SemaTemplateDeduction.cpp revision 34c2f8c8a16226f757947bf08c5f799d99c9ac1e
1//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===/
12
13#include "clang/Sema/Sema.h"
14#include "clang/Sema/DeclSpec.h"
15#include "clang/Sema/SemaDiagnostic.h" // FIXME: temporary!
16#include "clang/Sema/Template.h"
17#include "clang/Sema/TemplateDeduction.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/StmtVisitor.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "llvm/ADT/BitVector.h"
25#include <algorithm>
26
27namespace clang {
28  using namespace sema;
29
30  /// \brief Various flags that control template argument deduction.
31  ///
32  /// These flags can be bitwise-OR'd together.
33  enum TemplateDeductionFlags {
34    /// \brief No template argument deduction flags, which indicates the
35    /// strictest results for template argument deduction (as used for, e.g.,
36    /// matching class template partial specializations).
37    TDF_None = 0,
38    /// \brief Within template argument deduction from a function call, we are
39    /// matching with a parameter type for which the original parameter was
40    /// a reference.
41    TDF_ParamWithReferenceType = 0x1,
42    /// \brief Within template argument deduction from a function call, we
43    /// are matching in a case where we ignore cv-qualifiers.
44    TDF_IgnoreQualifiers = 0x02,
45    /// \brief Within template argument deduction from a function call,
46    /// we are matching in a case where we can perform template argument
47    /// deduction from a template-id of a derived class of the argument type.
48    TDF_DerivedClass = 0x04,
49    /// \brief Allow non-dependent types to differ, e.g., when performing
50    /// template argument deduction from a function call where conversions
51    /// may apply.
52    TDF_SkipNonDependent = 0x08
53  };
54}
55
56using namespace clang;
57
58/// \brief Compare two APSInts, extending and switching the sign as
59/// necessary to compare their values regardless of underlying type.
60static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
61  if (Y.getBitWidth() > X.getBitWidth())
62    X = X.extend(Y.getBitWidth());
63  else if (Y.getBitWidth() < X.getBitWidth())
64    Y = Y.extend(X.getBitWidth());
65
66  // If there is a signedness mismatch, correct it.
67  if (X.isSigned() != Y.isSigned()) {
68    // If the signed value is negative, then the values cannot be the same.
69    if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
70      return false;
71
72    Y.setIsSigned(true);
73    X.setIsSigned(true);
74  }
75
76  return X == Y;
77}
78
79static Sema::TemplateDeductionResult
80DeduceTemplateArguments(Sema &S,
81                        TemplateParameterList *TemplateParams,
82                        const TemplateArgument &Param,
83                        const TemplateArgument &Arg,
84                        TemplateDeductionInfo &Info,
85                      llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced);
86
87static Sema::TemplateDeductionResult
88DeduceTemplateArguments(Sema &S,
89                        TemplateParameterList *TemplateParams,
90                        const TemplateArgument *Params, unsigned NumParams,
91                        const TemplateArgument *Args, unsigned NumArgs,
92                        TemplateDeductionInfo &Info,
93                        llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
94                        bool NumberOfArgumentsMustMatch = true);
95
96/// \brief If the given expression is of a form that permits the deduction
97/// of a non-type template parameter, return the declaration of that
98/// non-type template parameter.
99static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
100  if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
101    E = IC->getSubExpr();
102
103  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
104    return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
105
106  return 0;
107}
108
109/// \brief Determine whether two declaration pointers refer to the same
110/// declaration.
111static bool isSameDeclaration(Decl *X, Decl *Y) {
112  if (!X || !Y)
113    return !X && !Y;
114
115  if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
116    X = NX->getUnderlyingDecl();
117  if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
118    Y = NY->getUnderlyingDecl();
119
120  return X->getCanonicalDecl() == Y->getCanonicalDecl();
121}
122
123/// \brief Verify that the given, deduced template arguments are compatible.
124///
125/// \returns The deduced template argument, or a NULL template argument if
126/// the deduced template arguments were incompatible.
127static DeducedTemplateArgument
128checkDeducedTemplateArguments(ASTContext &Context,
129                              const DeducedTemplateArgument &X,
130                              const DeducedTemplateArgument &Y) {
131  // We have no deduction for one or both of the arguments; they're compatible.
132  if (X.isNull())
133    return Y;
134  if (Y.isNull())
135    return X;
136
137  switch (X.getKind()) {
138  case TemplateArgument::Null:
139    llvm_unreachable("Non-deduced template arguments handled above");
140
141  case TemplateArgument::Type:
142    // If two template type arguments have the same type, they're compatible.
143    if (Y.getKind() == TemplateArgument::Type &&
144        Context.hasSameType(X.getAsType(), Y.getAsType()))
145      return X;
146
147    return DeducedTemplateArgument();
148
149  case TemplateArgument::Integral:
150    // If we deduced a constant in one case and either a dependent expression or
151    // declaration in another case, keep the integral constant.
152    // If both are integral constants with the same value, keep that value.
153    if (Y.getKind() == TemplateArgument::Expression ||
154        Y.getKind() == TemplateArgument::Declaration ||
155        (Y.getKind() == TemplateArgument::Integral &&
156         hasSameExtendedValue(*X.getAsIntegral(), *Y.getAsIntegral())))
157      return DeducedTemplateArgument(X,
158                                     X.wasDeducedFromArrayBound() &&
159                                     Y.wasDeducedFromArrayBound());
160
161    // All other combinations are incompatible.
162    return DeducedTemplateArgument();
163
164  case TemplateArgument::Template:
165    if (Y.getKind() == TemplateArgument::Template &&
166        Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
167      return X;
168
169    // All other combinations are incompatible.
170    return DeducedTemplateArgument();
171
172  case TemplateArgument::Expression:
173    // If we deduced a dependent expression in one case and either an integral
174    // constant or a declaration in another case, keep the integral constant
175    // or declaration.
176    if (Y.getKind() == TemplateArgument::Integral ||
177        Y.getKind() == TemplateArgument::Declaration)
178      return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
179                                     Y.wasDeducedFromArrayBound());
180
181    if (Y.getKind() == TemplateArgument::Expression) {
182      // Compare the expressions for equality
183      llvm::FoldingSetNodeID ID1, ID2;
184      X.getAsExpr()->Profile(ID1, Context, true);
185      Y.getAsExpr()->Profile(ID2, Context, true);
186      if (ID1 == ID2)
187        return X;
188    }
189
190    // All other combinations are incompatible.
191    return DeducedTemplateArgument();
192
193  case TemplateArgument::Declaration:
194    // If we deduced a declaration and a dependent expression, keep the
195    // declaration.
196    if (Y.getKind() == TemplateArgument::Expression)
197      return X;
198
199    // If we deduced a declaration and an integral constant, keep the
200    // integral constant.
201    if (Y.getKind() == TemplateArgument::Integral)
202      return Y;
203
204    // If we deduced two declarations, make sure they they refer to the
205    // same declaration.
206    if (Y.getKind() == TemplateArgument::Declaration &&
207        isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
208      return X;
209
210    // All other combinations are incompatible.
211    return DeducedTemplateArgument();
212
213  case TemplateArgument::Pack:
214    if (Y.getKind() != TemplateArgument::Pack ||
215        X.pack_size() != Y.pack_size())
216      return DeducedTemplateArgument();
217
218    for (TemplateArgument::pack_iterator XA = X.pack_begin(),
219                                      XAEnd = X.pack_end(),
220                                         YA = Y.pack_begin();
221         XA != XAEnd; ++XA, ++YA) {
222      // FIXME: We've lost the "deduced from array bound" bit.
223      if (checkDeducedTemplateArguments(Context, *XA, *YA).isNull())
224        return DeducedTemplateArgument();
225    }
226
227    return X;
228  }
229
230  return DeducedTemplateArgument();
231}
232
233/// \brief Deduce the value of the given non-type template parameter
234/// from the given constant.
235static Sema::TemplateDeductionResult
236DeduceNonTypeTemplateArgument(Sema &S,
237                              NonTypeTemplateParmDecl *NTTP,
238                              llvm::APSInt Value, QualType ValueType,
239                              bool DeducedFromArrayBound,
240                              TemplateDeductionInfo &Info,
241                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
242  assert(NTTP->getDepth() == 0 &&
243         "Cannot deduce non-type template argument with depth > 0");
244
245  DeducedTemplateArgument NewDeduced(Value, ValueType, DeducedFromArrayBound);
246  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
247                                                     Deduced[NTTP->getIndex()],
248                                                                 NewDeduced);
249  if (Result.isNull()) {
250    Info.Param = NTTP;
251    Info.FirstArg = Deduced[NTTP->getIndex()];
252    Info.SecondArg = NewDeduced;
253    return Sema::TDK_Inconsistent;
254  }
255
256  Deduced[NTTP->getIndex()] = Result;
257  return Sema::TDK_Success;
258}
259
260/// \brief Deduce the value of the given non-type template parameter
261/// from the given type- or value-dependent expression.
262///
263/// \returns true if deduction succeeded, false otherwise.
264static Sema::TemplateDeductionResult
265DeduceNonTypeTemplateArgument(Sema &S,
266                              NonTypeTemplateParmDecl *NTTP,
267                              Expr *Value,
268                              TemplateDeductionInfo &Info,
269                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
270  assert(NTTP->getDepth() == 0 &&
271         "Cannot deduce non-type template argument with depth > 0");
272  assert((Value->isTypeDependent() || Value->isValueDependent()) &&
273         "Expression template argument must be type- or value-dependent.");
274
275  DeducedTemplateArgument NewDeduced(Value);
276  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
277                                                     Deduced[NTTP->getIndex()],
278                                                                 NewDeduced);
279
280  if (Result.isNull()) {
281    Info.Param = NTTP;
282    Info.FirstArg = Deduced[NTTP->getIndex()];
283    Info.SecondArg = NewDeduced;
284    return Sema::TDK_Inconsistent;
285  }
286
287  Deduced[NTTP->getIndex()] = Result;
288  return Sema::TDK_Success;
289}
290
291/// \brief Deduce the value of the given non-type template parameter
292/// from the given declaration.
293///
294/// \returns true if deduction succeeded, false otherwise.
295static Sema::TemplateDeductionResult
296DeduceNonTypeTemplateArgument(Sema &S,
297                              NonTypeTemplateParmDecl *NTTP,
298                              Decl *D,
299                              TemplateDeductionInfo &Info,
300                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
301  assert(NTTP->getDepth() == 0 &&
302         "Cannot deduce non-type template argument with depth > 0");
303
304  DeducedTemplateArgument NewDeduced(D? D->getCanonicalDecl() : 0);
305  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
306                                                     Deduced[NTTP->getIndex()],
307                                                                 NewDeduced);
308  if (Result.isNull()) {
309    Info.Param = NTTP;
310    Info.FirstArg = Deduced[NTTP->getIndex()];
311    Info.SecondArg = NewDeduced;
312    return Sema::TDK_Inconsistent;
313  }
314
315  Deduced[NTTP->getIndex()] = Result;
316  return Sema::TDK_Success;
317}
318
319static Sema::TemplateDeductionResult
320DeduceTemplateArguments(Sema &S,
321                        TemplateParameterList *TemplateParams,
322                        TemplateName Param,
323                        TemplateName Arg,
324                        TemplateDeductionInfo &Info,
325                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
326  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
327  if (!ParamDecl) {
328    // The parameter type is dependent and is not a template template parameter,
329    // so there is nothing that we can deduce.
330    return Sema::TDK_Success;
331  }
332
333  if (TemplateTemplateParmDecl *TempParam
334        = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
335    DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
336    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
337                                                 Deduced[TempParam->getIndex()],
338                                                                   NewDeduced);
339    if (Result.isNull()) {
340      Info.Param = TempParam;
341      Info.FirstArg = Deduced[TempParam->getIndex()];
342      Info.SecondArg = NewDeduced;
343      return Sema::TDK_Inconsistent;
344    }
345
346    Deduced[TempParam->getIndex()] = Result;
347    return Sema::TDK_Success;
348  }
349
350  // Verify that the two template names are equivalent.
351  if (S.Context.hasSameTemplateName(Param, Arg))
352    return Sema::TDK_Success;
353
354  // Mismatch of non-dependent template parameter to argument.
355  Info.FirstArg = TemplateArgument(Param);
356  Info.SecondArg = TemplateArgument(Arg);
357  return Sema::TDK_NonDeducedMismatch;
358}
359
360/// \brief Deduce the template arguments by comparing the template parameter
361/// type (which is a template-id) with the template argument type.
362///
363/// \param S the Sema
364///
365/// \param TemplateParams the template parameters that we are deducing
366///
367/// \param Param the parameter type
368///
369/// \param Arg the argument type
370///
371/// \param Info information about the template argument deduction itself
372///
373/// \param Deduced the deduced template arguments
374///
375/// \returns the result of template argument deduction so far. Note that a
376/// "success" result means that template argument deduction has not yet failed,
377/// but it may still fail, later, for other reasons.
378static Sema::TemplateDeductionResult
379DeduceTemplateArguments(Sema &S,
380                        TemplateParameterList *TemplateParams,
381                        const TemplateSpecializationType *Param,
382                        QualType Arg,
383                        TemplateDeductionInfo &Info,
384                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
385  assert(Arg.isCanonical() && "Argument type must be canonical");
386
387  // Check whether the template argument is a dependent template-id.
388  if (const TemplateSpecializationType *SpecArg
389        = dyn_cast<TemplateSpecializationType>(Arg)) {
390    // Perform template argument deduction for the template name.
391    if (Sema::TemplateDeductionResult Result
392          = DeduceTemplateArguments(S, TemplateParams,
393                                    Param->getTemplateName(),
394                                    SpecArg->getTemplateName(),
395                                    Info, Deduced))
396      return Result;
397
398
399    // Perform template argument deduction on each template
400    // argument. Ignore any missing/extra arguments, since they could be
401    // filled in by default arguments.
402    return DeduceTemplateArguments(S, TemplateParams,
403                                   Param->getArgs(), Param->getNumArgs(),
404                                   SpecArg->getArgs(), SpecArg->getNumArgs(),
405                                   Info, Deduced,
406                                   /*NumberOfArgumentsMustMatch=*/false);
407  }
408
409  // If the argument type is a class template specialization, we
410  // perform template argument deduction using its template
411  // arguments.
412  const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
413  if (!RecordArg)
414    return Sema::TDK_NonDeducedMismatch;
415
416  ClassTemplateSpecializationDecl *SpecArg
417    = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
418  if (!SpecArg)
419    return Sema::TDK_NonDeducedMismatch;
420
421  // Perform template argument deduction for the template name.
422  if (Sema::TemplateDeductionResult Result
423        = DeduceTemplateArguments(S,
424                                  TemplateParams,
425                                  Param->getTemplateName(),
426                               TemplateName(SpecArg->getSpecializedTemplate()),
427                                  Info, Deduced))
428    return Result;
429
430  // Perform template argument deduction for the template arguments.
