SemaTemplateDeduction.cpp revision 4714c12a1ab759156b78be8f109ea4c12213af57
1//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===/
12
13#include "Sema.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclTemplate.h"
16#include "clang/AST/StmtVisitor.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/Parse/DeclSpec.h"
20#include <algorithm>
21
22namespace clang {
23  /// \brief Various flags that control template argument deduction.
24  ///
25  /// These flags can be bitwise-OR'd together.
26  enum TemplateDeductionFlags {
27    /// \brief No template argument deduction flags, which indicates the
28    /// strictest results for template argument deduction (as used for, e.g.,
29    /// matching class template partial specializations).
30    TDF_None = 0,
31    /// \brief Within template argument deduction from a function call, we are
32    /// matching with a parameter type for which the original parameter was
33    /// a reference.
34    TDF_ParamWithReferenceType = 0x1,
35    /// \brief Within template argument deduction from a function call, we
36    /// are matching in a case where we ignore cv-qualifiers.
37    TDF_IgnoreQualifiers = 0x02,
38    /// \brief Within template argument deduction from a function call,
39    /// we are matching in a case where we can perform template argument
40    /// deduction from a template-id of a derived class of the argument type.
41    TDF_DerivedClass = 0x04,
42    /// \brief Allow non-dependent types to differ, e.g., when performing
43    /// template argument deduction from a function call where conversions
44    /// may apply.
45    TDF_SkipNonDependent = 0x08
46  };
47}
48
49using namespace clang;
50
51/// \brief Compare two APSInts, extending and switching the sign as
52/// necessary to compare their values regardless of underlying type.
53static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
54  if (Y.getBitWidth() > X.getBitWidth())
55    X.extend(Y.getBitWidth());
56  else if (Y.getBitWidth() < X.getBitWidth())
57    Y.extend(X.getBitWidth());
58
59  // If there is a signedness mismatch, correct it.
60  if (X.isSigned() != Y.isSigned()) {
61    // If the signed value is negative, then the values cannot be the same.
62    if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
63      return false;
64
65    Y.setIsSigned(true);
66    X.setIsSigned(true);
67  }
68
69  return X == Y;
70}
71
72static Sema::TemplateDeductionResult
73DeduceTemplateArguments(Sema &S,
74                        TemplateParameterList *TemplateParams,
75                        const TemplateArgument &Param,
76                        const TemplateArgument &Arg,
77                        Sema::TemplateDeductionInfo &Info,
78                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced);
79
80/// \brief If the given expression is of a form that permits the deduction
81/// of a non-type template parameter, return the declaration of that
82/// non-type template parameter.
83static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
84  if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
85    E = IC->getSubExpr();
86
87  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
88    return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
89
90  return 0;
91}
92
93/// \brief Deduce the value of the given non-type template parameter
94/// from the given constant.
95static Sema::TemplateDeductionResult
96DeduceNonTypeTemplateArgument(Sema &S,
97                              NonTypeTemplateParmDecl *NTTP,
98                              llvm::APSInt Value, QualType ValueType,
99                              bool DeducedFromArrayBound,
100                              Sema::TemplateDeductionInfo &Info,
101                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
102  assert(NTTP->getDepth() == 0 &&
103         "Cannot deduce non-type template argument with depth > 0");
104
105  if (Deduced[NTTP->getIndex()].isNull()) {
106    Deduced[NTTP->getIndex()] = DeducedTemplateArgument(Value, ValueType,
107                                                        DeducedFromArrayBound);
108    return Sema::TDK_Success;
109  }
110
111  if (Deduced[NTTP->getIndex()].getKind() != TemplateArgument::Integral) {
112    Info.Param = NTTP;
113    Info.FirstArg = Deduced[NTTP->getIndex()];
114    Info.SecondArg = TemplateArgument(Value, ValueType);
115    return Sema::TDK_Inconsistent;
116  }
117
118  // Extent the smaller of the two values.
119  llvm::APSInt PrevValue = *Deduced[NTTP->getIndex()].getAsIntegral();
120  if (!hasSameExtendedValue(PrevValue, Value)) {
121    Info.Param = NTTP;
122    Info.FirstArg = Deduced[NTTP->getIndex()];
123    Info.SecondArg = TemplateArgument(Value, ValueType);
124    return Sema::TDK_Inconsistent;
125  }
126
127  if (!DeducedFromArrayBound)
128    Deduced[NTTP->getIndex()].setDeducedFromArrayBound(false);
129
130  return Sema::TDK_Success;
131}
132
133/// \brief Deduce the value of the given non-type template parameter
134/// from the given type- or value-dependent expression.
135///
136/// \returns true if deduction succeeded, false otherwise.
137static Sema::TemplateDeductionResult
138DeduceNonTypeTemplateArgument(Sema &S,
139                              NonTypeTemplateParmDecl *NTTP,
140                              Expr *Value,
141                              Sema::TemplateDeductionInfo &Info,
142                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
143  assert(NTTP->getDepth() == 0 &&
144         "Cannot deduce non-type template argument with depth > 0");
145  assert((Value->isTypeDependent() || Value->isValueDependent()) &&
146         "Expression template argument must be type- or value-dependent.");
147
148  if (Deduced[NTTP->getIndex()].isNull()) {
149    Deduced[NTTP->getIndex()] = TemplateArgument(Value->Retain());
150    return Sema::TDK_Success;
151  }
152
153  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral) {
154    // Okay, we deduced a constant in one case and a dependent expression
155    // in another case. FIXME: Later, we will check that instantiating the
156    // dependent expression gives us the constant value.
157    return Sema::TDK_Success;
158  }
159
160  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) {
161    // Compare the expressions for equality
162    llvm::FoldingSetNodeID ID1, ID2;
163    Deduced[NTTP->getIndex()].getAsExpr()->Profile(ID1, S.Context, true);
164    Value->Profile(ID2, S.Context, true);
165    if (ID1 == ID2)
166      return Sema::TDK_Success;
167
168    // FIXME: Fill in argument mismatch information
169    return Sema::TDK_NonDeducedMismatch;
170  }
171
172  return Sema::TDK_Success;
173}
174
175/// \brief Deduce the value of the given non-type template parameter
176/// from the given declaration.
177///
178/// \returns true if deduction succeeded, false otherwise.
179static Sema::TemplateDeductionResult
180DeduceNonTypeTemplateArgument(Sema &S,
181                              NonTypeTemplateParmDecl *NTTP,
182                              Decl *D,
183                              Sema::TemplateDeductionInfo &Info,
184                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
185  assert(NTTP->getDepth() == 0 &&
186         "Cannot deduce non-type template argument with depth > 0");
187
188  if (Deduced[NTTP->getIndex()].isNull()) {
189    Deduced[NTTP->getIndex()] = TemplateArgument(D->getCanonicalDecl());
190    return Sema::TDK_Success;
191  }
192
193  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) {
194    // Okay, we deduced a declaration in one case and a dependent expression
195    // in another case.
196    return Sema::TDK_Success;
197  }
198
199  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Declaration) {
200    // Compare the declarations for equality
201    if (Deduced[NTTP->getIndex()].getAsDecl()->getCanonicalDecl() ==
202          D->getCanonicalDecl())
203      return Sema::TDK_Success;
204
205    // FIXME: Fill in argument mismatch information
206    return Sema::TDK_NonDeducedMismatch;
207  }
208
209  return Sema::TDK_Success;
210}
211
212static Sema::TemplateDeductionResult
213DeduceTemplateArguments(Sema &S,
214                        TemplateParameterList *TemplateParams,
215                        TemplateName Param,
216                        TemplateName Arg,
217                        Sema::TemplateDeductionInfo &Info,
218                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
219  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
220  if (!ParamDecl) {
221    // The parameter type is dependent and is not a template template parameter,
222    // so there is nothing that we can deduce.
223    return Sema::TDK_Success;
224  }
225
226  if (TemplateTemplateParmDecl *TempParam
227        = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
228    // Bind the template template parameter to the given template name.
229    TemplateArgument &ExistingArg = Deduced[TempParam->getIndex()];
230    if (ExistingArg.isNull()) {
231      // This is the first deduction for this template template parameter.
232      ExistingArg = TemplateArgument(S.Context.getCanonicalTemplateName(Arg));
233      return Sema::TDK_Success;
234    }
235
236    // Verify that the previous binding matches this deduction.
237    assert(ExistingArg.getKind() == TemplateArgument::Template);
238    if (S.Context.hasSameTemplateName(ExistingArg.getAsTemplate(), Arg))
239      return Sema::TDK_Success;
240
241    // Inconsistent deduction.
242    Info.Param = TempParam;
243    Info.FirstArg = ExistingArg;
244    Info.SecondArg = TemplateArgument(Arg);
245    return Sema::TDK_Inconsistent;
246  }
247
248  // Verify that the two template names are equivalent.
249  if (S.Context.hasSameTemplateName(Param, Arg))
250    return Sema::TDK_Success;
251
252  // Mismatch of non-dependent template parameter to argument.
253  Info.FirstArg = TemplateArgument(Param);
254  Info.SecondArg = TemplateArgument(Arg);
255  return Sema::TDK_NonDeducedMismatch;
256}
257
258/// \brief Deduce the template arguments by comparing the template parameter
259/// type (which is a template-id) with the template argument type.
260///
261/// \param S the Sema
262///
263/// \param TemplateParams the template parameters that we are deducing
264///
265/// \param Param the parameter type
266///
267/// \param Arg the argument type
268///
269/// \param Info information about the template argument deduction itself
270///
271/// \param Deduced the deduced template arguments
272///
273/// \returns the result of template argument deduction so far. Note that a
274/// "success" result means that template argument deduction has not yet failed,
275/// but it may still fail, later, for other reasons.
276static Sema::TemplateDeductionResult
277DeduceTemplateArguments(Sema &S,
278                        TemplateParameterList *TemplateParams,
279                        const TemplateSpecializationType *Param,
280                        QualType Arg,
281                        Sema::TemplateDeductionInfo &Info,
282                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
283  assert(Arg.isCanonical() && "Argument type must be canonical");
284
285  // Check whether the template argument is a dependent template-id.
286  if (const TemplateSpecializationType *SpecArg
287        = dyn_cast<TemplateSpecializationType>(Arg)) {
288    // Perform template argument deduction for the template name.
289    if (Sema::TemplateDeductionResult Result
290          = DeduceTemplateArguments(S, TemplateParams,
291                                    Param->getTemplateName(),
292                                    SpecArg->getTemplateName(),
293                                    Info, Deduced))
294      return Result;
295
296
297    // Perform template argument deduction on each template
298    // argument.
299    unsigned NumArgs = std::min(SpecArg->getNumArgs(), Param->getNumArgs());
300    for (unsigned I = 0; I != NumArgs; ++I)
301      if (Sema::TemplateDeductionResult Result
302            = DeduceTemplateArguments(S, TemplateParams,
303                                      Param->getArg(I),
304                                      SpecArg->getArg(I),
305                                      Info, Deduced))
306        return Result;
307
308    return Sema::TDK_Success;
309  }
310
311  // If the argument type is a class template specialization, we
312  // perform template argument deduction using its template
313  // arguments.
314  const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
315  if (!RecordArg)
316    return Sema::TDK_NonDeducedMismatch;
317
318  ClassTemplateSpecializationDecl *SpecArg
319    = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
320  if (!SpecArg)
321    return Sema::TDK_NonDeducedMismatch;
322
323  // Perform template argument deduction for the template name.
324  if (Sema::TemplateDeductionResult Result
325        = DeduceTemplateArguments(S,
326                                  TemplateParams,
327                                  Param->getTemplateName(),
328                               TemplateName(SpecArg->getSpecializedTemplate()),
329                                  Info, Deduced))
330    return Result;
331
332  unsigned NumArgs = Param->getNumArgs();
333  const TemplateArgumentList &ArgArgs = SpecArg->getTemplateArgs();
334  if (NumArgs != ArgArgs.size())
335    return Sema::TDK_NonDeducedMismatch;
336
337  for (unsigned I = 0; I != NumArgs; ++I)
338    if (Sema::TemplateDeductionResult Result
339          = DeduceTemplateArguments(S, TemplateParams,
340                                    Param->getArg(I),
341                                    ArgArgs.get(I),
342                                    Info, Deduced))
343      return Result;
344
345  return Sema::TDK_Success;
346}
347
348/// \brief Deduce the template arguments by comparing the parameter type and
349/// the argument type (C++ [temp.deduct.type]).
