SemaTemplateDeduction.cpp revision 19510856727e0e14a3696b2a72c35163bff2a71f
1//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===/
12
13#include "clang/Sema/Sema.h"
14#include "clang/Sema/DeclSpec.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/StmtVisitor.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include <algorithm>
21
22namespace clang {
23  /// \brief Various flags that control template argument deduction.
24  ///
25  /// These flags can be bitwise-OR'd together.
26  enum TemplateDeductionFlags {
27    /// \brief No template argument deduction flags, which indicates the
28    /// strictest results for template argument deduction (as used for, e.g.,
29    /// matching class template partial specializations).
30    TDF_None = 0,
31    /// \brief Within template argument deduction from a function call, we are
32    /// matching with a parameter type for which the original parameter was
33    /// a reference.
34    TDF_ParamWithReferenceType = 0x1,
35    /// \brief Within template argument deduction from a function call, we
36    /// are matching in a case where we ignore cv-qualifiers.
37    TDF_IgnoreQualifiers = 0x02,
38    /// \brief Within template argument deduction from a function call,
39    /// we are matching in a case where we can perform template argument
40    /// deduction from a template-id of a derived class of the argument type.
41    TDF_DerivedClass = 0x04,
42    /// \brief Allow non-dependent types to differ, e.g., when performing
43    /// template argument deduction from a function call where conversions
44    /// may apply.
45    TDF_SkipNonDependent = 0x08
46  };
47}
48
49using namespace clang;
50
51/// \brief Compare two APSInts, extending and switching the sign as
52/// necessary to compare their values regardless of underlying type.
53static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
54  if (Y.getBitWidth() > X.getBitWidth())
55    X.extend(Y.getBitWidth());
56  else if (Y.getBitWidth() < X.getBitWidth())
57    Y.extend(X.getBitWidth());
58
59  // If there is a signedness mismatch, correct it.
60  if (X.isSigned() != Y.isSigned()) {
61    // If the signed value is negative, then the values cannot be the same.
62    if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
63      return false;
64
65    Y.setIsSigned(true);
66    X.setIsSigned(true);
67  }
68
69  return X == Y;
70}
71
72static Sema::TemplateDeductionResult
73DeduceTemplateArguments(Sema &S,
74                        TemplateParameterList *TemplateParams,
75                        const TemplateArgument &Param,
76                        const TemplateArgument &Arg,
77                        Sema::TemplateDeductionInfo &Info,
78                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced);
79
80/// \brief If the given expression is of a form that permits the deduction
81/// of a non-type template parameter, return the declaration of that
82/// non-type template parameter.
83static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
84  if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
85    E = IC->getSubExpr();
86
87  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
88    return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
89
90  return 0;
91}
92
93/// \brief Deduce the value of the given non-type template parameter
94/// from the given constant.
95static Sema::TemplateDeductionResult
96DeduceNonTypeTemplateArgument(Sema &S,
97                              NonTypeTemplateParmDecl *NTTP,
98                              llvm::APSInt Value, QualType ValueType,
99                              bool DeducedFromArrayBound,
100                              Sema::TemplateDeductionInfo &Info,
101                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
102  assert(NTTP->getDepth() == 0 &&
103         "Cannot deduce non-type template argument with depth > 0");
104
105  if (Deduced[NTTP->getIndex()].isNull()) {
106    Deduced[NTTP->getIndex()] = DeducedTemplateArgument(Value, ValueType,
107                                                        DeducedFromArrayBound);
108    return Sema::TDK_Success;
109  }
110
111  if (Deduced[NTTP->getIndex()].getKind() != TemplateArgument::Integral) {
112    Info.Param = NTTP;
113    Info.FirstArg = Deduced[NTTP->getIndex()];
114    Info.SecondArg = TemplateArgument(Value, ValueType);
115    return Sema::TDK_Inconsistent;
116  }
117
118  // Extent the smaller of the two values.
119  llvm::APSInt PrevValue = *Deduced[NTTP->getIndex()].getAsIntegral();
120  if (!hasSameExtendedValue(PrevValue, Value)) {
121    Info.Param = NTTP;
122    Info.FirstArg = Deduced[NTTP->getIndex()];
123    Info.SecondArg = TemplateArgument(Value, ValueType);
124    return Sema::TDK_Inconsistent;
125  }
126
127  if (!DeducedFromArrayBound)
128    Deduced[NTTP->getIndex()].setDeducedFromArrayBound(false);
129
130  return Sema::TDK_Success;
131}
132
133/// \brief Deduce the value of the given non-type template parameter
134/// from the given type- or value-dependent expression.
135///
136/// \returns true if deduction succeeded, false otherwise.
137static Sema::TemplateDeductionResult
138DeduceNonTypeTemplateArgument(Sema &S,
139                              NonTypeTemplateParmDecl *NTTP,
140                              Expr *Value,
141                              Sema::TemplateDeductionInfo &Info,
142                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
143  assert(NTTP->getDepth() == 0 &&
144         "Cannot deduce non-type template argument with depth > 0");
145  assert((Value->isTypeDependent() || Value->isValueDependent()) &&
146         "Expression template argument must be type- or value-dependent.");
147
148  if (Deduced[NTTP->getIndex()].isNull()) {
149    Deduced[NTTP->getIndex()] = TemplateArgument(Value->Retain());
150    return Sema::TDK_Success;
151  }
152
153  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral) {
154    // Okay, we deduced a constant in one case and a dependent expression
155    // in another case. FIXME: Later, we will check that instantiating the
156    // dependent expression gives us the constant value.
157    return Sema::TDK_Success;
158  }
159
160  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) {
161    // Compare the expressions for equality
162    llvm::FoldingSetNodeID ID1, ID2;
163    Deduced[NTTP->getIndex()].getAsExpr()->Profile(ID1, S.Context, true);
164    Value->Profile(ID2, S.Context, true);
165    if (ID1 == ID2)
166      return Sema::TDK_Success;
167
168    // FIXME: Fill in argument mismatch information
169    return Sema::TDK_NonDeducedMismatch;
170  }
171
172  return Sema::TDK_Success;
173}
174
175/// \brief Deduce the value of the given non-type template parameter
176/// from the given declaration.
177///
178/// \returns true if deduction succeeded, false otherwise.
179static Sema::TemplateDeductionResult
180DeduceNonTypeTemplateArgument(Sema &S,
181                              NonTypeTemplateParmDecl *NTTP,
182                              Decl *D,
183                              Sema::TemplateDeductionInfo &Info,
184                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
185  assert(NTTP->getDepth() == 0 &&
186         "Cannot deduce non-type template argument with depth > 0");
187
188  if (Deduced[NTTP->getIndex()].isNull()) {
189    Deduced[NTTP->getIndex()] = TemplateArgument(D->getCanonicalDecl());
190    return Sema::TDK_Success;
191  }
192
193  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) {
194    // Okay, we deduced a declaration in one case and a dependent expression
195    // in another case.
196    return Sema::TDK_Success;
197  }
198
199  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Declaration) {
200    // Compare the declarations for equality
201    if (Deduced[NTTP->getIndex()].getAsDecl()->getCanonicalDecl() ==
202          D->getCanonicalDecl())
203      return Sema::TDK_Success;
204
205    // FIXME: Fill in argument mismatch information
206    return Sema::TDK_NonDeducedMismatch;
207  }
208
209  return Sema::TDK_Success;
210}
211
212static Sema::TemplateDeductionResult
213DeduceTemplateArguments(Sema &S,
214                        TemplateParameterList *TemplateParams,
215                        TemplateName Param,
216                        TemplateName Arg,
217                        Sema::TemplateDeductionInfo &Info,
218                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
219  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
220  if (!ParamDecl) {
221    // The parameter type is dependent and is not a template template parameter,
222    // so there is nothing that we can deduce.
223    return Sema::TDK_Success;
224  }
225
226  if (TemplateTemplateParmDecl *TempParam
227        = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
228    // Bind the template template parameter to the given template name.
229    TemplateArgument &ExistingArg = Deduced[TempParam->getIndex()];
230    if (ExistingArg.isNull()) {
231      // This is the first deduction for this template template parameter.
232      ExistingArg = TemplateArgument(S.Context.getCanonicalTemplateName(Arg));
233      return Sema::TDK_Success;
234    }
235
236    // Verify that the previous binding matches this deduction.
237    assert(ExistingArg.getKind() == TemplateArgument::Template);
238    if (S.Context.hasSameTemplateName(ExistingArg.getAsTemplate(), Arg))
239      return Sema::TDK_Success;
240
241    // Inconsistent deduction.
242    Info.Param = TempParam;
243    Info.FirstArg = ExistingArg;
244    Info.SecondArg = TemplateArgument(Arg);
245    return Sema::TDK_Inconsistent;
246  }
247
248  // Verify that the two template names are equivalent.
249  if (S.Context.hasSameTemplateName(Param, Arg))
250    return Sema::TDK_Success;
251
252  // Mismatch of non-dependent template parameter to argument.
253  Info.FirstArg = TemplateArgument(Param);
254  Info.SecondArg = TemplateArgument(Arg);
255  return Sema::TDK_NonDeducedMismatch;
256}
257
258/// \brief Deduce the template arguments by comparing the template parameter
259/// type (which is a template-id) with the template argument type.
260///
261/// \param S the Sema
262///
263/// \param TemplateParams the template parameters that we are deducing
264///
265/// \param Param the parameter type
266///
267/// \param Arg the argument type
268///
269/// \param Info information about the template argument deduction itself
270///
271/// \param Deduced the deduced template arguments
272///
273/// \returns the result of template argument deduction so far. Note that a
274/// "success" result means that template argument deduction has not yet failed,
275/// but it may still fail, later, for other reasons.
276static Sema::TemplateDeductionResult
277DeduceTemplateArguments(Sema &S,
278                        TemplateParameterList *TemplateParams,
279                        const TemplateSpecializationType *Param,
280                        QualType Arg,
281                        Sema::TemplateDeductionInfo &Info,
282                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
283  assert(Arg.isCanonical() && "Argument type must be canonical");
284
285  // Check whether the template argument is a dependent template-id.
286  if (const TemplateSpecializationType *SpecArg
287        = dyn_cast<TemplateSpecializationType>(Arg)) {
288    // Perform template argument deduction for the template name.
289    if (Sema::TemplateDeductionResult Result
290          = DeduceTemplateArguments(S, TemplateParams,
291                                    Param->getTemplateName(),
292                                    SpecArg->getTemplateName(),
293                                    Info, Deduced))
294      return Result;
295
296
297    // Perform template argument deduction on each template
298    // argument.
299    unsigned NumArgs = std::min(SpecArg->getNumArgs(), Param->getNumArgs());
300    for (unsigned I = 0; I != NumArgs; ++I)
301      if (Sema::TemplateDeductionResult Result
302            = DeduceTemplateArguments(S, TemplateParams,
303                                      Param->getArg(I),
304                                      SpecArg->getArg(I),
305                                      Info, Deduced))
306        return Result;
307
308    return Sema::TDK_Success;
309  }
310
311  // If the argument type is a class template specialization, we
312  // perform template argument deduction using its template
313  // arguments.
314  const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
315  if (!RecordArg)
316    return Sema::TDK_NonDeducedMismatch;
317
318  ClassTemplateSpecializationDecl *SpecArg
319    = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
320  if (!SpecArg)
321    return Sema::TDK_NonDeducedMismatch;
322
323  // Perform template argument deduction for the template name.
324  if (Sema::TemplateDeductionResult Result
325        = DeduceTemplateArguments(S,
326                                  TemplateParams,
327                                  Param->getTemplateName(),
328                               TemplateName(SpecArg->getSpecializedTemplate()),
329                                  Info, Deduced))
330    return Result;
331
332  unsigned NumArgs = Param->getNumArgs();
333  const TemplateArgumentList &ArgArgs = SpecArg->getTemplateArgs();
334  if (NumArgs != ArgArgs.size())
335    return Sema::TDK_NonDeducedMismatch;
336
337  for (unsigned I = 0; I != NumArgs; ++I)
338    if (Sema::TemplateDeductionResult Result
339          = DeduceTemplateArguments(S, TemplateParams,
340                                    Param->getArg(I),
341                                    ArgArgs.get(I),
342                                    Info, Deduced))
343      return Result;
344
345  return Sema::TDK_Success;
346}
347
348/// \brief Deduce the template arguments by comparing the parameter type and
349/// the argument type (C++ [temp.deduct.type]).
350///
351/// \param S the semantic analysis object within which we are deducing
352///
353/// \param TemplateParams the template parameters that we are deducing
354///
355/// \param ParamIn the parameter type
356///
357/// \param ArgIn the argument type
358///
359/// \param Info information about the template argument deduction itself
360///
361/// \param Deduced the deduced template arguments
362///
363/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
364/// how template argument deduction is performed.
