SemaTemplateDeduction.cpp revision 0d432abff06e87a821e4b337339857ff8ea713a4
1//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===/
12
13#include "Sema.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclTemplate.h"
16#include "clang/AST/StmtVisitor.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/Parse/DeclSpec.h"
20#include <algorithm>
21
22namespace clang {
23  /// \brief Various flags that control template argument deduction.
24  ///
25  /// These flags can be bitwise-OR'd together.
26  enum TemplateDeductionFlags {
27    /// \brief No template argument deduction flags, which indicates the
28    /// strictest results for template argument deduction (as used for, e.g.,
29    /// matching class template partial specializations).
30    TDF_None = 0,
31    /// \brief Within template argument deduction from a function call, we are
32    /// matching with a parameter type for which the original parameter was
33    /// a reference.
34    TDF_ParamWithReferenceType = 0x1,
35    /// \brief Within template argument deduction from a function call, we
36    /// are matching in a case where we ignore cv-qualifiers.
37    TDF_IgnoreQualifiers = 0x02,
38    /// \brief Within template argument deduction from a function call,
39    /// we are matching in a case where we can perform template argument
40    /// deduction from a template-id of a derived class of the argument type.
41    TDF_DerivedClass = 0x04,
42    /// \brief Allow non-dependent types to differ, e.g., when performing
43    /// template argument deduction from a function call where conversions
44    /// may apply.
45    TDF_SkipNonDependent = 0x08
46  };
47}
48
49using namespace clang;
50
51static Sema::TemplateDeductionResult
52DeduceTemplateArguments(Sema &S,
53                        TemplateParameterList *TemplateParams,
54                        const TemplateArgument &Param,
55                        const TemplateArgument &Arg,
56                        Sema::TemplateDeductionInfo &Info,
57                        llvm::SmallVectorImpl<TemplateArgument> &Deduced);
58
59/// \brief If the given expression is of a form that permits the deduction
60/// of a non-type template parameter, return the declaration of that
61/// non-type template parameter.
62static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
63  if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
64    E = IC->getSubExpr();
65
66  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
67    return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
68
69  return 0;
70}
71
72/// \brief Deduce the value of the given non-type template parameter
73/// from the given constant.
74static Sema::TemplateDeductionResult
75DeduceNonTypeTemplateArgument(Sema &S,
76                              NonTypeTemplateParmDecl *NTTP,
77                              llvm::APSInt Value,
78                              Sema::TemplateDeductionInfo &Info,
79                              llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
80  assert(NTTP->getDepth() == 0 &&
81         "Cannot deduce non-type template argument with depth > 0");
82
83  if (Deduced[NTTP->getIndex()].isNull()) {
84    QualType T = NTTP->getType();
85
86    // FIXME: Make sure we didn't overflow our data type!
87    unsigned AllowedBits = S.Context.getTypeSize(T);
88    if (Value.getBitWidth() != AllowedBits)
89      Value.extOrTrunc(AllowedBits);
90    Value.setIsSigned(T->isSignedIntegerType());
91
92    Deduced[NTTP->getIndex()] = TemplateArgument(Value, T);
93    return Sema::TDK_Success;
94  }
95
96  assert(Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral);
97
98  // If the template argument was previously deduced to a negative value,
99  // then our deduction fails.
100  const llvm::APSInt *PrevValuePtr = Deduced[NTTP->getIndex()].getAsIntegral();
101  if (PrevValuePtr->isNegative()) {
102    Info.Param = NTTP;
103    Info.FirstArg = Deduced[NTTP->getIndex()];
104    Info.SecondArg = TemplateArgument(Value, NTTP->getType());
105    return Sema::TDK_Inconsistent;
106  }
107
108  llvm::APSInt PrevValue = *PrevValuePtr;
109  if (Value.getBitWidth() > PrevValue.getBitWidth())
110    PrevValue.zext(Value.getBitWidth());
111  else if (Value.getBitWidth() < PrevValue.getBitWidth())
112    Value.zext(PrevValue.getBitWidth());
113
114  if (Value != PrevValue) {
115    Info.Param = NTTP;
116    Info.FirstArg = Deduced[NTTP->getIndex()];
117    Info.SecondArg = TemplateArgument(Value, NTTP->getType());
118    return Sema::TDK_Inconsistent;
119  }
120
121  return Sema::TDK_Success;
122}
123
124/// \brief Deduce the value of the given non-type template parameter
125/// from the given type- or value-dependent expression.
126///
127/// \returns true if deduction succeeded, false otherwise.
128static Sema::TemplateDeductionResult
129DeduceNonTypeTemplateArgument(Sema &S,
130                              NonTypeTemplateParmDecl *NTTP,
131                              Expr *Value,
132                              Sema::TemplateDeductionInfo &Info,
133                           llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
134  assert(NTTP->getDepth() == 0 &&
135         "Cannot deduce non-type template argument with depth > 0");
136  assert((Value->isTypeDependent() || Value->isValueDependent()) &&
137         "Expression template argument must be type- or value-dependent.");
138
139  if (Deduced[NTTP->getIndex()].isNull()) {
140    // FIXME: Clone the Value?
141    Deduced[NTTP->getIndex()] = TemplateArgument(Value);
142    return Sema::TDK_Success;
143  }
144
145  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral) {
146    // Okay, we deduced a constant in one case and a dependent expression
147    // in another case. FIXME: Later, we will check that instantiating the
148    // dependent expression gives us the constant value.
149    return Sema::TDK_Success;
150  }
151
152  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) {
153    // Compare the expressions for equality
154    llvm::FoldingSetNodeID ID1, ID2;
155    Deduced[NTTP->getIndex()].getAsExpr()->Profile(ID1, S.Context, true);
156    Value->Profile(ID2, S.Context, true);
157    if (ID1 == ID2)
158      return Sema::TDK_Success;
159
160    // FIXME: Fill in argument mismatch information
161    return Sema::TDK_NonDeducedMismatch;
162  }
163
164  return Sema::TDK_Success;
165}
166
167/// \brief Deduce the value of the given non-type template parameter
168/// from the given declaration.
169///
170/// \returns true if deduction succeeded, false otherwise.
171static Sema::TemplateDeductionResult
172DeduceNonTypeTemplateArgument(Sema &S,
173                              NonTypeTemplateParmDecl *NTTP,
174                              Decl *D,
175                              Sema::TemplateDeductionInfo &Info,
176                              llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
177  assert(NTTP->getDepth() == 0 &&
178         "Cannot deduce non-type template argument with depth > 0");
179
180  if (Deduced[NTTP->getIndex()].isNull()) {
181    Deduced[NTTP->getIndex()] = TemplateArgument(D->getCanonicalDecl());
182    return Sema::TDK_Success;
183  }
184
185  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) {
186    // Okay, we deduced a declaration in one case and a dependent expression
187    // in another case.
188    return Sema::TDK_Success;
189  }
190
191  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Declaration) {
192    // Compare the declarations for equality
193    if (Deduced[NTTP->getIndex()].getAsDecl()->getCanonicalDecl() ==
194          D->getCanonicalDecl())
195      return Sema::TDK_Success;
196
197    // FIXME: Fill in argument mismatch information
198    return Sema::TDK_NonDeducedMismatch;
199  }
200
201  return Sema::TDK_Success;
202}
203
204static Sema::TemplateDeductionResult
205DeduceTemplateArguments(Sema &S,
206                        TemplateParameterList *TemplateParams,
207                        TemplateName Param,
208                        TemplateName Arg,
209                        Sema::TemplateDeductionInfo &Info,
210                        llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
211  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
212  if (!ParamDecl) {
213    // The parameter type is dependent and is not a template template parameter,
214    // so there is nothing that we can deduce.
215    return Sema::TDK_Success;
216  }
217
218  if (TemplateTemplateParmDecl *TempParam
219        = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
220    // Bind the template template parameter to the given template name.
221    TemplateArgument &ExistingArg = Deduced[TempParam->getIndex()];
222    if (ExistingArg.isNull()) {
223      // This is the first deduction for this template template parameter.
224      ExistingArg = TemplateArgument(S.Context.getCanonicalTemplateName(Arg));
225      return Sema::TDK_Success;
226    }
227
228    // Verify that the previous binding matches this deduction.
229    assert(ExistingArg.getKind() == TemplateArgument::Template);
230    if (S.Context.hasSameTemplateName(ExistingArg.getAsTemplate(), Arg))
231      return Sema::TDK_Success;
232
233    // Inconsistent deduction.
234    Info.Param = TempParam;
235    Info.FirstArg = ExistingArg;
236    Info.SecondArg = TemplateArgument(Arg);
237    return Sema::TDK_Inconsistent;
238  }
239
240  // Verify that the two template names are equivalent.
241  if (S.Context.hasSameTemplateName(Param, Arg))
242    return Sema::TDK_Success;
243
244  // Mismatch of non-dependent template parameter to argument.
245  Info.FirstArg = TemplateArgument(Param);
246  Info.SecondArg = TemplateArgument(Arg);
247  return Sema::TDK_NonDeducedMismatch;
248}
249
250/// \brief Deduce the template arguments by comparing the template parameter
251/// type (which is a template-id) with the template argument type.
252///
253/// \param S the Sema
254///
255/// \param TemplateParams the template parameters that we are deducing
256///
257/// \param Param the parameter type
258///
259/// \param Arg the argument type
260///
261/// \param Info information about the template argument deduction itself
262///
263/// \param Deduced the deduced template arguments
264///
265/// \returns the result of template argument deduction so far. Note that a
266/// "success" result means that template argument deduction has not yet failed,
267/// but it may still fail, later, for other reasons.
268static Sema::TemplateDeductionResult
269DeduceTemplateArguments(Sema &S,
270                        TemplateParameterList *TemplateParams,
271                        const TemplateSpecializationType *Param,
272                        QualType Arg,
273                        Sema::TemplateDeductionInfo &Info,
274                        llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
275  assert(Arg.isCanonical() && "Argument type must be canonical");
276
277  // Check whether the template argument is a dependent template-id.
278  if (const TemplateSpecializationType *SpecArg
279        = dyn_cast<TemplateSpecializationType>(Arg)) {
280    // Perform template argument deduction for the template name.
281    if (Sema::TemplateDeductionResult Result
282          = DeduceTemplateArguments(S, TemplateParams,
283                                    Param->getTemplateName(),
284                                    SpecArg->getTemplateName(),
285                                    Info, Deduced))
286      return Result;
287
288
289    // Perform template argument deduction on each template
290    // argument.
291    unsigned NumArgs = std::min(SpecArg->getNumArgs(), Param->getNumArgs());
292    for (unsigned I = 0; I != NumArgs; ++I)
293      if (Sema::TemplateDeductionResult Result
294            = DeduceTemplateArguments(S, TemplateParams,
295                                      Param->getArg(I),
296                                      SpecArg->getArg(I),
297                                      Info, Deduced))
298        return Result;
299
300    return Sema::TDK_Success;
301  }
302
303  // If the argument type is a class template specialization, we
304  // perform template argument deduction using its template
305  // arguments.
306  const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
307  if (!RecordArg)
308    return Sema::TDK_NonDeducedMismatch;
309
310  ClassTemplateSpecializationDecl *SpecArg
311    = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
312  if (!SpecArg)
313    return Sema::TDK_NonDeducedMismatch;
314
315  // Perform template argument deduction for the template name.
316  if (Sema::TemplateDeductionResult Result
317        = DeduceTemplateArguments(S,
318                                  TemplateParams,
319                                  Param->getTemplateName(),
320                               TemplateName(SpecArg->getSpecializedTemplate()),
321                                  Info, Deduced))
322    return Result;
323
324  unsigned NumArgs = Param->getNumArgs();
325  const TemplateArgumentList &ArgArgs = SpecArg->getTemplateArgs();
326  if (NumArgs != ArgArgs.size())
327    return Sema::TDK_NonDeducedMismatch;
328
329  for (unsigned I = 0; I != NumArgs; ++I)
330    if (Sema::TemplateDeductionResult Result
331          = DeduceTemplateArguments(S, TemplateParams,
332                                    Param->getArg(I),
333                                    ArgArgs.get(I),
334                                    Info, Deduced))
335      return Result;
336
337  return Sema::TDK_Success;
338}
339
340/// \brief Deduce the template arguments by comparing the parameter type and
341/// the argument type (C++ [temp.deduct.type]).