350///
351/// \param S the semantic analysis object within which we are deducing
352///
353/// \param TemplateParams the template parameters that we are deducing
354///
355/// \param ParamIn the parameter type
356///
357/// \param ArgIn the argument type
358///
359/// \param Info information about the template argument deduction itself
360///
361/// \param Deduced the deduced template arguments
362///
363/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
364/// how template argument deduction is performed.
365///
366/// \returns the result of template argument deduction so far. Note that a
367/// "success" result means that template argument deduction has not yet failed,
368/// but it may still fail, later, for other reasons.
369static Sema::TemplateDeductionResult
370DeduceTemplateArguments(Sema &S,
371                        TemplateParameterList *TemplateParams,
372                        QualType ParamIn, QualType ArgIn,
373                        Sema::TemplateDeductionInfo &Info,
374                     llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
375                        unsigned TDF) {
376  // We only want to look at the canonical types, since typedefs and
377  // sugar are not part of template argument deduction.
378  QualType Param = S.Context.getCanonicalType(ParamIn);
379  QualType Arg = S.Context.getCanonicalType(ArgIn);
380
381  // C++0x [temp.deduct.call]p4 bullet 1:
382  //   - If the original P is a reference type, the deduced A (i.e., the type
383  //     referred to by the reference) can be more cv-qualified than the
384  //     transformed A.
385  if (TDF & TDF_ParamWithReferenceType) {
386    Qualifiers Quals;
387    QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
388    Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
389                           Arg.getCVRQualifiersThroughArrayTypes());
390    Param = S.Context.getQualifiedType(UnqualParam, Quals);
391  }
392
393  // If the parameter type is not dependent, there is nothing to deduce.
394  if (!Param->isDependentType()) {
395    if (!(TDF & TDF_SkipNonDependent) && Param != Arg) {
396
397      return Sema::TDK_NonDeducedMismatch;
398    }
399
400    return Sema::TDK_Success;
401  }
402
403  // C++ [temp.deduct.type]p9:
404  //   A template type argument T, a template template argument TT or a
405  //   template non-type argument i can be deduced if P and A have one of
406  //   the following forms:
407  //
408  //     T
409  //     cv-list T
410  if (const TemplateTypeParmType *TemplateTypeParm
411        = Param->getAs<TemplateTypeParmType>()) {
412    unsigned Index = TemplateTypeParm->getIndex();
413    bool RecanonicalizeArg = false;
414
415    // If the argument type is an array type, move the qualifiers up to the
416    // top level, so they can be matched with the qualifiers on the parameter.
417    // FIXME: address spaces, ObjC GC qualifiers
418    if (isa<ArrayType>(Arg)) {
419      Qualifiers Quals;
420      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
421      if (Quals) {
422        Arg = S.Context.getQualifiedType(Arg, Quals);
423        RecanonicalizeArg = true;
424      }
425    }
426
427    // The argument type can not be less qualified than the parameter
428    // type.
429    if (Param.isMoreQualifiedThan(Arg) && !(TDF & TDF_IgnoreQualifiers)) {
430      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
431      Info.FirstArg = Deduced[Index];
432      Info.SecondArg = TemplateArgument(Arg);
433      return Sema::TDK_InconsistentQuals;
434    }
435
436    assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
437    assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
438    QualType DeducedType = Arg;
439    DeducedType.removeCVRQualifiers(Param.getCVRQualifiers());
440    if (RecanonicalizeArg)
441      DeducedType = S.Context.getCanonicalType(DeducedType);
442
443    if (Deduced[Index].isNull())
444      Deduced[Index] = TemplateArgument(DeducedType);
445    else {
446      // C++ [temp.deduct.type]p2:
447      //   [...] If type deduction cannot be done for any P/A pair, or if for
448      //   any pair the deduction leads to more than one possible set of
449      //   deduced values, or if different pairs yield different deduced
450      //   values, or if any template argument remains neither deduced nor
451      //   explicitly specified, template argument deduction fails.
452      if (Deduced[Index].getAsType() != DeducedType) {
453        Info.Param
454          = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
455        Info.FirstArg = Deduced[Index];
456        Info.SecondArg = TemplateArgument(Arg);
457        return Sema::TDK_Inconsistent;
458      }
459    }
460    return Sema::TDK_Success;
461  }
462
463  // Set up the template argument deduction information for a failure.
464  Info.FirstArg = TemplateArgument(ParamIn);
465  Info.SecondArg = TemplateArgument(ArgIn);
466
467  // Check the cv-qualifiers on the parameter and argument types.
468  if (!(TDF & TDF_IgnoreQualifiers)) {
469    if (TDF & TDF_ParamWithReferenceType) {
470      if (Param.isMoreQualifiedThan(Arg))
471        return Sema::TDK_NonDeducedMismatch;
472    } else {
473      if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
474        return Sema::TDK_NonDeducedMismatch;
475    }
476  }
477
478  switch (Param->getTypeClass()) {
479    // No deduction possible for these types
480    case Type::Builtin:
481      return Sema::TDK_NonDeducedMismatch;
482
483    //     T *
484    case Type::Pointer: {
485      const PointerType *PointerArg = Arg->getAs<PointerType>();
486      if (!PointerArg)
487        return Sema::TDK_NonDeducedMismatch;
488
489      unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
490      return DeduceTemplateArguments(S, TemplateParams,
491                                   cast<PointerType>(Param)->getPointeeType(),
492                                     PointerArg->getPointeeType(),
493                                     Info, Deduced, SubTDF);
494    }
495
496    //     T &
497    case Type::LValueReference: {
498      const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
499      if (!ReferenceArg)
500        return Sema::TDK_NonDeducedMismatch;
501
502      return DeduceTemplateArguments(S, TemplateParams,
503                           cast<LValueReferenceType>(Param)->getPointeeType(),
504                                     ReferenceArg->getPointeeType(),
505                                     Info, Deduced, 0);
506    }
507
508    //     T && [C++0x]
509    case Type::RValueReference: {
510      const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
511      if (!ReferenceArg)
512        return Sema::TDK_NonDeducedMismatch;
513
514      return DeduceTemplateArguments(S, TemplateParams,
515                           cast<RValueReferenceType>(Param)->getPointeeType(),
516                                     ReferenceArg->getPointeeType(),
517                                     Info, Deduced, 0);
518    }
519
520    //     T [] (implied, but not stated explicitly)
521    case Type::IncompleteArray: {
522      const IncompleteArrayType *IncompleteArrayArg =
523        S.Context.getAsIncompleteArrayType(Arg);
524      if (!IncompleteArrayArg)
525        return Sema::TDK_NonDeducedMismatch;
526
527      return DeduceTemplateArguments(S, TemplateParams,
528                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
529                                     IncompleteArrayArg->getElementType(),
530                                     Info, Deduced, 0);
531    }
532
533    //     T [integer-constant]
534    case Type::ConstantArray: {
535      const ConstantArrayType *ConstantArrayArg =
536        S.Context.getAsConstantArrayType(Arg);
537      if (!ConstantArrayArg)
538        return Sema::TDK_NonDeducedMismatch;
539
540      const ConstantArrayType *ConstantArrayParm =
541        S.Context.getAsConstantArrayType(Param);
542      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
543        return Sema::TDK_NonDeducedMismatch;
544
545      return DeduceTemplateArguments(S, TemplateParams,
546                                     ConstantArrayParm->getElementType(),
547                                     ConstantArrayArg->getElementType(),
548                                     Info, Deduced, 0);
549    }
550
551    //     type [i]
552    case Type::DependentSizedArray: {
553      const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
554      if (!ArrayArg)
555        return Sema::TDK_NonDeducedMismatch;
556
557      // Check the element type of the arrays
558      const DependentSizedArrayType *DependentArrayParm
559        = S.Context.getAsDependentSizedArrayType(Param);
560      if (Sema::TemplateDeductionResult Result
561            = DeduceTemplateArguments(S, TemplateParams,
562                                      DependentArrayParm->getElementType(),
563                                      ArrayArg->getElementType(),
564                                      Info, Deduced, 0))
565        return Result;
566
567      // Determine the array bound is something we can deduce.
568      NonTypeTemplateParmDecl *NTTP
569        = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
570      if (!NTTP)
571        return Sema::TDK_Success;
572
573      // We can perform template argument deduction for the given non-type
574      // template parameter.
575      assert(NTTP->getDepth() == 0 &&
576             "Cannot deduce non-type template argument at depth > 0");
577      if (const ConstantArrayType *ConstantArrayArg
578            = dyn_cast<ConstantArrayType>(ArrayArg)) {
579        llvm::APSInt Size(ConstantArrayArg->getSize());
580        return DeduceNonTypeTemplateArgument(S, NTTP, Size,
581                                             S.Context.getSizeType(),
582                                             /*ArrayBound=*/true,
583                                             Info, Deduced);
584      }
585      if (const DependentSizedArrayType *DependentArrayArg
586            = dyn_cast<DependentSizedArrayType>(ArrayArg))
587        return DeduceNonTypeTemplateArgument(S, NTTP,
588                                             DependentArrayArg->getSizeExpr(),
589                                             Info, Deduced);
590
591      // Incomplete type does not match a dependently-sized array type
592      return Sema::TDK_NonDeducedMismatch;
593    }
594
595    //     type(*)(T)
596    //     T(*)()
597    //     T(*)(T)
598    case Type::FunctionProto: {
599      const FunctionProtoType *FunctionProtoArg =
600        dyn_cast<FunctionProtoType>(Arg);
601      if (!FunctionProtoArg)
602        return Sema::TDK_NonDeducedMismatch;
603
604      const FunctionProtoType *FunctionProtoParam =
605        cast<FunctionProtoType>(Param);
606
607      if (FunctionProtoParam->getTypeQuals() !=
608          FunctionProtoArg->getTypeQuals())
609        return Sema::TDK_NonDeducedMismatch;
610
611      if (FunctionProtoParam->getNumArgs() != FunctionProtoArg->getNumArgs())
612        return Sema::TDK_NonDeducedMismatch;
613
614      if (FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
615        return Sema::TDK_NonDeducedMismatch;
616
617      // Check return types.
618      if (Sema::TemplateDeductionResult Result
619            = DeduceTemplateArguments(S, TemplateParams,
620                                      FunctionProtoParam->getResultType(),
621                                      FunctionProtoArg->getResultType(),
622                                      Info, Deduced, 0))
623        return Result;
624
625      for (unsigned I = 0, N = FunctionProtoParam->getNumArgs(); I != N; ++I) {
626        // Check argument types.
627        if (Sema::TemplateDeductionResult Result
628              = DeduceTemplateArguments(S, TemplateParams,
629                                        FunctionProtoParam->getArgType(I),
630                                        FunctionProtoArg->getArgType(I),
631                                        Info, Deduced, 0))
632          return Result;
633      }
634
635      return Sema::TDK_Success;
636    }
637
638    case Type::InjectedClassName: {
639      // Treat a template's injected-class-name as if the template
640      // specialization type had been used.
641      Param = cast<InjectedClassNameType>(Param)->getUnderlyingType();
642      assert(isa<TemplateSpecializationType>(Param) &&
643             "injected class name is not a template specialization type");
644      // fall through
645    }
646
647    //     template-name<T> (where template-name refers to a class template)
648    //     template-name<i>
649    //     TT<T>
650    //     TT<i>
651    //     TT<>
652    case Type::TemplateSpecialization: {
653      const TemplateSpecializationType *SpecParam
654        = cast<TemplateSpecializationType>(Param);
655
656      // Try to deduce template arguments from the template-id.
657      Sema::TemplateDeductionResult Result
658        = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
659                                  Info, Deduced);
660
661      if (Result && (TDF & TDF_DerivedClass)) {
662        // C++ [temp.deduct.call]p3b3:
663        //   If P is a class, and P has the form template-id, then A can be a
664        //   derived class of the deduced A. Likewise, if P is a pointer to a
665        //   class of the form template-id, A can be a pointer to a derived
666        //   class pointed to by the deduced A.
667        //
668        // More importantly:
669        //   These alternatives are considered only if type deduction would
670        //   otherwise fail.
671        if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
672          // We cannot inspect base classes as part of deduction when the type
673          // is incomplete, so either instantiate any templates necessary to
674          // complete the type, or skip over it if it cannot be completed.
675          if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
676            return Result;
677
678          // Use data recursion to crawl through the list of base classes.
679          // Visited contains the set of nodes we have already visited, while
680          // ToVisit is our stack of records that we still need to visit.