365///
366/// \returns the result of template argument deduction so far. Note that a
367/// "success" result means that template argument deduction has not yet failed,
368/// but it may still fail, later, for other reasons.
369static Sema::TemplateDeductionResult
370DeduceTemplateArguments(Sema &S,
371                        TemplateParameterList *TemplateParams,
372                        QualType ParamIn, QualType ArgIn,
373                        Sema::TemplateDeductionInfo &Info,
374                     llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
375                        unsigned TDF) {
376  // We only want to look at the canonical types, since typedefs and
377  // sugar are not part of template argument deduction.
378  QualType Param = S.Context.getCanonicalType(ParamIn);
379  QualType Arg = S.Context.getCanonicalType(ArgIn);
380
381  // C++0x [temp.deduct.call]p4 bullet 1:
382  //   - If the original P is a reference type, the deduced A (i.e., the type
383  //     referred to by the reference) can be more cv-qualified than the
384  //     transformed A.
385  if (TDF & TDF_ParamWithReferenceType) {
386    Qualifiers Quals;
387    QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
388    Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
389                           Arg.getCVRQualifiersThroughArrayTypes());
390    Param = S.Context.getQualifiedType(UnqualParam, Quals);
391  }
392
393  // If the parameter type is not dependent, there is nothing to deduce.
394  if (!Param->isDependentType()) {
395    if (!(TDF & TDF_SkipNonDependent) && Param != Arg) {
396
397      return Sema::TDK_NonDeducedMismatch;
398    }
399
400    return Sema::TDK_Success;
401  }
402
403  // C++ [temp.deduct.type]p9:
404  //   A template type argument T, a template template argument TT or a
405  //   template non-type argument i can be deduced if P and A have one of
406  //   the following forms:
407  //
408  //     T
409  //     cv-list T
410  if (const TemplateTypeParmType *TemplateTypeParm
411        = Param->getAs<TemplateTypeParmType>()) {
412    unsigned Index = TemplateTypeParm->getIndex();
413    bool RecanonicalizeArg = false;
414
415    // If the argument type is an array type, move the qualifiers up to the
416    // top level, so they can be matched with the qualifiers on the parameter.
417    // FIXME: address spaces, ObjC GC qualifiers
418    if (isa<ArrayType>(Arg)) {
419      Qualifiers Quals;
420      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
421      if (Quals) {
422        Arg = S.Context.getQualifiedType(Arg, Quals);
423        RecanonicalizeArg = true;
424      }
425    }
426
427    // The argument type can not be less qualified than the parameter
428    // type.
429    if (Param.isMoreQualifiedThan(Arg) && !(TDF & TDF_IgnoreQualifiers)) {
430      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
431      Info.FirstArg = TemplateArgument(Param);
432      Info.SecondArg = TemplateArgument(Arg);
433      return Sema::TDK_Underqualified;
434    }
435
436    assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
437    assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
438    QualType DeducedType = Arg;
439    DeducedType.removeCVRQualifiers(Param.getCVRQualifiers());
440    if (RecanonicalizeArg)
441      DeducedType = S.Context.getCanonicalType(DeducedType);
442
443    if (Deduced[Index].isNull())
444      Deduced[Index] = TemplateArgument(DeducedType);
445    else {
446      // C++ [temp.deduct.type]p2:
447      //   [...] If type deduction cannot be done for any P/A pair, or if for
448      //   any pair the deduction leads to more than one possible set of
449      //   deduced values, or if different pairs yield different deduced
450      //   values, or if any template argument remains neither deduced nor
451      //   explicitly specified, template argument deduction fails.
452      if (Deduced[Index].getAsType() != DeducedType) {
453        Info.Param
454          = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
455        Info.FirstArg = Deduced[Index];
456        Info.SecondArg = TemplateArgument(Arg);
457        return Sema::TDK_Inconsistent;
458      }
459    }
460    return Sema::TDK_Success;
461  }
462
463  // Set up the template argument deduction information for a failure.
464  Info.FirstArg = TemplateArgument(ParamIn);
465  Info.SecondArg = TemplateArgument(ArgIn);
466
467  // Check the cv-qualifiers on the parameter and argument types.
468  if (!(TDF & TDF_IgnoreQualifiers)) {
469    if (TDF & TDF_ParamWithReferenceType) {
470      if (Param.isMoreQualifiedThan(Arg))
471        return Sema::TDK_NonDeducedMismatch;
472    } else {
473      if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
474        return Sema::TDK_NonDeducedMismatch;
475    }
476  }
477
478  switch (Param->getTypeClass()) {
479    // No deduction possible for these types
480    case Type::Builtin:
481      return Sema::TDK_NonDeducedMismatch;
482
483    //     T *
484    case Type::Pointer: {
485      QualType PointeeType;
486      if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
487        PointeeType = PointerArg->getPointeeType();
488      } else if (const ObjCObjectPointerType *PointerArg
489                   = Arg->getAs<ObjCObjectPointerType>()) {
490        PointeeType = PointerArg->getPointeeType();
491      } else {
492        return Sema::TDK_NonDeducedMismatch;
493      }
494
495      unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
496      return DeduceTemplateArguments(S, TemplateParams,
497                                   cast<PointerType>(Param)->getPointeeType(),
498                                     PointeeType,
499                                     Info, Deduced, SubTDF);
500    }
501
502    //     T &
503    case Type::LValueReference: {
504      const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
505      if (!ReferenceArg)
506        return Sema::TDK_NonDeducedMismatch;
507
508      return DeduceTemplateArguments(S, TemplateParams,
509                           cast<LValueReferenceType>(Param)->getPointeeType(),
510                                     ReferenceArg->getPointeeType(),
511                                     Info, Deduced, 0);
512    }
513
514    //     T && [C++0x]
515    case Type::RValueReference: {
516      const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
517      if (!ReferenceArg)
518        return Sema::TDK_NonDeducedMismatch;
519
520      return DeduceTemplateArguments(S, TemplateParams,
521                           cast<RValueReferenceType>(Param)->getPointeeType(),
522                                     ReferenceArg->getPointeeType(),
523                                     Info, Deduced, 0);
524    }
525
526    //     T [] (implied, but not stated explicitly)
527    case Type::IncompleteArray: {
528      const IncompleteArrayType *IncompleteArrayArg =
529        S.Context.getAsIncompleteArrayType(Arg);
530      if (!IncompleteArrayArg)
531        return Sema::TDK_NonDeducedMismatch;
532
533      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
534      return DeduceTemplateArguments(S, TemplateParams,
535                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
536                                     IncompleteArrayArg->getElementType(),
537                                     Info, Deduced, SubTDF);
538    }
539
540    //     T [integer-constant]
541    case Type::ConstantArray: {
542      const ConstantArrayType *ConstantArrayArg =
543        S.Context.getAsConstantArrayType(Arg);
544      if (!ConstantArrayArg)
545        return Sema::TDK_NonDeducedMismatch;
546
547      const ConstantArrayType *ConstantArrayParm =
548        S.Context.getAsConstantArrayType(Param);
549      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
550        return Sema::TDK_NonDeducedMismatch;
551
552      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
553      return DeduceTemplateArguments(S, TemplateParams,
554                                     ConstantArrayParm->getElementType(),
555                                     ConstantArrayArg->getElementType(),
556                                     Info, Deduced, SubTDF);
557    }
558
559    //     type [i]
560    case Type::DependentSizedArray: {
561      const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
562      if (!ArrayArg)
563        return Sema::TDK_NonDeducedMismatch;
564
565      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
566
567      // Check the element type of the arrays
568      const DependentSizedArrayType *DependentArrayParm
569        = S.Context.getAsDependentSizedArrayType(Param);
570      if (Sema::TemplateDeductionResult Result
571            = DeduceTemplateArguments(S, TemplateParams,
572                                      DependentArrayParm->getElementType(),
573                                      ArrayArg->getElementType(),
574                                      Info, Deduced, SubTDF))
575        return Result;
576
577      // Determine the array bound is something we can deduce.
578      NonTypeTemplateParmDecl *NTTP
579        = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
580      if (!NTTP)
581        return Sema::TDK_Success;
582
583      // We can perform template argument deduction for the given non-type
584      // template parameter.
585      assert(NTTP->getDepth() == 0 &&
586             "Cannot deduce non-type template argument at depth > 0");
587      if (const ConstantArrayType *ConstantArrayArg
588            = dyn_cast<ConstantArrayType>(ArrayArg)) {
589        llvm::APSInt Size(ConstantArrayArg->getSize());
590        return DeduceNonTypeTemplateArgument(S, NTTP, Size,
591                                             S.Context.getSizeType(),
592                                             /*ArrayBound=*/true,
593                                             Info, Deduced);
594      }
595      if (const DependentSizedArrayType *DependentArrayArg
596            = dyn_cast<DependentSizedArrayType>(ArrayArg))
597        return DeduceNonTypeTemplateArgument(S, NTTP,
598                                             DependentArrayArg->getSizeExpr(),
599                                             Info, Deduced);
600
601      // Incomplete type does not match a dependently-sized array type
602      return Sema::TDK_NonDeducedMismatch;
603    }
604
605    //     type(*)(T)
606    //     T(*)()
607    //     T(*)(T)
608    case Type::FunctionProto: {
609      const FunctionProtoType *FunctionProtoArg =
610        dyn_cast<FunctionProtoType>(Arg);
611      if (!FunctionProtoArg)
612        return Sema::TDK_NonDeducedMismatch;
613
614      const FunctionProtoType *FunctionProtoParam =
615        cast<FunctionProtoType>(Param);
616
617      if (FunctionProtoParam->getTypeQuals() !=
618          FunctionProtoArg->getTypeQuals())
619        return Sema::TDK_NonDeducedMismatch;
620
621      if (FunctionProtoParam->getNumArgs() != FunctionProtoArg->getNumArgs())
622        return Sema::TDK_NonDeducedMismatch;
623
624      if (FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
625        return Sema::TDK_NonDeducedMismatch;
626
627      // Check return types.
628      if (Sema::TemplateDeductionResult Result
629            = DeduceTemplateArguments(S, TemplateParams,
630                                      FunctionProtoParam->getResultType(),
631                                      FunctionProtoArg->getResultType(),
632                                      Info, Deduced, 0))
633        return Result;
634
635      for (unsigned I = 0, N = FunctionProtoParam->getNumArgs(); I != N; ++I) {
636        // Check argument types.
637        if (Sema::TemplateDeductionResult Result
638              = DeduceTemplateArguments(S, TemplateParams,
639                                        FunctionProtoParam->getArgType(I),
640                                        FunctionProtoArg->getArgType(I),
641                                        Info, Deduced, 0))
642          return Result;
643      }
644
645      return Sema::TDK_Success;
646    }
647
648    case Type::InjectedClassName: {
649      // Treat a template's injected-class-name as if the template
650      // specialization type had been used.
651      Param = cast<InjectedClassNameType>(Param)
652        ->getInjectedSpecializationType();
653      assert(isa<TemplateSpecializationType>(Param) &&
654             "injected class name is not a template specialization type");
655      // fall through
656    }
657
658    //     template-name<T> (where template-name refers to a class template)
659    //     template-name<i>
660    //     TT<T>
661    //     TT<i>
662    //     TT<>
663    case Type::TemplateSpecialization: {
664      const TemplateSpecializationType *SpecParam
665        = cast<TemplateSpecializationType>(Param);
666
667      // Try to deduce template arguments from the template-id.
668      Sema::TemplateDeductionResult Result
669        = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
670                                  Info, Deduced);
671
672      if (Result && (TDF & TDF_DerivedClass)) {
673        // C++ [temp.deduct.call]p3b3:
674        //   If P is a class, and P has the form template-id, then A can be a
675        //   derived class of the deduced A. Likewise, if P is a pointer to a
676        //   class of the form template-id, A can be a pointer to a derived
677        //   class pointed to by the deduced A.
678        //
679        // More importantly:
680        //   These alternatives are considered only if type deduction would
681        //   otherwise fail.
682        if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
683          // We cannot inspect base classes as part of deduction when the type
684          // is incomplete, so either instantiate any templates necessary to
685          // complete the type, or skip over it if it cannot be completed.
686          if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
687            return Result;
688
689          // Use data recursion to crawl through the list of base classes.
690          // Visited contains the set of nodes we have already visited, while
691          // ToVisit is our stack of records that we still need to visit.
692          llvm::SmallPtrSet<const RecordType *, 8> Visited;
693          llvm::SmallVector<const RecordType *, 8> ToVisit;
694          ToVisit.push_back(RecordT);
695          bool Successful = false;
696          while (!ToVisit.empty()) {
697            // Retrieve the next class in the inheritance hierarchy.
698            const RecordType *NextT = ToVisit.back();
699            ToVisit.pop_back();
700
701            // If we have already seen this type, skip it.
