SemaTemplateDeduction.cpp revision a730f548325756d050d4caaa28fcbffdae8dfe95
1//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===/
12
13#include "clang/Sema/TemplateDeduction.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Sema/DeclSpec.h"
22#include "clang/Sema/Sema.h"
23#include "clang/Sema/Template.h"
24#include "llvm/ADT/SmallBitVector.h"
25#include <algorithm>
26
27namespace clang {
28  using namespace sema;
29
30  /// \brief Various flags that control template argument deduction.
31  ///
32  /// These flags can be bitwise-OR'd together.
33  enum TemplateDeductionFlags {
34    /// \brief No template argument deduction flags, which indicates the
35    /// strictest results for template argument deduction (as used for, e.g.,
36    /// matching class template partial specializations).
37    TDF_None = 0,
38    /// \brief Within template argument deduction from a function call, we are
39    /// matching with a parameter type for which the original parameter was
40    /// a reference.
41    TDF_ParamWithReferenceType = 0x1,
42    /// \brief Within template argument deduction from a function call, we
43    /// are matching in a case where we ignore cv-qualifiers.
44    TDF_IgnoreQualifiers = 0x02,
45    /// \brief Within template argument deduction from a function call,
46    /// we are matching in a case where we can perform template argument
47    /// deduction from a template-id of a derived class of the argument type.
48    TDF_DerivedClass = 0x04,
49    /// \brief Allow non-dependent types to differ, e.g., when performing
50    /// template argument deduction from a function call where conversions
51    /// may apply.
52    TDF_SkipNonDependent = 0x08,
53    /// \brief Whether we are performing template argument deduction for
54    /// parameters and arguments in a top-level template argument
55    TDF_TopLevelParameterTypeList = 0x10,
56    /// \brief Within template argument deduction from overload resolution per
57    /// C++ [over.over] allow matching function types that are compatible in
58    /// terms of noreturn and default calling convention adjustments.
59    TDF_InOverloadResolution = 0x20
60  };
61}
62
63using namespace clang;
64
65/// \brief Compare two APSInts, extending and switching the sign as
66/// necessary to compare their values regardless of underlying type.
67static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
68  if (Y.getBitWidth() > X.getBitWidth())
69    X = X.extend(Y.getBitWidth());
70  else if (Y.getBitWidth() < X.getBitWidth())
71    Y = Y.extend(X.getBitWidth());
72
73  // If there is a signedness mismatch, correct it.
74  if (X.isSigned() != Y.isSigned()) {
75    // If the signed value is negative, then the values cannot be the same.
76    if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
77      return false;
78
79    Y.setIsSigned(true);
80    X.setIsSigned(true);
81  }
82
83  return X == Y;
84}
85
86static Sema::TemplateDeductionResult
87DeduceTemplateArguments(Sema &S,
88                        TemplateParameterList *TemplateParams,
89                        const TemplateArgument &Param,
90                        TemplateArgument Arg,
91                        TemplateDeductionInfo &Info,
92                        SmallVectorImpl<DeducedTemplateArgument> &Deduced);
93
94/// \brief Whether template argument deduction for two reference parameters
95/// resulted in the argument type, parameter type, or neither type being more
96/// qualified than the other.
97enum DeductionQualifierComparison {
98  NeitherMoreQualified = 0,
99  ParamMoreQualified,
100  ArgMoreQualified
101};
102
103/// \brief Stores the result of comparing two reference parameters while
104/// performing template argument deduction for partial ordering of function
105/// templates.
106struct RefParamPartialOrderingComparison {
107  /// \brief Whether the parameter type is an rvalue reference type.
108  bool ParamIsRvalueRef;
109  /// \brief Whether the argument type is an rvalue reference type.
110  bool ArgIsRvalueRef;
111
112  /// \brief Whether the parameter or argument (or neither) is more qualified.
113  DeductionQualifierComparison Qualifiers;
114};
115
116
117
118static Sema::TemplateDeductionResult
119DeduceTemplateArgumentsByTypeMatch(Sema &S,
120                                   TemplateParameterList *TemplateParams,
121                                   QualType Param,
122                                   QualType Arg,
123                                   TemplateDeductionInfo &Info,
124                                   SmallVectorImpl<DeducedTemplateArgument> &
125                                                      Deduced,
126                                   unsigned TDF,
127                                   bool PartialOrdering = false,
128                            SmallVectorImpl<RefParamPartialOrderingComparison> *
129                                                      RefParamComparisons = 0);
130
131static Sema::TemplateDeductionResult
132DeduceTemplateArguments(Sema &S,
133                        TemplateParameterList *TemplateParams,
134                        const TemplateArgument *Params, unsigned NumParams,
135                        const TemplateArgument *Args, unsigned NumArgs,
136                        TemplateDeductionInfo &Info,
137                        SmallVectorImpl<DeducedTemplateArgument> &Deduced);
138
139/// \brief If the given expression is of a form that permits the deduction
140/// of a non-type template parameter, return the declaration of that
141/// non-type template parameter.
142static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
143  // If we are within an alias template, the expression may have undergone
144  // any number of parameter substitutions already.
145  while (1) {
146    if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
147      E = IC->getSubExpr();
148    else if (SubstNonTypeTemplateParmExpr *Subst =
149               dyn_cast<SubstNonTypeTemplateParmExpr>(E))
150      E = Subst->getReplacement();
151    else
152      break;
153  }
154
155  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
156    return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
157
158  return 0;
159}
160
161/// \brief Determine whether two declaration pointers refer to the same
162/// declaration.
163static bool isSameDeclaration(Decl *X, Decl *Y) {
164  if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
165    X = NX->getUnderlyingDecl();
166  if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
167    Y = NY->getUnderlyingDecl();
168
169  return X->getCanonicalDecl() == Y->getCanonicalDecl();
170}
171
172/// \brief Verify that the given, deduced template arguments are compatible.
173///
174/// \returns The deduced template argument, or a NULL template argument if
175/// the deduced template arguments were incompatible.
176static DeducedTemplateArgument
177checkDeducedTemplateArguments(ASTContext &Context,
178                              const DeducedTemplateArgument &X,
179                              const DeducedTemplateArgument &Y) {
180  // We have no deduction for one or both of the arguments; they're compatible.
181  if (X.isNull())
182    return Y;
183  if (Y.isNull())
184    return X;
185
186  switch (X.getKind()) {
187  case TemplateArgument::Null:
188    llvm_unreachable("Non-deduced template arguments handled above");
189
190  case TemplateArgument::Type:
191    // If two template type arguments have the same type, they're compatible.
192    if (Y.getKind() == TemplateArgument::Type &&
193        Context.hasSameType(X.getAsType(), Y.getAsType()))
194      return X;
195
196    return DeducedTemplateArgument();
197
198  case TemplateArgument::Integral:
199    // If we deduced a constant in one case and either a dependent expression or
200    // declaration in another case, keep the integral constant.
201    // If both are integral constants with the same value, keep that value.
202    if (Y.getKind() == TemplateArgument::Expression ||
203        Y.getKind() == TemplateArgument::Declaration ||
204        (Y.getKind() == TemplateArgument::Integral &&
205         hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
206      return DeducedTemplateArgument(X,
207                                     X.wasDeducedFromArrayBound() &&
208                                     Y.wasDeducedFromArrayBound());
209
210    // All other combinations are incompatible.
211    return DeducedTemplateArgument();
212
213  case TemplateArgument::Template:
214    if (Y.getKind() == TemplateArgument::Template &&
215        Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
216      return X;
217
218    // All other combinations are incompatible.
219    return DeducedTemplateArgument();
220
221  case TemplateArgument::TemplateExpansion:
222    if (Y.getKind() == TemplateArgument::TemplateExpansion &&
223        Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
224                                    Y.getAsTemplateOrTemplatePattern()))
225      return X;
226
227    // All other combinations are incompatible.
228    return DeducedTemplateArgument();
229
230  case TemplateArgument::Expression:
231    // If we deduced a dependent expression in one case and either an integral
232    // constant or a declaration in another case, keep the integral constant
233    // or declaration.
234    if (Y.getKind() == TemplateArgument::Integral ||
235        Y.getKind() == TemplateArgument::Declaration)
236      return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
237                                     Y.wasDeducedFromArrayBound());
238
239    if (Y.getKind() == TemplateArgument::Expression) {
240      // Compare the expressions for equality
241      llvm::FoldingSetNodeID ID1, ID2;
242      X.getAsExpr()->Profile(ID1, Context, true);
243      Y.getAsExpr()->Profile(ID2, Context, true);
244      if (ID1 == ID2)
245        return X;
246    }
247
248    // All other combinations are incompatible.
249    return DeducedTemplateArgument();
250
251  case TemplateArgument::Declaration:
252    // If we deduced a declaration and a dependent expression, keep the
253    // declaration.
254    if (Y.getKind() == TemplateArgument::Expression)
255      return X;
256
257    // If we deduced a declaration and an integral constant, keep the
258    // integral constant.
259    if (Y.getKind() == TemplateArgument::Integral)
260      return Y;
261
262    // If we deduced two declarations, make sure they they refer to the
263    // same declaration.
264    if (Y.getKind() == TemplateArgument::Declaration &&
265        isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
266        X.isDeclForReferenceParam() == Y.isDeclForReferenceParam())
267      return X;
268
269    // All other combinations are incompatible.
270    return DeducedTemplateArgument();
271
272  case TemplateArgument::NullPtr:
273    // If we deduced a null pointer and a dependent expression, keep the
274    // null pointer.
275    if (Y.getKind() == TemplateArgument::Expression)
276      return X;
277
278    // If we deduced a null pointer and an integral constant, keep the
279    // integral constant.
280    if (Y.getKind() == TemplateArgument::Integral)
281      return Y;
282
283    // If we deduced two null pointers, make sure they have the same type.
284    if (Y.getKind() == TemplateArgument::NullPtr &&
285        Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
286      return X;
287
288    // All other combinations are incompatible.
289    return DeducedTemplateArgument();
290
291  case TemplateArgument::Pack:
292    if (Y.getKind() != TemplateArgument::Pack ||
293        X.pack_size() != Y.pack_size())
294      return DeducedTemplateArgument();
295
296    for (TemplateArgument::pack_iterator XA = X.pack_begin(),
297                                      XAEnd = X.pack_end(),
298                                         YA = Y.pack_begin();
299         XA != XAEnd; ++XA, ++YA) {
300      if (checkDeducedTemplateArguments(Context,
301                    DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
302                    DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
303            .isNull())
304        return DeducedTemplateArgument();
305    }
306
307    return X;
308  }
309
310  llvm_unreachable("Invalid TemplateArgument Kind!");
311}
312
313/// \brief Deduce the value of the given non-type template parameter
314/// from the given constant.
315static Sema::TemplateDeductionResult
316DeduceNonTypeTemplateArgument(Sema &S,
317                              NonTypeTemplateParmDecl *NTTP,
318                              llvm::APSInt Value, QualType ValueType,
319                              bool DeducedFromArrayBound,
320                              TemplateDeductionInfo &Info,
321                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
322  assert(NTTP->getDepth() == 0 &&
323         "Cannot deduce non-type template argument with depth > 0");
324
325  DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
326                                     DeducedFromArrayBound);
327  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
328                                                     Deduced[NTTP->getIndex()],
329                                                                 NewDeduced);
330  if (Result.isNull()) {
331    Info.Param = NTTP;
332    Info.FirstArg = Deduced[NTTP->getIndex()];
333    Info.SecondArg = NewDeduced;
334    return Sema::TDK_Inconsistent;
335  }
336
337  Deduced[NTTP->getIndex()] = Result;
338  return Sema::TDK_Success;
339}
340
341/// \brief Deduce the value of the given non-type template parameter
342/// from the given type- or value-dependent expression.
343///
344/// \returns true if deduction succeeded, false otherwise.
345static Sema::TemplateDeductionResult
346DeduceNonTypeTemplateArgument(Sema &S,
347                              NonTypeTemplateParmDecl *NTTP,
348                              Expr *Value,
349                              TemplateDeductionInfo &Info,
350                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
351  assert(NTTP->getDepth() == 0 &&
352         "Cannot deduce non-type template argument with depth > 0");
353  assert((Value->isTypeDependent() || Value->isValueDependent()) &&
354         "Expression template argument must be type- or value-dependent.");
355
356  DeducedTemplateArgument NewDeduced(Value);
357  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
358                                                     Deduced[NTTP->getIndex()],
359                                                                 NewDeduced);
360
361  if (Result.isNull()) {
362    Info.Param = NTTP;
363    Info.FirstArg = Deduced[NTTP->getIndex()];
364    Info.SecondArg = NewDeduced;
365    return Sema::TDK_Inconsistent;
366  }
367
368  Deduced[NTTP->getIndex()] = Result;
369  return Sema::TDK_Success;
370}
371
372/// \brief Deduce the value of the given non-type template parameter
373/// from the given declaration.
374///
375/// \returns true if deduction succeeded, false otherwise.
376static Sema::TemplateDeductionResult
377DeduceNonTypeTemplateArgument(Sema &S,
378                            NonTypeTemplateParmDecl *NTTP,
379                            ValueDecl *D,
380                            TemplateDeductionInfo &Info,
381                            SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
382  assert(NTTP->getDepth() == 0 &&
383         "Cannot deduce non-type template argument with depth > 0");
384
385  D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : 0;
386  TemplateArgument New(D, NTTP->getType()->isReferenceType());
387  DeducedTemplateArgument NewDeduced(New);
388  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
389                                                     Deduced[NTTP->getIndex()],
390                                                                 NewDeduced);
391  if (Result.isNull()) {
392    Info.Param = NTTP;
393    Info.FirstArg = Deduced[NTTP->getIndex()];
394    Info.SecondArg = NewDeduced;
395    return Sema::TDK_Inconsistent;
396  }
397
398  Deduced[NTTP->getIndex()] = Result;
399  return Sema::TDK_Success;
400}
401
402static Sema::TemplateDeductionResult
403DeduceTemplateArguments(Sema &S,
404                        TemplateParameterList *TemplateParams,
405                        TemplateName Param,
406                        TemplateName Arg,
407                        TemplateDeductionInfo &Info,
408                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
409  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
410  if (!ParamDecl) {
411    // The parameter type is dependent and is not a template template parameter,
412    // so there is nothing that we can deduce.
413    return Sema::TDK_Success;
414  }
415
416  if (TemplateTemplateParmDecl *TempParam
417        = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
418    DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
419    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
420                                                 Deduced[TempParam->getIndex()],
421                                                                   NewDeduced);
422    if (Result.isNull()) {
423      Info.Param = TempParam;
424      Info.FirstArg = Deduced[TempParam->getIndex()];
425      Info.SecondArg = NewDeduced;
426      return Sema::TDK_Inconsistent;
427    }
428
429    Deduced[TempParam->getIndex()] = Result;
430    return Sema::TDK_Success;
431  }
432
433  // Verify that the two template names are equivalent.
434  if (S.Context.hasSameTemplateName(Param, Arg))
435    return Sema::TDK_Success;
436
437  // Mismatch of non-dependent template parameter to argument.
438  Info.FirstArg = TemplateArgument(Param);
439  Info.SecondArg = TemplateArgument(Arg);
440  return Sema::TDK_NonDeducedMismatch;
441}
442
443/// \brief Deduce the template arguments by comparing the template parameter
444/// type (which is a template-id) with the template argument type.
445///
446/// \param S the Sema
447///
448/// \param TemplateParams the template parameters that we are deducing
449///
450/// \param Param the parameter type
451///
452/// \param Arg the argument type
453///
454/// \param Info information about the template argument deduction itself
455///
456/// \param Deduced the deduced template arguments
457///
458/// \returns the result of template argument deduction so far. Note that a
459/// "success" result means that template argument deduction has not yet failed,
460/// but it may still fail, later, for other reasons.
461static Sema::TemplateDeductionResult
462DeduceTemplateArguments(Sema &S,
463                        TemplateParameterList *TemplateParams,
464                        const TemplateSpecializationType *Param,
465                        QualType Arg,
466                        TemplateDeductionInfo &Info,
467                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
468  assert(Arg.isCanonical() && "Argument type must be canonical");
469
470  // Check whether the template argument is a dependent template-id.
471  if (const TemplateSpecializationType *SpecArg
472        = dyn_cast<TemplateSpecializationType>(Arg)) {
473    // Perform template argument deduction for the template name.
474    if (Sema::TemplateDeductionResult Result
475          = DeduceTemplateArguments(S, TemplateParams,
476                                    Param->getTemplateName(),
477                                    SpecArg->getTemplateName(),
478                                    Info, Deduced))
479      return Result;
480
481
482    // Perform template argument deduction on each template
483    // argument. Ignore any missing/extra arguments, since they could be
484    // filled in by default arguments.
485    return DeduceTemplateArguments(S, TemplateParams,
486                                   Param->getArgs(), Param->getNumArgs(),
487                                   SpecArg->getArgs(), SpecArg->getNumArgs(),
488                                   Info, Deduced);
489  }
490
491  // If the argument type is a class template specialization, we
492  // perform template argument deduction using its template
493  // arguments.
494  const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
495  if (!RecordArg) {
496    Info.FirstArg = TemplateArgument(QualType(Param, 0));
497    Info.SecondArg = TemplateArgument(Arg);
498    return Sema::TDK_NonDeducedMismatch;
499  }
500
501  ClassTemplateSpecializationDecl *SpecArg
502    = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
503  if (!SpecArg) {
504    Info.FirstArg = TemplateArgument(QualType(Param, 0));
505    Info.SecondArg = TemplateArgument(Arg);
506    return Sema::TDK_NonDeducedMismatch;
507  }
508
509  // Perform template argument deduction for the template name.
510  if (Sema::TemplateDeductionResult Result
511        = DeduceTemplateArguments(S,
512                                  TemplateParams,
513                                  Param->getTemplateName(),
514                               TemplateName(SpecArg->getSpecializedTemplate()),
515                                  Info, Deduced))
516    return Result;
517
518  // Perform template argument deduction for the template arguments.
519  return DeduceTemplateArguments(S, TemplateParams,
520                                 Param->getArgs(), Param->getNumArgs(),
521                                 SpecArg->getTemplateArgs().data(),
522                                 SpecArg->getTemplateArgs().size(),
523                                 Info, Deduced);
524}
525
526/// \brief Determines whether the given type is an opaque type that
527/// might be more qualified when instantiated.
528static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
529  switch (T->getTypeClass()) {
530  case Type::TypeOfExpr:
531  case Type::TypeOf:
532  case Type::DependentName:
533  case Type::Decltype:
534  case Type::UnresolvedUsing:
535  case Type::TemplateTypeParm:
536    return true;
537
538  case Type::ConstantArray:
539  case Type::IncompleteArray:
540  case Type::VariableArray:
541  case Type::DependentSizedArray:
542    return IsPossiblyOpaquelyQualifiedType(
543                                      cast<ArrayType>(T)->getElementType());
544
545  default:
546    return false;
547  }
548}
549
550/// \brief Retrieve the depth and index of a template parameter.
551static std::pair<unsigned, unsigned>
552getDepthAndIndex(NamedDecl *ND) {
553  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
554    return std::make_pair(TTP->getDepth(), TTP->getIndex());
555
556  if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
557    return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
558
559  TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
560  return std::make_pair(TTP->getDepth(), TTP->getIndex());
561}
562
563/// \brief Retrieve the depth and index of an unexpanded parameter pack.
564static std::pair<unsigned, unsigned>
565getDepthAndIndex(UnexpandedParameterPack UPP) {
566  if (const TemplateTypeParmType *TTP
567                          = UPP.first.dyn_cast<const TemplateTypeParmType *>())
568    return std::make_pair(TTP->getDepth(), TTP->getIndex());
569
570  return getDepthAndIndex(UPP.first.get<NamedDecl *>());
571}
572
573/// \brief Helper function to build a TemplateParameter when we don't
574/// know its type statically.
575static TemplateParameter makeTemplateParameter(Decl *D) {
576  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
577    return TemplateParameter(TTP);
578  if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
579    return TemplateParameter(NTTP);
580
581  return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
582}
583
584typedef SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
585  NewlyDeducedPacksType;
586
587/// \brief Prepare to perform template argument deduction for all of the
588/// arguments in a set of argument packs.
589static void
590PrepareArgumentPackDeduction(Sema &S,
591                           SmallVectorImpl<DeducedTemplateArgument> &Deduced,
592                           ArrayRef<unsigned> PackIndices,
593                           SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
594                           NewlyDeducedPacksType &NewlyDeducedPacks) {
595  // Save the deduced template arguments for each parameter pack expanded
596  // by this pack expansion, then clear out the deduction.
597  for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
598    // Save the previously-deduced argument pack, then clear it out so that we
599    // can deduce a new argument pack.
600    SavedPacks[I] = Deduced[PackIndices[I]];
601    Deduced[PackIndices[I]] = TemplateArgument();
602
603    if (!S.CurrentInstantiationScope)
604      continue;
605
606    // If the template argument pack was explicitly specified, add that to
607    // the set of deduced arguments.
608    const TemplateArgument *ExplicitArgs;
609    unsigned NumExplicitArgs;
610    if (NamedDecl *PartiallySubstitutedPack
611        = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
612                                                           &ExplicitArgs,
613                                                           &NumExplicitArgs)) {
614      if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
615        NewlyDeducedPacks[I].append(ExplicitArgs,
616                                    ExplicitArgs + NumExplicitArgs);
617    }
618  }
619}
620
621/// \brief Finish template argument deduction for a set of argument packs,
622/// producing the argument packs and checking for consistency with prior
623/// deductions.