431  return DeduceTemplateArguments(S, TemplateParams,
432                                 Param->getArgs(), Param->getNumArgs(),
433                                 SpecArg->getTemplateArgs().data(),
434                                 SpecArg->getTemplateArgs().size(),
435                                 Info, Deduced);
436}
437
438/// \brief Determines whether the given type is an opaque type that
439/// might be more qualified when instantiated.
440static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
441  switch (T->getTypeClass()) {
442  case Type::TypeOfExpr:
443  case Type::TypeOf:
444  case Type::DependentName:
445  case Type::Decltype:
446  case Type::UnresolvedUsing:
447    return true;
448
449  case Type::ConstantArray:
450  case Type::IncompleteArray:
451  case Type::VariableArray:
452  case Type::DependentSizedArray:
453    return IsPossiblyOpaquelyQualifiedType(
454                                      cast<ArrayType>(T)->getElementType());
455
456  default:
457    return false;
458  }
459}
460
461/// \brief Deduce the template arguments by comparing the parameter type and
462/// the argument type (C++ [temp.deduct.type]).
463///
464/// \param S the semantic analysis object within which we are deducing
465///
466/// \param TemplateParams the template parameters that we are deducing
467///
468/// \param ParamIn the parameter type
469///
470/// \param ArgIn the argument type
471///
472/// \param Info information about the template argument deduction itself
473///
474/// \param Deduced the deduced template arguments
475///
476/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
477/// how template argument deduction is performed.
478///
479/// \returns the result of template argument deduction so far. Note that a
480/// "success" result means that template argument deduction has not yet failed,
481/// but it may still fail, later, for other reasons.
482static Sema::TemplateDeductionResult
483DeduceTemplateArguments(Sema &S,
484                        TemplateParameterList *TemplateParams,
485                        QualType ParamIn, QualType ArgIn,
486                        TemplateDeductionInfo &Info,
487                     llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
488                        unsigned TDF) {
489  // We only want to look at the canonical types, since typedefs and
490  // sugar are not part of template argument deduction.
491  QualType Param = S.Context.getCanonicalType(ParamIn);
492  QualType Arg = S.Context.getCanonicalType(ArgIn);
493
494  // C++0x [temp.deduct.call]p4 bullet 1:
495  //   - If the original P is a reference type, the deduced A (i.e., the type
496  //     referred to by the reference) can be more cv-qualified than the
497  //     transformed A.
498  if (TDF & TDF_ParamWithReferenceType) {
499    Qualifiers Quals;
500    QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
501    Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
502                           Arg.getCVRQualifiersThroughArrayTypes());
503    Param = S.Context.getQualifiedType(UnqualParam, Quals);
504  }
505
506  // If the parameter type is not dependent, there is nothing to deduce.
507  if (!Param->isDependentType()) {
508    if (!(TDF & TDF_SkipNonDependent) && Param != Arg) {
509
510      return Sema::TDK_NonDeducedMismatch;
511    }
512
513    return Sema::TDK_Success;
514  }
515
516  // C++ [temp.deduct.type]p9:
517  //   A template type argument T, a template template argument TT or a
518  //   template non-type argument i can be deduced if P and A have one of
519  //   the following forms:
520  //
521  //     T
522  //     cv-list T
523  if (const TemplateTypeParmType *TemplateTypeParm
524        = Param->getAs<TemplateTypeParmType>()) {
525    unsigned Index = TemplateTypeParm->getIndex();
526    bool RecanonicalizeArg = false;
527
528    // If the argument type is an array type, move the qualifiers up to the
529    // top level, so they can be matched with the qualifiers on the parameter.
530    // FIXME: address spaces, ObjC GC qualifiers
531    if (isa<ArrayType>(Arg)) {
532      Qualifiers Quals;
533      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
534      if (Quals) {
535        Arg = S.Context.getQualifiedType(Arg, Quals);
536        RecanonicalizeArg = true;
537      }
538    }
539
540    // The argument type can not be less qualified than the parameter
541    // type.
542    if (Param.isMoreQualifiedThan(Arg) && !(TDF & TDF_IgnoreQualifiers)) {
543      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
544      Info.FirstArg = TemplateArgument(Param);
545      Info.SecondArg = TemplateArgument(Arg);
546      return Sema::TDK_Underqualified;
547    }
548
549    assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
550    assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
551    QualType DeducedType = Arg;
552
553    // local manipulation is okay because it's canonical
554    DeducedType.removeLocalCVRQualifiers(Param.getCVRQualifiers());
555    if (RecanonicalizeArg)
556      DeducedType = S.Context.getCanonicalType(DeducedType);
557
558    DeducedTemplateArgument NewDeduced(DeducedType);
559    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
560                                                                 Deduced[Index],
561                                                                   NewDeduced);
562    if (Result.isNull()) {
563      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
564      Info.FirstArg = Deduced[Index];
565      Info.SecondArg = NewDeduced;
566      return Sema::TDK_Inconsistent;
567    }
568
569    Deduced[Index] = Result;
570    return Sema::TDK_Success;
571  }
572
573  // Set up the template argument deduction information for a failure.
574  Info.FirstArg = TemplateArgument(ParamIn);
575  Info.SecondArg = TemplateArgument(ArgIn);
576
577  // Check the cv-qualifiers on the parameter and argument types.
578  if (!(TDF & TDF_IgnoreQualifiers)) {
579    if (TDF & TDF_ParamWithReferenceType) {
580      if (Param.isMoreQualifiedThan(Arg))
581        return Sema::TDK_NonDeducedMismatch;
582    } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
583      if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
584        return Sema::TDK_NonDeducedMismatch;
585    }
586  }
587
588  switch (Param->getTypeClass()) {
589    // No deduction possible for these types
590    case Type::Builtin:
591      return Sema::TDK_NonDeducedMismatch;
592
593    //     T *
594    case Type::Pointer: {
595      QualType PointeeType;
596      if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
597        PointeeType = PointerArg->getPointeeType();
598      } else if (const ObjCObjectPointerType *PointerArg
599                   = Arg->getAs<ObjCObjectPointerType>()) {
600        PointeeType = PointerArg->getPointeeType();
601      } else {
602        return Sema::TDK_NonDeducedMismatch;
603      }
604
605      unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
606      return DeduceTemplateArguments(S, TemplateParams,
607                                   cast<PointerType>(Param)->getPointeeType(),
608                                     PointeeType,
609                                     Info, Deduced, SubTDF);
610    }
611
612    //     T &
613    case Type::LValueReference: {
614      const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
615      if (!ReferenceArg)
616        return Sema::TDK_NonDeducedMismatch;
617
618      return DeduceTemplateArguments(S, TemplateParams,
619                           cast<LValueReferenceType>(Param)->getPointeeType(),
620                                     ReferenceArg->getPointeeType(),
621                                     Info, Deduced, 0);
622    }
623
624    //     T && [C++0x]
625    case Type::RValueReference: {
626      const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
627      if (!ReferenceArg)
628        return Sema::TDK_NonDeducedMismatch;
629
630      return DeduceTemplateArguments(S, TemplateParams,
631                           cast<RValueReferenceType>(Param)->getPointeeType(),
632                                     ReferenceArg->getPointeeType(),
633                                     Info, Deduced, 0);
634    }
635
636    //     T [] (implied, but not stated explicitly)
637    case Type::IncompleteArray: {
638      const IncompleteArrayType *IncompleteArrayArg =
639        S.Context.getAsIncompleteArrayType(Arg);
640      if (!IncompleteArrayArg)
641        return Sema::TDK_NonDeducedMismatch;
642
643      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
644      return DeduceTemplateArguments(S, TemplateParams,
645                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
646                                     IncompleteArrayArg->getElementType(),
647                                     Info, Deduced, SubTDF);
648    }
649
650    //     T [integer-constant]
651    case Type::ConstantArray: {
652      const ConstantArrayType *ConstantArrayArg =
653        S.Context.getAsConstantArrayType(Arg);
654      if (!ConstantArrayArg)
655        return Sema::TDK_NonDeducedMismatch;
656
657      const ConstantArrayType *ConstantArrayParm =
658        S.Context.getAsConstantArrayType(Param);
659      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
660        return Sema::TDK_NonDeducedMismatch;
661
662      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
663      return DeduceTemplateArguments(S, TemplateParams,
664                                     ConstantArrayParm->getElementType(),
665                                     ConstantArrayArg->getElementType(),
666                                     Info, Deduced, SubTDF);
667    }
668
669    //     type [i]
670    case Type::DependentSizedArray: {
671      const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
672      if (!ArrayArg)
673        return Sema::TDK_NonDeducedMismatch;
674
675      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
676
677      // Check the element type of the arrays
678      const DependentSizedArrayType *DependentArrayParm
679        = S.Context.getAsDependentSizedArrayType(Param);
680      if (Sema::TemplateDeductionResult Result
681            = DeduceTemplateArguments(S, TemplateParams,
682                                      DependentArrayParm->getElementType(),
683                                      ArrayArg->getElementType(),
684                                      Info, Deduced, SubTDF))
685        return Result;
686
687      // Determine the array bound is something we can deduce.
688      NonTypeTemplateParmDecl *NTTP
689        = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
690      if (!NTTP)
691        return Sema::TDK_Success;
692
693      // We can perform template argument deduction for the given non-type
694      // template parameter.
695      assert(NTTP->getDepth() == 0 &&
696             "Cannot deduce non-type template argument at depth > 0");
697      if (const ConstantArrayType *ConstantArrayArg
698            = dyn_cast<ConstantArrayType>(ArrayArg)) {
699        llvm::APSInt Size(ConstantArrayArg->getSize());
700        return DeduceNonTypeTemplateArgument(S, NTTP, Size,
701                                             S.Context.getSizeType(),
702                                             /*ArrayBound=*/true,
703                                             Info, Deduced);
704      }
705      if (const DependentSizedArrayType *DependentArrayArg
706            = dyn_cast<DependentSizedArrayType>(ArrayArg))
707        if (DependentArrayArg->getSizeExpr())
708          return DeduceNonTypeTemplateArgument(S, NTTP,
709                                               DependentArrayArg->getSizeExpr(),
710                                               Info, Deduced);
711
712      // Incomplete type does not match a dependently-sized array type
713      return Sema::TDK_NonDeducedMismatch;
714    }
715
716    //     type(*)(T)
717    //     T(*)()
718    //     T(*)(T)
719    case Type::FunctionProto: {
720      const FunctionProtoType *FunctionProtoArg =
721        dyn_cast<FunctionProtoType>(Arg);
722      if (!FunctionProtoArg)
723        return Sema::TDK_NonDeducedMismatch;
724
725      const FunctionProtoType *FunctionProtoParam =
726        cast<FunctionProtoType>(Param);
727
728      if (FunctionProtoParam->getTypeQuals() !=
729          FunctionProtoArg->getTypeQuals())
730        return Sema::TDK_NonDeducedMismatch;
731
732      if (FunctionProtoParam->getNumArgs() != FunctionProtoArg->getNumArgs())
733        return Sema::TDK_NonDeducedMismatch;
734
735      if (FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
736        return Sema::TDK_NonDeducedMismatch;
737
738      // Check return types.
739      if (Sema::TemplateDeductionResult Result
740            = DeduceTemplateArguments(S, TemplateParams,
741                                      FunctionProtoParam->getResultType(),
742                                      FunctionProtoArg->getResultType(),
743                                      Info, Deduced, 0))
744        return Result;
745
746      for (unsigned I = 0, N = FunctionProtoParam->getNumArgs(); I != N; ++I) {
747        // Check argument types.
748        // FIXME: Variadic templates.
749        if (Sema::TemplateDeductionResult Result
750              = DeduceTemplateArguments(S, TemplateParams,
751                                        FunctionProtoParam->getArgType(I),
752                                        FunctionProtoArg->getArgType(I),
753                                        Info, Deduced, 0))
754          return Result;
755      }
756
757      return Sema::TDK_Success;
758    }
759
760    case Type::InjectedClassName: {
761      // Treat a template's injected-class-name as if the template
762      // specialization type had been used.
763      Param = cast<InjectedClassNameType>(Param)
764        ->getInjectedSpecializationType();
765      assert(isa<TemplateSpecializationType>(Param) &&
766             "injected class name is not a template specialization type");
767      // fall through
768    }
769
770    //     template-name<T> (where template-name refers to a class template)
771    //     template-name<i>
772    //     TT<T>
773    //     TT<i>
774    //     TT<>
775    case Type::TemplateSpecialization: {
776      const TemplateSpecializationType *SpecParam
777        = cast<TemplateSpecializationType>(Param);
778
779      // Try to deduce template arguments from the template-id.
780      Sema::TemplateDeductionResult Result
781        = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
782                                  Info, Deduced);
783
784      if (Result && (TDF & TDF_DerivedClass)) {
785        // C++ [temp.deduct.call]p3b3:
786        //   If P is a class, and P has the form template-id, then A can be a
787        //   derived class of the deduced A. Likewise, if P is a pointer to a
788        //   class of the form template-id, A can be a pointer to a derived
789        //   class pointed to by the deduced A.
790        //
791        // More importantly:
792        //   These alternatives are considered only if type deduction would
793        //   otherwise fail.
794        if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
795          // We cannot inspect base classes as part of deduction when the type
796          // is incomplete, so either instantiate any templates necessary to
797          // complete the type, or skip over it if it cannot be completed.
798          if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
799            return Result;
800
801          // Use data recursion to crawl through the list of base classes.
802          // Visited contains the set of nodes we have already visited, while
803          // ToVisit is our stack of records that we still need to visit.
804          llvm::SmallPtrSet<const RecordType *, 8> Visited;
805          llvm::SmallVector<const RecordType *, 8> ToVisit;
806          ToVisit.push_back(RecordT);
807          bool Successful = false;
808          llvm::SmallVectorImpl<DeducedTemplateArgument> DeducedOrig(0);
809          DeducedOrig = Deduced;
810          while (!ToVisit.empty()) {
811            // Retrieve the next class in the inheritance hierarchy.
812            const RecordType *NextT = ToVisit.back();
813            ToVisit.pop_back();
814
815            // If we have already seen this type, skip it.
816            if (!Visited.insert(NextT))
817              continue;
818
819            // If this is a base class, try to perform template argument
820            // deduction from it.
821            if (NextT != RecordT) {
822              Sema::TemplateDeductionResult BaseResult
823                = DeduceTemplateArguments(S, TemplateParams, SpecParam,
824                                          QualType(NextT, 0), Info, Deduced);
825
826              // If template argument deduction for this base was successful,
827              // note that we had some success. Otherwise, ignore any deductions
828              // from this base class.
