SemaTemplateDeduction.cpp revision 6e4e17de3df88ead7eaf51b3503a6be1718438c0
1//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===/
12
13#include "clang/Sema/Sema.h"
14#include "clang/Sema/DeclSpec.h"
15#include "clang/Sema/SemaDiagnostic.h" // FIXME: temporary!
16#include "clang/Sema/Template.h"
17#include "clang/Sema/TemplateDeduction.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/StmtVisitor.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "llvm/ADT/BitVector.h"
25#include <algorithm>
26
27namespace clang {
28  using namespace sema;
29
30  /// \brief Various flags that control template argument deduction.
31  ///
32  /// These flags can be bitwise-OR'd together.
33  enum TemplateDeductionFlags {
34    /// \brief No template argument deduction flags, which indicates the
35    /// strictest results for template argument deduction (as used for, e.g.,
36    /// matching class template partial specializations).
37    TDF_None = 0,
38    /// \brief Within template argument deduction from a function call, we are
39    /// matching with a parameter type for which the original parameter was
40    /// a reference.
41    TDF_ParamWithReferenceType = 0x1,
42    /// \brief Within template argument deduction from a function call, we
43    /// are matching in a case where we ignore cv-qualifiers.
44    TDF_IgnoreQualifiers = 0x02,
45    /// \brief Within template argument deduction from a function call,
46    /// we are matching in a case where we can perform template argument
47    /// deduction from a template-id of a derived class of the argument type.
48    TDF_DerivedClass = 0x04,
49    /// \brief Allow non-dependent types to differ, e.g., when performing
50    /// template argument deduction from a function call where conversions
51    /// may apply.
52    TDF_SkipNonDependent = 0x08
53  };
54}
55
56using namespace clang;
57
58/// \brief Compare two APSInts, extending and switching the sign as
59/// necessary to compare their values regardless of underlying type.
60static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
61  if (Y.getBitWidth() > X.getBitWidth())
62    X = X.extend(Y.getBitWidth());
63  else if (Y.getBitWidth() < X.getBitWidth())
64    Y = Y.extend(X.getBitWidth());
65
66  // If there is a signedness mismatch, correct it.
67  if (X.isSigned() != Y.isSigned()) {
68    // If the signed value is negative, then the values cannot be the same.
69    if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
70      return false;
71
72    Y.setIsSigned(true);
73    X.setIsSigned(true);
74  }
75
76  return X == Y;
77}
78
79static Sema::TemplateDeductionResult
80DeduceTemplateArguments(Sema &S,
81                        TemplateParameterList *TemplateParams,
82                        const TemplateArgument &Param,
83                        const TemplateArgument &Arg,
84                        TemplateDeductionInfo &Info,
85                      llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced);
86
87static Sema::TemplateDeductionResult
88DeduceTemplateArguments(Sema &S,
89                        TemplateParameterList *TemplateParams,
90                        const TemplateArgument *Params, unsigned NumParams,
91                        const TemplateArgument *Args, unsigned NumArgs,
92                        TemplateDeductionInfo &Info,
93                        llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
94                        bool NumberOfArgumentsMustMatch = true);
95
96/// \brief If the given expression is of a form that permits the deduction
97/// of a non-type template parameter, return the declaration of that
98/// non-type template parameter.
99static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
100  if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
101    E = IC->getSubExpr();
102
103  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
104    return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
105
106  return 0;
107}
108
109/// \brief Determine whether two declaration pointers refer to the same
110/// declaration.
111static bool isSameDeclaration(Decl *X, Decl *Y) {
112  if (!X || !Y)
113    return !X && !Y;
114
115  if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
116    X = NX->getUnderlyingDecl();
117  if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
118    Y = NY->getUnderlyingDecl();
119
120  return X->getCanonicalDecl() == Y->getCanonicalDecl();
121}
122
123/// \brief Verify that the given, deduced template arguments are compatible.
124///
125/// \returns The deduced template argument, or a NULL template argument if
126/// the deduced template arguments were incompatible.
127static DeducedTemplateArgument
128checkDeducedTemplateArguments(ASTContext &Context,
129                              const DeducedTemplateArgument &X,
130                              const DeducedTemplateArgument &Y) {
131  // We have no deduction for one or both of the arguments; they're compatible.
132  if (X.isNull())
133    return Y;
134  if (Y.isNull())
135    return X;
136
137  switch (X.getKind()) {
138  case TemplateArgument::Null:
139    llvm_unreachable("Non-deduced template arguments handled above");
140
141  case TemplateArgument::Type:
142    // If two template type arguments have the same type, they're compatible.
143    if (Y.getKind() == TemplateArgument::Type &&
144        Context.hasSameType(X.getAsType(), Y.getAsType()))
145      return X;
146
147    return DeducedTemplateArgument();
148
149  case TemplateArgument::Integral:
150    // If we deduced a constant in one case and either a dependent expression or
151    // declaration in another case, keep the integral constant.
152    // If both are integral constants with the same value, keep that value.
153    if (Y.getKind() == TemplateArgument::Expression ||
154        Y.getKind() == TemplateArgument::Declaration ||
155        (Y.getKind() == TemplateArgument::Integral &&
156         hasSameExtendedValue(*X.getAsIntegral(), *Y.getAsIntegral())))
157      return DeducedTemplateArgument(X,
158                                     X.wasDeducedFromArrayBound() &&
159                                     Y.wasDeducedFromArrayBound());
160
161    // All other combinations are incompatible.
162    return DeducedTemplateArgument();
163
164  case TemplateArgument::Template:
165    if (Y.getKind() == TemplateArgument::Template &&
166        Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
167      return X;
168
169    // All other combinations are incompatible.
170    return DeducedTemplateArgument();
171
172  case TemplateArgument::Expression:
173    // If we deduced a dependent expression in one case and either an integral
174    // constant or a declaration in another case, keep the integral constant
175    // or declaration.
176    if (Y.getKind() == TemplateArgument::Integral ||
177        Y.getKind() == TemplateArgument::Declaration)
178      return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
179                                     Y.wasDeducedFromArrayBound());
180
181    if (Y.getKind() == TemplateArgument::Expression) {
182      // Compare the expressions for equality
183      llvm::FoldingSetNodeID ID1, ID2;
184      X.getAsExpr()->Profile(ID1, Context, true);
185      Y.getAsExpr()->Profile(ID2, Context, true);
186      if (ID1 == ID2)
187        return X;
188    }
189
190    // All other combinations are incompatible.
191    return DeducedTemplateArgument();
192
193  case TemplateArgument::Declaration:
194    // If we deduced a declaration and a dependent expression, keep the
195    // declaration.
196    if (Y.getKind() == TemplateArgument::Expression)
197      return X;
198
199    // If we deduced a declaration and an integral constant, keep the
200    // integral constant.
201    if (Y.getKind() == TemplateArgument::Integral)
202      return Y;
203
204    // If we deduced two declarations, make sure they they refer to the
205    // same declaration.
206    if (Y.getKind() == TemplateArgument::Declaration &&
207        isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
208      return X;
209
210    // All other combinations are incompatible.
211    return DeducedTemplateArgument();
212
213  case TemplateArgument::Pack:
214    if (Y.getKind() != TemplateArgument::Pack ||
215        X.pack_size() != Y.pack_size())
216      return DeducedTemplateArgument();
217
218    for (TemplateArgument::pack_iterator XA = X.pack_begin(),
219                                      XAEnd = X.pack_end(),
220                                         YA = Y.pack_begin();
221         XA != XAEnd; ++XA, ++YA) {
222      // FIXME: We've lost the "deduced from array bound" bit.
223      if (checkDeducedTemplateArguments(Context, *XA, *YA).isNull())
224        return DeducedTemplateArgument();
225    }
226
227    return X;
228  }
229
230  return DeducedTemplateArgument();
231}
232
233/// \brief Deduce the value of the given non-type template parameter
234/// from the given constant.
235static Sema::TemplateDeductionResult
236DeduceNonTypeTemplateArgument(Sema &S,
237                              NonTypeTemplateParmDecl *NTTP,
238                              llvm::APSInt Value, QualType ValueType,
239                              bool DeducedFromArrayBound,
240                              TemplateDeductionInfo &Info,
241                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
242  assert(NTTP->getDepth() == 0 &&
243         "Cannot deduce non-type template argument with depth > 0");
244
245  DeducedTemplateArgument NewDeduced(Value, ValueType, DeducedFromArrayBound);
246  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
247                                                     Deduced[NTTP->getIndex()],
248                                                                 NewDeduced);
249  if (Result.isNull()) {
250    Info.Param = NTTP;
251    Info.FirstArg = Deduced[NTTP->getIndex()];
252    Info.SecondArg = NewDeduced;
253    return Sema::TDK_Inconsistent;
254  }
255
256  Deduced[NTTP->getIndex()] = Result;
257  return Sema::TDK_Success;
258}
259
260/// \brief Deduce the value of the given non-type template parameter
261/// from the given type- or value-dependent expression.
262///
263/// \returns true if deduction succeeded, false otherwise.
264static Sema::TemplateDeductionResult
265DeduceNonTypeTemplateArgument(Sema &S,
266                              NonTypeTemplateParmDecl *NTTP,
267                              Expr *Value,
268                              TemplateDeductionInfo &Info,
269                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
270  assert(NTTP->getDepth() == 0 &&
271         "Cannot deduce non-type template argument with depth > 0");
272  assert((Value->isTypeDependent() || Value->isValueDependent()) &&
273         "Expression template argument must be type- or value-dependent.");
274
275  DeducedTemplateArgument NewDeduced(Value);
276  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
277                                                     Deduced[NTTP->getIndex()],
278                                                                 NewDeduced);
279
280  if (Result.isNull()) {
281    Info.Param = NTTP;
282    Info.FirstArg = Deduced[NTTP->getIndex()];
283    Info.SecondArg = NewDeduced;
284    return Sema::TDK_Inconsistent;
285  }
286
287  Deduced[NTTP->getIndex()] = Result;
288  return Sema::TDK_Success;
289}
290
291/// \brief Deduce the value of the given non-type template parameter
292/// from the given declaration.
293///
294/// \returns true if deduction succeeded, false otherwise.
295static Sema::TemplateDeductionResult
296DeduceNonTypeTemplateArgument(Sema &S,
297                              NonTypeTemplateParmDecl *NTTP,
298                              Decl *D,
299                              TemplateDeductionInfo &Info,
300                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
301  assert(NTTP->getDepth() == 0 &&
302         "Cannot deduce non-type template argument with depth > 0");
303
304  DeducedTemplateArgument NewDeduced(D? D->getCanonicalDecl() : 0);
305  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
306                                                     Deduced[NTTP->getIndex()],
307                                                                 NewDeduced);
308  if (Result.isNull()) {
309    Info.Param = NTTP;
310    Info.FirstArg = Deduced[NTTP->getIndex()];
311    Info.SecondArg = NewDeduced;
312    return Sema::TDK_Inconsistent;
313  }
314
315  Deduced[NTTP->getIndex()] = Result;
316  return Sema::TDK_Success;
317}
318
319static Sema::TemplateDeductionResult
320DeduceTemplateArguments(Sema &S,
321                        TemplateParameterList *TemplateParams,
322                        TemplateName Param,
323                        TemplateName Arg,
324                        TemplateDeductionInfo &Info,
325                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
326  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
327  if (!ParamDecl) {
328    // The parameter type is dependent and is not a template template parameter,
329    // so there is nothing that we can deduce.
330    return Sema::TDK_Success;
331  }
332
333  if (TemplateTemplateParmDecl *TempParam
334        = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
335    DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
336    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
337                                                 Deduced[TempParam->getIndex()],
338                                                                   NewDeduced);
339    if (Result.isNull()) {
340      Info.Param = TempParam;
341      Info.FirstArg = Deduced[TempParam->getIndex()];
342      Info.SecondArg = NewDeduced;
343      return Sema::TDK_Inconsistent;
344    }
345
346    Deduced[TempParam->getIndex()] = Result;
347    return Sema::TDK_Success;
348  }
349
350  // Verify that the two template names are equivalent.
351  if (S.Context.hasSameTemplateName(Param, Arg))
352    return Sema::TDK_Success;
353
354  // Mismatch of non-dependent template parameter to argument.
355  Info.FirstArg = TemplateArgument(Param);
356  Info.SecondArg = TemplateArgument(Arg);
357  return Sema::TDK_NonDeducedMismatch;
358}
359
360/// \brief Deduce the template arguments by comparing the template parameter
361/// type (which is a template-id) with the template argument type.
362///
363/// \param S the Sema
364///
365/// \param TemplateParams the template parameters that we are deducing
366///
367/// \param Param the parameter type
368///
369/// \param Arg the argument type
370///
371/// \param Info information about the template argument deduction itself
372///
373/// \param Deduced the deduced template arguments
374///
375/// \returns the result of template argument deduction so far. Note that a
376/// "success" result means that template argument deduction has not yet failed,
377/// but it may still fail, later, for other reasons.
378static Sema::TemplateDeductionResult
379DeduceTemplateArguments(Sema &S,
380                        TemplateParameterList *TemplateParams,
381                        const TemplateSpecializationType *Param,
382                        QualType Arg,
383                        TemplateDeductionInfo &Info,
384                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
385  assert(Arg.isCanonical() && "Argument type must be canonical");
386
387  // Check whether the template argument is a dependent template-id.
388  if (const TemplateSpecializationType *SpecArg
389        = dyn_cast<TemplateSpecializationType>(Arg)) {
390    // Perform template argument deduction for the template name.
391    if (Sema::TemplateDeductionResult Result
392          = DeduceTemplateArguments(S, TemplateParams,
393                                    Param->getTemplateName(),
394                                    SpecArg->getTemplateName(),
395                                    Info, Deduced))
396      return Result;
397
398
399    // Perform template argument deduction on each template
400    // argument. Ignore any missing/extra arguments, since they could be
401    // filled in by default arguments.
402    return DeduceTemplateArguments(S, TemplateParams,
403                                   Param->getArgs(), Param->getNumArgs(),
404                                   SpecArg->getArgs(), SpecArg->getNumArgs(),
405                                   Info, Deduced,
406                                   /*NumberOfArgumentsMustMatch=*/false);
407  }
408
409  // If the argument type is a class template specialization, we
410  // perform template argument deduction using its template
411  // arguments.
412  const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
413  if (!RecordArg)
414    return Sema::TDK_NonDeducedMismatch;
415
416  ClassTemplateSpecializationDecl *SpecArg
417    = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
418  if (!SpecArg)
419    return Sema::TDK_NonDeducedMismatch;
420
421  // Perform template argument deduction for the template name.
422  if (Sema::TemplateDeductionResult Result
423        = DeduceTemplateArguments(S,
424                                  TemplateParams,
425                                  Param->getTemplateName(),
426                               TemplateName(SpecArg->getSpecializedTemplate()),
427                                  Info, Deduced))
428    return Result;
429
430  // Perform template argument deduction for the template arguments.