624static Sema::TemplateDeductionResult
625FinishArgumentPackDeduction(Sema &S,
626                           TemplateParameterList *TemplateParams,
627                           bool HasAnyArguments,
628                           SmallVectorImpl<DeducedTemplateArgument> &Deduced,
629                           ArrayRef<unsigned> PackIndices,
630                           SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
631                           NewlyDeducedPacksType &NewlyDeducedPacks,
632                           TemplateDeductionInfo &Info) {
633  // Build argument packs for each of the parameter packs expanded by this
634  // pack expansion.
635  for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
636    if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
637      // We were not able to deduce anything for this parameter pack,
638      // so just restore the saved argument pack.
639      Deduced[PackIndices[I]] = SavedPacks[I];
640      continue;
641    }
642
643    DeducedTemplateArgument NewPack;
644
645    if (NewlyDeducedPacks[I].empty()) {
646      // If we deduced an empty argument pack, create it now.
647      NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
648    } else {
649      TemplateArgument *ArgumentPack
650        = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
651      std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
652                ArgumentPack);
653      NewPack
654        = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
655                                                   NewlyDeducedPacks[I].size()),
656                            NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
657    }
658
659    DeducedTemplateArgument Result
660      = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
661    if (Result.isNull()) {
662      Info.Param
663        = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
664      Info.FirstArg = SavedPacks[I];
665      Info.SecondArg = NewPack;
666      return Sema::TDK_Inconsistent;
667    }
668
669    Deduced[PackIndices[I]] = Result;
670  }
671
672  return Sema::TDK_Success;
673}
674
675/// \brief Deduce the template arguments by comparing the list of parameter
676/// types to the list of argument types, as in the parameter-type-lists of
677/// function types (C++ [temp.deduct.type]p10).
678///
679/// \param S The semantic analysis object within which we are deducing
680///
681/// \param TemplateParams The template parameters that we are deducing
682///
683/// \param Params The list of parameter types
684///
685/// \param NumParams The number of types in \c Params
686///
687/// \param Args The list of argument types
688///
689/// \param NumArgs The number of types in \c Args
690///
691/// \param Info information about the template argument deduction itself
692///
693/// \param Deduced the deduced template arguments
694///
695/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
696/// how template argument deduction is performed.
697///
698/// \param PartialOrdering If true, we are performing template argument
699/// deduction for during partial ordering for a call
700/// (C++0x [temp.deduct.partial]).
701///
702/// \param RefParamComparisons If we're performing template argument deduction
703/// in the context of partial ordering, the set of qualifier comparisons.
704///
705/// \returns the result of template argument deduction so far. Note that a
706/// "success" result means that template argument deduction has not yet failed,
707/// but it may still fail, later, for other reasons.
708static Sema::TemplateDeductionResult
709DeduceTemplateArguments(Sema &S,
710                        TemplateParameterList *TemplateParams,
711                        const QualType *Params, unsigned NumParams,
712                        const QualType *Args, unsigned NumArgs,
713                        TemplateDeductionInfo &Info,
714                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
715                        unsigned TDF,
716                        bool PartialOrdering = false,
717                        SmallVectorImpl<RefParamPartialOrderingComparison> *
718                                                     RefParamComparisons = 0) {
719  // Fast-path check to see if we have too many/too few arguments.
720  if (NumParams != NumArgs &&
721      !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
722      !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
723    return Sema::TDK_MiscellaneousDeductionFailure;
724
725  // C++0x [temp.deduct.type]p10:
726  //   Similarly, if P has a form that contains (T), then each parameter type
727  //   Pi of the respective parameter-type- list of P is compared with the
728  //   corresponding parameter type Ai of the corresponding parameter-type-list
729  //   of A. [...]
730  unsigned ArgIdx = 0, ParamIdx = 0;
731  for (; ParamIdx != NumParams; ++ParamIdx) {
732    // Check argument types.
733    const PackExpansionType *Expansion
734                                = dyn_cast<PackExpansionType>(Params[ParamIdx]);
735    if (!Expansion) {
736      // Simple case: compare the parameter and argument types at this point.
737
738      // Make sure we have an argument.
739      if (ArgIdx >= NumArgs)
740        return Sema::TDK_MiscellaneousDeductionFailure;
741
742      if (isa<PackExpansionType>(Args[ArgIdx])) {
743        // C++0x [temp.deduct.type]p22:
744        //   If the original function parameter associated with A is a function
745        //   parameter pack and the function parameter associated with P is not
746        //   a function parameter pack, then template argument deduction fails.
747        return Sema::TDK_MiscellaneousDeductionFailure;
748      }
749
750      if (Sema::TemplateDeductionResult Result
751            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
752                                                 Params[ParamIdx], Args[ArgIdx],
753                                                 Info, Deduced, TDF,
754                                                 PartialOrdering,
755                                                 RefParamComparisons))
756        return Result;
757
758      ++ArgIdx;
759      continue;
760    }
761
762    // C++0x [temp.deduct.type]p5:
763    //   The non-deduced contexts are:
764    //     - A function parameter pack that does not occur at the end of the
765    //       parameter-declaration-clause.
766    if (ParamIdx + 1 < NumParams)
767      return Sema::TDK_Success;
768
769    // C++0x [temp.deduct.type]p10:
770    //   If the parameter-declaration corresponding to Pi is a function
771    //   parameter pack, then the type of its declarator- id is compared with
772    //   each remaining parameter type in the parameter-type-list of A. Each
773    //   comparison deduces template arguments for subsequent positions in the
774    //   template parameter packs expanded by the function parameter pack.
775
776    // Compute the set of template parameter indices that correspond to
777    // parameter packs expanded by the pack expansion.
778    SmallVector<unsigned, 2> PackIndices;
779    QualType Pattern = Expansion->getPattern();
780    {
781      llvm::SmallBitVector SawIndices(TemplateParams->size());
782      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
783      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
784      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
785        unsigned Depth, Index;
786        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
787        if (Depth == 0 && !SawIndices[Index]) {
788          SawIndices[Index] = true;
789          PackIndices.push_back(Index);
790        }
791      }
792    }
793    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
794
795    // Keep track of the deduced template arguments for each parameter pack
796    // expanded by this pack expansion (the outer index) and for each
797    // template argument (the inner SmallVectors).
798    NewlyDeducedPacksType NewlyDeducedPacks(PackIndices.size());
799    SmallVector<DeducedTemplateArgument, 2>
800      SavedPacks(PackIndices.size());
801    PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
802                                 NewlyDeducedPacks);
803
804    bool HasAnyArguments = false;
805    for (; ArgIdx < NumArgs; ++ArgIdx) {
806      HasAnyArguments = true;
807
808      // Deduce template arguments from the pattern.
809      if (Sema::TemplateDeductionResult Result
810            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
811                                                 Args[ArgIdx], Info, Deduced,
812                                                 TDF, PartialOrdering,
813                                                 RefParamComparisons))
814        return Result;
815
816      // Capture the deduced template arguments for each parameter pack expanded
817      // by this pack expansion, add them to the list of arguments we've deduced
818      // for that pack, then clear out the deduced argument.
819      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
820        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
821        if (!DeducedArg.isNull()) {
822          NewlyDeducedPacks[I].push_back(DeducedArg);
823          DeducedArg = DeducedTemplateArgument();
824        }
825      }
826    }
827
828    // Build argument packs for each of the parameter packs expanded by this
829    // pack expansion.
830    if (Sema::TemplateDeductionResult Result
831          = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
832                                        Deduced, PackIndices, SavedPacks,
833                                        NewlyDeducedPacks, Info))
834      return Result;
835  }
836
837  // Make sure we don't have any extra arguments.
838  if (ArgIdx < NumArgs)
839    return Sema::TDK_MiscellaneousDeductionFailure;
840
841  return Sema::TDK_Success;
842}
843
844/// \brief Determine whether the parameter has qualifiers that are either
845/// inconsistent with or a superset of the argument's qualifiers.
846static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
847                                                  QualType ArgType) {
848  Qualifiers ParamQs = ParamType.getQualifiers();
849  Qualifiers ArgQs = ArgType.getQualifiers();
850
851  if (ParamQs == ArgQs)
852    return false;
853
854  // Mismatched (but not missing) Objective-C GC attributes.
855  if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
856      ParamQs.hasObjCGCAttr())
857    return true;
858
859  // Mismatched (but not missing) address spaces.
860  if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
861      ParamQs.hasAddressSpace())
862    return true;
863
864  // Mismatched (but not missing) Objective-C lifetime qualifiers.
865  if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
866      ParamQs.hasObjCLifetime())
867    return true;
868
869  // CVR qualifier superset.
870  return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
871      ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
872                                                == ParamQs.getCVRQualifiers());
873}
874
875/// \brief Compare types for equality with respect to possibly compatible
876/// function types (noreturn adjustment, implicit calling conventions). If any
877/// of parameter and argument is not a function, just perform type comparison.
878///
879/// \param Param the template parameter type.
880///
881/// \param Arg the argument type.
882bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
883                                          CanQualType Arg) {
884  const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
885                     *ArgFunction   = Arg->getAs<FunctionType>();
886
887  // Just compare if not functions.
888  if (!ParamFunction || !ArgFunction)
889    return Param == Arg;
890
891  // Noreturn adjustment.
892  QualType AdjustedParam;
893  if (IsNoReturnConversion(Param, Arg, AdjustedParam))
894    return Arg == Context.getCanonicalType(AdjustedParam);
895
896  // FIXME: Compatible calling conventions.
897
898  return Param == Arg;
899}
900
901/// \brief Deduce the template arguments by comparing the parameter type and
902/// the argument type (C++ [temp.deduct.type]).
903///
904/// \param S the semantic analysis object within which we are deducing
905///
906/// \param TemplateParams the template parameters that we are deducing
907///
908/// \param ParamIn the parameter type
909///
910/// \param ArgIn the argument type
911///
912/// \param Info information about the template argument deduction itself
913///
914/// \param Deduced the deduced template arguments
915///
916/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
917/// how template argument deduction is performed.
918///
919/// \param PartialOrdering Whether we're performing template argument deduction
920/// in the context of partial ordering (C++0x [temp.deduct.partial]).
921///
922/// \param RefParamComparisons If we're performing template argument deduction
923/// in the context of partial ordering, the set of qualifier comparisons.
924///
925/// \returns the result of template argument deduction so far. Note that a
926/// "success" result means that template argument deduction has not yet failed,
927/// but it may still fail, later, for other reasons.
928static Sema::TemplateDeductionResult
929DeduceTemplateArgumentsByTypeMatch(Sema &S,
930                                   TemplateParameterList *TemplateParams,
931                                   QualType ParamIn, QualType ArgIn,
932                                   TemplateDeductionInfo &Info,
933                            SmallVectorImpl<DeducedTemplateArgument> &Deduced,
934                                   unsigned TDF,
935                                   bool PartialOrdering,
936                            SmallVectorImpl<RefParamPartialOrderingComparison> *
937                                                          RefParamComparisons) {
938  // We only want to look at the canonical types, since typedefs and
939  // sugar are not part of template argument deduction.
940  QualType Param = S.Context.getCanonicalType(ParamIn);
941  QualType Arg = S.Context.getCanonicalType(ArgIn);
942
943  // If the argument type is a pack expansion, look at its pattern.
944  // This isn't explicitly called out
945  if (const PackExpansionType *ArgExpansion
946                                            = dyn_cast<PackExpansionType>(Arg))
947    Arg = ArgExpansion->getPattern();
948
949  if (PartialOrdering) {
950    // C++0x [temp.deduct.partial]p5:
951    //   Before the partial ordering is done, certain transformations are
952    //   performed on the types used for partial ordering:
953    //     - If P is a reference type, P is replaced by the type referred to.
954    const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
955    if (ParamRef)
956      Param = ParamRef->getPointeeType();
957
958    //     - If A is a reference type, A is replaced by the type referred to.
959    const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
960    if (ArgRef)
961      Arg = ArgRef->getPointeeType();
962
963    if (RefParamComparisons && ParamRef && ArgRef) {
964      // C++0x [temp.deduct.partial]p6:
965      //   If both P and A were reference types (before being replaced with the
966      //   type referred to above), determine which of the two types (if any) is
967      //   more cv-qualified than the other; otherwise the types are considered
968      //   to be equally cv-qualified for partial ordering purposes. The result
969      //   of this determination will be used below.
970      //
971      // We save this information for later, using it only when deduction
972      // succeeds in both directions.
973      RefParamPartialOrderingComparison Comparison;
974      Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
975      Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
976      Comparison.Qualifiers = NeitherMoreQualified;
977
978      Qualifiers ParamQuals = Param.getQualifiers();
979      Qualifiers ArgQuals = Arg.getQualifiers();
980      if (ParamQuals.isStrictSupersetOf(ArgQuals))
981        Comparison.Qualifiers = ParamMoreQualified;
982      else if (ArgQuals.isStrictSupersetOf(ParamQuals))
983        Comparison.Qualifiers = ArgMoreQualified;
984      RefParamComparisons->push_back(Comparison);
985    }
986
987    // C++0x [temp.deduct.partial]p7:
988    //   Remove any top-level cv-qualifiers:
989    //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
990    //       version of P.
991    Param = Param.getUnqualifiedType();
992    //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
993    //       version of A.
994    Arg = Arg.getUnqualifiedType();
995  } else {
996    // C++0x [temp.deduct.call]p4 bullet 1:
997    //   - If the original P is a reference type, the deduced A (i.e., the type
998    //     referred to by the reference) can be more cv-qualified than the
999    //     transformed A.
1000    if (TDF & TDF_ParamWithReferenceType) {
1001      Qualifiers Quals;
1002      QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
1003      Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
1004                             Arg.getCVRQualifiers());
1005      Param = S.Context.getQualifiedType(UnqualParam, Quals);
1006    }
1007
1008    if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
1009      // C++0x [temp.deduct.type]p10:
1010      //   If P and A are function types that originated from deduction when
1011      //   taking the address of a function template (14.8.2.2) or when deducing
1012      //   template arguments from a function declaration (14.8.2.6) and Pi and
1013      //   Ai are parameters of the top-level parameter-type-list of P and A,
1014      //   respectively, Pi is adjusted if it is an rvalue reference to a
1015      //   cv-unqualified template parameter and Ai is an lvalue reference, in
1016      //   which case the type of Pi is changed to be the template parameter
1017      //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
1018      //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
1019      //   deduced as X&. - end note ]
1020      TDF &= ~TDF_TopLevelParameterTypeList;
1021
1022      if (const RValueReferenceType *ParamRef
1023                                        = Param->getAs<RValueReferenceType>()) {
1024        if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
1025            !ParamRef->getPointeeType().getQualifiers())
1026          if (Arg->isLValueReferenceType())
1027            Param = ParamRef->getPointeeType();
1028      }
1029    }
1030  }
1031
1032  // C++ [temp.deduct.type]p9:
1033  //   A template type argument T, a template template argument TT or a
1034  //   template non-type argument i can be deduced if P and A have one of
1035  //   the following forms:
1036  //
1037  //     T
1038  //     cv-list T
1039  if (const TemplateTypeParmType *TemplateTypeParm
1040        = Param->getAs<TemplateTypeParmType>()) {
1041    // Just skip any attempts to deduce from a placeholder type.
1042    if (Arg->isPlaceholderType())
1043      return Sema::TDK_Success;
1044
1045    unsigned Index = TemplateTypeParm->getIndex();
1046    bool RecanonicalizeArg = false;
1047
1048    // If the argument type is an array type, move the qualifiers up to the
1049    // top level, so they can be matched with the qualifiers on the parameter.
1050    if (isa<ArrayType>(Arg)) {
1051      Qualifiers Quals;
1052      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
1053      if (Quals) {
1054        Arg = S.Context.getQualifiedType(Arg, Quals);
1055        RecanonicalizeArg = true;
1056      }
1057    }
1058
1059    // The argument type can not be less qualified than the parameter
1060    // type.
1061    if (!(TDF & TDF_IgnoreQualifiers) &&
1062        hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
1063      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1064      Info.FirstArg = TemplateArgument(Param);
1065      Info.SecondArg = TemplateArgument(Arg);
1066      return Sema::TDK_Underqualified;
1067    }
1068
1069    assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
1070    assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1071    QualType DeducedType = Arg;
1072
1073    // Remove any qualifiers on the parameter from the deduced type.
1074    // We checked the qualifiers for consistency above.
1075    Qualifiers DeducedQs = DeducedType.getQualifiers();
1076    Qualifiers ParamQs = Param.getQualifiers();
1077    DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1078    if (ParamQs.hasObjCGCAttr())
1079      DeducedQs.removeObjCGCAttr();
1080    if (ParamQs.hasAddressSpace())
1081      DeducedQs.removeAddressSpace();
1082    if (ParamQs.hasObjCLifetime())
1083      DeducedQs.removeObjCLifetime();
1084
1085    // Objective-C ARC:
1086    //   If template deduction would produce a lifetime qualifier on a type
1087    //   that is not a lifetime type, template argument deduction fails.
1088    if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1089        !DeducedType->isDependentType()) {
1090      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1091      Info.FirstArg = TemplateArgument(Param);
1092      Info.SecondArg = TemplateArgument(Arg);
1093      return Sema::TDK_Underqualified;
1094    }
1095
1096    // Objective-C ARC:
1097    //   If template deduction would produce an argument type with lifetime type
1098    //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1099    if (S.getLangOpts().ObjCAutoRefCount &&
1100        DeducedType->isObjCLifetimeType() &&
1101        !DeducedQs.hasObjCLifetime())
1102      DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1103
1104    DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1105                                             DeducedQs);
1106
1107    if (RecanonicalizeArg)
1108      DeducedType = S.Context.getCanonicalType(DeducedType);
1109
1110    DeducedTemplateArgument NewDeduced(DeducedType);
1111    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1112                                                                 Deduced[Index],
1113                                                                   NewDeduced);
1114    if (Result.isNull()) {
1115      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1116      Info.FirstArg = Deduced[Index];
1117      Info.SecondArg = NewDeduced;
1118      return Sema::TDK_Inconsistent;
1119    }
1120
1121    Deduced[Index] = Result;
1122    return Sema::TDK_Success;
1123  }
1124
1125  // Set up the template argument deduction information for a failure.
1126  Info.FirstArg = TemplateArgument(ParamIn);
1127  Info.SecondArg = TemplateArgument(ArgIn);
1128
1129  // If the parameter is an already-substituted template parameter
1130  // pack, do nothing: we don't know which of its arguments to look
1131  // at, so we have to wait until all of the parameter packs in this
1132  // expansion have arguments.
1133  if (isa<SubstTemplateTypeParmPackType>(Param))
1134    return Sema::TDK_Success;
1135
1136  // Check the cv-qualifiers on the parameter and argument types.
1137  CanQualType CanParam = S.Context.getCanonicalType(Param);
1138  CanQualType CanArg = S.Context.getCanonicalType(Arg);
1139  if (!(TDF & TDF_IgnoreQualifiers)) {
1140    if (TDF & TDF_ParamWithReferenceType) {
1141      if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1142        return Sema::TDK_NonDeducedMismatch;
1143    } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1144      if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1145        return Sema::TDK_NonDeducedMismatch;
1146    }
1147
1148    // If the parameter type is not dependent, there is nothing to deduce.
1149    if (!Param->isDependentType()) {
1150      if (!(TDF & TDF_SkipNonDependent)) {
1151        bool NonDeduced = (TDF & TDF_InOverloadResolution)?
1152                          !S.isSameOrCompatibleFunctionType(CanParam, CanArg) :
1153                          Param != Arg;
1154        if (NonDeduced) {
1155          return Sema::TDK_NonDeducedMismatch;
1156        }
1157      }
1158      return Sema::TDK_Success;
1159    }
1160  } else if (!Param->isDependentType()) {
1161    CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
1162                ArgUnqualType = CanArg.getUnqualifiedType();
1163    bool Success = (TDF & TDF_InOverloadResolution)?
1164                   S.isSameOrCompatibleFunctionType(ParamUnqualType,
1165                                                    ArgUnqualType) :
1166                   ParamUnqualType == ArgUnqualType;
1167    if (Success)
1168      return Sema::TDK_Success;
1169  }
1170
1171  switch (Param->getTypeClass()) {
1172    // Non-canonical types cannot appear here.
1173#define NON_CANONICAL_TYPE(Class, Base) \
1174  case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1175#define TYPE(Class, Base)
1176#include "clang/AST/TypeNodes.def"
1177
1178    case Type::TemplateTypeParm:
1179    case Type::SubstTemplateTypeParmPack:
1180      llvm_unreachable("Type nodes handled above");
1181
1182    // These types cannot be dependent, so simply check whether the types are
1183    // the same.