342///
343/// \param S the semantic analysis object within which we are deducing
344///
345/// \param TemplateParams the template parameters that we are deducing
346///
347/// \param ParamIn the parameter type
348///
349/// \param ArgIn the argument type
350///
351/// \param Info information about the template argument deduction itself
352///
353/// \param Deduced the deduced template arguments
354///
355/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
356/// how template argument deduction is performed.
357///
358/// \returns the result of template argument deduction so far. Note that a
359/// "success" result means that template argument deduction has not yet failed,
360/// but it may still fail, later, for other reasons.
361static Sema::TemplateDeductionResult
362DeduceTemplateArguments(Sema &S,
363                        TemplateParameterList *TemplateParams,
364                        QualType ParamIn, QualType ArgIn,
365                        Sema::TemplateDeductionInfo &Info,
366                        llvm::SmallVectorImpl<TemplateArgument> &Deduced,
367                        unsigned TDF) {
368  // We only want to look at the canonical types, since typedefs and
369  // sugar are not part of template argument deduction.
370  QualType Param = S.Context.getCanonicalType(ParamIn);
371  QualType Arg = S.Context.getCanonicalType(ArgIn);
372
373  // C++0x [temp.deduct.call]p4 bullet 1:
374  //   - If the original P is a reference type, the deduced A (i.e., the type
375  //     referred to by the reference) can be more cv-qualified than the
376  //     transformed A.
377  if (TDF & TDF_ParamWithReferenceType) {
378    Qualifiers Quals;
379    QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
380    Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
381                           Arg.getCVRQualifiersThroughArrayTypes());
382    Param = S.Context.getQualifiedType(UnqualParam, Quals);
383  }
384
385  // If the parameter type is not dependent, there is nothing to deduce.
386  if (!Param->isDependentType()) {
387    if (!(TDF & TDF_SkipNonDependent) && Param != Arg) {
388
389      return Sema::TDK_NonDeducedMismatch;
390    }
391
392    return Sema::TDK_Success;
393  }
394
395  // C++ [temp.deduct.type]p9:
396  //   A template type argument T, a template template argument TT or a
397  //   template non-type argument i can be deduced if P and A have one of
398  //   the following forms:
399  //
400  //     T
401  //     cv-list T
402  if (const TemplateTypeParmType *TemplateTypeParm
403        = Param->getAs<TemplateTypeParmType>()) {
404    unsigned Index = TemplateTypeParm->getIndex();
405    bool RecanonicalizeArg = false;
406
407    // If the argument type is an array type, move the qualifiers up to the
408    // top level, so they can be matched with the qualifiers on the parameter.
409    // FIXME: address spaces, ObjC GC qualifiers
410    if (isa<ArrayType>(Arg)) {
411      Qualifiers Quals;
412      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
413      if (Quals) {
414        Arg = S.Context.getQualifiedType(Arg, Quals);
415        RecanonicalizeArg = true;
416      }
417    }
418
419    // The argument type can not be less qualified than the parameter
420    // type.
421    if (Param.isMoreQualifiedThan(Arg) && !(TDF & TDF_IgnoreQualifiers)) {
422      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
423      Info.FirstArg = Deduced[Index];
424      Info.SecondArg = TemplateArgument(Arg);
425      return Sema::TDK_InconsistentQuals;
426    }
427
428    assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
429    assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
430    QualType DeducedType = Arg;
431    DeducedType.removeCVRQualifiers(Param.getCVRQualifiers());
432    if (RecanonicalizeArg)
433      DeducedType = S.Context.getCanonicalType(DeducedType);
434
435    if (Deduced[Index].isNull())
436      Deduced[Index] = TemplateArgument(DeducedType);
437    else {
438      // C++ [temp.deduct.type]p2:
439      //   [...] If type deduction cannot be done for any P/A pair, or if for
440      //   any pair the deduction leads to more than one possible set of
441      //   deduced values, or if different pairs yield different deduced
442      //   values, or if any template argument remains neither deduced nor
443      //   explicitly specified, template argument deduction fails.
444      if (Deduced[Index].getAsType() != DeducedType) {
445        Info.Param
446          = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
447        Info.FirstArg = Deduced[Index];
448        Info.SecondArg = TemplateArgument(Arg);
449        return Sema::TDK_Inconsistent;
450      }
451    }
452    return Sema::TDK_Success;
453  }
454
455  // Set up the template argument deduction information for a failure.
456  Info.FirstArg = TemplateArgument(ParamIn);
457  Info.SecondArg = TemplateArgument(ArgIn);
458
459  // Check the cv-qualifiers on the parameter and argument types.
460  if (!(TDF & TDF_IgnoreQualifiers)) {
461    if (TDF & TDF_ParamWithReferenceType) {
462      if (Param.isMoreQualifiedThan(Arg))
463        return Sema::TDK_NonDeducedMismatch;
464    } else {
465      if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
466        return Sema::TDK_NonDeducedMismatch;
467    }
468  }
469
470  switch (Param->getTypeClass()) {
471    // No deduction possible for these types
472    case Type::Builtin:
473      return Sema::TDK_NonDeducedMismatch;
474
475    //     T *
476    case Type::Pointer: {
477      const PointerType *PointerArg = Arg->getAs<PointerType>();
478      if (!PointerArg)
479        return Sema::TDK_NonDeducedMismatch;
480
481      unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
482      return DeduceTemplateArguments(S, TemplateParams,
483                                   cast<PointerType>(Param)->getPointeeType(),
484                                     PointerArg->getPointeeType(),
485                                     Info, Deduced, SubTDF);
486    }
487
488    //     T &
489    case Type::LValueReference: {
490      const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
491      if (!ReferenceArg)
492        return Sema::TDK_NonDeducedMismatch;
493
494      return DeduceTemplateArguments(S, TemplateParams,
495                           cast<LValueReferenceType>(Param)->getPointeeType(),
496                                     ReferenceArg->getPointeeType(),
497                                     Info, Deduced, 0);
498    }
499
500    //     T && [C++0x]
501    case Type::RValueReference: {
502      const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
503      if (!ReferenceArg)
504        return Sema::TDK_NonDeducedMismatch;
505
506      return DeduceTemplateArguments(S, TemplateParams,
507                           cast<RValueReferenceType>(Param)->getPointeeType(),
508                                     ReferenceArg->getPointeeType(),
509                                     Info, Deduced, 0);
510    }
511
512    //     T [] (implied, but not stated explicitly)
513    case Type::IncompleteArray: {
514      const IncompleteArrayType *IncompleteArrayArg =
515        S.Context.getAsIncompleteArrayType(Arg);
516      if (!IncompleteArrayArg)
517        return Sema::TDK_NonDeducedMismatch;
518
519      return DeduceTemplateArguments(S, TemplateParams,
520                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
521                                     IncompleteArrayArg->getElementType(),
522                                     Info, Deduced, 0);
523    }
524
525    //     T [integer-constant]
526    case Type::ConstantArray: {
527      const ConstantArrayType *ConstantArrayArg =
528        S.Context.getAsConstantArrayType(Arg);
529      if (!ConstantArrayArg)
530        return Sema::TDK_NonDeducedMismatch;
531
532      const ConstantArrayType *ConstantArrayParm =
533        S.Context.getAsConstantArrayType(Param);
534      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
535        return Sema::TDK_NonDeducedMismatch;
536
537      return DeduceTemplateArguments(S, TemplateParams,
538                                     ConstantArrayParm->getElementType(),
539                                     ConstantArrayArg->getElementType(),
540                                     Info, Deduced, 0);
541    }
542
543    //     type [i]
544    case Type::DependentSizedArray: {
545      const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
546      if (!ArrayArg)
547        return Sema::TDK_NonDeducedMismatch;
548
549      // Check the element type of the arrays
550      const DependentSizedArrayType *DependentArrayParm
551        = S.Context.getAsDependentSizedArrayType(Param);
552      if (Sema::TemplateDeductionResult Result
553            = DeduceTemplateArguments(S, TemplateParams,
554                                      DependentArrayParm->getElementType(),
555                                      ArrayArg->getElementType(),
556                                      Info, Deduced, 0))
557        return Result;
558
559      // Determine the array bound is something we can deduce.
560      NonTypeTemplateParmDecl *NTTP
561        = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
562      if (!NTTP)
563        return Sema::TDK_Success;
564
565      // We can perform template argument deduction for the given non-type
566      // template parameter.
567      assert(NTTP->getDepth() == 0 &&
568             "Cannot deduce non-type template argument at depth > 0");
569      if (const ConstantArrayType *ConstantArrayArg
570            = dyn_cast<ConstantArrayType>(ArrayArg)) {
571        llvm::APSInt Size(ConstantArrayArg->getSize());
572        return DeduceNonTypeTemplateArgument(S, NTTP, Size,
573                                             Info, Deduced);
574      }
575      if (const DependentSizedArrayType *DependentArrayArg
576            = dyn_cast<DependentSizedArrayType>(ArrayArg))
577        return DeduceNonTypeTemplateArgument(S, NTTP,
578                                             DependentArrayArg->getSizeExpr(),
579                                             Info, Deduced);
580
581      // Incomplete type does not match a dependently-sized array type
582      return Sema::TDK_NonDeducedMismatch;
583    }
584
585    //     type(*)(T)
586    //     T(*)()
587    //     T(*)(T)
588    case Type::FunctionProto: {
589      const FunctionProtoType *FunctionProtoArg =
590        dyn_cast<FunctionProtoType>(Arg);
591      if (!FunctionProtoArg)
592        return Sema::TDK_NonDeducedMismatch;
593
594      const FunctionProtoType *FunctionProtoParam =
595        cast<FunctionProtoType>(Param);
596
597      if (FunctionProtoParam->getTypeQuals() !=
598          FunctionProtoArg->getTypeQuals())
599        return Sema::TDK_NonDeducedMismatch;
600
601      if (FunctionProtoParam->getNumArgs() != FunctionProtoArg->getNumArgs())
602        return Sema::TDK_NonDeducedMismatch;
603
604      if (FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
605        return Sema::TDK_NonDeducedMismatch;
606
607      // Check return types.
608      if (Sema::TemplateDeductionResult Result
609            = DeduceTemplateArguments(S, TemplateParams,
610                                      FunctionProtoParam->getResultType(),
611                                      FunctionProtoArg->getResultType(),
612                                      Info, Deduced, 0))
613        return Result;
614
615      for (unsigned I = 0, N = FunctionProtoParam->getNumArgs(); I != N; ++I) {
616        // Check argument types.
617        if (Sema::TemplateDeductionResult Result
618              = DeduceTemplateArguments(S, TemplateParams,
619                                        FunctionProtoParam->getArgType(I),
620                                        FunctionProtoArg->getArgType(I),
621                                        Info, Deduced, 0))
622          return Result;
623      }
624
625      return Sema::TDK_Success;
626    }
627
628    //     template-name<T> (where template-name refers to a class template)
629    //     template-name<i>
630    //     TT<T>
631    //     TT<i>
632    //     TT<>
633    case Type::TemplateSpecialization: {
634      const TemplateSpecializationType *SpecParam
635        = cast<TemplateSpecializationType>(Param);
636
637      // Try to deduce template arguments from the template-id.
638      Sema::TemplateDeductionResult Result
639        = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
640                                  Info, Deduced);
641
642      if (Result && (TDF & TDF_DerivedClass)) {
643        // C++ [temp.deduct.call]p3b3:
644        //   If P is a class, and P has the form template-id, then A can be a
645        //   derived class of the deduced A. Likewise, if P is a pointer to a
646        //   class of the form template-id, A can be a pointer to a derived
647        //   class pointed to by the deduced A.