431  return DeduceTemplateArguments(S, TemplateParams,
432                                 Param->getArgs(), Param->getNumArgs(),
433                                 SpecArg->getTemplateArgs().data(),
434                                 SpecArg->getTemplateArgs().size(),
435                                 Info, Deduced);
436}
437
438/// \brief Determines whether the given type is an opaque type that
439/// might be more qualified when instantiated.
440static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
441  switch (T->getTypeClass()) {
442  case Type::TypeOfExpr:
443  case Type::TypeOf:
444  case Type::DependentName:
445  case Type::Decltype:
446  case Type::UnresolvedUsing:
447    return true;
448
449  case Type::ConstantArray:
450  case Type::IncompleteArray:
451  case Type::VariableArray:
452  case Type::DependentSizedArray:
453    return IsPossiblyOpaquelyQualifiedType(
454                                      cast<ArrayType>(T)->getElementType());
455
456  default:
457    return false;
458  }
459}
460
461/// \brief Deduce the template arguments by comparing the parameter type and
462/// the argument type (C++ [temp.deduct.type]).
463///
464/// \param S the semantic analysis object within which we are deducing
465///
466/// \param TemplateParams the template parameters that we are deducing
467///
468/// \param ParamIn the parameter type
469///
470/// \param ArgIn the argument type
471///
472/// \param Info information about the template argument deduction itself
473///
474/// \param Deduced the deduced template arguments
475///
476/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
477/// how template argument deduction is performed.
478///
479/// \returns the result of template argument deduction so far. Note that a
480/// "success" result means that template argument deduction has not yet failed,
481/// but it may still fail, later, for other reasons.
482static Sema::TemplateDeductionResult
483DeduceTemplateArguments(Sema &S,
484                        TemplateParameterList *TemplateParams,
485                        QualType ParamIn, QualType ArgIn,
486                        TemplateDeductionInfo &Info,
487                     llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
488                        unsigned TDF) {
489  // We only want to look at the canonical types, since typedefs and
490  // sugar are not part of template argument deduction.
491  QualType Param = S.Context.getCanonicalType(ParamIn);
492  QualType Arg = S.Context.getCanonicalType(ArgIn);
493
494  // C++0x [temp.deduct.call]p4 bullet 1:
495  //   - If the original P is a reference type, the deduced A (i.e., the type
496  //     referred to by the reference) can be more cv-qualified than the
497  //     transformed A.
498  if (TDF & TDF_ParamWithReferenceType) {
499    Qualifiers Quals;
500    QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
501    Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
502                           Arg.getCVRQualifiersThroughArrayTypes());
503    Param = S.Context.getQualifiedType(UnqualParam, Quals);
504  }
505
506  // If the parameter type is not dependent, there is nothing to deduce.
507  if (!Param->isDependentType()) {
508    if (!(TDF & TDF_SkipNonDependent) && Param != Arg) {
509
510      return Sema::TDK_NonDeducedMismatch;
511    }
512
513    return Sema::TDK_Success;
514  }
515
516  // C++ [temp.deduct.type]p9:
517  //   A template type argument T, a template template argument TT or a
518  //   template non-type argument i can be deduced if P and A have one of
519  //   the following forms:
520  //
521  //     T
522  //     cv-list T
523  if (const TemplateTypeParmType *TemplateTypeParm
524        = Param->getAs<TemplateTypeParmType>()) {
525    unsigned Index = TemplateTypeParm->getIndex();
526    bool RecanonicalizeArg = false;
527
528    // If the argument type is an array type, move the qualifiers up to the
529    // top level, so they can be matched with the qualifiers on the parameter.
530    // FIXME: address spaces, ObjC GC qualifiers
531    if (isa<ArrayType>(Arg)) {
532      Qualifiers Quals;
533      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
534      if (Quals) {
535        Arg = S.Context.getQualifiedType(Arg, Quals);
536        RecanonicalizeArg = true;
537      }
538    }
539
540    // The argument type can not be less qualified than the parameter
541    // type.
542    if (Param.isMoreQualifiedThan(Arg) && !(TDF & TDF_IgnoreQualifiers)) {
543      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
544      Info.FirstArg = TemplateArgument(Param);
545      Info.SecondArg = TemplateArgument(Arg);
546      return Sema::TDK_Underqualified;
547    }
548
549    assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
550    assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
551    QualType DeducedType = Arg;
552
553    // local manipulation is okay because it's canonical
554    DeducedType.removeLocalCVRQualifiers(Param.getCVRQualifiers());
555    if (RecanonicalizeArg)
556      DeducedType = S.Context.getCanonicalType(DeducedType);
557
558    DeducedTemplateArgument NewDeduced(DeducedType);
559    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
560                                                                 Deduced[Index],
561                                                                   NewDeduced);
562    if (Result.isNull()) {
563      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
564      Info.FirstArg = Deduced[Index];
565      Info.SecondArg = NewDeduced;
566      return Sema::TDK_Inconsistent;
567    }
568
569    Deduced[Index] = Result;
570    return Sema::TDK_Success;
571  }
572
573  // Set up the template argument deduction information for a failure.
574  Info.FirstArg = TemplateArgument(ParamIn);
575  Info.SecondArg = TemplateArgument(ArgIn);
576
577  // Check the cv-qualifiers on the parameter and argument types.
578  if (!(TDF & TDF_IgnoreQualifiers)) {
579    if (TDF & TDF_ParamWithReferenceType) {
580      if (Param.isMoreQualifiedThan(Arg))
581        return Sema::TDK_NonDeducedMismatch;
582    } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
583      if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
584        return Sema::TDK_NonDeducedMismatch;
585    }
586  }
587
588  switch (Param->getTypeClass()) {
589    // No deduction possible for these types
590    case Type::Builtin:
591      return Sema::TDK_NonDeducedMismatch;
592
593    //     T *
594    case Type::Pointer: {
595      QualType PointeeType;
596      if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
597        PointeeType = PointerArg->getPointeeType();
598      } else if (const ObjCObjectPointerType *PointerArg
599                   = Arg->getAs<ObjCObjectPointerType>()) {
600        PointeeType = PointerArg->getPointeeType();
601      } else {
602        return Sema::TDK_NonDeducedMismatch;
603      }
604
605      unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
606      return DeduceTemplateArguments(S, TemplateParams,
607                                   cast<PointerType>(Param)->getPointeeType(),
608                                     PointeeType,
609                                     Info, Deduced, SubTDF);
610    }
611
612    //     T &
613    case Type::LValueReference: {
614      const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
615      if (!ReferenceArg)
616        return Sema::TDK_NonDeducedMismatch;
617
618      return DeduceTemplateArguments(S, TemplateParams,
619                           cast<LValueReferenceType>(Param)->getPointeeType(),
620                                     ReferenceArg->getPointeeType(),
621                                     Info, Deduced, 0);
622    }
623
624    //     T && [C++0x]
625    case Type::RValueReference: {
626      const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
627      if (!ReferenceArg)
628        return Sema::TDK_NonDeducedMismatch;
629
630      return DeduceTemplateArguments(S, TemplateParams,
631                           cast<RValueReferenceType>(Param)->getPointeeType(),
632                                     ReferenceArg->getPointeeType(),
633                                     Info, Deduced, 0);
634    }
635
636    //     T [] (implied, but not stated explicitly)
637    case Type::IncompleteArray: {
638      const IncompleteArrayType *IncompleteArrayArg =
639        S.Context.getAsIncompleteArrayType(Arg);
640      if (!IncompleteArrayArg)
641        return Sema::TDK_NonDeducedMismatch;
642
643      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
644      return DeduceTemplateArguments(S, TemplateParams,
645                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
646                                     IncompleteArrayArg->getElementType(),
647                                     Info, Deduced, SubTDF);
648    }
649
650    //     T [integer-constant]
651    case Type::ConstantArray: {
652      const ConstantArrayType *ConstantArrayArg =
653        S.Context.getAsConstantArrayType(Arg);
654      if (!ConstantArrayArg)
655        return Sema::TDK_NonDeducedMismatch;
656
657      const ConstantArrayType *ConstantArrayParm =
658        S.Context.getAsConstantArrayType(Param);
659      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
660        return Sema::TDK_NonDeducedMismatch;
661
662      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
663      return DeduceTemplateArguments(S, TemplateParams,
664                                     ConstantArrayParm->getElementType(),
665                                     ConstantArrayArg->getElementType(),
666                                     Info, Deduced, SubTDF);
667    }
668
669    //     type [i]
670    case Type::DependentSizedArray: {
671      const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
672      if (!ArrayArg)
673        return Sema::TDK_NonDeducedMismatch;
674
675      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
676
677      // Check the element type of the arrays
678      const DependentSizedArrayType *DependentArrayParm
679        = S.Context.getAsDependentSizedArrayType(Param);
680      if (Sema::TemplateDeductionResult Result
681            = DeduceTemplateArguments(S, TemplateParams,
682                                      DependentArrayParm->getElementType(),
683                                      ArrayArg->getElementType(),
684                                      Info, Deduced, SubTDF))
685        return Result;
686
687      // Determine the array bound is something we can deduce.
688      NonTypeTemplateParmDecl *NTTP
689        = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
690      if (!NTTP)
691        return Sema::TDK_Success;
692
693      // We can perform template argument deduction for the given non-type
694      // template parameter.
695      assert(NTTP->getDepth() == 0 &&
696             "Cannot deduce non-type template argument at depth > 0");
697      if (const ConstantArrayType *ConstantArrayArg
698            = dyn_cast<ConstantArrayType>(ArrayArg)) {
699        llvm::APSInt Size(ConstantArrayArg->getSize());
700        return DeduceNonTypeTemplateArgument(S, NTTP, Size,
701                                             S.Context.getSizeType(),
702                                             /*ArrayBound=*/true,
703                                             Info, Deduced);
704      }
705      if (const DependentSizedArrayType *DependentArrayArg
706            = dyn_cast<DependentSizedArrayType>(ArrayArg))
707        if (DependentArrayArg->getSizeExpr())
708          return DeduceNonTypeTemplateArgument(S, NTTP,
709                                               DependentArrayArg->getSizeExpr(),
710                                               Info, Deduced);
711
712      // Incomplete type does not match a dependently-sized array type
713      return Sema::TDK_NonDeducedMismatch;
714    }
715
716    //     type(*)(T)
717    //     T(*)()
718    //     T(*)(T)
719    case Type::FunctionProto: {
720      const FunctionProtoType *FunctionProtoArg =
721        dyn_cast<FunctionProtoType>(Arg);
722      if (!FunctionProtoArg)
723        return Sema::TDK_NonDeducedMismatch;
724
725      const FunctionProtoType *FunctionProtoParam =
726        cast<FunctionProtoType>(Param);
727
728      if (FunctionProtoParam->getTypeQuals() !=
729          FunctionProtoArg->getTypeQuals())
730        return Sema::TDK_NonDeducedMismatch;
731
732      if (FunctionProtoParam->getNumArgs() != FunctionProtoArg->getNumArgs())
733        return Sema::TDK_NonDeducedMismatch;
734
735      if (FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
736        return Sema::TDK_NonDeducedMismatch;
737
738      // Check return types.
739      if (Sema::TemplateDeductionResult Result
740            = DeduceTemplateArguments(S, TemplateParams,
741                                      FunctionProtoParam->getResultType(),
742                                      FunctionProtoArg->getResultType(),
743                                      Info, Deduced, 0))
744        return Result;
745
746      for (unsigned I = 0, N = FunctionProtoParam->getNumArgs(); I != N; ++I) {
747        // Check argument types.
748        // FIXME: Variadic templates.
749        if (Sema::TemplateDeductionResult Result
750              = DeduceTemplateArguments(S, TemplateParams,
751                                        FunctionProtoParam->getArgType(I),
752                                        FunctionProtoArg->getArgType(I),
753                                        Info, Deduced, 0))
754          return Result;
755      }
756
757      return Sema::TDK_Success;
758    }
759
760    case Type::InjectedClassName: {
761      // Treat a template's injected-class-name as if the template
762      // specialization type had been used.
763      Param = cast<InjectedClassNameType>(Param)
764        ->getInjectedSpecializationType();
765      assert(isa<TemplateSpecializationType>(Param) &&
766             "injected class name is not a template specialization type");
767      // fall through
768    }
769
770    //     template-name<T> (where template-name refers to a class template)
771    //     template-name<i>
772    //     TT<T>
773    //     TT<i>
774    //     TT<>
775    case Type::TemplateSpecialization: {
776      const TemplateSpecializationType *SpecParam
777        = cast<TemplateSpecializationType>(Param);
778
779      // Try to deduce template arguments from the template-id.
780      Sema::TemplateDeductionResult Result
781        = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
782                                  Info, Deduced);
783
784      if (Result && (TDF & TDF_DerivedClass)) {
785        // C++ [temp.deduct.call]p3b3:
786        //   If P is a class, and P has the form template-id, then A can be a
787        //   derived class of the deduced A. Likewise, if P is a pointer to a
788        //   class of the form template-id, A can be a pointer to a derived
789        //   class pointed to by the deduced A.
790        //
791        // More importantly:
792        //   These alternatives are considered only if type deduction would
793        //   otherwise fail.
794        if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
795          // We cannot inspect base classes as part of deduction when the type
796          // is incomplete, so either instantiate any templates necessary to
797          // complete the type, or skip over it if it cannot be completed.
798          if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
799            return Result;
800
801          // Use data recursion to crawl through the list of base classes.
802          // Visited contains the set of nodes we have already visited, while
803          // ToVisit is our stack of records that we still need to visit.
804          llvm::SmallPtrSet<const RecordType *, 8> Visited;
805          llvm::SmallVector<const RecordType *, 8> ToVisit;
806          ToVisit.push_back(RecordT);
807          bool Successful = false;
808          llvm::SmallVectorImpl<DeducedTemplateArgument> DeducedOrig(0);
809          DeducedOrig = Deduced;
810          while (!ToVisit.empty()) {
811            // Retrieve the next class in the inheritance hierarchy.
812            const RecordType *NextT = ToVisit.back();
813            ToVisit.pop_back();
814
815            // If we have already seen this type, skip it.
816            if (!Visited.insert(NextT))
817              continue;
818
819            // If this is a base class, try to perform template argument
820            // deduction from it.
821            if (NextT != RecordT) {
822              Sema::TemplateDeductionResult BaseResult
823                = DeduceTemplateArguments(S, TemplateParams, SpecParam,
824                                          QualType(NextT, 0), Info, Deduced);
825
826              // If template argument deduction for this base was successful,
827              // note that we had some success. Otherwise, ignore any deductions
828              // from this base class.