1184    case Type::Builtin:
1185    case Type::VariableArray:
1186    case Type::Vector:
1187    case Type::FunctionNoProto:
1188    case Type::Record:
1189    case Type::Enum:
1190    case Type::ObjCObject:
1191    case Type::ObjCInterface:
1192    case Type::ObjCObjectPointer: {
1193      if (TDF & TDF_SkipNonDependent)
1194        return Sema::TDK_Success;
1195
1196      if (TDF & TDF_IgnoreQualifiers) {
1197        Param = Param.getUnqualifiedType();
1198        Arg = Arg.getUnqualifiedType();
1199      }
1200
1201      return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
1202    }
1203
1204    //     _Complex T   [placeholder extension]
1205    case Type::Complex:
1206      if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1207        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1208                                    cast<ComplexType>(Param)->getElementType(),
1209                                    ComplexArg->getElementType(),
1210                                    Info, Deduced, TDF);
1211
1212      return Sema::TDK_NonDeducedMismatch;
1213
1214    //     _Atomic T   [extension]
1215    case Type::Atomic:
1216      if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
1217        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1218                                       cast<AtomicType>(Param)->getValueType(),
1219                                       AtomicArg->getValueType(),
1220                                       Info, Deduced, TDF);
1221
1222      return Sema::TDK_NonDeducedMismatch;
1223
1224    //     T *
1225    case Type::Pointer: {
1226      QualType PointeeType;
1227      if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1228        PointeeType = PointerArg->getPointeeType();
1229      } else if (const ObjCObjectPointerType *PointerArg
1230                   = Arg->getAs<ObjCObjectPointerType>()) {
1231        PointeeType = PointerArg->getPointeeType();
1232      } else {
1233        return Sema::TDK_NonDeducedMismatch;
1234      }
1235
1236      unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1237      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1238                                     cast<PointerType>(Param)->getPointeeType(),
1239                                     PointeeType,
1240                                     Info, Deduced, SubTDF);
1241    }
1242
1243    //     T &
1244    case Type::LValueReference: {
1245      const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
1246      if (!ReferenceArg)
1247        return Sema::TDK_NonDeducedMismatch;
1248
1249      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1250                           cast<LValueReferenceType>(Param)->getPointeeType(),
1251                           ReferenceArg->getPointeeType(), Info, Deduced, 0);
1252    }
1253
1254    //     T && [C++0x]
1255    case Type::RValueReference: {
1256      const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
1257      if (!ReferenceArg)
1258        return Sema::TDK_NonDeducedMismatch;
1259
1260      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1261                             cast<RValueReferenceType>(Param)->getPointeeType(),
1262                             ReferenceArg->getPointeeType(),
1263                             Info, Deduced, 0);
1264    }
1265
1266    //     T [] (implied, but not stated explicitly)
1267    case Type::IncompleteArray: {
1268      const IncompleteArrayType *IncompleteArrayArg =
1269        S.Context.getAsIncompleteArrayType(Arg);
1270      if (!IncompleteArrayArg)
1271        return Sema::TDK_NonDeducedMismatch;
1272
1273      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1274      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1275                    S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1276                    IncompleteArrayArg->getElementType(),
1277                    Info, Deduced, SubTDF);
1278    }
1279
1280    //     T [integer-constant]
1281    case Type::ConstantArray: {
1282      const ConstantArrayType *ConstantArrayArg =
1283        S.Context.getAsConstantArrayType(Arg);
1284      if (!ConstantArrayArg)
1285        return Sema::TDK_NonDeducedMismatch;
1286
1287      const ConstantArrayType *ConstantArrayParm =
1288        S.Context.getAsConstantArrayType(Param);
1289      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1290        return Sema::TDK_NonDeducedMismatch;
1291
1292      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1293      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1294                                           ConstantArrayParm->getElementType(),
1295                                           ConstantArrayArg->getElementType(),
1296                                           Info, Deduced, SubTDF);
1297    }
1298
1299    //     type [i]
1300    case Type::DependentSizedArray: {
1301      const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1302      if (!ArrayArg)
1303        return Sema::TDK_NonDeducedMismatch;
1304
1305      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1306
1307      // Check the element type of the arrays
1308      const DependentSizedArrayType *DependentArrayParm
1309        = S.Context.getAsDependentSizedArrayType(Param);
1310      if (Sema::TemplateDeductionResult Result
1311            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1312                                          DependentArrayParm->getElementType(),
1313                                          ArrayArg->getElementType(),
1314                                          Info, Deduced, SubTDF))
1315        return Result;
1316
1317      // Determine the array bound is something we can deduce.
1318      NonTypeTemplateParmDecl *NTTP
1319        = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
1320      if (!NTTP)
1321        return Sema::TDK_Success;
1322
1323      // We can perform template argument deduction for the given non-type
1324      // template parameter.
1325      assert(NTTP->getDepth() == 0 &&
1326             "Cannot deduce non-type template argument at depth > 0");
1327      if (const ConstantArrayType *ConstantArrayArg
1328            = dyn_cast<ConstantArrayType>(ArrayArg)) {
1329        llvm::APSInt Size(ConstantArrayArg->getSize());
1330        return DeduceNonTypeTemplateArgument(S, NTTP, Size,
1331                                             S.Context.getSizeType(),
1332                                             /*ArrayBound=*/true,
1333                                             Info, Deduced);
1334      }
1335      if (const DependentSizedArrayType *DependentArrayArg
1336            = dyn_cast<DependentSizedArrayType>(ArrayArg))
1337        if (DependentArrayArg->getSizeExpr())
1338          return DeduceNonTypeTemplateArgument(S, NTTP,
1339                                               DependentArrayArg->getSizeExpr(),
1340                                               Info, Deduced);
1341
1342      // Incomplete type does not match a dependently-sized array type
1343      return Sema::TDK_NonDeducedMismatch;
1344    }
1345
1346    //     type(*)(T)
1347    //     T(*)()
1348    //     T(*)(T)
1349    case Type::FunctionProto: {
1350      unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1351      const FunctionProtoType *FunctionProtoArg =
1352        dyn_cast<FunctionProtoType>(Arg);
1353      if (!FunctionProtoArg)
1354        return Sema::TDK_NonDeducedMismatch;
1355
1356      const FunctionProtoType *FunctionProtoParam =
1357        cast<FunctionProtoType>(Param);
1358
1359      if (FunctionProtoParam->getTypeQuals()
1360            != FunctionProtoArg->getTypeQuals() ||
1361          FunctionProtoParam->getRefQualifier()
1362            != FunctionProtoArg->getRefQualifier() ||
1363          FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1364        return Sema::TDK_NonDeducedMismatch;
1365
1366      // Check return types.
1367      if (Sema::TemplateDeductionResult Result
1368            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1369                                            FunctionProtoParam->getResultType(),
1370                                            FunctionProtoArg->getResultType(),
1371                                            Info, Deduced, 0))
1372        return Result;
1373
1374      return DeduceTemplateArguments(S, TemplateParams,
1375                                     FunctionProtoParam->arg_type_begin(),
1376                                     FunctionProtoParam->getNumArgs(),
1377                                     FunctionProtoArg->arg_type_begin(),
1378                                     FunctionProtoArg->getNumArgs(),
1379                                     Info, Deduced, SubTDF);
1380    }
1381
1382    case Type::InjectedClassName: {
1383      // Treat a template's injected-class-name as if the template
1384      // specialization type had been used.
1385      Param = cast<InjectedClassNameType>(Param)
1386        ->getInjectedSpecializationType();
1387      assert(isa<TemplateSpecializationType>(Param) &&
1388             "injected class name is not a template specialization type");
1389      // fall through
1390    }
1391
1392    //     template-name<T> (where template-name refers to a class template)
1393    //     template-name<i>
1394    //     TT<T>
1395    //     TT<i>
1396    //     TT<>
1397    case Type::TemplateSpecialization: {
1398      const TemplateSpecializationType *SpecParam
1399        = cast<TemplateSpecializationType>(Param);
1400
1401      // Try to deduce template arguments from the template-id.
1402      Sema::TemplateDeductionResult Result
1403        = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
1404                                  Info, Deduced);
1405
1406      if (Result && (TDF & TDF_DerivedClass)) {
1407        // C++ [temp.deduct.call]p3b3:
1408        //   If P is a class, and P has the form template-id, then A can be a
1409        //   derived class of the deduced A. Likewise, if P is a pointer to a
1410        //   class of the form template-id, A can be a pointer to a derived
1411        //   class pointed to by the deduced A.
1412        //
1413        // More importantly:
1414        //   These alternatives are considered only if type deduction would
1415        //   otherwise fail.
1416        if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
1417          // We cannot inspect base classes as part of deduction when the type
1418          // is incomplete, so either instantiate any templates necessary to
1419          // complete the type, or skip over it if it cannot be completed.
1420          if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
1421            return Result;
1422
1423          // Use data recursion to crawl through the list of base classes.
1424          // Visited contains the set of nodes we have already visited, while
1425          // ToVisit is our stack of records that we still need to visit.
1426          llvm::SmallPtrSet<const RecordType *, 8> Visited;
1427          SmallVector<const RecordType *, 8> ToVisit;
1428          ToVisit.push_back(RecordT);
1429          bool Successful = false;
1430          SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1431                                                              Deduced.end());
1432          while (!ToVisit.empty()) {
1433            // Retrieve the next class in the inheritance hierarchy.
1434            const RecordType *NextT = ToVisit.back();
1435            ToVisit.pop_back();
1436
1437            // If we have already seen this type, skip it.
1438            if (!Visited.insert(NextT))
1439              continue;
1440
1441            // If this is a base class, try to perform template argument
1442            // deduction from it.
1443            if (NextT != RecordT) {
1444              TemplateDeductionInfo BaseInfo(Info.getLocation());
1445              Sema::TemplateDeductionResult BaseResult
1446                = DeduceTemplateArguments(S, TemplateParams, SpecParam,
1447                                          QualType(NextT, 0), BaseInfo,
1448                                          Deduced);
1449
1450              // If template argument deduction for this base was successful,
1451              // note that we had some success. Otherwise, ignore any deductions
1452              // from this base class.
1453              if (BaseResult == Sema::TDK_Success) {
1454                Successful = true;
1455                DeducedOrig.clear();
1456                DeducedOrig.append(Deduced.begin(), Deduced.end());
1457                Info.Param = BaseInfo.Param;
1458                Info.FirstArg = BaseInfo.FirstArg;
1459                Info.SecondArg = BaseInfo.SecondArg;
1460              }
1461              else
1462                Deduced = DeducedOrig;
1463            }
1464
1465            // Visit base classes
1466            CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1467            for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
1468                                                 BaseEnd = Next->bases_end();
1469                 Base != BaseEnd; ++Base) {
1470              assert(Base->getType()->isRecordType() &&
1471                     "Base class that isn't a record?");
1472              ToVisit.push_back(Base->getType()->getAs<RecordType>());
1473            }
1474          }
1475
1476          if (Successful)
1477            return Sema::TDK_Success;
1478        }
1479
1480      }
1481
1482      return Result;
1483    }
1484
1485    //     T type::*
1486    //     T T::*
1487    //     T (type::*)()
1488    //     type (T::*)()
1489    //     type (type::*)(T)
1490    //     type (T::*)(T)
1491    //     T (type::*)(T)
1492    //     T (T::*)()
1493    //     T (T::*)(T)
1494    case Type::MemberPointer: {
1495      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1496      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1497      if (!MemPtrArg)
1498        return Sema::TDK_NonDeducedMismatch;
1499
1500      if (Sema::TemplateDeductionResult Result
1501            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1502                                                 MemPtrParam->getPointeeType(),
1503                                                 MemPtrArg->getPointeeType(),
1504                                                 Info, Deduced,
1505                                                 TDF & TDF_IgnoreQualifiers))
1506        return Result;
1507
1508      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1509                                           QualType(MemPtrParam->getClass(), 0),
1510                                           QualType(MemPtrArg->getClass(), 0),
1511                                           Info, Deduced,
1512                                           TDF & TDF_IgnoreQualifiers);
1513    }
1514
1515    //     (clang extension)
1516    //
1517    //     type(^)(T)
1518    //     T(^)()
1519    //     T(^)(T)
1520    case Type::BlockPointer: {
1521      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1522      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1523
1524      if (!BlockPtrArg)
1525        return Sema::TDK_NonDeducedMismatch;
1526
1527      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1528                                                BlockPtrParam->getPointeeType(),
1529                                                BlockPtrArg->getPointeeType(),
1530                                                Info, Deduced, 0);
1531    }
1532
1533    //     (clang extension)
1534    //
1535    //     T __attribute__(((ext_vector_type(<integral constant>))))
1536    case Type::ExtVector: {
1537      const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1538      if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1539        // Make sure that the vectors have the same number of elements.
1540        if (VectorParam->getNumElements() != VectorArg->getNumElements())
1541          return Sema::TDK_NonDeducedMismatch;
1542
1543        // Perform deduction on the element types.
1544        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1545                                                  VectorParam->getElementType(),
1546                                                  VectorArg->getElementType(),
1547                                                  Info, Deduced, TDF);
1548      }
1549
1550      if (const DependentSizedExtVectorType *VectorArg
1551                                = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1552        // We can't check the number of elements, since the argument has a
1553        // dependent number of elements. This can only occur during partial
1554        // ordering.
1555
1556        // Perform deduction on the element types.
1557        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1558                                                  VectorParam->getElementType(),
1559                                                  VectorArg->getElementType(),
1560                                                  Info, Deduced, TDF);
1561      }
1562
1563      return Sema::TDK_NonDeducedMismatch;
1564    }
1565
1566    //     (clang extension)
1567    //
1568    //     T __attribute__(((ext_vector_type(N))))
1569    case Type::DependentSizedExtVector: {
1570      const DependentSizedExtVectorType *VectorParam
1571        = cast<DependentSizedExtVectorType>(Param);
1572
1573      if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1574        // Perform deduction on the element types.
1575        if (Sema::TemplateDeductionResult Result
1576              = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1577                                                  VectorParam->getElementType(),
1578                                                   VectorArg->getElementType(),
1579                                                   Info, Deduced, TDF))
1580          return Result;
1581
1582        // Perform deduction on the vector size, if we can.
1583        NonTypeTemplateParmDecl *NTTP
1584          = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1585        if (!NTTP)
1586          return Sema::TDK_Success;
1587
1588        llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1589        ArgSize = VectorArg->getNumElements();
1590        return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
1591                                             false, Info, Deduced);
1592      }
1593
1594      if (const DependentSizedExtVectorType *VectorArg
1595                                = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1596        // Perform deduction on the element types.
1597        if (Sema::TemplateDeductionResult Result
1598            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1599                                                 VectorParam->getElementType(),
1600                                                 VectorArg->getElementType(),
1601                                                 Info, Deduced, TDF))
1602          return Result;
1603
1604        // Perform deduction on the vector size, if we can.
1605        NonTypeTemplateParmDecl *NTTP
1606          = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1607        if (!NTTP)
1608          return Sema::TDK_Success;
1609
1610        return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
1611                                             Info, Deduced);
1612      }
1613
1614      return Sema::TDK_NonDeducedMismatch;
1615    }
1616
1617    case Type::TypeOfExpr:
1618    case Type::TypeOf:
1619    case Type::DependentName:
1620    case Type::UnresolvedUsing:
1621    case Type::Decltype:
1622    case Type::UnaryTransform:
1623    case Type::Auto:
1624    case Type::DependentTemplateSpecialization:
1625    case Type::PackExpansion:
1626      // No template argument deduction for these types
1627      return Sema::TDK_Success;
1628  }
1629
1630  llvm_unreachable("Invalid Type Class!");
1631}
1632
1633static Sema::TemplateDeductionResult
1634DeduceTemplateArguments(Sema &S,
1635                        TemplateParameterList *TemplateParams,
1636                        const TemplateArgument &Param,
1637                        TemplateArgument Arg,
1638                        TemplateDeductionInfo &Info,
1639                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1640  // If the template argument is a pack expansion, perform template argument
1641  // deduction against the pattern of that expansion. This only occurs during
1642  // partial ordering.
1643  if (Arg.isPackExpansion())
1644    Arg = Arg.getPackExpansionPattern();
1645
1646  switch (Param.getKind()) {
1647  case TemplateArgument::Null:
1648    llvm_unreachable("Null template argument in parameter list");
1649
1650  case TemplateArgument::Type:
1651    if (Arg.getKind() == TemplateArgument::Type)
1652      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1653                                                Param.getAsType(),
1654                                                Arg.getAsType(),
1655                                                Info, Deduced, 0);
1656    Info.FirstArg = Param;
1657    Info.SecondArg = Arg;
1658    return Sema::TDK_NonDeducedMismatch;
1659
1660  case TemplateArgument::Template:
1661    if (Arg.getKind() == TemplateArgument::Template)
1662      return DeduceTemplateArguments(S, TemplateParams,
1663                                     Param.getAsTemplate(),
1664                                     Arg.getAsTemplate(), Info, Deduced);
1665    Info.FirstArg = Param;
1666    Info.SecondArg = Arg;
1667    return Sema::TDK_NonDeducedMismatch;
1668
1669  case TemplateArgument::TemplateExpansion:
1670    llvm_unreachable("caller should handle pack expansions");
1671
1672  case TemplateArgument::Declaration:
1673    if (Arg.getKind() == TemplateArgument::Declaration &&
1674        isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()) &&
1675        Param.isDeclForReferenceParam() == Arg.isDeclForReferenceParam())
1676      return Sema::TDK_Success;
1677
1678    Info.FirstArg = Param;
1679    Info.SecondArg = Arg;
1680    return Sema::TDK_NonDeducedMismatch;
1681
1682  case TemplateArgument::NullPtr:
1683    if (Arg.getKind() == TemplateArgument::NullPtr &&
1684        S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
1685      return Sema::TDK_Success;
1686
1687    Info.FirstArg = Param;
1688    Info.SecondArg = Arg;
1689    return Sema::TDK_NonDeducedMismatch;
1690
1691  case TemplateArgument::Integral:
1692    if (Arg.getKind() == TemplateArgument::Integral) {
1693      if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
1694        return Sema::TDK_Success;
1695
1696      Info.FirstArg = Param;
1697      Info.SecondArg = Arg;
1698      return Sema::TDK_NonDeducedMismatch;
1699    }
1700
1701    if (Arg.getKind() == TemplateArgument::Expression) {
1702      Info.FirstArg = Param;
1703      Info.SecondArg = Arg;
1704      return Sema::TDK_NonDeducedMismatch;
1705    }
1706
1707    Info.FirstArg = Param;
1708    Info.SecondArg = Arg;
1709    return Sema::TDK_NonDeducedMismatch;
1710
1711  case TemplateArgument::Expression: {
1712    if (NonTypeTemplateParmDecl *NTTP
1713          = getDeducedParameterFromExpr(Param.getAsExpr())) {
1714      if (Arg.getKind() == TemplateArgument::Integral)
1715        return DeduceNonTypeTemplateArgument(S, NTTP,
1716                                             Arg.getAsIntegral(),
1717                                             Arg.getIntegralType(),
1718                                             /*ArrayBound=*/false,
1719                                             Info, Deduced);
1720      if (Arg.getKind() == TemplateArgument::Expression)
1721        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
1722                                             Info, Deduced);
1723      if (Arg.getKind() == TemplateArgument::Declaration)
1724        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
1725                                             Info, Deduced);
1726
1727      Info.FirstArg = Param;
1728      Info.SecondArg = Arg;
1729      return Sema::TDK_NonDeducedMismatch;
1730    }
1731
1732    // Can't deduce anything, but that's okay.
1733    return Sema::TDK_Success;
1734  }
1735  case TemplateArgument::Pack:
1736    llvm_unreachable("Argument packs should be expanded by the caller!");
1737  }
1738
1739  llvm_unreachable("Invalid TemplateArgument Kind!");
1740}
1741
1742/// \brief Determine whether there is a template argument to be used for
1743/// deduction.
1744///
1745/// This routine "expands" argument packs in-place, overriding its input
1746/// parameters so that \c Args[ArgIdx] will be the available template argument.
1747///
1748/// \returns true if there is another template argument (which will be at
1749/// \c Args[ArgIdx]), false otherwise.
1750static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
1751                                            unsigned &ArgIdx,
1752                                            unsigned &NumArgs) {
1753  if (ArgIdx == NumArgs)
1754    return false;
1755
1756  const TemplateArgument &Arg = Args[ArgIdx];
1757  if (Arg.getKind() != TemplateArgument::Pack)
1758    return true;
1759
1760  assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
1761  Args = Arg.pack_begin();
1762  NumArgs = Arg.pack_size();
1763  ArgIdx = 0;
1764  return ArgIdx < NumArgs;
1765}
1766
1767/// \brief Determine whether the given set of template arguments has a pack
1768/// expansion that is not the last template argument.
1769static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
1770                                      unsigned NumArgs) {
1771  unsigned ArgIdx = 0;
1772  while (ArgIdx < NumArgs) {
1773    const TemplateArgument &Arg = Args[ArgIdx];
1774
1775    // Unwrap argument packs.
1776    if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
1777      Args = Arg.pack_begin();
1778      NumArgs = Arg.pack_size();
1779      ArgIdx = 0;
1780      continue;
1781    }
1782
1783    ++ArgIdx;
1784    if (ArgIdx == NumArgs)
1785      return false;
1786
1787    if (Arg.isPackExpansion())
1788      return true;
1789  }
1790
1791  return false;
1792}
1793
1794static Sema::TemplateDeductionResult
1795DeduceTemplateArguments(Sema &S,
1796                        TemplateParameterList *TemplateParams,
1797                        const TemplateArgument *Params, unsigned NumParams,
1798                        const TemplateArgument *Args, unsigned NumArgs,
1799                        TemplateDeductionInfo &Info,
1800                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1801  // C++0x [temp.deduct.type]p9:
1802  //   If the template argument list of P contains a pack expansion that is not
1803  //   the last template argument, the entire template argument list is a
1804  //   non-deduced context.