829              if (BaseResult == Sema::TDK_Success) {
830                Successful = true;
831                DeducedOrig = Deduced;
832              }
833              else
834                Deduced = DeducedOrig;
835            }
836
837            // Visit base classes
838            CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
839            for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
840                                                 BaseEnd = Next->bases_end();
841                 Base != BaseEnd; ++Base) {
842              assert(Base->getType()->isRecordType() &&
843                     "Base class that isn't a record?");
844              ToVisit.push_back(Base->getType()->getAs<RecordType>());
845            }
846          }
847
848          if (Successful)
849            return Sema::TDK_Success;
850        }
851
852      }
853
854      return Result;
855    }
856
857    //     T type::*
858    //     T T::*
859    //     T (type::*)()
860    //     type (T::*)()
861    //     type (type::*)(T)
862    //     type (T::*)(T)
863    //     T (type::*)(T)
864    //     T (T::*)()
865    //     T (T::*)(T)
866    case Type::MemberPointer: {
867      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
868      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
869      if (!MemPtrArg)
870        return Sema::TDK_NonDeducedMismatch;
871
872      if (Sema::TemplateDeductionResult Result
873            = DeduceTemplateArguments(S, TemplateParams,
874                                      MemPtrParam->getPointeeType(),
875                                      MemPtrArg->getPointeeType(),
876                                      Info, Deduced,
877                                      TDF & TDF_IgnoreQualifiers))
878        return Result;
879
880      return DeduceTemplateArguments(S, TemplateParams,
881                                     QualType(MemPtrParam->getClass(), 0),
882                                     QualType(MemPtrArg->getClass(), 0),
883                                     Info, Deduced, 0);
884    }
885
886    //     (clang extension)
887    //
888    //     type(^)(T)
889    //     T(^)()
890    //     T(^)(T)
891    case Type::BlockPointer: {
892      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
893      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
894
895      if (!BlockPtrArg)
896        return Sema::TDK_NonDeducedMismatch;
897
898      return DeduceTemplateArguments(S, TemplateParams,
899                                     BlockPtrParam->getPointeeType(),
900                                     BlockPtrArg->getPointeeType(), Info,
901                                     Deduced, 0);
902    }
903
904    case Type::TypeOfExpr:
905    case Type::TypeOf:
906    case Type::DependentName:
907      // No template argument deduction for these types
908      return Sema::TDK_Success;
909
910    default:
911      break;
912  }
913
914  // FIXME: Many more cases to go (to go).
915  return Sema::TDK_Success;
916}
917
918static Sema::TemplateDeductionResult
919DeduceTemplateArguments(Sema &S,
920                        TemplateParameterList *TemplateParams,
921                        const TemplateArgument &Param,
922                        const TemplateArgument &Arg,
923                        TemplateDeductionInfo &Info,
924                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
925  switch (Param.getKind()) {
926  case TemplateArgument::Null:
927    assert(false && "Null template argument in parameter list");
928    break;
929
930  case TemplateArgument::Type:
931    if (Arg.getKind() == TemplateArgument::Type)
932      return DeduceTemplateArguments(S, TemplateParams, Param.getAsType(),
933                                     Arg.getAsType(), Info, Deduced, 0);
934    Info.FirstArg = Param;
935    Info.SecondArg = Arg;
936    return Sema::TDK_NonDeducedMismatch;
937
938  case TemplateArgument::Template:
939    if (Arg.getKind() == TemplateArgument::Template)
940      return DeduceTemplateArguments(S, TemplateParams,
941                                     Param.getAsTemplate(),
942                                     Arg.getAsTemplate(), Info, Deduced);
943    Info.FirstArg = Param;
944    Info.SecondArg = Arg;
945    return Sema::TDK_NonDeducedMismatch;
946
947  case TemplateArgument::Declaration:
948    if (Arg.getKind() == TemplateArgument::Declaration &&
949        Param.getAsDecl()->getCanonicalDecl() ==
950          Arg.getAsDecl()->getCanonicalDecl())
951      return Sema::TDK_Success;
952
953    Info.FirstArg = Param;
954    Info.SecondArg = Arg;
955    return Sema::TDK_NonDeducedMismatch;
956
957  case TemplateArgument::Integral:
958    if (Arg.getKind() == TemplateArgument::Integral) {
959      if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral()))
960        return Sema::TDK_Success;
961
962      Info.FirstArg = Param;
963      Info.SecondArg = Arg;
964      return Sema::TDK_NonDeducedMismatch;
965    }
966
967    if (Arg.getKind() == TemplateArgument::Expression) {
968      Info.FirstArg = Param;
969      Info.SecondArg = Arg;
970      return Sema::TDK_NonDeducedMismatch;
971    }
972
973    Info.FirstArg = Param;
974    Info.SecondArg = Arg;
975    return Sema::TDK_NonDeducedMismatch;
976
977  case TemplateArgument::Expression: {
978    if (NonTypeTemplateParmDecl *NTTP
979          = getDeducedParameterFromExpr(Param.getAsExpr())) {
980      if (Arg.getKind() == TemplateArgument::Integral)
981        return DeduceNonTypeTemplateArgument(S, NTTP,
982                                             *Arg.getAsIntegral(),
983                                             Arg.getIntegralType(),
984                                             /*ArrayBound=*/false,
985                                             Info, Deduced);
986      if (Arg.getKind() == TemplateArgument::Expression)
987        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
988                                             Info, Deduced);
989      if (Arg.getKind() == TemplateArgument::Declaration)
990        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
991                                             Info, Deduced);
992
993      Info.FirstArg = Param;
994      Info.SecondArg = Arg;
995      return Sema::TDK_NonDeducedMismatch;
996    }
997
998    // Can't deduce anything, but that's okay.
999    return Sema::TDK_Success;
1000  }
1001  case TemplateArgument::Pack:
1002    llvm_unreachable("Argument packs should be expanded by the caller!");
1003  }
1004
1005  return Sema::TDK_Success;
1006}
1007
1008/// \brief Determine whether there is a template argument to be used for
1009/// deduction.
1010///
1011/// This routine "expands" argument packs in-place, overriding its input
1012/// parameters so that \c Args[ArgIdx] will be the available template argument.
1013///
1014/// \returns true if there is another template argument (which will be at
1015/// \c Args[ArgIdx]), false otherwise.
1016static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
1017                                            unsigned &ArgIdx,
1018                                            unsigned &NumArgs) {
1019  if (ArgIdx == NumArgs)
1020    return false;
1021
1022  const TemplateArgument &Arg = Args[ArgIdx];
1023  if (Arg.getKind() != TemplateArgument::Pack)
1024    return true;
1025
1026  assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
1027  Args = Arg.pack_begin();
1028  NumArgs = Arg.pack_size();
1029  ArgIdx = 0;
1030  return ArgIdx < NumArgs;
1031}
1032
1033/// \brief Retrieve the depth and index of an unexpanded parameter pack.
1034static std::pair<unsigned, unsigned>
1035getDepthAndIndex(UnexpandedParameterPack UPP) {
1036  if (const TemplateTypeParmType *TTP
1037                          = UPP.first.dyn_cast<const TemplateTypeParmType *>())
1038    return std::make_pair(TTP->getDepth(), TTP->getIndex());
1039
1040  if (TemplateTypeParmDecl *TTP = UPP.first.dyn_cast<TemplateTypeParmDecl *>())
1041    return std::make_pair(TTP->getDepth(), TTP->getIndex());
1042
1043  if (NonTypeTemplateParmDecl *NTTP
1044                              = UPP.first.dyn_cast<NonTypeTemplateParmDecl *>())
1045    return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
1046
1047  TemplateTemplateParmDecl *TTP = UPP.first.get<TemplateTemplateParmDecl *>();
1048  return std::make_pair(TTP->getDepth(), TTP->getIndex());
1049}
1050
1051/// \brief Helper function to build a TemplateParameter when we don't
1052/// know its type statically.
1053static TemplateParameter makeTemplateParameter(Decl *D) {
1054  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
1055    return TemplateParameter(TTP);
1056  else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
1057    return TemplateParameter(NTTP);
1058
1059  return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
1060}
1061
1062static Sema::TemplateDeductionResult
1063DeduceTemplateArguments(Sema &S,
1064                        TemplateParameterList *TemplateParams,
1065                        const TemplateArgument *Params, unsigned NumParams,
1066                        const TemplateArgument *Args, unsigned NumArgs,
1067                        TemplateDeductionInfo &Info,
1068                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1069                        bool NumberOfArgumentsMustMatch) {
1070  // C++0x [temp.deduct.type]p9:
1071  //   If the template argument list of P contains a pack expansion that is not
1072  //   the last template argument, the entire template argument list is a
1073  //   non-deduced context.
1074  // FIXME: Implement this.
1075
1076
1077  // C++0x [temp.deduct.type]p9:
1078  //   If P has a form that contains <T> or <i>, then each argument Pi of the
1079  //   respective template argument list P is compared with the corresponding
1080  //   argument Ai of the corresponding template argument list of A.
1081  unsigned ArgIdx = 0, ParamIdx = 0;
1082  for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
1083       ++ParamIdx) {
1084    // FIXME: Variadic templates.
1085    // What do we do if the argument is a pack expansion?
1086
1087    if (!Params[ParamIdx].isPackExpansion()) {
1088      // The simple case: deduce template arguments by matching Pi and Ai.
1089
1090      // Check whether we have enough arguments.
1091      if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1092        return NumberOfArgumentsMustMatch? Sema::TDK_TooFewArguments
1093                                         : Sema::TDK_Success;
1094
1095      // Perform deduction for this Pi/Ai pair.
1096      if (Sema::TemplateDeductionResult Result
1097          = DeduceTemplateArguments(S, TemplateParams,
1098                                    Params[ParamIdx], Args[ArgIdx],
1099                                    Info, Deduced))
1100        return Result;
1101
1102      // Move to the next argument.
1103      ++ArgIdx;
1104      continue;
1105    }
1106
1107    // The parameter is a pack expansion.
1108
1109    // C++0x [temp.deduct.type]p9:
1110    //   If Pi is a pack expansion, then the pattern of Pi is compared with
1111    //   each remaining argument in the template argument list of A. Each
1112    //   comparison deduces template arguments for subsequent positions in the
1113    //   template parameter packs expanded by Pi.
1114    TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
1115
1116    // Compute the set of template parameter indices that correspond to
1117    // parameter packs expanded by the pack expansion.
1118    llvm::SmallVector<unsigned, 2> PackIndices;
1119    {
1120      llvm::BitVector SawIndices(TemplateParams->size());
1121      llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded;
1122      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
1123      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
1124        unsigned Depth, Index;
1125        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
1126        if (Depth == 0 && !SawIndices[Index]) {
1127          SawIndices[Index] = true;
1128          PackIndices.push_back(Index);
1129        }
1130      }
1131    }
1132    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
1133
1134    // FIXME: If there are no remaining arguments, we can bail out early
1135    // and set any deduced parameter packs to an empty argument pack.
1136    // The latter part of this is a (minor) correctness issue.
1137
1138    // Save the deduced template arguments for each parameter pack expanded
1139    // by this pack expansion, then clear out the deduction.
1140    llvm::SmallVector<DeducedTemplateArgument, 2>
1141      SavedPacks(PackIndices.size());
1142    for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1143      SavedPacks[I] = Deduced[PackIndices[I]];
1144      Deduced[PackIndices[I]] = DeducedTemplateArgument();
1145    }
1146
1147    // Keep track of the deduced template arguments for each parameter pack
1148    // expanded by this pack expansion (the outer index) and for each
1149    // template argument (the inner SmallVectors).
1150    llvm::SmallVector<llvm::SmallVector<DeducedTemplateArgument, 4>, 2>
1151      NewlyDeducedPacks(PackIndices.size());
1152    bool HasAnyArguments = false;
1153    while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
1154      HasAnyArguments = true;
1155
1156      // Deduce template arguments from the pattern.
1157      if (Sema::TemplateDeductionResult Result
1158            = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
1159                                      Info, Deduced))
1160        return Result;
1161
1162      // Capture the deduced template arguments for each parameter pack expanded
1163      // by this pack expansion, add them to the list of arguments we've deduced
1164      // for that pack, then clear out the deduced argument.
1165      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1166        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
1167        if (!DeducedArg.isNull()) {
1168          NewlyDeducedPacks[I].push_back(DeducedArg);
1169          DeducedArg = DeducedTemplateArgument();
1170        }
1171      }
1172
1173      ++ArgIdx;
1174    }
1175
1176    // Build argument packs for each of the parameter packs expanded by this
1177    // pack expansion.
1178    for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1179      if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
1180        // We were not able to deduce anything for this parameter pack,
1181        // so just restore the saved argument pack.
1182        Deduced[PackIndices[I]] = SavedPacks[I];
1183        continue;
1184      }
1185
1186      DeducedTemplateArgument NewPack;
1187
1188      if (NewlyDeducedPacks[I].empty()) {
1189        // If we deduced an empty argument pack, create it now.
1190        NewPack = DeducedTemplateArgument(TemplateArgument(0, 0));
1191      } else {
1192        TemplateArgument *ArgumentPack
1193          = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
1194        std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
1195                  ArgumentPack);
1196        NewPack
1197          = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
1198                                                   NewlyDeducedPacks[I].size()),
1199                            NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
1200      }
1201
1202      DeducedTemplateArgument Result
1203        = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
1204      if (Result.isNull()) {
1205        Info.Param
1206          = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
1207        Info.FirstArg = SavedPacks[I];
1208        Info.SecondArg = NewPack;
1209        return Sema::TDK_Inconsistent;
1210      }
1211
1212      Deduced[PackIndices[I]] = Result;
1213    }
1214  }
1215
1216  // If there is an argument remaining, then we had too many arguments.
1217  if (NumberOfArgumentsMustMatch &&
1218      hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1219    return Sema::TDK_TooManyArguments;
1220
1221  return Sema::TDK_Success;
1222}
1223
1224static Sema::TemplateDeductionResult
1225DeduceTemplateArguments(Sema &S,
1226                        TemplateParameterList *TemplateParams,
1227                        const TemplateArgumentList &ParamList,
1228                        const TemplateArgumentList &ArgList,
1229                        TemplateDeductionInfo &Info,
1230                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1231  return DeduceTemplateArguments(S, TemplateParams,
1232                                 ParamList.data(), ParamList.size(),
1233                                 ArgList.data(), ArgList.size(),
1234                                 Info, Deduced);
1235}
1236
1237/// \brief Determine whether two template arguments are the same.