829              if (BaseResult == Sema::TDK_Success) {
830                Successful = true;
831                DeducedOrig = Deduced;
832              }
833              else
834                Deduced = DeducedOrig;
835            }
836
837            // Visit base classes
838            CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
839            for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
840                                                 BaseEnd = Next->bases_end();
841                 Base != BaseEnd; ++Base) {
842              assert(Base->getType()->isRecordType() &&
843                     "Base class that isn't a record?");
844              ToVisit.push_back(Base->getType()->getAs<RecordType>());
845            }
846          }
847
848          if (Successful)
849            return Sema::TDK_Success;
850        }
851
852      }
853
854      return Result;
855    }
856
857    //     T type::*
858    //     T T::*
859    //     T (type::*)()
860    //     type (T::*)()
861    //     type (type::*)(T)
862    //     type (T::*)(T)
863    //     T (type::*)(T)
864    //     T (T::*)()
865    //     T (T::*)(T)
866    case Type::MemberPointer: {
867      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
868      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
869      if (!MemPtrArg)
870        return Sema::TDK_NonDeducedMismatch;
871
872      if (Sema::TemplateDeductionResult Result
873            = DeduceTemplateArguments(S, TemplateParams,
874                                      MemPtrParam->getPointeeType(),
875                                      MemPtrArg->getPointeeType(),
876                                      Info, Deduced,
877                                      TDF & TDF_IgnoreQualifiers))
878        return Result;
879
880      return DeduceTemplateArguments(S, TemplateParams,
881                                     QualType(MemPtrParam->getClass(), 0),
882                                     QualType(MemPtrArg->getClass(), 0),
883                                     Info, Deduced, 0);
884    }
885
886    //     (clang extension)
887    //
888    //     type(^)(T)
889    //     T(^)()
890    //     T(^)(T)
891    case Type::BlockPointer: {
892      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
893      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
894
895      if (!BlockPtrArg)
896        return Sema::TDK_NonDeducedMismatch;
897
898      return DeduceTemplateArguments(S, TemplateParams,
899                                     BlockPtrParam->getPointeeType(),
900                                     BlockPtrArg->getPointeeType(), Info,
901                                     Deduced, 0);
902    }
903
904    case Type::TypeOfExpr:
905    case Type::TypeOf:
906    case Type::DependentName:
907      // No template argument deduction for these types
908      return Sema::TDK_Success;
909
910    default:
911      break;
912  }
913
914  // FIXME: Many more cases to go (to go).
915  return Sema::TDK_Success;
916}
917
918static Sema::TemplateDeductionResult
919DeduceTemplateArguments(Sema &S,
920                        TemplateParameterList *TemplateParams,
921                        const TemplateArgument &Param,
922                        const TemplateArgument &Arg,
923                        TemplateDeductionInfo &Info,
924                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
925  switch (Param.getKind()) {
926  case TemplateArgument::Null:
927    assert(false && "Null template argument in parameter list");
928    break;
929
930  case TemplateArgument::Type:
931    if (Arg.getKind() == TemplateArgument::Type)
932      return DeduceTemplateArguments(S, TemplateParams, Param.getAsType(),
933                                     Arg.getAsType(), Info, Deduced, 0);
934    Info.FirstArg = Param;
935    Info.SecondArg = Arg;
936    return Sema::TDK_NonDeducedMismatch;
937
938  case TemplateArgument::Template:
939    if (Arg.getKind() == TemplateArgument::Template)
940      return DeduceTemplateArguments(S, TemplateParams,
941                                     Param.getAsTemplate(),
942                                     Arg.getAsTemplate(), Info, Deduced);
943    Info.FirstArg = Param;
944    Info.SecondArg = Arg;
945    return Sema::TDK_NonDeducedMismatch;
946
947  case TemplateArgument::Declaration:
948    if (Arg.getKind() == TemplateArgument::Declaration &&
949        Param.getAsDecl()->getCanonicalDecl() ==
950          Arg.getAsDecl()->getCanonicalDecl())
951      return Sema::TDK_Success;
952
953    Info.FirstArg = Param;
954    Info.SecondArg = Arg;
955    return Sema::TDK_NonDeducedMismatch;
956
957  case TemplateArgument::Integral:
958    if (Arg.getKind() == TemplateArgument::Integral) {
959      if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral()))
960        return Sema::TDK_Success;
961
962      Info.FirstArg = Param;
963      Info.SecondArg = Arg;
964      return Sema::TDK_NonDeducedMismatch;
965    }
966
967    if (Arg.getKind() == TemplateArgument::Expression) {
968      Info.FirstArg = Param;
969      Info.SecondArg = Arg;
970      return Sema::TDK_NonDeducedMismatch;
971    }
972
973    Info.FirstArg = Param;
974    Info.SecondArg = Arg;
975    return Sema::TDK_NonDeducedMismatch;
976
977  case TemplateArgument::Expression: {
978    if (NonTypeTemplateParmDecl *NTTP
979          = getDeducedParameterFromExpr(Param.getAsExpr())) {
980      if (Arg.getKind() == TemplateArgument::Integral)
981        return DeduceNonTypeTemplateArgument(S, NTTP,
982                                             *Arg.getAsIntegral(),
983                                             Arg.getIntegralType(),
984                                             /*ArrayBound=*/false,
985                                             Info, Deduced);
986      if (Arg.getKind() == TemplateArgument::Expression)
987        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
988                                             Info, Deduced);
989      if (Arg.getKind() == TemplateArgument::Declaration)
990        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
991                                             Info, Deduced);
992
993      Info.FirstArg = Param;
994      Info.SecondArg = Arg;
995      return Sema::TDK_NonDeducedMismatch;
996    }
997
998    // Can't deduce anything, but that's okay.
999    return Sema::TDK_Success;
1000  }
1001  case TemplateArgument::Pack:
1002    llvm_unreachable("Argument packs should be expanded by the caller!");
1003  }
1004
1005  return Sema::TDK_Success;
1006}
1007
1008/// \brief Determine whether there is a template argument to be used for
1009/// deduction.
1010///
1011/// This routine "expands" argument packs in-place, overriding its input
1012/// parameters so that \c Args[ArgIdx] will be the available template argument.
1013///
1014/// \returns true if there is another template argument (which will be at
1015/// \c Args[ArgIdx]), false otherwise.
1016static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
1017                                            unsigned &ArgIdx,
1018                                            unsigned &NumArgs) {
1019  if (ArgIdx == NumArgs)
1020    return false;
1021
1022  const TemplateArgument &Arg = Args[ArgIdx];
1023  if (Arg.getKind() != TemplateArgument::Pack)
1024    return true;
1025
1026  assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
1027  Args = Arg.pack_begin();
1028  NumArgs = Arg.pack_size();
1029  ArgIdx = 0;
1030  return ArgIdx < NumArgs;
1031}
1032
1033/// \brief Retrieve the depth and index of an unexpanded parameter pack.
1034static std::pair<unsigned, unsigned>
1035getDepthAndIndex(UnexpandedParameterPack UPP) {
1036  if (const TemplateTypeParmType *TTP
1037                          = UPP.first.dyn_cast<const TemplateTypeParmType *>())
1038    return std::make_pair(TTP->getDepth(), TTP->getIndex());
1039
1040  NamedDecl *ND = UPP.first.get<NamedDecl *>();
1041  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
1042    return std::make_pair(TTP->getDepth(), TTP->getIndex());
1043
1044  if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
1045    return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
1046
1047  TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
1048  return std::make_pair(TTP->getDepth(), TTP->getIndex());
1049}
1050
1051/// \brief Helper function to build a TemplateParameter when we don't
1052/// know its type statically.
1053static TemplateParameter makeTemplateParameter(Decl *D) {
1054  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
1055    return TemplateParameter(TTP);
1056  else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
1057    return TemplateParameter(NTTP);
1058
1059  return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
1060}
1061
1062/// \brief Determine whether the given set of template arguments has a pack
1063/// expansion that is not the last template argument.
1064static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
1065                                      unsigned NumArgs) {
1066  unsigned ArgIdx = 0;
1067  while (ArgIdx < NumArgs) {
1068    const TemplateArgument &Arg = Args[ArgIdx];
1069
1070    // Unwrap argument packs.
1071    if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
1072      Args = Arg.pack_begin();
1073      NumArgs = Arg.pack_size();
1074      ArgIdx = 0;
1075      continue;
1076    }
1077
1078    ++ArgIdx;
1079    if (ArgIdx == NumArgs)
1080      return false;
1081
1082    if (Arg.isPackExpansion())
1083      return true;
1084  }
1085
1086  return false;
1087}
1088
1089static Sema::TemplateDeductionResult
1090DeduceTemplateArguments(Sema &S,
1091                        TemplateParameterList *TemplateParams,
1092                        const TemplateArgument *Params, unsigned NumParams,
1093                        const TemplateArgument *Args, unsigned NumArgs,
1094                        TemplateDeductionInfo &Info,
1095                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1096                        bool NumberOfArgumentsMustMatch) {
1097  // C++0x [temp.deduct.type]p9:
1098  //   If the template argument list of P contains a pack expansion that is not
1099  //   the last template argument, the entire template argument list is a
1100  //   non-deduced context.
1101  if (hasPackExpansionBeforeEnd(Params, NumParams))
1102    return Sema::TDK_Success;
1103
1104  // C++0x [temp.deduct.type]p9:
1105  //   If P has a form that contains <T> or <i>, then each argument Pi of the
1106  //   respective template argument list P is compared with the corresponding
1107  //   argument Ai of the corresponding template argument list of A.
1108  unsigned ArgIdx = 0, ParamIdx = 0;
1109  for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
1110       ++ParamIdx) {
1111    // FIXME: Variadic templates.
1112    // What do we do if the argument is a pack expansion?
1113
1114    if (!Params[ParamIdx].isPackExpansion()) {
1115      // The simple case: deduce template arguments by matching Pi and Ai.
1116
1117      // Check whether we have enough arguments.
1118      if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1119        return NumberOfArgumentsMustMatch? Sema::TDK_TooFewArguments
1120                                         : Sema::TDK_Success;
1121
1122      // Perform deduction for this Pi/Ai pair.
1123      if (Sema::TemplateDeductionResult Result
1124          = DeduceTemplateArguments(S, TemplateParams,
1125                                    Params[ParamIdx], Args[ArgIdx],
1126                                    Info, Deduced))
1127        return Result;
1128
1129      // Move to the next argument.
1130      ++ArgIdx;
1131      continue;
1132    }
1133
1134    // The parameter is a pack expansion.
1135
1136    // C++0x [temp.deduct.type]p9:
1137    //   If Pi is a pack expansion, then the pattern of Pi is compared with
1138    //   each remaining argument in the template argument list of A. Each
1139    //   comparison deduces template arguments for subsequent positions in the
1140    //   template parameter packs expanded by Pi.
1141    TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
1142
1143    // Compute the set of template parameter indices that correspond to
1144    // parameter packs expanded by the pack expansion.
1145    llvm::SmallVector<unsigned, 2> PackIndices;
1146    {
1147      llvm::BitVector SawIndices(TemplateParams->size());
1148      llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded;
1149      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
1150      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
1151        unsigned Depth, Index;
1152        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
1153        if (Depth == 0 && !SawIndices[Index]) {
1154          SawIndices[Index] = true;
1155          PackIndices.push_back(Index);
1156        }
1157      }
1158    }
1159    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
1160
1161    // FIXME: If there are no remaining arguments, we can bail out early
1162    // and set any deduced parameter packs to an empty argument pack.
1163    // The latter part of this is a (minor) correctness issue.
1164
1165    // Save the deduced template arguments for each parameter pack expanded
1166    // by this pack expansion, then clear out the deduction.
1167    llvm::SmallVector<DeducedTemplateArgument, 2>
1168      SavedPacks(PackIndices.size());
1169    for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1170      SavedPacks[I] = Deduced[PackIndices[I]];
1171      Deduced[PackIndices[I]] = DeducedTemplateArgument();
1172    }
1173
1174    // Keep track of the deduced template arguments for each parameter pack
1175    // expanded by this pack expansion (the outer index) and for each
1176    // template argument (the inner SmallVectors).
1177    llvm::SmallVector<llvm::SmallVector<DeducedTemplateArgument, 4>, 2>
1178      NewlyDeducedPacks(PackIndices.size());
1179    bool HasAnyArguments = false;
1180    while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
1181      HasAnyArguments = true;
1182
1183      // Deduce template arguments from the pattern.
1184      if (Sema::TemplateDeductionResult Result
1185            = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
1186                                      Info, Deduced))
1187        return Result;
1188
1189      // Capture the deduced template arguments for each parameter pack expanded
1190      // by this pack expansion, add them to the list of arguments we've deduced
1191      // for that pack, then clear out the deduced argument.
1192      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1193        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
1194        if (!DeducedArg.isNull()) {
1195          NewlyDeducedPacks[I].push_back(DeducedArg);
1196          DeducedArg = DeducedTemplateArgument();
1197        }
1198      }
1199
1200      ++ArgIdx;
1201    }
1202
1203    // Build argument packs for each of the parameter packs expanded by this
1204    // pack expansion.
1205    for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1206      if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
1207        // We were not able to deduce anything for this parameter pack,
1208        // so just restore the saved argument pack.
1209        Deduced[PackIndices[I]] = SavedPacks[I];
1210        continue;
1211      }
1212
1213      DeducedTemplateArgument NewPack;
1214
1215      if (NewlyDeducedPacks[I].empty()) {
1216        // If we deduced an empty argument pack, create it now.
1217        NewPack = DeducedTemplateArgument(TemplateArgument(0, 0));
1218      } else {
1219        TemplateArgument *ArgumentPack
1220          = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
1221        std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
1222                  ArgumentPack);
1223        NewPack
1224          = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
1225                                                   NewlyDeducedPacks[I].size()),
1226                            NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
1227      }
1228
1229      DeducedTemplateArgument Result
1230        = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
1231      if (Result.isNull()) {
1232        Info.Param
1233          = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
1234        Info.FirstArg = SavedPacks[I];
1235        Info.SecondArg = NewPack;
1236        return Sema::TDK_Inconsistent;
1237      }
1238
1239      Deduced[PackIndices[I]] = Result;
1240    }
1241  }
1242
1243  // If there is an argument remaining, then we had too many arguments.
1244  if (NumberOfArgumentsMustMatch &&
1245      hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1246    return Sema::TDK_TooManyArguments;
1247
1248  return Sema::TDK_Success;
1249}
1250
1251static Sema::TemplateDeductionResult
1252DeduceTemplateArguments(Sema &S,
1253                        TemplateParameterList *TemplateParams,
1254                        const TemplateArgumentList &ParamList,
1255                        const TemplateArgumentList &ArgList,
1256                        TemplateDeductionInfo &Info,
1257                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1258  return DeduceTemplateArguments(S, TemplateParams,
1259                                 ParamList.data(), ParamList.size(),
1260                                 ArgList.data(), ArgList.size(),
1261                                 Info, Deduced);
1262}
1263
1264/// \brief Determine whether two template arguments are the same.
