SemaTemplateDeduction.cpp revision b0957fb5663cb8fce11321103b49224e106d4e95
1//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===/
12
13#include "clang/Sema/Sema.h"
14#include "clang/Sema/DeclSpec.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include <algorithm>
24
25namespace clang {
26  using namespace sema;
27
28  /// \brief Various flags that control template argument deduction.
29  ///
30  /// These flags can be bitwise-OR'd together.
31  enum TemplateDeductionFlags {
32    /// \brief No template argument deduction flags, which indicates the
33    /// strictest results for template argument deduction (as used for, e.g.,
34    /// matching class template partial specializations).
35    TDF_None = 0,
36    /// \brief Within template argument deduction from a function call, we are
37    /// matching with a parameter type for which the original parameter was
38    /// a reference.
39    TDF_ParamWithReferenceType = 0x1,
40    /// \brief Within template argument deduction from a function call, we
41    /// are matching in a case where we ignore cv-qualifiers.
42    TDF_IgnoreQualifiers = 0x02,
43    /// \brief Within template argument deduction from a function call,
44    /// we are matching in a case where we can perform template argument
45    /// deduction from a template-id of a derived class of the argument type.
46    TDF_DerivedClass = 0x04,
47    /// \brief Allow non-dependent types to differ, e.g., when performing
48    /// template argument deduction from a function call where conversions
49    /// may apply.
50    TDF_SkipNonDependent = 0x08
51  };
52}
53
54using namespace clang;
55
56/// \brief Compare two APSInts, extending and switching the sign as
57/// necessary to compare their values regardless of underlying type.
58static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
59  if (Y.getBitWidth() > X.getBitWidth())
60    X.extend(Y.getBitWidth());
61  else if (Y.getBitWidth() < X.getBitWidth())
62    Y.extend(X.getBitWidth());
63
64  // If there is a signedness mismatch, correct it.
65  if (X.isSigned() != Y.isSigned()) {
66    // If the signed value is negative, then the values cannot be the same.
67    if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
68      return false;
69
70    Y.setIsSigned(true);
71    X.setIsSigned(true);
72  }
73
74  return X == Y;
75}
76
77static Sema::TemplateDeductionResult
78DeduceTemplateArguments(Sema &S,
79                        TemplateParameterList *TemplateParams,
80                        const TemplateArgument &Param,
81                        const TemplateArgument &Arg,
82                        TemplateDeductionInfo &Info,
83                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced);
84
85/// \brief If the given expression is of a form that permits the deduction
86/// of a non-type template parameter, return the declaration of that
87/// non-type template parameter.
88static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
89  if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
90    E = IC->getSubExpr();
91
92  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
93    return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
94
95  return 0;
96}
97
98/// \brief Deduce the value of the given non-type template parameter
99/// from the given constant.
100static Sema::TemplateDeductionResult
101DeduceNonTypeTemplateArgument(Sema &S,
102                              NonTypeTemplateParmDecl *NTTP,
103                              llvm::APSInt Value, QualType ValueType,
104                              bool DeducedFromArrayBound,
105                              TemplateDeductionInfo &Info,
106                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
107  assert(NTTP->getDepth() == 0 &&
108         "Cannot deduce non-type template argument with depth > 0");
109
110  if (Deduced[NTTP->getIndex()].isNull()) {
111    Deduced[NTTP->getIndex()] = DeducedTemplateArgument(Value, ValueType,
112                                                        DeducedFromArrayBound);
113    return Sema::TDK_Success;
114  }
115
116  if (Deduced[NTTP->getIndex()].getKind() != TemplateArgument::Integral) {
117    Info.Param = NTTP;
118    Info.FirstArg = Deduced[NTTP->getIndex()];
119    Info.SecondArg = TemplateArgument(Value, ValueType);
120    return Sema::TDK_Inconsistent;
121  }
122
123  // Extent the smaller of the two values.
124  llvm::APSInt PrevValue = *Deduced[NTTP->getIndex()].getAsIntegral();
125  if (!hasSameExtendedValue(PrevValue, Value)) {
126    Info.Param = NTTP;
127    Info.FirstArg = Deduced[NTTP->getIndex()];
128    Info.SecondArg = TemplateArgument(Value, ValueType);
129    return Sema::TDK_Inconsistent;
130  }
131
132  if (!DeducedFromArrayBound)
133    Deduced[NTTP->getIndex()].setDeducedFromArrayBound(false);
134
135  return Sema::TDK_Success;
136}
137
138/// \brief Deduce the value of the given non-type template parameter
139/// from the given type- or value-dependent expression.
140///
141/// \returns true if deduction succeeded, false otherwise.
142static Sema::TemplateDeductionResult
143DeduceNonTypeTemplateArgument(Sema &S,
144                              NonTypeTemplateParmDecl *NTTP,
145                              Expr *Value,
146                              TemplateDeductionInfo &Info,
147                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
148  assert(NTTP->getDepth() == 0 &&
149         "Cannot deduce non-type template argument with depth > 0");
150  assert((Value->isTypeDependent() || Value->isValueDependent()) &&
151         "Expression template argument must be type- or value-dependent.");
152
153  if (Deduced[NTTP->getIndex()].isNull()) {
154    Deduced[NTTP->getIndex()] = TemplateArgument(Value);
155    return Sema::TDK_Success;
156  }
157
158  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral) {
159    // Okay, we deduced a constant in one case and a dependent expression
160    // in another case. FIXME: Later, we will check that instantiating the
161    // dependent expression gives us the constant value.