702            if (!Visited.insert(NextT))
703              continue;
704
705            // If this is a base class, try to perform template argument
706            // deduction from it.
707            if (NextT != RecordT) {
708              Sema::TemplateDeductionResult BaseResult
709                = DeduceTemplateArguments(S, TemplateParams, SpecParam,
710                                          QualType(NextT, 0), Info, Deduced);
711
712              // If template argument deduction for this base was successful,
713              // note that we had some success.
714              if (BaseResult == Sema::TDK_Success)
715                Successful = true;
716            }
717
718            // Visit base classes
719            CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
720            for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
721                                                 BaseEnd = Next->bases_end();
722                 Base != BaseEnd; ++Base) {
723              assert(Base->getType()->isRecordType() &&
724                     "Base class that isn't a record?");
725              ToVisit.push_back(Base->getType()->getAs<RecordType>());
726            }
727          }
728
729          if (Successful)
730            return Sema::TDK_Success;
731        }
732
733      }
734
735      return Result;
736    }
737
738    //     T type::*
739    //     T T::*
740    //     T (type::*)()
741    //     type (T::*)()
742    //     type (type::*)(T)
743    //     type (T::*)(T)
744    //     T (type::*)(T)
745    //     T (T::*)()
746    //     T (T::*)(T)
747    case Type::MemberPointer: {
748      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
749      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
750      if (!MemPtrArg)
751        return Sema::TDK_NonDeducedMismatch;
752
753      if (Sema::TemplateDeductionResult Result
754            = DeduceTemplateArguments(S, TemplateParams,
755                                      MemPtrParam->getPointeeType(),
756                                      MemPtrArg->getPointeeType(),
757                                      Info, Deduced,
758                                      TDF & TDF_IgnoreQualifiers))
759        return Result;
760
761      return DeduceTemplateArguments(S, TemplateParams,
762                                     QualType(MemPtrParam->getClass(), 0),
763                                     QualType(MemPtrArg->getClass(), 0),
764                                     Info, Deduced, 0);
765    }
766
767    //     (clang extension)
768    //
769    //     type(^)(T)
770    //     T(^)()
771    //     T(^)(T)
772    case Type::BlockPointer: {
773      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
774      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
775
776      if (!BlockPtrArg)
777        return Sema::TDK_NonDeducedMismatch;
778
779      return DeduceTemplateArguments(S, TemplateParams,
780                                     BlockPtrParam->getPointeeType(),
781                                     BlockPtrArg->getPointeeType(), Info,
782                                     Deduced, 0);
783    }
784
785    case Type::TypeOfExpr:
786    case Type::TypeOf:
787    case Type::DependentName:
788      // No template argument deduction for these types
789      return Sema::TDK_Success;
790
791    default:
792      break;
793  }
794
795  // FIXME: Many more cases to go (to go).
796  return Sema::TDK_Success;
797}
798
799static Sema::TemplateDeductionResult
800DeduceTemplateArguments(Sema &S,
801                        TemplateParameterList *TemplateParams,
802                        const TemplateArgument &Param,
803                        const TemplateArgument &Arg,
804                        Sema::TemplateDeductionInfo &Info,
805                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
806  switch (Param.getKind()) {
807  case TemplateArgument::Null:
808    assert(false && "Null template argument in parameter list");
809    break;
810
811  case TemplateArgument::Type:
812    if (Arg.getKind() == TemplateArgument::Type)
813      return DeduceTemplateArguments(S, TemplateParams, Param.getAsType(),
814                                     Arg.getAsType(), Info, Deduced, 0);
815    Info.FirstArg = Param;
816    Info.SecondArg = Arg;
817    return Sema::TDK_NonDeducedMismatch;
818
819  case TemplateArgument::Template:
820    if (Arg.getKind() == TemplateArgument::Template)
821      return DeduceTemplateArguments(S, TemplateParams,
822                                     Param.getAsTemplate(),
823                                     Arg.getAsTemplate(), Info, Deduced);
824    Info.FirstArg = Param;
825    Info.SecondArg = Arg;
826    return Sema::TDK_NonDeducedMismatch;
827
828  case TemplateArgument::Declaration:
829    if (Arg.getKind() == TemplateArgument::Declaration &&
830        Param.getAsDecl()->getCanonicalDecl() ==
831          Arg.getAsDecl()->getCanonicalDecl())
832      return Sema::TDK_Success;
833
834    Info.FirstArg = Param;
835    Info.SecondArg = Arg;
836    return Sema::TDK_NonDeducedMismatch;
837
838  case TemplateArgument::Integral:
839    if (Arg.getKind() == TemplateArgument::Integral) {
840      if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral()))
841        return Sema::TDK_Success;
842
843      Info.FirstArg = Param;
844      Info.SecondArg = Arg;
845      return Sema::TDK_NonDeducedMismatch;
846    }
847
848    if (Arg.getKind() == TemplateArgument::Expression) {
849      Info.FirstArg = Param;
850      Info.SecondArg = Arg;
851      return Sema::TDK_NonDeducedMismatch;
852    }
853
854    Info.FirstArg = Param;
855    Info.SecondArg = Arg;
856    return Sema::TDK_NonDeducedMismatch;
857
858  case TemplateArgument::Expression: {
859    if (NonTypeTemplateParmDecl *NTTP
860          = getDeducedParameterFromExpr(Param.getAsExpr())) {
861      if (Arg.getKind() == TemplateArgument::Integral)
862        return DeduceNonTypeTemplateArgument(S, NTTP,
863                                             *Arg.getAsIntegral(),
864                                             Arg.getIntegralType(),
865                                             /*ArrayBound=*/false,
866                                             Info, Deduced);
867      if (Arg.getKind() == TemplateArgument::Expression)
868        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
869                                             Info, Deduced);
870      if (Arg.getKind() == TemplateArgument::Declaration)
871        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
872                                             Info, Deduced);
873
874      Info.FirstArg = Param;
875      Info.SecondArg = Arg;
876      return Sema::TDK_NonDeducedMismatch;
877    }
878
879    // Can't deduce anything, but that's okay.
880    return Sema::TDK_Success;
881  }
882  case TemplateArgument::Pack:
883    assert(0 && "FIXME: Implement!");
884    break;
885  }
886
887  return Sema::TDK_Success;
888}
889
890static Sema::TemplateDeductionResult
891DeduceTemplateArguments(Sema &S,
892                        TemplateParameterList *TemplateParams,
893                        const TemplateArgumentList &ParamList,
894                        const TemplateArgumentList &ArgList,
895                        Sema::TemplateDeductionInfo &Info,
896                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
897  assert(ParamList.size() == ArgList.size());
898  for (unsigned I = 0, N = ParamList.size(); I != N; ++I) {
899    if (Sema::TemplateDeductionResult Result
900          = DeduceTemplateArguments(S, TemplateParams,
901                                    ParamList[I], ArgList[I],
902                                    Info, Deduced))
903      return Result;
904  }
905  return Sema::TDK_Success;
906}
907
908/// \brief Determine whether two template arguments are the same.
909static bool isSameTemplateArg(ASTContext &Context,
910                              const TemplateArgument &X,
911                              const TemplateArgument &Y) {
912  if (X.getKind() != Y.getKind())
913    return false;
914
915  switch (X.getKind()) {
916    case TemplateArgument::Null:
917      assert(false && "Comparing NULL template argument");
918      break;
919
920    case TemplateArgument::Type:
921      return Context.getCanonicalType(X.getAsType()) ==
922             Context.getCanonicalType(Y.getAsType());
923
924    case TemplateArgument::Declaration:
925      return X.getAsDecl()->getCanonicalDecl() ==
926             Y.getAsDecl()->getCanonicalDecl();
927
928    case TemplateArgument::Template:
929      return Context.getCanonicalTemplateName(X.getAsTemplate())
930               .getAsVoidPointer() ==
931             Context.getCanonicalTemplateName(Y.getAsTemplate())
932               .getAsVoidPointer();
933
934    case TemplateArgument::Integral:
935      return *X.getAsIntegral() == *Y.getAsIntegral();
936
937    case TemplateArgument::Expression: {
938      llvm::FoldingSetNodeID XID, YID;
939      X.getAsExpr()->Profile(XID, Context, true);
940      Y.getAsExpr()->Profile(YID, Context, true);
941      return XID == YID;
942    }
943
944    case TemplateArgument::Pack:
945      if (X.pack_size() != Y.pack_size())
946        return false;
947
948      for (TemplateArgument::pack_iterator XP = X.pack_begin(),
949                                        XPEnd = X.pack_end(),
950                                           YP = Y.pack_begin();
951           XP != XPEnd; ++XP, ++YP)
952        if (!isSameTemplateArg(Context, *XP, *YP))
953          return false;
954
955      return true;
956  }
957
958  return false;
959}
960
961/// \brief Helper function to build a TemplateParameter when we don't
962/// know its type statically.
963static TemplateParameter makeTemplateParameter(Decl *D) {
964  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
965    return TemplateParameter(TTP);
966  else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
967    return TemplateParameter(NTTP);
968
969  return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
970}
971
972/// Complete template argument deduction for a class template partial
973/// specialization.
974static Sema::TemplateDeductionResult
975FinishTemplateArgumentDeduction(Sema &S,
976                                ClassTemplatePartialSpecializationDecl *Partial,
977                                const TemplateArgumentList &TemplateArgs,
978                      llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
979                                Sema::TemplateDeductionInfo &Info) {
980  // Trap errors.
981  Sema::SFINAETrap Trap(S);
982
983  Sema::ContextRAII SavedContext(S, Partial);
984
985  // C++ [temp.deduct.type]p2:
986  //   [...] or if any template argument remains neither deduced nor
987  //   explicitly specified, template argument deduction fails.
988  TemplateArgumentListBuilder Builder(Partial->getTemplateParameters(),
989                                      Deduced.size());
990  for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
991    if (Deduced[I].isNull()) {
992      Decl *Param
993      = const_cast<NamedDecl *>(
994                                Partial->getTemplateParameters()->getParam(I));
995      Info.Param = makeTemplateParameter(Param);
996      return Sema::TDK_Incomplete;
997    }
998
999    Builder.Append(Deduced[I]);
1000  }
1001
1002  // Form the template argument list from the deduced template arguments.
1003  TemplateArgumentList *DeducedArgumentList
1004    = new (S.Context) TemplateArgumentList(S.Context, Builder,
1005                                           /*TakeArgs=*/true);
1006  Info.reset(DeducedArgumentList);
1007
1008  // Substitute the deduced template arguments into the template
1009  // arguments of the class template partial specialization, and
1010  // verify that the instantiated template arguments are both valid
1011  // and are equivalent to the template arguments originally provided
1012  // to the class template.
1013  // FIXME: Do we have to correct the types of deduced non-type template
1014  // arguments (in particular, integral non-type template arguments?).
1015  Sema::LocalInstantiationScope InstScope(S);
1016  ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
1017  const TemplateArgumentLoc *PartialTemplateArgs
1018    = Partial->getTemplateArgsAsWritten();
1019  unsigned N = Partial->getNumTemplateArgsAsWritten();
1020
1021  // Note that we don't provide the langle and rangle locations.
1022  TemplateArgumentListInfo InstArgs;
1023
1024  for (unsigned I = 0; I != N; ++I) {
1025    Decl *Param = const_cast<NamedDecl *>(
1026                    ClassTemplate->getTemplateParameters()->getParam(I));
1027    TemplateArgumentLoc InstArg;
1028    if (S.Subst(PartialTemplateArgs[I], InstArg,
1029                MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
1030      Info.Param = makeTemplateParameter(Param);
1031      Info.FirstArg = PartialTemplateArgs[I].getArgument();
1032      return Sema::TDK_SubstitutionFailure;
1033    }
1034    InstArgs.addArgument(InstArg);
1035  }
1036
1037  TemplateArgumentListBuilder ConvertedInstArgs(
1038                                  ClassTemplate->getTemplateParameters(), N);
1039
1040  if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
1041                                InstArgs, false, ConvertedInstArgs))
1042    return Sema::TDK_SubstitutionFailure;
1043
1044  for (unsigned I = 0, E = ConvertedInstArgs.flatSize(); I != E; ++I) {
1045    TemplateArgument InstArg = ConvertedInstArgs.getFlatArguments()[I];
1046
1047    Decl *Param = const_cast<NamedDecl *>(
1048                    ClassTemplate->getTemplateParameters()->getParam(I));
1049
1050    if (InstArg.getKind() == TemplateArgument::Expression) {
1051      // When the argument is an expression, check the expression result
1052      // against the actual template parameter to get down to the canonical
1053      // template argument.