1265static bool isSameTemplateArg(ASTContext &Context,
1266                              const TemplateArgument &X,
1267                              const TemplateArgument &Y) {
1268  if (X.getKind() != Y.getKind())
1269    return false;
1270
1271  switch (X.getKind()) {
1272    case TemplateArgument::Null:
1273      assert(false && "Comparing NULL template argument");
1274      break;
1275
1276    case TemplateArgument::Type:
1277      return Context.getCanonicalType(X.getAsType()) ==
1278             Context.getCanonicalType(Y.getAsType());
1279
1280    case TemplateArgument::Declaration:
1281      return X.getAsDecl()->getCanonicalDecl() ==
1282             Y.getAsDecl()->getCanonicalDecl();
1283
1284    case TemplateArgument::Template:
1285      return Context.getCanonicalTemplateName(X.getAsTemplate())
1286               .getAsVoidPointer() ==
1287             Context.getCanonicalTemplateName(Y.getAsTemplate())
1288               .getAsVoidPointer();
1289
1290    case TemplateArgument::Integral:
1291      return *X.getAsIntegral() == *Y.getAsIntegral();
1292
1293    case TemplateArgument::Expression: {
1294      llvm::FoldingSetNodeID XID, YID;
1295      X.getAsExpr()->Profile(XID, Context, true);
1296      Y.getAsExpr()->Profile(YID, Context, true);
1297      return XID == YID;
1298    }
1299
1300    case TemplateArgument::Pack:
1301      if (X.pack_size() != Y.pack_size())
1302        return false;
1303
1304      for (TemplateArgument::pack_iterator XP = X.pack_begin(),
1305                                        XPEnd = X.pack_end(),
1306                                           YP = Y.pack_begin();
1307           XP != XPEnd; ++XP, ++YP)
1308        if (!isSameTemplateArg(Context, *XP, *YP))
1309          return false;
1310
1311      return true;
1312  }
1313
1314  return false;
1315}
1316
1317/// Complete template argument deduction for a class template partial
1318/// specialization.
1319static Sema::TemplateDeductionResult
1320FinishTemplateArgumentDeduction(Sema &S,
1321                                ClassTemplatePartialSpecializationDecl *Partial,
1322                                const TemplateArgumentList &TemplateArgs,
1323                      llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1324                                TemplateDeductionInfo &Info) {
1325  // Trap errors.
1326  Sema::SFINAETrap Trap(S);
1327
1328  Sema::ContextRAII SavedContext(S, Partial);
1329
1330  // C++ [temp.deduct.type]p2:
1331  //   [...] or if any template argument remains neither deduced nor
1332  //   explicitly specified, template argument deduction fails.
1333  // FIXME: Variadic templates Empty parameter packs?
1334  llvm::SmallVector<TemplateArgument, 4> Builder;
1335  for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
1336    if (Deduced[I].isNull()) {
1337      unsigned ParamIdx = I;
1338      if (ParamIdx >= Partial->getTemplateParameters()->size())
1339        ParamIdx = Partial->getTemplateParameters()->size() - 1;
1340      Decl *Param
1341        = const_cast<NamedDecl *>(
1342                          Partial->getTemplateParameters()->getParam(ParamIdx));
1343      Info.Param = makeTemplateParameter(Param);
1344      return Sema::TDK_Incomplete;
1345    }
1346
1347    Builder.push_back(Deduced[I]);
1348  }
1349
1350  // Form the template argument list from the deduced template arguments.
1351  TemplateArgumentList *DeducedArgumentList
1352    = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
1353                                       Builder.size());
1354
1355  Info.reset(DeducedArgumentList);
1356
1357  // Substitute the deduced template arguments into the template
1358  // arguments of the class template partial specialization, and
1359  // verify that the instantiated template arguments are both valid
1360  // and are equivalent to the template arguments originally provided
1361  // to the class template.
1362  // FIXME: Do we have to correct the types of deduced non-type template
1363  // arguments (in particular, integral non-type template arguments?).
1364  LocalInstantiationScope InstScope(S);
1365  ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
1366  const TemplateArgumentLoc *PartialTemplateArgs
1367    = Partial->getTemplateArgsAsWritten();
1368
1369  // Note that we don't provide the langle and rangle locations.
1370  TemplateArgumentListInfo InstArgs;
1371
1372  if (S.Subst(PartialTemplateArgs,
1373              Partial->getNumTemplateArgsAsWritten(),
1374              InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
1375    unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
1376    if (ParamIdx >= Partial->getTemplateParameters()->size())
1377      ParamIdx = Partial->getTemplateParameters()->size() - 1;
1378
1379    Decl *Param
1380      = const_cast<NamedDecl *>(
1381                          Partial->getTemplateParameters()->getParam(ParamIdx));
1382    Info.Param = makeTemplateParameter(Param);
1383    Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
1384    return Sema::TDK_SubstitutionFailure;
1385  }
1386
1387  llvm::SmallVector<TemplateArgument, 4> ConvertedInstArgs;
1388  if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
1389                                InstArgs, false, ConvertedInstArgs))
1390    return Sema::TDK_SubstitutionFailure;
1391
1392  for (unsigned I = 0, E = ConvertedInstArgs.size(); I != E; ++I) {
1393    TemplateArgument InstArg = ConvertedInstArgs.data()[I];
1394
1395    Decl *Param = const_cast<NamedDecl *>(
1396                    ClassTemplate->getTemplateParameters()->getParam(I));
1397
1398    if (InstArg.getKind() == TemplateArgument::Expression) {
1399      // When the argument is an expression, check the expression result
1400      // against the actual template parameter to get down to the canonical
1401      // template argument.
1402      // FIXME: Variadic templates.
1403      Expr *InstExpr = InstArg.getAsExpr();
1404      if (NonTypeTemplateParmDecl *NTTP
1405            = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1406        if (S.CheckTemplateArgument(NTTP, NTTP->getType(), InstExpr, InstArg)) {
1407          Info.Param = makeTemplateParameter(Param);
1408          Info.FirstArg = Partial->getTemplateArgs()[I];
1409          return Sema::TDK_SubstitutionFailure;
1410        }
1411      }
1412    }
1413
1414    if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
1415      Info.Param = makeTemplateParameter(Param);
1416      Info.FirstArg = TemplateArgs[I];
1417      Info.SecondArg = InstArg;
1418      return Sema::TDK_NonDeducedMismatch;
1419    }
1420  }
1421
1422  if (Trap.hasErrorOccurred())
1423    return Sema::TDK_SubstitutionFailure;
1424
1425  return Sema::TDK_Success;
1426}
1427
1428/// \brief Perform template argument deduction to determine whether
1429/// the given template arguments match the given class template
1430/// partial specialization per C++ [temp.class.spec.match].
1431Sema::TemplateDeductionResult
1432Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
1433                              const TemplateArgumentList &TemplateArgs,
1434                              TemplateDeductionInfo &Info) {
1435  // C++ [temp.class.spec.match]p2:
1436  //   A partial specialization matches a given actual template
1437  //   argument list if the template arguments of the partial
1438  //   specialization can be deduced from the actual template argument
1439  //   list (14.8.2).
1440  SFINAETrap Trap(*this);
1441  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1442  Deduced.resize(Partial->getTemplateParameters()->size());
1443  if (TemplateDeductionResult Result
1444        = ::DeduceTemplateArguments(*this,
1445                                    Partial->getTemplateParameters(),
1446                                    Partial->getTemplateArgs(),
1447                                    TemplateArgs, Info, Deduced))
1448    return Result;
1449
1450  InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
1451                             Deduced.data(), Deduced.size(), Info);
1452  if (Inst)
1453    return TDK_InstantiationDepth;
1454
1455  if (Trap.hasErrorOccurred())
1456    return Sema::TDK_SubstitutionFailure;
1457
1458  return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
1459                                           Deduced, Info);
1460}
1461
1462/// \brief Determine whether the given type T is a simple-template-id type.
1463static bool isSimpleTemplateIdType(QualType T) {
1464  if (const TemplateSpecializationType *Spec
1465        = T->getAs<TemplateSpecializationType>())
1466    return Spec->getTemplateName().getAsTemplateDecl() != 0;
1467
1468  return false;
1469}
1470
1471/// \brief Substitute the explicitly-provided template arguments into the
1472/// given function template according to C++ [temp.arg.explicit].
1473///
1474/// \param FunctionTemplate the function template into which the explicit
1475/// template arguments will be substituted.
1476///
1477/// \param ExplicitTemplateArguments the explicitly-specified template
1478/// arguments.
1479///
1480/// \param Deduced the deduced template arguments, which will be populated
1481/// with the converted and checked explicit template arguments.
1482///
1483/// \param ParamTypes will be populated with the instantiated function
1484/// parameters.
1485///
1486/// \param FunctionType if non-NULL, the result type of the function template
1487/// will also be instantiated and the pointed-to value will be updated with
1488/// the instantiated function type.
1489///
1490/// \param Info if substitution fails for any reason, this object will be
1491/// populated with more information about the failure.
1492///
1493/// \returns TDK_Success if substitution was successful, or some failure
1494/// condition.
1495Sema::TemplateDeductionResult
1496Sema::SubstituteExplicitTemplateArguments(
1497                                      FunctionTemplateDecl *FunctionTemplate,
1498                        const TemplateArgumentListInfo &ExplicitTemplateArgs,
1499                       llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1500                                 llvm::SmallVectorImpl<QualType> &ParamTypes,
1501                                          QualType *FunctionType,
1502                                          TemplateDeductionInfo &Info) {
1503  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1504  TemplateParameterList *TemplateParams
1505    = FunctionTemplate->getTemplateParameters();
1506
1507  if (ExplicitTemplateArgs.size() == 0) {
1508    // No arguments to substitute; just copy over the parameter types and
1509    // fill in the function type.
1510    for (FunctionDecl::param_iterator P = Function->param_begin(),
1511                                   PEnd = Function->param_end();
1512         P != PEnd;
1513         ++P)
1514      ParamTypes.push_back((*P)->getType());
1515
1516    if (FunctionType)
1517      *FunctionType = Function->getType();
1518    return TDK_Success;
1519  }
1520
1521  // Substitution of the explicit template arguments into a function template
1522  /// is a SFINAE context. Trap any errors that might occur.
1523  SFINAETrap Trap(*this);
1524
1525  // C++ [temp.arg.explicit]p3:
1526  //   Template arguments that are present shall be specified in the
1527  //   declaration order of their corresponding template-parameters. The
1528  //   template argument list shall not specify more template-arguments than
1529  //   there are corresponding template-parameters.
1530  llvm::SmallVector<TemplateArgument, 4> Builder;
1531
1532  // Enter a new template instantiation context where we check the
1533  // explicitly-specified template arguments against this function template,
1534  // and then substitute them into the function parameter types.
1535  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1536                             FunctionTemplate, Deduced.data(), Deduced.size(),
1537           ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
1538                             Info);
1539  if (Inst)
1540    return TDK_InstantiationDepth;
1541
1542  if (CheckTemplateArgumentList(FunctionTemplate,
1543                                SourceLocation(),
1544                                ExplicitTemplateArgs,
1545                                true,
1546                                Builder) || Trap.hasErrorOccurred()) {
1547    unsigned Index = Builder.size();
1548    if (Index >= TemplateParams->size())
1549      Index = TemplateParams->size() - 1;
1550    Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
1551    return TDK_InvalidExplicitArguments;
1552  }
1553
1554  // Form the template argument list from the explicitly-specified
1555  // template arguments.
1556  TemplateArgumentList *ExplicitArgumentList
1557    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
1558  Info.reset(ExplicitArgumentList);
1559
1560  // Template argument deduction and the final substitution should be
1561  // done in the context of the templated declaration.  Explicit
1562  // argument substitution, on the other hand, needs to happen in the
1563  // calling context.
1564  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
1565
1566  // Instantiate the types of each of the function parameters given the
1567  // explicitly-specified template arguments.
1568  for (FunctionDecl::param_iterator P = Function->param_begin(),
1569                                PEnd = Function->param_end();
1570       P != PEnd;
1571       ++P) {
1572    QualType ParamType
1573      = SubstType((*P)->getType(),
1574                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
1575                  (*P)->getLocation(), (*P)->getDeclName());
1576    if (ParamType.isNull() || Trap.hasErrorOccurred())
1577      return TDK_SubstitutionFailure;
1578
1579    ParamTypes.push_back(ParamType);
1580  }
1581
1582  // If the caller wants a full function type back, instantiate the return
1583  // type and form that function type.
1584  if (FunctionType) {
1585    // FIXME: exception-specifications?
1586    const FunctionProtoType *Proto
1587      = Function->getType()->getAs<FunctionProtoType>();
1588    assert(Proto && "Function template does not have a prototype?");
1589
1590    QualType ResultType
1591      = SubstType(Proto->getResultType(),
1592                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
1593                  Function->getTypeSpecStartLoc(),
1594                  Function->getDeclName());
1595    if (ResultType.isNull() || Trap.hasErrorOccurred())
1596      return TDK_SubstitutionFailure;
1597
1598    *FunctionType = BuildFunctionType(ResultType,
1599                                      ParamTypes.data(), ParamTypes.size(),
1600                                      Proto->isVariadic(),
1601                                      Proto->getTypeQuals(),
1602                                      Function->getLocation(),
1603                                      Function->getDeclName(),
1604                                      Proto->getExtInfo());
1605    if (FunctionType->isNull() || Trap.hasErrorOccurred())
1606      return TDK_SubstitutionFailure;
1607  }
1608
1609  // C++ [temp.arg.explicit]p2:
1610  //   Trailing template arguments that can be deduced (14.8.2) may be
1611  //   omitted from the list of explicit template-arguments. If all of the
1612  //   template arguments can be deduced, they may all be omitted; in this
1613  //   case, the empty template argument list <> itself may also be omitted.
1614  //
1615  // Take all of the explicitly-specified arguments and put them into the
1616  // set of deduced template arguments.
1617  //
1618  // FIXME: Variadic templates?
1619  Deduced.reserve(TemplateParams->size());
1620  for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I)
1621    Deduced.push_back(ExplicitArgumentList->get(I));
1622
1623  return TDK_Success;
1624}
1625
1626/// \brief Allocate a TemplateArgumentLoc where all locations have
1627/// been initialized to the given location.
1628///
1629/// \param S The semantic analysis object.
1630///
1631/// \param The template argument we are producing template argument
1632/// location information for.
1633///
1634/// \param NTTPType For a declaration template argument, the type of
1635/// the non-type template parameter that corresponds to this template
1636/// argument.
1637///
1638/// \param Loc The source location to use for the resulting template
1639/// argument.
1640static TemplateArgumentLoc
1641getTrivialTemplateArgumentLoc(Sema &S,
1642                              const TemplateArgument &Arg,
1643                              QualType NTTPType,
1644                              SourceLocation Loc) {
1645  switch (Arg.getKind()) {
1646  case TemplateArgument::Null:
1647    llvm_unreachable("Can't get a NULL template argument here");
1648    break;
1649
1650  case TemplateArgument::Type:
1651    return TemplateArgumentLoc(Arg,
1652                    S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
1653
1654  case TemplateArgument::Declaration: {
1655    Expr *E
1656      = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
1657                                                              .takeAs<Expr>();
1658    return TemplateArgumentLoc(TemplateArgument(E), E);
1659  }
1660
1661  case TemplateArgument::Integral: {
1662    Expr *E
1663      = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
1664    return TemplateArgumentLoc(TemplateArgument(E), E);
1665  }
1666
1667  case TemplateArgument::Template:
1668    return TemplateArgumentLoc(Arg, SourceRange(), Loc);
1669
1670  case TemplateArgument::Expression:
1671    return TemplateArgumentLoc(Arg, Arg.getAsExpr());
1672
1673  case TemplateArgument::Pack:
1674    return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
1675  }
1676
1677  return TemplateArgumentLoc();
1678}
1679
1680/// \brief Finish template argument deduction for a function template,
1681/// checking the deduced template arguments for completeness and forming
1682/// the function template specialization.