1805  if (hasPackExpansionBeforeEnd(Params, NumParams))
1806    return Sema::TDK_Success;
1807
1808  // C++0x [temp.deduct.type]p9:
1809  //   If P has a form that contains <T> or <i>, then each argument Pi of the
1810  //   respective template argument list P is compared with the corresponding
1811  //   argument Ai of the corresponding template argument list of A.
1812  unsigned ArgIdx = 0, ParamIdx = 0;
1813  for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
1814       ++ParamIdx) {
1815    if (!Params[ParamIdx].isPackExpansion()) {
1816      // The simple case: deduce template arguments by matching Pi and Ai.
1817
1818      // Check whether we have enough arguments.
1819      if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1820        return Sema::TDK_Success;
1821
1822      if (Args[ArgIdx].isPackExpansion()) {
1823        // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
1824        // but applied to pack expansions that are template arguments.
1825        return Sema::TDK_MiscellaneousDeductionFailure;
1826      }
1827
1828      // Perform deduction for this Pi/Ai pair.
1829      if (Sema::TemplateDeductionResult Result
1830            = DeduceTemplateArguments(S, TemplateParams,
1831                                      Params[ParamIdx], Args[ArgIdx],
1832                                      Info, Deduced))
1833        return Result;
1834
1835      // Move to the next argument.
1836      ++ArgIdx;
1837      continue;
1838    }
1839
1840    // The parameter is a pack expansion.
1841
1842    // C++0x [temp.deduct.type]p9:
1843    //   If Pi is a pack expansion, then the pattern of Pi is compared with
1844    //   each remaining argument in the template argument list of A. Each
1845    //   comparison deduces template arguments for subsequent positions in the
1846    //   template parameter packs expanded by Pi.
1847    TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
1848
1849    // Compute the set of template parameter indices that correspond to
1850    // parameter packs expanded by the pack expansion.
1851    SmallVector<unsigned, 2> PackIndices;
1852    {
1853      llvm::SmallBitVector SawIndices(TemplateParams->size());
1854      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
1855      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
1856      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
1857        unsigned Depth, Index;
1858        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
1859        if (Depth == 0 && !SawIndices[Index]) {
1860          SawIndices[Index] = true;
1861          PackIndices.push_back(Index);
1862        }
1863      }
1864    }
1865    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
1866
1867    // FIXME: If there are no remaining arguments, we can bail out early
1868    // and set any deduced parameter packs to an empty argument pack.
1869    // The latter part of this is a (minor) correctness issue.
1870
1871    // Save the deduced template arguments for each parameter pack expanded
1872    // by this pack expansion, then clear out the deduction.
1873    SmallVector<DeducedTemplateArgument, 2>
1874      SavedPacks(PackIndices.size());
1875    NewlyDeducedPacksType NewlyDeducedPacks(PackIndices.size());
1876    PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
1877                                 NewlyDeducedPacks);
1878
1879    // Keep track of the deduced template arguments for each parameter pack
1880    // expanded by this pack expansion (the outer index) and for each
1881    // template argument (the inner SmallVectors).
1882    bool HasAnyArguments = false;
1883    while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
1884      HasAnyArguments = true;
1885
1886      // Deduce template arguments from the pattern.
1887      if (Sema::TemplateDeductionResult Result
1888            = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
1889                                      Info, Deduced))
1890        return Result;
1891
1892      // Capture the deduced template arguments for each parameter pack expanded
1893      // by this pack expansion, add them to the list of arguments we've deduced
1894      // for that pack, then clear out the deduced argument.
1895      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1896        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
1897        if (!DeducedArg.isNull()) {
1898          NewlyDeducedPacks[I].push_back(DeducedArg);
1899          DeducedArg = DeducedTemplateArgument();
1900        }
1901      }
1902
1903      ++ArgIdx;
1904    }
1905
1906    // Build argument packs for each of the parameter packs expanded by this
1907    // pack expansion.
1908    if (Sema::TemplateDeductionResult Result
1909          = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
1910                                        Deduced, PackIndices, SavedPacks,
1911                                        NewlyDeducedPacks, Info))
1912      return Result;
1913  }
1914
1915  return Sema::TDK_Success;
1916}
1917
1918static Sema::TemplateDeductionResult
1919DeduceTemplateArguments(Sema &S,
1920                        TemplateParameterList *TemplateParams,
1921                        const TemplateArgumentList &ParamList,
1922                        const TemplateArgumentList &ArgList,
1923                        TemplateDeductionInfo &Info,
1924                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1925  return DeduceTemplateArguments(S, TemplateParams,
1926                                 ParamList.data(), ParamList.size(),
1927                                 ArgList.data(), ArgList.size(),
1928                                 Info, Deduced);
1929}
1930
1931/// \brief Determine whether two template arguments are the same.
1932static bool isSameTemplateArg(ASTContext &Context,
1933                              const TemplateArgument &X,
1934                              const TemplateArgument &Y) {
1935  if (X.getKind() != Y.getKind())
1936    return false;
1937
1938  switch (X.getKind()) {
1939    case TemplateArgument::Null:
1940      llvm_unreachable("Comparing NULL template argument");
1941
1942    case TemplateArgument::Type:
1943      return Context.getCanonicalType(X.getAsType()) ==
1944             Context.getCanonicalType(Y.getAsType());
1945
1946    case TemplateArgument::Declaration:
1947      return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
1948             X.isDeclForReferenceParam() == Y.isDeclForReferenceParam();
1949
1950    case TemplateArgument::NullPtr:
1951      return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
1952
1953    case TemplateArgument::Template:
1954    case TemplateArgument::TemplateExpansion:
1955      return Context.getCanonicalTemplateName(
1956                    X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
1957             Context.getCanonicalTemplateName(
1958                    Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
1959
1960    case TemplateArgument::Integral:
1961      return X.getAsIntegral() == Y.getAsIntegral();
1962
1963    case TemplateArgument::Expression: {
1964      llvm::FoldingSetNodeID XID, YID;
1965      X.getAsExpr()->Profile(XID, Context, true);
1966      Y.getAsExpr()->Profile(YID, Context, true);
1967      return XID == YID;
1968    }
1969
1970    case TemplateArgument::Pack:
1971      if (X.pack_size() != Y.pack_size())
1972        return false;
1973
1974      for (TemplateArgument::pack_iterator XP = X.pack_begin(),
1975                                        XPEnd = X.pack_end(),
1976                                           YP = Y.pack_begin();
1977           XP != XPEnd; ++XP, ++YP)
1978        if (!isSameTemplateArg(Context, *XP, *YP))
1979          return false;
1980
1981      return true;
1982  }
1983
1984  llvm_unreachable("Invalid TemplateArgument Kind!");
1985}
1986
1987/// \brief Allocate a TemplateArgumentLoc where all locations have
1988/// been initialized to the given location.
1989///
1990/// \param S The semantic analysis object.
1991///
1992/// \param Arg The template argument we are producing template argument
1993/// location information for.
1994///
1995/// \param NTTPType For a declaration template argument, the type of
1996/// the non-type template parameter that corresponds to this template
1997/// argument.
1998///
1999/// \param Loc The source location to use for the resulting template
2000/// argument.
2001static TemplateArgumentLoc
2002getTrivialTemplateArgumentLoc(Sema &S,
2003                              const TemplateArgument &Arg,
2004                              QualType NTTPType,
2005                              SourceLocation Loc) {
2006  switch (Arg.getKind()) {
2007  case TemplateArgument::Null:
2008    llvm_unreachable("Can't get a NULL template argument here");
2009
2010  case TemplateArgument::Type:
2011    return TemplateArgumentLoc(Arg,
2012                     S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
2013
2014  case TemplateArgument::Declaration: {
2015    Expr *E
2016      = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2017          .takeAs<Expr>();
2018    return TemplateArgumentLoc(TemplateArgument(E), E);
2019  }
2020
2021  case TemplateArgument::NullPtr: {
2022    Expr *E
2023      = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2024          .takeAs<Expr>();
2025    return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
2026                               E);
2027  }
2028
2029  case TemplateArgument::Integral: {
2030    Expr *E
2031      = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
2032    return TemplateArgumentLoc(TemplateArgument(E), E);
2033  }
2034
2035    case TemplateArgument::Template:
2036    case TemplateArgument::TemplateExpansion: {
2037      NestedNameSpecifierLocBuilder Builder;
2038      TemplateName Template = Arg.getAsTemplate();
2039      if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
2040        Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
2041      else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2042        Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
2043
2044      if (Arg.getKind() == TemplateArgument::Template)
2045        return TemplateArgumentLoc(Arg,
2046                                   Builder.getWithLocInContext(S.Context),
2047                                   Loc);
2048
2049
2050      return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
2051                                 Loc, Loc);
2052    }
2053
2054  case TemplateArgument::Expression:
2055    return TemplateArgumentLoc(Arg, Arg.getAsExpr());
2056
2057  case TemplateArgument::Pack:
2058    return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
2059  }
2060
2061  llvm_unreachable("Invalid TemplateArgument Kind!");
2062}
2063
2064
2065/// \brief Convert the given deduced template argument and add it to the set of
2066/// fully-converted template arguments.
2067static bool
2068ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
2069                               DeducedTemplateArgument Arg,
2070                               NamedDecl *Template,
2071                               QualType NTTPType,
2072                               unsigned ArgumentPackIndex,
2073                               TemplateDeductionInfo &Info,
2074                               bool InFunctionTemplate,
2075                               SmallVectorImpl<TemplateArgument> &Output) {
2076  if (Arg.getKind() == TemplateArgument::Pack) {
2077    // This is a template argument pack, so check each of its arguments against
2078    // the template parameter.
2079    SmallVector<TemplateArgument, 2> PackedArgsBuilder;
2080    for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
2081                                      PAEnd = Arg.pack_end();
2082         PA != PAEnd; ++PA) {
2083      // When converting the deduced template argument, append it to the
2084      // general output list. We need to do this so that the template argument
2085      // checking logic has all of the prior template arguments available.
2086      DeducedTemplateArgument InnerArg(*PA);
2087      InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
2088      if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
2089                                         NTTPType, PackedArgsBuilder.size(),
2090                                         Info, InFunctionTemplate, Output))
2091        return true;
2092
2093      // Move the converted template argument into our argument pack.
2094      PackedArgsBuilder.push_back(Output.back());
2095      Output.pop_back();
2096    }
2097
2098    // Create the resulting argument pack.
2099    Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
2100                                                      PackedArgsBuilder.data(),
2101                                                     PackedArgsBuilder.size()));
2102    return false;
2103  }
2104
2105  // Convert the deduced template argument into a template
2106  // argument that we can check, almost as if the user had written
2107  // the template argument explicitly.
2108  TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
2109                                                             Info.getLocation());
2110
2111  // Check the template argument, converting it as necessary.
2112  return S.CheckTemplateArgument(Param, ArgLoc,
2113                                 Template,
2114                                 Template->getLocation(),
2115                                 Template->getSourceRange().getEnd(),
2116                                 ArgumentPackIndex,
2117                                 Output,
2118                                 InFunctionTemplate
2119                                  ? (Arg.wasDeducedFromArrayBound()
2120                                       ? Sema::CTAK_DeducedFromArrayBound
2121                                       : Sema::CTAK_Deduced)
2122                                 : Sema::CTAK_Specified);
2123}
2124
2125/// Complete template argument deduction for a class template partial
2126/// specialization.
2127static Sema::TemplateDeductionResult
2128FinishTemplateArgumentDeduction(Sema &S,
2129                                ClassTemplatePartialSpecializationDecl *Partial,
2130                                const TemplateArgumentList &TemplateArgs,
2131                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2132                                TemplateDeductionInfo &Info) {
2133  // Unevaluated SFINAE context.
2134  EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
2135  Sema::SFINAETrap Trap(S);
2136
2137  Sema::ContextRAII SavedContext(S, Partial);
2138
2139  // C++ [temp.deduct.type]p2:
2140  //   [...] or if any template argument remains neither deduced nor
2141  //   explicitly specified, template argument deduction fails.
2142  SmallVector<TemplateArgument, 4> Builder;
2143  TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2144  for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2145    NamedDecl *Param = PartialParams->getParam(I);
2146    if (Deduced[I].isNull()) {
2147      Info.Param = makeTemplateParameter(Param);
2148      return Sema::TDK_Incomplete;
2149    }
2150
2151    // We have deduced this argument, so it still needs to be
2152    // checked and converted.
2153
2154    // First, for a non-type template parameter type that is
2155    // initialized by a declaration, we need the type of the
2156    // corresponding non-type template parameter.
2157    QualType NTTPType;
2158    if (NonTypeTemplateParmDecl *NTTP
2159                                  = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2160      NTTPType = NTTP->getType();
2161      if (NTTPType->isDependentType()) {
2162        TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2163                                          Builder.data(), Builder.size());
2164        NTTPType = S.SubstType(NTTPType,
2165                               MultiLevelTemplateArgumentList(TemplateArgs),
2166                               NTTP->getLocation(),
2167                               NTTP->getDeclName());
2168        if (NTTPType.isNull()) {
2169          Info.Param = makeTemplateParameter(Param);
2170          // FIXME: These template arguments are temporary. Free them!
2171          Info.reset(TemplateArgumentList::CreateCopy(S.Context,
2172                                                      Builder.data(),
2173                                                      Builder.size()));
2174          return Sema::TDK_SubstitutionFailure;
2175        }
2176      }
2177    }
2178
2179    if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
2180                                       Partial, NTTPType, 0, Info, false,
2181                                       Builder)) {
2182      Info.Param = makeTemplateParameter(Param);
2183      // FIXME: These template arguments are temporary. Free them!
2184      Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2185                                                  Builder.size()));
2186      return Sema::TDK_SubstitutionFailure;
2187    }
2188  }
2189
2190  // Form the template argument list from the deduced template arguments.
2191  TemplateArgumentList *DeducedArgumentList
2192    = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2193                                       Builder.size());
2194
2195  Info.reset(DeducedArgumentList);
2196
2197  // Substitute the deduced template arguments into the template
2198  // arguments of the class template partial specialization, and
2199  // verify that the instantiated template arguments are both valid
2200  // and are equivalent to the template arguments originally provided
2201  // to the class template.
2202  LocalInstantiationScope InstScope(S);
2203  ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
2204  const TemplateArgumentLoc *PartialTemplateArgs
2205    = Partial->getTemplateArgsAsWritten();
2206
2207  // Note that we don't provide the langle and rangle locations.
2208  TemplateArgumentListInfo InstArgs;
2209
2210  if (S.Subst(PartialTemplateArgs,
2211              Partial->getNumTemplateArgsAsWritten(),
2212              InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2213    unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2214    if (ParamIdx >= Partial->getTemplateParameters()->size())
2215      ParamIdx = Partial->getTemplateParameters()->size() - 1;
2216
2217    Decl *Param
2218      = const_cast<NamedDecl *>(
2219                          Partial->getTemplateParameters()->getParam(ParamIdx));
2220    Info.Param = makeTemplateParameter(Param);
2221    Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2222    return Sema::TDK_SubstitutionFailure;
2223  }
2224
2225  SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2226  if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
2227                                  InstArgs, false, ConvertedInstArgs))
2228    return Sema::TDK_SubstitutionFailure;
2229
2230  TemplateParameterList *TemplateParams
2231    = ClassTemplate->getTemplateParameters();
2232  for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2233    TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2234    if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2235      Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2236      Info.FirstArg = TemplateArgs[I];
2237      Info.SecondArg = InstArg;
2238      return Sema::TDK_NonDeducedMismatch;
2239    }
2240  }
2241
2242  if (Trap.hasErrorOccurred())
2243    return Sema::TDK_SubstitutionFailure;
2244
2245  return Sema::TDK_Success;
2246}
2247
2248/// \brief Perform template argument deduction to determine whether
2249/// the given template arguments match the given class template
2250/// partial specialization per C++ [temp.class.spec.match].
2251Sema::TemplateDeductionResult
2252Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2253                              const TemplateArgumentList &TemplateArgs,
2254                              TemplateDeductionInfo &Info) {
2255  if (Partial->isInvalidDecl())
2256    return TDK_Invalid;
2257
2258  // C++ [temp.class.spec.match]p2:
2259  //   A partial specialization matches a given actual template
2260  //   argument list if the template arguments of the partial
2261  //   specialization can be deduced from the actual template argument
2262  //   list (14.8.2).
2263
2264  // Unevaluated SFINAE context.
2265  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2266  SFINAETrap Trap(*this);
2267
2268  SmallVector<DeducedTemplateArgument, 4> Deduced;
2269  Deduced.resize(Partial->getTemplateParameters()->size());
2270  if (TemplateDeductionResult Result
2271        = ::DeduceTemplateArguments(*this,
2272                                    Partial->getTemplateParameters(),
2273                                    Partial->getTemplateArgs(),
2274                                    TemplateArgs, Info, Deduced))
2275    return Result;
2276
2277  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2278  InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
2279                             DeducedArgs, Info);
2280  if (Inst)
2281    return TDK_InstantiationDepth;
2282
2283  if (Trap.hasErrorOccurred())
2284    return Sema::TDK_SubstitutionFailure;
2285
2286  return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2287                                           Deduced, Info);
2288}
2289
2290/// \brief Determine whether the given type T is a simple-template-id type.
2291static bool isSimpleTemplateIdType(QualType T) {
2292  if (const TemplateSpecializationType *Spec
2293        = T->getAs<TemplateSpecializationType>())
2294    return Spec->getTemplateName().getAsTemplateDecl() != 0;
2295
2296  return false;
2297}
2298
2299/// \brief Substitute the explicitly-provided template arguments into the
2300/// given function template according to C++ [temp.arg.explicit].
2301///
2302/// \param FunctionTemplate the function template into which the explicit
2303/// template arguments will be substituted.
2304///
2305/// \param ExplicitTemplateArgs the explicitly-specified template
2306/// arguments.
2307///
2308/// \param Deduced the deduced template arguments, which will be populated
2309/// with the converted and checked explicit template arguments.
2310///
2311/// \param ParamTypes will be populated with the instantiated function
2312/// parameters.
2313///
2314/// \param FunctionType if non-NULL, the result type of the function template
2315/// will also be instantiated and the pointed-to value will be updated with
2316/// the instantiated function type.
2317///
2318/// \param Info if substitution fails for any reason, this object will be
2319/// populated with more information about the failure.
2320///
2321/// \returns TDK_Success if substitution was successful, or some failure
2322/// condition.
2323Sema::TemplateDeductionResult
2324Sema::SubstituteExplicitTemplateArguments(
2325                                      FunctionTemplateDecl *FunctionTemplate,
2326                               TemplateArgumentListInfo &ExplicitTemplateArgs,
2327                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2328                                 SmallVectorImpl<QualType> &ParamTypes,
2329                                          QualType *FunctionType,
2330                                          TemplateDeductionInfo &Info) {
2331  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2332  TemplateParameterList *TemplateParams
2333    = FunctionTemplate->getTemplateParameters();
2334
2335  if (ExplicitTemplateArgs.size() == 0) {
2336    // No arguments to substitute; just copy over the parameter types and
2337    // fill in the function type.
2338    for (FunctionDecl::param_iterator P = Function->param_begin(),
2339                                   PEnd = Function->param_end();
2340         P != PEnd;
2341         ++P)
2342      ParamTypes.push_back((*P)->getType());
2343
2344    if (FunctionType)
2345      *FunctionType = Function->getType();
2346    return TDK_Success;
2347  }
2348
2349  // Unevaluated SFINAE context.
2350  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2351  SFINAETrap Trap(*this);
2352
2353  // C++ [temp.arg.explicit]p3:
2354  //   Template arguments that are present shall be specified in the
2355  //   declaration order of their corresponding template-parameters. The
2356  //   template argument list shall not specify more template-arguments than
2357  //   there are corresponding template-parameters.
2358  SmallVector<TemplateArgument, 4> Builder;
2359
2360  // Enter a new template instantiation context where we check the
2361  // explicitly-specified template arguments against this function template,
2362  // and then substitute them into the function parameter types.
2363  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2364  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2365                             FunctionTemplate, DeducedArgs,
2366           ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
2367                             Info);
2368  if (Inst)
2369    return TDK_InstantiationDepth;
2370
2371  if (CheckTemplateArgumentList(FunctionTemplate,
2372                                SourceLocation(),
2373                                ExplicitTemplateArgs,
2374                                true,
2375                                Builder) || Trap.hasErrorOccurred()) {
2376    unsigned Index = Builder.size();
2377    if (Index >= TemplateParams->size())
2378      Index = TemplateParams->size() - 1;
2379    Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
2380    return TDK_InvalidExplicitArguments;
2381  }
2382
2383  // Form the template argument list from the explicitly-specified
2384  // template arguments.
2385  TemplateArgumentList *ExplicitArgumentList
2386    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2387  Info.reset(ExplicitArgumentList);
2388
2389  // Template argument deduction and the final substitution should be
2390  // done in the context of the templated declaration.  Explicit
2391  // argument substitution, on the other hand, needs to happen in the
2392  // calling context.
2393  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2394
2395  // If we deduced template arguments for a template parameter pack,
2396  // note that the template argument pack is partially substituted and record
2397  // the explicit template arguments. They'll be used as part of deduction
2398  // for this template parameter pack.