681          llvm::SmallPtrSet<const RecordType *, 8> Visited;
682          llvm::SmallVector<const RecordType *, 8> ToVisit;
683          ToVisit.push_back(RecordT);
684          bool Successful = false;
685          while (!ToVisit.empty()) {
686            // Retrieve the next class in the inheritance hierarchy.
687            const RecordType *NextT = ToVisit.back();
688            ToVisit.pop_back();
689
690            // If we have already seen this type, skip it.
691            if (!Visited.insert(NextT))
692              continue;
693
694            // If this is a base class, try to perform template argument
695            // deduction from it.
696            if (NextT != RecordT) {
697              Sema::TemplateDeductionResult BaseResult
698                = DeduceTemplateArguments(S, TemplateParams, SpecParam,
699                                          QualType(NextT, 0), Info, Deduced);
700
701              // If template argument deduction for this base was successful,
702              // note that we had some success.
703              if (BaseResult == Sema::TDK_Success)
704                Successful = true;
705            }
706
707            // Visit base classes
708            CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
709            for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
710                                                 BaseEnd = Next->bases_end();
711                 Base != BaseEnd; ++Base) {
712              assert(Base->getType()->isRecordType() &&
713                     "Base class that isn't a record?");
714              ToVisit.push_back(Base->getType()->getAs<RecordType>());
715            }
716          }
717
718          if (Successful)
719            return Sema::TDK_Success;
720        }
721
722      }
723
724      return Result;
725    }
726
727    //     T type::*
728    //     T T::*
729    //     T (type::*)()
730    //     type (T::*)()
731    //     type (type::*)(T)
732    //     type (T::*)(T)
733    //     T (type::*)(T)
734    //     T (T::*)()
735    //     T (T::*)(T)
736    case Type::MemberPointer: {
737      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
738      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
739      if (!MemPtrArg)
740        return Sema::TDK_NonDeducedMismatch;
741
742      if (Sema::TemplateDeductionResult Result
743            = DeduceTemplateArguments(S, TemplateParams,
744                                      MemPtrParam->getPointeeType(),
745                                      MemPtrArg->getPointeeType(),
746                                      Info, Deduced,
747                                      TDF & TDF_IgnoreQualifiers))
748        return Result;
749
750      return DeduceTemplateArguments(S, TemplateParams,
751                                     QualType(MemPtrParam->getClass(), 0),
752                                     QualType(MemPtrArg->getClass(), 0),
753                                     Info, Deduced, 0);
754    }
755
756    //     (clang extension)
757    //
758    //     type(^)(T)
759    //     T(^)()
760    //     T(^)(T)
761    case Type::BlockPointer: {
762      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
763      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
764
765      if (!BlockPtrArg)
766        return Sema::TDK_NonDeducedMismatch;
767
768      return DeduceTemplateArguments(S, TemplateParams,
769                                     BlockPtrParam->getPointeeType(),
770                                     BlockPtrArg->getPointeeType(), Info,
771                                     Deduced, 0);
772    }
773
774    case Type::TypeOfExpr:
775    case Type::TypeOf:
776    case Type::DependentName:
777      // No template argument deduction for these types
778      return Sema::TDK_Success;
779
780    default:
781      break;
782  }
783
784  // FIXME: Many more cases to go (to go).
785  return Sema::TDK_Success;
786}
787
788static Sema::TemplateDeductionResult
789DeduceTemplateArguments(Sema &S,
790                        TemplateParameterList *TemplateParams,
791                        const TemplateArgument &Param,
792                        const TemplateArgument &Arg,
793                        Sema::TemplateDeductionInfo &Info,
794                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
795  switch (Param.getKind()) {
796  case TemplateArgument::Null:
797    assert(false && "Null template argument in parameter list");
798    break;
799
800  case TemplateArgument::Type:
801    if (Arg.getKind() == TemplateArgument::Type)
802      return DeduceTemplateArguments(S, TemplateParams, Param.getAsType(),
803                                     Arg.getAsType(), Info, Deduced, 0);
804    Info.FirstArg = Param;
805    Info.SecondArg = Arg;
806    return Sema::TDK_NonDeducedMismatch;
807
808  case TemplateArgument::Template:
809    if (Arg.getKind() == TemplateArgument::Template)
810      return DeduceTemplateArguments(S, TemplateParams,
811                                     Param.getAsTemplate(),
812                                     Arg.getAsTemplate(), Info, Deduced);
813    Info.FirstArg = Param;
814    Info.SecondArg = Arg;
815    return Sema::TDK_NonDeducedMismatch;
816
817  case TemplateArgument::Declaration:
818    if (Arg.getKind() == TemplateArgument::Declaration &&
819        Param.getAsDecl()->getCanonicalDecl() ==
820          Arg.getAsDecl()->getCanonicalDecl())
821      return Sema::TDK_Success;
822
823    Info.FirstArg = Param;
824    Info.SecondArg = Arg;
825    return Sema::TDK_NonDeducedMismatch;
826
827  case TemplateArgument::Integral:
828    if (Arg.getKind() == TemplateArgument::Integral) {
829      if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral()))
830        return Sema::TDK_Success;
831
832      Info.FirstArg = Param;
833      Info.SecondArg = Arg;
834      return Sema::TDK_NonDeducedMismatch;
835    }
836
837    if (Arg.getKind() == TemplateArgument::Expression) {
838      Info.FirstArg = Param;
839      Info.SecondArg = Arg;
840      return Sema::TDK_NonDeducedMismatch;
841    }
842
843    assert(false && "Type/value mismatch");
844    Info.FirstArg = Param;
845    Info.SecondArg = Arg;
846    return Sema::TDK_NonDeducedMismatch;
847
848  case TemplateArgument::Expression: {
849    if (NonTypeTemplateParmDecl *NTTP
850          = getDeducedParameterFromExpr(Param.getAsExpr())) {
851      if (Arg.getKind() == TemplateArgument::Integral)
852        return DeduceNonTypeTemplateArgument(S, NTTP,
853                                             *Arg.getAsIntegral(),
854                                             Arg.getIntegralType(),
855                                             /*ArrayBound=*/false,
856                                             Info, Deduced);
857      if (Arg.getKind() == TemplateArgument::Expression)
858        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
859                                             Info, Deduced);
860      if (Arg.getKind() == TemplateArgument::Declaration)
861        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
862                                             Info, Deduced);
863
864      assert(false && "Type/value mismatch");
865      Info.FirstArg = Param;
866      Info.SecondArg = Arg;
867      return Sema::TDK_NonDeducedMismatch;
868    }
869
870    // Can't deduce anything, but that's okay.
871    return Sema::TDK_Success;
872  }
873  case TemplateArgument::Pack:
874    assert(0 && "FIXME: Implement!");
875    break;
876  }
877
878  return Sema::TDK_Success;
879}
880
881static Sema::TemplateDeductionResult
882DeduceTemplateArguments(Sema &S,
883                        TemplateParameterList *TemplateParams,
884                        const TemplateArgumentList &ParamList,
885                        const TemplateArgumentList &ArgList,
886                        Sema::TemplateDeductionInfo &Info,
887                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
888  assert(ParamList.size() == ArgList.size());
889  for (unsigned I = 0, N = ParamList.size(); I != N; ++I) {
890    if (Sema::TemplateDeductionResult Result
891          = DeduceTemplateArguments(S, TemplateParams,
892                                    ParamList[I], ArgList[I],
893                                    Info, Deduced))
894      return Result;
895  }
896  return Sema::TDK_Success;
897}
898
899/// \brief Determine whether two template arguments are the same.
900static bool isSameTemplateArg(ASTContext &Context,
901                              const TemplateArgument &X,
902                              const TemplateArgument &Y) {
903  if (X.getKind() != Y.getKind())
904    return false;
905
906  switch (X.getKind()) {
907    case TemplateArgument::Null:
908      assert(false && "Comparing NULL template argument");
909      break;
910
911    case TemplateArgument::Type:
912      return Context.getCanonicalType(X.getAsType()) ==
913             Context.getCanonicalType(Y.getAsType());
914
915    case TemplateArgument::Declaration:
916      return X.getAsDecl()->getCanonicalDecl() ==
917             Y.getAsDecl()->getCanonicalDecl();
918
919    case TemplateArgument::Template:
920      return Context.getCanonicalTemplateName(X.getAsTemplate())
921               .getAsVoidPointer() ==
922             Context.getCanonicalTemplateName(Y.getAsTemplate())
923               .getAsVoidPointer();
924
925    case TemplateArgument::Integral:
926      return *X.getAsIntegral() == *Y.getAsIntegral();
927
928    case TemplateArgument::Expression: {
929      llvm::FoldingSetNodeID XID, YID;
930      X.getAsExpr()->Profile(XID, Context, true);
931      Y.getAsExpr()->Profile(YID, Context, true);
932      return XID == YID;
933    }
934
935    case TemplateArgument::Pack:
936      if (X.pack_size() != Y.pack_size())
937        return false;
938
939      for (TemplateArgument::pack_iterator XP = X.pack_begin(),
940                                        XPEnd = X.pack_end(),
941                                           YP = Y.pack_begin();
942           XP != XPEnd; ++XP, ++YP)
943        if (!isSameTemplateArg(Context, *XP, *YP))
944          return false;
945
946      return true;
947  }
948
949  return false;
950}
951
952/// \brief Helper function to build a TemplateParameter when we don't
953/// know its type statically.
954static TemplateParameter makeTemplateParameter(Decl *D) {
955  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
956    return TemplateParameter(TTP);
957  else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
958    return TemplateParameter(NTTP);
959
960  return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
961}
962
963/// \brief Perform template argument deduction to determine whether
964/// the given template arguments match the given class template
965/// partial specialization per C++ [temp.class.spec.match].
966Sema::TemplateDeductionResult
967Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
968                              const TemplateArgumentList &TemplateArgs,
969                              TemplateDeductionInfo &Info) {
970  // C++ [temp.class.spec.match]p2:
971  //   A partial specialization matches a given actual template
972  //   argument list if the template arguments of the partial
973  //   specialization can be deduced from the actual template argument
974  //   list (14.8.2).
975  SFINAETrap Trap(*this);
976  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
977  Deduced.resize(Partial->getTemplateParameters()->size());
978  if (TemplateDeductionResult Result
979        = ::DeduceTemplateArguments(*this,
980                                    Partial->getTemplateParameters(),
981                                    Partial->getTemplateArgs(),
982                                    TemplateArgs, Info, Deduced))
983    return Result;
984
985  InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
986                             Deduced.data(), Deduced.size());
987  if (Inst)
988    return TDK_InstantiationDepth;
989
990  // C++ [temp.deduct.type]p2:
991  //   [...] or if any template argument remains neither deduced nor
992  //   explicitly specified, template argument deduction fails.
993  TemplateArgumentListBuilder Builder(Partial->getTemplateParameters(),
994                                      Deduced.size());
995  for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
996    if (Deduced[I].isNull()) {
997      Decl *Param
998        = const_cast<NamedDecl *>(
999                                Partial->getTemplateParameters()->getParam(I));
1000      Info.Param = makeTemplateParameter(Param);
1001      return TDK_Incomplete;
1002    }
1003
1004    Builder.Append(Deduced[I]);
1005  }
1006
1007  // Form the template argument list from the deduced template arguments.
1008  TemplateArgumentList *DeducedArgumentList
1009    = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
1010  Info.reset(DeducedArgumentList);
1011
1012  // Substitute the deduced template arguments into the template
1013  // arguments of the class template partial specialization, and
1014  // verify that the instantiated template arguments are both valid
1015  // and are equivalent to the template arguments originally provided
1016  // to the class template.
1017  // FIXME: Do we have to correct the types of deduced non-type template
1018  // arguments (in particular, integral non-type template arguments?).
1019  Sema::LocalInstantiationScope InstScope(*this);
1020  ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
1021  const TemplateArgumentLoc *PartialTemplateArgs
1022    = Partial->getTemplateArgsAsWritten();
1023  unsigned N = Partial->getNumTemplateArgsAsWritten();
1024
1025  // Note that we don't provide the langle and rangle locations.
1026  TemplateArgumentListInfo InstArgs;
1027
1028  for (unsigned I = 0; I != N; ++I) {
1029    Decl *Param = const_cast<NamedDecl *>(
1030                    ClassTemplate->getTemplateParameters()->getParam(I));
1031    TemplateArgumentLoc InstArg;
1032    if (Subst(PartialTemplateArgs[I], InstArg,
1033              MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
1034      Info.Param = makeTemplateParameter(Param);
1035      Info.FirstArg = PartialTemplateArgs[I].getArgument();
1036      return TDK_SubstitutionFailure;
1037    }
1038    InstArgs.addArgument(InstArg);
1039  }
1040
1041  TemplateArgumentListBuilder ConvertedInstArgs(
1042                                  ClassTemplate->getTemplateParameters(), N);
1043
1044  if (CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
1045                                InstArgs, false, ConvertedInstArgs)) {
1046    // FIXME: fail with more useful information?
