Verify that it is okay to explicitly instantiate here.
5098    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5099    assert(MSInfo && "Missing static data member specialization info?");
5100    bool HasNoEffect = false;
5101    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5102                                        MSInfo->getTemplateSpecializationKind(),
5103                                              MSInfo->getPointOfInstantiation(),
5104                                               HasNoEffect))
5105      return true;
5106    if (HasNoEffect)
5107      return (Decl*) 0;
5108
5109    // Instantiate static data member.
5110    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5111    if (TSK == TSK_ExplicitInstantiationDefinition)
5112      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5113
5114    // FIXME: Create an ExplicitInstantiation node?
5115    return (Decl*) 0;
5116  }
5117
5118  // If the declarator is a template-id, translate the parser's template
5119  // argument list into our AST format.
5120  bool HasExplicitTemplateArgs = false;
5121  TemplateArgumentListInfo TemplateArgs;
5122  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5123    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5124    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5125    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5126    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5127                                       TemplateId->getTemplateArgs(),
5128                                       TemplateId->NumArgs);
5129    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5130    HasExplicitTemplateArgs = true;
5131    TemplateArgsPtr.release();
5132  }
5133
5134  // C++ [temp.explicit]p1:
5135  //   A [...] function [...] can be explicitly instantiated from its template.
5136  //   A member function [...] of a class template can be explicitly
5137  //  instantiated from the member definition associated with its class
5138  //  template.
5139  UnresolvedSet<8> Matches;
5140  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5141       P != PEnd; ++P) {
5142    NamedDecl *Prev = *P;
5143    if (!HasExplicitTemplateArgs) {
5144      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5145        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5146          Matches.clear();
5147
5148          Matches.addDecl(Method, P.getAccess());
5149          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5150            break;
5151        }
5152      }
5153    }
5154
5155    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5156    if (!FunTmpl)
5157      continue;
5158
5159    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5160    FunctionDecl *Specialization = 0;
5161    if (TemplateDeductionResult TDK
5162          = DeduceTemplateArguments(FunTmpl,
5163                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5164                                    R, Specialization, Info)) {
5165      // FIXME: Keep track of almost-matches?
5166      (void)TDK;
5167      continue;
5168    }
5169
5170    Matches.addDecl(Specialization, P.getAccess());
5171  }
5172
5173  // Find the most specialized function template specialization.
5174  UnresolvedSetIterator Result
5175    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5176                         D.getIdentifierLoc(),
5177                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5178                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5179                         PDiag(diag::note_explicit_instantiation_candidate));
5180
5181  if (Result == Matches.end())
5182    return true;
5183
5184  // Ignore access control bits, we don't need them for redeclaration checking.
5185  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5186
5187  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5188    Diag(D.getIdentifierLoc(),
5189         diag::err_explicit_instantiation_member_function_not_instantiated)
5190      << Specialization
5191      << (Specialization->getTemplateSpecializationKind() ==
5192          TSK_ExplicitSpecialization);
5193    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5194    return true;
5195  }
5196
5197  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5198  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5199    PrevDecl = Specialization;
5200
5201  if (PrevDecl) {
5202    bool HasNoEffect = false;
5203    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5204                                               PrevDecl,
5205                                     PrevDecl->getTemplateSpecializationKind(),
5206                                          PrevDecl->getPointOfInstantiation(),
5207                                               HasNoEffect))
5208      return true;
5209
5210    // FIXME: We may still want to build some representation of this
5211    // explicit specialization.
5212    if (HasNoEffect)
5213      return (Decl*) 0;
5214  }
5215
5216  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5217
5218  if (TSK == TSK_ExplicitInstantiationDefinition)
5219    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5220
5221  // C++0x [temp.explicit]p2:
5222  //   If the explicit instantiation is for a member function, a member class
5223  //   or a static data member of a class template specialization, the name of
5224  //   the class template specialization in the qualified-id for the member
5225  //   name shall be a simple-template-id.
5226  //
5227  // C++98 has the same restriction, just worded differently.