1054      Expr *InstExpr = InstArg.getAsExpr();
1055      if (NonTypeTemplateParmDecl *NTTP
1056            = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1057        if (S.CheckTemplateArgument(NTTP, NTTP->getType(), InstExpr, InstArg)) {
1058          Info.Param = makeTemplateParameter(Param);
1059          Info.FirstArg = Partial->getTemplateArgs()[I];
1060          return Sema::TDK_SubstitutionFailure;
1061        }
1062      }
1063    }
1064
1065    if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
1066      Info.Param = makeTemplateParameter(Param);
1067      Info.FirstArg = TemplateArgs[I];
1068      Info.SecondArg = InstArg;
1069      return Sema::TDK_NonDeducedMismatch;
1070    }
1071  }
1072
1073  if (Trap.hasErrorOccurred())
1074    return Sema::TDK_SubstitutionFailure;
1075
1076  return Sema::TDK_Success;
1077}
1078
1079/// \brief Perform template argument deduction to determine whether
1080/// the given template arguments match the given class template
1081/// partial specialization per C++ [temp.class.spec.match].
1082Sema::TemplateDeductionResult
1083Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
1084                              const TemplateArgumentList &TemplateArgs,
1085                              TemplateDeductionInfo &Info) {
1086  // C++ [temp.class.spec.match]p2:
1087  //   A partial specialization matches a given actual template
1088  //   argument list if the template arguments of the partial
1089  //   specialization can be deduced from the actual template argument
1090  //   list (14.8.2).
1091  SFINAETrap Trap(*this);
1092  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1093  Deduced.resize(Partial->getTemplateParameters()->size());
1094  if (TemplateDeductionResult Result
1095        = ::DeduceTemplateArguments(*this,
1096                                    Partial->getTemplateParameters(),
1097                                    Partial->getTemplateArgs(),
1098                                    TemplateArgs, Info, Deduced))
1099    return Result;
1100
1101  InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
1102                             Deduced.data(), Deduced.size());
1103  if (Inst)
1104    return TDK_InstantiationDepth;
1105
1106  if (Trap.hasErrorOccurred())
1107    return Sema::TDK_SubstitutionFailure;
1108
1109  return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
1110                                           Deduced, Info);
1111}
1112
1113/// \brief Determine whether the given type T is a simple-template-id type.
1114static bool isSimpleTemplateIdType(QualType T) {
1115  if (const TemplateSpecializationType *Spec
1116        = T->getAs<TemplateSpecializationType>())
1117    return Spec->getTemplateName().getAsTemplateDecl() != 0;
1118
1119  return false;
1120}
1121
1122/// \brief Substitute the explicitly-provided template arguments into the
1123/// given function template according to C++ [temp.arg.explicit].
1124///
1125/// \param FunctionTemplate the function template into which the explicit
1126/// template arguments will be substituted.
1127///
1128/// \param ExplicitTemplateArguments the explicitly-specified template
1129/// arguments.
1130///
1131/// \param Deduced the deduced template arguments, which will be populated
1132/// with the converted and checked explicit template arguments.
1133///
1134/// \param ParamTypes will be populated with the instantiated function
1135/// parameters.
1136///
1137/// \param FunctionType if non-NULL, the result type of the function template
1138/// will also be instantiated and the pointed-to value will be updated with
1139/// the instantiated function type.
1140///
1141/// \param Info if substitution fails for any reason, this object will be
1142/// populated with more information about the failure.
1143///
1144/// \returns TDK_Success if substitution was successful, or some failure
1145/// condition.
1146Sema::TemplateDeductionResult
1147Sema::SubstituteExplicitTemplateArguments(
1148                                      FunctionTemplateDecl *FunctionTemplate,
1149                        const TemplateArgumentListInfo &ExplicitTemplateArgs,
1150                       llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1151                                 llvm::SmallVectorImpl<QualType> &ParamTypes,
1152                                          QualType *FunctionType,
1153                                          TemplateDeductionInfo &Info) {
1154  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1155  TemplateParameterList *TemplateParams
1156    = FunctionTemplate->getTemplateParameters();
1157
1158  if (ExplicitTemplateArgs.size() == 0) {
1159    // No arguments to substitute; just copy over the parameter types and
1160    // fill in the function type.
1161    for (FunctionDecl::param_iterator P = Function->param_begin(),
1162                                   PEnd = Function->param_end();
1163         P != PEnd;
1164         ++P)
1165      ParamTypes.push_back((*P)->getType());
1166
1167    if (FunctionType)
1168      *FunctionType = Function->getType();
1169    return TDK_Success;
1170  }
1171
1172  // Substitution of the explicit template arguments into a function template
1173  /// is a SFINAE context. Trap any errors that might occur.
1174  SFINAETrap Trap(*this);
1175
1176  // C++ [temp.arg.explicit]p3:
1177  //   Template arguments that are present shall be specified in the
1178  //   declaration order of their corresponding template-parameters. The
1179  //   template argument list shall not specify more template-arguments than
1180  //   there are corresponding template-parameters.
1181  TemplateArgumentListBuilder Builder(TemplateParams,
1182                                      ExplicitTemplateArgs.size());
1183
1184  // Enter a new template instantiation context where we check the
1185  // explicitly-specified template arguments against this function template,
1186  // and then substitute them into the function parameter types.
1187  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1188                             FunctionTemplate, Deduced.data(), Deduced.size(),
1189           ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution);
1190  if (Inst)
1191    return TDK_InstantiationDepth;
1192
1193  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
1194
1195  if (CheckTemplateArgumentList(FunctionTemplate,
1196                                SourceLocation(),
1197                                ExplicitTemplateArgs,
1198                                true,
1199                                Builder) || Trap.hasErrorOccurred()) {
1200    unsigned Index = Builder.structuredSize();
1201    if (Index >= TemplateParams->size())
1202      Index = TemplateParams->size() - 1;
1203    Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
1204    return TDK_InvalidExplicitArguments;
1205  }
1206
1207  // Form the template argument list from the explicitly-specified
1208  // template arguments.
1209  TemplateArgumentList *ExplicitArgumentList
1210    = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
1211  Info.reset(ExplicitArgumentList);
1212
1213  // Instantiate the types of each of the function parameters given the
1214  // explicitly-specified template arguments.
1215  for (FunctionDecl::param_iterator P = Function->param_begin(),
1216                                PEnd = Function->param_end();
1217       P != PEnd;
1218       ++P) {
1219    QualType ParamType
1220      = SubstType((*P)->getType(),
1221                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
1222                  (*P)->getLocation(), (*P)->getDeclName());
1223    if (ParamType.isNull() || Trap.hasErrorOccurred())
1224      return TDK_SubstitutionFailure;
1225
1226    ParamTypes.push_back(ParamType);
1227  }
1228
1229  // If the caller wants a full function type back, instantiate the return
1230  // type and form that function type.
1231  if (FunctionType) {
1232    // FIXME: exception-specifications?
1233    const FunctionProtoType *Proto
1234      = Function->getType()->getAs<FunctionProtoType>();
1235    assert(Proto && "Function template does not have a prototype?");
1236
1237    QualType ResultType
1238      = SubstType(Proto->getResultType(),
1239                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
1240                  Function->getTypeSpecStartLoc(),
1241                  Function->getDeclName());
1242    if (ResultType.isNull() || Trap.hasErrorOccurred())
1243      return TDK_SubstitutionFailure;
1244
1245    *FunctionType = BuildFunctionType(ResultType,
1246                                      ParamTypes.data(), ParamTypes.size(),
1247                                      Proto->isVariadic(),
1248                                      Proto->getTypeQuals(),
1249                                      Function->getLocation(),
1250                                      Function->getDeclName(),
1251                                      Proto->getExtInfo());
1252    if (FunctionType->isNull() || Trap.hasErrorOccurred())
1253      return TDK_SubstitutionFailure;
1254  }
1255
1256  // C++ [temp.arg.explicit]p2:
1257  //   Trailing template arguments that can be deduced (14.8.2) may be
1258  //   omitted from the list of explicit template-arguments. If all of the
1259  //   template arguments can be deduced, they may all be omitted; in this
1260  //   case, the empty template argument list <> itself may also be omitted.
1261  //
1262  // Take all of the explicitly-specified arguments and put them into the
1263  // set of deduced template arguments.
1264  Deduced.reserve(TemplateParams->size());
1265  for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I)
1266    Deduced.push_back(ExplicitArgumentList->get(I));
1267
1268  return TDK_Success;
1269}
1270
1271/// \brief Allocate a TemplateArgumentLoc where all locations have
1272/// been initialized to the given location.
1273///
1274/// \param S The semantic analysis object.
1275///
1276/// \param The template argument we are producing template argument
1277/// location information for.
1278///
1279/// \param NTTPType For a declaration template argument, the type of
1280/// the non-type template parameter that corresponds to this template
1281/// argument.
1282///
1283/// \param Loc The source location to use for the resulting template
1284/// argument.
1285static TemplateArgumentLoc
1286getTrivialTemplateArgumentLoc(Sema &S,
1287                              const TemplateArgument &Arg,
1288                              QualType NTTPType,
1289                              SourceLocation Loc) {
1290  switch (Arg.getKind()) {
1291  case TemplateArgument::Null:
1292    llvm_unreachable("Can't get a NULL template argument here");
1293    break;
1294
1295  case TemplateArgument::Type:
1296    return TemplateArgumentLoc(Arg,
1297                    S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
1298
1299  case TemplateArgument::Declaration: {
1300    Expr *E
1301      = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
1302                                                              .takeAs<Expr>();
1303    return TemplateArgumentLoc(TemplateArgument(E), E);
1304  }
1305
1306  case TemplateArgument::Integral: {
1307    Expr *E
1308      = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
1309    return TemplateArgumentLoc(TemplateArgument(E), E);
1310  }
1311
1312  case TemplateArgument::Template:
1313    return TemplateArgumentLoc(Arg, SourceRange(), Loc);
1314
1315  case TemplateArgument::Expression:
1316    return TemplateArgumentLoc(Arg, Arg.getAsExpr());
1317
1318  case TemplateArgument::Pack:
1319    llvm_unreachable("Template parameter packs are not yet supported");
1320  }
1321
1322  return TemplateArgumentLoc();
1323}
1324
1325/// \brief Finish template argument deduction for a function template,
1326/// checking the deduced template arguments for completeness and forming
1327/// the function template specialization.
1328Sema::TemplateDeductionResult
1329Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
1330                       llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1331                                      unsigned NumExplicitlySpecified,
1332                                      FunctionDecl *&Specialization,
1333                                      TemplateDeductionInfo &Info) {
1334  TemplateParameterList *TemplateParams
1335    = FunctionTemplate->getTemplateParameters();
1336
1337  // Template argument deduction for function templates in a SFINAE context.
1338  // Trap any errors that might occur.
1339  SFINAETrap Trap(*this);
1340
1341  // Enter a new template instantiation context while we instantiate the
1342  // actual function declaration.
1343  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1344                             FunctionTemplate, Deduced.data(), Deduced.size(),
1345              ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution);
1346  if (Inst)
1347    return TDK_InstantiationDepth;
1348
1349  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
1350
1351  // C++ [temp.deduct.type]p2:
1352  //   [...] or if any template argument remains neither deduced nor
1353  //   explicitly specified, template argument deduction fails.
1354  TemplateArgumentListBuilder Builder(TemplateParams, Deduced.size());
1355  for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
1356    NamedDecl *Param = FunctionTemplate->getTemplateParameters()->getParam(I);
1357    if (!Deduced[I].isNull()) {
1358      if (I < NumExplicitlySpecified ||
1359          Deduced[I].getKind() == TemplateArgument::Type) {
1360        // We have already fully type-checked and converted this
1361        // argument (because it was explicitly-specified) or no
1362        // additional checking is necessary (because it's a template
1363        // type parameter). Just record the presence of this
1364        // parameter.
1365        Builder.Append(Deduced[I]);
1366        continue;
1367      }
1368
1369      // We have deduced this argument, so it still needs to be
1370      // checked and converted.
1371
1372      // First, for a non-type template parameter type that is
1373      // initialized by a declaration, we need the type of the
1374      // corresponding non-type template parameter.
1375      QualType NTTPType;
1376      if (NonTypeTemplateParmDecl *NTTP
1377                                = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1378        if (Deduced[I].getKind() == TemplateArgument::Declaration) {
1379          NTTPType = NTTP->getType();
1380          if (NTTPType->isDependentType()) {
1381            TemplateArgumentList TemplateArgs(Context, Builder,
1382                                              /*TakeArgs=*/false);
1383            NTTPType = SubstType(NTTPType,
1384                                 MultiLevelTemplateArgumentList(TemplateArgs),
1385                                 NTTP->getLocation(),
1386                                 NTTP->getDeclName());
1387            if (NTTPType.isNull()) {
1388              Info.Param = makeTemplateParameter(Param);
1389              Info.reset(new (Context) TemplateArgumentList(Context, Builder,
1390                                                            /*TakeArgs=*/true));
1391              return TDK_SubstitutionFailure;
1392            }
1393          }
1394        }
1395      }
1396
1397      // Convert the deduced template argument into a template
1398      // argument that we can check, almost as if the user had written
1399      // the template argument explicitly.