1683Sema::TemplateDeductionResult
1684Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
1685                       llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1686                                      unsigned NumExplicitlySpecified,
1687                                      FunctionDecl *&Specialization,
1688                                      TemplateDeductionInfo &Info) {
1689  TemplateParameterList *TemplateParams
1690    = FunctionTemplate->getTemplateParameters();
1691
1692  // Template argument deduction for function templates in a SFINAE context.
1693  // Trap any errors that might occur.
1694  SFINAETrap Trap(*this);
1695
1696  // Enter a new template instantiation context while we instantiate the
1697  // actual function declaration.
1698  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1699                             FunctionTemplate, Deduced.data(), Deduced.size(),
1700              ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
1701                             Info);
1702  if (Inst)
1703    return TDK_InstantiationDepth;
1704
1705  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
1706
1707  // C++ [temp.deduct.type]p2:
1708  //   [...] or if any template argument remains neither deduced nor
1709  //   explicitly specified, template argument deduction fails.
1710  llvm::SmallVector<TemplateArgument, 4> Builder;
1711  for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
1712    // FIXME: Variadic templates. Unwrap argument packs?
1713    NamedDecl *Param = FunctionTemplate->getTemplateParameters()->getParam(I);
1714
1715    if (!Deduced[I].isNull()) {
1716      if (I < NumExplicitlySpecified) {
1717        // We have already fully type-checked and converted this
1718        // argument, because it was explicitly-specified. Just record the
1719        // presence of this argument.
1720        Builder.push_back(Deduced[I]);
1721        continue;
1722      }
1723
1724      // We have deduced this argument, so it still needs to be
1725      // checked and converted.
1726
1727      // First, for a non-type template parameter type that is
1728      // initialized by a declaration, we need the type of the
1729      // corresponding non-type template parameter.
1730      QualType NTTPType;
1731      if (NonTypeTemplateParmDecl *NTTP
1732                                = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1733        if (Deduced[I].getKind() == TemplateArgument::Declaration) {
1734          NTTPType = NTTP->getType();
1735          if (NTTPType->isDependentType()) {
1736            TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1737                                              Builder.data(), Builder.size());
1738            NTTPType = SubstType(NTTPType,
1739                                 MultiLevelTemplateArgumentList(TemplateArgs),
1740                                 NTTP->getLocation(),
1741                                 NTTP->getDeclName());
1742            if (NTTPType.isNull()) {
1743              Info.Param = makeTemplateParameter(Param);
1744              // FIXME: These template arguments are temporary. Free them!
1745              Info.reset(TemplateArgumentList::CreateCopy(Context,
1746                                                          Builder.data(),
1747                                                          Builder.size()));
1748              return TDK_SubstitutionFailure;
1749            }
1750          }
1751        }
1752      }
1753
1754      // Convert the deduced template argument into a template
1755      // argument that we can check, almost as if the user had written
1756      // the template argument explicitly.
1757      TemplateArgumentLoc Arg = getTrivialTemplateArgumentLoc(*this,
1758                                                              Deduced[I],
1759                                                              NTTPType,
1760                                                            Info.getLocation());
1761
1762      // Check the template argument, converting it as necessary.
1763      if (CheckTemplateArgument(Param, Arg,
1764                                FunctionTemplate,
1765                                FunctionTemplate->getLocation(),
1766                                FunctionTemplate->getSourceRange().getEnd(),
1767                                Builder,
1768                                Deduced[I].wasDeducedFromArrayBound()
1769                                  ? CTAK_DeducedFromArrayBound
1770                                  : CTAK_Deduced)) {
1771        Info.Param = makeTemplateParameter(
1772                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1773        // FIXME: These template arguments are temporary. Free them!
1774        Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
1775                                                    Builder.size()));
1776        return TDK_SubstitutionFailure;
1777      }
1778
1779      continue;
1780    }
1781
1782    // C++0x [temp.arg.explicit]p3:
1783    //    A trailing template parameter pack (14.5.3) not otherwise deduced will
1784    //    be deduced to an empty sequence of template arguments.
1785    // FIXME: Where did the word "trailing" come from?
1786    if (Param->isTemplateParameterPack()) {
1787      Builder.push_back(TemplateArgument(0, 0));
1788      continue;
1789    }
1790
1791    // Substitute into the default template argument, if available.
1792    TemplateArgumentLoc DefArg
1793      = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
1794                                              FunctionTemplate->getLocation(),
1795                                  FunctionTemplate->getSourceRange().getEnd(),
1796                                                Param,
1797                                                Builder);
1798
1799    // If there was no default argument, deduction is incomplete.
1800    if (DefArg.getArgument().isNull()) {
1801      Info.Param = makeTemplateParameter(
1802                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1803      return TDK_Incomplete;
1804    }
1805
1806    // Check whether we can actually use the default argument.
1807    if (CheckTemplateArgument(Param, DefArg,
1808                              FunctionTemplate,
1809                              FunctionTemplate->getLocation(),
1810                              FunctionTemplate->getSourceRange().getEnd(),
1811                              Builder,
1812                              CTAK_Deduced)) {
1813      Info.Param = makeTemplateParameter(
1814                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1815      // FIXME: These template arguments are temporary. Free them!
1816      Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
1817                                                  Builder.size()));
1818      return TDK_SubstitutionFailure;
1819    }
1820
1821    // If we get here, we successfully used the default template argument.
1822  }
1823
1824  // Form the template argument list from the deduced template arguments.
1825  TemplateArgumentList *DeducedArgumentList
1826    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
1827  Info.reset(DeducedArgumentList);
1828
1829  // Substitute the deduced template arguments into the function template
1830  // declaration to produce the function template specialization.
1831  DeclContext *Owner = FunctionTemplate->getDeclContext();
1832  if (FunctionTemplate->getFriendObjectKind())
1833    Owner = FunctionTemplate->getLexicalDeclContext();
1834  Specialization = cast_or_null<FunctionDecl>(
1835                      SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
1836                         MultiLevelTemplateArgumentList(*DeducedArgumentList)));
1837  if (!Specialization)
1838    return TDK_SubstitutionFailure;
1839
1840  assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
1841         FunctionTemplate->getCanonicalDecl());
1842
1843  // If the template argument list is owned by the function template
1844  // specialization, release it.
1845  if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
1846      !Trap.hasErrorOccurred())
1847    Info.take();
1848
1849  // There may have been an error that did not prevent us from constructing a
1850  // declaration. Mark the declaration invalid and return with a substitution
1851  // failure.
1852  if (Trap.hasErrorOccurred()) {
1853    Specialization->setInvalidDecl(true);
1854    return TDK_SubstitutionFailure;
1855  }
1856
1857  // If we suppressed any diagnostics while performing template argument
1858  // deduction, and if we haven't already instantiated this declaration,
1859  // keep track of these diagnostics. They'll be emitted if this specialization
1860  // is actually used.
1861  if (Info.diag_begin() != Info.diag_end()) {
1862    llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator
1863      Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
1864    if (Pos == SuppressedDiagnostics.end())
1865        SuppressedDiagnostics[Specialization->getCanonicalDecl()]
1866          .append(Info.diag_begin(), Info.diag_end());
1867  }
1868
1869  return TDK_Success;
1870}
1871
1872/// Gets the type of a function for template-argument-deducton
1873/// purposes when it's considered as part of an overload set.
1874static QualType GetTypeOfFunction(ASTContext &Context,
1875                                  const OverloadExpr::FindResult &R,
1876                                  FunctionDecl *Fn) {
1877  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
1878    if (Method->isInstance()) {
1879      // An instance method that's referenced in a form that doesn't
1880      // look like a member pointer is just invalid.
1881      if (!R.HasFormOfMemberPointer) return QualType();
1882
1883      return Context.getMemberPointerType(Fn->getType(),
1884               Context.getTypeDeclType(Method->getParent()).getTypePtr());
1885    }
1886
1887  if (!R.IsAddressOfOperand) return Fn->getType();
1888  return Context.getPointerType(Fn->getType());
1889}
1890
1891/// Apply the deduction rules for overload sets.
1892///
1893/// \return the null type if this argument should be treated as an
1894/// undeduced context
1895static QualType
1896ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
1897                            Expr *Arg, QualType ParamType,
1898                            bool ParamWasReference) {
1899
1900  OverloadExpr::FindResult R = OverloadExpr::find(Arg);
1901
1902  OverloadExpr *Ovl = R.Expression;
1903
1904  // C++0x [temp.deduct.call]p4
1905  unsigned TDF = 0;
1906  if (ParamWasReference)
1907    TDF |= TDF_ParamWithReferenceType;
1908  if (R.IsAddressOfOperand)
1909    TDF |= TDF_IgnoreQualifiers;
1910
1911  // If there were explicit template arguments, we can only find
1912  // something via C++ [temp.arg.explicit]p3, i.e. if the arguments
1913  // unambiguously name a full specialization.
1914  if (Ovl->hasExplicitTemplateArgs()) {
1915    // But we can still look for an explicit specialization.
1916    if (FunctionDecl *ExplicitSpec
1917          = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
1918      return GetTypeOfFunction(S.Context, R, ExplicitSpec);
1919    return QualType();
1920  }
1921
1922  // C++0x [temp.deduct.call]p6:
1923  //   When P is a function type, pointer to function type, or pointer
1924  //   to member function type:
1925
1926  if (!ParamType->isFunctionType() &&
1927      !ParamType->isFunctionPointerType() &&
1928      !ParamType->isMemberFunctionPointerType())
1929    return QualType();
1930
1931  QualType Match;
1932  for (UnresolvedSetIterator I = Ovl->decls_begin(),
1933         E = Ovl->decls_end(); I != E; ++I) {
1934    NamedDecl *D = (*I)->getUnderlyingDecl();
1935
1936    //   - If the argument is an overload set containing one or more
1937    //     function templates, the parameter is treated as a
1938    //     non-deduced context.
1939    if (isa<FunctionTemplateDecl>(D))
1940      return QualType();
1941
1942    FunctionDecl *Fn = cast<FunctionDecl>(D);
1943    QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
1944    if (ArgType.isNull()) continue;
1945
1946    // Function-to-pointer conversion.
1947    if (!ParamWasReference && ParamType->isPointerType() &&
1948        ArgType->isFunctionType())
1949      ArgType = S.Context.getPointerType(ArgType);
1950
1951    //   - If the argument is an overload set (not containing function
1952    //     templates), trial argument deduction is attempted using each
1953    //     of the members of the set. If deduction succeeds for only one
1954    //     of the overload set members, that member is used as the
1955    //     argument value for the deduction. If deduction succeeds for
1956    //     more than one member of the overload set the parameter is
1957    //     treated as a non-deduced context.
1958
1959    // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
1960    //   Type deduction is done independently for each P/A pair, and
1961    //   the deduced template argument values are then combined.
1962    // So we do not reject deductions which were made elsewhere.
1963    llvm::SmallVector<DeducedTemplateArgument, 8>
1964      Deduced(TemplateParams->size());
1965    TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
1966    Sema::TemplateDeductionResult Result
1967      = DeduceTemplateArguments(S, TemplateParams,
1968                                ParamType, ArgType,
1969                                Info, Deduced, TDF);
1970    if (Result) continue;
1971    if (!Match.isNull()) return QualType();
1972    Match = ArgType;
1973  }
1974
1975  return Match;
1976}
1977
1978/// \brief Perform template argument deduction from a function call
1979/// (C++ [temp.deduct.call]).
1980///
1981/// \param FunctionTemplate the function template for which we are performing
1982/// template argument deduction.
1983///
1984/// \param ExplicitTemplateArguments the explicit template arguments provided
1985/// for this call.
1986///
1987/// \param Args the function call arguments
1988///
1989/// \param NumArgs the number of arguments in Args
1990///
1991/// \param Name the name of the function being called. This is only significant
1992/// when the function template is a conversion function template, in which
1993/// case this routine will also perform template argument deduction based on
1994/// the function to which
1995///
1996/// \param Specialization if template argument deduction was successful,
1997/// this will be set to the function template specialization produced by
1998/// template argument deduction.
1999///
2000/// \param Info the argument will be updated to provide additional information
2001/// about template argument deduction.
2002///
2003/// \returns the result of template argument deduction.
2004Sema::TemplateDeductionResult
2005Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2006                          const TemplateArgumentListInfo *ExplicitTemplateArgs,
2007                              Expr **Args, unsigned NumArgs,
2008                              FunctionDecl *&Specialization,
2009                              TemplateDeductionInfo &Info) {
2010  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2011
2012  // C++ [temp.deduct.call]p1:
2013  //   Template argument deduction is done by comparing each function template
2014  //   parameter type (call it P) with the type of the corresponding argument
2015  //   of the call (call it A) as described below.
2016  unsigned CheckArgs = NumArgs;
2017  if (NumArgs < Function->getMinRequiredArguments())
2018    return TDK_TooFewArguments;
2019  else if (NumArgs > Function->getNumParams()) {
2020    const FunctionProtoType *Proto
2021      = Function->getType()->getAs<FunctionProtoType>();
2022    if (!Proto->isVariadic())
2023      return TDK_TooManyArguments;
2024
2025    CheckArgs = Function->getNumParams();
2026  }
2027
2028  // The types of the parameters from which we will perform template argument
2029  // deduction.
2030  LocalInstantiationScope InstScope(*this);
2031  TemplateParameterList *TemplateParams
2032    = FunctionTemplate->getTemplateParameters();
2033  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2034  llvm::SmallVector<QualType, 4> ParamTypes;
2035  unsigned NumExplicitlySpecified = 0;
2036  if (ExplicitTemplateArgs) {
2037    TemplateDeductionResult Result =
2038      SubstituteExplicitTemplateArguments(FunctionTemplate,
2039                                          *ExplicitTemplateArgs,
2040                                          Deduced,
2041                                          ParamTypes,
2042                                          0,
2043                                          Info);
2044    if (Result)
2045      return Result;
2046
2047    NumExplicitlySpecified = Deduced.size();
2048  } else {
2049    // Just fill in the parameter types from the function declaration.
2050    for (unsigned I = 0; I != CheckArgs; ++I)
2051      ParamTypes.push_back(Function->getParamDecl(I)->getType());
2052  }
2053
2054  // Deduce template arguments from the function parameters.
2055  Deduced.resize(TemplateParams->size());
2056  for (unsigned I = 0; I != CheckArgs; ++I) {
2057    QualType ParamType = ParamTypes[I];
2058    QualType ArgType = Args[I]->getType();
2059
2060    // C++0x [temp.deduct.call]p3:
2061    //   If P is a cv-qualified type, the top level cv-qualifiers of P’s type
2062    //   are ignored for type deduction.