1047    return TDK_SubstitutionFailure;
1048  }
1049
1050  for (unsigned I = 0, E = ConvertedInstArgs.flatSize(); I != E; ++I) {
1051    TemplateArgument InstArg = ConvertedInstArgs.getFlatArguments()[I];
1052
1053    Decl *Param = const_cast<NamedDecl *>(
1054                    ClassTemplate->getTemplateParameters()->getParam(I));
1055
1056    if (InstArg.getKind() == TemplateArgument::Expression) {
1057      // When the argument is an expression, check the expression result
1058      // against the actual template parameter to get down to the canonical
1059      // template argument.
1060      Expr *InstExpr = InstArg.getAsExpr();
1061      if (NonTypeTemplateParmDecl *NTTP
1062            = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1063        if (CheckTemplateArgument(NTTP, NTTP->getType(), InstExpr, InstArg)) {
1064          Info.Param = makeTemplateParameter(Param);
1065          Info.FirstArg = Partial->getTemplateArgs()[I];
1066          return TDK_SubstitutionFailure;
1067        }
1068      }
1069    }
1070
1071    if (!isSameTemplateArg(Context, TemplateArgs[I], InstArg)) {
1072      Info.Param = makeTemplateParameter(Param);
1073      Info.FirstArg = TemplateArgs[I];
1074      Info.SecondArg = InstArg;
1075      return TDK_NonDeducedMismatch;
1076    }
1077  }
1078
1079  if (Trap.hasErrorOccurred())
1080    return TDK_SubstitutionFailure;
1081
1082  return TDK_Success;
1083}
1084
1085/// \brief Determine whether the given type T is a simple-template-id type.
1086static bool isSimpleTemplateIdType(QualType T) {
1087  if (const TemplateSpecializationType *Spec
1088        = T->getAs<TemplateSpecializationType>())
1089    return Spec->getTemplateName().getAsTemplateDecl() != 0;
1090
1091  return false;
1092}
1093
1094/// \brief Substitute the explicitly-provided template arguments into the
1095/// given function template according to C++ [temp.arg.explicit].
1096///
1097/// \param FunctionTemplate the function template into which the explicit
1098/// template arguments will be substituted.
1099///
1100/// \param ExplicitTemplateArguments the explicitly-specified template
1101/// arguments.
1102///
1103/// \param Deduced the deduced template arguments, which will be populated
1104/// with the converted and checked explicit template arguments.
1105///
1106/// \param ParamTypes will be populated with the instantiated function
1107/// parameters.
1108///
1109/// \param FunctionType if non-NULL, the result type of the function template
1110/// will also be instantiated and the pointed-to value will be updated with
1111/// the instantiated function type.
1112///
1113/// \param Info if substitution fails for any reason, this object will be
1114/// populated with more information about the failure.
1115///
1116/// \returns TDK_Success if substitution was successful, or some failure
1117/// condition.
1118Sema::TemplateDeductionResult
1119Sema::SubstituteExplicitTemplateArguments(
1120                                      FunctionTemplateDecl *FunctionTemplate,
1121                        const TemplateArgumentListInfo &ExplicitTemplateArgs,
1122                       llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1123                                 llvm::SmallVectorImpl<QualType> &ParamTypes,
1124                                          QualType *FunctionType,
1125                                          TemplateDeductionInfo &Info) {
1126  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1127  TemplateParameterList *TemplateParams
1128    = FunctionTemplate->getTemplateParameters();
1129
1130  if (ExplicitTemplateArgs.size() == 0) {
1131    // No arguments to substitute; just copy over the parameter types and
1132    // fill in the function type.
1133    for (FunctionDecl::param_iterator P = Function->param_begin(),
1134                                   PEnd = Function->param_end();
1135         P != PEnd;
1136         ++P)
1137      ParamTypes.push_back((*P)->getType());
1138
1139    if (FunctionType)
1140      *FunctionType = Function->getType();
1141    return TDK_Success;
1142  }
1143
1144  // Substitution of the explicit template arguments into a function template
1145  /// is a SFINAE context. Trap any errors that might occur.
1146  SFINAETrap Trap(*this);
1147
1148  // C++ [temp.arg.explicit]p3:
1149  //   Template arguments that are present shall be specified in the
1150  //   declaration order of their corresponding template-parameters. The
1151  //   template argument list shall not specify more template-arguments than
1152  //   there are corresponding template-parameters.
1153  TemplateArgumentListBuilder Builder(TemplateParams,
1154                                      ExplicitTemplateArgs.size());
1155
1156  // Enter a new template instantiation context where we check the
1157  // explicitly-specified template arguments against this function template,
1158  // and then substitute them into the function parameter types.
1159  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1160                             FunctionTemplate, Deduced.data(), Deduced.size(),
1161           ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution);
1162  if (Inst)
1163    return TDK_InstantiationDepth;
1164
1165  if (CheckTemplateArgumentList(FunctionTemplate,
1166                                SourceLocation(),
1167                                ExplicitTemplateArgs,
1168                                true,
1169                                Builder) || Trap.hasErrorOccurred())
1170    return TDK_InvalidExplicitArguments;
1171
1172  // Form the template argument list from the explicitly-specified
1173  // template arguments.
1174  TemplateArgumentList *ExplicitArgumentList
1175    = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
1176  Info.reset(ExplicitArgumentList);
1177
1178  // Instantiate the types of each of the function parameters given the
1179  // explicitly-specified template arguments.
1180  for (FunctionDecl::param_iterator P = Function->param_begin(),
1181                                PEnd = Function->param_end();
1182       P != PEnd;
1183       ++P) {
1184    QualType ParamType
1185      = SubstType((*P)->getType(),
1186                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
1187                  (*P)->getLocation(), (*P)->getDeclName());
1188    if (ParamType.isNull() || Trap.hasErrorOccurred())
1189      return TDK_SubstitutionFailure;
1190
1191    ParamTypes.push_back(ParamType);
1192  }
1193
1194  // If the caller wants a full function type back, instantiate the return
1195  // type and form that function type.
1196  if (FunctionType) {
1197    // FIXME: exception-specifications?
1198    const FunctionProtoType *Proto
1199      = Function->getType()->getAs<FunctionProtoType>();
1200    assert(Proto && "Function template does not have a prototype?");
1201
1202    QualType ResultType
1203      = SubstType(Proto->getResultType(),
1204                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
1205                  Function->getTypeSpecStartLoc(),
1206                  Function->getDeclName());
1207    if (ResultType.isNull() || Trap.hasErrorOccurred())
1208      return TDK_SubstitutionFailure;
1209
1210    *FunctionType = BuildFunctionType(ResultType,
1211                                      ParamTypes.data(), ParamTypes.size(),
1212                                      Proto->isVariadic(),
1213                                      Proto->getTypeQuals(),
1214                                      Function->getLocation(),
1215                                      Function->getDeclName());
1216    if (FunctionType->isNull() || Trap.hasErrorOccurred())
1217      return TDK_SubstitutionFailure;
1218  }
1219
1220  // C++ [temp.arg.explicit]p2:
1221  //   Trailing template arguments that can be deduced (14.8.2) may be
1222  //   omitted from the list of explicit template-arguments. If all of the
1223  //   template arguments can be deduced, they may all be omitted; in this
1224  //   case, the empty template argument list <> itself may also be omitted.
1225  //
1226  // Take all of the explicitly-specified arguments and put them into the
1227  // set of deduced template arguments.
1228  Deduced.reserve(TemplateParams->size());
1229  for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I)
1230    Deduced.push_back(ExplicitArgumentList->get(I));
1231
1232  return TDK_Success;
1233}
1234
1235/// \brief Allocate a TemplateArgumentLoc where all locations have
1236/// been initialized to the given location.
1237///
1238/// \param S The semantic analysis object.
1239///
1240/// \param The template argument we are producing template argument
1241/// location information for.
1242///
1243/// \param NTTPType For a declaration template argument, the type of
1244/// the non-type template parameter that corresponds to this template
1245/// argument.
1246///
1247/// \param Loc The source location to use for the resulting template
1248/// argument.
1249static TemplateArgumentLoc
1250getTrivialTemplateArgumentLoc(Sema &S,
1251                              const TemplateArgument &Arg,
1252                              QualType NTTPType,
1253                              SourceLocation Loc) {
1254  switch (Arg.getKind()) {
1255  case TemplateArgument::Null:
1256    llvm_unreachable("Can't get a NULL template argument here");
1257    break;
1258
1259  case TemplateArgument::Type:
1260    return TemplateArgumentLoc(Arg,
1261                    S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
1262
1263  case TemplateArgument::Declaration: {
1264    Expr *E
1265      = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
1266                                                              .takeAs<Expr>();
1267    return TemplateArgumentLoc(TemplateArgument(E), E);
1268  }
1269
1270  case TemplateArgument::Integral: {
1271    Expr *E
1272      = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
1273    return TemplateArgumentLoc(TemplateArgument(E), E);
1274  }
1275
1276  case TemplateArgument::Template:
1277    return TemplateArgumentLoc(Arg, SourceRange(), Loc);
1278
1279  case TemplateArgument::Expression:
1280    return TemplateArgumentLoc(Arg, Arg.getAsExpr());
1281
1282  case TemplateArgument::Pack:
1283    llvm_unreachable("Template parameter packs are not yet supported");
1284  }
1285
1286  return TemplateArgumentLoc();
1287}
1288
1289/// \brief Finish template argument deduction for a function template,
1290/// checking the deduced template arguments for completeness and forming
1291/// the function template specialization.
1292Sema::TemplateDeductionResult
1293Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
1294                       llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1295                                      unsigned NumExplicitlySpecified,
1296                                      FunctionDecl *&Specialization,
1297                                      TemplateDeductionInfo &Info) {
1298  TemplateParameterList *TemplateParams
1299    = FunctionTemplate->getTemplateParameters();
1300
1301  // Template argument deduction for function templates in a SFINAE context.
1302  // Trap any errors that might occur.
1303  SFINAETrap Trap(*this);
1304
1305  // Enter a new template instantiation context while we instantiate the
1306  // actual function declaration.
1307  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1308                             FunctionTemplate, Deduced.data(), Deduced.size(),
1309              ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution);
1310  if (Inst)
1311    return TDK_InstantiationDepth;
1312
1313  // C++ [temp.deduct.type]p2:
1314  //   [...] or if any template argument remains neither deduced nor
1315  //   explicitly specified, template argument deduction fails.
1316  TemplateArgumentListBuilder Builder(TemplateParams, Deduced.size());
1317  for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
1318    NamedDecl *Param = FunctionTemplate->getTemplateParameters()->getParam(I);
1319    if (!Deduced[I].isNull()) {
1320      if (I < NumExplicitlySpecified ||
1321          Deduced[I].getKind() == TemplateArgument::Type) {
1322        // We have already fully type-checked and converted this
1323        // argument (because it was explicitly-specified) or no
1324        // additional checking is necessary (because it's a template
1325        // type parameter). Just record the presence of this
1326        // parameter.
1327        Builder.Append(Deduced[I]);
1328        continue;
1329      }
1330
1331      // We have deduced this argument, so it still needs to be
1332      // checked and converted.
1333
1334      // First, for a non-type template parameter type that is
1335      // initialized by a declaration, we need the type of the
1336      // corresponding non-type template parameter.
1337      QualType NTTPType;
1338      if (NonTypeTemplateParmDecl *NTTP
1339                                = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1340        if (Deduced[I].getKind() == TemplateArgument::Declaration) {
1341          NTTPType = NTTP->getType();
1342          if (NTTPType->isDependentType()) {
1343            TemplateArgumentList TemplateArgs(Context, Builder,
1344                                              /*TakeArgs=*/false);
1345            NTTPType = SubstType(NTTPType,
1346                                 MultiLevelTemplateArgumentList(TemplateArgs),
1347                                 NTTP->getLocation(),
1348                                 NTTP->getDeclName());
1349            if (NTTPType.isNull()) {
1350              Info.Param = makeTemplateParameter(Param);
1351              return TDK_SubstitutionFailure;
1352            }
1353          }
1354        }
1355      }
1356
1357      // Convert the deduced template argument into a template
1358      // argument that we can check, almost as if the user had written
1359      // the template argument explicitly.