5228  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5229  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5230      D.getCXXScopeSpec().isSet() &&
5231      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5232    Diag(D.getIdentifierLoc(),
5233         diag::ext_explicit_instantiation_without_qualified_id)
5234    << Specialization << D.getCXXScopeSpec().getRange();
5235
5236  CheckExplicitInstantiationScope(*this,
5237                   FunTmpl? (NamedDecl *)FunTmpl
5238                          : Specialization->getInstantiatedFromMemberFunction(),
5239                                  D.getIdentifierLoc(),
5240                                  D.getCXXScopeSpec().isSet());
5241
5242  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5243  return (Decl*) 0;
5244}
5245
5246TypeResult
5247Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5248                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5249                        SourceLocation TagLoc, SourceLocation NameLoc) {
5250  // This has to hold, because SS is expected to be defined.
5251  assert(Name && "Expected a name in a dependent tag");
5252
5253  NestedNameSpecifier *NNS
5254    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5255  if (!NNS)
5256    return true;
5257
5258  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5259
5260  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5261    Diag(NameLoc, diag::err_dependent_tag_decl)
5262      << (TUK == TUK_Definition) << Kind << SS.getRange();
5263    return true;
5264  }
5265
5266  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5267  return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5268}
5269
5270TypeResult
5271Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5272                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5273                        SourceLocation IdLoc) {
5274  NestedNameSpecifier *NNS
5275    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5276  if (!NNS)
5277    return true;
5278
5279  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5280      !getLangOptions().CPlusPlus0x)
5281    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5282      << FixItHint::CreateRemoval(TypenameLoc);
5283
5284  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5285                                 TypenameLoc, SS.getRange(), IdLoc);
5286  if (T.isNull())
5287    return true;
5288
5289  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5290  if (isa<DependentNameType>(T)) {
5291    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5292    TL.setKeywordLoc(TypenameLoc);
5293    TL.setQualifierRange(SS.getRange());
5294    TL.setNameLoc(IdLoc);
5295  } else {
5296    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5297    TL.setKeywordLoc(TypenameLoc);
5298    TL.setQualifierRange(SS.getRange());
5299    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5300  }
5301
5302  return CreateParsedType(T, TSI);
5303}
5304
5305TypeResult
5306Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5307                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5308                        ParsedType Ty) {
5309  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5310      !getLangOptions().CPlusPlus0x)
5311    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5312      << FixItHint::CreateRemoval(TypenameLoc);
5313
5314  TypeSourceInfo *InnerTSI = 0;
5315  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5316
5317  assert(isa<TemplateSpecializationType>(T) &&
5318         "Expected a template specialization type");
5319
5320  if (computeDeclContext(SS, false)) {
5321    // If we can compute a declaration context, then the "typename"
5322    // keyword was superfluous. Just build an ElaboratedType to keep
5323    // track of the nested-name-specifier.
5324
5325    // Push the inner type, preserving its source locations if possible.
5326    TypeLocBuilder Builder;
5327    if (InnerTSI)
5328      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5329    else
5330      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5331
5332    /* Note: NNS already embedded in template specialization type T. */
5333    T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5334    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5335    TL.setKeywordLoc(TypenameLoc);
5336    TL.setQualifierRange(SS.getRange());
5337
5338    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5339    return CreateParsedType(T, TSI);
5340  }
5341
5342  // TODO: it's really silly that we make a template specialization
5343  // type earlier only to drop it again here.
5344  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5345  DependentTemplateName *DTN =
5346    TST->getTemplateName().getAsDependentTemplateName();
5347  assert(DTN && "dependent template has non-dependent name?");
5348  assert(DTN->getQualifier()
5349         == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5350  T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5351                                                     DTN->getQualifier(),
5352                                                     DTN->getIdentifier(),
5353                                                     TST->getNumArgs(),
5354                                                     TST->getArgs());
5355  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5356  DependentTemplateSpecializationTypeLoc TL =
5357    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5358  if (InnerTSI) {
5359    TemplateSpecializationTypeLoc TSTL =
5360      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5361    TL.setLAngleLoc(TSTL.getLAngleLoc());
5362    TL.setRAngleLoc(TSTL.getRAngleLoc());
5363    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5364      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5365  } else {
5366    TL.initializeLocal(SourceLocation());
5367  }
5368  TL.setKeywordLoc(TypenameLoc);
5369  TL.setQualifierRange(SS.getRange());
5370  return CreateParsedType(T, TSI);
5371}
5372
5373/// \brief Build the type that describes a C++ typename specifier,
5374/// e.g., "typename T::type".