2063    if (ParamType.getCVRQualifiers())
2064      ParamType = ParamType.getLocalUnqualifiedType();
2065    const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
2066    if (ParamRefType) {
2067      //   [...] If P is a reference type, the type referred to by P is used
2068      //   for type deduction.
2069      ParamType = ParamRefType->getPointeeType();
2070    }
2071
2072    // Overload sets usually make this parameter an undeduced
2073    // context, but there are sometimes special circumstances.
2074    if (ArgType == Context.OverloadTy) {
2075      ArgType = ResolveOverloadForDeduction(*this, TemplateParams,
2076                                            Args[I], ParamType,
2077                                            ParamRefType != 0);
2078      if (ArgType.isNull())
2079        continue;
2080    }
2081
2082    if (ParamRefType) {
2083      // C++0x [temp.deduct.call]p3:
2084      //   [...] If P is of the form T&&, where T is a template parameter, and
2085      //   the argument is an lvalue, the type A& is used in place of A for
2086      //   type deduction.
2087      if (ParamRefType->isRValueReferenceType() &&
2088          ParamRefType->getAs<TemplateTypeParmType>() &&
2089          Args[I]->isLValue())
2090        ArgType = Context.getLValueReferenceType(ArgType);
2091    } else {
2092      // C++ [temp.deduct.call]p2:
2093      //   If P is not a reference type:
2094      //   - If A is an array type, the pointer type produced by the
2095      //     array-to-pointer standard conversion (4.2) is used in place of
2096      //     A for type deduction; otherwise,
2097      if (ArgType->isArrayType())
2098        ArgType = Context.getArrayDecayedType(ArgType);
2099      //   - If A is a function type, the pointer type produced by the
2100      //     function-to-pointer standard conversion (4.3) is used in place
2101      //     of A for type deduction; otherwise,
2102      else if (ArgType->isFunctionType())
2103        ArgType = Context.getPointerType(ArgType);
2104      else {
2105        // - If A is a cv-qualified type, the top level cv-qualifiers of A’s
2106        //   type are ignored for type deduction.
2107        QualType CanonArgType = Context.getCanonicalType(ArgType);
2108        if (ArgType.getCVRQualifiers())
2109          ArgType = ArgType.getUnqualifiedType();
2110      }
2111    }
2112
2113    // C++0x [temp.deduct.call]p4:
2114    //   In general, the deduction process attempts to find template argument
2115    //   values that will make the deduced A identical to A (after the type A
2116    //   is transformed as described above). [...]
2117    unsigned TDF = TDF_SkipNonDependent;
2118
2119    //     - If the original P is a reference type, the deduced A (i.e., the
2120    //       type referred to by the reference) can be more cv-qualified than
2121    //       the transformed A.
2122    if (ParamRefType)
2123      TDF |= TDF_ParamWithReferenceType;
2124    //     - The transformed A can be another pointer or pointer to member
2125    //       type that can be converted to the deduced A via a qualification
2126    //       conversion (4.4).
2127    if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
2128        ArgType->isObjCObjectPointerType())
2129      TDF |= TDF_IgnoreQualifiers;
2130    //     - If P is a class and P has the form simple-template-id, then the
2131    //       transformed A can be a derived class of the deduced A. Likewise,
2132    //       if P is a pointer to a class of the form simple-template-id, the
2133    //       transformed A can be a pointer to a derived class pointed to by
2134    //       the deduced A.
2135    if (isSimpleTemplateIdType(ParamType) ||
2136        (isa<PointerType>(ParamType) &&
2137         isSimpleTemplateIdType(
2138                              ParamType->getAs<PointerType>()->getPointeeType())))
2139      TDF |= TDF_DerivedClass;
2140
2141    if (TemplateDeductionResult Result
2142        = ::DeduceTemplateArguments(*this, TemplateParams,
2143                                    ParamType, ArgType, Info, Deduced,
2144                                    TDF))
2145      return Result;
2146
2147    // FIXME: we need to check that the deduced A is the same as A,
2148    // modulo the various allowed differences.
2149  }
2150
2151  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
2152                                         NumExplicitlySpecified,
2153                                         Specialization, Info);
2154}
2155
2156/// \brief Deduce template arguments when taking the address of a function
2157/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
2158/// a template.
2159///
2160/// \param FunctionTemplate the function template for which we are performing
2161/// template argument deduction.
2162///
2163/// \param ExplicitTemplateArguments the explicitly-specified template
2164/// arguments.
2165///
2166/// \param ArgFunctionType the function type that will be used as the
2167/// "argument" type (A) when performing template argument deduction from the
2168/// function template's function type. This type may be NULL, if there is no
2169/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
2170///
2171/// \param Specialization if template argument deduction was successful,
2172/// this will be set to the function template specialization produced by
2173/// template argument deduction.
2174///
2175/// \param Info the argument will be updated to provide additional information
2176/// about template argument deduction.
2177///
2178/// \returns the result of template argument deduction.
2179Sema::TemplateDeductionResult
2180Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2181                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2182                              QualType ArgFunctionType,
2183                              FunctionDecl *&Specialization,
2184                              TemplateDeductionInfo &Info) {
2185  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2186  TemplateParameterList *TemplateParams
2187    = FunctionTemplate->getTemplateParameters();
2188  QualType FunctionType = Function->getType();
2189
2190  // Substitute any explicit template arguments.
2191  LocalInstantiationScope InstScope(*this);
2192  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2193  unsigned NumExplicitlySpecified = 0;
2194  llvm::SmallVector<QualType, 4> ParamTypes;
2195  if (ExplicitTemplateArgs) {
2196    if (TemplateDeductionResult Result
2197          = SubstituteExplicitTemplateArguments(FunctionTemplate,
2198                                                *ExplicitTemplateArgs,
2199                                                Deduced, ParamTypes,
2200                                                &FunctionType, Info))
2201      return Result;
2202
2203    NumExplicitlySpecified = Deduced.size();
2204  }
2205
2206  // Template argument deduction for function templates in a SFINAE context.
2207  // Trap any errors that might occur.
2208  SFINAETrap Trap(*this);
2209
2210  Deduced.resize(TemplateParams->size());
2211
2212  if (!ArgFunctionType.isNull()) {
2213    // Deduce template arguments from the function type.
2214    if (TemplateDeductionResult Result
2215          = ::DeduceTemplateArguments(*this, TemplateParams,
2216                                      FunctionType, ArgFunctionType, Info,
2217                                      Deduced, 0))
2218      return Result;
2219  }
2220
2221  if (TemplateDeductionResult Result
2222        = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
2223                                          NumExplicitlySpecified,
2224                                          Specialization, Info))
2225    return Result;
2226
2227  // If the requested function type does not match the actual type of the
2228  // specialization, template argument deduction fails.
2229  if (!ArgFunctionType.isNull() &&
2230      !Context.hasSameType(ArgFunctionType, Specialization->getType()))
2231    return TDK_NonDeducedMismatch;
2232
2233  return TDK_Success;
2234}
2235
2236/// \brief Deduce template arguments for a templated conversion
2237/// function (C++ [temp.deduct.conv]) and, if successful, produce a
2238/// conversion function template specialization.
2239Sema::TemplateDeductionResult
2240Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2241                              QualType ToType,
2242                              CXXConversionDecl *&Specialization,
2243                              TemplateDeductionInfo &Info) {
2244  CXXConversionDecl *Conv
2245    = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
2246  QualType FromType = Conv->getConversionType();
2247
2248  // Canonicalize the types for deduction.
2249  QualType P = Context.getCanonicalType(FromType);
2250  QualType A = Context.getCanonicalType(ToType);
2251
2252  // C++0x [temp.deduct.conv]p3:
2253  //   If P is a reference type, the type referred to by P is used for
2254  //   type deduction.
2255  if (const ReferenceType *PRef = P->getAs<ReferenceType>())
2256    P = PRef->getPointeeType();
2257
2258  // C++0x [temp.deduct.conv]p3:
2259  //   If A is a reference type, the type referred to by A is used
2260  //   for type deduction.
2261  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
2262    A = ARef->getPointeeType();
2263  // C++ [temp.deduct.conv]p2:
2264  //
2265  //   If A is not a reference type:
2266  else {
2267    assert(!A->isReferenceType() && "Reference types were handled above");
2268
2269    //   - If P is an array type, the pointer type produced by the
2270    //     array-to-pointer standard conversion (4.2) is used in place
2271    //     of P for type deduction; otherwise,
2272    if (P->isArrayType())
2273      P = Context.getArrayDecayedType(P);
2274    //   - If P is a function type, the pointer type produced by the
2275    //     function-to-pointer standard conversion (4.3) is used in
2276    //     place of P for type deduction; otherwise,
2277    else if (P->isFunctionType())
2278      P = Context.getPointerType(P);
2279    //   - If P is a cv-qualified type, the top level cv-qualifiers of
2280    //     P’s type are ignored for type deduction.
2281    else
2282      P = P.getUnqualifiedType();
2283
2284    // C++0x [temp.deduct.conv]p3:
2285    //   If A is a cv-qualified type, the top level cv-qualifiers of A’s
2286    //   type are ignored for type deduction.
2287    A = A.getUnqualifiedType();
2288  }
2289
2290  // Template argument deduction for function templates in a SFINAE context.
2291  // Trap any errors that might occur.
2292  SFINAETrap Trap(*this);
2293
2294  // C++ [temp.deduct.conv]p1:
2295  //   Template argument deduction is done by comparing the return
2296  //   type of the template conversion function (call it P) with the
2297  //   type that is required as the result of the conversion (call it
2298  //   A) as described in 14.8.2.4.
2299  TemplateParameterList *TemplateParams
2300    = FunctionTemplate->getTemplateParameters();
2301  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2302  Deduced.resize(TemplateParams->size());
2303
2304  // C++0x [temp.deduct.conv]p4:
2305  //   In general, the deduction process attempts to find template
2306  //   argument values that will make the deduced A identical to
2307  //   A. However, there are two cases that allow a difference:
2308  unsigned TDF = 0;
2309  //     - If the original A is a reference type, A can be more
2310  //       cv-qualified than the deduced A (i.e., the type referred to
2311  //       by the reference)
2312  if (ToType->isReferenceType())
2313    TDF |= TDF_ParamWithReferenceType;
2314  //     - The deduced A can be another pointer or pointer to member
2315  //       type that can be converted to A via a qualification
2316  //       conversion.
2317  //
2318  // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
2319  // both P and A are pointers or member pointers. In this case, we
2320  // just ignore cv-qualifiers completely).
2321  if ((P->isPointerType() && A->isPointerType()) ||
2322      (P->isMemberPointerType() && P->isMemberPointerType()))
2323    TDF |= TDF_IgnoreQualifiers;
2324  if (TemplateDeductionResult Result
2325        = ::DeduceTemplateArguments(*this, TemplateParams,
2326                                    P, A, Info, Deduced, TDF))
2327    return Result;
2328
2329  // FIXME: we need to check that the deduced A is the same as A,
2330  // modulo the various allowed differences.
2331
2332  // Finish template argument deduction.
2333  LocalInstantiationScope InstScope(*this);
2334  FunctionDecl *Spec = 0;
2335  TemplateDeductionResult Result
2336    = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
2337                                      Info);
2338  Specialization = cast_or_null<CXXConversionDecl>(Spec);
2339  return Result;
2340}
2341
2342/// \brief Deduce template arguments for a function template when there is
2343/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
2344///
2345/// \param FunctionTemplate the function template for which we are performing
2346/// template argument deduction.
2347///
2348/// \param ExplicitTemplateArguments the explicitly-specified template
2349/// arguments.
2350///
2351/// \param Specialization if template argument deduction was successful,
2352/// this will be set to the function template specialization produced by
2353/// template argument deduction.
2354///
2355/// \param Info the argument will be updated to provide additional information
2356/// about template argument deduction.
2357///
2358/// \returns the result of template argument deduction.
2359Sema::TemplateDeductionResult
2360Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2361                           const TemplateArgumentListInfo *ExplicitTemplateArgs,
2362                              FunctionDecl *&Specialization,
2363                              TemplateDeductionInfo &Info) {
2364  return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
2365                                 QualType(), Specialization, Info);
2366}
2367
2368/// \brief Stores the result of comparing the qualifiers of two types.
2369enum DeductionQualifierComparison {
2370  NeitherMoreQualified = 0,
2371  ParamMoreQualified,
2372  ArgMoreQualified
2373};
2374
2375/// \brief Deduce the template arguments during partial ordering by comparing
2376/// the parameter type and the argument type (C++0x [temp.deduct.partial]).
2377///
2378/// \param S the semantic analysis object within which we are deducing
2379///
2380/// \param TemplateParams the template parameters that we are deducing
2381///
2382/// \param ParamIn the parameter type
2383///
2384/// \param ArgIn the argument type
2385///
2386/// \param Info information about the template argument deduction itself
2387///
2388/// \param Deduced the deduced template arguments
2389///
2390/// \returns the result of template argument deduction so far. Note that a
2391/// "success" result means that template argument deduction has not yet failed,
2392/// but it may still fail, later, for other reasons.
2393static Sema::TemplateDeductionResult
2394DeduceTemplateArgumentsDuringPartialOrdering(Sema &S,
2395                                        TemplateParameterList *TemplateParams,
2396                                             QualType ParamIn, QualType ArgIn,
2397                                             TemplateDeductionInfo &Info,
2398                      llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2399   llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
2400  CanQualType Param = S.Context.getCanonicalType(ParamIn);
2401  CanQualType Arg = S.Context.getCanonicalType(ArgIn);
2402
2403  // C++0x [temp.deduct.partial]p5:
2404  //   Before the partial ordering is done, certain transformations are
2405  //   performed on the types used for partial ordering:
2406  //     - If P is a reference type, P is replaced by the type referred to.
2407  CanQual<ReferenceType> ParamRef = Param->getAs<ReferenceType>();
2408  if (!ParamRef.isNull())
2409    Param = ParamRef->getPointeeType();
2410
2411  //     - If A is a reference type, A is replaced by the type referred to.
2412  CanQual<ReferenceType> ArgRef = Arg->getAs<ReferenceType>();
2413  if (!ArgRef.isNull())
2414    Arg = ArgRef->getPointeeType();
2415
2416  if (QualifierComparisons && !ParamRef.isNull() && !ArgRef.isNull()) {
2417    // C++0x [temp.deduct.partial]p6:
2418    //   If both P and A were reference types (before being replaced with the
2419    //   type referred to above), determine which of the two types (if any) is
2420    //   more cv-qualified than the other; otherwise the types are considered to
2421    //   be equally cv-qualified for partial ordering purposes. The result of this
2422    //   determination will be used below.
2423    //
2424    // We save this information for later, using it only when deduction
2425    // succeeds in both directions.
2426    DeductionQualifierComparison QualifierResult = NeitherMoreQualified;
2427    if (Param.isMoreQualifiedThan(Arg))
2428      QualifierResult = ParamMoreQualified;
2429    else if (Arg.isMoreQualifiedThan(Param))
2430      QualifierResult = ArgMoreQualified;
2431    QualifierComparisons->push_back(QualifierResult);
2432  }
2433
2434  // C++0x [temp.deduct.partial]p7:
2435  //   Remove any top-level cv-qualifiers:
2436  //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
2437  //       version of P.