1360      TemplateArgumentLoc Arg = getTrivialTemplateArgumentLoc(*this,
1361                                                              Deduced[I],
1362                                                              NTTPType,
1363                                                           SourceLocation());
1364
1365      // Check the template argument, converting it as necessary.
1366      if (CheckTemplateArgument(Param, Arg,
1367                                FunctionTemplate,
1368                                FunctionTemplate->getLocation(),
1369                                FunctionTemplate->getSourceRange().getEnd(),
1370                                Builder,
1371                                Deduced[I].wasDeducedFromArrayBound()
1372                                  ? CTAK_DeducedFromArrayBound
1373                                  : CTAK_Deduced)) {
1374        Info.Param = makeTemplateParameter(
1375                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1376        return TDK_SubstitutionFailure;
1377      }
1378
1379      continue;
1380    }
1381
1382    // Substitute into the default template argument, if available.
1383    TemplateArgumentLoc DefArg
1384      = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
1385                                              FunctionTemplate->getLocation(),
1386                                  FunctionTemplate->getSourceRange().getEnd(),
1387                                                Param,
1388                                                Builder);
1389
1390    // If there was no default argument, deduction is incomplete.
1391    if (DefArg.getArgument().isNull()) {
1392      Info.Param = makeTemplateParameter(
1393                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1394      return TDK_Incomplete;
1395    }
1396
1397    // Check whether we can actually use the default argument.
1398    if (CheckTemplateArgument(Param, DefArg,
1399                              FunctionTemplate,
1400                              FunctionTemplate->getLocation(),
1401                              FunctionTemplate->getSourceRange().getEnd(),
1402                              Builder,
1403                              CTAK_Deduced)) {
1404      Info.Param = makeTemplateParameter(
1405                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1406      return TDK_SubstitutionFailure;
1407    }
1408
1409    // If we get here, we successfully used the default template argument.
1410  }
1411
1412  // Form the template argument list from the deduced template arguments.
1413  TemplateArgumentList *DeducedArgumentList
1414    = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
1415  Info.reset(DeducedArgumentList);
1416
1417  // Substitute the deduced template arguments into the function template
1418  // declaration to produce the function template specialization.
1419  Specialization = cast_or_null<FunctionDecl>(
1420                      SubstDecl(FunctionTemplate->getTemplatedDecl(),
1421                                FunctionTemplate->getDeclContext(),
1422                         MultiLevelTemplateArgumentList(*DeducedArgumentList)));
1423  if (!Specialization)
1424    return TDK_SubstitutionFailure;
1425
1426  assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
1427         FunctionTemplate->getCanonicalDecl());
1428
1429  // If the template argument list is owned by the function template
1430  // specialization, release it.
1431  if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList)
1432    Info.take();
1433
1434  // There may have been an error that did not prevent us from constructing a
1435  // declaration. Mark the declaration invalid and return with a substitution
1436  // failure.
1437  if (Trap.hasErrorOccurred()) {
1438    Specialization->setInvalidDecl(true);
1439    return TDK_SubstitutionFailure;
1440  }
1441
1442  return TDK_Success;
1443}
1444
1445static QualType GetTypeOfFunction(ASTContext &Context,
1446                                  bool isAddressOfOperand,
1447                                  FunctionDecl *Fn) {
1448  if (!isAddressOfOperand) return Fn->getType();
1449  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
1450    if (Method->isInstance())
1451      return Context.getMemberPointerType(Fn->getType(),
1452               Context.getTypeDeclType(Method->getParent()).getTypePtr());
1453  return Context.getPointerType(Fn->getType());
1454}
1455
1456/// Apply the deduction rules for overload sets.
1457///
1458/// \return the null type if this argument should be treated as an
1459/// undeduced context
1460static QualType
1461ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
1462                            Expr *Arg, QualType ParamType) {
1463  llvm::PointerIntPair<OverloadExpr*,1> R = OverloadExpr::find(Arg);
1464
1465  bool isAddressOfOperand = bool(R.getInt());
1466  OverloadExpr *Ovl = R.getPointer();
1467
1468  // If there were explicit template arguments, we can only find
1469  // something via C++ [temp.arg.explicit]p3, i.e. if the arguments
1470  // unambiguously name a full specialization.
1471  if (Ovl->hasExplicitTemplateArgs()) {
1472    // But we can still look for an explicit specialization.
1473    if (FunctionDecl *ExplicitSpec
1474          = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
1475      return GetTypeOfFunction(S.Context, isAddressOfOperand, ExplicitSpec);
1476    return QualType();
1477  }
1478
1479  // C++0x [temp.deduct.call]p6:
1480  //   When P is a function type, pointer to function type, or pointer
1481  //   to member function type:
1482
1483  if (!ParamType->isFunctionType() &&
1484      !ParamType->isFunctionPointerType() &&
1485      !ParamType->isMemberFunctionPointerType())
1486    return QualType();
1487
1488  QualType Match;
1489  for (UnresolvedSetIterator I = Ovl->decls_begin(),
1490         E = Ovl->decls_end(); I != E; ++I) {
1491    NamedDecl *D = (*I)->getUnderlyingDecl();
1492
1493    //   - If the argument is an overload set containing one or more
1494    //     function templates, the parameter is treated as a
1495    //     non-deduced context.
1496    if (isa<FunctionTemplateDecl>(D))
1497      return QualType();
1498
1499    FunctionDecl *Fn = cast<FunctionDecl>(D);
1500    QualType ArgType = GetTypeOfFunction(S.Context, isAddressOfOperand, Fn);
1501
1502    //   - If the argument is an overload set (not containing function
1503    //     templates), trial argument deduction is attempted using each
1504    //     of the members of the set. If deduction succeeds for only one
1505    //     of the overload set members, that member is used as the
1506    //     argument value for the deduction. If deduction succeeds for
1507    //     more than one member of the overload set the parameter is
1508    //     treated as a non-deduced context.
1509
1510    // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
1511    //   Type deduction is done independently for each P/A pair, and
1512    //   the deduced template argument values are then combined.
1513    // So we do not reject deductions which were made elsewhere.
1514    llvm::SmallVector<DeducedTemplateArgument, 8>
1515      Deduced(TemplateParams->size());
1516    Sema::TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
1517    unsigned TDF = 0;
1518
1519    Sema::TemplateDeductionResult Result
1520      = DeduceTemplateArguments(S, TemplateParams,
1521                                ParamType, ArgType,
1522                                Info, Deduced, TDF);
1523    if (Result) continue;
1524    if (!Match.isNull()) return QualType();
1525    Match = ArgType;
1526  }
1527
1528  return Match;
1529}
1530
1531/// \brief Perform template argument deduction from a function call
1532/// (C++ [temp.deduct.call]).
1533///
1534/// \param FunctionTemplate the function template for which we are performing
1535/// template argument deduction.
1536///
1537/// \param ExplicitTemplateArguments the explicit template arguments provided
1538/// for this call.
1539///
1540/// \param Args the function call arguments
1541///
1542/// \param NumArgs the number of arguments in Args
1543///
1544/// \param Name the name of the function being called. This is only significant
1545/// when the function template is a conversion function template, in which
1546/// case this routine will also perform template argument deduction based on
1547/// the function to which
1548///
1549/// \param Specialization if template argument deduction was successful,
1550/// this will be set to the function template specialization produced by
1551/// template argument deduction.
1552///
1553/// \param Info the argument will be updated to provide additional information
1554/// about template argument deduction.
1555///
1556/// \returns the result of template argument deduction.
1557Sema::TemplateDeductionResult
1558Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1559                          const TemplateArgumentListInfo *ExplicitTemplateArgs,
1560                              Expr **Args, unsigned NumArgs,
1561                              FunctionDecl *&Specialization,
1562                              TemplateDeductionInfo &Info) {
1563  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1564
1565  // C++ [temp.deduct.call]p1:
1566  //   Template argument deduction is done by comparing each function template
1567  //   parameter type (call it P) with the type of the corresponding argument
1568  //   of the call (call it A) as described below.
1569  unsigned CheckArgs = NumArgs;
1570  if (NumArgs < Function->getMinRequiredArguments())
1571    return TDK_TooFewArguments;
1572  else if (NumArgs > Function->getNumParams()) {
1573    const FunctionProtoType *Proto
1574      = Function->getType()->getAs<FunctionProtoType>();
1575    if (!Proto->isVariadic())
1576      return TDK_TooManyArguments;
1577
1578    CheckArgs = Function->getNumParams();
1579  }
1580
1581  // The types of the parameters from which we will perform template argument
1582  // deduction.
1583  Sema::LocalInstantiationScope InstScope(*this);
1584  TemplateParameterList *TemplateParams
1585    = FunctionTemplate->getTemplateParameters();
1586  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1587  llvm::SmallVector<QualType, 4> ParamTypes;
1588  unsigned NumExplicitlySpecified = 0;
1589  if (ExplicitTemplateArgs) {
1590    TemplateDeductionResult Result =
1591      SubstituteExplicitTemplateArguments(FunctionTemplate,
1592                                          *ExplicitTemplateArgs,
1593                                          Deduced,
1594                                          ParamTypes,
1595                                          0,
1596                                          Info);
1597    if (Result)
1598      return Result;
1599
1600    NumExplicitlySpecified = Deduced.size();
1601  } else {
1602    // Just fill in the parameter types from the function declaration.
1603    for (unsigned I = 0; I != CheckArgs; ++I)
1604      ParamTypes.push_back(Function->getParamDecl(I)->getType());
1605  }
1606
1607  // Deduce template arguments from the function parameters.
1608  Deduced.resize(TemplateParams->size());
1609  for (unsigned I = 0; I != CheckArgs; ++I) {
1610    QualType ParamType = ParamTypes[I];
1611    QualType ArgType = Args[I]->getType();
1612
1613    // Overload sets usually make this parameter an undeduced
1614    // context, but there are sometimes special circumstances.
1615    if (ArgType == Context.OverloadTy) {
1616      ArgType = ResolveOverloadForDeduction(*this, TemplateParams,
1617                                            Args[I], ParamType);
1618      if (ArgType.isNull())
1619        continue;
1620    }
1621
1622    // C++ [temp.deduct.call]p2:
1623    //   If P is not a reference type:
1624    QualType CanonParamType = Context.getCanonicalType(ParamType);
1625    bool ParamWasReference = isa<ReferenceType>(CanonParamType);
1626    if (!ParamWasReference) {
1627      //   - If A is an array type, the pointer type produced by the
1628      //     array-to-pointer standard conversion (4.2) is used in place of
1629      //     A for type deduction; otherwise,
1630      if (ArgType->isArrayType())
1631        ArgType = Context.getArrayDecayedType(ArgType);
1632      //   - If A is a function type, the pointer type produced by the
1633      //     function-to-pointer standard conversion (4.3) is used in place
1634      //     of A for type deduction; otherwise,
1635      else if (ArgType->isFunctionType())
1636        ArgType = Context.getPointerType(ArgType);
1637      else {
1638        // - If A is a cv-qualified type, the top level cv-qualifiers of A’s
1639        //   type are ignored for type deduction.
1640        QualType CanonArgType = Context.getCanonicalType(ArgType);
1641        if (CanonArgType.getLocalCVRQualifiers())
1642          ArgType = CanonArgType.getLocalUnqualifiedType();
1643      }
1644    }
1645
1646    // C++0x [temp.deduct.call]p3:
1647    //   If P is a cv-qualified type, the top level cv-qualifiers of P’s type
1648    //   are ignored for type deduction.
1649    if (CanonParamType.getLocalCVRQualifiers())
1650      ParamType = CanonParamType.getLocalUnqualifiedType();
1651    if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
1652      //   [...] If P is a reference type, the type referred to by P is used
1653      //   for type deduction.
1654      ParamType = ParamRefType->getPointeeType();
1655
1656      //   [...] If P is of the form T&&, where T is a template parameter, and
1657      //   the argument is an lvalue, the type A& is used in place of A for
1658      //   type deduction.
1659      if (isa<RValueReferenceType>(ParamRefType) &&
1660          ParamRefType->getAs<TemplateTypeParmType>() &&
1661          Args[I]->isLvalue(Context) == Expr::LV_Valid)
1662        ArgType = Context.getLValueReferenceType(ArgType);
1663    }
1664
1665    // C++0x [temp.deduct.call]p4:
1666    //   In general, the deduction process attempts to find template argument
1667    //   values that will make the deduced A identical to A (after the type A
1668    //   is transformed as described above). [...]