2399  for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
2400    const TemplateArgument &Arg = Builder[I];
2401    if (Arg.getKind() == TemplateArgument::Pack) {
2402      CurrentInstantiationScope->SetPartiallySubstitutedPack(
2403                                                 TemplateParams->getParam(I),
2404                                                             Arg.pack_begin(),
2405                                                             Arg.pack_size());
2406      break;
2407    }
2408  }
2409
2410  const FunctionProtoType *Proto
2411    = Function->getType()->getAs<FunctionProtoType>();
2412  assert(Proto && "Function template does not have a prototype?");
2413
2414  // Instantiate the types of each of the function parameters given the
2415  // explicitly-specified template arguments. If the function has a trailing
2416  // return type, substitute it after the arguments to ensure we substitute
2417  // in lexical order.
2418  if (Proto->hasTrailingReturn()) {
2419    if (SubstParmTypes(Function->getLocation(),
2420                       Function->param_begin(), Function->getNumParams(),
2421                       MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2422                       ParamTypes))
2423      return TDK_SubstitutionFailure;
2424  }
2425
2426  // Instantiate the return type.
2427  // FIXME: exception-specifications?
2428  QualType ResultType;
2429  {
2430    // C++11 [expr.prim.general]p3:
2431    //   If a declaration declares a member function or member function
2432    //   template of a class X, the expression this is a prvalue of type
2433    //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
2434    //   and the end of the function-definition, member-declarator, or
2435    //   declarator.
2436    unsigned ThisTypeQuals = 0;
2437    CXXRecordDecl *ThisContext = 0;
2438    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2439      ThisContext = Method->getParent();
2440      ThisTypeQuals = Method->getTypeQualifiers();
2441    }
2442
2443    CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
2444                               getLangOpts().CPlusPlus11);
2445
2446    ResultType = SubstType(Proto->getResultType(),
2447                   MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2448                   Function->getTypeSpecStartLoc(),
2449                   Function->getDeclName());
2450    if (ResultType.isNull() || Trap.hasErrorOccurred())
2451      return TDK_SubstitutionFailure;
2452  }
2453
2454  // Instantiate the types of each of the function parameters given the
2455  // explicitly-specified template arguments if we didn't do so earlier.
2456  if (!Proto->hasTrailingReturn() &&
2457      SubstParmTypes(Function->getLocation(),
2458                     Function->param_begin(), Function->getNumParams(),
2459                     MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2460                     ParamTypes))
2461    return TDK_SubstitutionFailure;
2462
2463  if (FunctionType) {
2464    *FunctionType = BuildFunctionType(ResultType, ParamTypes,
2465                                      Function->getLocation(),
2466                                      Function->getDeclName(),
2467                                      Proto->getExtProtoInfo());
2468    if (FunctionType->isNull() || Trap.hasErrorOccurred())
2469      return TDK_SubstitutionFailure;
2470  }
2471
2472  // C++ [temp.arg.explicit]p2:
2473  //   Trailing template arguments that can be deduced (14.8.2) may be
2474  //   omitted from the list of explicit template-arguments. If all of the
2475  //   template arguments can be deduced, they may all be omitted; in this
2476  //   case, the empty template argument list <> itself may also be omitted.
2477  //
2478  // Take all of the explicitly-specified arguments and put them into
2479  // the set of deduced template arguments. Explicitly-specified
2480  // parameter packs, however, will be set to NULL since the deduction
2481  // mechanisms handle explicitly-specified argument packs directly.
2482  Deduced.reserve(TemplateParams->size());
2483  for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
2484    const TemplateArgument &Arg = ExplicitArgumentList->get(I);
2485    if (Arg.getKind() == TemplateArgument::Pack)
2486      Deduced.push_back(DeducedTemplateArgument());
2487    else
2488      Deduced.push_back(Arg);
2489  }
2490
2491  return TDK_Success;
2492}
2493
2494/// \brief Check whether the deduced argument type for a call to a function
2495/// template matches the actual argument type per C++ [temp.deduct.call]p4.
2496static bool
2497CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
2498                              QualType DeducedA) {
2499  ASTContext &Context = S.Context;
2500
2501  QualType A = OriginalArg.OriginalArgType;
2502  QualType OriginalParamType = OriginalArg.OriginalParamType;
2503
2504  // Check for type equality (top-level cv-qualifiers are ignored).
2505  if (Context.hasSameUnqualifiedType(A, DeducedA))
2506    return false;
2507
2508  // Strip off references on the argument types; they aren't needed for
2509  // the following checks.
2510  if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
2511    DeducedA = DeducedARef->getPointeeType();
2512  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
2513    A = ARef->getPointeeType();
2514
2515  // C++ [temp.deduct.call]p4:
2516  //   [...] However, there are three cases that allow a difference:
2517  //     - If the original P is a reference type, the deduced A (i.e., the
2518  //       type referred to by the reference) can be more cv-qualified than
2519  //       the transformed A.
2520  if (const ReferenceType *OriginalParamRef
2521      = OriginalParamType->getAs<ReferenceType>()) {
2522    // We don't want to keep the reference around any more.
2523    OriginalParamType = OriginalParamRef->getPointeeType();
2524
2525    Qualifiers AQuals = A.getQualifiers();
2526    Qualifiers DeducedAQuals = DeducedA.getQualifiers();
2527
2528    // Under Objective-C++ ARC, the deduced type may have implicitly been
2529    // given strong lifetime. If so, update the original qualifiers to
2530    // include this strong lifetime.
2531    if (S.getLangOpts().ObjCAutoRefCount &&
2532        DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
2533        AQuals.getObjCLifetime() == Qualifiers::OCL_None) {
2534      AQuals.setObjCLifetime(Qualifiers::OCL_Strong);
2535    }
2536
2537    if (AQuals == DeducedAQuals) {
2538      // Qualifiers match; there's nothing to do.
2539    } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
2540      return true;
2541    } else {
2542      // Qualifiers are compatible, so have the argument type adopt the
2543      // deduced argument type's qualifiers as if we had performed the
2544      // qualification conversion.
2545      A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
2546    }
2547  }
2548
2549  //    - The transformed A can be another pointer or pointer to member
2550  //      type that can be converted to the deduced A via a qualification
2551  //      conversion.
2552  //
2553  // Also allow conversions which merely strip [[noreturn]] from function types
2554  // (recursively) as an extension.
2555  // FIXME: Currently, this doesn't place nicely with qualfication conversions.
2556  bool ObjCLifetimeConversion = false;
2557  QualType ResultTy;
2558  if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
2559      (S.IsQualificationConversion(A, DeducedA, false,
2560                                   ObjCLifetimeConversion) ||
2561       S.IsNoReturnConversion(A, DeducedA, ResultTy)))
2562    return false;
2563
2564
2565  //    - If P is a class and P has the form simple-template-id, then the
2566  //      transformed A can be a derived class of the deduced A. [...]
2567  //     [...] Likewise, if P is a pointer to a class of the form
2568  //      simple-template-id, the transformed A can be a pointer to a
2569  //      derived class pointed to by the deduced A.
2570  if (const PointerType *OriginalParamPtr
2571      = OriginalParamType->getAs<PointerType>()) {
2572    if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
2573      if (const PointerType *APtr = A->getAs<PointerType>()) {
2574        if (A->getPointeeType()->isRecordType()) {
2575          OriginalParamType = OriginalParamPtr->getPointeeType();
2576          DeducedA = DeducedAPtr->getPointeeType();
2577          A = APtr->getPointeeType();
2578        }
2579      }
2580    }
2581  }
2582
2583  if (Context.hasSameUnqualifiedType(A, DeducedA))
2584    return false;
2585
2586  if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
2587      S.IsDerivedFrom(A, DeducedA))
2588    return false;
2589
2590  return true;
2591}
2592
2593/// \brief Finish template argument deduction for a function template,
2594/// checking the deduced template arguments for completeness and forming
2595/// the function template specialization.
2596///
2597/// \param OriginalCallArgs If non-NULL, the original call arguments against
2598/// which the deduced argument types should be compared.
2599Sema::TemplateDeductionResult
2600Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
2601                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2602                                      unsigned NumExplicitlySpecified,
2603                                      FunctionDecl *&Specialization,
2604                                      TemplateDeductionInfo &Info,
2605        SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
2606  TemplateParameterList *TemplateParams
2607    = FunctionTemplate->getTemplateParameters();
2608
2609  // Unevaluated SFINAE context.
2610  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2611  SFINAETrap Trap(*this);
2612
2613  // Enter a new template instantiation context while we instantiate the
2614  // actual function declaration.
2615  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2616  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2617                             FunctionTemplate, DeducedArgs,
2618              ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
2619                             Info);
2620  if (Inst)
2621    return TDK_InstantiationDepth;
2622
2623  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2624
2625  // C++ [temp.deduct.type]p2:
2626  //   [...] or if any template argument remains neither deduced nor
2627  //   explicitly specified, template argument deduction fails.
2628  SmallVector<TemplateArgument, 4> Builder;
2629  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2630    NamedDecl *Param = TemplateParams->getParam(I);
2631
2632    if (!Deduced[I].isNull()) {
2633      if (I < NumExplicitlySpecified) {
2634        // We have already fully type-checked and converted this
2635        // argument, because it was explicitly-specified. Just record the
2636        // presence of this argument.
2637        Builder.push_back(Deduced[I]);
2638        continue;
2639      }
2640
2641      // We have deduced this argument, so it still needs to be
2642      // checked and converted.
2643
2644      // First, for a non-type template parameter type that is
2645      // initialized by a declaration, we need the type of the
2646      // corresponding non-type template parameter.
2647      QualType NTTPType;
2648      if (NonTypeTemplateParmDecl *NTTP
2649                                = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2650        NTTPType = NTTP->getType();
2651        if (NTTPType->isDependentType()) {
2652          TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2653                                            Builder.data(), Builder.size());
2654          NTTPType = SubstType(NTTPType,
2655                               MultiLevelTemplateArgumentList(TemplateArgs),
2656                               NTTP->getLocation(),
2657                               NTTP->getDeclName());
2658          if (NTTPType.isNull()) {
2659            Info.Param = makeTemplateParameter(Param);
2660            // FIXME: These template arguments are temporary. Free them!
2661            Info.reset(TemplateArgumentList::CreateCopy(Context,
2662                                                        Builder.data(),
2663                                                        Builder.size()));
2664            return TDK_SubstitutionFailure;
2665          }
2666        }
2667      }
2668
2669      if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
2670                                         FunctionTemplate, NTTPType, 0, Info,
2671                                         true, Builder)) {
2672        Info.Param = makeTemplateParameter(Param);
2673        // FIXME: These template arguments are temporary. Free them!
2674        Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2675                                                    Builder.size()));
2676        return TDK_SubstitutionFailure;
2677      }
2678
2679      continue;
2680    }
2681
2682    // C++0x [temp.arg.explicit]p3:
2683    //    A trailing template parameter pack (14.5.3) not otherwise deduced will
2684    //    be deduced to an empty sequence of template arguments.
2685    // FIXME: Where did the word "trailing" come from?
2686    if (Param->isTemplateParameterPack()) {
2687      // We may have had explicitly-specified template arguments for this
2688      // template parameter pack. If so, our empty deduction extends the
2689      // explicitly-specified set (C++0x [temp.arg.explicit]p9).
2690      const TemplateArgument *ExplicitArgs;
2691      unsigned NumExplicitArgs;
2692      if (CurrentInstantiationScope &&
2693          CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
2694                                                             &NumExplicitArgs)
2695            == Param) {
2696        Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
2697
2698        // Forget the partially-substituted pack; it's substitution is now
2699        // complete.
2700        CurrentInstantiationScope->ResetPartiallySubstitutedPack();
2701      } else {
2702        Builder.push_back(TemplateArgument::getEmptyPack());
2703      }
2704      continue;
2705    }
2706
2707    // Substitute into the default template argument, if available.
2708    bool HasDefaultArg = false;
2709    TemplateArgumentLoc DefArg
2710      = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
2711                                              FunctionTemplate->getLocation(),
2712                                  FunctionTemplate->getSourceRange().getEnd(),
2713                                                Param,
2714                                                Builder, HasDefaultArg);
2715
2716    // If there was no default argument, deduction is incomplete.
2717    if (DefArg.getArgument().isNull()) {
2718      Info.Param = makeTemplateParameter(
2719                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2720      Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2721                                                  Builder.size()));
2722      return HasDefaultArg ? TDK_SubstitutionFailure : TDK_Incomplete;
2723    }
2724
2725    // Check whether we can actually use the default argument.
2726    if (CheckTemplateArgument(Param, DefArg,
2727                              FunctionTemplate,
2728                              FunctionTemplate->getLocation(),
2729                              FunctionTemplate->getSourceRange().getEnd(),
2730                              0, Builder,
2731                              CTAK_Specified)) {
2732      Info.Param = makeTemplateParameter(
2733                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2734      // FIXME: These template arguments are temporary. Free them!
2735      Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2736                                                  Builder.size()));
2737      return TDK_SubstitutionFailure;
2738    }
2739
2740    // If we get here, we successfully used the default template argument.
2741  }
2742
2743  // Form the template argument list from the deduced template arguments.
2744  TemplateArgumentList *DeducedArgumentList
2745    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2746  Info.reset(DeducedArgumentList);
2747
2748  // Substitute the deduced template arguments into the function template
2749  // declaration to produce the function template specialization.
2750  DeclContext *Owner = FunctionTemplate->getDeclContext();
2751  if (FunctionTemplate->getFriendObjectKind())
2752    Owner = FunctionTemplate->getLexicalDeclContext();
2753  Specialization = cast_or_null<FunctionDecl>(
2754                      SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
2755                         MultiLevelTemplateArgumentList(*DeducedArgumentList)));
2756  if (!Specialization || Specialization->isInvalidDecl())
2757    return TDK_SubstitutionFailure;
2758
2759  assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
2760         FunctionTemplate->getCanonicalDecl());
2761
2762  // If the template argument list is owned by the function template
2763  // specialization, release it.
2764  if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
2765      !Trap.hasErrorOccurred())
2766    Info.take();
2767
2768  // There may have been an error that did not prevent us from constructing a
2769  // declaration. Mark the declaration invalid and return with a substitution
2770  // failure.
2771  if (Trap.hasErrorOccurred()) {
2772    Specialization->setInvalidDecl(true);
2773    return TDK_SubstitutionFailure;
2774  }
2775
2776  if (OriginalCallArgs) {
2777    // C++ [temp.deduct.call]p4:
2778    //   In general, the deduction process attempts to find template argument
2779    //   values that will make the deduced A identical to A (after the type A
2780    //   is transformed as described above). [...]
2781    for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
2782      OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
2783      unsigned ParamIdx = OriginalArg.ArgIdx;
2784
2785      if (ParamIdx >= Specialization->getNumParams())
2786        continue;
2787
2788      QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
2789      if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
2790        return Sema::TDK_SubstitutionFailure;
2791    }
2792  }
2793
2794  // If we suppressed any diagnostics while performing template argument
2795  // deduction, and if we haven't already instantiated this declaration,
2796  // keep track of these diagnostics. They'll be emitted if this specialization
2797  // is actually used.
2798  if (Info.diag_begin() != Info.diag_end()) {
2799    SuppressedDiagnosticsMap::iterator
2800      Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
2801    if (Pos == SuppressedDiagnostics.end())
2802        SuppressedDiagnostics[Specialization->getCanonicalDecl()]
2803          .append(Info.diag_begin(), Info.diag_end());
2804  }
2805
2806  return TDK_Success;
2807}
2808
2809/// Gets the type of a function for template-argument-deducton
2810/// purposes when it's considered as part of an overload set.
2811static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
2812                                  FunctionDecl *Fn) {
2813  // We may need to deduce the return type of the function now.
2814  if (S.getLangOpts().CPlusPlus1y && Fn->getResultType()->isUndeducedType() &&
2815      S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/false))
2816    return QualType();
2817
2818  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
2819    if (Method->isInstance()) {
2820      // An instance method that's referenced in a form that doesn't
2821      // look like a member pointer is just invalid.
2822      if (!R.HasFormOfMemberPointer) return QualType();
2823
2824      return S.Context.getMemberPointerType(Fn->getType(),
2825               S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
2826    }
2827
2828  if (!R.IsAddressOfOperand) return Fn->getType();
2829  return S.Context.getPointerType(Fn->getType());
2830}
2831
2832/// Apply the deduction rules for overload sets.
2833///
2834/// \return the null type if this argument should be treated as an
2835/// undeduced context
2836static QualType
2837ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
2838                            Expr *Arg, QualType ParamType,
2839                            bool ParamWasReference) {
2840
2841  OverloadExpr::FindResult R = OverloadExpr::find(Arg);
2842
2843  OverloadExpr *Ovl = R.Expression;
2844
2845  // C++0x [temp.deduct.call]p4
2846  unsigned TDF = 0;
2847  if (ParamWasReference)
2848    TDF |= TDF_ParamWithReferenceType;
2849  if (R.IsAddressOfOperand)
2850    TDF |= TDF_IgnoreQualifiers;
2851
2852  // C++0x [temp.deduct.call]p6:
2853  //   When P is a function type, pointer to function type, or pointer
2854  //   to member function type:
2855
2856  if (!ParamType->isFunctionType() &&
2857      !ParamType->isFunctionPointerType() &&
2858      !ParamType->isMemberFunctionPointerType()) {
2859    if (Ovl->hasExplicitTemplateArgs()) {
2860      // But we can still look for an explicit specialization.
2861      if (FunctionDecl *ExplicitSpec
2862            = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
2863        return GetTypeOfFunction(S, R, ExplicitSpec);
2864    }
2865
2866    return QualType();
2867  }
2868
2869  // Gather the explicit template arguments, if any.
2870  TemplateArgumentListInfo ExplicitTemplateArgs;
2871  if (Ovl->hasExplicitTemplateArgs())
2872    Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
2873  QualType Match;
2874  for (UnresolvedSetIterator I = Ovl->decls_begin(),
2875         E = Ovl->decls_end(); I != E; ++I) {
2876    NamedDecl *D = (*I)->getUnderlyingDecl();
2877
2878    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
2879      //   - If the argument is an overload set containing one or more
2880      //     function templates, the parameter is treated as a
2881      //     non-deduced context.
2882      if (!Ovl->hasExplicitTemplateArgs())
2883        return QualType();
2884
2885      // Otherwise, see if we can resolve a function type
2886      FunctionDecl *Specialization = 0;
2887      TemplateDeductionInfo Info(Ovl->getNameLoc());
2888      if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
2889                                    Specialization, Info))
2890        continue;
2891
2892      D = Specialization;
2893    }
2894
2895    FunctionDecl *Fn = cast<FunctionDecl>(D);
2896    QualType ArgType = GetTypeOfFunction(S, R, Fn);
2897    if (ArgType.isNull()) continue;
2898
2899    // Function-to-pointer conversion.
2900    if (!ParamWasReference && ParamType->isPointerType() &&
2901        ArgType->isFunctionType())
2902      ArgType = S.Context.getPointerType(ArgType);
2903
2904    //   - If the argument is an overload set (not containing function
2905    //     templates), trial argument deduction is attempted using each
2906    //     of the members of the set. If deduction succeeds for only one
2907    //     of the overload set members, that member is used as the
2908    //     argument value for the deduction. If deduction succeeds for
2909    //     more than one member of the overload set the parameter is
2910    //     treated as a non-deduced context.
2911
2912    // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
2913    //   Type deduction is done independently for each P/A pair, and
2914    //   the deduced template argument values are then combined.
2915    // So we do not reject deductions which were made elsewhere.
2916    SmallVector<DeducedTemplateArgument, 8>
2917      Deduced(TemplateParams->size());
2918    TemplateDeductionInfo Info(Ovl->getNameLoc());
2919    Sema::TemplateDeductionResult Result
2920      = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
2921                                           ArgType, Info, Deduced, TDF);
2922    if (Result) continue;
2923    if (!Match.isNull()) return QualType();
2924    Match = ArgType;
2925  }
2926
2927  return Match;
2928}
2929
2930/// \brief Perform the adjustments to the parameter and argument types
2931/// described in C++ [temp.deduct.call].
2932///
2933/// \returns true if the caller should not attempt to perform any template
2934/// argument deduction based on this P/A pair because the argument is an
2935/// overloaded function set that could not be resolved.
2936static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
2937                                          TemplateParameterList *TemplateParams,
2938                                                      QualType &ParamType,
2939                                                      QualType &ArgType,
2940                                                      Expr *Arg,
2941                                                      unsigned &TDF) {
2942  // C++0x [temp.deduct.call]p3:
2943  //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
2944  //   are ignored for type deduction.
2945  if (ParamType.hasQualifiers())
2946    ParamType = ParamType.getUnqualifiedType();
2947  const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
2948  if (ParamRefType) {
2949    QualType PointeeType = ParamRefType->getPointeeType();
2950
2951    // If the argument has incomplete array type, try to complete its type.
2952    if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
2953      ArgType = Arg->getType();
2954
2955    //   [C++0x] If P is an rvalue reference to a cv-unqualified
2956    //   template parameter and the argument is an lvalue, the type
2957    //   "lvalue reference to A" is used in place of A for type
2958    //   deduction.