1238static bool isSameTemplateArg(ASTContext &Context,
1239                              const TemplateArgument &X,
1240                              const TemplateArgument &Y) {
1241  if (X.getKind() != Y.getKind())
1242    return false;
1243
1244  switch (X.getKind()) {
1245    case TemplateArgument::Null:
1246      assert(false && "Comparing NULL template argument");
1247      break;
1248
1249    case TemplateArgument::Type:
1250      return Context.getCanonicalType(X.getAsType()) ==
1251             Context.getCanonicalType(Y.getAsType());
1252
1253    case TemplateArgument::Declaration:
1254      return X.getAsDecl()->getCanonicalDecl() ==
1255             Y.getAsDecl()->getCanonicalDecl();
1256
1257    case TemplateArgument::Template:
1258      return Context.getCanonicalTemplateName(X.getAsTemplate())
1259               .getAsVoidPointer() ==
1260             Context.getCanonicalTemplateName(Y.getAsTemplate())
1261               .getAsVoidPointer();
1262
1263    case TemplateArgument::Integral:
1264      return *X.getAsIntegral() == *Y.getAsIntegral();
1265
1266    case TemplateArgument::Expression: {
1267      llvm::FoldingSetNodeID XID, YID;
1268      X.getAsExpr()->Profile(XID, Context, true);
1269      Y.getAsExpr()->Profile(YID, Context, true);
1270      return XID == YID;
1271    }
1272
1273    case TemplateArgument::Pack:
1274      if (X.pack_size() != Y.pack_size())
1275        return false;
1276
1277      for (TemplateArgument::pack_iterator XP = X.pack_begin(),
1278                                        XPEnd = X.pack_end(),
1279                                           YP = Y.pack_begin();
1280           XP != XPEnd; ++XP, ++YP)
1281        if (!isSameTemplateArg(Context, *XP, *YP))
1282          return false;
1283
1284      return true;
1285  }
1286
1287  return false;
1288}
1289
1290/// Complete template argument deduction for a class template partial
1291/// specialization.
1292static Sema::TemplateDeductionResult
1293FinishTemplateArgumentDeduction(Sema &S,
1294                                ClassTemplatePartialSpecializationDecl *Partial,
1295                                const TemplateArgumentList &TemplateArgs,
1296                      llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1297                                TemplateDeductionInfo &Info) {
1298  // Trap errors.
1299  Sema::SFINAETrap Trap(S);
1300
1301  Sema::ContextRAII SavedContext(S, Partial);
1302
1303  // C++ [temp.deduct.type]p2:
1304  //   [...] or if any template argument remains neither deduced nor
1305  //   explicitly specified, template argument deduction fails.
1306  // FIXME: Variadic templates Empty parameter packs?
1307  llvm::SmallVector<TemplateArgument, 4> Builder;
1308  for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
1309    if (Deduced[I].isNull()) {
1310      unsigned ParamIdx = I;
1311      if (ParamIdx >= Partial->getTemplateParameters()->size())
1312        ParamIdx = Partial->getTemplateParameters()->size() - 1;
1313      Decl *Param
1314        = const_cast<NamedDecl *>(
1315                          Partial->getTemplateParameters()->getParam(ParamIdx));
1316      Info.Param = makeTemplateParameter(Param);
1317      return Sema::TDK_Incomplete;
1318    }
1319
1320    Builder.push_back(Deduced[I]);
1321  }
1322
1323  // Form the template argument list from the deduced template arguments.
1324  TemplateArgumentList *DeducedArgumentList
1325    = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
1326                                       Builder.size());
1327
1328  Info.reset(DeducedArgumentList);
1329
1330  // Substitute the deduced template arguments into the template
1331  // arguments of the class template partial specialization, and
1332  // verify that the instantiated template arguments are both valid
1333  // and are equivalent to the template arguments originally provided
1334  // to the class template.
1335  // FIXME: Do we have to correct the types of deduced non-type template
1336  // arguments (in particular, integral non-type template arguments?).
1337  LocalInstantiationScope InstScope(S);
1338  ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
1339  const TemplateArgumentLoc *PartialTemplateArgs
1340    = Partial->getTemplateArgsAsWritten();
1341
1342  // Note that we don't provide the langle and rangle locations.
1343  TemplateArgumentListInfo InstArgs;
1344
1345  if (S.Subst(PartialTemplateArgs,
1346              Partial->getNumTemplateArgsAsWritten(),
1347              InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
1348    unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
1349    if (ParamIdx >= Partial->getTemplateParameters()->size())
1350      ParamIdx = Partial->getTemplateParameters()->size() - 1;
1351
1352    Decl *Param
1353      = const_cast<NamedDecl *>(
1354                          Partial->getTemplateParameters()->getParam(ParamIdx));
1355    Info.Param = makeTemplateParameter(Param);
1356    Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
1357    return Sema::TDK_SubstitutionFailure;
1358  }
1359
1360  llvm::SmallVector<TemplateArgument, 4> ConvertedInstArgs;
1361  if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
1362                                InstArgs, false, ConvertedInstArgs))
1363    return Sema::TDK_SubstitutionFailure;
1364
1365  for (unsigned I = 0, E = ConvertedInstArgs.size(); I != E; ++I) {
1366    TemplateArgument InstArg = ConvertedInstArgs.data()[I];
1367
1368    Decl *Param = const_cast<NamedDecl *>(
1369                    ClassTemplate->getTemplateParameters()->getParam(I));
1370
1371    if (InstArg.getKind() == TemplateArgument::Expression) {
1372      // When the argument is an expression, check the expression result
1373      // against the actual template parameter to get down to the canonical
1374      // template argument.
1375      // FIXME: Variadic templates.
1376      Expr *InstExpr = InstArg.getAsExpr();
1377      if (NonTypeTemplateParmDecl *NTTP
1378            = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1379        if (S.CheckTemplateArgument(NTTP, NTTP->getType(), InstExpr, InstArg)) {
1380          Info.Param = makeTemplateParameter(Param);
1381          Info.FirstArg = Partial->getTemplateArgs()[I];
1382          return Sema::TDK_SubstitutionFailure;
1383        }
1384      }
1385    }
1386
1387    if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
1388      Info.Param = makeTemplateParameter(Param);
1389      Info.FirstArg = TemplateArgs[I];
1390      Info.SecondArg = InstArg;
1391      return Sema::TDK_NonDeducedMismatch;
1392    }
1393  }
1394
1395  if (Trap.hasErrorOccurred())
1396    return Sema::TDK_SubstitutionFailure;
1397
1398  return Sema::TDK_Success;
1399}
1400
1401/// \brief Perform template argument deduction to determine whether
1402/// the given template arguments match the given class template
1403/// partial specialization per C++ [temp.class.spec.match].
1404Sema::TemplateDeductionResult
1405Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
1406                              const TemplateArgumentList &TemplateArgs,
1407                              TemplateDeductionInfo &Info) {
1408  // C++ [temp.class.spec.match]p2:
1409  //   A partial specialization matches a given actual template
1410  //   argument list if the template arguments of the partial
1411  //   specialization can be deduced from the actual template argument
1412  //   list (14.8.2).
1413  SFINAETrap Trap(*this);
1414  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1415  Deduced.resize(Partial->getTemplateParameters()->size());
1416  if (TemplateDeductionResult Result
1417        = ::DeduceTemplateArguments(*this,
1418                                    Partial->getTemplateParameters(),
1419                                    Partial->getTemplateArgs(),
1420                                    TemplateArgs, Info, Deduced))
1421    return Result;
1422
1423  InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
1424                             Deduced.data(), Deduced.size(), Info);
1425  if (Inst)
1426    return TDK_InstantiationDepth;
1427
1428  if (Trap.hasErrorOccurred())
1429    return Sema::TDK_SubstitutionFailure;
1430
1431  return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
1432                                           Deduced, Info);
1433}
1434
1435/// \brief Determine whether the given type T is a simple-template-id type.
1436static bool isSimpleTemplateIdType(QualType T) {
1437  if (const TemplateSpecializationType *Spec
1438        = T->getAs<TemplateSpecializationType>())
1439    return Spec->getTemplateName().getAsTemplateDecl() != 0;
1440
1441  return false;
1442}
1443
1444/// \brief Substitute the explicitly-provided template arguments into the
1445/// given function template according to C++ [temp.arg.explicit].
1446///
1447/// \param FunctionTemplate the function template into which the explicit
1448/// template arguments will be substituted.
1449///
1450/// \param ExplicitTemplateArguments the explicitly-specified template
1451/// arguments.
1452///
1453/// \param Deduced the deduced template arguments, which will be populated
1454/// with the converted and checked explicit template arguments.
1455///
1456/// \param ParamTypes will be populated with the instantiated function
1457/// parameters.
1458///
1459/// \param FunctionType if non-NULL, the result type of the function template
1460/// will also be instantiated and the pointed-to value will be updated with
1461/// the instantiated function type.
1462///
1463/// \param Info if substitution fails for any reason, this object will be
1464/// populated with more information about the failure.
1465///
1466/// \returns TDK_Success if substitution was successful, or some failure
1467/// condition.
1468Sema::TemplateDeductionResult
1469Sema::SubstituteExplicitTemplateArguments(
1470                                      FunctionTemplateDecl *FunctionTemplate,
1471                        const TemplateArgumentListInfo &ExplicitTemplateArgs,
1472                       llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1473                                 llvm::SmallVectorImpl<QualType> &ParamTypes,
1474                                          QualType *FunctionType,
1475                                          TemplateDeductionInfo &Info) {
1476  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1477  TemplateParameterList *TemplateParams
1478    = FunctionTemplate->getTemplateParameters();
1479
1480  if (ExplicitTemplateArgs.size() == 0) {
1481    // No arguments to substitute; just copy over the parameter types and
1482    // fill in the function type.
1483    for (FunctionDecl::param_iterator P = Function->param_begin(),
1484                                   PEnd = Function->param_end();
1485         P != PEnd;
1486         ++P)
1487      ParamTypes.push_back((*P)->getType());
1488
1489    if (FunctionType)
1490      *FunctionType = Function->getType();
1491    return TDK_Success;
1492  }
1493
1494  // Substitution of the explicit template arguments into a function template
1495  /// is a SFINAE context. Trap any errors that might occur.
1496  SFINAETrap Trap(*this);
1497
1498  // C++ [temp.arg.explicit]p3:
1499  //   Template arguments that are present shall be specified in the
1500  //   declaration order of their corresponding template-parameters. The
1501  //   template argument list shall not specify more template-arguments than
1502  //   there are corresponding template-parameters.
1503  llvm::SmallVector<TemplateArgument, 4> Builder;
1504
1505  // Enter a new template instantiation context where we check the
1506  // explicitly-specified template arguments against this function template,
1507  // and then substitute them into the function parameter types.
1508  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1509                             FunctionTemplate, Deduced.data(), Deduced.size(),
1510           ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
1511                             Info);
1512  if (Inst)
1513    return TDK_InstantiationDepth;
1514
1515  if (CheckTemplateArgumentList(FunctionTemplate,
1516                                SourceLocation(),
1517                                ExplicitTemplateArgs,
1518                                true,
1519                                Builder) || Trap.hasErrorOccurred()) {
1520    unsigned Index = Builder.size();
1521    if (Index >= TemplateParams->size())
1522      Index = TemplateParams->size() - 1;
1523    Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
1524    return TDK_InvalidExplicitArguments;
1525  }
1526
1527  // Form the template argument list from the explicitly-specified
1528  // template arguments.
1529  TemplateArgumentList *ExplicitArgumentList
1530    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
1531  Info.reset(ExplicitArgumentList);
1532
1533  // Template argument deduction and the final substitution should be
1534  // done in the context of the templated declaration.  Explicit
1535  // argument substitution, on the other hand, needs to happen in the
1536  // calling context.
1537  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
1538
1539  // Instantiate the types of each of the function parameters given the
1540  // explicitly-specified template arguments.
1541  for (FunctionDecl::param_iterator P = Function->param_begin(),
1542                                PEnd = Function->param_end();
1543       P != PEnd;
1544       ++P) {
1545    QualType ParamType
1546      = SubstType((*P)->getType(),
1547                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
1548                  (*P)->getLocation(), (*P)->getDeclName());
1549    if (ParamType.isNull() || Trap.hasErrorOccurred())
1550      return TDK_SubstitutionFailure;
1551
1552    ParamTypes.push_back(ParamType);
1553  }
1554
1555  // If the caller wants a full function type back, instantiate the return
1556  // type and form that function type.
1557  if (FunctionType) {
1558    // FIXME: exception-specifications?
1559    const FunctionProtoType *Proto
1560      = Function->getType()->getAs<FunctionProtoType>();
1561    assert(Proto && "Function template does not have a prototype?");
1562
1563    QualType ResultType
1564      = SubstType(Proto->getResultType(),
1565                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
1566                  Function->getTypeSpecStartLoc(),
1567                  Function->getDeclName());
1568    if (ResultType.isNull() || Trap.hasErrorOccurred())
1569      return TDK_SubstitutionFailure;
1570
1571    *FunctionType = BuildFunctionType(ResultType,
1572                                      ParamTypes.data(), ParamTypes.size(),
1573                                      Proto->isVariadic(),
1574                                      Proto->getTypeQuals(),
1575                                      Function->getLocation(),
1576                                      Function->getDeclName(),
1577                                      Proto->getExtInfo());
1578    if (FunctionType->isNull() || Trap.hasErrorOccurred())
1579      return TDK_SubstitutionFailure;
1580  }
1581
1582  // C++ [temp.arg.explicit]p2:
1583  //   Trailing template arguments that can be deduced (14.8.2) may be
1584  //   omitted from the list of explicit template-arguments. If all of the
1585  //   template arguments can be deduced, they may all be omitted; in this
1586  //   case, the empty template argument list <> itself may also be omitted.
1587  //
1588  // Take all of the explicitly-specified arguments and put them into the
1589  // set of deduced template arguments.
1590  //
1591  // FIXME: Variadic templates?
1592  Deduced.reserve(TemplateParams->size());
1593  for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I)
1594    Deduced.push_back(ExplicitArgumentList->get(I));
1595
1596  return TDK_Success;
1597}
1598
1599/// \brief Allocate a TemplateArgumentLoc where all locations have
1600/// been initialized to the given location.
1601///
1602/// \param S The semantic analysis object.
1603///
1604/// \param The template argument we are producing template argument
1605/// location information for.
1606///
1607/// \param NTTPType For a declaration template argument, the type of
1608/// the non-type template parameter that corresponds to this template
1609/// argument.
1610///
1611/// \param Loc The source location to use for the resulting template
1612/// argument.
1613static TemplateArgumentLoc
1614getTrivialTemplateArgumentLoc(Sema &S,
1615                              const TemplateArgument &Arg,
1616                              QualType NTTPType,
1617                              SourceLocation Loc) {
1618  switch (Arg.getKind()) {
1619  case TemplateArgument::Null:
1620    llvm_unreachable("Can't get a NULL template argument here");
1621    break;
1622
1623  case TemplateArgument::Type:
1624    return TemplateArgumentLoc(Arg,
1625                    S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
1626
1627  case TemplateArgument::Declaration: {
1628    Expr *E
1629      = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
1630                                                              .takeAs<Expr>();
1631    return TemplateArgumentLoc(TemplateArgument(E), E);
1632  }
1633
1634  case TemplateArgument::Integral: {
1635    Expr *E
1636      = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
1637    return TemplateArgumentLoc(TemplateArgument(E), E);
1638  }
1639
1640  case TemplateArgument::Template:
1641    return TemplateArgumentLoc(Arg, SourceRange(), Loc);
1642
1643  case TemplateArgument::Expression:
1644    return TemplateArgumentLoc(Arg, Arg.getAsExpr());
1645
1646  case TemplateArgument::Pack:
1647    return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
1648  }
1649
1650  return TemplateArgumentLoc();
1651}
1652
1653/// \brief Finish template argument deduction for a function template,
1654/// checking the deduced template arguments for completeness and forming
1655/// the function template specialization.