1669    unsigned TDF = TDF_SkipNonDependent;
1670
1671    //     - If the original P is a reference type, the deduced A (i.e., the
1672    //       type referred to by the reference) can be more cv-qualified than
1673    //       the transformed A.
1674    if (ParamWasReference)
1675      TDF |= TDF_ParamWithReferenceType;
1676    //     - The transformed A can be another pointer or pointer to member
1677    //       type that can be converted to the deduced A via a qualification
1678    //       conversion (4.4).
1679    if (ArgType->isPointerType() || ArgType->isMemberPointerType())
1680      TDF |= TDF_IgnoreQualifiers;
1681    //     - If P is a class and P has the form simple-template-id, then the
1682    //       transformed A can be a derived class of the deduced A. Likewise,
1683    //       if P is a pointer to a class of the form simple-template-id, the
1684    //       transformed A can be a pointer to a derived class pointed to by
1685    //       the deduced A.
1686    if (isSimpleTemplateIdType(ParamType) ||
1687        (isa<PointerType>(ParamType) &&
1688         isSimpleTemplateIdType(
1689                              ParamType->getAs<PointerType>()->getPointeeType())))
1690      TDF |= TDF_DerivedClass;
1691
1692    if (TemplateDeductionResult Result
1693        = ::DeduceTemplateArguments(*this, TemplateParams,
1694                                    ParamType, ArgType, Info, Deduced,
1695                                    TDF))
1696      return Result;
1697
1698    // FIXME: we need to check that the deduced A is the same as A,
1699    // modulo the various allowed differences.
1700  }
1701
1702  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
1703                                         NumExplicitlySpecified,
1704                                         Specialization, Info);
1705}
1706
1707/// \brief Deduce template arguments when taking the address of a function
1708/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
1709/// a template.
1710///
1711/// \param FunctionTemplate the function template for which we are performing
1712/// template argument deduction.
1713///
1714/// \param ExplicitTemplateArguments the explicitly-specified template
1715/// arguments.
1716///
1717/// \param ArgFunctionType the function type that will be used as the
1718/// "argument" type (A) when performing template argument deduction from the
1719/// function template's function type. This type may be NULL, if there is no
1720/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
1721///
1722/// \param Specialization if template argument deduction was successful,
1723/// this will be set to the function template specialization produced by
1724/// template argument deduction.
1725///
1726/// \param Info the argument will be updated to provide additional information
1727/// about template argument deduction.
1728///
1729/// \returns the result of template argument deduction.
1730Sema::TemplateDeductionResult
1731Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1732                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
1733                              QualType ArgFunctionType,
1734                              FunctionDecl *&Specialization,
1735                              TemplateDeductionInfo &Info) {
1736  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1737  TemplateParameterList *TemplateParams
1738    = FunctionTemplate->getTemplateParameters();
1739  QualType FunctionType = Function->getType();
1740
1741  // Substitute any explicit template arguments.
1742  Sema::LocalInstantiationScope InstScope(*this);
1743  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1744  unsigned NumExplicitlySpecified = 0;
1745  llvm::SmallVector<QualType, 4> ParamTypes;
1746  if (ExplicitTemplateArgs) {
1747    if (TemplateDeductionResult Result
1748          = SubstituteExplicitTemplateArguments(FunctionTemplate,
1749                                                *ExplicitTemplateArgs,
1750                                                Deduced, ParamTypes,
1751                                                &FunctionType, Info))
1752      return Result;
1753
1754    NumExplicitlySpecified = Deduced.size();
1755  }
1756
1757  // Template argument deduction for function templates in a SFINAE context.
1758  // Trap any errors that might occur.
1759  SFINAETrap Trap(*this);
1760
1761  Deduced.resize(TemplateParams->size());
1762
1763  if (!ArgFunctionType.isNull()) {
1764    // Deduce template arguments from the function type.
1765    if (TemplateDeductionResult Result
1766          = ::DeduceTemplateArguments(*this, TemplateParams,
1767                                      FunctionType, ArgFunctionType, Info,
1768                                      Deduced, 0))
1769      return Result;
1770  }
1771
1772  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
1773                                         NumExplicitlySpecified,
1774                                         Specialization, Info);
1775}
1776
1777/// \brief Deduce template arguments for a templated conversion
1778/// function (C++ [temp.deduct.conv]) and, if successful, produce a
1779/// conversion function template specialization.
1780Sema::TemplateDeductionResult
1781Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1782                              QualType ToType,
1783                              CXXConversionDecl *&Specialization,
1784                              TemplateDeductionInfo &Info) {
1785  CXXConversionDecl *Conv
1786    = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
1787  QualType FromType = Conv->getConversionType();
1788
1789  // Canonicalize the types for deduction.
1790  QualType P = Context.getCanonicalType(FromType);
1791  QualType A = Context.getCanonicalType(ToType);
1792
1793  // C++0x [temp.deduct.conv]p3:
1794  //   If P is a reference type, the type referred to by P is used for
1795  //   type deduction.
1796  if (const ReferenceType *PRef = P->getAs<ReferenceType>())
1797    P = PRef->getPointeeType();
1798
1799  // C++0x [temp.deduct.conv]p3:
1800  //   If A is a reference type, the type referred to by A is used
1801  //   for type deduction.
1802  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
1803    A = ARef->getPointeeType();
1804  // C++ [temp.deduct.conv]p2:
1805  //
1806  //   If A is not a reference type:
1807  else {
1808    assert(!A->isReferenceType() && "Reference types were handled above");
1809
1810    //   - If P is an array type, the pointer type produced by the
1811    //     array-to-pointer standard conversion (4.2) is used in place
1812    //     of P for type deduction; otherwise,
1813    if (P->isArrayType())
1814      P = Context.getArrayDecayedType(P);
1815    //   - If P is a function type, the pointer type produced by the
1816    //     function-to-pointer standard conversion (4.3) is used in
1817    //     place of P for type deduction; otherwise,
1818    else if (P->isFunctionType())
1819      P = Context.getPointerType(P);
1820    //   - If P is a cv-qualified type, the top level cv-qualifiers of
1821    //     P’s type are ignored for type deduction.
1822    else
1823      P = P.getUnqualifiedType();
1824
1825    // C++0x [temp.deduct.conv]p3:
1826    //   If A is a cv-qualified type, the top level cv-qualifiers of A’s
1827    //   type are ignored for type deduction.
1828    A = A.getUnqualifiedType();
1829  }
1830
1831  // Template argument deduction for function templates in a SFINAE context.
1832  // Trap any errors that might occur.
1833  SFINAETrap Trap(*this);
1834
1835  // C++ [temp.deduct.conv]p1:
1836  //   Template argument deduction is done by comparing the return
1837  //   type of the template conversion function (call it P) with the
1838  //   type that is required as the result of the conversion (call it
1839  //   A) as described in 14.8.2.4.
1840  TemplateParameterList *TemplateParams
1841    = FunctionTemplate->getTemplateParameters();
1842  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1843  Deduced.resize(TemplateParams->size());
1844
1845  // C++0x [temp.deduct.conv]p4:
1846  //   In general, the deduction process attempts to find template
1847  //   argument values that will make the deduced A identical to
1848  //   A. However, there are two cases that allow a difference:
1849  unsigned TDF = 0;
1850  //     - If the original A is a reference type, A can be more
1851  //       cv-qualified than the deduced A (i.e., the type referred to
1852  //       by the reference)
1853  if (ToType->isReferenceType())
1854    TDF |= TDF_ParamWithReferenceType;
1855  //     - The deduced A can be another pointer or pointer to member
1856  //       type that can be converted to A via a qualification
1857  //       conversion.
1858  //
1859  // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
1860  // both P and A are pointers or member pointers. In this case, we
1861  // just ignore cv-qualifiers completely).
1862  if ((P->isPointerType() && A->isPointerType()) ||
1863      (P->isMemberPointerType() && P->isMemberPointerType()))
1864    TDF |= TDF_IgnoreQualifiers;
1865  if (TemplateDeductionResult Result
1866        = ::DeduceTemplateArguments(*this, TemplateParams,
1867                                    P, A, Info, Deduced, TDF))
1868    return Result;
1869
1870  // FIXME: we need to check that the deduced A is the same as A,
1871  // modulo the various allowed differences.
1872
1873  // Finish template argument deduction.
1874  Sema::LocalInstantiationScope InstScope(*this);
1875  FunctionDecl *Spec = 0;
1876  TemplateDeductionResult Result
1877    = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
1878                                      Info);
1879  Specialization = cast_or_null<CXXConversionDecl>(Spec);
1880  return Result;
1881}
1882
1883/// \brief Deduce template arguments for a function template when there is
1884/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
1885///
1886/// \param FunctionTemplate the function template for which we are performing
1887/// template argument deduction.
1888///
1889/// \param ExplicitTemplateArguments the explicitly-specified template
1890/// arguments.
1891///
1892/// \param Specialization if template argument deduction was successful,
1893/// this will be set to the function template specialization produced by
1894/// template argument deduction.
1895///
1896/// \param Info the argument will be updated to provide additional information
1897/// about template argument deduction.
1898///
1899/// \returns the result of template argument deduction.
1900Sema::TemplateDeductionResult
1901Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1902                           const TemplateArgumentListInfo *ExplicitTemplateArgs,
1903                              FunctionDecl *&Specialization,
1904                              TemplateDeductionInfo &Info) {
1905  return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
1906                                 QualType(), Specialization, Info);
1907}
1908
1909/// \brief Stores the result of comparing the qualifiers of two types.
1910enum DeductionQualifierComparison {
1911  NeitherMoreQualified = 0,
1912  ParamMoreQualified,
1913  ArgMoreQualified
1914};
1915
1916/// \brief Deduce the template arguments during partial ordering by comparing
1917/// the parameter type and the argument type (C++0x [temp.deduct.partial]).
1918///
1919/// \param S the semantic analysis object within which we are deducing
1920///
1921/// \param TemplateParams the template parameters that we are deducing
1922///
1923/// \param ParamIn the parameter type
1924///
1925/// \param ArgIn the argument type
1926///
1927/// \param Info information about the template argument deduction itself
1928///
1929/// \param Deduced the deduced template arguments
1930///
1931/// \returns the result of template argument deduction so far. Note that a
1932/// "success" result means that template argument deduction has not yet failed,
1933/// but it may still fail, later, for other reasons.
1934static Sema::TemplateDeductionResult
1935DeduceTemplateArgumentsDuringPartialOrdering(Sema &S,
1936                                        TemplateParameterList *TemplateParams,
1937                                             QualType ParamIn, QualType ArgIn,
1938                                             Sema::TemplateDeductionInfo &Info,
1939                      llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1940   llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
1941  CanQualType Param = S.Context.getCanonicalType(ParamIn);
1942  CanQualType Arg = S.Context.getCanonicalType(ArgIn);
1943
1944  // C++0x [temp.deduct.partial]p5:
1945  //   Before the partial ordering is done, certain transformations are
1946  //   performed on the types used for partial ordering:
1947  //     - If P is a reference type, P is replaced by the type referred to.
1948  CanQual<ReferenceType> ParamRef = Param->getAs<ReferenceType>();
1949  if (!ParamRef.isNull())
1950    Param = ParamRef->getPointeeType();
1951
1952  //     - If A is a reference type, A is replaced by the type referred to.
1953  CanQual<ReferenceType> ArgRef = Arg->getAs<ReferenceType>();
1954  if (!ArgRef.isNull())
1955    Arg = ArgRef->getPointeeType();
1956
1957  if (QualifierComparisons && !ParamRef.isNull() && !ArgRef.isNull()) {
1958    // C++0x [temp.deduct.partial]p6:
1959    //   If both P and A were reference types (before being replaced with the
1960    //   type referred to above), determine which of the two types (if any) is
1961    //   more cv-qualified than the other; otherwise the types are considered to
1962    //   be equally cv-qualified for partial ordering purposes. The result of this
1963    //   determination will be used below.
1964    //
1965    // We save this information for later, using it only when deduction
1966    // succeeds in both directions.
1967    DeductionQualifierComparison QualifierResult = NeitherMoreQualified;
1968    if (Param.isMoreQualifiedThan(Arg))
1969      QualifierResult = ParamMoreQualified;
1970    else if (Arg.isMoreQualifiedThan(Param))
1971      QualifierResult = ArgMoreQualified;
1972    QualifierComparisons->push_back(QualifierResult);
1973  }
1974
1975  // C++0x [temp.deduct.partial]p7:
1976  //   Remove any top-level cv-qualifiers:
1977  //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
1978  //       version of P.