2959    if (isa<RValueReferenceType>(ParamType)) {
2960      if (!PointeeType.getQualifiers() &&
2961          isa<TemplateTypeParmType>(PointeeType) &&
2962          Arg->Classify(S.Context).isLValue() &&
2963          Arg->getType() != S.Context.OverloadTy &&
2964          Arg->getType() != S.Context.BoundMemberTy)
2965        ArgType = S.Context.getLValueReferenceType(ArgType);
2966    }
2967
2968    //   [...] If P is a reference type, the type referred to by P is used
2969    //   for type deduction.
2970    ParamType = PointeeType;
2971  }
2972
2973  // Overload sets usually make this parameter an undeduced
2974  // context, but there are sometimes special circumstances.
2975  if (ArgType == S.Context.OverloadTy) {
2976    ArgType = ResolveOverloadForDeduction(S, TemplateParams,
2977                                          Arg, ParamType,
2978                                          ParamRefType != 0);
2979    if (ArgType.isNull())
2980      return true;
2981  }
2982
2983  if (ParamRefType) {
2984    // C++0x [temp.deduct.call]p3:
2985    //   [...] If P is of the form T&&, where T is a template parameter, and
2986    //   the argument is an lvalue, the type A& is used in place of A for
2987    //   type deduction.
2988    if (ParamRefType->isRValueReferenceType() &&
2989        ParamRefType->getAs<TemplateTypeParmType>() &&
2990        Arg->isLValue())
2991      ArgType = S.Context.getLValueReferenceType(ArgType);
2992  } else {
2993    // C++ [temp.deduct.call]p2:
2994    //   If P is not a reference type:
2995    //   - If A is an array type, the pointer type produced by the
2996    //     array-to-pointer standard conversion (4.2) is used in place of
2997    //     A for type deduction; otherwise,
2998    if (ArgType->isArrayType())
2999      ArgType = S.Context.getArrayDecayedType(ArgType);
3000    //   - If A is a function type, the pointer type produced by the
3001    //     function-to-pointer standard conversion (4.3) is used in place
3002    //     of A for type deduction; otherwise,
3003    else if (ArgType->isFunctionType())
3004      ArgType = S.Context.getPointerType(ArgType);
3005    else {
3006      // - If A is a cv-qualified type, the top level cv-qualifiers of A's
3007      //   type are ignored for type deduction.
3008      ArgType = ArgType.getUnqualifiedType();
3009    }
3010  }
3011
3012  // C++0x [temp.deduct.call]p4:
3013  //   In general, the deduction process attempts to find template argument
3014  //   values that will make the deduced A identical to A (after the type A
3015  //   is transformed as described above). [...]
3016  TDF = TDF_SkipNonDependent;
3017
3018  //     - If the original P is a reference type, the deduced A (i.e., the
3019  //       type referred to by the reference) can be more cv-qualified than
3020  //       the transformed A.
3021  if (ParamRefType)
3022    TDF |= TDF_ParamWithReferenceType;
3023  //     - The transformed A can be another pointer or pointer to member
3024  //       type that can be converted to the deduced A via a qualification
3025  //       conversion (4.4).
3026  if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
3027      ArgType->isObjCObjectPointerType())
3028    TDF |= TDF_IgnoreQualifiers;
3029  //     - If P is a class and P has the form simple-template-id, then the
3030  //       transformed A can be a derived class of the deduced A. Likewise,
3031  //       if P is a pointer to a class of the form simple-template-id, the
3032  //       transformed A can be a pointer to a derived class pointed to by
3033  //       the deduced A.
3034  if (isSimpleTemplateIdType(ParamType) ||
3035      (isa<PointerType>(ParamType) &&
3036       isSimpleTemplateIdType(
3037                              ParamType->getAs<PointerType>()->getPointeeType())))
3038    TDF |= TDF_DerivedClass;
3039
3040  return false;
3041}
3042
3043static bool hasDeducibleTemplateParameters(Sema &S,
3044                                           FunctionTemplateDecl *FunctionTemplate,
3045                                           QualType T);
3046
3047/// \brief Perform template argument deduction by matching a parameter type
3048///        against a single expression, where the expression is an element of
3049///        an initializer list that was originally matched against a parameter
3050///        of type \c initializer_list\<ParamType\>.
3051static Sema::TemplateDeductionResult
3052DeduceTemplateArgumentByListElement(Sema &S,
3053                                    TemplateParameterList *TemplateParams,
3054                                    QualType ParamType, Expr *Arg,
3055                                    TemplateDeductionInfo &Info,
3056                              SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3057                                    unsigned TDF) {
3058  // Handle the case where an init list contains another init list as the
3059  // element.
3060  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3061    QualType X;
3062    if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
3063      return Sema::TDK_Success; // Just ignore this expression.
3064
3065    // Recurse down into the init list.
3066    for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3067      if (Sema::TemplateDeductionResult Result =
3068            DeduceTemplateArgumentByListElement(S, TemplateParams, X,
3069                                                 ILE->getInit(i),
3070                                                 Info, Deduced, TDF))
3071        return Result;
3072    }
3073    return Sema::TDK_Success;
3074  }
3075
3076  // For all other cases, just match by type.
3077  QualType ArgType = Arg->getType();
3078  if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
3079                                                ArgType, Arg, TDF)) {
3080    Info.Expression = Arg;
3081    return Sema::TDK_FailedOverloadResolution;
3082  }
3083  return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3084                                            ArgType, Info, Deduced, TDF);
3085}
3086
3087/// \brief Perform template argument deduction from a function call
3088/// (C++ [temp.deduct.call]).
3089///
3090/// \param FunctionTemplate the function template for which we are performing
3091/// template argument deduction.
3092///
3093/// \param ExplicitTemplateArgs the explicit template arguments provided
3094/// for this call.
3095///
3096/// \param Args the function call arguments
3097///
3098/// \param Specialization if template argument deduction was successful,
3099/// this will be set to the function template specialization produced by
3100/// template argument deduction.
3101///
3102/// \param Info the argument will be updated to provide additional information
3103/// about template argument deduction.
3104///
3105/// \returns the result of template argument deduction.
3106Sema::TemplateDeductionResult
3107Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3108                              TemplateArgumentListInfo *ExplicitTemplateArgs,
3109                              llvm::ArrayRef<Expr *> Args,
3110                              FunctionDecl *&Specialization,
3111                              TemplateDeductionInfo &Info) {
3112  if (FunctionTemplate->isInvalidDecl())
3113    return TDK_Invalid;
3114
3115  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3116
3117  // C++ [temp.deduct.call]p1:
3118  //   Template argument deduction is done by comparing each function template
3119  //   parameter type (call it P) with the type of the corresponding argument
3120  //   of the call (call it A) as described below.
3121  unsigned CheckArgs = Args.size();
3122  if (Args.size() < Function->getMinRequiredArguments())
3123    return TDK_TooFewArguments;
3124  else if (Args.size() > Function->getNumParams()) {
3125    const FunctionProtoType *Proto
3126      = Function->getType()->getAs<FunctionProtoType>();
3127    if (Proto->isTemplateVariadic())
3128      /* Do nothing */;
3129    else if (Proto->isVariadic())
3130      CheckArgs = Function->getNumParams();
3131    else
3132      return TDK_TooManyArguments;
3133  }
3134
3135  // The types of the parameters from which we will perform template argument
3136  // deduction.
3137  LocalInstantiationScope InstScope(*this);
3138  TemplateParameterList *TemplateParams
3139    = FunctionTemplate->getTemplateParameters();
3140  SmallVector<DeducedTemplateArgument, 4> Deduced;
3141  SmallVector<QualType, 4> ParamTypes;
3142  unsigned NumExplicitlySpecified = 0;
3143  if (ExplicitTemplateArgs) {
3144    TemplateDeductionResult Result =
3145      SubstituteExplicitTemplateArguments(FunctionTemplate,
3146                                          *ExplicitTemplateArgs,
3147                                          Deduced,
3148                                          ParamTypes,
3149                                          0,
3150                                          Info);
3151    if (Result)
3152      return Result;
3153
3154    NumExplicitlySpecified = Deduced.size();
3155  } else {
3156    // Just fill in the parameter types from the function declaration.
3157    for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
3158      ParamTypes.push_back(Function->getParamDecl(I)->getType());
3159  }
3160
3161  // Deduce template arguments from the function parameters.
3162  Deduced.resize(TemplateParams->size());
3163  unsigned ArgIdx = 0;
3164  SmallVector<OriginalCallArg, 4> OriginalCallArgs;
3165  for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
3166       ParamIdx != NumParams; ++ParamIdx) {
3167    QualType OrigParamType = ParamTypes[ParamIdx];
3168    QualType ParamType = OrigParamType;
3169
3170    const PackExpansionType *ParamExpansion
3171      = dyn_cast<PackExpansionType>(ParamType);
3172    if (!ParamExpansion) {
3173      // Simple case: matching a function parameter to a function argument.
3174      if (ArgIdx >= CheckArgs)
3175        break;
3176
3177      Expr *Arg = Args[ArgIdx++];
3178      QualType ArgType = Arg->getType();
3179
3180      unsigned TDF = 0;
3181      if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3182                                                    ParamType, ArgType, Arg,
3183                                                    TDF))
3184        continue;
3185
3186      // If we have nothing to deduce, we're done.
3187      if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3188        continue;
3189
3190      // If the argument is an initializer list ...
3191      if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3192        // ... then the parameter is an undeduced context, unless the parameter
3193        // type is (reference to cv) std::initializer_list<P'>, in which case
3194        // deduction is done for each element of the initializer list, and the
3195        // result is the deduced type if it's the same for all elements.
3196        QualType X;
3197        // Removing references was already done.
3198        if (!isStdInitializerList(ParamType, &X))
3199          continue;
3200
3201        for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3202          if (TemplateDeductionResult Result =
3203                DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
3204                                                     ILE->getInit(i),
3205                                                     Info, Deduced, TDF))
3206            return Result;
3207        }
3208        // Don't track the argument type, since an initializer list has none.
3209        continue;
3210      }
3211
3212      // Keep track of the argument type and corresponding parameter index,
3213      // so we can check for compatibility between the deduced A and A.
3214      OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
3215                                                 ArgType));
3216
3217      if (TemplateDeductionResult Result
3218            = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3219                                                 ParamType, ArgType,
3220                                                 Info, Deduced, TDF))
3221        return Result;
3222
3223      continue;
3224    }
3225
3226    // C++0x [temp.deduct.call]p1:
3227    //   For a function parameter pack that occurs at the end of the
3228    //   parameter-declaration-list, the type A of each remaining argument of
3229    //   the call is compared with the type P of the declarator-id of the
3230    //   function parameter pack. Each comparison deduces template arguments
3231    //   for subsequent positions in the template parameter packs expanded by
3232    //   the function parameter pack. For a function parameter pack that does
3233    //   not occur at the end of the parameter-declaration-list, the type of
3234    //   the parameter pack is a non-deduced context.
3235    if (ParamIdx + 1 < NumParams)
3236      break;
3237
3238    QualType ParamPattern = ParamExpansion->getPattern();
3239    SmallVector<unsigned, 2> PackIndices;
3240    {
3241      llvm::SmallBitVector SawIndices(TemplateParams->size());
3242      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3243      collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
3244      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
3245        unsigned Depth, Index;
3246        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
3247        if (Depth == 0 && !SawIndices[Index]) {
3248          SawIndices[Index] = true;
3249          PackIndices.push_back(Index);
3250        }
3251      }
3252    }
3253    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
3254
3255    // Keep track of the deduced template arguments for each parameter pack
3256    // expanded by this pack expansion (the outer index) and for each
3257    // template argument (the inner SmallVectors).
3258    NewlyDeducedPacksType NewlyDeducedPacks(PackIndices.size());
3259    SmallVector<DeducedTemplateArgument, 2>
3260      SavedPacks(PackIndices.size());
3261    PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
3262                                 NewlyDeducedPacks);
3263    bool HasAnyArguments = false;
3264    for (; ArgIdx < Args.size(); ++ArgIdx) {
3265      HasAnyArguments = true;
3266
3267      QualType OrigParamType = ParamPattern;
3268      ParamType = OrigParamType;
3269      Expr *Arg = Args[ArgIdx];
3270      QualType ArgType = Arg->getType();
3271
3272      unsigned TDF = 0;
3273      if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3274                                                    ParamType, ArgType, Arg,
3275                                                    TDF)) {
3276        // We can't actually perform any deduction for this argument, so stop
3277        // deduction at this point.
3278        ++ArgIdx;
3279        break;
3280      }
3281
3282      // As above, initializer lists need special handling.
3283      if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3284        QualType X;
3285        if (!isStdInitializerList(ParamType, &X)) {
3286          ++ArgIdx;
3287          break;
3288        }
3289
3290        for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3291          if (TemplateDeductionResult Result =
3292                DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
3293                                                   ILE->getInit(i)->getType(),
3294                                                   Info, Deduced, TDF))
3295            return Result;
3296        }
3297      } else {
3298
3299        // Keep track of the argument type and corresponding argument index,
3300        // so we can check for compatibility between the deduced A and A.
3301        if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3302          OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
3303                                                     ArgType));
3304
3305        if (TemplateDeductionResult Result
3306            = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3307                                                 ParamType, ArgType, Info,
3308                                                 Deduced, TDF))
3309          return Result;
3310      }
3311
3312      // Capture the deduced template arguments for each parameter pack expanded
3313      // by this pack expansion, add them to the list of arguments we've deduced
3314      // for that pack, then clear out the deduced argument.
3315      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
3316        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
3317        if (!DeducedArg.isNull()) {
3318          NewlyDeducedPacks[I].push_back(DeducedArg);
3319          DeducedArg = DeducedTemplateArgument();
3320        }
3321      }
3322    }
3323
3324    // Build argument packs for each of the parameter packs expanded by this
3325    // pack expansion.
3326    if (Sema::TemplateDeductionResult Result
3327          = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
3328                                        Deduced, PackIndices, SavedPacks,
3329                                        NewlyDeducedPacks, Info))
3330      return Result;
3331
3332    // After we've matching against a parameter pack, we're done.
3333    break;
3334  }
3335
3336  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3337                                         NumExplicitlySpecified,
3338                                         Specialization, Info, &OriginalCallArgs);
3339}
3340
3341/// \brief Deduce template arguments when taking the address of a function
3342/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
3343/// a template.
3344///
3345/// \param FunctionTemplate the function template for which we are performing
3346/// template argument deduction.
3347///
3348/// \param ExplicitTemplateArgs the explicitly-specified template
3349/// arguments.
3350///
3351/// \param ArgFunctionType the function type that will be used as the
3352/// "argument" type (A) when performing template argument deduction from the
3353/// function template's function type. This type may be NULL, if there is no
3354/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
3355///
3356/// \param Specialization if template argument deduction was successful,
3357/// this will be set to the function template specialization produced by
3358/// template argument deduction.
3359///
3360/// \param Info the argument will be updated to provide additional information
3361/// about template argument deduction.
3362///
3363/// \returns the result of template argument deduction.
3364Sema::TemplateDeductionResult
3365Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3366                              TemplateArgumentListInfo *ExplicitTemplateArgs,
3367                              QualType ArgFunctionType,
3368                              FunctionDecl *&Specialization,
3369                              TemplateDeductionInfo &Info,
3370                              bool InOverloadResolution) {
3371  if (FunctionTemplate->isInvalidDecl())
3372    return TDK_Invalid;
3373
3374  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3375  TemplateParameterList *TemplateParams
3376    = FunctionTemplate->getTemplateParameters();
3377  QualType FunctionType = Function->getType();
3378
3379  // Substitute any explicit template arguments.
3380  LocalInstantiationScope InstScope(*this);
3381  SmallVector<DeducedTemplateArgument, 4> Deduced;
3382  unsigned NumExplicitlySpecified = 0;
3383  SmallVector<QualType, 4> ParamTypes;
3384  if (ExplicitTemplateArgs) {
3385    if (TemplateDeductionResult Result
3386          = SubstituteExplicitTemplateArguments(FunctionTemplate,
3387                                                *ExplicitTemplateArgs,
3388                                                Deduced, ParamTypes,
3389                                                &FunctionType, Info))
3390      return Result;
3391
3392    NumExplicitlySpecified = Deduced.size();
3393  }
3394
3395  // Unevaluated SFINAE context.
3396  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3397  SFINAETrap Trap(*this);
3398
3399  Deduced.resize(TemplateParams->size());
3400
3401  // If the function has a deduced return type, substitute it for a dependent
3402  // type so that we treat it as a non-deduced context in what follows.
3403  bool HasUndeducedReturnType = false;
3404  if (getLangOpts().CPlusPlus1y && InOverloadResolution &&
3405      Function->getResultType()->isUndeducedType()) {
3406    FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
3407    HasUndeducedReturnType = true;
3408  }
3409
3410  if (!ArgFunctionType.isNull()) {
3411    unsigned TDF = TDF_TopLevelParameterTypeList;
3412    if (InOverloadResolution) TDF |= TDF_InOverloadResolution;
3413    // Deduce template arguments from the function type.
3414    if (TemplateDeductionResult Result
3415          = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3416                                               FunctionType, ArgFunctionType,
3417                                               Info, Deduced, TDF))
3418      return Result;
3419  }
3420
3421  if (TemplateDeductionResult Result
3422        = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3423                                          NumExplicitlySpecified,
3424                                          Specialization, Info))
3425    return Result;
3426
3427  // If the function has a deduced return type, deduce it now, so we can check
3428  // that the deduced function type matches the requested type.
3429  if (HasUndeducedReturnType &&
3430      Specialization->getResultType()->isUndeducedType() &&
3431      DeduceReturnType(Specialization, Info.getLocation(), false))
3432    return TDK_MiscellaneousDeductionFailure;
3433
3434  // If the requested function type does not match the actual type of the
3435  // specialization with respect to arguments of compatible pointer to function
3436  // types, template argument deduction fails.
3437  if (!ArgFunctionType.isNull()) {
3438    if (InOverloadResolution && !isSameOrCompatibleFunctionType(
3439                           Context.getCanonicalType(Specialization->getType()),
3440                           Context.getCanonicalType(ArgFunctionType)))
3441      return TDK_MiscellaneousDeductionFailure;
3442    else if(!InOverloadResolution &&
3443            !Context.hasSameType(Specialization->getType(), ArgFunctionType))
3444      return TDK_MiscellaneousDeductionFailure;
3445  }
3446
3447  return TDK_Success;
3448}
3449
3450/// \brief Deduce template arguments for a templated conversion
3451/// function (C++ [temp.deduct.conv]) and, if successful, produce a
3452/// conversion function template specialization.
3453Sema::TemplateDeductionResult
3454Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3455                              QualType ToType,
3456                              CXXConversionDecl *&Specialization,
3457                              TemplateDeductionInfo &Info) {
3458  if (FunctionTemplate->isInvalidDecl())
3459    return TDK_Invalid;
3460
3461  CXXConversionDecl *Conv
3462    = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
3463  QualType FromType = Conv->getConversionType();
3464
3465  // Canonicalize the types for deduction.
3466  QualType P = Context.getCanonicalType(FromType);
3467  QualType A = Context.getCanonicalType(ToType);
3468
3469  // C++0x [temp.deduct.conv]p2:
3470  //   If P is a reference type, the type referred to by P is used for
3471  //   type deduction.
3472  if (const ReferenceType *PRef = P->getAs<ReferenceType>())
3473    P = PRef->getPointeeType();
3474
3475  // C++0x [temp.deduct.conv]p4:
3476  //   [...] If A is a reference type, the type referred to by A is used
3477  //   for type deduction.
3478  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3479    A = ARef->getPointeeType().getUnqualifiedType();
3480  // C++ [temp.deduct.conv]p3:
3481  //
3482  //   If A is not a reference type:
3483  else {
3484    assert(!A->isReferenceType() && "Reference types were handled above");
3485
3486    //   - If P is an array type, the pointer type produced by the
3487    //     array-to-pointer standard conversion (4.2) is used in place
3488    //     of P for type deduction; otherwise,
3489    if (P->isArrayType())
3490      P = Context.getArrayDecayedType(P);
3491    //   - If P is a function type, the pointer type produced by the
3492    //     function-to-pointer standard conversion (4.3) is used in
3493    //     place of P for type deduction; otherwise,
3494    else if (P->isFunctionType())
3495      P = Context.getPointerType(P);
3496    //   - If P is a cv-qualified type, the top level cv-qualifiers of
3497    //     P's type are ignored for type deduction.
3498    else
3499      P = P.getUnqualifiedType();
3500
3501    // C++0x [temp.deduct.conv]p4:
3502    //   If A is a cv-qualified type, the top level cv-qualifiers of A's
3503    //   type are ignored for type deduction. If A is a reference type, the type
3504    //   referred to by A is used for type deduction.
3505    A = A.getUnqualifiedType();
3506  }
3507
3508  // Unevaluated SFINAE context.
3509  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3510  SFINAETrap Trap(*this);
3511
3512  // C++ [temp.deduct.conv]p1:
3513  //   Template argument deduction is done by comparing the return
3514  //   type of the template conversion function (call it P) with the
3515  //   type that is required as the result of the conversion (call it
3516  //   A) as described in 14.8.2.4.