5375QualType
5376Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5377                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5378                        SourceLocation KeywordLoc, SourceRange NNSRange,
5379                        SourceLocation IILoc) {
5380  CXXScopeSpec SS;
5381  SS.setScopeRep(NNS);
5382  SS.setRange(NNSRange);
5383
5384  DeclContext *Ctx = computeDeclContext(SS);
5385  if (!Ctx) {
5386    // If the nested-name-specifier is dependent and couldn't be
5387    // resolved to a type, build a typename type.
5388    assert(NNS->isDependent());
5389    return Context.getDependentNameType(Keyword, NNS, &II);
5390  }
5391
5392  // If the nested-name-specifier refers to the current instantiation,
5393  // the "typename" keyword itself is superfluous. In C++03, the
5394  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5395  // allows such extraneous "typename" keywords, and we retroactively
5396  // apply this DR to C++03 code with only a warning. In any case we continue.
5397
5398  if (RequireCompleteDeclContext(SS, Ctx))
5399    return QualType();
5400
5401  DeclarationName Name(&II);
5402  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5403  LookupQualifiedName(Result, Ctx);
5404  unsigned DiagID = 0;
5405  Decl *Referenced = 0;
5406  switch (Result.getResultKind()) {
5407  case LookupResult::NotFound:
5408    DiagID = diag::err_typename_nested_not_found;
5409    break;
5410
5411  case LookupResult::NotFoundInCurrentInstantiation:
5412    // Okay, it's a member of an unknown instantiation.
5413    return Context.getDependentNameType(Keyword, NNS, &II);
5414
5415  case LookupResult::Found:
5416    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5417      // We found a type. Build an ElaboratedType, since the
5418      // typename-specifier was just sugar.
5419      return Context.getElaboratedType(ETK_Typename, NNS,
5420                                       Context.getTypeDeclType(Type));
5421    }
5422
5423    DiagID = diag::err_typename_nested_not_type;
5424    Referenced = Result.getFoundDecl();
5425    break;
5426
5427  case LookupResult::FoundUnresolvedValue:
5428    llvm_unreachable("unresolved using decl in non-dependent context");
5429    return QualType();
5430
5431  case LookupResult::FoundOverloaded:
5432    DiagID = diag::err_typename_nested_not_type;
5433    Referenced = *Result.begin();
5434    break;
5435
5436  case LookupResult::Ambiguous:
5437    return QualType();
5438  }
5439
5440  // If we get here, it's because name lookup did not find a
5441  // type. Emit an appropriate diagnostic and return an error.
5442  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5443                        IILoc);
5444  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5445  if (Referenced)
5446    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5447      << Name;
5448  return QualType();
5449}
5450
5451namespace {
5452  // See Sema::RebuildTypeInCurrentInstantiation
5453  class CurrentInstantiationRebuilder
5454    : public TreeTransform<CurrentInstantiationRebuilder> {
5455    SourceLocation Loc;
5456    DeclarationName Entity;
5457
5458  public:
5459    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5460
5461    CurrentInstantiationRebuilder(Sema &SemaRef,
5462                                  SourceLocation Loc,
5463                                  DeclarationName Entity)
5464    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5465      Loc(Loc), Entity(Entity) { }
5466
5467    /// \brief Determine whether the given type \p T has already been
5468    /// transformed.
5469    ///
5470    /// For the purposes of type reconstruction, a type has already been
5471    /// transformed if it is NULL or if it is not dependent.
5472    bool AlreadyTransformed(QualType T) {
5473      return T.isNull() || !T->isDependentType();
5474    }
5475
5476    /// \brief Returns the location of the entity whose type is being
5477    /// rebuilt.
5478    SourceLocation getBaseLocation() { return Loc; }
5479
5480    /// \brief Returns the name of the entity whose type is being rebuilt.
5481    DeclarationName getBaseEntity() { return Entity; }
5482
5483    /// \brief Sets the "base" location and entity when that
5484    /// information is known based on another transformation.
5485    void setBase(SourceLocation Loc, DeclarationName Entity) {
5486      this->Loc = Loc;
5487      this->Entity = Entity;
5488    }
5489  };
5490}
5491
5492/// \brief Rebuilds a type within the context of the current instantiation.