1400      TemplateArgumentLoc Arg = getTrivialTemplateArgumentLoc(*this,
1401                                                              Deduced[I],
1402                                                              NTTPType,
1403                                                           SourceLocation());
1404
1405      // Check the template argument, converting it as necessary.
1406      if (CheckTemplateArgument(Param, Arg,
1407                                FunctionTemplate,
1408                                FunctionTemplate->getLocation(),
1409                                FunctionTemplate->getSourceRange().getEnd(),
1410                                Builder,
1411                                Deduced[I].wasDeducedFromArrayBound()
1412                                  ? CTAK_DeducedFromArrayBound
1413                                  : CTAK_Deduced)) {
1414        Info.Param = makeTemplateParameter(
1415                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1416        Info.reset(new (Context) TemplateArgumentList(Context, Builder,
1417                                                      /*TakeArgs=*/true));
1418        return TDK_SubstitutionFailure;
1419      }
1420
1421      continue;
1422    }
1423
1424    // Substitute into the default template argument, if available.
1425    TemplateArgumentLoc DefArg
1426      = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
1427                                              FunctionTemplate->getLocation(),
1428                                  FunctionTemplate->getSourceRange().getEnd(),
1429                                                Param,
1430                                                Builder);
1431
1432    // If there was no default argument, deduction is incomplete.
1433    if (DefArg.getArgument().isNull()) {
1434      Info.Param = makeTemplateParameter(
1435                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1436      return TDK_Incomplete;
1437    }
1438
1439    // Check whether we can actually use the default argument.
1440    if (CheckTemplateArgument(Param, DefArg,
1441                              FunctionTemplate,
1442                              FunctionTemplate->getLocation(),
1443                              FunctionTemplate->getSourceRange().getEnd(),
1444                              Builder,
1445                              CTAK_Deduced)) {
1446      Info.Param = makeTemplateParameter(
1447                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1448      Info.reset(new (Context) TemplateArgumentList(Context, Builder,
1449                                                    /*TakeArgs=*/true));
1450      return TDK_SubstitutionFailure;
1451    }
1452
1453    // If we get here, we successfully used the default template argument.
1454  }
1455
1456  // Form the template argument list from the deduced template arguments.
1457  TemplateArgumentList *DeducedArgumentList
1458    = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
1459  Info.reset(DeducedArgumentList);
1460
1461  // Substitute the deduced template arguments into the function template
1462  // declaration to produce the function template specialization.
1463  DeclContext *Owner = FunctionTemplate->getDeclContext();
1464  if (FunctionTemplate->getFriendObjectKind())
1465    Owner = FunctionTemplate->getLexicalDeclContext();
1466  Specialization = cast_or_null<FunctionDecl>(
1467                      SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
1468                         MultiLevelTemplateArgumentList(*DeducedArgumentList)));
1469  if (!Specialization)
1470    return TDK_SubstitutionFailure;
1471
1472  assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
1473         FunctionTemplate->getCanonicalDecl());
1474
1475  // If the template argument list is owned by the function template
1476  // specialization, release it.
1477  if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
1478      !Trap.hasErrorOccurred())
1479    Info.take();
1480
1481  // There may have been an error that did not prevent us from constructing a
1482  // declaration. Mark the declaration invalid and return with a substitution
1483  // failure.
1484  if (Trap.hasErrorOccurred()) {
1485    Specialization->setInvalidDecl(true);
1486    return TDK_SubstitutionFailure;
1487  }
1488
1489  return TDK_Success;
1490}
1491
1492static QualType GetTypeOfFunction(ASTContext &Context,
1493                                  bool isAddressOfOperand,
1494                                  FunctionDecl *Fn) {
1495  if (!isAddressOfOperand) return Fn->getType();
1496  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
1497    if (Method->isInstance())
1498      return Context.getMemberPointerType(Fn->getType(),
1499               Context.getTypeDeclType(Method->getParent()).getTypePtr());
1500  return Context.getPointerType(Fn->getType());
1501}
1502
1503/// Apply the deduction rules for overload sets.
1504///
1505/// \return the null type if this argument should be treated as an
1506/// undeduced context
1507static QualType
1508ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
1509                            Expr *Arg, QualType ParamType) {
1510  llvm::PointerIntPair<OverloadExpr*,1> R = OverloadExpr::find(Arg);
1511
1512  bool isAddressOfOperand = bool(R.getInt());
1513  OverloadExpr *Ovl = R.getPointer();
1514
1515  // If there were explicit template arguments, we can only find
1516  // something via C++ [temp.arg.explicit]p3, i.e. if the arguments
1517  // unambiguously name a full specialization.
1518  if (Ovl->hasExplicitTemplateArgs()) {
1519    // But we can still look for an explicit specialization.
1520    if (FunctionDecl *ExplicitSpec
1521          = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
1522      return GetTypeOfFunction(S.Context, isAddressOfOperand, ExplicitSpec);
1523    return QualType();
1524  }
1525
1526  // C++0x [temp.deduct.call]p6:
1527  //   When P is a function type, pointer to function type, or pointer
1528  //   to member function type:
1529
1530  if (!ParamType->isFunctionType() &&
1531      !ParamType->isFunctionPointerType() &&
1532      !ParamType->isMemberFunctionPointerType())
1533    return QualType();
1534
1535  QualType Match;
1536  for (UnresolvedSetIterator I = Ovl->decls_begin(),
1537         E = Ovl->decls_end(); I != E; ++I) {
1538    NamedDecl *D = (*I)->getUnderlyingDecl();
1539
1540    //   - If the argument is an overload set containing one or more
1541    //     function templates, the parameter is treated as a
1542    //     non-deduced context.
1543    if (isa<FunctionTemplateDecl>(D))
1544      return QualType();
1545
1546    FunctionDecl *Fn = cast<FunctionDecl>(D);
1547    QualType ArgType = GetTypeOfFunction(S.Context, isAddressOfOperand, Fn);
1548
1549    //   - If the argument is an overload set (not containing function
1550    //     templates), trial argument deduction is attempted using each
1551    //     of the members of the set. If deduction succeeds for only one
1552    //     of the overload set members, that member is used as the
1553    //     argument value for the deduction. If deduction succeeds for
1554    //     more than one member of the overload set the parameter is
1555    //     treated as a non-deduced context.
1556
1557    // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
1558    //   Type deduction is done independently for each P/A pair, and
1559    //   the deduced template argument values are then combined.
1560    // So we do not reject deductions which were made elsewhere.
1561    llvm::SmallVector<DeducedTemplateArgument, 8>
1562      Deduced(TemplateParams->size());
1563    Sema::TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
1564    unsigned TDF = 0;
1565
1566    Sema::TemplateDeductionResult Result
1567      = DeduceTemplateArguments(S, TemplateParams,
1568                                ParamType, ArgType,
1569                                Info, Deduced, TDF);
1570    if (Result) continue;
1571    if (!Match.isNull()) return QualType();
1572    Match = ArgType;
1573  }
1574
1575  return Match;
1576}
1577
1578/// \brief Perform template argument deduction from a function call
1579/// (C++ [temp.deduct.call]).
1580///
1581/// \param FunctionTemplate the function template for which we are performing
1582/// template argument deduction.
1583///
1584/// \param ExplicitTemplateArguments the explicit template arguments provided
1585/// for this call.
1586///
1587/// \param Args the function call arguments
1588///
1589/// \param NumArgs the number of arguments in Args
1590///
1591/// \param Name the name of the function being called. This is only significant
1592/// when the function template is a conversion function template, in which
1593/// case this routine will also perform template argument deduction based on
1594/// the function to which
1595///
1596/// \param Specialization if template argument deduction was successful,
1597/// this will be set to the function template specialization produced by
1598/// template argument deduction.
1599///
1600/// \param Info the argument will be updated to provide additional information
1601/// about template argument deduction.
1602///
1603/// \returns the result of template argument deduction.
1604Sema::TemplateDeductionResult
1605Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1606                          const TemplateArgumentListInfo *ExplicitTemplateArgs,
1607                              Expr **Args, unsigned NumArgs,
1608                              FunctionDecl *&Specialization,
1609                              TemplateDeductionInfo &Info) {
1610  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1611
1612  // C++ [temp.deduct.call]p1:
1613  //   Template argument deduction is done by comparing each function template
1614  //   parameter type (call it P) with the type of the corresponding argument
1615  //   of the call (call it A) as described below.
1616  unsigned CheckArgs = NumArgs;
1617  if (NumArgs < Function->getMinRequiredArguments())
1618    return TDK_TooFewArguments;
1619  else if (NumArgs > Function->getNumParams()) {
1620    const FunctionProtoType *Proto
1621      = Function->getType()->getAs<FunctionProtoType>();
1622    if (!Proto->isVariadic())
1623      return TDK_TooManyArguments;
1624
1625    CheckArgs = Function->getNumParams();
1626  }
1627
1628  // The types of the parameters from which we will perform template argument
1629  // deduction.
1630  Sema::LocalInstantiationScope InstScope(*this);
1631  TemplateParameterList *TemplateParams
1632    = FunctionTemplate->getTemplateParameters();
1633  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1634  llvm::SmallVector<QualType, 4> ParamTypes;
1635  unsigned NumExplicitlySpecified = 0;
1636  if (ExplicitTemplateArgs) {
1637    TemplateDeductionResult Result =
1638      SubstituteExplicitTemplateArguments(FunctionTemplate,
1639                                          *ExplicitTemplateArgs,
1640                                          Deduced,
1641                                          ParamTypes,
1642                                          0,
1643                                          Info);
1644    if (Result)
1645      return Result;
1646
1647    NumExplicitlySpecified = Deduced.size();
1648  } else {
1649    // Just fill in the parameter types from the function declaration.
1650    for (unsigned I = 0; I != CheckArgs; ++I)
1651      ParamTypes.push_back(Function->getParamDecl(I)->getType());
1652  }
1653
1654  // Deduce template arguments from the function parameters.
1655  Deduced.resize(TemplateParams->size());
1656  for (unsigned I = 0; I != CheckArgs; ++I) {
1657    QualType ParamType = ParamTypes[I];
1658    QualType ArgType = Args[I]->getType();
1659
1660    // Overload sets usually make this parameter an undeduced
1661    // context, but there are sometimes special circumstances.
1662    if (ArgType == Context.OverloadTy) {
1663      ArgType = ResolveOverloadForDeduction(*this, TemplateParams,
1664                                            Args[I], ParamType);
1665      if (ArgType.isNull())
1666        continue;
1667    }
1668
1669    // C++ [temp.deduct.call]p2:
1670    //   If P is not a reference type:
1671    QualType CanonParamType = Context.getCanonicalType(ParamType);
1672    bool ParamWasReference = isa<ReferenceType>(CanonParamType);
1673    if (!ParamWasReference) {
1674      //   - If A is an array type, the pointer type produced by the
1675      //     array-to-pointer standard conversion (4.2) is used in place of
1676      //     A for type deduction; otherwise,
1677      if (ArgType->isArrayType())
1678        ArgType = Context.getArrayDecayedType(ArgType);
1679      //   - If A is a function type, the pointer type produced by the
1680      //     function-to-pointer standard conversion (4.3) is used in place
1681      //     of A for type deduction; otherwise,
1682      else if (ArgType->isFunctionType())
1683        ArgType = Context.getPointerType(ArgType);
1684      else {
1685        // - If A is a cv-qualified type, the top level cv-qualifiers of A’s
1686        //   type are ignored for type deduction.
1687        QualType CanonArgType = Context.getCanonicalType(ArgType);
1688        if (CanonArgType.getLocalCVRQualifiers())
1689          ArgType = CanonArgType.getLocalUnqualifiedType();
1690      }
1691    }
1692
1693    // C++0x [temp.deduct.call]p3:
1694    //   If P is a cv-qualified type, the top level cv-qualifiers of P’s type
1695    //   are ignored for type deduction.
1696    if (CanonParamType.getLocalCVRQualifiers())
1697      ParamType = CanonParamType.getLocalUnqualifiedType();
1698    if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
1699      //   [...] If P is a reference type, the type referred to by P is used
1700      //   for type deduction.
1701      ParamType = ParamRefType->getPointeeType();
1702
1703      //   [...] If P is of the form T&&, where T is a template parameter, and
1704      //   the argument is an lvalue, the type A& is used in place of A for
1705      //   type deduction.
1706      if (isa<RValueReferenceType>(ParamRefType) &&
1707          ParamRefType->getAs<TemplateTypeParmType>() &&
1708          Args[I]->isLvalue(Context) == Expr::LV_Valid)
1709        ArgType = Context.getLValueReferenceType(ArgType);
1710    }
1711
1712    // C++0x [temp.deduct.call]p4:
1713    //   In general, the deduction process attempts to find template argument
1714    //   values that will make the deduced A identical to A (after the type A
1715    //   is transformed as described above). [...]