1979  Param = Param.getUnqualifiedType();
1980  //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
1981  //       version of A.
1982  Arg = Arg.getUnqualifiedType();
1983
1984  // C++0x [temp.deduct.partial]p8:
1985  //   Using the resulting types P and A the deduction is then done as
1986  //   described in 14.9.2.5. If deduction succeeds for a given type, the type
1987  //   from the argument template is considered to be at least as specialized
1988  //   as the type from the parameter template.
1989  return DeduceTemplateArguments(S, TemplateParams, Param, Arg, Info,
1990                                 Deduced, TDF_None);
1991}
1992
1993static void
1994MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
1995                           bool OnlyDeduced,
1996                           unsigned Level,
1997                           llvm::SmallVectorImpl<bool> &Deduced);
1998
1999/// \brief Determine whether the function template \p FT1 is at least as
2000/// specialized as \p FT2.
2001static bool isAtLeastAsSpecializedAs(Sema &S,
2002                                     SourceLocation Loc,
2003                                     FunctionTemplateDecl *FT1,
2004                                     FunctionTemplateDecl *FT2,
2005                                     TemplatePartialOrderingContext TPOC,
2006    llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
2007  FunctionDecl *FD1 = FT1->getTemplatedDecl();
2008  FunctionDecl *FD2 = FT2->getTemplatedDecl();
2009  const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
2010  const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
2011
2012  assert(Proto1 && Proto2 && "Function templates must have prototypes");
2013  TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
2014  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2015  Deduced.resize(TemplateParams->size());
2016
2017  // C++0x [temp.deduct.partial]p3:
2018  //   The types used to determine the ordering depend on the context in which
2019  //   the partial ordering is done:
2020  Sema::TemplateDeductionInfo Info(S.Context, Loc);
2021  switch (TPOC) {
2022  case TPOC_Call: {
2023    //   - In the context of a function call, the function parameter types are
2024    //     used.
2025    unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
2026    for (unsigned I = 0; I != NumParams; ++I)
2027      if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2028                                                       TemplateParams,
2029                                                       Proto2->getArgType(I),
2030                                                       Proto1->getArgType(I),
2031                                                       Info,
2032                                                       Deduced,
2033                                                       QualifierComparisons))
2034        return false;
2035
2036    break;
2037  }
2038
2039  case TPOC_Conversion:
2040    //   - In the context of a call to a conversion operator, the return types
2041    //     of the conversion function templates are used.
2042    if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2043                                                     TemplateParams,
2044                                                     Proto2->getResultType(),
2045                                                     Proto1->getResultType(),
2046                                                     Info,
2047                                                     Deduced,
2048                                                     QualifierComparisons))
2049      return false;
2050    break;
2051
2052  case TPOC_Other:
2053    //   - In other contexts (14.6.6.2) the function template’s function type
2054    //     is used.
2055    if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2056                                                     TemplateParams,
2057                                                     FD2->getType(),
2058                                                     FD1->getType(),
2059                                                     Info,
2060                                                     Deduced,
2061                                                     QualifierComparisons))
2062      return false;
2063    break;
2064  }
2065
2066  // C++0x [temp.deduct.partial]p11:
2067  //   In most cases, all template parameters must have values in order for
2068  //   deduction to succeed, but for partial ordering purposes a template
2069  //   parameter may remain without a value provided it is not used in the
2070  //   types being used for partial ordering. [ Note: a template parameter used
2071  //   in a non-deduced context is considered used. -end note]
2072  unsigned ArgIdx = 0, NumArgs = Deduced.size();
2073  for (; ArgIdx != NumArgs; ++ArgIdx)
2074    if (Deduced[ArgIdx].isNull())
2075      break;
2076
2077  if (ArgIdx == NumArgs) {
2078    // All template arguments were deduced. FT1 is at least as specialized
2079    // as FT2.
2080    return true;
2081  }
2082
2083  // Figure out which template parameters were used.
2084  llvm::SmallVector<bool, 4> UsedParameters;
2085  UsedParameters.resize(TemplateParams->size());
2086  switch (TPOC) {
2087  case TPOC_Call: {
2088    unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
2089    for (unsigned I = 0; I != NumParams; ++I)
2090      ::MarkUsedTemplateParameters(S, Proto2->getArgType(I), false,
2091                                   TemplateParams->getDepth(),
2092                                   UsedParameters);
2093    break;
2094  }
2095
2096  case TPOC_Conversion:
2097    ::MarkUsedTemplateParameters(S, Proto2->getResultType(), false,
2098                                 TemplateParams->getDepth(),
2099                                 UsedParameters);
2100    break;
2101
2102  case TPOC_Other:
2103    ::MarkUsedTemplateParameters(S, FD2->getType(), false,
2104                                 TemplateParams->getDepth(),
2105                                 UsedParameters);
2106    break;
2107  }
2108
2109  for (; ArgIdx != NumArgs; ++ArgIdx)
2110    // If this argument had no value deduced but was used in one of the types
2111    // used for partial ordering, then deduction fails.
2112    if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
2113      return false;
2114
2115  return true;
2116}
2117
2118
2119/// \brief Returns the more specialized function template according
2120/// to the rules of function template partial ordering (C++ [temp.func.order]).
2121///
2122/// \param FT1 the first function template
2123///
2124/// \param FT2 the second function template
2125///
2126/// \param TPOC the context in which we are performing partial ordering of
2127/// function templates.
2128///
2129/// \returns the more specialized function template. If neither
2130/// template is more specialized, returns NULL.
2131FunctionTemplateDecl *
2132Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
2133                                 FunctionTemplateDecl *FT2,
2134                                 SourceLocation Loc,
2135                                 TemplatePartialOrderingContext TPOC) {
2136  llvm::SmallVector<DeductionQualifierComparison, 4> QualifierComparisons;
2137  bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 0);
2138  bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
2139                                          &QualifierComparisons);
2140
2141  if (Better1 != Better2) // We have a clear winner
2142    return Better1? FT1 : FT2;
2143
2144  if (!Better1 && !Better2) // Neither is better than the other
2145    return 0;
2146
2147
2148  // C++0x [temp.deduct.partial]p10:
2149  //   If for each type being considered a given template is at least as
2150  //   specialized for all types and more specialized for some set of types and
2151  //   the other template is not more specialized for any types or is not at
2152  //   least as specialized for any types, then the given template is more
2153  //   specialized than the other template. Otherwise, neither template is more
2154  //   specialized than the other.
2155  Better1 = false;
2156  Better2 = false;
2157  for (unsigned I = 0, N = QualifierComparisons.size(); I != N; ++I) {
2158    // C++0x [temp.deduct.partial]p9:
2159    //   If, for a given type, deduction succeeds in both directions (i.e., the
2160    //   types are identical after the transformations above) and if the type
2161    //   from the argument template is more cv-qualified than the type from the
2162    //   parameter template (as described above) that type is considered to be
2163    //   more specialized than the other. If neither type is more cv-qualified
2164    //   than the other then neither type is more specialized than the other.
2165    switch (QualifierComparisons[I]) {
2166      case NeitherMoreQualified:
2167        break;
2168
2169      case ParamMoreQualified:
2170        Better1 = true;
2171        if (Better2)
2172          return 0;
2173        break;
2174
2175      case ArgMoreQualified:
2176        Better2 = true;
2177        if (Better1)
2178          return 0;
2179        break;
2180    }
2181  }
2182
2183  assert(!(Better1 && Better2) && "Should have broken out in the loop above");
2184  if (Better1)
2185    return FT1;
2186  else if (Better2)
2187    return FT2;
2188  else
2189    return 0;
2190}
2191
2192/// \brief Determine if the two templates are equivalent.
2193static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
2194  if (T1 == T2)
2195    return true;
2196
2197  if (!T1 || !T2)
2198    return false;
2199
2200  return T1->getCanonicalDecl() == T2->getCanonicalDecl();
2201}
2202
2203/// \brief Retrieve the most specialized of the given function template
2204/// specializations.
2205///
2206/// \param SpecBegin the start iterator of the function template
2207/// specializations that we will be comparing.
2208///
2209/// \param SpecEnd the end iterator of the function template
2210/// specializations, paired with \p SpecBegin.
2211///
2212/// \param TPOC the partial ordering context to use to compare the function
2213/// template specializations.
2214///
2215/// \param Loc the location where the ambiguity or no-specializations
2216/// diagnostic should occur.
2217///
2218/// \param NoneDiag partial diagnostic used to diagnose cases where there are
2219/// no matching candidates.
2220///
2221/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
2222/// occurs.
2223///
2224/// \param CandidateDiag partial diagnostic used for each function template
2225/// specialization that is a candidate in the ambiguous ordering. One parameter
2226/// in this diagnostic should be unbound, which will correspond to the string
2227/// describing the template arguments for the function template specialization.
2228///
2229/// \param Index if non-NULL and the result of this function is non-nULL,
2230/// receives the index corresponding to the resulting function template
2231/// specialization.
2232///
2233/// \returns the most specialized function template specialization, if
2234/// found. Otherwise, returns SpecEnd.
2235///
2236/// \todo FIXME: Consider passing in the "also-ran" candidates that failed
2237/// template argument deduction.
2238UnresolvedSetIterator
2239Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
2240                         UnresolvedSetIterator SpecEnd,
2241                         TemplatePartialOrderingContext TPOC,
2242                         SourceLocation Loc,
2243                         const PartialDiagnostic &NoneDiag,
2244                         const PartialDiagnostic &AmbigDiag,
2245                         const PartialDiagnostic &CandidateDiag) {
2246  if (SpecBegin == SpecEnd) {
2247    Diag(Loc, NoneDiag);
2248    return SpecEnd;
2249  }
2250
2251  if (SpecBegin + 1 == SpecEnd)
2252    return SpecBegin;
2253
2254  // Find the function template that is better than all of the templates it
2255  // has been compared to.
2256  UnresolvedSetIterator Best = SpecBegin;
2257  FunctionTemplateDecl *BestTemplate
2258    = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
2259  assert(BestTemplate && "Not a function template specialization?");
2260  for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
2261    FunctionTemplateDecl *Challenger
2262      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
2263    assert(Challenger && "Not a function template specialization?");
2264    if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
2265                                                  Loc, TPOC),
2266                       Challenger)) {
2267      Best = I;
2268      BestTemplate = Challenger;
2269    }
2270  }
2271
2272  // Make sure that the "best" function template is more specialized than all
2273  // of the others.
2274  bool Ambiguous = false;
2275  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
2276    FunctionTemplateDecl *Challenger
2277      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
2278    if (I != Best &&
2279        !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
2280                                                   Loc, TPOC),
2281                        BestTemplate)) {
2282      Ambiguous = true;
2283      break;
2284    }
2285  }
2286
2287  if (!Ambiguous) {
2288    // We found an answer. Return it.
2289    return Best;
2290  }
2291
2292  // Diagnose the ambiguity.
2293  Diag(Loc, AmbigDiag);
2294
2295  // FIXME: Can we order the candidates in some sane way?
2296  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I)
2297    Diag((*I)->getLocation(), CandidateDiag)
2298      << getTemplateArgumentBindingsText(
2299        cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
2300                    *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
2301
2302  return SpecEnd;
2303}
2304
2305/// \brief Returns the more specialized class template partial specialization
2306/// according to the rules of partial ordering of class template partial
2307/// specializations (C++ [temp.class.order]).
2308///
2309/// \param PS1 the first class template partial specialization
2310///
2311/// \param PS2 the second class template partial specialization
2312///
2313/// \returns the more specialized class template partial specialization. If
2314/// neither partial specialization is more specialized, returns NULL.
2315ClassTemplatePartialSpecializationDecl *
2316Sema::getMoreSpecializedPartialSpecialization(
2317                                  ClassTemplatePartialSpecializationDecl *PS1,
2318                                  ClassTemplatePartialSpecializationDecl *PS2,
2319                                              SourceLocation Loc) {
2320  // C++ [temp.class.order]p1:
2321  //   For two class template partial specializations, the first is at least as
2322  //   specialized as the second if, given the following rewrite to two
2323  //   function templates, the first function template is at least as
2324  //   specialized as the second according to the ordering rules for function
2325  //   templates (14.6.6.2):
2326  //     - the first function template has the same template parameters as the
2327  //       first partial specialization and has a single function parameter
2328  //       whose type is a class template specialization with the template
2329  //       arguments of the first partial specialization, and
2330  //     - the second function template has the same template parameters as the
2331  //       second partial specialization and has a single function parameter
2332  //       whose type is a class template specialization with the template
2333  //       arguments of the second partial specialization.