648        //
649        // More importantly:
650        //   These alternatives are considered only if type deduction would
651        //   otherwise fail.
652        if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
653          // We cannot inspect base classes as part of deduction when the type
654          // is incomplete, so either instantiate any templates necessary to
655          // complete the type, or skip over it if it cannot be completed.
656          if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
657            return Result;
658
659          // Use data recursion to crawl through the list of base classes.
660          // Visited contains the set of nodes we have already visited, while
661          // ToVisit is our stack of records that we still need to visit.
662          llvm::SmallPtrSet<const RecordType *, 8> Visited;
663          llvm::SmallVector<const RecordType *, 8> ToVisit;
664          ToVisit.push_back(RecordT);
665          bool Successful = false;
666          while (!ToVisit.empty()) {
667            // Retrieve the next class in the inheritance hierarchy.
668            const RecordType *NextT = ToVisit.back();
669            ToVisit.pop_back();
670
671            // If we have already seen this type, skip it.
672            if (!Visited.insert(NextT))
673              continue;
674
675            // If this is a base class, try to perform template argument
676            // deduction from it.
677            if (NextT != RecordT) {
678              Sema::TemplateDeductionResult BaseResult
679                = DeduceTemplateArguments(S, TemplateParams, SpecParam,
680                                          QualType(NextT, 0), Info, Deduced);
681
682              // If template argument deduction for this base was successful,
683              // note that we had some success.
684              if (BaseResult == Sema::TDK_Success)
685                Successful = true;
686            }
687
688            // Visit base classes
689            CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
690            for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
691                                                 BaseEnd = Next->bases_end();
692                 Base != BaseEnd; ++Base) {
693              assert(Base->getType()->isRecordType() &&
694                     "Base class that isn't a record?");
695              ToVisit.push_back(Base->getType()->getAs<RecordType>());
696            }
697          }
698
699          if (Successful)
700            return Sema::TDK_Success;
701        }
702
703      }
704
705      return Result;
706    }
707
708    //     T type::*
709    //     T T::*
710    //     T (type::*)()
711    //     type (T::*)()
712    //     type (type::*)(T)
713    //     type (T::*)(T)
714    //     T (type::*)(T)
715    //     T (T::*)()
716    //     T (T::*)(T)
717    case Type::MemberPointer: {
718      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
719      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
720      if (!MemPtrArg)
721        return Sema::TDK_NonDeducedMismatch;
722
723      if (Sema::TemplateDeductionResult Result
724            = DeduceTemplateArguments(S, TemplateParams,
725                                      MemPtrParam->getPointeeType(),
726                                      MemPtrArg->getPointeeType(),
727                                      Info, Deduced,
728                                      TDF & TDF_IgnoreQualifiers))
729        return Result;
730
731      return DeduceTemplateArguments(S, TemplateParams,
732                                     QualType(MemPtrParam->getClass(), 0),
733                                     QualType(MemPtrArg->getClass(), 0),
734                                     Info, Deduced, 0);
735    }
736
737    //     (clang extension)
738    //
739    //     type(^)(T)
740    //     T(^)()
741    //     T(^)(T)
742    case Type::BlockPointer: {
743      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
744      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
745
746      if (!BlockPtrArg)
747        return Sema::TDK_NonDeducedMismatch;
748
749      return DeduceTemplateArguments(S, TemplateParams,
750                                     BlockPtrParam->getPointeeType(),
751                                     BlockPtrArg->getPointeeType(), Info,
752                                     Deduced, 0);
753    }
754
755    case Type::TypeOfExpr:
756    case Type::TypeOf:
757    case Type::Typename:
758      // No template argument deduction for these types
759      return Sema::TDK_Success;
760
761    default:
762      break;
763  }
764
765  // FIXME: Many more cases to go (to go).
766  return Sema::TDK_Success;
767}
768
769static Sema::TemplateDeductionResult
770DeduceTemplateArguments(Sema &S,
771                        TemplateParameterList *TemplateParams,
772                        const TemplateArgument &Param,
773                        const TemplateArgument &Arg,
774                        Sema::TemplateDeductionInfo &Info,
775                        llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
776  switch (Param.getKind()) {
777  case TemplateArgument::Null:
778    assert(false && "Null template argument in parameter list");
779    break;
780
781  case TemplateArgument::Type:
782    if (Arg.getKind() == TemplateArgument::Type)
783      return DeduceTemplateArguments(S, TemplateParams, Param.getAsType(),
784                                     Arg.getAsType(), Info, Deduced, 0);
785    Info.FirstArg = Param;
786    Info.SecondArg = Arg;
787    return Sema::TDK_NonDeducedMismatch;
788
789  case TemplateArgument::Template:
790    if (Arg.getKind() == TemplateArgument::Template)
791      return DeduceTemplateArguments(S, TemplateParams,
792                                     Param.getAsTemplate(),
793                                     Arg.getAsTemplate(), Info, Deduced);
794    Info.FirstArg = Param;
795    Info.SecondArg = Arg;
796    return Sema::TDK_NonDeducedMismatch;
797
798  case TemplateArgument::Declaration:
799    if (Arg.getKind() == TemplateArgument::Declaration &&
800        Param.getAsDecl()->getCanonicalDecl() ==
801          Arg.getAsDecl()->getCanonicalDecl())
802      return Sema::TDK_Success;
803
804    Info.FirstArg = Param;
805    Info.SecondArg = Arg;
806    return Sema::TDK_NonDeducedMismatch;
807
808  case TemplateArgument::Integral:
809    if (Arg.getKind() == TemplateArgument::Integral) {
810      // FIXME: Zero extension + sign checking here?
811      if (*Param.getAsIntegral() == *Arg.getAsIntegral())
812        return Sema::TDK_Success;
813
814      Info.FirstArg = Param;
815      Info.SecondArg = Arg;
816      return Sema::TDK_NonDeducedMismatch;
817    }
818
819    if (Arg.getKind() == TemplateArgument::Expression) {
820      Info.FirstArg = Param;
821      Info.SecondArg = Arg;
822      return Sema::TDK_NonDeducedMismatch;
823    }
824
825    assert(false && "Type/value mismatch");
826    Info.FirstArg = Param;
827    Info.SecondArg = Arg;
828    return Sema::TDK_NonDeducedMismatch;
829
830  case TemplateArgument::Expression: {
831    if (NonTypeTemplateParmDecl *NTTP
832          = getDeducedParameterFromExpr(Param.getAsExpr())) {
833      if (Arg.getKind() == TemplateArgument::Integral)
834        // FIXME: Sign problems here
835        return DeduceNonTypeTemplateArgument(S, NTTP,
836                                             *Arg.getAsIntegral(),
837                                             Info, Deduced);
838      if (Arg.getKind() == TemplateArgument::Expression)
839        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
840                                             Info, Deduced);
841      if (Arg.getKind() == TemplateArgument::Declaration)
842        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
843                                             Info, Deduced);
844
845      assert(false && "Type/value mismatch");
846      Info.FirstArg = Param;
847      Info.SecondArg = Arg;
848      return Sema::TDK_NonDeducedMismatch;
849    }
850
851    // Can't deduce anything, but that's okay.
852    return Sema::TDK_Success;
853  }
854  case TemplateArgument::Pack:
855    assert(0 && "FIXME: Implement!");
856    break;
857  }
858
859  return Sema::TDK_Success;
860}
861
862static Sema::TemplateDeductionResult
863DeduceTemplateArguments(Sema &S,
864                        TemplateParameterList *TemplateParams,
865                        const TemplateArgumentList &ParamList,
866                        const TemplateArgumentList &ArgList,
867                        Sema::TemplateDeductionInfo &Info,
868                        llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
869  assert(ParamList.size() == ArgList.size());
870  for (unsigned I = 0, N = ParamList.size(); I != N; ++I) {
871    if (Sema::TemplateDeductionResult Result
872          = DeduceTemplateArguments(S, TemplateParams,
873                                    ParamList[I], ArgList[I],
874                                    Info, Deduced))
875      return Result;
876  }
877  return Sema::TDK_Success;
878}
879
880/// \brief Determine whether two template arguments are the same.
881static bool isSameTemplateArg(ASTContext &Context,
882                              const TemplateArgument &X,
883                              const TemplateArgument &Y) {
884  if (X.getKind() != Y.getKind())
885    return false;
886
887  switch (X.getKind()) {
888    case TemplateArgument::Null:
889      assert(false && "Comparing NULL template argument");
890      break;
891
892    case TemplateArgument::Type:
893      return Context.getCanonicalType(X.getAsType()) ==
894             Context.getCanonicalType(Y.getAsType());
895
896    case TemplateArgument::Declaration:
897      return X.getAsDecl()->getCanonicalDecl() ==
898             Y.getAsDecl()->getCanonicalDecl();
899
900    case TemplateArgument::Template:
901      return Context.getCanonicalTemplateName(X.getAsTemplate())
902               .getAsVoidPointer() ==
903             Context.getCanonicalTemplateName(Y.getAsTemplate())
904               .getAsVoidPointer();
905
906    case TemplateArgument::Integral:
907      return *X.getAsIntegral() == *Y.getAsIntegral();
908
909    case TemplateArgument::Expression: {
910      llvm::FoldingSetNodeID XID, YID;
911      X.getAsExpr()->Profile(XID, Context, true);
912      Y.getAsExpr()->Profile(YID, Context, true);
913      return XID == YID;
914    }
915
916    case TemplateArgument::Pack:
917      if (X.pack_size() != Y.pack_size())
918        return false;
919
920      for (TemplateArgument::pack_iterator XP = X.pack_begin(),
921                                        XPEnd = X.pack_end(),
922                                           YP = Y.pack_begin();
923           XP != XPEnd; ++XP, ++YP)
924        if (!isSameTemplateArg(Context, *XP, *YP))
925          return false;
926
927      return true;
928  }
929
930  return false;
931}
932
933/// \brief Helper function to build a TemplateParameter when we don't
934/// know its type statically.
935static TemplateParameter makeTemplateParameter(Decl *D) {
936  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
937    return TemplateParameter(TTP);
938  else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
939    return TemplateParameter(NTTP);
940
941  return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
942}
943
944/// \brief Perform template argument deduction to determine whether
945/// the given template arguments match the given class template
946/// partial specialization per C++ [temp.class.spec.match].
947Sema::TemplateDeductionResult
948Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
949                              const TemplateArgumentList &TemplateArgs,
950                              TemplateDeductionInfo &Info) {
951  // C++ [temp.class.spec.match]p2:
952  //   A partial specialization matches a given actual template
953  //   argument list if the template arguments of the partial
954  //   specialization can be deduced from the actual template argument
955  //   list (14.8.2).
956  SFINAETrap Trap(*this);
957  llvm::SmallVector<TemplateArgument, 4> Deduced;
958  Deduced.resize(Partial->getTemplateParameters()->size());
959  if (TemplateDeductionResult Result
960        = ::DeduceTemplateArguments(*this,
961                                    Partial->getTemplateParameters(),
962                                    Partial->getTemplateArgs(),
963                                    TemplateArgs, Info, Deduced))
964    return Result;
965
966  InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
967                             Deduced.data(), Deduced.size());
968  if (Inst)
969    return TDK_InstantiationDepth;
970
971  // C++ [temp.deduct.type]p2:
972  //   [...] or if any template argument remains neither deduced nor
973  //   explicitly specified, template argument deduction fails.
974  TemplateArgumentListBuilder Builder(Partial->getTemplateParameters(),
975                                      Deduced.size());
976  for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
977    if (Deduced[I].isNull()) {
978      Decl *Param
979        = const_cast<NamedDecl *>(
980                                Partial->getTemplateParameters()->getParam(I));
981      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
982        Info.Param = TTP;
983      else if (NonTypeTemplateParmDecl *NTTP
984                 = dyn_cast<NonTypeTemplateParmDecl>(Param))
985        Info.Param = NTTP;
986      else
987        Info.Param = cast<TemplateTemplateParmDecl>(Param);
988      return TDK_Incomplete;
989    }
990
991    Builder.Append(Deduced[I]);
992  }
993
994  // Form the template argument list from the deduced template arguments.