3517  TemplateParameterList *TemplateParams
3518    = FunctionTemplate->getTemplateParameters();
3519  SmallVector<DeducedTemplateArgument, 4> Deduced;
3520  Deduced.resize(TemplateParams->size());
3521
3522  // C++0x [temp.deduct.conv]p4:
3523  //   In general, the deduction process attempts to find template
3524  //   argument values that will make the deduced A identical to
3525  //   A. However, there are two cases that allow a difference:
3526  unsigned TDF = 0;
3527  //     - If the original A is a reference type, A can be more
3528  //       cv-qualified than the deduced A (i.e., the type referred to
3529  //       by the reference)
3530  if (ToType->isReferenceType())
3531    TDF |= TDF_ParamWithReferenceType;
3532  //     - The deduced A can be another pointer or pointer to member
3533  //       type that can be converted to A via a qualification
3534  //       conversion.
3535  //
3536  // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
3537  // both P and A are pointers or member pointers. In this case, we
3538  // just ignore cv-qualifiers completely).
3539  if ((P->isPointerType() && A->isPointerType()) ||
3540      (P->isMemberPointerType() && A->isMemberPointerType()))
3541    TDF |= TDF_IgnoreQualifiers;
3542  if (TemplateDeductionResult Result
3543        = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3544                                             P, A, Info, Deduced, TDF))
3545    return Result;
3546
3547  // Finish template argument deduction.
3548  LocalInstantiationScope InstScope(*this);
3549  FunctionDecl *Spec = 0;
3550  TemplateDeductionResult Result
3551    = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
3552                                      Info);
3553  Specialization = cast_or_null<CXXConversionDecl>(Spec);
3554  return Result;
3555}
3556
3557/// \brief Deduce template arguments for a function template when there is
3558/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
3559///
3560/// \param FunctionTemplate the function template for which we are performing
3561/// template argument deduction.
3562///
3563/// \param ExplicitTemplateArgs the explicitly-specified template
3564/// arguments.
3565///
3566/// \param Specialization if template argument deduction was successful,
3567/// this will be set to the function template specialization produced by
3568/// template argument deduction.
3569///
3570/// \param Info the argument will be updated to provide additional information
3571/// about template argument deduction.
3572///
3573/// \returns the result of template argument deduction.
3574Sema::TemplateDeductionResult
3575Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3576                              TemplateArgumentListInfo *ExplicitTemplateArgs,
3577                              FunctionDecl *&Specialization,
3578                              TemplateDeductionInfo &Info,
3579                              bool InOverloadResolution) {
3580  return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3581                                 QualType(), Specialization, Info,
3582                                 InOverloadResolution);
3583}
3584
3585namespace {
3586  /// Substitute the 'auto' type specifier within a type for a given replacement
3587  /// type.
3588  class SubstituteAutoTransform :
3589    public TreeTransform<SubstituteAutoTransform> {
3590    QualType Replacement;
3591  public:
3592    SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
3593      TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
3594    }
3595    QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
3596      // If we're building the type pattern to deduce against, don't wrap the
3597      // substituted type in an AutoType. Certain template deduction rules
3598      // apply only when a template type parameter appears directly (and not if
3599      // the parameter is found through desugaring). For instance:
3600      //   auto &&lref = lvalue;
3601      // must transform into "rvalue reference to T" not "rvalue reference to
3602      // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
3603      if (!Replacement.isNull() && isa<TemplateTypeParmType>(Replacement)) {
3604        QualType Result = Replacement;
3605        TemplateTypeParmTypeLoc NewTL =
3606          TLB.push<TemplateTypeParmTypeLoc>(Result);
3607        NewTL.setNameLoc(TL.getNameLoc());
3608        return Result;
3609      } else {
3610        bool Dependent =
3611          !Replacement.isNull() && Replacement->isDependentType();
3612        QualType Result =
3613          SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement,
3614                                      TL.getTypePtr()->isDecltypeAuto(),
3615                                      Dependent);
3616        AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
3617        NewTL.setNameLoc(TL.getNameLoc());
3618        return Result;
3619      }
3620    }
3621
3622    ExprResult TransformLambdaExpr(LambdaExpr *E) {
3623      // Lambdas never need to be transformed.
3624      return E;
3625    }
3626
3627    QualType Apply(TypeLoc TL) {
3628      // Create some scratch storage for the transformed type locations.
3629      // FIXME: We're just going to throw this information away. Don't build it.
3630      TypeLocBuilder TLB;
3631      TLB.reserve(TL.getFullDataSize());
3632      return TransformType(TLB, TL);
3633    }
3634  };
3635}
3636
3637Sema::DeduceAutoResult
3638Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result) {
3639  return DeduceAutoType(Type->getTypeLoc(), Init, Result);
3640}
3641
3642/// \brief Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
3643///
3644/// \param Type the type pattern using the auto type-specifier.
3645/// \param Init the initializer for the variable whose type is to be deduced.
3646/// \param Result if type deduction was successful, this will be set to the
3647///        deduced type.
3648Sema::DeduceAutoResult
3649Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result) {
3650  if (Init->getType()->isNonOverloadPlaceholderType()) {
3651    ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
3652    if (NonPlaceholder.isInvalid())
3653      return DAR_FailedAlreadyDiagnosed;
3654    Init = NonPlaceholder.take();
3655  }
3656
3657  if (Init->isTypeDependent() || Type.getType()->isDependentType()) {
3658    Result = SubstituteAutoTransform(*this, Context.DependentTy).Apply(Type);
3659    assert(!Result.isNull() && "substituting DependentTy can't fail");
3660    return DAR_Succeeded;
3661  }
3662
3663  // If this is a 'decltype(auto)' specifier, do the decltype dance.
3664  // Since 'decltype(auto)' can only occur at the top of the type, we
3665  // don't need to go digging for it.
3666  if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
3667    if (AT->isDecltypeAuto()) {
3668      if (isa<InitListExpr>(Init)) {
3669        Diag(Init->getLocStart(), diag::err_decltype_auto_initializer_list);
3670        return DAR_FailedAlreadyDiagnosed;
3671      }
3672
3673      QualType Deduced = BuildDecltypeType(Init, Init->getLocStart());
3674      // FIXME: Support a non-canonical deduced type for 'auto'.
3675      Deduced = Context.getCanonicalType(Deduced);
3676      Result = SubstituteAutoTransform(*this, Deduced).Apply(Type);
3677      if (Result.isNull())
3678        return DAR_FailedAlreadyDiagnosed;
3679      return DAR_Succeeded;
3680    }
3681  }
3682
3683  SourceLocation Loc = Init->getExprLoc();
3684
3685  LocalInstantiationScope InstScope(*this);
3686
3687  // Build template<class TemplParam> void Func(FuncParam);
3688  TemplateTypeParmDecl *TemplParam =
3689    TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
3690                                 false, false);
3691  QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
3692  NamedDecl *TemplParamPtr = TemplParam;
3693  FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
3694                                                   Loc);
3695
3696  QualType FuncParam = SubstituteAutoTransform(*this, TemplArg).Apply(Type);
3697  assert(!FuncParam.isNull() &&
3698         "substituting template parameter for 'auto' failed");
3699
3700  // Deduce type of TemplParam in Func(Init)
3701  SmallVector<DeducedTemplateArgument, 1> Deduced;
3702  Deduced.resize(1);
3703  QualType InitType = Init->getType();
3704  unsigned TDF = 0;
3705
3706  TemplateDeductionInfo Info(Loc);
3707
3708  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
3709  if (InitList) {
3710    for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
3711      if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
3712                                              TemplArg,
3713                                              InitList->getInit(i),
3714                                              Info, Deduced, TDF))
3715        return DAR_Failed;
3716    }
3717  } else {
3718    if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
3719                                                  FuncParam, InitType, Init,
3720                                                  TDF))
3721      return DAR_Failed;
3722
3723    if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
3724                                           InitType, Info, Deduced, TDF))
3725      return DAR_Failed;
3726  }
3727
3728  if (Deduced[0].getKind() != TemplateArgument::Type)
3729    return DAR_Failed;
3730
3731  QualType DeducedType = Deduced[0].getAsType();
3732
3733  if (InitList) {
3734    DeducedType = BuildStdInitializerList(DeducedType, Loc);
3735    if (DeducedType.isNull())
3736      return DAR_FailedAlreadyDiagnosed;
3737  }
3738
3739  Result = SubstituteAutoTransform(*this, DeducedType).Apply(Type);
3740  if (Result.isNull())
3741   return DAR_FailedAlreadyDiagnosed;
3742
3743  // Check that the deduced argument type is compatible with the original
3744  // argument type per C++ [temp.deduct.call]p4.
3745  if (!InitList && !Result.isNull() &&
3746      CheckOriginalCallArgDeduction(*this,
3747                                    Sema::OriginalCallArg(FuncParam,0,InitType),
3748                                    Result)) {
3749    Result = QualType();
3750    return DAR_Failed;
3751  }
3752
3753  return DAR_Succeeded;
3754}
3755
3756QualType Sema::SubstAutoType(QualType Type, QualType Deduced) {
3757  return SubstituteAutoTransform(*this, Deduced).TransformType(Type);
3758}
3759
3760void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
3761  if (isa<InitListExpr>(Init))
3762    Diag(VDecl->getLocation(),
3763         diag::err_auto_var_deduction_failure_from_init_list)
3764      << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
3765  else
3766    Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
3767      << VDecl->getDeclName() << VDecl->getType() << Init->getType()
3768      << Init->getSourceRange();
3769}
3770
3771bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
3772                            bool Diagnose) {
3773  assert(FD->getResultType()->isUndeducedType());
3774
3775  if (FD->getTemplateInstantiationPattern())
3776    InstantiateFunctionDefinition(Loc, FD);
3777
3778  bool StillUndeduced = FD->getResultType()->isUndeducedType();
3779  if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
3780    Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
3781    Diag(FD->getLocation(), diag::note_callee_decl) << FD;
3782  }
3783
3784  return StillUndeduced;
3785}
3786
3787static void
3788MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
3789                           bool OnlyDeduced,
3790                           unsigned Level,
3791                           llvm::SmallBitVector &Deduced);
3792
3793/// \brief If this is a non-static member function,
3794static void
3795AddImplicitObjectParameterType(ASTContext &Context,
3796                               CXXMethodDecl *Method,
3797                               SmallVectorImpl<QualType> &ArgTypes) {
3798  // C++11 [temp.func.order]p3:
3799  //   [...] The new parameter is of type "reference to cv A," where cv are
3800  //   the cv-qualifiers of the function template (if any) and A is
3801  //   the class of which the function template is a member.
3802  //
3803  // The standard doesn't say explicitly, but we pick the appropriate kind of
3804  // reference type based on [over.match.funcs]p4.
3805  QualType ArgTy = Context.getTypeDeclType(Method->getParent());
3806  ArgTy = Context.getQualifiedType(ArgTy,
3807                        Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
3808  if (Method->getRefQualifier() == RQ_RValue)
3809    ArgTy = Context.getRValueReferenceType(ArgTy);
3810  else
3811    ArgTy = Context.getLValueReferenceType(ArgTy);
3812  ArgTypes.push_back(ArgTy);
3813}
3814
3815/// \brief Determine whether the function template \p FT1 is at least as
3816/// specialized as \p FT2.
3817static bool isAtLeastAsSpecializedAs(Sema &S,
3818                                     SourceLocation Loc,
3819                                     FunctionTemplateDecl *FT1,
3820                                     FunctionTemplateDecl *FT2,
3821                                     TemplatePartialOrderingContext TPOC,
3822                                     unsigned NumCallArguments,
3823    SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
3824  FunctionDecl *FD1 = FT1->getTemplatedDecl();
3825  FunctionDecl *FD2 = FT2->getTemplatedDecl();
3826  const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
3827  const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
3828
3829  assert(Proto1 && Proto2 && "Function templates must have prototypes");
3830  TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
3831  SmallVector<DeducedTemplateArgument, 4> Deduced;
3832  Deduced.resize(TemplateParams->size());
3833
3834  // C++0x [temp.deduct.partial]p3:
3835  //   The types used to determine the ordering depend on the context in which
3836  //   the partial ordering is done:
3837  TemplateDeductionInfo Info(Loc);
3838  CXXMethodDecl *Method1 = 0;
3839  CXXMethodDecl *Method2 = 0;
3840  bool IsNonStatic2 = false;
3841  bool IsNonStatic1 = false;
3842  unsigned Skip2 = 0;
3843  switch (TPOC) {
3844  case TPOC_Call: {
3845    //   - In the context of a function call, the function parameter types are
3846    //     used.
3847    Method1 = dyn_cast<CXXMethodDecl>(FD1);
3848    Method2 = dyn_cast<CXXMethodDecl>(FD2);
3849    IsNonStatic1 = Method1 && !Method1->isStatic();
3850    IsNonStatic2 = Method2 && !Method2->isStatic();
3851
3852    // C++11 [temp.func.order]p3:
3853    //   [...] If only one of the function templates is a non-static
3854    //   member, that function template is considered to have a new
3855    //   first parameter inserted in its function parameter list. The
3856    //   new parameter is of type "reference to cv A," where cv are
3857    //   the cv-qualifiers of the function template (if any) and A is
3858    //   the class of which the function template is a member.
3859    //
3860    // Note that we interpret this to mean "if one of the function
3861    // templates is a non-static member and the other is a non-member";
3862    // otherwise, the ordering rules for static functions against non-static
3863    // functions don't make any sense.
3864    //
3865    // C++98/03 doesn't have this provision, so instead we drop the
3866    // first argument of the free function, which seems to match
3867    // existing practice.
3868    SmallVector<QualType, 4> Args1;
3869    unsigned Skip1 = !S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !Method1;
3870    if (S.getLangOpts().CPlusPlus11 && IsNonStatic1 && !Method2)
3871      AddImplicitObjectParameterType(S.Context, Method1, Args1);
3872    Args1.insert(Args1.end(),
3873                 Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
3874
3875    SmallVector<QualType, 4> Args2;
3876    Skip2 = !S.getLangOpts().CPlusPlus11 && IsNonStatic1 && !Method2;
3877    if (S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !Method1)
3878      AddImplicitObjectParameterType(S.Context, Method2, Args2);
3879    Args2.insert(Args2.end(),
3880                 Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
3881
3882    // C++ [temp.func.order]p5:
3883    //   The presence of unused ellipsis and default arguments has no effect on
3884    //   the partial ordering of function templates.
3885    if (Args1.size() > NumCallArguments)
3886      Args1.resize(NumCallArguments);
3887    if (Args2.size() > NumCallArguments)
3888      Args2.resize(NumCallArguments);
3889    if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
3890                                Args1.data(), Args1.size(), Info, Deduced,
3891                                TDF_None, /*PartialOrdering=*/true,
3892                                RefParamComparisons))
3893        return false;
3894
3895    break;
3896  }
3897
3898  case TPOC_Conversion:
3899    //   - In the context of a call to a conversion operator, the return types
3900    //     of the conversion function templates are used.
3901    if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
3902                                           Proto2->getResultType(),
3903                                           Proto1->getResultType(),
3904                                           Info, Deduced, TDF_None,
3905                                           /*PartialOrdering=*/true,
3906                                           RefParamComparisons))
3907      return false;
3908    break;
3909
3910  case TPOC_Other:
3911    //   - In other contexts (14.6.6.2) the function template's function type
3912    //     is used.
3913    if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
3914                                           FD2->getType(), FD1->getType(),
3915                                           Info, Deduced, TDF_None,
3916                                           /*PartialOrdering=*/true,
3917                                           RefParamComparisons))
3918      return false;
3919    break;
3920  }
3921
3922  // C++0x [temp.deduct.partial]p11:
3923  //   In most cases, all template parameters must have values in order for
3924  //   deduction to succeed, but for partial ordering purposes a template
3925  //   parameter may remain without a value provided it is not used in the
3926  //   types being used for partial ordering. [ Note: a template parameter used
3927  //   in a non-deduced context is considered used. -end note]
3928  unsigned ArgIdx = 0, NumArgs = Deduced.size();
3929  for (; ArgIdx != NumArgs; ++ArgIdx)
3930    if (Deduced[ArgIdx].isNull())
3931      break;
3932
3933  if (ArgIdx == NumArgs) {
3934    // All template arguments were deduced. FT1 is at least as specialized
3935    // as FT2.
3936    return true;
3937  }
3938
3939  // Figure out which template parameters were used.
3940  llvm::SmallBitVector UsedParameters(TemplateParams->size());
3941  switch (TPOC) {
3942  case TPOC_Call: {
3943    unsigned NumParams = std::min(NumCallArguments,
3944                                  std::min(Proto1->getNumArgs(),
3945                                           Proto2->getNumArgs()));
3946    if (S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !IsNonStatic1)
3947      ::MarkUsedTemplateParameters(S.Context, Method2->getThisType(S.Context),
3948                                   false,
3949                                   TemplateParams->getDepth(), UsedParameters);
3950    for (unsigned I = Skip2; I < NumParams; ++I)
3951      ::MarkUsedTemplateParameters(S.Context, Proto2->getArgType(I), false,
3952                                   TemplateParams->getDepth(),
3953                                   UsedParameters);
3954    break;
3955  }
3956
3957  case TPOC_Conversion:
3958    ::MarkUsedTemplateParameters(S.Context, Proto2->getResultType(), false,
3959                                 TemplateParams->getDepth(),
3960                                 UsedParameters);
3961    break;
3962
3963  case TPOC_Other:
3964    ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
3965                                 TemplateParams->getDepth(),
3966                                 UsedParameters);
3967    break;
3968  }
3969
3970  for (; ArgIdx != NumArgs; ++ArgIdx)
3971    // If this argument had no value deduced but was used in one of the types
3972    // used for partial ordering, then deduction fails.
3973    if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
3974      return false;
3975
3976  return true;
3977}
3978
3979/// \brief Determine whether this a function template whose parameter-type-list
3980/// ends with a function parameter pack.
3981static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
3982  FunctionDecl *Function = FunTmpl->getTemplatedDecl();
3983  unsigned NumParams = Function->getNumParams();
3984  if (NumParams == 0)
3985    return false;
3986
3987  ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
3988  if (!Last->isParameterPack())
3989    return false;
3990
3991  // Make sure that no previous parameter is a parameter pack.
3992  while (--NumParams > 0) {
3993    if (Function->getParamDecl(NumParams - 1)->isParameterPack())
3994      return false;
3995  }
3996
3997  return true;
3998}
3999
4000/// \brief Returns the more specialized function template according
4001/// to the rules of function template partial ordering (C++ [temp.func.order]).
4002///
4003/// \param FT1 the first function template
4004///
4005/// \param FT2 the second function template
4006///
4007/// \param TPOC the context in which we are performing partial ordering of
4008/// function templates.
4009///
4010/// \param NumCallArguments The number of arguments in a call, used only
4011/// when \c TPOC is \c TPOC_Call.
4012///
4013/// \returns the more specialized function template. If neither
4014/// template is more specialized, returns NULL.
4015FunctionTemplateDecl *
4016Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
4017                                 FunctionTemplateDecl *FT2,
4018                                 SourceLocation Loc,
4019                                 TemplatePartialOrderingContext TPOC,
4020                                 unsigned NumCallArguments) {
4021  SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
4022  bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
4023                                          NumCallArguments, 0);
4024  bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
4025                                          NumCallArguments,
4026                                          &RefParamComparisons);
4027
4028  if (Better1 != Better2) // We have a clear winner
4029    return Better1? FT1 : FT2;
4030
4031  if (!Better1 && !Better2) // Neither is better than the other
4032    return 0;
4033
4034  // C++0x [temp.deduct.partial]p10:
4035  //   If for each type being considered a given template is at least as
4036  //   specialized for all types and more specialized for some set of types and
4037  //   the other template is not more specialized for any types or is not at
4038  //   least as specialized for any types, then the given template is more
4039  //   specialized than the other template. Otherwise, neither template is more
4040  //   specialized than the other.
4041  Better1 = false;
4042  Better2 = false;
4043  for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
4044    // C++0x [temp.deduct.partial]p9:
4045    //   If, for a given type, deduction succeeds in both directions (i.e., the
4046    //   types are identical after the transformations above) and both P and A
4047    //   were reference types (before being replaced with the type referred to
4048    //   above):
4049
4050    //     -- if the type from the argument template was an lvalue reference
4051    //        and the type from the parameter template was not, the argument
4052    //        type is considered to be more specialized than the other;
4053    //        otherwise,
4054    if (!RefParamComparisons[I].ArgIsRvalueRef &&
4055        RefParamComparisons[I].ParamIsRvalueRef) {
4056      Better2 = true;
4057      if (Better1)
4058        return 0;
4059      continue;
4060    } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
4061               RefParamComparisons[I].ArgIsRvalueRef) {
4062      Better1 = true;
4063      if (Better2)
4064        return 0;
4065      continue;
4066    }
4067
4068    //     -- if the type from the argument template is more cv-qualified than
4069    //        the type from the parameter template (as described above), the
4070    //        argument type is considered to be more specialized than the
4071    //        other; otherwise,
4072    switch (RefParamComparisons[I].Qualifiers) {
4073    case NeitherMoreQualified:
4074      break;
4075
4076    case ParamMoreQualified:
4077      Better1 = true;
4078      if (Better2)
4079        return 0;
4080      continue;
4081
4082    case ArgMoreQualified:
4083      Better2 = true;
4084      if (Better1)
4085        return 0;
4086      continue;
4087    }
4088
4089    //     -- neither type is more specialized than the other.