2334  //
2335  // Rather than synthesize function templates, we merely perform the
2336  // equivalent partial ordering by performing deduction directly on the
2337  // template arguments of the class template partial specializations. This
2338  // computation is slightly simpler than the general problem of function
2339  // template partial ordering, because class template partial specializations
2340  // are more constrained. We know that every template parameter is deduc
2341  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2342  Sema::TemplateDeductionInfo Info(Context, Loc);
2343
2344  // Determine whether PS1 is at least as specialized as PS2
2345  Deduced.resize(PS2->getTemplateParameters()->size());
2346  bool Better1 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
2347                                                  PS2->getTemplateParameters(),
2348                                                  Context.getTypeDeclType(PS2),
2349                                                  Context.getTypeDeclType(PS1),
2350                                                               Info,
2351                                                               Deduced,
2352                                                               0);
2353
2354  // Determine whether PS2 is at least as specialized as PS1
2355  Deduced.clear();
2356  Deduced.resize(PS1->getTemplateParameters()->size());
2357  bool Better2 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
2358                                                  PS1->getTemplateParameters(),
2359                                                  Context.getTypeDeclType(PS1),
2360                                                  Context.getTypeDeclType(PS2),
2361                                                               Info,
2362                                                               Deduced,
2363                                                               0);
2364
2365  if (Better1 == Better2)
2366    return 0;
2367
2368  return Better1? PS1 : PS2;
2369}
2370
2371static void
2372MarkUsedTemplateParameters(Sema &SemaRef,
2373                           const TemplateArgument &TemplateArg,
2374                           bool OnlyDeduced,
2375                           unsigned Depth,
2376                           llvm::SmallVectorImpl<bool> &Used);
2377
2378/// \brief Mark the template parameters that are used by the given
2379/// expression.
2380static void
2381MarkUsedTemplateParameters(Sema &SemaRef,
2382                           const Expr *E,
2383                           bool OnlyDeduced,
2384                           unsigned Depth,
2385                           llvm::SmallVectorImpl<bool> &Used) {
2386  // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
2387  // find other occurrences of template parameters.
2388  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
2389  if (!DRE)
2390    return;
2391
2392  const NonTypeTemplateParmDecl *NTTP
2393    = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2394  if (!NTTP)
2395    return;
2396
2397  if (NTTP->getDepth() == Depth)
2398    Used[NTTP->getIndex()] = true;
2399}
2400
2401/// \brief Mark the template parameters that are used by the given
2402/// nested name specifier.
2403static void
2404MarkUsedTemplateParameters(Sema &SemaRef,
2405                           NestedNameSpecifier *NNS,
2406                           bool OnlyDeduced,
2407                           unsigned Depth,
2408                           llvm::SmallVectorImpl<bool> &Used) {
2409  if (!NNS)
2410    return;
2411
2412  MarkUsedTemplateParameters(SemaRef, NNS->getPrefix(), OnlyDeduced, Depth,
2413                             Used);
2414  MarkUsedTemplateParameters(SemaRef, QualType(NNS->getAsType(), 0),
2415                             OnlyDeduced, Depth, Used);
2416}
2417
2418/// \brief Mark the template parameters that are used by the given
2419/// template name.
2420static void
2421MarkUsedTemplateParameters(Sema &SemaRef,
2422                           TemplateName Name,
2423                           bool OnlyDeduced,
2424                           unsigned Depth,
2425                           llvm::SmallVectorImpl<bool> &Used) {
2426  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2427    if (TemplateTemplateParmDecl *TTP
2428          = dyn_cast<TemplateTemplateParmDecl>(Template)) {
2429      if (TTP->getDepth() == Depth)
2430        Used[TTP->getIndex()] = true;
2431    }
2432    return;
2433  }
2434
2435  if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
2436    MarkUsedTemplateParameters(SemaRef, QTN->getQualifier(), OnlyDeduced,
2437                               Depth, Used);
2438  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
2439    MarkUsedTemplateParameters(SemaRef, DTN->getQualifier(), OnlyDeduced,
2440                               Depth, Used);
2441}
2442
2443/// \brief Mark the template parameters that are used by the given
2444/// type.
2445static void
2446MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
2447                           bool OnlyDeduced,
2448                           unsigned Depth,
2449                           llvm::SmallVectorImpl<bool> &Used) {
2450  if (T.isNull())
2451    return;
2452
2453  // Non-dependent types have nothing deducible
2454  if (!T->isDependentType())
2455    return;
2456
2457  T = SemaRef.Context.getCanonicalType(T);
2458  switch (T->getTypeClass()) {
2459  case Type::Pointer:
2460    MarkUsedTemplateParameters(SemaRef,
2461                               cast<PointerType>(T)->getPointeeType(),
2462                               OnlyDeduced,
2463                               Depth,
2464                               Used);
2465    break;
2466
2467  case Type::BlockPointer:
2468    MarkUsedTemplateParameters(SemaRef,
2469                               cast<BlockPointerType>(T)->getPointeeType(),
2470                               OnlyDeduced,
2471                               Depth,
2472                               Used);
2473    break;
2474
2475  case Type::LValueReference:
2476  case Type::RValueReference:
2477    MarkUsedTemplateParameters(SemaRef,
2478                               cast<ReferenceType>(T)->getPointeeType(),
2479                               OnlyDeduced,
2480                               Depth,
2481                               Used);
2482    break;
2483
2484  case Type::MemberPointer: {
2485    const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
2486    MarkUsedTemplateParameters(SemaRef, MemPtr->getPointeeType(), OnlyDeduced,
2487                               Depth, Used);
2488    MarkUsedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0),
2489                               OnlyDeduced, Depth, Used);
2490    break;
2491  }
2492
2493  case Type::DependentSizedArray:
2494    MarkUsedTemplateParameters(SemaRef,
2495                               cast<DependentSizedArrayType>(T)->getSizeExpr(),
2496                               OnlyDeduced, Depth, Used);
2497    // Fall through to check the element type
2498
2499  case Type::ConstantArray:
2500  case Type::IncompleteArray:
2501    MarkUsedTemplateParameters(SemaRef,
2502                               cast<ArrayType>(T)->getElementType(),
2503                               OnlyDeduced, Depth, Used);
2504    break;
2505
2506  case Type::Vector:
2507  case Type::ExtVector:
2508    MarkUsedTemplateParameters(SemaRef,
2509                               cast<VectorType>(T)->getElementType(),
2510                               OnlyDeduced, Depth, Used);
2511    break;
2512
2513  case Type::DependentSizedExtVector: {
2514    const DependentSizedExtVectorType *VecType
2515      = cast<DependentSizedExtVectorType>(T);
2516    MarkUsedTemplateParameters(SemaRef, VecType->getElementType(), OnlyDeduced,
2517                               Depth, Used);
2518    MarkUsedTemplateParameters(SemaRef, VecType->getSizeExpr(), OnlyDeduced,
2519                               Depth, Used);
2520    break;
2521  }
2522
2523  case Type::FunctionProto: {
2524    const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2525    MarkUsedTemplateParameters(SemaRef, Proto->getResultType(), OnlyDeduced,
2526                               Depth, Used);
2527    for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
2528      MarkUsedTemplateParameters(SemaRef, Proto->getArgType(I), OnlyDeduced,
2529                                 Depth, Used);
2530    break;
2531  }
2532
2533  case Type::TemplateTypeParm: {
2534    const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
2535    if (TTP->getDepth() == Depth)
2536      Used[TTP->getIndex()] = true;
2537    break;
2538  }
2539
2540  case Type::TemplateSpecialization: {
2541    const TemplateSpecializationType *Spec
2542      = cast<TemplateSpecializationType>(T);
2543    MarkUsedTemplateParameters(SemaRef, Spec->getTemplateName(), OnlyDeduced,
2544                               Depth, Used);
2545    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
2546      MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
2547                                 Used);
2548    break;
2549  }
2550
2551  case Type::Complex:
2552    if (!OnlyDeduced)
2553      MarkUsedTemplateParameters(SemaRef,
2554                                 cast<ComplexType>(T)->getElementType(),
2555                                 OnlyDeduced, Depth, Used);
2556    break;
2557
2558  case Type::DependentName:
2559    if (!OnlyDeduced)
2560      MarkUsedTemplateParameters(SemaRef,
2561                                 cast<DependentNameType>(T)->getQualifier(),
2562                                 OnlyDeduced, Depth, Used);
2563    break;
2564
2565  case Type::TypeOf:
2566    if (!OnlyDeduced)
2567      MarkUsedTemplateParameters(SemaRef,
2568                                 cast<TypeOfType>(T)->getUnderlyingType(),
2569                                 OnlyDeduced, Depth, Used);
2570    break;
2571
2572  case Type::TypeOfExpr:
2573    if (!OnlyDeduced)
2574      MarkUsedTemplateParameters(SemaRef,
2575                                 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
2576                                 OnlyDeduced, Depth, Used);
2577    break;
2578
2579  case Type::Decltype:
2580    if (!OnlyDeduced)
2581      MarkUsedTemplateParameters(SemaRef,
2582                                 cast<DecltypeType>(T)->getUnderlyingExpr(),
2583                                 OnlyDeduced, Depth, Used);
2584    break;
2585
2586  // None of these types have any template parameters in them.
2587  case Type::Builtin:
2588  case Type::VariableArray:
2589  case Type::FunctionNoProto:
2590  case Type::Record:
2591  case Type::Enum:
2592  case Type::ObjCInterface:
2593  case Type::ObjCObjectPointer:
2594  case Type::UnresolvedUsing:
2595#define TYPE(Class, Base)
2596#define ABSTRACT_TYPE(Class, Base)
2597#define DEPENDENT_TYPE(Class, Base)
2598#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2599#include "clang/AST/TypeNodes.def"
2600    break;
2601  }
2602}
2603
2604/// \brief Mark the template parameters that are used by this
2605/// template argument.
2606static void
2607MarkUsedTemplateParameters(Sema &SemaRef,
2608                           const TemplateArgument &TemplateArg,
2609                           bool OnlyDeduced,
2610                           unsigned Depth,
2611                           llvm::SmallVectorImpl<bool> &Used) {
2612  switch (TemplateArg.getKind()) {
2613  case TemplateArgument::Null:
2614  case TemplateArgument::Integral:
2615    case TemplateArgument::Declaration:
2616    break;
2617
2618  case TemplateArgument::Type:
2619    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsType(), OnlyDeduced,
2620                               Depth, Used);
2621    break;
2622
2623  case TemplateArgument::Template:
2624    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsTemplate(),
2625                               OnlyDeduced, Depth, Used);
2626    break;
2627
2628  case TemplateArgument::Expression:
2629    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsExpr(), OnlyDeduced,
2630                               Depth, Used);
2631    break;
2632
2633  case TemplateArgument::Pack:
2634    for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
2635                                      PEnd = TemplateArg.pack_end();
2636         P != PEnd; ++P)
2637      MarkUsedTemplateParameters(SemaRef, *P, OnlyDeduced, Depth, Used);
2638    break;
2639  }
2640}
2641
2642/// \brief Mark the template parameters can be deduced by the given
2643/// template argument list.
2644///
2645/// \param TemplateArgs the template argument list from which template
2646/// parameters will be deduced.
2647///
2648/// \param Deduced a bit vector whose elements will be set to \c true
2649/// to indicate when the corresponding template parameter will be
2650/// deduced.
2651void
2652Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
2653                                 bool OnlyDeduced, unsigned Depth,
2654                                 llvm::SmallVectorImpl<bool> &Used) {
2655  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2656    ::MarkUsedTemplateParameters(*this, TemplateArgs[I], OnlyDeduced,
2657                                 Depth, Used);
2658}
2659
2660/// \brief Marks all of the template parameters that will be deduced by a
2661/// call to the given function template.
2662void
2663Sema::MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate,
2664                                    llvm::SmallVectorImpl<bool> &Deduced) {
2665  TemplateParameterList *TemplateParams
2666    = FunctionTemplate->getTemplateParameters();
2667  Deduced.clear();
2668  Deduced.resize(TemplateParams->size());
2669
2670  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2671  for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
2672    ::MarkUsedTemplateParameters(*this, Function->getParamDecl(I)->getType(),
2673                                 true, TemplateParams->getDepth(), Deduced);
2674}
2675