5493///
5494/// The type \p T is part of the type of an out-of-line member definition of
5495/// a class template (or class template partial specialization) that was parsed
5496/// and constructed before we entered the scope of the class template (or
5497/// partial specialization thereof). This routine will rebuild that type now
5498/// that we have entered the declarator's scope, which may produce different
5499/// canonical types, e.g.,
5500///
5501/// \code
5502/// template<typename T>
5503/// struct X {
5504///   typedef T* pointer;
5505///   pointer data();
5506/// };
5507///
5508/// template<typename T>
5509/// typename X<T>::pointer X<T>::data() { ... }
5510/// \endcode
5511///
5512/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5513/// since we do not know that we can look into X<T> when we parsed the type.
5514/// This function will rebuild the type, performing the lookup of "pointer"
5515/// in X<T> and returning an ElaboratedType whose canonical type is the same
5516/// as the canonical type of T*, allowing the return types of the out-of-line
5517/// definition and the declaration to match.
5518TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5519                                                        SourceLocation Loc,
5520                                                        DeclarationName Name) {
5521  if (!T || !T->getType()->isDependentType())
5522    return T;
5523
5524  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5525  return Rebuilder.TransformType(T);
5526}
5527
5528ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
5529  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
5530                                          DeclarationName());
5531  return Rebuilder.TransformExpr(E);
5532}
5533
5534bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5535  if (SS.isInvalid()) return true;
5536
5537  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5538  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5539                                          DeclarationName());
5540  NestedNameSpecifier *Rebuilt =
5541    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5542  if (!Rebuilt) return true;
5543
5544  SS.setScopeRep(Rebuilt);
5545  return false;
5546}
5547
5548/// \brief Produces a formatted string that describes the binding of
5549/// template parameters to template arguments.
5550std::string
5551Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5552                                      const TemplateArgumentList &Args) {
5553  // FIXME: For variadic templates, we'll need to get the structured list.
5554  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
5555                                         Args.flat_size());
5556}
5557
5558std::string
5559Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5560                                      const TemplateArgument *Args,
5561                                      unsigned NumArgs) {
5562  std::string Result;
5563
5564  if (!Params || Params->size() == 0 || NumArgs == 0)
5565    return Result;
5566
5567  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5568    if (I >= NumArgs)
5569      break;
5570
5571    if (I == 0)
5572      Result += "[with ";
5573    else
5574      Result += ", ";
5575
5576    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5577      Result += Id->getName();
5578    } else {
5579      Result += '$';
5580      Result += llvm::utostr(I);
5581    }
5582
5583    Result += " = ";
5584
5585    switch (Args[I].getKind()) {
5586      case TemplateArgument::Null:
5587        Result += "<no value>";
5588        break;
5589
5590      case TemplateArgument::Type: {
5591        std::string TypeStr;
5592        Args[I].getAsType().getAsStringInternal(TypeStr,
5593                                                Context.PrintingPolicy);
5594        Result += TypeStr;
5595        break;
5596      }
5597
5598      case TemplateArgument::Declaration: {
5599        bool Unnamed = true;
5600        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5601          if (ND->getDeclName()) {
5602            Unnamed = false;
5603            Result += ND->getNameAsString();
5604          }
5605        }
5606
5607        if (Unnamed) {
5608          Result += "<anonymous>";
5609        }
5610        break;
5611      }
5612
5613      case TemplateArgument::Template: {
5614        std::string Str;
5615        llvm::raw_string_ostream OS(Str);
5616        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5617        Result += OS.str();
5618        break;
5619      }
5620
5621      case TemplateArgument::Integral: {
5622        Result += Args[I].getAsIntegral()->toString(10);
5623        break;
5624      }
5625
5626      case TemplateArgument::Expression: {
5627        // FIXME: This is non-optimal, since we're regurgitating the
5628        // expression we were given.
5629        std::string Str;
5630        {
5631          llvm::raw_string_ostream OS(Str);
5632          Args[I].getAsExpr()->printPretty(OS, Context, 0,
5633                                           Context.PrintingPolicy);
5634        }
5635        Result += Str;
5636        break;
5637      }
5638
5639      case TemplateArgument::Pack:
5640        // FIXME: Format template argument packs
5641        Result += "<template argument pack>";
5642        break;
5643    }
5644  }
5645
5646  Result += ']';
5647  return Result;
5648}
5649