4090  }
4091
4092  assert(!(Better1 && Better2) && "Should have broken out in the loop above");
4093  if (Better1)
4094    return FT1;
4095  else if (Better2)
4096    return FT2;
4097
4098  // FIXME: This mimics what GCC implements, but doesn't match up with the
4099  // proposed resolution for core issue 692. This area needs to be sorted out,
4100  // but for now we attempt to maintain compatibility.
4101  bool Variadic1 = isVariadicFunctionTemplate(FT1);
4102  bool Variadic2 = isVariadicFunctionTemplate(FT2);
4103  if (Variadic1 != Variadic2)
4104    return Variadic1? FT2 : FT1;
4105
4106  return 0;
4107}
4108
4109/// \brief Determine if the two templates are equivalent.
4110static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
4111  if (T1 == T2)
4112    return true;
4113
4114  if (!T1 || !T2)
4115    return false;
4116
4117  return T1->getCanonicalDecl() == T2->getCanonicalDecl();
4118}
4119
4120/// \brief Retrieve the most specialized of the given function template
4121/// specializations.
4122///
4123/// \param SpecBegin the start iterator of the function template
4124/// specializations that we will be comparing.
4125///
4126/// \param SpecEnd the end iterator of the function template
4127/// specializations, paired with \p SpecBegin.
4128///
4129/// \param TPOC the partial ordering context to use to compare the function
4130/// template specializations.
4131///
4132/// \param NumCallArguments The number of arguments in a call, used only
4133/// when \c TPOC is \c TPOC_Call.
4134///
4135/// \param Loc the location where the ambiguity or no-specializations
4136/// diagnostic should occur.
4137///
4138/// \param NoneDiag partial diagnostic used to diagnose cases where there are
4139/// no matching candidates.
4140///
4141/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
4142/// occurs.
4143///
4144/// \param CandidateDiag partial diagnostic used for each function template
4145/// specialization that is a candidate in the ambiguous ordering. One parameter
4146/// in this diagnostic should be unbound, which will correspond to the string
4147/// describing the template arguments for the function template specialization.
4148///
4149/// \returns the most specialized function template specialization, if
4150/// found. Otherwise, returns SpecEnd.
4151UnresolvedSetIterator Sema::getMostSpecialized(
4152    UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
4153    TemplateSpecCandidateSet &FailedCandidates,
4154    TemplatePartialOrderingContext TPOC, unsigned NumCallArguments,
4155    SourceLocation Loc, const PartialDiagnostic &NoneDiag,
4156    const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
4157    bool Complain, QualType TargetType) {
4158  if (SpecBegin == SpecEnd) {
4159    if (Complain) {
4160      Diag(Loc, NoneDiag);
4161      FailedCandidates.NoteCandidates(*this, Loc);
4162    }
4163    return SpecEnd;
4164  }
4165
4166  if (SpecBegin + 1 == SpecEnd)
4167    return SpecBegin;
4168
4169  // Find the function template that is better than all of the templates it
4170  // has been compared to.
4171  UnresolvedSetIterator Best = SpecBegin;
4172  FunctionTemplateDecl *BestTemplate
4173    = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
4174  assert(BestTemplate && "Not a function template specialization?");
4175  for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
4176    FunctionTemplateDecl *Challenger
4177      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4178    assert(Challenger && "Not a function template specialization?");
4179    if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4180                                                  Loc, TPOC, NumCallArguments),
4181                       Challenger)) {
4182      Best = I;
4183      BestTemplate = Challenger;
4184    }
4185  }
4186
4187  // Make sure that the "best" function template is more specialized than all
4188  // of the others.
4189  bool Ambiguous = false;
4190  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4191    FunctionTemplateDecl *Challenger
4192      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4193    if (I != Best &&
4194        !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4195                                                   Loc, TPOC, NumCallArguments),
4196                        BestTemplate)) {
4197      Ambiguous = true;
4198      break;
4199    }
4200  }
4201
4202  if (!Ambiguous) {
4203    // We found an answer. Return it.
4204    return Best;
4205  }
4206
4207  // Diagnose the ambiguity.
4208  if (Complain) {
4209    Diag(Loc, AmbigDiag);
4210
4211    // FIXME: Can we order the candidates in some sane way?
4212    for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4213      PartialDiagnostic PD = CandidateDiag;
4214      PD << getTemplateArgumentBindingsText(
4215          cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
4216                    *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
4217      if (!TargetType.isNull())
4218        HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
4219                                   TargetType);
4220      Diag((*I)->getLocation(), PD);
4221    }
4222  }
4223
4224  return SpecEnd;
4225}
4226
4227/// \brief Returns the more specialized class template partial specialization
4228/// according to the rules of partial ordering of class template partial
4229/// specializations (C++ [temp.class.order]).
4230///
4231/// \param PS1 the first class template partial specialization
4232///
4233/// \param PS2 the second class template partial specialization
4234///
4235/// \returns the more specialized class template partial specialization. If
4236/// neither partial specialization is more specialized, returns NULL.
4237ClassTemplatePartialSpecializationDecl *
4238Sema::getMoreSpecializedPartialSpecialization(
4239                                  ClassTemplatePartialSpecializationDecl *PS1,
4240                                  ClassTemplatePartialSpecializationDecl *PS2,
4241                                              SourceLocation Loc) {
4242  // C++ [temp.class.order]p1:
4243  //   For two class template partial specializations, the first is at least as
4244  //   specialized as the second if, given the following rewrite to two
4245  //   function templates, the first function template is at least as
4246  //   specialized as the second according to the ordering rules for function
4247  //   templates (14.6.6.2):
4248  //     - the first function template has the same template parameters as the
4249  //       first partial specialization and has a single function parameter
4250  //       whose type is a class template specialization with the template
4251  //       arguments of the first partial specialization, and
4252  //     - the second function template has the same template parameters as the
4253  //       second partial specialization and has a single function parameter
4254  //       whose type is a class template specialization with the template
4255  //       arguments of the second partial specialization.
4256  //
4257  // Rather than synthesize function templates, we merely perform the
4258  // equivalent partial ordering by performing deduction directly on
4259  // the template arguments of the class template partial
4260  // specializations. This computation is slightly simpler than the
4261  // general problem of function template partial ordering, because
4262  // class template partial specializations are more constrained. We
4263  // know that every template parameter is deducible from the class
4264  // template partial specialization's template arguments, for
4265  // example.
4266  SmallVector<DeducedTemplateArgument, 4> Deduced;
4267  TemplateDeductionInfo Info(Loc);
4268
4269  QualType PT1 = PS1->getInjectedSpecializationType();
4270  QualType PT2 = PS2->getInjectedSpecializationType();
4271
4272  // Determine whether PS1 is at least as specialized as PS2
4273  Deduced.resize(PS2->getTemplateParameters()->size());
4274  bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
4275                                            PS2->getTemplateParameters(),
4276                                            PT2, PT1, Info, Deduced, TDF_None,
4277                                            /*PartialOrdering=*/true,
4278                                            /*RefParamComparisons=*/0);
4279  if (Better1) {
4280    SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
4281    InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
4282                               DeducedArgs, Info);
4283    Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
4284                                                 PS1->getTemplateArgs(),
4285                                                 Deduced, Info);
4286  }
4287
4288  // Determine whether PS2 is at least as specialized as PS1
4289  Deduced.clear();
4290  Deduced.resize(PS1->getTemplateParameters()->size());
4291  bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
4292                                            PS1->getTemplateParameters(),
4293                                            PT1, PT2, Info, Deduced, TDF_None,
4294                                            /*PartialOrdering=*/true,
4295                                            /*RefParamComparisons=*/0);
4296  if (Better2) {
4297    SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
4298    InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
4299                               DeducedArgs, Info);
4300    Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
4301                                                 PS2->getTemplateArgs(),
4302                                                 Deduced, Info);
4303  }
4304
4305  if (Better1 == Better2)
4306    return 0;
4307
4308  return Better1? PS1 : PS2;
4309}
4310
4311static void
4312MarkUsedTemplateParameters(ASTContext &Ctx,
4313                           const TemplateArgument &TemplateArg,
4314                           bool OnlyDeduced,
4315                           unsigned Depth,
4316                           llvm::SmallBitVector &Used);
4317
4318/// \brief Mark the template parameters that are used by the given
4319/// expression.
4320static void
4321MarkUsedTemplateParameters(ASTContext &Ctx,
4322                           const Expr *E,
4323                           bool OnlyDeduced,
4324                           unsigned Depth,
4325                           llvm::SmallBitVector &Used) {
4326  // We can deduce from a pack expansion.
4327  if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
4328    E = Expansion->getPattern();
4329
4330  // Skip through any implicit casts we added while type-checking, and any
4331  // substitutions performed by template alias expansion.
4332  while (1) {
4333    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4334      E = ICE->getSubExpr();
4335    else if (const SubstNonTypeTemplateParmExpr *Subst =
4336               dyn_cast<SubstNonTypeTemplateParmExpr>(E))
4337      E = Subst->getReplacement();
4338    else
4339      break;
4340  }
4341
4342  // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
4343  // find other occurrences of template parameters.
4344  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4345  if (!DRE)
4346    return;
4347
4348  const NonTypeTemplateParmDecl *NTTP
4349    = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4350  if (!NTTP)
4351    return;
4352
4353  if (NTTP->getDepth() == Depth)
4354    Used[NTTP->getIndex()] = true;
4355}
4356
4357/// \brief Mark the template parameters that are used by the given
4358/// nested name specifier.
4359static void
4360MarkUsedTemplateParameters(ASTContext &Ctx,
4361                           NestedNameSpecifier *NNS,
4362                           bool OnlyDeduced,
4363                           unsigned Depth,
4364                           llvm::SmallBitVector &Used) {
4365  if (!NNS)
4366    return;
4367
4368  MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
4369                             Used);
4370  MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
4371                             OnlyDeduced, Depth, Used);
4372}
4373
4374/// \brief Mark the template parameters that are used by the given
4375/// template name.
4376static void
4377MarkUsedTemplateParameters(ASTContext &Ctx,
4378                           TemplateName Name,
4379                           bool OnlyDeduced,
4380                           unsigned Depth,
4381                           llvm::SmallBitVector &Used) {
4382  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
4383    if (TemplateTemplateParmDecl *TTP
4384          = dyn_cast<TemplateTemplateParmDecl>(Template)) {
4385      if (TTP->getDepth() == Depth)
4386        Used[TTP->getIndex()] = true;
4387    }
4388    return;
4389  }
4390
4391  if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
4392    MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
4393                               Depth, Used);
4394  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
4395    MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
4396                               Depth, Used);
4397}
4398
4399/// \brief Mark the template parameters that are used by the given
4400/// type.
4401static void
4402MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
4403                           bool OnlyDeduced,
4404                           unsigned Depth,
4405                           llvm::SmallBitVector &Used) {
4406  if (T.isNull())
4407    return;
4408
4409  // Non-dependent types have nothing deducible
4410  if (!T->isDependentType())
4411    return;
4412
4413  T = Ctx.getCanonicalType(T);
4414  switch (T->getTypeClass()) {
4415  case Type::Pointer:
4416    MarkUsedTemplateParameters(Ctx,
4417                               cast<PointerType>(T)->getPointeeType(),
4418                               OnlyDeduced,
4419                               Depth,
4420                               Used);
4421    break;
4422
4423  case Type::BlockPointer:
4424    MarkUsedTemplateParameters(Ctx,
4425                               cast<BlockPointerType>(T)->getPointeeType(),
4426                               OnlyDeduced,
4427                               Depth,
4428                               Used);
4429    break;
4430
4431  case Type::LValueReference:
4432  case Type::RValueReference:
4433    MarkUsedTemplateParameters(Ctx,
4434                               cast<ReferenceType>(T)->getPointeeType(),
4435                               OnlyDeduced,
4436                               Depth,
4437                               Used);
4438    break;
4439
4440  case Type::MemberPointer: {
4441    const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
4442    MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
4443                               Depth, Used);
4444    MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
4445                               OnlyDeduced, Depth, Used);
4446    break;
4447  }
4448
4449  case Type::DependentSizedArray:
4450    MarkUsedTemplateParameters(Ctx,
4451                               cast<DependentSizedArrayType>(T)->getSizeExpr(),
4452                               OnlyDeduced, Depth, Used);
4453    // Fall through to check the element type
4454
4455  case Type::ConstantArray:
4456  case Type::IncompleteArray:
4457    MarkUsedTemplateParameters(Ctx,
4458                               cast<ArrayType>(T)->getElementType(),
4459                               OnlyDeduced, Depth, Used);
4460    break;
4461
4462  case Type::Vector:
4463  case Type::ExtVector:
4464    MarkUsedTemplateParameters(Ctx,
4465                               cast<VectorType>(T)->getElementType(),
4466                               OnlyDeduced, Depth, Used);
4467    break;
4468
4469  case Type::DependentSizedExtVector: {
4470    const DependentSizedExtVectorType *VecType
4471      = cast<DependentSizedExtVectorType>(T);
4472    MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
4473                               Depth, Used);
4474    MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
4475                               Depth, Used);
4476    break;
4477  }
4478
4479  case Type::FunctionProto: {
4480    const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
4481    MarkUsedTemplateParameters(Ctx, Proto->getResultType(), OnlyDeduced,
4482                               Depth, Used);
4483    for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
4484      MarkUsedTemplateParameters(Ctx, Proto->getArgType(I), OnlyDeduced,
4485                                 Depth, Used);
4486    break;
4487  }
4488
4489  case Type::TemplateTypeParm: {
4490    const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
4491    if (TTP->getDepth() == Depth)
4492      Used[TTP->getIndex()] = true;
4493    break;
4494  }
4495
4496  case Type::SubstTemplateTypeParmPack: {
4497    const SubstTemplateTypeParmPackType *Subst
4498      = cast<SubstTemplateTypeParmPackType>(T);
4499    MarkUsedTemplateParameters(Ctx,
4500                               QualType(Subst->getReplacedParameter(), 0),
4501                               OnlyDeduced, Depth, Used);
4502    MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
4503                               OnlyDeduced, Depth, Used);
4504    break;
4505  }
4506
4507  case Type::InjectedClassName:
4508    T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
4509    // fall through
4510
4511  case Type::TemplateSpecialization: {
4512    const TemplateSpecializationType *Spec
4513      = cast<TemplateSpecializationType>(T);
4514    MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
4515                               Depth, Used);
4516
4517    // C++0x [temp.deduct.type]p9:
4518    //   If the template argument list of P contains a pack expansion that is not
4519    //   the last template argument, the entire template argument list is a
4520    //   non-deduced context.
4521    if (OnlyDeduced &&
4522        hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4523      break;
4524
4525    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4526      MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4527                                 Used);
4528    break;
4529  }
4530
4531  case Type::Complex:
4532    if (!OnlyDeduced)
4533      MarkUsedTemplateParameters(Ctx,
4534                                 cast<ComplexType>(T)->getElementType(),
4535                                 OnlyDeduced, Depth, Used);
4536    break;
4537
4538  case Type::Atomic:
4539    if (!OnlyDeduced)
4540      MarkUsedTemplateParameters(Ctx,
4541                                 cast<AtomicType>(T)->getValueType(),
4542                                 OnlyDeduced, Depth, Used);
4543    break;
4544
4545  case Type::DependentName:
4546    if (!OnlyDeduced)
4547      MarkUsedTemplateParameters(Ctx,
4548                                 cast<DependentNameType>(T)->getQualifier(),
4549                                 OnlyDeduced, Depth, Used);
4550    break;
4551
4552  case Type::DependentTemplateSpecialization: {
4553    const DependentTemplateSpecializationType *Spec
4554      = cast<DependentTemplateSpecializationType>(T);
4555    if (!OnlyDeduced)
4556      MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
4557                                 OnlyDeduced, Depth, Used);
4558
4559    // C++0x [temp.deduct.type]p9:
4560    //   If the template argument list of P contains a pack expansion that is not
4561    //   the last template argument, the entire template argument list is a
4562    //   non-deduced context.
4563    if (OnlyDeduced &&
4564        hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4565      break;
4566
4567    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4568      MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4569                                 Used);
4570    break;
4571  }
4572
4573  case Type::TypeOf:
4574    if (!OnlyDeduced)
4575      MarkUsedTemplateParameters(Ctx,
4576                                 cast<TypeOfType>(T)->getUnderlyingType(),
4577                                 OnlyDeduced, Depth, Used);
4578    break;
4579
4580  case Type::TypeOfExpr:
4581    if (!OnlyDeduced)
4582      MarkUsedTemplateParameters(Ctx,
4583                                 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
4584                                 OnlyDeduced, Depth, Used);
4585    break;
4586
4587  case Type::Decltype:
4588    if (!OnlyDeduced)
4589      MarkUsedTemplateParameters(Ctx,
4590                                 cast<DecltypeType>(T)->getUnderlyingExpr(),
4591                                 OnlyDeduced, Depth, Used);
4592    break;
4593
4594  case Type::UnaryTransform:
4595    if (!OnlyDeduced)
4596      MarkUsedTemplateParameters(Ctx,
4597                               cast<UnaryTransformType>(T)->getUnderlyingType(),
4598                                 OnlyDeduced, Depth, Used);
4599    break;
4600
4601  case Type::PackExpansion:
4602    MarkUsedTemplateParameters(Ctx,
4603                               cast<PackExpansionType>(T)->getPattern(),
4604                               OnlyDeduced, Depth, Used);
4605    break;
4606
4607  case Type::Auto:
4608    MarkUsedTemplateParameters(Ctx,
4609                               cast<AutoType>(T)->getDeducedType(),
4610                               OnlyDeduced, Depth, Used);
4611
4612  // None of these types have any template parameters in them.
4613  case Type::Builtin:
4614  case Type::VariableArray:
4615  case Type::FunctionNoProto:
4616  case Type::Record:
4617  case Type::Enum:
4618  case Type::ObjCInterface:
4619  case Type::ObjCObject:
4620  case Type::ObjCObjectPointer:
4621  case Type::UnresolvedUsing:
4622#define TYPE(Class, Base)
4623#define ABSTRACT_TYPE(Class, Base)
4624#define DEPENDENT_TYPE(Class, Base)
4625#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4626#include "clang/AST/TypeNodes.def"
4627    break;
4628  }
4629}
4630
4631/// \brief Mark the template parameters that are used by this
4632/// template argument.
4633static void
4634MarkUsedTemplateParameters(ASTContext &Ctx,
4635                           const TemplateArgument &TemplateArg,
4636                           bool OnlyDeduced,
4637                           unsigned Depth,
4638                           llvm::SmallBitVector &Used) {
4639  switch (TemplateArg.getKind()) {
4640  case TemplateArgument::Null:
4641  case TemplateArgument::Integral:
4642  case TemplateArgument::Declaration:
4643    break;
4644
4645  case TemplateArgument::NullPtr:
4646    MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
4647                               Depth, Used);
4648    break;
4649
4650  case TemplateArgument::Type:
4651    MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
4652                               Depth, Used);
4653    break;
4654
4655  case TemplateArgument::Template:
4656  case TemplateArgument::TemplateExpansion:
4657    MarkUsedTemplateParameters(Ctx,
4658                               TemplateArg.getAsTemplateOrTemplatePattern(),
4659                               OnlyDeduced, Depth, Used);
4660    break;
4661
4662  case TemplateArgument::Expression:
4663    MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
4664                               Depth, Used);
4665    break;
4666
4667  case TemplateArgument::Pack:
4668    for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
4669                                      PEnd = TemplateArg.pack_end();
4670         P != PEnd; ++P)
4671      MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
4672    break;
4673  }
4674}
4675
4676/// \brief Mark which template parameters can be deduced from a given
4677/// template argument list.
4678///
4679/// \param TemplateArgs the template argument list from which template
4680/// parameters will be deduced.
4681///
4682/// \param Used a bit vector whose elements will be set to \c true
4683/// to indicate when the corresponding template parameter will be
4684/// deduced.
4685void
4686Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
4687                                 bool OnlyDeduced, unsigned Depth,
4688                                 llvm::SmallBitVector &Used) {
4689  // C++0x [temp.deduct.type]p9:
4690  //   If the template argument list of P contains a pack expansion that is not
4691  //   the last template argument, the entire template argument list is a
4692  //   non-deduced context.
4693  if (OnlyDeduced &&
4694      hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
4695    return;
4696
4697  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4698    ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
4699                                 Depth, Used);
4700}
4701
4702/// \brief Marks all of the template parameters that will be deduced by a
4703/// call to the given function template.
4704void
4705Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
4706                                    const FunctionTemplateDecl *FunctionTemplate,
4707                                    llvm::SmallBitVector &Deduced) {
4708  TemplateParameterList *TemplateParams
4709    = FunctionTemplate->getTemplateParameters();
4710  Deduced.clear();
4711  Deduced.resize(TemplateParams->size());
4712
4713  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4714  for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
4715    ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
4716                                 true, TemplateParams->getDepth(), Deduced);
4717}
4718
4719bool hasDeducibleTemplateParameters(Sema &S,
4720                                    FunctionTemplateDecl *FunctionTemplate,
4721                                    QualType T) {
4722  if (!T->isDependentType())
4723    return false;
4724
4725  TemplateParameterList *TemplateParams
4726    = FunctionTemplate->getTemplateParameters();
4727  llvm::SmallBitVector Deduced(TemplateParams->size());
4728  ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
4729                               Deduced);
4730
4731  return Deduced.any();
4732}
4733