1656Sema::TemplateDeductionResult
1657Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
1658                       llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1659                                      unsigned NumExplicitlySpecified,
1660                                      FunctionDecl *&Specialization,
1661                                      TemplateDeductionInfo &Info) {
1662  TemplateParameterList *TemplateParams
1663    = FunctionTemplate->getTemplateParameters();
1664
1665  // Template argument deduction for function templates in a SFINAE context.
1666  // Trap any errors that might occur.
1667  SFINAETrap Trap(*this);
1668
1669  // Enter a new template instantiation context while we instantiate the
1670  // actual function declaration.
1671  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1672                             FunctionTemplate, Deduced.data(), Deduced.size(),
1673              ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
1674                             Info);
1675  if (Inst)
1676    return TDK_InstantiationDepth;
1677
1678  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
1679
1680  // C++ [temp.deduct.type]p2:
1681  //   [...] or if any template argument remains neither deduced nor
1682  //   explicitly specified, template argument deduction fails.
1683  llvm::SmallVector<TemplateArgument, 4> Builder;
1684  for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
1685    // FIXME: Variadic templates. Unwrap argument packs?
1686    NamedDecl *Param = FunctionTemplate->getTemplateParameters()->getParam(I);
1687    if (!Deduced[I].isNull()) {
1688      if (I < NumExplicitlySpecified) {
1689        // We have already fully type-checked and converted this
1690        // argument, because it was explicitly-specified. Just record the
1691        // presence of this argument.
1692        Builder.push_back(Deduced[I]);
1693        continue;
1694      }
1695
1696      // We have deduced this argument, so it still needs to be
1697      // checked and converted.
1698
1699      // First, for a non-type template parameter type that is
1700      // initialized by a declaration, we need the type of the
1701      // corresponding non-type template parameter.
1702      QualType NTTPType;
1703      if (NonTypeTemplateParmDecl *NTTP
1704                                = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1705        if (Deduced[I].getKind() == TemplateArgument::Declaration) {
1706          NTTPType = NTTP->getType();
1707          if (NTTPType->isDependentType()) {
1708            TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1709                                              Builder.data(), Builder.size());
1710            NTTPType = SubstType(NTTPType,
1711                                 MultiLevelTemplateArgumentList(TemplateArgs),
1712                                 NTTP->getLocation(),
1713                                 NTTP->getDeclName());
1714            if (NTTPType.isNull()) {
1715              Info.Param = makeTemplateParameter(Param);
1716              // FIXME: These template arguments are temporary. Free them!
1717              Info.reset(TemplateArgumentList::CreateCopy(Context,
1718                                                          Builder.data(),
1719                                                          Builder.size()));
1720              return TDK_SubstitutionFailure;
1721            }
1722          }
1723        }
1724      }
1725
1726      // Convert the deduced template argument into a template
1727      // argument that we can check, almost as if the user had written
1728      // the template argument explicitly.
1729      TemplateArgumentLoc Arg = getTrivialTemplateArgumentLoc(*this,
1730                                                              Deduced[I],
1731                                                              NTTPType,
1732                                                            Info.getLocation());
1733
1734      // Check the template argument, converting it as necessary.
1735      if (CheckTemplateArgument(Param, Arg,
1736                                FunctionTemplate,
1737                                FunctionTemplate->getLocation(),
1738                                FunctionTemplate->getSourceRange().getEnd(),
1739                                Builder,
1740                                Deduced[I].wasDeducedFromArrayBound()
1741                                  ? CTAK_DeducedFromArrayBound
1742                                  : CTAK_Deduced)) {
1743        Info.Param = makeTemplateParameter(
1744                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1745        // FIXME: These template arguments are temporary. Free them!
1746        Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
1747                                                    Builder.size()));
1748        return TDK_SubstitutionFailure;
1749      }
1750
1751      continue;
1752    }
1753
1754    // Substitute into the default template argument, if available.
1755    TemplateArgumentLoc DefArg
1756      = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
1757                                              FunctionTemplate->getLocation(),
1758                                  FunctionTemplate->getSourceRange().getEnd(),
1759                                                Param,
1760                                                Builder);
1761
1762    // If there was no default argument, deduction is incomplete.
1763    if (DefArg.getArgument().isNull()) {
1764      Info.Param = makeTemplateParameter(
1765                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1766      return TDK_Incomplete;
1767    }
1768
1769    // Check whether we can actually use the default argument.
1770    if (CheckTemplateArgument(Param, DefArg,
1771                              FunctionTemplate,
1772                              FunctionTemplate->getLocation(),
1773                              FunctionTemplate->getSourceRange().getEnd(),
1774                              Builder,
1775                              CTAK_Deduced)) {
1776      Info.Param = makeTemplateParameter(
1777                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1778      // FIXME: These template arguments are temporary. Free them!
1779      Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
1780                                                  Builder.size()));
1781      return TDK_SubstitutionFailure;
1782    }
1783
1784    // If we get here, we successfully used the default template argument.
1785  }
1786
1787  // Form the template argument list from the deduced template arguments.
1788  TemplateArgumentList *DeducedArgumentList
1789    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
1790  Info.reset(DeducedArgumentList);
1791
1792  // Substitute the deduced template arguments into the function template
1793  // declaration to produce the function template specialization.
1794  DeclContext *Owner = FunctionTemplate->getDeclContext();
1795  if (FunctionTemplate->getFriendObjectKind())
1796    Owner = FunctionTemplate->getLexicalDeclContext();
1797  Specialization = cast_or_null<FunctionDecl>(
1798                      SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
1799                         MultiLevelTemplateArgumentList(*DeducedArgumentList)));
1800  if (!Specialization)
1801    return TDK_SubstitutionFailure;
1802
1803  assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
1804         FunctionTemplate->getCanonicalDecl());
1805
1806  // If the template argument list is owned by the function template
1807  // specialization, release it.
1808  if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
1809      !Trap.hasErrorOccurred())
1810    Info.take();
1811
1812  // There may have been an error that did not prevent us from constructing a
1813  // declaration. Mark the declaration invalid and return with a substitution
1814  // failure.
1815  if (Trap.hasErrorOccurred()) {
1816    Specialization->setInvalidDecl(true);
1817    return TDK_SubstitutionFailure;
1818  }
1819
1820  // If we suppressed any diagnostics while performing template argument
1821  // deduction, and if we haven't already instantiated this declaration,
1822  // keep track of these diagnostics. They'll be emitted if this specialization
1823  // is actually used.
1824  if (Info.diag_begin() != Info.diag_end()) {
1825    llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator
1826      Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
1827    if (Pos == SuppressedDiagnostics.end())
1828        SuppressedDiagnostics[Specialization->getCanonicalDecl()]
1829          .append(Info.diag_begin(), Info.diag_end());
1830  }
1831
1832  return TDK_Success;
1833}
1834
1835/// Gets the type of a function for template-argument-deducton
1836/// purposes when it's considered as part of an overload set.
1837static QualType GetTypeOfFunction(ASTContext &Context,
1838                                  const OverloadExpr::FindResult &R,
1839                                  FunctionDecl *Fn) {
1840  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
1841    if (Method->isInstance()) {
1842      // An instance method that's referenced in a form that doesn't
1843      // look like a member pointer is just invalid.
1844      if (!R.HasFormOfMemberPointer) return QualType();
1845
1846      return Context.getMemberPointerType(Fn->getType(),
1847               Context.getTypeDeclType(Method->getParent()).getTypePtr());
1848    }
1849
1850  if (!R.IsAddressOfOperand) return Fn->getType();
1851  return Context.getPointerType(Fn->getType());
1852}
1853
1854/// Apply the deduction rules for overload sets.
1855///
1856/// \return the null type if this argument should be treated as an
1857/// undeduced context
1858static QualType
1859ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
1860                            Expr *Arg, QualType ParamType,
1861                            bool ParamWasReference) {
1862
1863  OverloadExpr::FindResult R = OverloadExpr::find(Arg);
1864
1865  OverloadExpr *Ovl = R.Expression;
1866
1867  // C++0x [temp.deduct.call]p4
1868  unsigned TDF = 0;
1869  if (ParamWasReference)
1870    TDF |= TDF_ParamWithReferenceType;
1871  if (R.IsAddressOfOperand)
1872    TDF |= TDF_IgnoreQualifiers;
1873
1874  // If there were explicit template arguments, we can only find
1875  // something via C++ [temp.arg.explicit]p3, i.e. if the arguments
1876  // unambiguously name a full specialization.
1877  if (Ovl->hasExplicitTemplateArgs()) {
1878    // But we can still look for an explicit specialization.
1879    if (FunctionDecl *ExplicitSpec
1880          = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
1881      return GetTypeOfFunction(S.Context, R, ExplicitSpec);
1882    return QualType();
1883  }
1884
1885  // C++0x [temp.deduct.call]p6:
1886  //   When P is a function type, pointer to function type, or pointer
1887  //   to member function type:
1888
1889  if (!ParamType->isFunctionType() &&
1890      !ParamType->isFunctionPointerType() &&
1891      !ParamType->isMemberFunctionPointerType())
1892    return QualType();
1893
1894  QualType Match;
1895  for (UnresolvedSetIterator I = Ovl->decls_begin(),
1896         E = Ovl->decls_end(); I != E; ++I) {
1897    NamedDecl *D = (*I)->getUnderlyingDecl();
1898
1899    //   - If the argument is an overload set containing one or more
1900    //     function templates, the parameter is treated as a
1901    //     non-deduced context.
1902    if (isa<FunctionTemplateDecl>(D))
1903      return QualType();
1904
1905    FunctionDecl *Fn = cast<FunctionDecl>(D);
1906    QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
1907    if (ArgType.isNull()) continue;
1908
1909    // Function-to-pointer conversion.
1910    if (!ParamWasReference && ParamType->isPointerType() &&
1911        ArgType->isFunctionType())
1912      ArgType = S.Context.getPointerType(ArgType);
1913
1914    //   - If the argument is an overload set (not containing function
1915    //     templates), trial argument deduction is attempted using each
1916    //     of the members of the set. If deduction succeeds for only one
1917    //     of the overload set members, that member is used as the
1918    //     argument value for the deduction. If deduction succeeds for
1919    //     more than one member of the overload set the parameter is
1920    //     treated as a non-deduced context.
1921
1922    // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
1923    //   Type deduction is done independently for each P/A pair, and
1924    //   the deduced template argument values are then combined.
1925    // So we do not reject deductions which were made elsewhere.
1926    llvm::SmallVector<DeducedTemplateArgument, 8>
1927      Deduced(TemplateParams->size());
1928    TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
1929    Sema::TemplateDeductionResult Result
1930      = DeduceTemplateArguments(S, TemplateParams,
1931                                ParamType, ArgType,
1932                                Info, Deduced, TDF);
1933    if (Result) continue;
1934    if (!Match.isNull()) return QualType();
1935    Match = ArgType;
1936  }
1937
1938  return Match;
1939}
1940
1941/// \brief Perform template argument deduction from a function call
1942/// (C++ [temp.deduct.call]).
1943///
1944/// \param FunctionTemplate the function template for which we are performing
1945/// template argument deduction.
1946///
1947/// \param ExplicitTemplateArguments the explicit template arguments provided
1948/// for this call.
1949///
1950/// \param Args the function call arguments
1951///
1952/// \param NumArgs the number of arguments in Args
1953///
1954/// \param Name the name of the function being called. This is only significant
1955/// when the function template is a conversion function template, in which
1956/// case this routine will also perform template argument deduction based on
1957/// the function to which
1958///
1959/// \param Specialization if template argument deduction was successful,
1960/// this will be set to the function template specialization produced by
1961/// template argument deduction.
1962///
1963/// \param Info the argument will be updated to provide additional information
1964/// about template argument deduction.
1965///
1966/// \returns the result of template argument deduction.
1967Sema::TemplateDeductionResult
1968Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1969                          const TemplateArgumentListInfo *ExplicitTemplateArgs,
1970                              Expr **Args, unsigned NumArgs,
1971                              FunctionDecl *&Specialization,
1972                              TemplateDeductionInfo &Info) {
1973  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1974
1975  // C++ [temp.deduct.call]p1:
1976  //   Template argument deduction is done by comparing each function template
1977  //   parameter type (call it P) with the type of the corresponding argument
1978  //   of the call (call it A) as described below.
1979  unsigned CheckArgs = NumArgs;
1980  if (NumArgs < Function->getMinRequiredArguments())
1981    return TDK_TooFewArguments;
1982  else if (NumArgs > Function->getNumParams()) {
1983    const FunctionProtoType *Proto
1984      = Function->getType()->getAs<FunctionProtoType>();
1985    if (!Proto->isVariadic())
1986      return TDK_TooManyArguments;
1987
1988    CheckArgs = Function->getNumParams();
1989  }
1990
1991  // The types of the parameters from which we will perform template argument
1992  // deduction.
1993  LocalInstantiationScope InstScope(*this);
1994  TemplateParameterList *TemplateParams
1995    = FunctionTemplate->getTemplateParameters();
1996  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1997  llvm::SmallVector<QualType, 4> ParamTypes;
1998  unsigned NumExplicitlySpecified = 0;
1999  if (ExplicitTemplateArgs) {
2000    TemplateDeductionResult Result =
2001      SubstituteExplicitTemplateArguments(FunctionTemplate,
2002                                          *ExplicitTemplateArgs,
2003                                          Deduced,
2004                                          ParamTypes,
2005                                          0,
2006                                          Info);
2007    if (Result)
2008      return Result;
2009
2010    NumExplicitlySpecified = Deduced.size();
2011  } else {
2012    // Just fill in the parameter types from the function declaration.
2013    for (unsigned I = 0; I != CheckArgs; ++I)
2014      ParamTypes.push_back(Function->getParamDecl(I)->getType());
2015  }
2016
2017  // Deduce template arguments from the function parameters.
2018  Deduced.resize(TemplateParams->size());
2019  for (unsigned I = 0; I != CheckArgs; ++I) {
2020    QualType ParamType = ParamTypes[I];
2021    QualType ArgType = Args[I]->getType();
2022
2023    // C++0x [temp.deduct.call]p3:
2024    //   If P is a cv-qualified type, the top level cv-qualifiers of P’s type
2025    //   are ignored for type deduction.