1716    unsigned TDF = TDF_SkipNonDependent;
1717
1718    //     - If the original P is a reference type, the deduced A (i.e., the
1719    //       type referred to by the reference) can be more cv-qualified than
1720    //       the transformed A.
1721    if (ParamWasReference)
1722      TDF |= TDF_ParamWithReferenceType;
1723    //     - The transformed A can be another pointer or pointer to member
1724    //       type that can be converted to the deduced A via a qualification
1725    //       conversion (4.4).
1726    if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
1727        ArgType->isObjCObjectPointerType())
1728      TDF |= TDF_IgnoreQualifiers;
1729    //     - If P is a class and P has the form simple-template-id, then the
1730    //       transformed A can be a derived class of the deduced A. Likewise,
1731    //       if P is a pointer to a class of the form simple-template-id, the
1732    //       transformed A can be a pointer to a derived class pointed to by
1733    //       the deduced A.
1734    if (isSimpleTemplateIdType(ParamType) ||
1735        (isa<PointerType>(ParamType) &&
1736         isSimpleTemplateIdType(
1737                              ParamType->getAs<PointerType>()->getPointeeType())))
1738      TDF |= TDF_DerivedClass;
1739
1740    if (TemplateDeductionResult Result
1741        = ::DeduceTemplateArguments(*this, TemplateParams,
1742                                    ParamType, ArgType, Info, Deduced,
1743                                    TDF))
1744      return Result;
1745
1746    // FIXME: we need to check that the deduced A is the same as A,
1747    // modulo the various allowed differences.
1748  }
1749
1750  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
1751                                         NumExplicitlySpecified,
1752                                         Specialization, Info);
1753}
1754
1755/// \brief Deduce template arguments when taking the address of a function
1756/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
1757/// a template.
1758///
1759/// \param FunctionTemplate the function template for which we are performing
1760/// template argument deduction.
1761///
1762/// \param ExplicitTemplateArguments the explicitly-specified template
1763/// arguments.
1764///
1765/// \param ArgFunctionType the function type that will be used as the
1766/// "argument" type (A) when performing template argument deduction from the
1767/// function template's function type. This type may be NULL, if there is no
1768/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
1769///
1770/// \param Specialization if template argument deduction was successful,
1771/// this will be set to the function template specialization produced by
1772/// template argument deduction.
1773///
1774/// \param Info the argument will be updated to provide additional information
1775/// about template argument deduction.
1776///
1777/// \returns the result of template argument deduction.
1778Sema::TemplateDeductionResult
1779Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1780                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
1781                              QualType ArgFunctionType,
1782                              FunctionDecl *&Specialization,
1783                              TemplateDeductionInfo &Info) {
1784  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1785  TemplateParameterList *TemplateParams
1786    = FunctionTemplate->getTemplateParameters();
1787  QualType FunctionType = Function->getType();
1788
1789  // Substitute any explicit template arguments.
1790  Sema::LocalInstantiationScope InstScope(*this);
1791  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1792  unsigned NumExplicitlySpecified = 0;
1793  llvm::SmallVector<QualType, 4> ParamTypes;
1794  if (ExplicitTemplateArgs) {
1795    if (TemplateDeductionResult Result
1796          = SubstituteExplicitTemplateArguments(FunctionTemplate,
1797                                                *ExplicitTemplateArgs,
1798                                                Deduced, ParamTypes,
1799                                                &FunctionType, Info))
1800      return Result;
1801
1802    NumExplicitlySpecified = Deduced.size();
1803  }
1804
1805  // Template argument deduction for function templates in a SFINAE context.
1806  // Trap any errors that might occur.
1807  SFINAETrap Trap(*this);
1808
1809  Deduced.resize(TemplateParams->size());
1810
1811  if (!ArgFunctionType.isNull()) {
1812    // Deduce template arguments from the function type.
1813    if (TemplateDeductionResult Result
1814          = ::DeduceTemplateArguments(*this, TemplateParams,
1815                                      FunctionType, ArgFunctionType, Info,
1816                                      Deduced, 0))
1817      return Result;
1818  }
1819
1820  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
1821                                         NumExplicitlySpecified,
1822                                         Specialization, Info);
1823}
1824
1825/// \brief Deduce template arguments for a templated conversion
1826/// function (C++ [temp.deduct.conv]) and, if successful, produce a
1827/// conversion function template specialization.
1828Sema::TemplateDeductionResult
1829Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1830                              QualType ToType,
1831                              CXXConversionDecl *&Specialization,
1832                              TemplateDeductionInfo &Info) {
1833  CXXConversionDecl *Conv
1834    = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
1835  QualType FromType = Conv->getConversionType();
1836
1837  // Canonicalize the types for deduction.
1838  QualType P = Context.getCanonicalType(FromType);
1839  QualType A = Context.getCanonicalType(ToType);
1840
1841  // C++0x [temp.deduct.conv]p3:
1842  //   If P is a reference type, the type referred to by P is used for
1843  //   type deduction.
1844  if (const ReferenceType *PRef = P->getAs<ReferenceType>())
1845    P = PRef->getPointeeType();
1846
1847  // C++0x [temp.deduct.conv]p3:
1848  //   If A is a reference type, the type referred to by A is used
1849  //   for type deduction.
1850  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
1851    A = ARef->getPointeeType();
1852  // C++ [temp.deduct.conv]p2:
1853  //
1854  //   If A is not a reference type:
1855  else {
1856    assert(!A->isReferenceType() && "Reference types were handled above");
1857
1858    //   - If P is an array type, the pointer type produced by the
1859    //     array-to-pointer standard conversion (4.2) is used in place
1860    //     of P for type deduction; otherwise,
1861    if (P->isArrayType())
1862      P = Context.getArrayDecayedType(P);
1863    //   - If P is a function type, the pointer type produced by the
1864    //     function-to-pointer standard conversion (4.3) is used in
1865    //     place of P for type deduction; otherwise,
1866    else if (P->isFunctionType())
1867      P = Context.getPointerType(P);
1868    //   - If P is a cv-qualified type, the top level cv-qualifiers of
1869    //     P’s type are ignored for type deduction.
1870    else
1871      P = P.getUnqualifiedType();
1872
1873    // C++0x [temp.deduct.conv]p3:
1874    //   If A is a cv-qualified type, the top level cv-qualifiers of A’s
1875    //   type are ignored for type deduction.
1876    A = A.getUnqualifiedType();
1877  }
1878
1879  // Template argument deduction for function templates in a SFINAE context.
1880  // Trap any errors that might occur.
1881  SFINAETrap Trap(*this);
1882
1883  // C++ [temp.deduct.conv]p1:
1884  //   Template argument deduction is done by comparing the return
1885  //   type of the template conversion function (call it P) with the
1886  //   type that is required as the result of the conversion (call it
1887  //   A) as described in 14.8.2.4.
1888  TemplateParameterList *TemplateParams
1889    = FunctionTemplate->getTemplateParameters();
1890  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1891  Deduced.resize(TemplateParams->size());
1892
1893  // C++0x [temp.deduct.conv]p4:
1894  //   In general, the deduction process attempts to find template
1895  //   argument values that will make the deduced A identical to
1896  //   A. However, there are two cases that allow a difference:
1897  unsigned TDF = 0;
1898  //     - If the original A is a reference type, A can be more
1899  //       cv-qualified than the deduced A (i.e., the type referred to
1900  //       by the reference)
1901  if (ToType->isReferenceType())
1902    TDF |= TDF_ParamWithReferenceType;
1903  //     - The deduced A can be another pointer or pointer to member
1904  //       type that can be converted to A via a qualification
1905  //       conversion.
1906  //
1907  // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
1908  // both P and A are pointers or member pointers. In this case, we
1909  // just ignore cv-qualifiers completely).
1910  if ((P->isPointerType() && A->isPointerType()) ||
1911      (P->isMemberPointerType() && P->isMemberPointerType()))
1912    TDF |= TDF_IgnoreQualifiers;
1913  if (TemplateDeductionResult Result
1914        = ::DeduceTemplateArguments(*this, TemplateParams,
1915                                    P, A, Info, Deduced, TDF))
1916    return Result;
1917
1918  // FIXME: we need to check that the deduced A is the same as A,
1919  // modulo the various allowed differences.
1920
1921  // Finish template argument deduction.
1922  Sema::LocalInstantiationScope InstScope(*this);
1923  FunctionDecl *Spec = 0;
1924  TemplateDeductionResult Result
1925    = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
1926                                      Info);
1927  Specialization = cast_or_null<CXXConversionDecl>(Spec);
1928  return Result;
1929}
1930
1931/// \brief Deduce template arguments for a function template when there is
1932/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
1933///
1934/// \param FunctionTemplate the function template for which we are performing
1935/// template argument deduction.
1936///
1937/// \param ExplicitTemplateArguments the explicitly-specified template
1938/// arguments.
1939///
1940/// \param Specialization if template argument deduction was successful,
1941/// this will be set to the function template specialization produced by
1942/// template argument deduction.
1943///
1944/// \param Info the argument will be updated to provide additional information
1945/// about template argument deduction.
1946///
1947/// \returns the result of template argument deduction.
1948Sema::TemplateDeductionResult
1949Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1950                           const TemplateArgumentListInfo *ExplicitTemplateArgs,
1951                              FunctionDecl *&Specialization,
1952                              TemplateDeductionInfo &Info) {
1953  return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
1954                                 QualType(), Specialization, Info);
1955}
1956
1957/// \brief Stores the result of comparing the qualifiers of two types.
1958enum DeductionQualifierComparison {
1959  NeitherMoreQualified = 0,
1960  ParamMoreQualified,
1961  ArgMoreQualified
1962};
1963
1964/// \brief Deduce the template arguments during partial ordering by comparing
1965/// the parameter type and the argument type (C++0x [temp.deduct.partial]).
1966///
1967/// \param S the semantic analysis object within which we are deducing
1968///
1969/// \param TemplateParams the template parameters that we are deducing
1970///
1971/// \param ParamIn the parameter type
1972///
1973/// \param ArgIn the argument type
1974///
1975/// \param Info information about the template argument deduction itself
1976///
1977/// \param Deduced the deduced template arguments
1978///
1979/// \returns the result of template argument deduction so far. Note that a
1980/// "success" result means that template argument deduction has not yet failed,
1981/// but it may still fail, later, for other reasons.
1982static Sema::TemplateDeductionResult
1983DeduceTemplateArgumentsDuringPartialOrdering(Sema &S,
1984                                        TemplateParameterList *TemplateParams,
1985                                             QualType ParamIn, QualType ArgIn,
1986                                             Sema::TemplateDeductionInfo &Info,
1987                      llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1988   llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
1989  CanQualType Param = S.Context.getCanonicalType(ParamIn);
1990  CanQualType Arg = S.Context.getCanonicalType(ArgIn);
1991
1992  // C++0x [temp.deduct.partial]p5:
1993  //   Before the partial ordering is done, certain transformations are
1994  //   performed on the types used for partial ordering:
1995  //     - If P is a reference type, P is replaced by the type referred to.
1996  CanQual<ReferenceType> ParamRef = Param->getAs<ReferenceType>();
1997  if (!ParamRef.isNull())
1998    Param = ParamRef->getPointeeType();
1999
2000  //     - If A is a reference type, A is replaced by the type referred to.
2001  CanQual<ReferenceType> ArgRef = Arg->getAs<ReferenceType>();
2002  if (!ArgRef.isNull())
2003    Arg = ArgRef->getPointeeType();
2004
2005  if (QualifierComparisons && !ParamRef.isNull() && !ArgRef.isNull()) {
2006    // C++0x [temp.deduct.partial]p6:
2007    //   If both P and A were reference types (before being replaced with the
2008    //   type referred to above), determine which of the two types (if any) is
2009    //   more cv-qualified than the other; otherwise the types are considered to
2010    //   be equally cv-qualified for partial ordering purposes. The result of this
2011    //   determination will be used below.
2012    //
2013    // We save this information for later, using it only when deduction
2014    // succeeds in both directions.
2015    DeductionQualifierComparison QualifierResult = NeitherMoreQualified;
2016    if (Param.isMoreQualifiedThan(Arg))
2017      QualifierResult = ParamMoreQualified;
2018    else if (Arg.isMoreQualifiedThan(Param))
2019      QualifierResult = ArgMoreQualified;
2020    QualifierComparisons->push_back(QualifierResult);
2021  }
2022
2023  // C++0x [temp.deduct.partial]p7:
2024  //   Remove any top-level cv-qualifiers:
2025  //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
2026  //       version of P.
2027  Param = Param.getUnqualifiedType();
2028  //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
2029  //       version of A.