995  TemplateArgumentList *DeducedArgumentList
996    = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
997  Info.reset(DeducedArgumentList);
998
999  // Substitute the deduced template arguments into the template
1000  // arguments of the class template partial specialization, and
1001  // verify that the instantiated template arguments are both valid
1002  // and are equivalent to the template arguments originally provided
1003  // to the class template.
1004  ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
1005  const TemplateArgumentLoc *PartialTemplateArgs
1006    = Partial->getTemplateArgsAsWritten();
1007  unsigned N = Partial->getNumTemplateArgsAsWritten();
1008
1009  // Note that we don't provide the langle and rangle locations.
1010  TemplateArgumentListInfo InstArgs;
1011
1012  for (unsigned I = 0; I != N; ++I) {
1013    Decl *Param = const_cast<NamedDecl *>(
1014                    ClassTemplate->getTemplateParameters()->getParam(I));
1015    TemplateArgumentLoc InstArg;
1016    if (Subst(PartialTemplateArgs[I], InstArg,
1017              MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
1018      Info.Param = makeTemplateParameter(Param);
1019      Info.FirstArg = PartialTemplateArgs[I].getArgument();
1020      return TDK_SubstitutionFailure;
1021    }
1022    InstArgs.addArgument(InstArg);
1023  }
1024
1025  TemplateArgumentListBuilder ConvertedInstArgs(
1026                                  ClassTemplate->getTemplateParameters(), N);
1027
1028  if (CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
1029                                InstArgs, false, ConvertedInstArgs)) {
1030    // FIXME: fail with more useful information?
1031    return TDK_SubstitutionFailure;
1032  }
1033
1034  for (unsigned I = 0, E = ConvertedInstArgs.flatSize(); I != E; ++I) {
1035    TemplateArgument InstArg = ConvertedInstArgs.getFlatArguments()[I];
1036
1037    Decl *Param = const_cast<NamedDecl *>(
1038                    ClassTemplate->getTemplateParameters()->getParam(I));
1039
1040    if (InstArg.getKind() == TemplateArgument::Expression) {
1041      // When the argument is an expression, check the expression result
1042      // against the actual template parameter to get down to the canonical
1043      // template argument.
1044      Expr *InstExpr = InstArg.getAsExpr();
1045      if (NonTypeTemplateParmDecl *NTTP
1046            = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1047        if (CheckTemplateArgument(NTTP, NTTP->getType(), InstExpr, InstArg)) {
1048          Info.Param = makeTemplateParameter(Param);
1049          Info.FirstArg = Partial->getTemplateArgs()[I];
1050          return TDK_SubstitutionFailure;
1051        }
1052      }
1053    }
1054
1055    if (!isSameTemplateArg(Context, TemplateArgs[I], InstArg)) {
1056      Info.Param = makeTemplateParameter(Param);
1057      Info.FirstArg = TemplateArgs[I];
1058      Info.SecondArg = InstArg;
1059      return TDK_NonDeducedMismatch;
1060    }
1061  }
1062
1063  if (Trap.hasErrorOccurred())
1064    return TDK_SubstitutionFailure;
1065
1066  return TDK_Success;
1067}
1068
1069/// \brief Determine whether the given type T is a simple-template-id type.
1070static bool isSimpleTemplateIdType(QualType T) {
1071  if (const TemplateSpecializationType *Spec
1072        = T->getAs<TemplateSpecializationType>())
1073    return Spec->getTemplateName().getAsTemplateDecl() != 0;
1074
1075  return false;
1076}
1077
1078/// \brief Substitute the explicitly-provided template arguments into the
1079/// given function template according to C++ [temp.arg.explicit].
1080///
1081/// \param FunctionTemplate the function template into which the explicit
1082/// template arguments will be substituted.
1083///
1084/// \param ExplicitTemplateArguments the explicitly-specified template
1085/// arguments.
1086///
1087/// \param Deduced the deduced template arguments, which will be populated
1088/// with the converted and checked explicit template arguments.
1089///
1090/// \param ParamTypes will be populated with the instantiated function
1091/// parameters.
1092///
1093/// \param FunctionType if non-NULL, the result type of the function template
1094/// will also be instantiated and the pointed-to value will be updated with
1095/// the instantiated function type.
1096///
1097/// \param Info if substitution fails for any reason, this object will be
1098/// populated with more information about the failure.
1099///
1100/// \returns TDK_Success if substitution was successful, or some failure
1101/// condition.
1102Sema::TemplateDeductionResult
1103Sema::SubstituteExplicitTemplateArguments(
1104                                      FunctionTemplateDecl *FunctionTemplate,
1105                        const TemplateArgumentListInfo &ExplicitTemplateArgs,
1106                            llvm::SmallVectorImpl<TemplateArgument> &Deduced,
1107                                 llvm::SmallVectorImpl<QualType> &ParamTypes,
1108                                          QualType *FunctionType,
1109                                          TemplateDeductionInfo &Info) {
1110  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1111  TemplateParameterList *TemplateParams
1112    = FunctionTemplate->getTemplateParameters();
1113
1114  if (ExplicitTemplateArgs.size() == 0) {
1115    // No arguments to substitute; just copy over the parameter types and
1116    // fill in the function type.
1117    for (FunctionDecl::param_iterator P = Function->param_begin(),
1118                                   PEnd = Function->param_end();
1119         P != PEnd;
1120         ++P)
1121      ParamTypes.push_back((*P)->getType());
1122
1123    if (FunctionType)
1124      *FunctionType = Function->getType();
1125    return TDK_Success;
1126  }
1127
1128  // Substitution of the explicit template arguments into a function template
1129  /// is a SFINAE context. Trap any errors that might occur.
1130  SFINAETrap Trap(*this);
1131
1132  // C++ [temp.arg.explicit]p3:
1133  //   Template arguments that are present shall be specified in the
1134  //   declaration order of their corresponding template-parameters. The
1135  //   template argument list shall not specify more template-arguments than
1136  //   there are corresponding template-parameters.
1137  TemplateArgumentListBuilder Builder(TemplateParams,
1138                                      ExplicitTemplateArgs.size());
1139
1140  // Enter a new template instantiation context where we check the
1141  // explicitly-specified template arguments against this function template,
1142  // and then substitute them into the function parameter types.
1143  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1144                             FunctionTemplate, Deduced.data(), Deduced.size(),
1145           ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution);
1146  if (Inst)
1147    return TDK_InstantiationDepth;
1148
1149  if (CheckTemplateArgumentList(FunctionTemplate,
1150                                SourceLocation(),
1151                                ExplicitTemplateArgs,
1152                                true,
1153                                Builder) || Trap.hasErrorOccurred())
1154    return TDK_InvalidExplicitArguments;
1155
1156  // Form the template argument list from the explicitly-specified
1157  // template arguments.
1158  TemplateArgumentList *ExplicitArgumentList
1159    = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
1160  Info.reset(ExplicitArgumentList);
1161
1162  // Instantiate the types of each of the function parameters given the
1163  // explicitly-specified template arguments.
1164  for (FunctionDecl::param_iterator P = Function->param_begin(),
1165                                PEnd = Function->param_end();
1166       P != PEnd;
1167       ++P) {
1168    QualType ParamType
1169      = SubstType((*P)->getType(),
1170                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
1171                  (*P)->getLocation(), (*P)->getDeclName());
1172    if (ParamType.isNull() || Trap.hasErrorOccurred())
1173      return TDK_SubstitutionFailure;
1174
1175    ParamTypes.push_back(ParamType);
1176  }
1177
1178  // If the caller wants a full function type back, instantiate the return
1179  // type and form that function type.
1180  if (FunctionType) {
1181    // FIXME: exception-specifications?
1182    const FunctionProtoType *Proto
1183      = Function->getType()->getAs<FunctionProtoType>();
1184    assert(Proto && "Function template does not have a prototype?");
1185
1186    QualType ResultType
1187      = SubstType(Proto->getResultType(),
1188                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
1189                  Function->getTypeSpecStartLoc(),
1190                  Function->getDeclName());
1191    if (ResultType.isNull() || Trap.hasErrorOccurred())
1192      return TDK_SubstitutionFailure;
1193
1194    *FunctionType = BuildFunctionType(ResultType,
1195                                      ParamTypes.data(), ParamTypes.size(),
1196                                      Proto->isVariadic(),
1197                                      Proto->getTypeQuals(),
1198                                      Function->getLocation(),
1199                                      Function->getDeclName());
1200    if (FunctionType->isNull() || Trap.hasErrorOccurred())
1201      return TDK_SubstitutionFailure;
1202  }
1203
1204  // C++ [temp.arg.explicit]p2:
1205  //   Trailing template arguments that can be deduced (14.8.2) may be
1206  //   omitted from the list of explicit template-arguments. If all of the
1207  //   template arguments can be deduced, they may all be omitted; in this
1208  //   case, the empty template argument list <> itself may also be omitted.
1209  //
1210  // Take all of the explicitly-specified arguments and put them into the
1211  // set of deduced template arguments.
1212  Deduced.reserve(TemplateParams->size());
1213  for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I)
1214    Deduced.push_back(ExplicitArgumentList->get(I));
1215
1216  return TDK_Success;
1217}
1218
1219/// \brief Finish template argument deduction for a function template,
1220/// checking the deduced template arguments for completeness and forming
1221/// the function template specialization.
1222Sema::TemplateDeductionResult
1223Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
1224                            llvm::SmallVectorImpl<TemplateArgument> &Deduced,
1225                                      FunctionDecl *&Specialization,
1226                                      TemplateDeductionInfo &Info) {
1227  TemplateParameterList *TemplateParams
1228    = FunctionTemplate->getTemplateParameters();
1229
1230  // Template argument deduction for function templates in a SFINAE context.
1231  // Trap any errors that might occur.
1232  SFINAETrap Trap(*this);
1233
1234  // Enter a new template instantiation context while we instantiate the
1235  // actual function declaration.
1236  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1237                             FunctionTemplate, Deduced.data(), Deduced.size(),
1238              ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution);
1239  if (Inst)
1240    return TDK_InstantiationDepth;
1241
1242  // C++ [temp.deduct.type]p2:
1243  //   [...] or if any template argument remains neither deduced nor
1244  //   explicitly specified, template argument deduction fails.
1245  TemplateArgumentListBuilder Builder(TemplateParams, Deduced.size());
1246  for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
1247    if (!Deduced[I].isNull()) {
1248      Builder.Append(Deduced[I]);
1249      continue;
1250    }
1251
1252    // Substitute into the default template argument, if available.
1253    NamedDecl *Param = FunctionTemplate->getTemplateParameters()->getParam(I);
1254    TemplateArgumentLoc DefArg
1255      = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
1256                                              FunctionTemplate->getLocation(),
1257                                  FunctionTemplate->getSourceRange().getEnd(),
1258                                                Param,
1259                                                Builder);
1260
1261    // If there was no default argument, deduction is incomplete.
1262    if (DefArg.getArgument().isNull()) {
1263      Info.Param = makeTemplateParameter(
1264                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1265      return TDK_Incomplete;
1266    }
1267
1268    // Check whether we can actually use the default argument.
1269    if (CheckTemplateArgument(Param, DefArg,
1270                              FunctionTemplate,
1271                              FunctionTemplate->getLocation(),
1272                              FunctionTemplate->getSourceRange().getEnd(),
1273                              Builder)) {
1274      Info.Param = makeTemplateParameter(
1275                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1276      return TDK_SubstitutionFailure;
1277    }
1278
1279    // If we get here, we successfully used the default template argument.
1280  }
1281
1282  // Form the template argument list from the deduced template arguments.
1283  TemplateArgumentList *DeducedArgumentList
1284    = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
1285  Info.reset(DeducedArgumentList);
1286
1287  // Substitute the deduced template arguments into the function template
1288  // declaration to produce the function template specialization.