2438  Param = Param.getUnqualifiedType();
2439  //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
2440  //       version of A.
2441  Arg = Arg.getUnqualifiedType();
2442
2443  // C++0x [temp.deduct.partial]p8:
2444  //   Using the resulting types P and A the deduction is then done as
2445  //   described in 14.9.2.5. If deduction succeeds for a given type, the type
2446  //   from the argument template is considered to be at least as specialized
2447  //   as the type from the parameter template.
2448  return DeduceTemplateArguments(S, TemplateParams, Param, Arg, Info,
2449                                 Deduced, TDF_None);
2450}
2451
2452static void
2453MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
2454                           bool OnlyDeduced,
2455                           unsigned Level,
2456                           llvm::SmallVectorImpl<bool> &Deduced);
2457
2458/// \brief If this is a non-static member function,
2459static void MaybeAddImplicitObjectParameterType(ASTContext &Context,
2460                                                CXXMethodDecl *Method,
2461                                 llvm::SmallVectorImpl<QualType> &ArgTypes) {
2462  if (Method->isStatic())
2463    return;
2464
2465  // C++ [over.match.funcs]p4:
2466  //
2467  //   For non-static member functions, the type of the implicit
2468  //   object parameter is
2469  //     — "lvalue reference to cv X" for functions declared without a
2470  //       ref-qualifier or with the & ref-qualifier
2471  //     - "rvalue reference to cv X" for functions declared with the
2472  //       && ref-qualifier
2473  //
2474  // FIXME: We don't have ref-qualifiers yet, so we don't do that part.
2475  QualType ArgTy = Context.getTypeDeclType(Method->getParent());
2476  ArgTy = Context.getQualifiedType(ArgTy,
2477                        Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
2478  ArgTy = Context.getLValueReferenceType(ArgTy);
2479  ArgTypes.push_back(ArgTy);
2480}
2481
2482/// \brief Determine whether the function template \p FT1 is at least as
2483/// specialized as \p FT2.
2484static bool isAtLeastAsSpecializedAs(Sema &S,
2485                                     SourceLocation Loc,
2486                                     FunctionTemplateDecl *FT1,
2487                                     FunctionTemplateDecl *FT2,
2488                                     TemplatePartialOrderingContext TPOC,
2489    llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
2490  FunctionDecl *FD1 = FT1->getTemplatedDecl();
2491  FunctionDecl *FD2 = FT2->getTemplatedDecl();
2492  const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
2493  const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
2494
2495  assert(Proto1 && Proto2 && "Function templates must have prototypes");
2496  TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
2497  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2498  Deduced.resize(TemplateParams->size());
2499
2500  // C++0x [temp.deduct.partial]p3:
2501  //   The types used to determine the ordering depend on the context in which
2502  //   the partial ordering is done:
2503  TemplateDeductionInfo Info(S.Context, Loc);
2504  CXXMethodDecl *Method1 = 0;
2505  CXXMethodDecl *Method2 = 0;
2506  bool IsNonStatic2 = false;
2507  bool IsNonStatic1 = false;
2508  unsigned Skip2 = 0;
2509  switch (TPOC) {
2510  case TPOC_Call: {
2511    //   - In the context of a function call, the function parameter types are
2512    //     used.
2513    Method1 = dyn_cast<CXXMethodDecl>(FD1);
2514    Method2 = dyn_cast<CXXMethodDecl>(FD2);
2515    IsNonStatic1 = Method1 && !Method1->isStatic();
2516    IsNonStatic2 = Method2 && !Method2->isStatic();
2517
2518    // C++0x [temp.func.order]p3:
2519    //   [...] If only one of the function templates is a non-static
2520    //   member, that function template is considered to have a new
2521    //   first parameter inserted in its function parameter list. The
2522    //   new parameter is of type "reference to cv A," where cv are
2523    //   the cv-qualifiers of the function template (if any) and A is
2524    //   the class of which the function template is a member.
2525    //
2526    // C++98/03 doesn't have this provision, so instead we drop the
2527    // first argument of the free function or static member, which
2528    // seems to match existing practice.
2529    llvm::SmallVector<QualType, 4> Args1;
2530    unsigned Skip1 = !S.getLangOptions().CPlusPlus0x &&
2531      IsNonStatic2 && !IsNonStatic1;
2532    if (S.getLangOptions().CPlusPlus0x && IsNonStatic1 && !IsNonStatic2)
2533      MaybeAddImplicitObjectParameterType(S.Context, Method1, Args1);
2534    Args1.insert(Args1.end(),
2535                 Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
2536
2537    llvm::SmallVector<QualType, 4> Args2;
2538    Skip2 = !S.getLangOptions().CPlusPlus0x &&
2539      IsNonStatic1 && !IsNonStatic2;
2540    if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
2541      MaybeAddImplicitObjectParameterType(S.Context, Method2, Args2);
2542    Args2.insert(Args2.end(),
2543                 Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
2544
2545    unsigned NumParams = std::min(Args1.size(), Args2.size());
2546    for (unsigned I = 0; I != NumParams; ++I)
2547      if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2548                                                       TemplateParams,
2549                                                       Args2[I],
2550                                                       Args1[I],
2551                                                       Info,
2552                                                       Deduced,
2553                                                       QualifierComparisons))
2554        return false;
2555
2556    break;
2557  }
2558
2559  case TPOC_Conversion:
2560    //   - In the context of a call to a conversion operator, the return types
2561    //     of the conversion function templates are used.
2562    if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2563                                                     TemplateParams,
2564                                                     Proto2->getResultType(),
2565                                                     Proto1->getResultType(),
2566                                                     Info,
2567                                                     Deduced,
2568                                                     QualifierComparisons))
2569      return false;
2570    break;
2571
2572  case TPOC_Other:
2573    //   - In other contexts (14.6.6.2) the function template’s function type
2574    //     is used.
2575    if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2576                                                     TemplateParams,
2577                                                     FD2->getType(),
2578                                                     FD1->getType(),
2579                                                     Info,
2580                                                     Deduced,
2581                                                     QualifierComparisons))
2582      return false;
2583    break;
2584  }
2585
2586  // C++0x [temp.deduct.partial]p11:
2587  //   In most cases, all template parameters must have values in order for
2588  //   deduction to succeed, but for partial ordering purposes a template
2589  //   parameter may remain without a value provided it is not used in the
2590  //   types being used for partial ordering. [ Note: a template parameter used
2591  //   in a non-deduced context is considered used. -end note]
2592  unsigned ArgIdx = 0, NumArgs = Deduced.size();
2593  for (; ArgIdx != NumArgs; ++ArgIdx)
2594    if (Deduced[ArgIdx].isNull())
2595      break;
2596
2597  if (ArgIdx == NumArgs) {
2598    // All template arguments were deduced. FT1 is at least as specialized
2599    // as FT2.
2600    return true;
2601  }
2602
2603  // Figure out which template parameters were used.
2604  llvm::SmallVector<bool, 4> UsedParameters;
2605  UsedParameters.resize(TemplateParams->size());
2606  switch (TPOC) {
2607  case TPOC_Call: {
2608    unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
2609    if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
2610      ::MarkUsedTemplateParameters(S, Method2->getThisType(S.Context), false,
2611                                   TemplateParams->getDepth(), UsedParameters);
2612    for (unsigned I = Skip2; I < NumParams; ++I)
2613      ::MarkUsedTemplateParameters(S, Proto2->getArgType(I), false,
2614                                   TemplateParams->getDepth(),
2615                                   UsedParameters);
2616    break;
2617  }
2618
2619  case TPOC_Conversion:
2620    ::MarkUsedTemplateParameters(S, Proto2->getResultType(), false,
2621                                 TemplateParams->getDepth(),
2622                                 UsedParameters);
2623    break;
2624
2625  case TPOC_Other:
2626    ::MarkUsedTemplateParameters(S, FD2->getType(), false,
2627                                 TemplateParams->getDepth(),
2628                                 UsedParameters);
2629    break;
2630  }
2631
2632  for (; ArgIdx != NumArgs; ++ArgIdx)
2633    // If this argument had no value deduced but was used in one of the types
2634    // used for partial ordering, then deduction fails.
2635    if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
2636      return false;
2637
2638  return true;
2639}
2640
2641
2642/// \brief Returns the more specialized function template according
2643/// to the rules of function template partial ordering (C++ [temp.func.order]).
2644///
2645/// \param FT1 the first function template
2646///
2647/// \param FT2 the second function template
2648///
2649/// \param TPOC the context in which we are performing partial ordering of
2650/// function templates.
2651///
2652/// \returns the more specialized function template. If neither
2653/// template is more specialized, returns NULL.
2654FunctionTemplateDecl *
2655Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
2656                                 FunctionTemplateDecl *FT2,
2657                                 SourceLocation Loc,
2658                                 TemplatePartialOrderingContext TPOC) {
2659  llvm::SmallVector<DeductionQualifierComparison, 4> QualifierComparisons;
2660  bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 0);
2661  bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
2662                                          &QualifierComparisons);
2663
2664  if (Better1 != Better2) // We have a clear winner
2665    return Better1? FT1 : FT2;
2666
2667  if (!Better1 && !Better2) // Neither is better than the other
2668    return 0;
2669
2670
2671  // C++0x [temp.deduct.partial]p10:
2672  //   If for each type being considered a given template is at least as
2673  //   specialized for all types and more specialized for some set of types and
2674  //   the other template is not more specialized for any types or is not at
2675  //   least as specialized for any types, then the given template is more
2676  //   specialized than the other template. Otherwise, neither template is more
2677  //   specialized than the other.
2678  Better1 = false;
2679  Better2 = false;
2680  for (unsigned I = 0, N = QualifierComparisons.size(); I != N; ++I) {
2681    // C++0x [temp.deduct.partial]p9:
2682    //   If, for a given type, deduction succeeds in both directions (i.e., the
2683    //   types are identical after the transformations above) and if the type
2684    //   from the argument template is more cv-qualified than the type from the
2685    //   parameter template (as described above) that type is considered to be
2686    //   more specialized than the other. If neither type is more cv-qualified
2687    //   than the other then neither type is more specialized than the other.
2688    switch (QualifierComparisons[I]) {
2689      case NeitherMoreQualified:
2690        break;
2691
2692      case ParamMoreQualified:
2693        Better1 = true;
2694        if (Better2)
2695          return 0;
2696        break;
2697
2698      case ArgMoreQualified:
2699        Better2 = true;
2700        if (Better1)
2701          return 0;
2702        break;
2703    }
2704  }
2705
2706  assert(!(Better1 && Better2) && "Should have broken out in the loop above");
2707  if (Better1)
2708    return FT1;
2709  else if (Better2)
2710    return FT2;
2711  else
2712    return 0;
2713}
2714
2715/// \brief Determine if the two templates are equivalent.
2716static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
2717  if (T1 == T2)
2718    return true;
2719
2720  if (!T1 || !T2)
2721    return false;
2722
2723  return T1->getCanonicalDecl() == T2->getCanonicalDecl();
2724}
2725
2726/// \brief Retrieve the most specialized of the given function template
2727/// specializations.
2728///
2729/// \param SpecBegin the start iterator of the function template
2730/// specializations that we will be comparing.
2731///
2732/// \param SpecEnd the end iterator of the function template
2733/// specializations, paired with \p SpecBegin.
2734///
2735/// \param TPOC the partial ordering context to use to compare the function
2736/// template specializations.
2737///
2738/// \param Loc the location where the ambiguity or no-specializations
2739/// diagnostic should occur.
2740///
2741/// \param NoneDiag partial diagnostic used to diagnose cases where there are
2742/// no matching candidates.
2743///
2744/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
2745/// occurs.
2746///
2747/// \param CandidateDiag partial diagnostic used for each function template
2748/// specialization that is a candidate in the ambiguous ordering. One parameter
2749/// in this diagnostic should be unbound, which will correspond to the string
2750/// describing the template arguments for the function template specialization.
2751///
2752/// \param Index if non-NULL and the result of this function is non-nULL,
2753/// receives the index corresponding to the resulting function template
2754/// specialization.
2755///
2756/// \returns the most specialized function template specialization, if
2757/// found. Otherwise, returns SpecEnd.
2758///
2759/// \todo FIXME: Consider passing in the "also-ran" candidates that failed
2760/// template argument deduction.
2761UnresolvedSetIterator
2762Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
2763                         UnresolvedSetIterator SpecEnd,
2764                         TemplatePartialOrderingContext TPOC,
2765                         SourceLocation Loc,
2766                         const PartialDiagnostic &NoneDiag,
2767                         const PartialDiagnostic &AmbigDiag,
2768                         const PartialDiagnostic &CandidateDiag) {
2769  if (SpecBegin == SpecEnd) {
2770    Diag(Loc, NoneDiag);
2771    return SpecEnd;
2772  }
2773
2774  if (SpecBegin + 1 == SpecEnd)
2775    return SpecBegin;
2776
2777  // Find the function template that is better than all of the templates it
2778  // has been compared to.
2779  UnresolvedSetIterator Best = SpecBegin;
2780  FunctionTemplateDecl *BestTemplate
2781    = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
2782  assert(BestTemplate && "Not a function template specialization?");
2783  for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
2784    FunctionTemplateDecl *Challenger
2785      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
2786    assert(Challenger && "Not a function template specialization?");
2787    if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
2788                                                  Loc, TPOC),
2789                       Challenger)) {
2790      Best = I;
2791      BestTemplate = Challenger;
2792    }
2793  }
2794
2795  // Make sure that the "best" function template is more specialized than all
2796  // of the others.
2797  bool Ambiguous = false;
2798  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
2799    FunctionTemplateDecl *Challenger
2800      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
2801    if (I != Best &&
2802        !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
2803                                                   Loc, TPOC),
2804                        BestTemplate)) {
2805      Ambiguous = true;
2806      break;
2807    }
2808  }
2809
2810  if (!Ambiguous) {
2811    // We found an answer. Return it.
2812    return Best;
2813  }
2814
2815  // Diagnose the ambiguity.
2816  Diag(Loc, AmbigDiag);
2817
2818  // FIXME: Can we order the candidates in some sane way?
2819  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I)
2820    Diag((*I)->getLocation(), CandidateDiag)
2821      << getTemplateArgumentBindingsText(
2822        cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
2823                    *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
2824
2825  return SpecEnd;
2826}
2827
2828/// \brief Returns the more specialized class template partial specialization
2829/// according to the rules of partial ordering of class template partial
2830/// specializations (C++ [temp.class.order]).
2831///
2832/// \param PS1 the first class template partial specialization
2833///
2834/// \param PS2 the second class template partial specialization
2835///
2836/// \returns the more specialized class template partial specialization. If
2837/// neither partial specialization is more specialized, returns NULL.