2026    if (ParamType.getCVRQualifiers())
2027      ParamType = ParamType.getLocalUnqualifiedType();
2028    const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
2029    if (ParamRefType) {
2030      //   [...] If P is a reference type, the type referred to by P is used
2031      //   for type deduction.
2032      ParamType = ParamRefType->getPointeeType();
2033    }
2034
2035    // Overload sets usually make this parameter an undeduced
2036    // context, but there are sometimes special circumstances.
2037    if (ArgType == Context.OverloadTy) {
2038      ArgType = ResolveOverloadForDeduction(*this, TemplateParams,
2039                                            Args[I], ParamType,
2040                                            ParamRefType != 0);
2041      if (ArgType.isNull())
2042        continue;
2043    }
2044
2045    if (ParamRefType) {
2046      // C++0x [temp.deduct.call]p3:
2047      //   [...] If P is of the form T&&, where T is a template parameter, and
2048      //   the argument is an lvalue, the type A& is used in place of A for
2049      //   type deduction.
2050      if (ParamRefType->isRValueReferenceType() &&
2051          ParamRefType->getAs<TemplateTypeParmType>() &&
2052          Args[I]->isLValue())
2053        ArgType = Context.getLValueReferenceType(ArgType);
2054    } else {
2055      // C++ [temp.deduct.call]p2:
2056      //   If P is not a reference type:
2057      //   - If A is an array type, the pointer type produced by the
2058      //     array-to-pointer standard conversion (4.2) is used in place of
2059      //     A for type deduction; otherwise,
2060      if (ArgType->isArrayType())
2061        ArgType = Context.getArrayDecayedType(ArgType);
2062      //   - If A is a function type, the pointer type produced by the
2063      //     function-to-pointer standard conversion (4.3) is used in place
2064      //     of A for type deduction; otherwise,
2065      else if (ArgType->isFunctionType())
2066        ArgType = Context.getPointerType(ArgType);
2067      else {
2068        // - If A is a cv-qualified type, the top level cv-qualifiers of A’s
2069        //   type are ignored for type deduction.
2070        QualType CanonArgType = Context.getCanonicalType(ArgType);
2071        if (ArgType.getCVRQualifiers())
2072          ArgType = ArgType.getUnqualifiedType();
2073      }
2074    }
2075
2076    // C++0x [temp.deduct.call]p4:
2077    //   In general, the deduction process attempts to find template argument
2078    //   values that will make the deduced A identical to A (after the type A
2079    //   is transformed as described above). [...]
2080    unsigned TDF = TDF_SkipNonDependent;
2081
2082    //     - If the original P is a reference type, the deduced A (i.e., the
2083    //       type referred to by the reference) can be more cv-qualified than
2084    //       the transformed A.
2085    if (ParamRefType)
2086      TDF |= TDF_ParamWithReferenceType;
2087    //     - The transformed A can be another pointer or pointer to member
2088    //       type that can be converted to the deduced A via a qualification
2089    //       conversion (4.4).
2090    if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
2091        ArgType->isObjCObjectPointerType())
2092      TDF |= TDF_IgnoreQualifiers;
2093    //     - If P is a class and P has the form simple-template-id, then the
2094    //       transformed A can be a derived class of the deduced A. Likewise,
2095    //       if P is a pointer to a class of the form simple-template-id, the
2096    //       transformed A can be a pointer to a derived class pointed to by
2097    //       the deduced A.
2098    if (isSimpleTemplateIdType(ParamType) ||
2099        (isa<PointerType>(ParamType) &&
2100         isSimpleTemplateIdType(
2101                              ParamType->getAs<PointerType>()->getPointeeType())))
2102      TDF |= TDF_DerivedClass;
2103
2104    if (TemplateDeductionResult Result
2105        = ::DeduceTemplateArguments(*this, TemplateParams,
2106                                    ParamType, ArgType, Info, Deduced,
2107                                    TDF))
2108      return Result;
2109
2110    // FIXME: we need to check that the deduced A is the same as A,
2111    // modulo the various allowed differences.
2112  }
2113
2114  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
2115                                         NumExplicitlySpecified,
2116                                         Specialization, Info);
2117}
2118
2119/// \brief Deduce template arguments when taking the address of a function
2120/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
2121/// a template.
2122///
2123/// \param FunctionTemplate the function template for which we are performing
2124/// template argument deduction.
2125///
2126/// \param ExplicitTemplateArguments the explicitly-specified template
2127/// arguments.
2128///
2129/// \param ArgFunctionType the function type that will be used as the
2130/// "argument" type (A) when performing template argument deduction from the
2131/// function template's function type. This type may be NULL, if there is no
2132/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
2133///
2134/// \param Specialization if template argument deduction was successful,
2135/// this will be set to the function template specialization produced by
2136/// template argument deduction.
2137///
2138/// \param Info the argument will be updated to provide additional information
2139/// about template argument deduction.
2140///
2141/// \returns the result of template argument deduction.
2142Sema::TemplateDeductionResult
2143Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2144                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2145                              QualType ArgFunctionType,
2146                              FunctionDecl *&Specialization,
2147                              TemplateDeductionInfo &Info) {
2148  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2149  TemplateParameterList *TemplateParams
2150    = FunctionTemplate->getTemplateParameters();
2151  QualType FunctionType = Function->getType();
2152
2153  // Substitute any explicit template arguments.
2154  LocalInstantiationScope InstScope(*this);
2155  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2156  unsigned NumExplicitlySpecified = 0;
2157  llvm::SmallVector<QualType, 4> ParamTypes;
2158  if (ExplicitTemplateArgs) {
2159    if (TemplateDeductionResult Result
2160          = SubstituteExplicitTemplateArguments(FunctionTemplate,
2161                                                *ExplicitTemplateArgs,
2162                                                Deduced, ParamTypes,
2163                                                &FunctionType, Info))
2164      return Result;
2165
2166    NumExplicitlySpecified = Deduced.size();
2167  }
2168
2169  // Template argument deduction for function templates in a SFINAE context.
2170  // Trap any errors that might occur.
2171  SFINAETrap Trap(*this);
2172
2173  Deduced.resize(TemplateParams->size());
2174
2175  if (!ArgFunctionType.isNull()) {
2176    // Deduce template arguments from the function type.
2177    if (TemplateDeductionResult Result
2178          = ::DeduceTemplateArguments(*this, TemplateParams,
2179                                      FunctionType, ArgFunctionType, Info,
2180                                      Deduced, 0))
2181      return Result;
2182  }
2183
2184  if (TemplateDeductionResult Result
2185        = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
2186                                          NumExplicitlySpecified,
2187                                          Specialization, Info))
2188    return Result;
2189
2190  // If the requested function type does not match the actual type of the
2191  // specialization, template argument deduction fails.
2192  if (!ArgFunctionType.isNull() &&
2193      !Context.hasSameType(ArgFunctionType, Specialization->getType()))
2194    return TDK_NonDeducedMismatch;
2195
2196  return TDK_Success;
2197}
2198
2199/// \brief Deduce template arguments for a templated conversion
2200/// function (C++ [temp.deduct.conv]) and, if successful, produce a
2201/// conversion function template specialization.
2202Sema::TemplateDeductionResult
2203Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2204                              QualType ToType,
2205                              CXXConversionDecl *&Specialization,
2206                              TemplateDeductionInfo &Info) {
2207  CXXConversionDecl *Conv
2208    = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
2209  QualType FromType = Conv->getConversionType();
2210
2211  // Canonicalize the types for deduction.
2212  QualType P = Context.getCanonicalType(FromType);
2213  QualType A = Context.getCanonicalType(ToType);
2214
2215  // C++0x [temp.deduct.conv]p3:
2216  //   If P is a reference type, the type referred to by P is used for
2217  //   type deduction.
2218  if (const ReferenceType *PRef = P->getAs<ReferenceType>())
2219    P = PRef->getPointeeType();
2220
2221  // C++0x [temp.deduct.conv]p3:
2222  //   If A is a reference type, the type referred to by A is used
2223  //   for type deduction.
2224  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
2225    A = ARef->getPointeeType();
2226  // C++ [temp.deduct.conv]p2:
2227  //
2228  //   If A is not a reference type:
2229  else {
2230    assert(!A->isReferenceType() && "Reference types were handled above");
2231
2232    //   - If P is an array type, the pointer type produced by the
2233    //     array-to-pointer standard conversion (4.2) is used in place
2234    //     of P for type deduction; otherwise,
2235    if (P->isArrayType())
2236      P = Context.getArrayDecayedType(P);
2237    //   - If P is a function type, the pointer type produced by the
2238    //     function-to-pointer standard conversion (4.3) is used in
2239    //     place of P for type deduction; otherwise,
2240    else if (P->isFunctionType())
2241      P = Context.getPointerType(P);
2242    //   - If P is a cv-qualified type, the top level cv-qualifiers of
2243    //     P’s type are ignored for type deduction.
2244    else
2245      P = P.getUnqualifiedType();
2246
2247    // C++0x [temp.deduct.conv]p3:
2248    //   If A is a cv-qualified type, the top level cv-qualifiers of A’s
2249    //   type are ignored for type deduction.
2250    A = A.getUnqualifiedType();
2251  }
2252
2253  // Template argument deduction for function templates in a SFINAE context.
2254  // Trap any errors that might occur.
2255  SFINAETrap Trap(*this);
2256
2257  // C++ [temp.deduct.conv]p1:
2258  //   Template argument deduction is done by comparing the return
2259  //   type of the template conversion function (call it P) with the
2260  //   type that is required as the result of the conversion (call it
2261  //   A) as described in 14.8.2.4.
2262  TemplateParameterList *TemplateParams
2263    = FunctionTemplate->getTemplateParameters();
2264  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2265  Deduced.resize(TemplateParams->size());
2266
2267  // C++0x [temp.deduct.conv]p4:
2268  //   In general, the deduction process attempts to find template
2269  //   argument values that will make the deduced A identical to
2270  //   A. However, there are two cases that allow a difference:
2271  unsigned TDF = 0;
2272  //     - If the original A is a reference type, A can be more
2273  //       cv-qualified than the deduced A (i.e., the type referred to
2274  //       by the reference)
2275  if (ToType->isReferenceType())
2276    TDF |= TDF_ParamWithReferenceType;
2277  //     - The deduced A can be another pointer or pointer to member
2278  //       type that can be converted to A via a qualification
2279  //       conversion.
2280  //
2281  // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
2282  // both P and A are pointers or member pointers. In this case, we
2283  // just ignore cv-qualifiers completely).
2284  if ((P->isPointerType() && A->isPointerType()) ||
2285      (P->isMemberPointerType() && P->isMemberPointerType()))
2286    TDF |= TDF_IgnoreQualifiers;
2287  if (TemplateDeductionResult Result
2288        = ::DeduceTemplateArguments(*this, TemplateParams,
2289                                    P, A, Info, Deduced, TDF))
2290    return Result;
2291
2292  // FIXME: we need to check that the deduced A is the same as A,
2293  // modulo the various allowed differences.
2294
2295  // Finish template argument deduction.
2296  LocalInstantiationScope InstScope(*this);
2297  FunctionDecl *Spec = 0;
2298  TemplateDeductionResult Result
2299    = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
2300                                      Info);
2301  Specialization = cast_or_null<CXXConversionDecl>(Spec);
2302  return Result;
2303}
2304
2305/// \brief Deduce template arguments for a function template when there is
2306/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
2307///
2308/// \param FunctionTemplate the function template for which we are performing
2309/// template argument deduction.
2310///
2311/// \param ExplicitTemplateArguments the explicitly-specified template
2312/// arguments.
2313///
2314/// \param Specialization if template argument deduction was successful,
2315/// this will be set to the function template specialization produced by
2316/// template argument deduction.
2317///
2318/// \param Info the argument will be updated to provide additional information
2319/// about template argument deduction.
2320///
2321/// \returns the result of template argument deduction.
2322Sema::TemplateDeductionResult
2323Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2324                           const TemplateArgumentListInfo *ExplicitTemplateArgs,
2325                              FunctionDecl *&Specialization,
2326                              TemplateDeductionInfo &Info) {
2327  return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
2328                                 QualType(), Specialization, Info);
2329}
2330
2331/// \brief Stores the result of comparing the qualifiers of two types.
2332enum DeductionQualifierComparison {
2333  NeitherMoreQualified = 0,
2334  ParamMoreQualified,
2335  ArgMoreQualified
2336};
2337
2338/// \brief Deduce the template arguments during partial ordering by comparing
2339/// the parameter type and the argument type (C++0x [temp.deduct.partial]).
2340///
2341/// \param S the semantic analysis object within which we are deducing
2342///
2343/// \param TemplateParams the template parameters that we are deducing
2344///
2345/// \param ParamIn the parameter type
2346///
2347/// \param ArgIn the argument type
2348///
2349/// \param Info information about the template argument deduction itself
2350///
2351/// \param Deduced the deduced template arguments
2352///
2353/// \returns the result of template argument deduction so far. Note that a
2354/// "success" result means that template argument deduction has not yet failed,
2355/// but it may still fail, later, for other reasons.
2356static Sema::TemplateDeductionResult
2357DeduceTemplateArgumentsDuringPartialOrdering(Sema &S,
2358                                        TemplateParameterList *TemplateParams,
2359                                             QualType ParamIn, QualType ArgIn,
2360                                             TemplateDeductionInfo &Info,
2361                      llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2362   llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
2363  CanQualType Param = S.Context.getCanonicalType(ParamIn);
2364  CanQualType Arg = S.Context.getCanonicalType(ArgIn);
2365
2366  // C++0x [temp.deduct.partial]p5:
2367  //   Before the partial ordering is done, certain transformations are
2368  //   performed on the types used for partial ordering:
2369  //     - If P is a reference type, P is replaced by the type referred to.
2370  CanQual<ReferenceType> ParamRef = Param->getAs<ReferenceType>();
2371  if (!ParamRef.isNull())
2372    Param = ParamRef->getPointeeType();
2373
2374  //     - If A is a reference type, A is replaced by the type referred to.
2375  CanQual<ReferenceType> ArgRef = Arg->getAs<ReferenceType>();
2376  if (!ArgRef.isNull())
2377    Arg = ArgRef->getPointeeType();
2378
2379  if (QualifierComparisons && !ParamRef.isNull() && !ArgRef.isNull()) {
2380    // C++0x [temp.deduct.partial]p6:
2381    //   If both P and A were reference types (before being replaced with the
2382    //   type referred to above), determine which of the two types (if any) is
2383    //   more cv-qualified than the other; otherwise the types are considered to
2384    //   be equally cv-qualified for partial ordering purposes. The result of this
2385    //   determination will be used below.
2386    //
2387    // We save this information for later, using it only when deduction
2388    // succeeds in both directions.