1289  Specialization = cast_or_null<FunctionDecl>(
1290                      SubstDecl(FunctionTemplate->getTemplatedDecl(),
1291                                FunctionTemplate->getDeclContext(),
1292                         MultiLevelTemplateArgumentList(*DeducedArgumentList)));
1293  if (!Specialization)
1294    return TDK_SubstitutionFailure;
1295
1296  assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
1297         FunctionTemplate->getCanonicalDecl());
1298
1299  // If the template argument list is owned by the function template
1300  // specialization, release it.
1301  if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList)
1302    Info.take();
1303
1304  // There may have been an error that did not prevent us from constructing a
1305  // declaration. Mark the declaration invalid and return with a substitution
1306  // failure.
1307  if (Trap.hasErrorOccurred()) {
1308    Specialization->setInvalidDecl(true);
1309    return TDK_SubstitutionFailure;
1310  }
1311
1312  return TDK_Success;
1313}
1314
1315static QualType GetTypeOfFunction(ASTContext &Context,
1316                                  bool isAddressOfOperand,
1317                                  FunctionDecl *Fn) {
1318  if (!isAddressOfOperand) return Fn->getType();
1319  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
1320    if (Method->isInstance())
1321      return Context.getMemberPointerType(Fn->getType(),
1322               Context.getTypeDeclType(Method->getParent()).getTypePtr());
1323  return Context.getPointerType(Fn->getType());
1324}
1325
1326/// Apply the deduction rules for overload sets.
1327///
1328/// \return the null type if this argument should be treated as an
1329/// undeduced context
1330static QualType
1331ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
1332                            Expr *Arg, QualType ParamType) {
1333  llvm::PointerIntPair<OverloadExpr*,1> R = OverloadExpr::find(Arg);
1334
1335  bool isAddressOfOperand = bool(R.getInt());
1336  OverloadExpr *Ovl = R.getPointer();
1337
1338  // If there were explicit template arguments, we can only find
1339  // something via C++ [temp.arg.explicit]p3, i.e. if the arguments
1340  // unambiguously name a full specialization.
1341  if (Ovl->hasExplicitTemplateArgs()) {
1342    // But we can still look for an explicit specialization.
1343    if (FunctionDecl *ExplicitSpec
1344          = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
1345      return GetTypeOfFunction(S.Context, isAddressOfOperand, ExplicitSpec);
1346    return QualType();
1347  }
1348
1349  // C++0x [temp.deduct.call]p6:
1350  //   When P is a function type, pointer to function type, or pointer
1351  //   to member function type:
1352
1353  if (!ParamType->isFunctionType() &&
1354      !ParamType->isFunctionPointerType() &&
1355      !ParamType->isMemberFunctionPointerType())
1356    return QualType();
1357
1358  QualType Match;
1359  for (UnresolvedSetIterator I = Ovl->decls_begin(),
1360         E = Ovl->decls_end(); I != E; ++I) {
1361    NamedDecl *D = (*I)->getUnderlyingDecl();
1362
1363    //   - If the argument is an overload set containing one or more
1364    //     function templates, the parameter is treated as a
1365    //     non-deduced context.
1366    if (isa<FunctionTemplateDecl>(D))
1367      return QualType();
1368
1369    FunctionDecl *Fn = cast<FunctionDecl>(D);
1370    QualType ArgType = GetTypeOfFunction(S.Context, isAddressOfOperand, Fn);
1371
1372    //   - If the argument is an overload set (not containing function
1373    //     templates), trial argument deduction is attempted using each
1374    //     of the members of the set. If deduction succeeds for only one
1375    //     of the overload set members, that member is used as the
1376    //     argument value for the deduction. If deduction succeeds for
1377    //     more than one member of the overload set the parameter is
1378    //     treated as a non-deduced context.
1379
1380    // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
1381    //   Type deduction is done independently for each P/A pair, and
1382    //   the deduced template argument values are then combined.
1383    // So we do not reject deductions which were made elsewhere.
1384    llvm::SmallVector<TemplateArgument, 8> Deduced(TemplateParams->size());
1385    Sema::TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
1386    unsigned TDF = 0;
1387
1388    Sema::TemplateDeductionResult Result
1389      = DeduceTemplateArguments(S, TemplateParams,
1390                                ParamType, ArgType,
1391                                Info, Deduced, TDF);
1392    if (Result) continue;
1393    if (!Match.isNull()) return QualType();
1394    Match = ArgType;
1395  }
1396
1397  return Match;
1398}
1399
1400/// \brief Perform template argument deduction from a function call
1401/// (C++ [temp.deduct.call]).
1402///
1403/// \param FunctionTemplate the function template for which we are performing
1404/// template argument deduction.
1405///
1406/// \param ExplicitTemplateArguments the explicit template arguments provided
1407/// for this call.
1408///
1409/// \param Args the function call arguments
1410///
1411/// \param NumArgs the number of arguments in Args
1412///
1413/// \param Name the name of the function being called. This is only significant
1414/// when the function template is a conversion function template, in which
1415/// case this routine will also perform template argument deduction based on
1416/// the function to which
1417///
1418/// \param Specialization if template argument deduction was successful,
1419/// this will be set to the function template specialization produced by
1420/// template argument deduction.
1421///
1422/// \param Info the argument will be updated to provide additional information
1423/// about template argument deduction.
1424///
1425/// \returns the result of template argument deduction.
1426Sema::TemplateDeductionResult
1427Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1428                          const TemplateArgumentListInfo *ExplicitTemplateArgs,
1429                              Expr **Args, unsigned NumArgs,
1430                              FunctionDecl *&Specialization,
1431                              TemplateDeductionInfo &Info) {
1432  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1433
1434  // C++ [temp.deduct.call]p1:
1435  //   Template argument deduction is done by comparing each function template
1436  //   parameter type (call it P) with the type of the corresponding argument
1437  //   of the call (call it A) as described below.
1438  unsigned CheckArgs = NumArgs;
1439  if (NumArgs < Function->getMinRequiredArguments())
1440    return TDK_TooFewArguments;
1441  else if (NumArgs > Function->getNumParams()) {
1442    const FunctionProtoType *Proto
1443      = Function->getType()->getAs<FunctionProtoType>();
1444    if (!Proto->isVariadic())
1445      return TDK_TooManyArguments;
1446
1447    CheckArgs = Function->getNumParams();
1448  }
1449
1450  // The types of the parameters from which we will perform template argument
1451  // deduction.
1452  TemplateParameterList *TemplateParams
1453    = FunctionTemplate->getTemplateParameters();
1454  llvm::SmallVector<TemplateArgument, 4> Deduced;
1455  llvm::SmallVector<QualType, 4> ParamTypes;
1456  if (ExplicitTemplateArgs) {
1457    TemplateDeductionResult Result =
1458      SubstituteExplicitTemplateArguments(FunctionTemplate,
1459                                          *ExplicitTemplateArgs,
1460                                          Deduced,
1461                                          ParamTypes,
1462                                          0,
1463                                          Info);
1464    if (Result)
1465      return Result;
1466  } else {
1467    // Just fill in the parameter types from the function declaration.
1468    for (unsigned I = 0; I != CheckArgs; ++I)
1469      ParamTypes.push_back(Function->getParamDecl(I)->getType());
1470  }
1471
1472  // Deduce template arguments from the function parameters.
1473  Deduced.resize(TemplateParams->size());
1474  for (unsigned I = 0; I != CheckArgs; ++I) {
1475    QualType ParamType = ParamTypes[I];
1476    QualType ArgType = Args[I]->getType();
1477
1478    // Overload sets usually make this parameter an undeduced
1479    // context, but there are sometimes special circumstances.
1480    if (ArgType == Context.OverloadTy) {
1481      ArgType = ResolveOverloadForDeduction(*this, TemplateParams,
1482                                            Args[I], ParamType);
1483      if (ArgType.isNull())
1484        continue;
1485    }
1486
1487    // C++ [temp.deduct.call]p2:
1488    //   If P is not a reference type:
1489    QualType CanonParamType = Context.getCanonicalType(ParamType);
1490    bool ParamWasReference = isa<ReferenceType>(CanonParamType);
1491    if (!ParamWasReference) {
1492      //   - If A is an array type, the pointer type produced by the
1493      //     array-to-pointer standard conversion (4.2) is used in place of
1494      //     A for type deduction; otherwise,
1495      if (ArgType->isArrayType())
1496        ArgType = Context.getArrayDecayedType(ArgType);
1497      //   - If A is a function type, the pointer type produced by the
1498      //     function-to-pointer standard conversion (4.3) is used in place
1499      //     of A for type deduction; otherwise,
1500      else if (ArgType->isFunctionType())
1501        ArgType = Context.getPointerType(ArgType);
1502      else {
1503        // - If A is a cv-qualified type, the top level cv-qualifiers of A’s
1504        //   type are ignored for type deduction.
1505        QualType CanonArgType = Context.getCanonicalType(ArgType);
1506        if (CanonArgType.getLocalCVRQualifiers())
1507          ArgType = CanonArgType.getLocalUnqualifiedType();
1508      }
1509    }
1510
1511    // C++0x [temp.deduct.call]p3:
1512    //   If P is a cv-qualified type, the top level cv-qualifiers of P’s type
1513    //   are ignored for type deduction.
1514    if (CanonParamType.getLocalCVRQualifiers())
1515      ParamType = CanonParamType.getLocalUnqualifiedType();
1516    if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
1517      //   [...] If P is a reference type, the type referred to by P is used
1518      //   for type deduction.
1519      ParamType = ParamRefType->getPointeeType();
1520
1521      //   [...] If P is of the form T&&, where T is a template parameter, and
1522      //   the argument is an lvalue, the type A& is used in place of A for
1523      //   type deduction.
1524      if (isa<RValueReferenceType>(ParamRefType) &&
1525          ParamRefType->getAs<TemplateTypeParmType>() &&
1526          Args[I]->isLvalue(Context) == Expr::LV_Valid)
1527        ArgType = Context.getLValueReferenceType(ArgType);
1528    }
1529
1530    // C++0x [temp.deduct.call]p4:
1531    //   In general, the deduction process attempts to find template argument
1532    //   values that will make the deduced A identical to A (after the type A
1533    //   is transformed as described above). [...]
1534    unsigned TDF = TDF_SkipNonDependent;
1535
1536    //     - If the original P is a reference type, the deduced A (i.e., the
1537    //       type referred to by the reference) can be more cv-qualified than
1538    //       the transformed A.
1539    if (ParamWasReference)
1540      TDF |= TDF_ParamWithReferenceType;
1541    //     - The transformed A can be another pointer or pointer to member
1542    //       type that can be converted to the deduced A via a qualification
1543    //       conversion (4.4).
1544    if (ArgType->isPointerType() || ArgType->isMemberPointerType())
1545      TDF |= TDF_IgnoreQualifiers;
1546    //     - If P is a class and P has the form simple-template-id, then the
1547    //       transformed A can be a derived class of the deduced A. Likewise,
1548    //       if P is a pointer to a class of the form simple-template-id, the
1549    //       transformed A can be a pointer to a derived class pointed to by
1550    //       the deduced A.
1551    if (isSimpleTemplateIdType(ParamType) ||
1552        (isa<PointerType>(ParamType) &&
1553         isSimpleTemplateIdType(
1554                              ParamType->getAs<PointerType>()->getPointeeType())))
1555      TDF |= TDF_DerivedClass;
1556
1557    if (TemplateDeductionResult Result
1558        = ::DeduceTemplateArguments(*this, TemplateParams,
1559                                    ParamType, ArgType, Info, Deduced,
1560                                    TDF))
1561      return Result;
1562
1563    // FIXME: we need to check that the deduced A is the same as A,
1564    // modulo the various allowed differences.
1565  }
1566
1567  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
1568                                         Specialization, Info);
1569}
1570
1571/// \brief Deduce template arguments when taking the address of a function
1572/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
1573/// a template.