2030  Arg = Arg.getUnqualifiedType();
2031
2032  // C++0x [temp.deduct.partial]p8:
2033  //   Using the resulting types P and A the deduction is then done as
2034  //   described in 14.9.2.5. If deduction succeeds for a given type, the type
2035  //   from the argument template is considered to be at least as specialized
2036  //   as the type from the parameter template.
2037  return DeduceTemplateArguments(S, TemplateParams, Param, Arg, Info,
2038                                 Deduced, TDF_None);
2039}
2040
2041static void
2042MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
2043                           bool OnlyDeduced,
2044                           unsigned Level,
2045                           llvm::SmallVectorImpl<bool> &Deduced);
2046
2047/// \brief Determine whether the function template \p FT1 is at least as
2048/// specialized as \p FT2.
2049static bool isAtLeastAsSpecializedAs(Sema &S,
2050                                     SourceLocation Loc,
2051                                     FunctionTemplateDecl *FT1,
2052                                     FunctionTemplateDecl *FT2,
2053                                     TemplatePartialOrderingContext TPOC,
2054    llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
2055  FunctionDecl *FD1 = FT1->getTemplatedDecl();
2056  FunctionDecl *FD2 = FT2->getTemplatedDecl();
2057  const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
2058  const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
2059
2060  assert(Proto1 && Proto2 && "Function templates must have prototypes");
2061  TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
2062  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2063  Deduced.resize(TemplateParams->size());
2064
2065  // C++0x [temp.deduct.partial]p3:
2066  //   The types used to determine the ordering depend on the context in which
2067  //   the partial ordering is done:
2068  Sema::TemplateDeductionInfo Info(S.Context, Loc);
2069  switch (TPOC) {
2070  case TPOC_Call: {
2071    //   - In the context of a function call, the function parameter types are
2072    //     used.
2073    unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
2074    for (unsigned I = 0; I != NumParams; ++I)
2075      if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2076                                                       TemplateParams,
2077                                                       Proto2->getArgType(I),
2078                                                       Proto1->getArgType(I),
2079                                                       Info,
2080                                                       Deduced,
2081                                                       QualifierComparisons))
2082        return false;
2083
2084    break;
2085  }
2086
2087  case TPOC_Conversion:
2088    //   - In the context of a call to a conversion operator, the return types
2089    //     of the conversion function templates are used.
2090    if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2091                                                     TemplateParams,
2092                                                     Proto2->getResultType(),
2093                                                     Proto1->getResultType(),
2094                                                     Info,
2095                                                     Deduced,
2096                                                     QualifierComparisons))
2097      return false;
2098    break;
2099
2100  case TPOC_Other:
2101    //   - In other contexts (14.6.6.2) the function template’s function type
2102    //     is used.
2103    if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2104                                                     TemplateParams,
2105                                                     FD2->getType(),
2106                                                     FD1->getType(),
2107                                                     Info,
2108                                                     Deduced,
2109                                                     QualifierComparisons))
2110      return false;
2111    break;
2112  }
2113
2114  // C++0x [temp.deduct.partial]p11:
2115  //   In most cases, all template parameters must have values in order for
2116  //   deduction to succeed, but for partial ordering purposes a template
2117  //   parameter may remain without a value provided it is not used in the
2118  //   types being used for partial ordering. [ Note: a template parameter used
2119  //   in a non-deduced context is considered used. -end note]
2120  unsigned ArgIdx = 0, NumArgs = Deduced.size();
2121  for (; ArgIdx != NumArgs; ++ArgIdx)
2122    if (Deduced[ArgIdx].isNull())
2123      break;
2124
2125  if (ArgIdx == NumArgs) {
2126    // All template arguments were deduced. FT1 is at least as specialized
2127    // as FT2.
2128    return true;
2129  }
2130
2131  // Figure out which template parameters were used.
2132  llvm::SmallVector<bool, 4> UsedParameters;
2133  UsedParameters.resize(TemplateParams->size());
2134  switch (TPOC) {
2135  case TPOC_Call: {
2136    unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
2137    for (unsigned I = 0; I != NumParams; ++I)
2138      ::MarkUsedTemplateParameters(S, Proto2->getArgType(I), false,
2139                                   TemplateParams->getDepth(),
2140                                   UsedParameters);
2141    break;
2142  }
2143
2144  case TPOC_Conversion:
2145    ::MarkUsedTemplateParameters(S, Proto2->getResultType(), false,
2146                                 TemplateParams->getDepth(),
2147                                 UsedParameters);
2148    break;
2149
2150  case TPOC_Other:
2151    ::MarkUsedTemplateParameters(S, FD2->getType(), false,
2152                                 TemplateParams->getDepth(),
2153                                 UsedParameters);
2154    break;
2155  }
2156
2157  for (; ArgIdx != NumArgs; ++ArgIdx)
2158    // If this argument had no value deduced but was used in one of the types
2159    // used for partial ordering, then deduction fails.
2160    if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
2161      return false;
2162
2163  return true;
2164}
2165
2166
2167/// \brief Returns the more specialized function template according
2168/// to the rules of function template partial ordering (C++ [temp.func.order]).
2169///
2170/// \param FT1 the first function template
2171///
2172/// \param FT2 the second function template
2173///
2174/// \param TPOC the context in which we are performing partial ordering of
2175/// function templates.
2176///
2177/// \returns the more specialized function template. If neither
2178/// template is more specialized, returns NULL.
2179FunctionTemplateDecl *
2180Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
2181                                 FunctionTemplateDecl *FT2,
2182                                 SourceLocation Loc,
2183                                 TemplatePartialOrderingContext TPOC) {
2184  llvm::SmallVector<DeductionQualifierComparison, 4> QualifierComparisons;
2185  bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 0);
2186  bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
2187                                          &QualifierComparisons);
2188
2189  if (Better1 != Better2) // We have a clear winner
2190    return Better1? FT1 : FT2;
2191
2192  if (!Better1 && !Better2) // Neither is better than the other
2193    return 0;
2194
2195
2196  // C++0x [temp.deduct.partial]p10:
2197  //   If for each type being considered a given template is at least as
2198  //   specialized for all types and more specialized for some set of types and
2199  //   the other template is not more specialized for any types or is not at
2200  //   least as specialized for any types, then the given template is more
2201  //   specialized than the other template. Otherwise, neither template is more
2202  //   specialized than the other.
2203  Better1 = false;
2204  Better2 = false;
2205  for (unsigned I = 0, N = QualifierComparisons.size(); I != N; ++I) {
2206    // C++0x [temp.deduct.partial]p9:
2207    //   If, for a given type, deduction succeeds in both directions (i.e., the
2208    //   types are identical after the transformations above) and if the type
2209    //   from the argument template is more cv-qualified than the type from the
2210    //   parameter template (as described above) that type is considered to be
2211    //   more specialized than the other. If neither type is more cv-qualified
2212    //   than the other then neither type is more specialized than the other.
2213    switch (QualifierComparisons[I]) {
2214      case NeitherMoreQualified:
2215        break;
2216
2217      case ParamMoreQualified:
2218        Better1 = true;
2219        if (Better2)
2220          return 0;
2221        break;
2222
2223      case ArgMoreQualified:
2224        Better2 = true;
2225        if (Better1)
2226          return 0;
2227        break;
2228    }
2229  }
2230
2231  assert(!(Better1 && Better2) && "Should have broken out in the loop above");
2232  if (Better1)
2233    return FT1;
2234  else if (Better2)
2235    return FT2;
2236  else
2237    return 0;
2238}
2239
2240/// \brief Determine if the two templates are equivalent.
2241static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
2242  if (T1 == T2)
2243    return true;
2244
2245  if (!T1 || !T2)
2246    return false;
2247
2248  return T1->getCanonicalDecl() == T2->getCanonicalDecl();
2249}
2250
2251/// \brief Retrieve the most specialized of the given function template
2252/// specializations.
2253///
2254/// \param SpecBegin the start iterator of the function template
2255/// specializations that we will be comparing.
2256///
2257/// \param SpecEnd the end iterator of the function template
2258/// specializations, paired with \p SpecBegin.
2259///
2260/// \param TPOC the partial ordering context to use to compare the function
2261/// template specializations.
2262///
2263/// \param Loc the location where the ambiguity or no-specializations
2264/// diagnostic should occur.
2265///
2266/// \param NoneDiag partial diagnostic used to diagnose cases where there are
2267/// no matching candidates.
2268///
2269/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
2270/// occurs.
2271///
2272/// \param CandidateDiag partial diagnostic used for each function template
2273/// specialization that is a candidate in the ambiguous ordering. One parameter
2274/// in this diagnostic should be unbound, which will correspond to the string
2275/// describing the template arguments for the function template specialization.
2276///
2277/// \param Index if non-NULL and the result of this function is non-nULL,
2278/// receives the index corresponding to the resulting function template
2279/// specialization.
2280///
2281/// \returns the most specialized function template specialization, if
2282/// found. Otherwise, returns SpecEnd.
2283///
2284/// \todo FIXME: Consider passing in the "also-ran" candidates that failed
2285/// template argument deduction.
2286UnresolvedSetIterator
2287Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
2288                         UnresolvedSetIterator SpecEnd,
2289                         TemplatePartialOrderingContext TPOC,
2290                         SourceLocation Loc,
2291                         const PartialDiagnostic &NoneDiag,
2292                         const PartialDiagnostic &AmbigDiag,
2293                         const PartialDiagnostic &CandidateDiag) {
2294  if (SpecBegin == SpecEnd) {
2295    Diag(Loc, NoneDiag);
2296    return SpecEnd;
2297  }
2298
2299  if (SpecBegin + 1 == SpecEnd)
2300    return SpecBegin;
2301
2302  // Find the function template that is better than all of the templates it
2303  // has been compared to.
2304  UnresolvedSetIterator Best = SpecBegin;
2305  FunctionTemplateDecl *BestTemplate
2306    = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
2307  assert(BestTemplate && "Not a function template specialization?");
2308  for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
2309    FunctionTemplateDecl *Challenger
2310      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
2311    assert(Challenger && "Not a function template specialization?");
2312    if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
2313                                                  Loc, TPOC),
2314                       Challenger)) {
2315      Best = I;
2316      BestTemplate = Challenger;
2317    }
2318  }
2319
2320  // Make sure that the "best" function template is more specialized than all
2321  // of the others.
2322  bool Ambiguous = false;
2323  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
2324    FunctionTemplateDecl *Challenger
2325      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
2326    if (I != Best &&
2327        !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
2328                                                   Loc, TPOC),
2329                        BestTemplate)) {
2330      Ambiguous = true;
2331      break;
2332    }
2333  }
2334
2335  if (!Ambiguous) {
2336    // We found an answer. Return it.
2337    return Best;
2338  }
2339
2340  // Diagnose the ambiguity.
2341  Diag(Loc, AmbigDiag);
2342
2343  // FIXME: Can we order the candidates in some sane way?
2344  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I)
2345    Diag((*I)->getLocation(), CandidateDiag)
2346      << getTemplateArgumentBindingsText(
2347        cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
2348                    *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
2349
2350  return SpecEnd;
2351}
2352
2353/// \brief Returns the more specialized class template partial specialization
2354/// according to the rules of partial ordering of class template partial
2355/// specializations (C++ [temp.class.order]).
2356///
2357/// \param PS1 the first class template partial specialization
2358///
2359/// \param PS2 the second class template partial specialization
2360///
2361/// \returns the more specialized class template partial specialization. If
2362/// neither partial specialization is more specialized, returns NULL.
2363ClassTemplatePartialSpecializationDecl *
2364Sema::getMoreSpecializedPartialSpecialization(
2365                                  ClassTemplatePartialSpecializationDecl *PS1,
2366                                  ClassTemplatePartialSpecializationDecl *PS2,
2367                                              SourceLocation Loc) {
2368  // C++ [temp.class.order]p1:
2369  //   For two class template partial specializations, the first is at least as
2370  //   specialized as the second if, given the following rewrite to two
2371  //   function templates, the first function template is at least as
2372  //   specialized as the second according to the ordering rules for function
2373  //   templates (14.6.6.2):
2374  //     - the first function template has the same template parameters as the
2375  //       first partial specialization and has a single function parameter
2376  //       whose type is a class template specialization with the template
2377  //       arguments of the first partial specialization, and
2378  //     - the second function template has the same template parameters as the
2379  //       second partial specialization and has a single function parameter
2380  //       whose type is a class template specialization with the template
2381  //       arguments of the second partial specialization.
2382  //
2383  // Rather than synthesize function templates, we merely perform the
2384  // equivalent partial ordering by performing deduction directly on
2385  // the template arguments of the class template partial
2386  // specializations. This computation is slightly simpler than the
2387  // general problem of function template partial ordering, because
2388  // class template partial specializations are more constrained. We
2389  // know that every template parameter is deducible from the class
2390  // template partial specialization's template arguments, for
2391  // example.