2389    DeductionQualifierComparison QualifierResult = NeitherMoreQualified;
2390    if (Param.isMoreQualifiedThan(Arg))
2391      QualifierResult = ParamMoreQualified;
2392    else if (Arg.isMoreQualifiedThan(Param))
2393      QualifierResult = ArgMoreQualified;
2394    QualifierComparisons->push_back(QualifierResult);
2395  }
2396
2397  // C++0x [temp.deduct.partial]p7:
2398  //   Remove any top-level cv-qualifiers:
2399  //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
2400  //       version of P.
2401  Param = Param.getUnqualifiedType();
2402  //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
2403  //       version of A.
2404  Arg = Arg.getUnqualifiedType();
2405
2406  // C++0x [temp.deduct.partial]p8:
2407  //   Using the resulting types P and A the deduction is then done as
2408  //   described in 14.9.2.5. If deduction succeeds for a given type, the type
2409  //   from the argument template is considered to be at least as specialized
2410  //   as the type from the parameter template.
2411  return DeduceTemplateArguments(S, TemplateParams, Param, Arg, Info,
2412                                 Deduced, TDF_None);
2413}
2414
2415static void
2416MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
2417                           bool OnlyDeduced,
2418                           unsigned Level,
2419                           llvm::SmallVectorImpl<bool> &Deduced);
2420
2421/// \brief If this is a non-static member function,
2422static void MaybeAddImplicitObjectParameterType(ASTContext &Context,
2423                                                CXXMethodDecl *Method,
2424                                 llvm::SmallVectorImpl<QualType> &ArgTypes) {
2425  if (Method->isStatic())
2426    return;
2427
2428  // C++ [over.match.funcs]p4:
2429  //
2430  //   For non-static member functions, the type of the implicit
2431  //   object parameter is
2432  //     — "lvalue reference to cv X" for functions declared without a
2433  //       ref-qualifier or with the & ref-qualifier
2434  //     - "rvalue reference to cv X" for functions declared with the
2435  //       && ref-qualifier
2436  //
2437  // FIXME: We don't have ref-qualifiers yet, so we don't do that part.
2438  QualType ArgTy = Context.getTypeDeclType(Method->getParent());
2439  ArgTy = Context.getQualifiedType(ArgTy,
2440                        Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
2441  ArgTy = Context.getLValueReferenceType(ArgTy);
2442  ArgTypes.push_back(ArgTy);
2443}
2444
2445/// \brief Determine whether the function template \p FT1 is at least as
2446/// specialized as \p FT2.
2447static bool isAtLeastAsSpecializedAs(Sema &S,
2448                                     SourceLocation Loc,
2449                                     FunctionTemplateDecl *FT1,
2450                                     FunctionTemplateDecl *FT2,
2451                                     TemplatePartialOrderingContext TPOC,
2452    llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
2453  FunctionDecl *FD1 = FT1->getTemplatedDecl();
2454  FunctionDecl *FD2 = FT2->getTemplatedDecl();
2455  const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
2456  const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
2457
2458  assert(Proto1 && Proto2 && "Function templates must have prototypes");
2459  TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
2460  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2461  Deduced.resize(TemplateParams->size());
2462
2463  // C++0x [temp.deduct.partial]p3:
2464  //   The types used to determine the ordering depend on the context in which
2465  //   the partial ordering is done:
2466  TemplateDeductionInfo Info(S.Context, Loc);
2467  CXXMethodDecl *Method1 = 0;
2468  CXXMethodDecl *Method2 = 0;
2469  bool IsNonStatic2 = false;
2470  bool IsNonStatic1 = false;
2471  unsigned Skip2 = 0;
2472  switch (TPOC) {
2473  case TPOC_Call: {
2474    //   - In the context of a function call, the function parameter types are
2475    //     used.
2476    Method1 = dyn_cast<CXXMethodDecl>(FD1);
2477    Method2 = dyn_cast<CXXMethodDecl>(FD2);
2478    IsNonStatic1 = Method1 && !Method1->isStatic();
2479    IsNonStatic2 = Method2 && !Method2->isStatic();
2480
2481    // C++0x [temp.func.order]p3:
2482    //   [...] If only one of the function templates is a non-static
2483    //   member, that function template is considered to have a new
2484    //   first parameter inserted in its function parameter list. The
2485    //   new parameter is of type "reference to cv A," where cv are
2486    //   the cv-qualifiers of the function template (if any) and A is
2487    //   the class of which the function template is a member.
2488    //
2489    // C++98/03 doesn't have this provision, so instead we drop the
2490    // first argument of the free function or static member, which
2491    // seems to match existing practice.
2492    llvm::SmallVector<QualType, 4> Args1;
2493    unsigned Skip1 = !S.getLangOptions().CPlusPlus0x &&
2494      IsNonStatic2 && !IsNonStatic1;
2495    if (S.getLangOptions().CPlusPlus0x && IsNonStatic1 && !IsNonStatic2)
2496      MaybeAddImplicitObjectParameterType(S.Context, Method1, Args1);
2497    Args1.insert(Args1.end(),
2498                 Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
2499
2500    llvm::SmallVector<QualType, 4> Args2;
2501    Skip2 = !S.getLangOptions().CPlusPlus0x &&
2502      IsNonStatic1 && !IsNonStatic2;
2503    if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
2504      MaybeAddImplicitObjectParameterType(S.Context, Method2, Args2);
2505    Args2.insert(Args2.end(),
2506                 Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
2507
2508    unsigned NumParams = std::min(Args1.size(), Args2.size());
2509    for (unsigned I = 0; I != NumParams; ++I)
2510      if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2511                                                       TemplateParams,
2512                                                       Args2[I],
2513                                                       Args1[I],
2514                                                       Info,
2515                                                       Deduced,
2516                                                       QualifierComparisons))
2517        return false;
2518
2519    break;
2520  }
2521
2522  case TPOC_Conversion:
2523    //   - In the context of a call to a conversion operator, the return types
2524    //     of the conversion function templates are used.
2525    if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2526                                                     TemplateParams,
2527                                                     Proto2->getResultType(),
2528                                                     Proto1->getResultType(),
2529                                                     Info,
2530                                                     Deduced,
2531                                                     QualifierComparisons))
2532      return false;
2533    break;
2534
2535  case TPOC_Other:
2536    //   - In other contexts (14.6.6.2) the function template’s function type
2537    //     is used.
2538    if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2539                                                     TemplateParams,
2540                                                     FD2->getType(),
2541                                                     FD1->getType(),
2542                                                     Info,
2543                                                     Deduced,
2544                                                     QualifierComparisons))
2545      return false;
2546    break;
2547  }
2548
2549  // C++0x [temp.deduct.partial]p11:
2550  //   In most cases, all template parameters must have values in order for
2551  //   deduction to succeed, but for partial ordering purposes a template
2552  //   parameter may remain without a value provided it is not used in the
2553  //   types being used for partial ordering. [ Note: a template parameter used
2554  //   in a non-deduced context is considered used. -end note]
2555  unsigned ArgIdx = 0, NumArgs = Deduced.size();
2556  for (; ArgIdx != NumArgs; ++ArgIdx)
2557    if (Deduced[ArgIdx].isNull())
2558      break;
2559
2560  if (ArgIdx == NumArgs) {
2561    // All template arguments were deduced. FT1 is at least as specialized
2562    // as FT2.
2563    return true;
2564  }
2565
2566  // Figure out which template parameters were used.
2567  llvm::SmallVector<bool, 4> UsedParameters;
2568  UsedParameters.resize(TemplateParams->size());
2569  switch (TPOC) {
2570  case TPOC_Call: {
2571    unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
2572    if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
2573      ::MarkUsedTemplateParameters(S, Method2->getThisType(S.Context), false,
2574                                   TemplateParams->getDepth(), UsedParameters);
2575    for (unsigned I = Skip2; I < NumParams; ++I)
2576      ::MarkUsedTemplateParameters(S, Proto2->getArgType(I), false,
2577                                   TemplateParams->getDepth(),
2578                                   UsedParameters);
2579    break;
2580  }
2581
2582  case TPOC_Conversion:
2583    ::MarkUsedTemplateParameters(S, Proto2->getResultType(), false,
2584                                 TemplateParams->getDepth(),
2585                                 UsedParameters);
2586    break;
2587
2588  case TPOC_Other:
2589    ::MarkUsedTemplateParameters(S, FD2->getType(), false,
2590                                 TemplateParams->getDepth(),
2591                                 UsedParameters);
2592    break;
2593  }
2594
2595  for (; ArgIdx != NumArgs; ++ArgIdx)
2596    // If this argument had no value deduced but was used in one of the types
2597    // used for partial ordering, then deduction fails.
2598    if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
2599      return false;
2600
2601  return true;
2602}
2603
2604
2605/// \brief Returns the more specialized function template according
2606/// to the rules of function template partial ordering (C++ [temp.func.order]).
2607///
2608/// \param FT1 the first function template
2609///
2610/// \param FT2 the second function template
2611///
2612/// \param TPOC the context in which we are performing partial ordering of
2613/// function templates.
2614///
2615/// \returns the more specialized function template. If neither
2616/// template is more specialized, returns NULL.
2617FunctionTemplateDecl *
2618Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
2619                                 FunctionTemplateDecl *FT2,
2620                                 SourceLocation Loc,
2621                                 TemplatePartialOrderingContext TPOC) {
2622  llvm::SmallVector<DeductionQualifierComparison, 4> QualifierComparisons;
2623  bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 0);
2624  bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
2625                                          &QualifierComparisons);
2626
2627  if (Better1 != Better2) // We have a clear winner
2628    return Better1? FT1 : FT2;
2629
2630  if (!Better1 && !Better2) // Neither is better than the other
2631    return 0;
2632
2633
2634  // C++0x [temp.deduct.partial]p10:
2635  //   If for each type being considered a given template is at least as
2636  //   specialized for all types and more specialized for some set of types and
2637  //   the other template is not more specialized for any types or is not at
2638  //   least as specialized for any types, then the given template is more
2639  //   specialized than the other template. Otherwise, neither template is more
2640  //   specialized than the other.
2641  Better1 = false;
2642  Better2 = false;
2643  for (unsigned I = 0, N = QualifierComparisons.size(); I != N; ++I) {
2644    // C++0x [temp.deduct.partial]p9:
2645    //   If, for a given type, deduction succeeds in both directions (i.e., the
2646    //   types are identical after the transformations above) and if the type
2647    //   from the argument template is more cv-qualified than the type from the
2648    //   parameter template (as described above) that type is considered to be
2649    //   more specialized than the other. If neither type is more cv-qualified
2650    //   than the other then neither type is more specialized than the other.
2651    switch (QualifierComparisons[I]) {
2652      case NeitherMoreQualified:
2653        break;
2654
2655      case ParamMoreQualified:
2656        Better1 = true;
2657        if (Better2)
2658          return 0;
2659        break;
2660
2661      case ArgMoreQualified:
2662        Better2 = true;
2663        if (Better1)
2664          return 0;
2665        break;
2666    }
2667  }
2668
2669  assert(!(Better1 && Better2) && "Should have broken out in the loop above");
2670  if (Better1)
2671    return FT1;
2672  else if (Better2)
2673    return FT2;
2674  else
2675    return 0;
2676}
2677
2678/// \brief Determine if the two templates are equivalent.
2679static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
2680  if (T1 == T2)
2681    return true;
2682
2683  if (!T1 || !T2)
2684    return false;
2685
2686  return T1->getCanonicalDecl() == T2->getCanonicalDecl();
2687}
2688
2689/// \brief Retrieve the most specialized of the given function template
2690/// specializations.
2691///
2692/// \param SpecBegin the start iterator of the function template
2693/// specializations that we will be comparing.
2694///
2695/// \param SpecEnd the end iterator of the function template
2696/// specializations, paired with \p SpecBegin.
2697///
2698/// \param TPOC the partial ordering context to use to compare the function
2699/// template specializations.
2700///
2701/// \param Loc the location where the ambiguity or no-specializations
2702/// diagnostic should occur.
2703///
2704/// \param NoneDiag partial diagnostic used to diagnose cases where there are
2705/// no matching candidates.
2706///
2707/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
2708/// occurs.
2709///
2710/// \param CandidateDiag partial diagnostic used for each function template
2711/// specialization that is a candidate in the ambiguous ordering. One parameter
2712/// in this diagnostic should be unbound, which will correspond to the string
2713/// describing the template arguments for the function template specialization.
2714///
2715/// \param Index if non-NULL and the result of this function is non-nULL,
2716/// receives the index corresponding to the resulting function template
2717/// specialization.
2718///
2719/// \returns the most specialized function template specialization, if
2720/// found. Otherwise, returns SpecEnd.
2721///
2722/// \todo FIXME: Consider passing in the "also-ran" candidates that failed
2723/// template argument deduction.
2724UnresolvedSetIterator
2725Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
2726                         UnresolvedSetIterator SpecEnd,
2727                         TemplatePartialOrderingContext TPOC,
2728                         SourceLocation Loc,
2729                         const PartialDiagnostic &NoneDiag,
2730                         const PartialDiagnostic &AmbigDiag,
2731                         const PartialDiagnostic &CandidateDiag) {
2732  if (SpecBegin == SpecEnd) {
2733    Diag(Loc, NoneDiag);
2734    return SpecEnd;
2735  }
2736
2737  if (SpecBegin + 1 == SpecEnd)
2738    return SpecBegin;
2739
2740  // Find the function template that is better than all of the templates it
2741  // has been compared to.
2742  UnresolvedSetIterator Best = SpecBegin;
2743  FunctionTemplateDecl *BestTemplate
2744    = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
2745  assert(BestTemplate && "Not a function template specialization?");
2746  for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
2747    FunctionTemplateDecl *Challenger
2748      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
2749    assert(Challenger && "Not a function template specialization?");
2750    if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
2751                                                  Loc, TPOC),
2752                       Challenger)) {
2753      Best = I;
2754      BestTemplate = Challenger;
2755    }
2756  }
2757
2758  // Make sure that the "best" function template is more specialized than all
2759  // of the others.
2760  bool Ambiguous = false;
2761  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
2762    FunctionTemplateDecl *Challenger
2763      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
2764    if (I != Best &&
2765        !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
2766                                                   Loc, TPOC),
2767                        BestTemplate)) {
2768      Ambiguous = true;
2769      break;
2770    }
2771  }
2772
2773  if (!Ambiguous) {
2774    // We found an answer. Return it.
2775    return Best;
2776  }
2777
2778  // Diagnose the ambiguity.
2779  Diag(Loc, AmbigDiag);
2780
2781  // FIXME: Can we order the candidates in some sane way?
2782  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I)
2783    Diag((*I)->getLocation(), CandidateDiag)
2784      << getTemplateArgumentBindingsText(
2785        cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
2786                    *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
2787
2788  return SpecEnd;
2789}
2790
2791/// \brief Returns the more specialized class template partial specialization
2792/// according to the rules of partial ordering of class template partial
2793/// specializations (C++ [temp.class.order]).