1574///
1575/// \param FunctionTemplate the function template for which we are performing
1576/// template argument deduction.
1577///
1578/// \param ExplicitTemplateArguments the explicitly-specified template
1579/// arguments.
1580///
1581/// \param ArgFunctionType the function type that will be used as the
1582/// "argument" type (A) when performing template argument deduction from the
1583/// function template's function type. This type may be NULL, if there is no
1584/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
1585///
1586/// \param Specialization if template argument deduction was successful,
1587/// this will be set to the function template specialization produced by
1588/// template argument deduction.
1589///
1590/// \param Info the argument will be updated to provide additional information
1591/// about template argument deduction.
1592///
1593/// \returns the result of template argument deduction.
1594Sema::TemplateDeductionResult
1595Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1596                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
1597                              QualType ArgFunctionType,
1598                              FunctionDecl *&Specialization,
1599                              TemplateDeductionInfo &Info) {
1600  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1601  TemplateParameterList *TemplateParams
1602    = FunctionTemplate->getTemplateParameters();
1603  QualType FunctionType = Function->getType();
1604
1605  // Substitute any explicit template arguments.
1606  llvm::SmallVector<TemplateArgument, 4> Deduced;
1607  llvm::SmallVector<QualType, 4> ParamTypes;
1608  if (ExplicitTemplateArgs) {
1609    if (TemplateDeductionResult Result
1610          = SubstituteExplicitTemplateArguments(FunctionTemplate,
1611                                                *ExplicitTemplateArgs,
1612                                                Deduced, ParamTypes,
1613                                                &FunctionType, Info))
1614      return Result;
1615  }
1616
1617  // Template argument deduction for function templates in a SFINAE context.
1618  // Trap any errors that might occur.
1619  SFINAETrap Trap(*this);
1620
1621  Deduced.resize(TemplateParams->size());
1622
1623  if (!ArgFunctionType.isNull()) {
1624    // Deduce template arguments from the function type.
1625    if (TemplateDeductionResult Result
1626          = ::DeduceTemplateArguments(*this, TemplateParams,
1627                                      FunctionType, ArgFunctionType, Info,
1628                                      Deduced, 0))
1629      return Result;
1630  }
1631
1632  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
1633                                         Specialization, Info);
1634}
1635
1636/// \brief Deduce template arguments for a templated conversion
1637/// function (C++ [temp.deduct.conv]) and, if successful, produce a
1638/// conversion function template specialization.
1639Sema::TemplateDeductionResult
1640Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1641                              QualType ToType,
1642                              CXXConversionDecl *&Specialization,
1643                              TemplateDeductionInfo &Info) {
1644  CXXConversionDecl *Conv
1645    = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
1646  QualType FromType = Conv->getConversionType();
1647
1648  // Canonicalize the types for deduction.
1649  QualType P = Context.getCanonicalType(FromType);
1650  QualType A = Context.getCanonicalType(ToType);
1651
1652  // C++0x [temp.deduct.conv]p3:
1653  //   If P is a reference type, the type referred to by P is used for
1654  //   type deduction.
1655  if (const ReferenceType *PRef = P->getAs<ReferenceType>())
1656    P = PRef->getPointeeType();
1657
1658  // C++0x [temp.deduct.conv]p3:
1659  //   If A is a reference type, the type referred to by A is used
1660  //   for type deduction.
1661  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
1662    A = ARef->getPointeeType();
1663  // C++ [temp.deduct.conv]p2:
1664  //
1665  //   If A is not a reference type:
1666  else {
1667    assert(!A->isReferenceType() && "Reference types were handled above");
1668
1669    //   - If P is an array type, the pointer type produced by the
1670    //     array-to-pointer standard conversion (4.2) is used in place
1671    //     of P for type deduction; otherwise,
1672    if (P->isArrayType())
1673      P = Context.getArrayDecayedType(P);
1674    //   - If P is a function type, the pointer type produced by the
1675    //     function-to-pointer standard conversion (4.3) is used in
1676    //     place of P for type deduction; otherwise,
1677    else if (P->isFunctionType())
1678      P = Context.getPointerType(P);
1679    //   - If P is a cv-qualified type, the top level cv-qualifiers of
1680    //     P’s type are ignored for type deduction.
1681    else
1682      P = P.getUnqualifiedType();
1683
1684    // C++0x [temp.deduct.conv]p3:
1685    //   If A is a cv-qualified type, the top level cv-qualifiers of A’s
1686    //   type are ignored for type deduction.
1687    A = A.getUnqualifiedType();
1688  }
1689
1690  // Template argument deduction for function templates in a SFINAE context.
1691  // Trap any errors that might occur.
1692  SFINAETrap Trap(*this);
1693
1694  // C++ [temp.deduct.conv]p1:
1695  //   Template argument deduction is done by comparing the return
1696  //   type of the template conversion function (call it P) with the
1697  //   type that is required as the result of the conversion (call it
1698  //   A) as described in 14.8.2.4.
1699  TemplateParameterList *TemplateParams
1700    = FunctionTemplate->getTemplateParameters();
1701  llvm::SmallVector<TemplateArgument, 4> Deduced;
1702  Deduced.resize(TemplateParams->size());
1703
1704  // C++0x [temp.deduct.conv]p4:
1705  //   In general, the deduction process attempts to find template
1706  //   argument values that will make the deduced A identical to
1707  //   A. However, there are two cases that allow a difference:
1708  unsigned TDF = 0;
1709  //     - If the original A is a reference type, A can be more
1710  //       cv-qualified than the deduced A (i.e., the type referred to
1711  //       by the reference)
1712  if (ToType->isReferenceType())
1713    TDF |= TDF_ParamWithReferenceType;
1714  //     - The deduced A can be another pointer or pointer to member
1715  //       type that can be converted to A via a qualification
1716  //       conversion.
1717  //
1718  // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
1719  // both P and A are pointers or member pointers. In this case, we
1720  // just ignore cv-qualifiers completely).
1721  if ((P->isPointerType() && A->isPointerType()) ||
1722      (P->isMemberPointerType() && P->isMemberPointerType()))
1723    TDF |= TDF_IgnoreQualifiers;
1724  if (TemplateDeductionResult Result
1725        = ::DeduceTemplateArguments(*this, TemplateParams,
1726                                    P, A, Info, Deduced, TDF))
1727    return Result;
1728
1729  // FIXME: we need to check that the deduced A is the same as A,
1730  // modulo the various allowed differences.
1731
1732  // Finish template argument deduction.
1733  FunctionDecl *Spec = 0;
1734  TemplateDeductionResult Result
1735    = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, Spec, Info);
1736  Specialization = cast_or_null<CXXConversionDecl>(Spec);
1737  return Result;
1738}
1739
1740/// \brief Deduce template arguments for a function template when there is
1741/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
1742///
1743/// \param FunctionTemplate the function template for which we are performing
1744/// template argument deduction.
1745///
1746/// \param ExplicitTemplateArguments the explicitly-specified template
1747/// arguments.
1748///
1749/// \param Specialization if template argument deduction was successful,
1750/// this will be set to the function template specialization produced by
1751/// template argument deduction.
1752///
1753/// \param Info the argument will be updated to provide additional information
1754/// about template argument deduction.
1755///
1756/// \returns the result of template argument deduction.
1757Sema::TemplateDeductionResult
1758Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1759                           const TemplateArgumentListInfo *ExplicitTemplateArgs,
1760                              FunctionDecl *&Specialization,
1761                              TemplateDeductionInfo &Info) {
1762  return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
1763                                 QualType(), Specialization, Info);
1764}
1765
1766/// \brief Stores the result of comparing the qualifiers of two types.
1767enum DeductionQualifierComparison {
1768  NeitherMoreQualified = 0,
1769  ParamMoreQualified,
1770  ArgMoreQualified
1771};
1772
1773/// \brief Deduce the template arguments during partial ordering by comparing
1774/// the parameter type and the argument type (C++0x [temp.deduct.partial]).
1775///
1776/// \param S the semantic analysis object within which we are deducing
1777///
1778/// \param TemplateParams the template parameters that we are deducing
1779///
1780/// \param ParamIn the parameter type
1781///
1782/// \param ArgIn the argument type
1783///
1784/// \param Info information about the template argument deduction itself
1785///
1786/// \param Deduced the deduced template arguments
1787///
1788/// \returns the result of template argument deduction so far. Note that a
1789/// "success" result means that template argument deduction has not yet failed,
1790/// but it may still fail, later, for other reasons.
1791static Sema::TemplateDeductionResult
1792DeduceTemplateArgumentsDuringPartialOrdering(Sema &S,
1793                                          TemplateParameterList *TemplateParams,
1794                                             QualType ParamIn, QualType ArgIn,
1795                                             Sema::TemplateDeductionInfo &Info,
1796                             llvm::SmallVectorImpl<TemplateArgument> &Deduced,
1797    llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
1798  CanQualType Param = S.Context.getCanonicalType(ParamIn);
1799  CanQualType Arg = S.Context.getCanonicalType(ArgIn);
1800
1801  // C++0x [temp.deduct.partial]p5:
1802  //   Before the partial ordering is done, certain transformations are
1803  //   performed on the types used for partial ordering:
1804  //     - If P is a reference type, P is replaced by the type referred to.
1805  CanQual<ReferenceType> ParamRef = Param->getAs<ReferenceType>();
1806  if (!ParamRef.isNull())
1807    Param = ParamRef->getPointeeType();
1808
1809  //     - If A is a reference type, A is replaced by the type referred to.
1810  CanQual<ReferenceType> ArgRef = Arg->getAs<ReferenceType>();
1811  if (!ArgRef.isNull())
1812    Arg = ArgRef->getPointeeType();
1813
1814  if (QualifierComparisons && !ParamRef.isNull() && !ArgRef.isNull()) {
1815    // C++0x [temp.deduct.partial]p6:
1816    //   If both P and A were reference types (before being replaced with the
1817    //   type referred to above), determine which of the two types (if any) is
1818    //   more cv-qualified than the other; otherwise the types are considered to
1819    //   be equally cv-qualified for partial ordering purposes. The result of this
1820    //   determination will be used below.
1821    //
1822    // We save this information for later, using it only when deduction
1823    // succeeds in both directions.
1824    DeductionQualifierComparison QualifierResult = NeitherMoreQualified;
1825    if (Param.isMoreQualifiedThan(Arg))
1826      QualifierResult = ParamMoreQualified;
1827    else if (Arg.isMoreQualifiedThan(Param))
1828      QualifierResult = ArgMoreQualified;
1829    QualifierComparisons->push_back(QualifierResult);
1830  }
1831
1832  // C++0x [temp.deduct.partial]p7:
1833  //   Remove any top-level cv-qualifiers:
1834  //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
1835  //       version of P.
1836  Param = Param.getUnqualifiedType();
1837  //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
1838  //       version of A.
1839  Arg = Arg.getUnqualifiedType();
1840
1841  // C++0x [temp.deduct.partial]p8:
1842  //   Using the resulting types P and A the deduction is then done as
1843  //   described in 14.9.2.5. If deduction succeeds for a given type, the type
1844  //   from the argument template is considered to be at least as specialized
1845  //   as the type from the parameter template.
1846  return DeduceTemplateArguments(S, TemplateParams, Param, Arg, Info,
1847                                 Deduced, TDF_None);
1848}
1849
1850static void
1851MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
1852                           bool OnlyDeduced,
1853                           unsigned Level,
1854                           llvm::SmallVectorImpl<bool> &Deduced);
1855
1856/// \brief Determine whether the function template \p FT1 is at least as
1857/// specialized as \p FT2.