2392  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2393  Sema::TemplateDeductionInfo Info(Context, Loc);
2394
2395  QualType PT1 = PS1->getInjectedSpecializationType();
2396  QualType PT2 = PS2->getInjectedSpecializationType();
2397
2398  // Determine whether PS1 is at least as specialized as PS2
2399  Deduced.resize(PS2->getTemplateParameters()->size());
2400  bool Better1 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
2401                                                  PS2->getTemplateParameters(),
2402                                                               PT2,
2403                                                               PT1,
2404                                                               Info,
2405                                                               Deduced,
2406                                                               0);
2407  if (Better1)
2408    Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
2409                                                 PS1->getTemplateArgs(),
2410                                                 Deduced, Info);
2411
2412  // Determine whether PS2 is at least as specialized as PS1
2413  Deduced.clear();
2414  Deduced.resize(PS1->getTemplateParameters()->size());
2415  bool Better2 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
2416                                                  PS1->getTemplateParameters(),
2417                                                               PT1,
2418                                                               PT2,
2419                                                               Info,
2420                                                               Deduced,
2421                                                               0);
2422  if (Better2)
2423    Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
2424                                                 PS2->getTemplateArgs(),
2425                                                 Deduced, Info);
2426
2427  if (Better1 == Better2)
2428    return 0;
2429
2430  return Better1? PS1 : PS2;
2431}
2432
2433static void
2434MarkUsedTemplateParameters(Sema &SemaRef,
2435                           const TemplateArgument &TemplateArg,
2436                           bool OnlyDeduced,
2437                           unsigned Depth,
2438                           llvm::SmallVectorImpl<bool> &Used);
2439
2440/// \brief Mark the template parameters that are used by the given
2441/// expression.
2442static void
2443MarkUsedTemplateParameters(Sema &SemaRef,
2444                           const Expr *E,
2445                           bool OnlyDeduced,
2446                           unsigned Depth,
2447                           llvm::SmallVectorImpl<bool> &Used) {
2448  // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
2449  // find other occurrences of template parameters.
2450  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
2451  if (!DRE)
2452    return;
2453
2454  const NonTypeTemplateParmDecl *NTTP
2455    = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2456  if (!NTTP)
2457    return;
2458
2459  if (NTTP->getDepth() == Depth)
2460    Used[NTTP->getIndex()] = true;
2461}
2462
2463/// \brief Mark the template parameters that are used by the given
2464/// nested name specifier.
2465static void
2466MarkUsedTemplateParameters(Sema &SemaRef,
2467                           NestedNameSpecifier *NNS,
2468                           bool OnlyDeduced,
2469                           unsigned Depth,
2470                           llvm::SmallVectorImpl<bool> &Used) {
2471  if (!NNS)
2472    return;
2473
2474  MarkUsedTemplateParameters(SemaRef, NNS->getPrefix(), OnlyDeduced, Depth,
2475                             Used);
2476  MarkUsedTemplateParameters(SemaRef, QualType(NNS->getAsType(), 0),
2477                             OnlyDeduced, Depth, Used);
2478}
2479
2480/// \brief Mark the template parameters that are used by the given
2481/// template name.
2482static void
2483MarkUsedTemplateParameters(Sema &SemaRef,
2484                           TemplateName Name,
2485                           bool OnlyDeduced,
2486                           unsigned Depth,
2487                           llvm::SmallVectorImpl<bool> &Used) {
2488  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2489    if (TemplateTemplateParmDecl *TTP
2490          = dyn_cast<TemplateTemplateParmDecl>(Template)) {
2491      if (TTP->getDepth() == Depth)
2492        Used[TTP->getIndex()] = true;
2493    }
2494    return;
2495  }
2496
2497  if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
2498    MarkUsedTemplateParameters(SemaRef, QTN->getQualifier(), OnlyDeduced,
2499                               Depth, Used);
2500  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
2501    MarkUsedTemplateParameters(SemaRef, DTN->getQualifier(), OnlyDeduced,
2502                               Depth, Used);
2503}
2504
2505/// \brief Mark the template parameters that are used by the given
2506/// type.
2507static void
2508MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
2509                           bool OnlyDeduced,
2510                           unsigned Depth,
2511                           llvm::SmallVectorImpl<bool> &Used) {
2512  if (T.isNull())
2513    return;
2514
2515  // Non-dependent types have nothing deducible
2516  if (!T->isDependentType())
2517    return;
2518
2519  T = SemaRef.Context.getCanonicalType(T);
2520  switch (T->getTypeClass()) {
2521  case Type::Pointer:
2522    MarkUsedTemplateParameters(SemaRef,
2523                               cast<PointerType>(T)->getPointeeType(),
2524                               OnlyDeduced,
2525                               Depth,
2526                               Used);
2527    break;
2528
2529  case Type::BlockPointer:
2530    MarkUsedTemplateParameters(SemaRef,
2531                               cast<BlockPointerType>(T)->getPointeeType(),
2532                               OnlyDeduced,
2533                               Depth,
2534                               Used);
2535    break;
2536
2537  case Type::LValueReference:
2538  case Type::RValueReference:
2539    MarkUsedTemplateParameters(SemaRef,
2540                               cast<ReferenceType>(T)->getPointeeType(),
2541                               OnlyDeduced,
2542                               Depth,
2543                               Used);
2544    break;
2545
2546  case Type::MemberPointer: {
2547    const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
2548    MarkUsedTemplateParameters(SemaRef, MemPtr->getPointeeType(), OnlyDeduced,
2549                               Depth, Used);
2550    MarkUsedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0),
2551                               OnlyDeduced, Depth, Used);
2552    break;
2553  }
2554
2555  case Type::DependentSizedArray:
2556    MarkUsedTemplateParameters(SemaRef,
2557                               cast<DependentSizedArrayType>(T)->getSizeExpr(),
2558                               OnlyDeduced, Depth, Used);
2559    // Fall through to check the element type
2560
2561  case Type::ConstantArray:
2562  case Type::IncompleteArray:
2563    MarkUsedTemplateParameters(SemaRef,
2564                               cast<ArrayType>(T)->getElementType(),
2565                               OnlyDeduced, Depth, Used);
2566    break;
2567
2568  case Type::Vector:
2569  case Type::ExtVector:
2570    MarkUsedTemplateParameters(SemaRef,
2571                               cast<VectorType>(T)->getElementType(),
2572                               OnlyDeduced, Depth, Used);
2573    break;
2574
2575  case Type::DependentSizedExtVector: {
2576    const DependentSizedExtVectorType *VecType
2577      = cast<DependentSizedExtVectorType>(T);
2578    MarkUsedTemplateParameters(SemaRef, VecType->getElementType(), OnlyDeduced,
2579                               Depth, Used);
2580    MarkUsedTemplateParameters(SemaRef, VecType->getSizeExpr(), OnlyDeduced,
2581                               Depth, Used);
2582    break;
2583  }
2584
2585  case Type::FunctionProto: {
2586    const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2587    MarkUsedTemplateParameters(SemaRef, Proto->getResultType(), OnlyDeduced,
2588                               Depth, Used);
2589    for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
2590      MarkUsedTemplateParameters(SemaRef, Proto->getArgType(I), OnlyDeduced,
2591                                 Depth, Used);
2592    break;
2593  }
2594
2595  case Type::TemplateTypeParm: {
2596    const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
2597    if (TTP->getDepth() == Depth)
2598      Used[TTP->getIndex()] = true;
2599    break;
2600  }
2601
2602  case Type::InjectedClassName:
2603    T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
2604    // fall through
2605
2606  case Type::TemplateSpecialization: {
2607    const TemplateSpecializationType *Spec
2608      = cast<TemplateSpecializationType>(T);
2609    MarkUsedTemplateParameters(SemaRef, Spec->getTemplateName(), OnlyDeduced,
2610                               Depth, Used);
2611    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
2612      MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
2613                                 Used);
2614    break;
2615  }
2616
2617  case Type::Complex:
2618    if (!OnlyDeduced)
2619      MarkUsedTemplateParameters(SemaRef,
2620                                 cast<ComplexType>(T)->getElementType(),
2621                                 OnlyDeduced, Depth, Used);
2622    break;
2623
2624  case Type::DependentName:
2625    if (!OnlyDeduced)
2626      MarkUsedTemplateParameters(SemaRef,
2627                                 cast<DependentNameType>(T)->getQualifier(),
2628                                 OnlyDeduced, Depth, Used);
2629    break;
2630
2631  case Type::DependentTemplateSpecialization: {
2632    const DependentTemplateSpecializationType *Spec
2633      = cast<DependentTemplateSpecializationType>(T);
2634    if (!OnlyDeduced)
2635      MarkUsedTemplateParameters(SemaRef, Spec->getQualifier(),
2636                                 OnlyDeduced, Depth, Used);
2637    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
2638      MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
2639                                 Used);
2640    break;
2641  }
2642
2643  case Type::TypeOf:
2644    if (!OnlyDeduced)
2645      MarkUsedTemplateParameters(SemaRef,
2646                                 cast<TypeOfType>(T)->getUnderlyingType(),
2647                                 OnlyDeduced, Depth, Used);
2648    break;
2649
2650  case Type::TypeOfExpr:
2651    if (!OnlyDeduced)
2652      MarkUsedTemplateParameters(SemaRef,
2653                                 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
2654                                 OnlyDeduced, Depth, Used);
2655    break;
2656
2657  case Type::Decltype:
2658    if (!OnlyDeduced)
2659      MarkUsedTemplateParameters(SemaRef,
2660                                 cast<DecltypeType>(T)->getUnderlyingExpr(),
2661                                 OnlyDeduced, Depth, Used);
2662    break;
2663
2664  // None of these types have any template parameters in them.
2665  case Type::Builtin:
2666  case Type::VariableArray:
2667  case Type::FunctionNoProto:
2668  case Type::Record:
2669  case Type::Enum:
2670  case Type::ObjCInterface:
2671  case Type::ObjCObject:
2672  case Type::ObjCObjectPointer:
2673  case Type::UnresolvedUsing:
2674#define TYPE(Class, Base)
2675#define ABSTRACT_TYPE(Class, Base)
2676#define DEPENDENT_TYPE(Class, Base)
2677#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2678#include "clang/AST/TypeNodes.def"
2679    break;
2680  }
2681}
2682
2683/// \brief Mark the template parameters that are used by this
2684/// template argument.
2685static void
2686MarkUsedTemplateParameters(Sema &SemaRef,
2687                           const TemplateArgument &TemplateArg,
2688                           bool OnlyDeduced,
2689                           unsigned Depth,
2690                           llvm::SmallVectorImpl<bool> &Used) {
2691  switch (TemplateArg.getKind()) {
2692  case TemplateArgument::Null:
2693  case TemplateArgument::Integral:
2694    case TemplateArgument::Declaration:
2695    break;
2696
2697  case TemplateArgument::Type:
2698    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsType(), OnlyDeduced,
2699                               Depth, Used);
2700    break;
2701
2702  case TemplateArgument::Template:
2703    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsTemplate(),
2704                               OnlyDeduced, Depth, Used);
2705    break;
2706
2707  case TemplateArgument::Expression:
2708    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsExpr(), OnlyDeduced,
2709                               Depth, Used);
2710    break;
2711
2712  case TemplateArgument::Pack:
2713    for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
2714                                      PEnd = TemplateArg.pack_end();
2715         P != PEnd; ++P)
2716      MarkUsedTemplateParameters(SemaRef, *P, OnlyDeduced, Depth, Used);
2717    break;
2718  }
2719}
2720
2721/// \brief Mark the template parameters can be deduced by the given
2722/// template argument list.
2723///
2724/// \param TemplateArgs the template argument list from which template
2725/// parameters will be deduced.
2726///
2727/// \param Deduced a bit vector whose elements will be set to \c true
2728/// to indicate when the corresponding template parameter will be
2729/// deduced.
2730void
2731Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
2732                                 bool OnlyDeduced, unsigned Depth,
2733                                 llvm::SmallVectorImpl<bool> &Used) {
2734  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2735    ::MarkUsedTemplateParameters(*this, TemplateArgs[I], OnlyDeduced,
2736                                 Depth, Used);
2737}
2738
2739/// \brief Marks all of the template parameters that will be deduced by a
2740/// call to the given function template.
2741void
2742Sema::MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate,
2743                                    llvm::SmallVectorImpl<bool> &Deduced) {
2744  TemplateParameterList *TemplateParams
2745    = FunctionTemplate->getTemplateParameters();
2746  Deduced.clear();
2747  Deduced.resize(TemplateParams->size());
2748
2749  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2750  for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
2751    ::MarkUsedTemplateParameters(*this, Function->getParamDecl(I)->getType(),
2752                                 true, TemplateParams->getDepth(), Deduced);
2753}
2754