2794///
2795/// \param PS1 the first class template partial specialization
2796///
2797/// \param PS2 the second class template partial specialization
2798///
2799/// \returns the more specialized class template partial specialization. If
2800/// neither partial specialization is more specialized, returns NULL.
2801ClassTemplatePartialSpecializationDecl *
2802Sema::getMoreSpecializedPartialSpecialization(
2803                                  ClassTemplatePartialSpecializationDecl *PS1,
2804                                  ClassTemplatePartialSpecializationDecl *PS2,
2805                                              SourceLocation Loc) {
2806  // C++ [temp.class.order]p1:
2807  //   For two class template partial specializations, the first is at least as
2808  //   specialized as the second if, given the following rewrite to two
2809  //   function templates, the first function template is at least as
2810  //   specialized as the second according to the ordering rules for function
2811  //   templates (14.6.6.2):
2812  //     - the first function template has the same template parameters as the
2813  //       first partial specialization and has a single function parameter
2814  //       whose type is a class template specialization with the template
2815  //       arguments of the first partial specialization, and
2816  //     - the second function template has the same template parameters as the
2817  //       second partial specialization and has a single function parameter
2818  //       whose type is a class template specialization with the template
2819  //       arguments of the second partial specialization.
2820  //
2821  // Rather than synthesize function templates, we merely perform the
2822  // equivalent partial ordering by performing deduction directly on
2823  // the template arguments of the class template partial
2824  // specializations. This computation is slightly simpler than the
2825  // general problem of function template partial ordering, because
2826  // class template partial specializations are more constrained. We
2827  // know that every template parameter is deducible from the class
2828  // template partial specialization's template arguments, for
2829  // example.
2830  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2831  TemplateDeductionInfo Info(Context, Loc);
2832
2833  QualType PT1 = PS1->getInjectedSpecializationType();
2834  QualType PT2 = PS2->getInjectedSpecializationType();
2835
2836  // Determine whether PS1 is at least as specialized as PS2
2837  Deduced.resize(PS2->getTemplateParameters()->size());
2838  bool Better1 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
2839                                                  PS2->getTemplateParameters(),
2840                                                               PT2,
2841                                                               PT1,
2842                                                               Info,
2843                                                               Deduced,
2844                                                               0);
2845  if (Better1) {
2846    InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
2847                               Deduced.data(), Deduced.size(), Info);
2848    Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
2849                                                 PS1->getTemplateArgs(),
2850                                                 Deduced, Info);
2851  }
2852
2853  // Determine whether PS2 is at least as specialized as PS1
2854  Deduced.clear();
2855  Deduced.resize(PS1->getTemplateParameters()->size());
2856  bool Better2 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
2857                                                  PS1->getTemplateParameters(),
2858                                                               PT1,
2859                                                               PT2,
2860                                                               Info,
2861                                                               Deduced,
2862                                                               0);
2863  if (Better2) {
2864    InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
2865                               Deduced.data(), Deduced.size(), Info);
2866    Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
2867                                                 PS2->getTemplateArgs(),
2868                                                 Deduced, Info);
2869  }
2870
2871  if (Better1 == Better2)
2872    return 0;
2873
2874  return Better1? PS1 : PS2;
2875}
2876
2877static void
2878MarkUsedTemplateParameters(Sema &SemaRef,
2879                           const TemplateArgument &TemplateArg,
2880                           bool OnlyDeduced,
2881                           unsigned Depth,
2882                           llvm::SmallVectorImpl<bool> &Used);
2883
2884/// \brief Mark the template parameters that are used by the given
2885/// expression.
2886static void
2887MarkUsedTemplateParameters(Sema &SemaRef,
2888                           const Expr *E,
2889                           bool OnlyDeduced,
2890                           unsigned Depth,
2891                           llvm::SmallVectorImpl<bool> &Used) {
2892  // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
2893  // find other occurrences of template parameters.
2894  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
2895  if (!DRE)
2896    return;
2897
2898  const NonTypeTemplateParmDecl *NTTP
2899    = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2900  if (!NTTP)
2901    return;
2902
2903  if (NTTP->getDepth() == Depth)
2904    Used[NTTP->getIndex()] = true;
2905}
2906
2907/// \brief Mark the template parameters that are used by the given
2908/// nested name specifier.
2909static void
2910MarkUsedTemplateParameters(Sema &SemaRef,
2911                           NestedNameSpecifier *NNS,
2912                           bool OnlyDeduced,
2913                           unsigned Depth,
2914                           llvm::SmallVectorImpl<bool> &Used) {
2915  if (!NNS)
2916    return;
2917
2918  MarkUsedTemplateParameters(SemaRef, NNS->getPrefix(), OnlyDeduced, Depth,
2919                             Used);
2920  MarkUsedTemplateParameters(SemaRef, QualType(NNS->getAsType(), 0),
2921                             OnlyDeduced, Depth, Used);
2922}
2923
2924/// \brief Mark the template parameters that are used by the given
2925/// template name.
2926static void
2927MarkUsedTemplateParameters(Sema &SemaRef,
2928                           TemplateName Name,
2929                           bool OnlyDeduced,
2930                           unsigned Depth,
2931                           llvm::SmallVectorImpl<bool> &Used) {
2932  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2933    if (TemplateTemplateParmDecl *TTP
2934          = dyn_cast<TemplateTemplateParmDecl>(Template)) {
2935      if (TTP->getDepth() == Depth)
2936        Used[TTP->getIndex()] = true;
2937    }
2938    return;
2939  }
2940
2941  if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
2942    MarkUsedTemplateParameters(SemaRef, QTN->getQualifier(), OnlyDeduced,
2943                               Depth, Used);
2944  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
2945    MarkUsedTemplateParameters(SemaRef, DTN->getQualifier(), OnlyDeduced,
2946                               Depth, Used);
2947}
2948
2949/// \brief Mark the template parameters that are used by the given
2950/// type.
2951static void
2952MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
2953                           bool OnlyDeduced,
2954                           unsigned Depth,
2955                           llvm::SmallVectorImpl<bool> &Used) {
2956  if (T.isNull())
2957    return;
2958
2959  // Non-dependent types have nothing deducible
2960  if (!T->isDependentType())
2961    return;
2962
2963  T = SemaRef.Context.getCanonicalType(T);
2964  switch (T->getTypeClass()) {
2965  case Type::Pointer:
2966    MarkUsedTemplateParameters(SemaRef,
2967                               cast<PointerType>(T)->getPointeeType(),
2968                               OnlyDeduced,
2969                               Depth,
2970                               Used);
2971    break;
2972
2973  case Type::BlockPointer:
2974    MarkUsedTemplateParameters(SemaRef,
2975                               cast<BlockPointerType>(T)->getPointeeType(),
2976                               OnlyDeduced,
2977                               Depth,
2978                               Used);
2979    break;
2980
2981  case Type::LValueReference:
2982  case Type::RValueReference:
2983    MarkUsedTemplateParameters(SemaRef,
2984                               cast<ReferenceType>(T)->getPointeeType(),
2985                               OnlyDeduced,
2986                               Depth,
2987                               Used);
2988    break;
2989
2990  case Type::MemberPointer: {
2991    const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
2992    MarkUsedTemplateParameters(SemaRef, MemPtr->getPointeeType(), OnlyDeduced,
2993                               Depth, Used);
2994    MarkUsedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0),
2995                               OnlyDeduced, Depth, Used);
2996    break;
2997  }
2998
2999  case Type::DependentSizedArray:
3000    MarkUsedTemplateParameters(SemaRef,
3001                               cast<DependentSizedArrayType>(T)->getSizeExpr(),
3002                               OnlyDeduced, Depth, Used);
3003    // Fall through to check the element type
3004
3005  case Type::ConstantArray:
3006  case Type::IncompleteArray:
3007    MarkUsedTemplateParameters(SemaRef,
3008                               cast<ArrayType>(T)->getElementType(),
3009                               OnlyDeduced, Depth, Used);
3010    break;
3011
3012  case Type::Vector:
3013  case Type::ExtVector:
3014    MarkUsedTemplateParameters(SemaRef,
3015                               cast<VectorType>(T)->getElementType(),
3016                               OnlyDeduced, Depth, Used);
3017    break;
3018
3019  case Type::DependentSizedExtVector: {
3020    const DependentSizedExtVectorType *VecType
3021      = cast<DependentSizedExtVectorType>(T);
3022    MarkUsedTemplateParameters(SemaRef, VecType->getElementType(), OnlyDeduced,
3023                               Depth, Used);
3024    MarkUsedTemplateParameters(SemaRef, VecType->getSizeExpr(), OnlyDeduced,
3025                               Depth, Used);
3026    break;
3027  }
3028
3029  case Type::FunctionProto: {
3030    const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
3031    MarkUsedTemplateParameters(SemaRef, Proto->getResultType(), OnlyDeduced,
3032                               Depth, Used);
3033    for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
3034      MarkUsedTemplateParameters(SemaRef, Proto->getArgType(I), OnlyDeduced,
3035                                 Depth, Used);
3036    break;
3037  }
3038
3039  case Type::TemplateTypeParm: {
3040    const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
3041    if (TTP->getDepth() == Depth)
3042      Used[TTP->getIndex()] = true;
3043    break;
3044  }
3045
3046  case Type::InjectedClassName:
3047    T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
3048    // fall through
3049
3050  case Type::TemplateSpecialization: {
3051    const TemplateSpecializationType *Spec
3052      = cast<TemplateSpecializationType>(T);
3053    MarkUsedTemplateParameters(SemaRef, Spec->getTemplateName(), OnlyDeduced,
3054                               Depth, Used);
3055    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
3056      MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
3057                                 Used);
3058    break;
3059  }
3060
3061  case Type::Complex:
3062    if (!OnlyDeduced)
3063      MarkUsedTemplateParameters(SemaRef,
3064                                 cast<ComplexType>(T)->getElementType(),
3065                                 OnlyDeduced, Depth, Used);
3066    break;
3067
3068  case Type::DependentName:
3069    if (!OnlyDeduced)
3070      MarkUsedTemplateParameters(SemaRef,
3071                                 cast<DependentNameType>(T)->getQualifier(),
3072                                 OnlyDeduced, Depth, Used);
3073    break;
3074
3075  case Type::DependentTemplateSpecialization: {
3076    const DependentTemplateSpecializationType *Spec
3077      = cast<DependentTemplateSpecializationType>(T);
3078    if (!OnlyDeduced)
3079      MarkUsedTemplateParameters(SemaRef, Spec->getQualifier(),
3080                                 OnlyDeduced, Depth, Used);
3081    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
3082      MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
3083                                 Used);
3084    break;
3085  }
3086
3087  case Type::TypeOf:
3088    if (!OnlyDeduced)
3089      MarkUsedTemplateParameters(SemaRef,
3090                                 cast<TypeOfType>(T)->getUnderlyingType(),
3091                                 OnlyDeduced, Depth, Used);
3092    break;
3093
3094  case Type::TypeOfExpr:
3095    if (!OnlyDeduced)
3096      MarkUsedTemplateParameters(SemaRef,
3097                                 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
3098                                 OnlyDeduced, Depth, Used);
3099    break;
3100
3101  case Type::Decltype:
3102    if (!OnlyDeduced)
3103      MarkUsedTemplateParameters(SemaRef,
3104                                 cast<DecltypeType>(T)->getUnderlyingExpr(),
3105                                 OnlyDeduced, Depth, Used);
3106    break;
3107
3108  case Type::PackExpansion:
3109    MarkUsedTemplateParameters(SemaRef,
3110                               cast<PackExpansionType>(T)->getPattern(),
3111                               OnlyDeduced, Depth, Used);
3112    break;
3113
3114  // None of these types have any template parameters in them.
3115  case Type::Builtin:
3116  case Type::VariableArray:
3117  case Type::FunctionNoProto:
3118  case Type::Record:
3119  case Type::Enum:
3120  case Type::ObjCInterface:
3121  case Type::ObjCObject:
3122  case Type::ObjCObjectPointer:
3123  case Type::UnresolvedUsing:
3124#define TYPE(Class, Base)
3125#define ABSTRACT_TYPE(Class, Base)
3126#define DEPENDENT_TYPE(Class, Base)
3127#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3128#include "clang/AST/TypeNodes.def"
3129    break;
3130  }
3131}
3132
3133/// \brief Mark the template parameters that are used by this
3134/// template argument.
3135static void
3136MarkUsedTemplateParameters(Sema &SemaRef,
3137                           const TemplateArgument &TemplateArg,
3138                           bool OnlyDeduced,
3139                           unsigned Depth,
3140                           llvm::SmallVectorImpl<bool> &Used) {
3141  switch (TemplateArg.getKind()) {
3142  case TemplateArgument::Null:
3143  case TemplateArgument::Integral:
3144    case TemplateArgument::Declaration:
3145    break;
3146
3147  case TemplateArgument::Type:
3148    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsType(), OnlyDeduced,
3149                               Depth, Used);
3150    break;
3151
3152  case TemplateArgument::Template:
3153    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsTemplate(),
3154                               OnlyDeduced, Depth, Used);
3155    break;
3156
3157  case TemplateArgument::Expression:
3158    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsExpr(), OnlyDeduced,
3159                               Depth, Used);
3160    break;
3161
3162  case TemplateArgument::Pack:
3163    for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
3164                                      PEnd = TemplateArg.pack_end();
3165         P != PEnd; ++P)
3166      MarkUsedTemplateParameters(SemaRef, *P, OnlyDeduced, Depth, Used);
3167    break;
3168  }
3169}
3170
3171/// \brief Mark the template parameters can be deduced by the given
3172/// template argument list.
3173///
3174/// \param TemplateArgs the template argument list from which template
3175/// parameters will be deduced.
3176///
3177/// \param Deduced a bit vector whose elements will be set to \c true
3178/// to indicate when the corresponding template parameter will be
3179/// deduced.
3180void
3181Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
3182                                 bool OnlyDeduced, unsigned Depth,
3183                                 llvm::SmallVectorImpl<bool> &Used) {
3184  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3185    ::MarkUsedTemplateParameters(*this, TemplateArgs[I], OnlyDeduced,
3186                                 Depth, Used);
3187}
3188
3189/// \brief Marks all of the template parameters that will be deduced by a
3190/// call to the given function template.
3191void
3192Sema::MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate,
3193                                    llvm::SmallVectorImpl<bool> &Deduced) {
3194  TemplateParameterList *TemplateParams
3195    = FunctionTemplate->getTemplateParameters();
3196  Deduced.clear();
3197  Deduced.resize(TemplateParams->size());
3198
3199  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3200  for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
3201    ::MarkUsedTemplateParameters(*this, Function->getParamDecl(I)->getType(),
3202                                 true, TemplateParams->getDepth(), Deduced);
3203}
3204