1858static bool isAtLeastAsSpecializedAs(Sema &S,
1859                                     SourceLocation Loc,
1860                                     FunctionTemplateDecl *FT1,
1861                                     FunctionTemplateDecl *FT2,
1862                                     TemplatePartialOrderingContext TPOC,
1863    llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
1864  FunctionDecl *FD1 = FT1->getTemplatedDecl();
1865  FunctionDecl *FD2 = FT2->getTemplatedDecl();
1866  const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
1867  const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
1868
1869  assert(Proto1 && Proto2 && "Function templates must have prototypes");
1870  TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
1871  llvm::SmallVector<TemplateArgument, 4> Deduced;
1872  Deduced.resize(TemplateParams->size());
1873
1874  // C++0x [temp.deduct.partial]p3:
1875  //   The types used to determine the ordering depend on the context in which
1876  //   the partial ordering is done:
1877  Sema::TemplateDeductionInfo Info(S.Context, Loc);
1878  switch (TPOC) {
1879  case TPOC_Call: {
1880    //   - In the context of a function call, the function parameter types are
1881    //     used.
1882    unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
1883    for (unsigned I = 0; I != NumParams; ++I)
1884      if (DeduceTemplateArgumentsDuringPartialOrdering(S,
1885                                                       TemplateParams,
1886                                                       Proto2->getArgType(I),
1887                                                       Proto1->getArgType(I),
1888                                                       Info,
1889                                                       Deduced,
1890                                                       QualifierComparisons))
1891        return false;
1892
1893    break;
1894  }
1895
1896  case TPOC_Conversion:
1897    //   - In the context of a call to a conversion operator, the return types
1898    //     of the conversion function templates are used.
1899    if (DeduceTemplateArgumentsDuringPartialOrdering(S,
1900                                                     TemplateParams,
1901                                                     Proto2->getResultType(),
1902                                                     Proto1->getResultType(),
1903                                                     Info,
1904                                                     Deduced,
1905                                                     QualifierComparisons))
1906      return false;
1907    break;
1908
1909  case TPOC_Other:
1910    //   - In other contexts (14.6.6.2) the function template’s function type
1911    //     is used.
1912    if (DeduceTemplateArgumentsDuringPartialOrdering(S,
1913                                                     TemplateParams,
1914                                                     FD2->getType(),
1915                                                     FD1->getType(),
1916                                                     Info,
1917                                                     Deduced,
1918                                                     QualifierComparisons))
1919      return false;
1920    break;
1921  }
1922
1923  // C++0x [temp.deduct.partial]p11:
1924  //   In most cases, all template parameters must have values in order for
1925  //   deduction to succeed, but for partial ordering purposes a template
1926  //   parameter may remain without a value provided it is not used in the
1927  //   types being used for partial ordering. [ Note: a template parameter used
1928  //   in a non-deduced context is considered used. -end note]
1929  unsigned ArgIdx = 0, NumArgs = Deduced.size();
1930  for (; ArgIdx != NumArgs; ++ArgIdx)
1931    if (Deduced[ArgIdx].isNull())
1932      break;
1933
1934  if (ArgIdx == NumArgs) {
1935    // All template arguments were deduced. FT1 is at least as specialized
1936    // as FT2.
1937    return true;
1938  }
1939
1940  // Figure out which template parameters were used.
1941  llvm::SmallVector<bool, 4> UsedParameters;
1942  UsedParameters.resize(TemplateParams->size());
1943  switch (TPOC) {
1944  case TPOC_Call: {
1945    unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
1946    for (unsigned I = 0; I != NumParams; ++I)
1947      ::MarkUsedTemplateParameters(S, Proto2->getArgType(I), false,
1948                                   TemplateParams->getDepth(),
1949                                   UsedParameters);
1950    break;
1951  }
1952
1953  case TPOC_Conversion:
1954    ::MarkUsedTemplateParameters(S, Proto2->getResultType(), false,
1955                                 TemplateParams->getDepth(),
1956                                 UsedParameters);
1957    break;
1958
1959  case TPOC_Other:
1960    ::MarkUsedTemplateParameters(S, FD2->getType(), false,
1961                                 TemplateParams->getDepth(),
1962                                 UsedParameters);
1963    break;
1964  }
1965
1966  for (; ArgIdx != NumArgs; ++ArgIdx)
1967    // If this argument had no value deduced but was used in one of the types
1968    // used for partial ordering, then deduction fails.
1969    if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
1970      return false;
1971
1972  return true;
1973}
1974
1975
1976/// \brief Returns the more specialized function template according
1977/// to the rules of function template partial ordering (C++ [temp.func.order]).
1978///
1979/// \param FT1 the first function template
1980///
1981/// \param FT2 the second function template
1982///
1983/// \param TPOC the context in which we are performing partial ordering of
1984/// function templates.
1985///
1986/// \returns the more specialized function template. If neither
1987/// template is more specialized, returns NULL.
1988FunctionTemplateDecl *
1989Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
1990                                 FunctionTemplateDecl *FT2,
1991                                 SourceLocation Loc,
1992                                 TemplatePartialOrderingContext TPOC) {
1993  llvm::SmallVector<DeductionQualifierComparison, 4> QualifierComparisons;
1994  bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 0);
1995  bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
1996                                          &QualifierComparisons);
1997
1998  if (Better1 != Better2) // We have a clear winner
1999    return Better1? FT1 : FT2;
2000
2001  if (!Better1 && !Better2) // Neither is better than the other
2002    return 0;
2003
2004
2005  // C++0x [temp.deduct.partial]p10:
2006  //   If for each type being considered a given template is at least as
2007  //   specialized for all types and more specialized for some set of types and
2008  //   the other template is not more specialized for any types or is not at
2009  //   least as specialized for any types, then the given template is more
2010  //   specialized than the other template. Otherwise, neither template is more
2011  //   specialized than the other.
2012  Better1 = false;
2013  Better2 = false;
2014  for (unsigned I = 0, N = QualifierComparisons.size(); I != N; ++I) {
2015    // C++0x [temp.deduct.partial]p9:
2016    //   If, for a given type, deduction succeeds in both directions (i.e., the
2017    //   types are identical after the transformations above) and if the type
2018    //   from the argument template is more cv-qualified than the type from the
2019    //   parameter template (as described above) that type is considered to be
2020    //   more specialized than the other. If neither type is more cv-qualified
2021    //   than the other then neither type is more specialized than the other.
2022    switch (QualifierComparisons[I]) {
2023      case NeitherMoreQualified:
2024        break;
2025
2026      case ParamMoreQualified:
2027        Better1 = true;
2028        if (Better2)
2029          return 0;
2030        break;
2031
2032      case ArgMoreQualified:
2033        Better2 = true;
2034        if (Better1)
2035          return 0;
2036        break;
2037    }
2038  }
2039
2040  assert(!(Better1 && Better2) && "Should have broken out in the loop above");
2041  if (Better1)
2042    return FT1;
2043  else if (Better2)
2044    return FT2;
2045  else
2046    return 0;
2047}
2048
2049/// \brief Determine if the two templates are equivalent.
2050static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
2051  if (T1 == T2)
2052    return true;
2053
2054  if (!T1 || !T2)
2055    return false;
2056
2057  return T1->getCanonicalDecl() == T2->getCanonicalDecl();
2058}
2059
2060/// \brief Retrieve the most specialized of the given function template
2061/// specializations.
2062///
2063/// \param SpecBegin the start iterator of the function template
2064/// specializations that we will be comparing.
2065///
2066/// \param SpecEnd the end iterator of the function template
2067/// specializations, paired with \p SpecBegin.
2068///
2069/// \param TPOC the partial ordering context to use to compare the function
2070/// template specializations.
2071///
2072/// \param Loc the location where the ambiguity or no-specializations
2073/// diagnostic should occur.
2074///
2075/// \param NoneDiag partial diagnostic used to diagnose cases where there are
2076/// no matching candidates.
2077///
2078/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
2079/// occurs.
2080///
2081/// \param CandidateDiag partial diagnostic used for each function template
2082/// specialization that is a candidate in the ambiguous ordering. One parameter
2083/// in this diagnostic should be unbound, which will correspond to the string
2084/// describing the template arguments for the function template specialization.
2085///
2086/// \param Index if non-NULL and the result of this function is non-nULL,
2087/// receives the index corresponding to the resulting function template
2088/// specialization.
2089///
2090/// \returns the most specialized function template specialization, if
2091/// found. Otherwise, returns SpecEnd.
2092///
2093/// \todo FIXME: Consider passing in the "also-ran" candidates that failed
2094/// template argument deduction.
2095UnresolvedSetIterator
2096Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
2097                         UnresolvedSetIterator SpecEnd,
2098                         TemplatePartialOrderingContext TPOC,
2099                         SourceLocation Loc,
2100                         const PartialDiagnostic &NoneDiag,
2101                         const PartialDiagnostic &AmbigDiag,
2102                         const PartialDiagnostic &CandidateDiag) {
2103  if (SpecBegin == SpecEnd) {
2104    Diag(Loc, NoneDiag);
2105    return SpecEnd;
2106  }
2107
2108  if (SpecBegin + 1 == SpecEnd)
2109    return SpecBegin;
2110
2111  // Find the function template that is better than all of the templates it
2112  // has been compared to.
2113  UnresolvedSetIterator Best = SpecBegin;
2114  FunctionTemplateDecl *BestTemplate
2115    = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
2116  assert(BestTemplate && "Not a function template specialization?");
2117  for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
2118    FunctionTemplateDecl *Challenger
2119      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
2120    assert(Challenger && "Not a function template specialization?");
2121    if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
2122                                                  Loc, TPOC),
2123                       Challenger)) {
2124      Best = I;
2125      BestTemplate = Challenger;
2126    }
2127  }
2128
2129  // Make sure that the "best" function template is more specialized than all
2130  // of the others.
2131  bool Ambiguous = false;
2132  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
2133    FunctionTemplateDecl *Challenger
2134      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
2135    if (I != Best &&
2136        !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
2137                                                   Loc, TPOC),
2138                        BestTemplate)) {
2139      Ambiguous = true;
2140      break;
2141    }
2142  }
2143
2144  if (!Ambiguous) {
2145    // We found an answer. Return it.
2146    return Best;
2147  }
2148
2149  // Diagnose the ambiguity.
2150  Diag(Loc, AmbigDiag);
2151
2152  // FIXME: Can we order the candidates in some sane way?
2153  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I)
2154    Diag((*I)->getLocation(), CandidateDiag)
2155      << getTemplateArgumentBindingsText(
2156        cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
2157                    *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
2158
2159  return SpecEnd;
2160}
2161
2162/// \brief Returns the more specialized class template partial specialization
2163/// according to the rules of partial ordering of class template partial
2164/// specializations (C++ [temp.class.order]).
2165///
2166/// \param PS1 the first class template partial specialization
2167///
2168/// \param PS2 the second class template partial specialization
2169///
2170/// \returns the more specialized class template partial specialization. If
2171/// neither partial specialization is more specialized, returns NULL.
2172ClassTemplatePartialSpecializationDecl *
2173Sema::getMoreSpecializedPartialSpecialization(
2174                                  ClassTemplatePartialSpecializationDecl *PS1,
2175                                  ClassTemplatePartialSpecializationDecl *PS2,
2176                                              SourceLocation Loc) {
2177  // C++ [temp.class.order]p1:
2178  //   For two class template partial specializations, the first is at least as
2179  //   specialized as the second if, given the following rewrite to two
2180  //   function templates, the first function template is at least as
2181  //   specialized as the second according to the ordering rules for function
2182  //   templates (14.6.6.2):
2183  //     - the first function template has the same template parameters as the
2184  //       first partial specialization and has a single function parameter
2185  //       whose type is a class template specialization with the template
2186  //       arguments of the first partial specialization, and
2187  //     - the second function template has the same template parameters as the
2188  //       second partial specialization and has a single function parameter
2189  //       whose type is a class template specialization with the template
2190  //       arguments of the second partial specialization.