2838ClassTemplatePartialSpecializationDecl *
2839Sema::getMoreSpecializedPartialSpecialization(
2840                                  ClassTemplatePartialSpecializationDecl *PS1,
2841                                  ClassTemplatePartialSpecializationDecl *PS2,
2842                                              SourceLocation Loc) {
2843  // C++ [temp.class.order]p1:
2844  //   For two class template partial specializations, the first is at least as
2845  //   specialized as the second if, given the following rewrite to two
2846  //   function templates, the first function template is at least as
2847  //   specialized as the second according to the ordering rules for function
2848  //   templates (14.6.6.2):
2849  //     - the first function template has the same template parameters as the
2850  //       first partial specialization and has a single function parameter
2851  //       whose type is a class template specialization with the template
2852  //       arguments of the first partial specialization, and
2853  //     - the second function template has the same template parameters as the
2854  //       second partial specialization and has a single function parameter
2855  //       whose type is a class template specialization with the template
2856  //       arguments of the second partial specialization.
2857  //
2858  // Rather than synthesize function templates, we merely perform the
2859  // equivalent partial ordering by performing deduction directly on
2860  // the template arguments of the class template partial
2861  // specializations. This computation is slightly simpler than the
2862  // general problem of function template partial ordering, because
2863  // class template partial specializations are more constrained. We
2864  // know that every template parameter is deducible from the class
2865  // template partial specialization's template arguments, for
2866  // example.
2867  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2868  TemplateDeductionInfo Info(Context, Loc);
2869
2870  QualType PT1 = PS1->getInjectedSpecializationType();
2871  QualType PT2 = PS2->getInjectedSpecializationType();
2872
2873  // Determine whether PS1 is at least as specialized as PS2
2874  Deduced.resize(PS2->getTemplateParameters()->size());
2875  bool Better1 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
2876                                                  PS2->getTemplateParameters(),
2877                                                               PT2,
2878                                                               PT1,
2879                                                               Info,
2880                                                               Deduced,
2881                                                               0);
2882  if (Better1) {
2883    InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
2884                               Deduced.data(), Deduced.size(), Info);
2885    Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
2886                                                 PS1->getTemplateArgs(),
2887                                                 Deduced, Info);
2888  }
2889
2890  // Determine whether PS2 is at least as specialized as PS1
2891  Deduced.clear();
2892  Deduced.resize(PS1->getTemplateParameters()->size());
2893  bool Better2 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
2894                                                  PS1->getTemplateParameters(),
2895                                                               PT1,
2896                                                               PT2,
2897                                                               Info,
2898                                                               Deduced,
2899                                                               0);
2900  if (Better2) {
2901    InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
2902                               Deduced.data(), Deduced.size(), Info);
2903    Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
2904                                                 PS2->getTemplateArgs(),
2905                                                 Deduced, Info);
2906  }
2907
2908  if (Better1 == Better2)
2909    return 0;
2910
2911  return Better1? PS1 : PS2;
2912}
2913
2914static void
2915MarkUsedTemplateParameters(Sema &SemaRef,
2916                           const TemplateArgument &TemplateArg,
2917                           bool OnlyDeduced,
2918                           unsigned Depth,
2919                           llvm::SmallVectorImpl<bool> &Used);
2920
2921/// \brief Mark the template parameters that are used by the given
2922/// expression.
2923static void
2924MarkUsedTemplateParameters(Sema &SemaRef,
2925                           const Expr *E,
2926                           bool OnlyDeduced,
2927                           unsigned Depth,
2928                           llvm::SmallVectorImpl<bool> &Used) {
2929  // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
2930  // find other occurrences of template parameters.
2931  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
2932  if (!DRE)
2933    return;
2934
2935  const NonTypeTemplateParmDecl *NTTP
2936    = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2937  if (!NTTP)
2938    return;
2939
2940  if (NTTP->getDepth() == Depth)
2941    Used[NTTP->getIndex()] = true;
2942}
2943
2944/// \brief Mark the template parameters that are used by the given
2945/// nested name specifier.
2946static void
2947MarkUsedTemplateParameters(Sema &SemaRef,
2948                           NestedNameSpecifier *NNS,
2949                           bool OnlyDeduced,
2950                           unsigned Depth,
2951                           llvm::SmallVectorImpl<bool> &Used) {
2952  if (!NNS)
2953    return;
2954
2955  MarkUsedTemplateParameters(SemaRef, NNS->getPrefix(), OnlyDeduced, Depth,
2956                             Used);
2957  MarkUsedTemplateParameters(SemaRef, QualType(NNS->getAsType(), 0),
2958                             OnlyDeduced, Depth, Used);
2959}
2960
2961/// \brief Mark the template parameters that are used by the given
2962/// template name.
2963static void
2964MarkUsedTemplateParameters(Sema &SemaRef,
2965                           TemplateName Name,
2966                           bool OnlyDeduced,
2967                           unsigned Depth,
2968                           llvm::SmallVectorImpl<bool> &Used) {
2969  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2970    if (TemplateTemplateParmDecl *TTP
2971          = dyn_cast<TemplateTemplateParmDecl>(Template)) {
2972      if (TTP->getDepth() == Depth)
2973        Used[TTP->getIndex()] = true;
2974    }
2975    return;
2976  }
2977
2978  if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
2979    MarkUsedTemplateParameters(SemaRef, QTN->getQualifier(), OnlyDeduced,
2980                               Depth, Used);
2981  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
2982    MarkUsedTemplateParameters(SemaRef, DTN->getQualifier(), OnlyDeduced,
2983                               Depth, Used);
2984}
2985
2986/// \brief Mark the template parameters that are used by the given
2987/// type.
2988static void
2989MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
2990                           bool OnlyDeduced,
2991                           unsigned Depth,
2992                           llvm::SmallVectorImpl<bool> &Used) {
2993  if (T.isNull())
2994    return;
2995
2996  // Non-dependent types have nothing deducible
2997  if (!T->isDependentType())
2998    return;
2999
3000  T = SemaRef.Context.getCanonicalType(T);
3001  switch (T->getTypeClass()) {
3002  case Type::Pointer:
3003    MarkUsedTemplateParameters(SemaRef,
3004                               cast<PointerType>(T)->getPointeeType(),
3005                               OnlyDeduced,
3006                               Depth,
3007                               Used);
3008    break;
3009
3010  case Type::BlockPointer:
3011    MarkUsedTemplateParameters(SemaRef,
3012                               cast<BlockPointerType>(T)->getPointeeType(),
3013                               OnlyDeduced,
3014                               Depth,
3015                               Used);
3016    break;
3017
3018  case Type::LValueReference:
3019  case Type::RValueReference:
3020    MarkUsedTemplateParameters(SemaRef,
3021                               cast<ReferenceType>(T)->getPointeeType(),
3022                               OnlyDeduced,
3023                               Depth,
3024                               Used);
3025    break;
3026
3027  case Type::MemberPointer: {
3028    const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
3029    MarkUsedTemplateParameters(SemaRef, MemPtr->getPointeeType(), OnlyDeduced,
3030                               Depth, Used);
3031    MarkUsedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0),
3032                               OnlyDeduced, Depth, Used);
3033    break;
3034  }
3035
3036  case Type::DependentSizedArray:
3037    MarkUsedTemplateParameters(SemaRef,
3038                               cast<DependentSizedArrayType>(T)->getSizeExpr(),
3039                               OnlyDeduced, Depth, Used);
3040    // Fall through to check the element type
3041
3042  case Type::ConstantArray:
3043  case Type::IncompleteArray:
3044    MarkUsedTemplateParameters(SemaRef,
3045                               cast<ArrayType>(T)->getElementType(),
3046                               OnlyDeduced, Depth, Used);
3047    break;
3048
3049  case Type::Vector:
3050  case Type::ExtVector:
3051    MarkUsedTemplateParameters(SemaRef,
3052                               cast<VectorType>(T)->getElementType(),
3053                               OnlyDeduced, Depth, Used);
3054    break;
3055
3056  case Type::DependentSizedExtVector: {
3057    const DependentSizedExtVectorType *VecType
3058      = cast<DependentSizedExtVectorType>(T);
3059    MarkUsedTemplateParameters(SemaRef, VecType->getElementType(), OnlyDeduced,
3060                               Depth, Used);
3061    MarkUsedTemplateParameters(SemaRef, VecType->getSizeExpr(), OnlyDeduced,
3062                               Depth, Used);
3063    break;
3064  }
3065
3066  case Type::FunctionProto: {
3067    const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
3068    MarkUsedTemplateParameters(SemaRef, Proto->getResultType(), OnlyDeduced,
3069                               Depth, Used);
3070    for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
3071      MarkUsedTemplateParameters(SemaRef, Proto->getArgType(I), OnlyDeduced,
3072                                 Depth, Used);
3073    break;
3074  }
3075
3076  case Type::TemplateTypeParm: {
3077    const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
3078    if (TTP->getDepth() == Depth)
3079      Used[TTP->getIndex()] = true;
3080    break;
3081  }
3082
3083  case Type::InjectedClassName:
3084    T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
3085    // fall through
3086
3087  case Type::TemplateSpecialization: {
3088    const TemplateSpecializationType *Spec
3089      = cast<TemplateSpecializationType>(T);
3090    MarkUsedTemplateParameters(SemaRef, Spec->getTemplateName(), OnlyDeduced,
3091                               Depth, Used);
3092
3093    // C++0x [temp.deduct.type]p9:
3094    //   If the template argument list of P contains a pack expansion that is not
3095    //   the last template argument, the entire template argument list is a
3096    //   non-deduced context.
3097    if (OnlyDeduced &&
3098        hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
3099      break;
3100
3101    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
3102      MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
3103                                 Used);
3104    break;
3105  }
3106
3107  case Type::Complex:
3108    if (!OnlyDeduced)
3109      MarkUsedTemplateParameters(SemaRef,
3110                                 cast<ComplexType>(T)->getElementType(),
3111                                 OnlyDeduced, Depth, Used);
3112    break;
3113
3114  case Type::DependentName:
3115    if (!OnlyDeduced)
3116      MarkUsedTemplateParameters(SemaRef,
3117                                 cast<DependentNameType>(T)->getQualifier(),
3118                                 OnlyDeduced, Depth, Used);
3119    break;
3120
3121  case Type::DependentTemplateSpecialization: {
3122    const DependentTemplateSpecializationType *Spec
3123      = cast<DependentTemplateSpecializationType>(T);
3124    if (!OnlyDeduced)
3125      MarkUsedTemplateParameters(SemaRef, Spec->getQualifier(),
3126                                 OnlyDeduced, Depth, Used);
3127
3128    // C++0x [temp.deduct.type]p9:
3129    //   If the template argument list of P contains a pack expansion that is not
3130    //   the last template argument, the entire template argument list is a
3131    //   non-deduced context.
3132    if (OnlyDeduced &&
3133        hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
3134      break;
3135
3136    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
3137      MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
3138                                 Used);
3139    break;
3140  }
3141
3142  case Type::TypeOf:
3143    if (!OnlyDeduced)
3144      MarkUsedTemplateParameters(SemaRef,
3145                                 cast<TypeOfType>(T)->getUnderlyingType(),
3146                                 OnlyDeduced, Depth, Used);
3147    break;
3148
3149  case Type::TypeOfExpr:
3150    if (!OnlyDeduced)
3151      MarkUsedTemplateParameters(SemaRef,
3152                                 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
3153                                 OnlyDeduced, Depth, Used);
3154    break;
3155
3156  case Type::Decltype:
3157    if (!OnlyDeduced)
3158      MarkUsedTemplateParameters(SemaRef,
3159                                 cast<DecltypeType>(T)->getUnderlyingExpr(),
3160                                 OnlyDeduced, Depth, Used);
3161    break;
3162
3163  case Type::PackExpansion:
3164    MarkUsedTemplateParameters(SemaRef,
3165                               cast<PackExpansionType>(T)->getPattern(),
3166                               OnlyDeduced, Depth, Used);
3167    break;
3168
3169  // None of these types have any template parameters in them.
3170  case Type::Builtin:
3171  case Type::VariableArray:
3172  case Type::FunctionNoProto:
3173  case Type::Record:
3174  case Type::Enum:
3175  case Type::ObjCInterface:
3176  case Type::ObjCObject:
3177  case Type::ObjCObjectPointer:
3178  case Type::UnresolvedUsing:
3179#define TYPE(Class, Base)
3180#define ABSTRACT_TYPE(Class, Base)
3181#define DEPENDENT_TYPE(Class, Base)
3182#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3183#include "clang/AST/TypeNodes.def"
3184    break;
3185  }
3186}
3187
3188/// \brief Mark the template parameters that are used by this
3189/// template argument.
3190static void
3191MarkUsedTemplateParameters(Sema &SemaRef,
3192                           const TemplateArgument &TemplateArg,
3193                           bool OnlyDeduced,
3194                           unsigned Depth,
3195                           llvm::SmallVectorImpl<bool> &Used) {
3196  switch (TemplateArg.getKind()) {
3197  case TemplateArgument::Null:
3198  case TemplateArgument::Integral:
3199    case TemplateArgument::Declaration:
3200    break;
3201
3202  case TemplateArgument::Type:
3203    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsType(), OnlyDeduced,
3204                               Depth, Used);
3205    break;
3206
3207  case TemplateArgument::Template:
3208    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsTemplate(),
3209                               OnlyDeduced, Depth, Used);
3210    break;
3211
3212  case TemplateArgument::Expression:
3213    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsExpr(), OnlyDeduced,
3214                               Depth, Used);
3215    break;
3216
3217  case TemplateArgument::Pack:
3218    for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
3219                                      PEnd = TemplateArg.pack_end();
3220         P != PEnd; ++P)
3221      MarkUsedTemplateParameters(SemaRef, *P, OnlyDeduced, Depth, Used);
3222    break;
3223  }
3224}
3225
3226/// \brief Mark the template parameters can be deduced by the given
3227/// template argument list.
3228///
3229/// \param TemplateArgs the template argument list from which template
3230/// parameters will be deduced.
3231///
3232/// \param Deduced a bit vector whose elements will be set to \c true
3233/// to indicate when the corresponding template parameter will be
3234/// deduced.
3235void
3236Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
3237                                 bool OnlyDeduced, unsigned Depth,
3238                                 llvm::SmallVectorImpl<bool> &Used) {
3239  // C++0x [temp.deduct.type]p9:
3240  //   If the template argument list of P contains a pack expansion that is not
3241  //   the last template argument, the entire template argument list is a
3242  //   non-deduced context.
3243  if (OnlyDeduced &&
3244      hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
3245    return;
3246
3247  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3248    ::MarkUsedTemplateParameters(*this, TemplateArgs[I], OnlyDeduced,
3249                                 Depth, Used);
3250}
3251
3252/// \brief Marks all of the template parameters that will be deduced by a
3253/// call to the given function template.
3254void
3255Sema::MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate,
3256                                    llvm::SmallVectorImpl<bool> &Deduced) {
3257  TemplateParameterList *TemplateParams
3258    = FunctionTemplate->getTemplateParameters();
3259  Deduced.clear();
3260  Deduced.resize(TemplateParams->size());
3261
3262  // FIXME: Variadic templates.
3263  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3264  for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
3265    ::MarkUsedTemplateParameters(*this, Function->getParamDecl(I)->getType(),
3266                                 true, TemplateParams->getDepth(), Deduced);
3267}
3268