2191  //
2192  // Rather than synthesize function templates, we merely perform the
2193  // equivalent partial ordering by performing deduction directly on the
2194  // template arguments of the class template partial specializations. This
2195  // computation is slightly simpler than the general problem of function
2196  // template partial ordering, because class template partial specializations
2197  // are more constrained. We know that every template parameter is deduc
2198  llvm::SmallVector<TemplateArgument, 4> Deduced;
2199  Sema::TemplateDeductionInfo Info(Context, Loc);
2200
2201  // Determine whether PS1 is at least as specialized as PS2
2202  Deduced.resize(PS2->getTemplateParameters()->size());
2203  bool Better1 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
2204                                                  PS2->getTemplateParameters(),
2205                                                  Context.getTypeDeclType(PS2),
2206                                                  Context.getTypeDeclType(PS1),
2207                                                               Info,
2208                                                               Deduced,
2209                                                               0);
2210
2211  // Determine whether PS2 is at least as specialized as PS1
2212  Deduced.clear();
2213  Deduced.resize(PS1->getTemplateParameters()->size());
2214  bool Better2 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
2215                                                  PS1->getTemplateParameters(),
2216                                                  Context.getTypeDeclType(PS1),
2217                                                  Context.getTypeDeclType(PS2),
2218                                                               Info,
2219                                                               Deduced,
2220                                                               0);
2221
2222  if (Better1 == Better2)
2223    return 0;
2224
2225  return Better1? PS1 : PS2;
2226}
2227
2228static void
2229MarkUsedTemplateParameters(Sema &SemaRef,
2230                           const TemplateArgument &TemplateArg,
2231                           bool OnlyDeduced,
2232                           unsigned Depth,
2233                           llvm::SmallVectorImpl<bool> &Used);
2234
2235/// \brief Mark the template parameters that are used by the given
2236/// expression.
2237static void
2238MarkUsedTemplateParameters(Sema &SemaRef,
2239                           const Expr *E,
2240                           bool OnlyDeduced,
2241                           unsigned Depth,
2242                           llvm::SmallVectorImpl<bool> &Used) {
2243  // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
2244  // find other occurrences of template parameters.
2245  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
2246  if (!DRE)
2247    return;
2248
2249  const NonTypeTemplateParmDecl *NTTP
2250    = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2251  if (!NTTP)
2252    return;
2253
2254  if (NTTP->getDepth() == Depth)
2255    Used[NTTP->getIndex()] = true;
2256}
2257
2258/// \brief Mark the template parameters that are used by the given
2259/// nested name specifier.
2260static void
2261MarkUsedTemplateParameters(Sema &SemaRef,
2262                           NestedNameSpecifier *NNS,
2263                           bool OnlyDeduced,
2264                           unsigned Depth,
2265                           llvm::SmallVectorImpl<bool> &Used) {
2266  if (!NNS)
2267    return;
2268
2269  MarkUsedTemplateParameters(SemaRef, NNS->getPrefix(), OnlyDeduced, Depth,
2270                             Used);
2271  MarkUsedTemplateParameters(SemaRef, QualType(NNS->getAsType(), 0),
2272                             OnlyDeduced, Depth, Used);
2273}
2274
2275/// \brief Mark the template parameters that are used by the given
2276/// template name.
2277static void
2278MarkUsedTemplateParameters(Sema &SemaRef,
2279                           TemplateName Name,
2280                           bool OnlyDeduced,
2281                           unsigned Depth,
2282                           llvm::SmallVectorImpl<bool> &Used) {
2283  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2284    if (TemplateTemplateParmDecl *TTP
2285          = dyn_cast<TemplateTemplateParmDecl>(Template)) {
2286      if (TTP->getDepth() == Depth)
2287        Used[TTP->getIndex()] = true;
2288    }
2289    return;
2290  }
2291
2292  if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
2293    MarkUsedTemplateParameters(SemaRef, QTN->getQualifier(), OnlyDeduced,
2294                               Depth, Used);
2295  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
2296    MarkUsedTemplateParameters(SemaRef, DTN->getQualifier(), OnlyDeduced,
2297                               Depth, Used);
2298}
2299
2300/// \brief Mark the template parameters that are used by the given
2301/// type.
2302static void
2303MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
2304                           bool OnlyDeduced,
2305                           unsigned Depth,
2306                           llvm::SmallVectorImpl<bool> &Used) {
2307  if (T.isNull())
2308    return;
2309
2310  // Non-dependent types have nothing deducible
2311  if (!T->isDependentType())
2312    return;
2313
2314  T = SemaRef.Context.getCanonicalType(T);
2315  switch (T->getTypeClass()) {
2316  case Type::Pointer:
2317    MarkUsedTemplateParameters(SemaRef,
2318                               cast<PointerType>(T)->getPointeeType(),
2319                               OnlyDeduced,
2320                               Depth,
2321                               Used);
2322    break;
2323
2324  case Type::BlockPointer:
2325    MarkUsedTemplateParameters(SemaRef,
2326                               cast<BlockPointerType>(T)->getPointeeType(),
2327                               OnlyDeduced,
2328                               Depth,
2329                               Used);
2330    break;
2331
2332  case Type::LValueReference:
2333  case Type::RValueReference:
2334    MarkUsedTemplateParameters(SemaRef,
2335                               cast<ReferenceType>(T)->getPointeeType(),
2336                               OnlyDeduced,
2337                               Depth,
2338                               Used);
2339    break;
2340
2341  case Type::MemberPointer: {
2342    const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
2343    MarkUsedTemplateParameters(SemaRef, MemPtr->getPointeeType(), OnlyDeduced,
2344                               Depth, Used);
2345    MarkUsedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0),
2346                               OnlyDeduced, Depth, Used);
2347    break;
2348  }
2349
2350  case Type::DependentSizedArray:
2351    MarkUsedTemplateParameters(SemaRef,
2352                               cast<DependentSizedArrayType>(T)->getSizeExpr(),
2353                               OnlyDeduced, Depth, Used);
2354    // Fall through to check the element type
2355
2356  case Type::ConstantArray:
2357  case Type::IncompleteArray:
2358    MarkUsedTemplateParameters(SemaRef,
2359                               cast<ArrayType>(T)->getElementType(),
2360                               OnlyDeduced, Depth, Used);
2361    break;
2362
2363  case Type::Vector:
2364  case Type::ExtVector:
2365    MarkUsedTemplateParameters(SemaRef,
2366                               cast<VectorType>(T)->getElementType(),
2367                               OnlyDeduced, Depth, Used);
2368    break;
2369
2370  case Type::DependentSizedExtVector: {
2371    const DependentSizedExtVectorType *VecType
2372      = cast<DependentSizedExtVectorType>(T);
2373    MarkUsedTemplateParameters(SemaRef, VecType->getElementType(), OnlyDeduced,
2374                               Depth, Used);
2375    MarkUsedTemplateParameters(SemaRef, VecType->getSizeExpr(), OnlyDeduced,
2376                               Depth, Used);
2377    break;
2378  }
2379
2380  case Type::FunctionProto: {
2381    const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2382    MarkUsedTemplateParameters(SemaRef, Proto->getResultType(), OnlyDeduced,
2383                               Depth, Used);
2384    for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
2385      MarkUsedTemplateParameters(SemaRef, Proto->getArgType(I), OnlyDeduced,
2386                                 Depth, Used);
2387    break;
2388  }
2389
2390  case Type::TemplateTypeParm: {
2391    const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
2392    if (TTP->getDepth() == Depth)
2393      Used[TTP->getIndex()] = true;
2394    break;
2395  }
2396
2397  case Type::TemplateSpecialization: {
2398    const TemplateSpecializationType *Spec
2399      = cast<TemplateSpecializationType>(T);
2400    MarkUsedTemplateParameters(SemaRef, Spec->getTemplateName(), OnlyDeduced,
2401                               Depth, Used);
2402    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
2403      MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
2404                                 Used);
2405    break;
2406  }
2407
2408  case Type::Complex:
2409    if (!OnlyDeduced)
2410      MarkUsedTemplateParameters(SemaRef,
2411                                 cast<ComplexType>(T)->getElementType(),
2412                                 OnlyDeduced, Depth, Used);
2413    break;
2414
2415  case Type::Typename:
2416    if (!OnlyDeduced)
2417      MarkUsedTemplateParameters(SemaRef,
2418                                 cast<TypenameType>(T)->getQualifier(),
2419                                 OnlyDeduced, Depth, Used);
2420    break;
2421
2422  case Type::TypeOf:
2423    if (!OnlyDeduced)
2424      MarkUsedTemplateParameters(SemaRef,
2425                                 cast<TypeOfType>(T)->getUnderlyingType(),
2426                                 OnlyDeduced, Depth, Used);
2427    break;
2428
2429  case Type::TypeOfExpr:
2430    if (!OnlyDeduced)
2431      MarkUsedTemplateParameters(SemaRef,
2432                                 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
2433                                 OnlyDeduced, Depth, Used);
2434    break;
2435
2436  case Type::Decltype:
2437    if (!OnlyDeduced)
2438      MarkUsedTemplateParameters(SemaRef,
2439                                 cast<DecltypeType>(T)->getUnderlyingExpr(),
2440                                 OnlyDeduced, Depth, Used);
2441    break;
2442
2443  // None of these types have any template parameters in them.
2444  case Type::Builtin:
2445  case Type::VariableArray:
2446  case Type::FunctionNoProto:
2447  case Type::Record:
2448  case Type::Enum:
2449  case Type::ObjCInterface:
2450  case Type::ObjCObjectPointer:
2451  case Type::UnresolvedUsing:
2452#define TYPE(Class, Base)
2453#define ABSTRACT_TYPE(Class, Base)
2454#define DEPENDENT_TYPE(Class, Base)
2455#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2456#include "clang/AST/TypeNodes.def"
2457    break;
2458  }
2459}
2460
2461/// \brief Mark the template parameters that are used by this
2462/// template argument.
2463static void
2464MarkUsedTemplateParameters(Sema &SemaRef,
2465                           const TemplateArgument &TemplateArg,
2466                           bool OnlyDeduced,
2467                           unsigned Depth,
2468                           llvm::SmallVectorImpl<bool> &Used) {
2469  switch (TemplateArg.getKind()) {
2470  case TemplateArgument::Null:
2471  case TemplateArgument::Integral:
2472    case TemplateArgument::Declaration:
2473    break;
2474
2475  case TemplateArgument::Type:
2476    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsType(), OnlyDeduced,
2477                               Depth, Used);
2478    break;
2479
2480  case TemplateArgument::Template:
2481    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsTemplate(),
2482                               OnlyDeduced, Depth, Used);
2483    break;
2484
2485  case TemplateArgument::Expression:
2486    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsExpr(), OnlyDeduced,
2487                               Depth, Used);
2488    break;
2489
2490  case TemplateArgument::Pack:
2491    for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
2492                                      PEnd = TemplateArg.pack_end();
2493         P != PEnd; ++P)
2494      MarkUsedTemplateParameters(SemaRef, *P, OnlyDeduced, Depth, Used);
2495    break;
2496  }
2497}
2498
2499/// \brief Mark the template parameters can be deduced by the given
2500/// template argument list.
2501///
2502/// \param TemplateArgs the template argument list from which template
2503/// parameters will be deduced.
2504///
2505/// \param Deduced a bit vector whose elements will be set to \c true
2506/// to indicate when the corresponding template parameter will be
2507/// deduced.
2508void
2509Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
2510                                 bool OnlyDeduced, unsigned Depth,
2511                                 llvm::SmallVectorImpl<bool> &Used) {
2512  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2513    ::MarkUsedTemplateParameters(*this, TemplateArgs[I], OnlyDeduced,
2514                                 Depth, Used);
2515}
2516
2517/// \brief Marks all of the template parameters that will be deduced by a
2518/// call to the given function template.
2519void Sema::MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate,
2520                                         llvm::SmallVectorImpl<bool> &Deduced) {
2521  TemplateParameterList *TemplateParams
2522    = FunctionTemplate->getTemplateParameters();
2523  Deduced.clear();
2524  Deduced.resize(TemplateParams->size());
2525
2526  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2527  for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
2528    ::MarkUsedTemplateParameters(*this, Function->getParamDecl(I)->getType(),
2529                                 true, TemplateParams->getDepth(), Deduced);
2530}
2531