162    return Sema::TDK_Success;
163  }
164
165  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) {
166    // Compare the expressions for equality
167    llvm::FoldingSetNodeID ID1, ID2;
168    Deduced[NTTP->getIndex()].getAsExpr()->Profile(ID1, S.Context, true);
169    Value->Profile(ID2, S.Context, true);
170    if (ID1 == ID2)
171      return Sema::TDK_Success;
172
173    // FIXME: Fill in argument mismatch information
174    return Sema::TDK_NonDeducedMismatch;
175  }
176
177  return Sema::TDK_Success;
178}
179
180/// \brief Deduce the value of the given non-type template parameter
181/// from the given declaration.
182///
183/// \returns true if deduction succeeded, false otherwise.
184static Sema::TemplateDeductionResult
185DeduceNonTypeTemplateArgument(Sema &S,
186                              NonTypeTemplateParmDecl *NTTP,
187                              Decl *D,
188                              TemplateDeductionInfo &Info,
189                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
190  assert(NTTP->getDepth() == 0 &&
191         "Cannot deduce non-type template argument with depth > 0");
192
193  if (Deduced[NTTP->getIndex()].isNull()) {
194    Deduced[NTTP->getIndex()] = TemplateArgument(D->getCanonicalDecl());
195    return Sema::TDK_Success;
196  }
197
198  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) {
199    // Okay, we deduced a declaration in one case and a dependent expression
200    // in another case.
201    return Sema::TDK_Success;
202  }
203
204  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Declaration) {
205    // Compare the declarations for equality
206    if (Deduced[NTTP->getIndex()].getAsDecl()->getCanonicalDecl() ==
207          D->getCanonicalDecl())
208      return Sema::TDK_Success;
209
210    // FIXME: Fill in argument mismatch information
211    return Sema::TDK_NonDeducedMismatch;
212  }
213
214  return Sema::TDK_Success;
215}
216
217static Sema::TemplateDeductionResult
218DeduceTemplateArguments(Sema &S,
219                        TemplateParameterList *TemplateParams,
220                        TemplateName Param,
221                        TemplateName Arg,
222                        TemplateDeductionInfo &Info,
223                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
224  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
225  if (!ParamDecl) {
226    // The parameter type is dependent and is not a template template parameter,
227    // so there is nothing that we can deduce.
228    return Sema::TDK_Success;
229  }
230
231  if (TemplateTemplateParmDecl *TempParam
232        = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
233    // Bind the template template parameter to the given template name.
234    TemplateArgument &ExistingArg = Deduced[TempParam->getIndex()];
235    if (ExistingArg.isNull()) {
236      // This is the first deduction for this template template parameter.
237      ExistingArg = TemplateArgument(S.Context.getCanonicalTemplateName(Arg));
238      return Sema::TDK_Success;
239    }
240
241    // Verify that the previous binding matches this deduction.
242    assert(ExistingArg.getKind() == TemplateArgument::Template);
243    if (S.Context.hasSameTemplateName(ExistingArg.getAsTemplate(), Arg))
244      return Sema::TDK_Success;
245
246    // Inconsistent deduction.
247    Info.Param = TempParam;
248    Info.FirstArg = ExistingArg;
249    Info.SecondArg = TemplateArgument(Arg);
250    return Sema::TDK_Inconsistent;
251  }
252
253  // Verify that the two template names are equivalent.
254  if (S.Context.hasSameTemplateName(Param, Arg))
255    return Sema::TDK_Success;
256
257  // Mismatch of non-dependent template parameter to argument.
258  Info.FirstArg = TemplateArgument(Param);
259  Info.SecondArg = TemplateArgument(Arg);
260  return Sema::TDK_NonDeducedMismatch;
261}
262
263/// \brief Deduce the template arguments by comparing the template parameter
264/// type (which is a template-id) with the template argument type.
265///
266/// \param S the Sema
267///
268/// \param TemplateParams the template parameters that we are deducing
269///
270/// \param Param the parameter type
271///
272/// \param Arg the argument type
273///
274/// \param Info information about the template argument deduction itself
275///
276/// \param Deduced the deduced template arguments
277///
278/// \returns the result of template argument deduction so far. Note that a
279/// "success" result means that template argument deduction has not yet failed,
280/// but it may still fail, later, for other reasons.
281static Sema::TemplateDeductionResult
282DeduceTemplateArguments(Sema &S,
283                        TemplateParameterList *TemplateParams,
284                        const TemplateSpecializationType *Param,
285                        QualType Arg,
286                        TemplateDeductionInfo &Info,
287                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
288  assert(Arg.isCanonical() && "Argument type must be canonical");
289
290  // Check whether the template argument is a dependent template-id.
291  if (const TemplateSpecializationType *SpecArg
292        = dyn_cast<TemplateSpecializationType>(Arg)) {
293    // Perform template argument deduction for the template name.
294    if (Sema::TemplateDeductionResult Result
295          = DeduceTemplateArguments(S, TemplateParams,
296                                    Param->getTemplateName(),
297                                    SpecArg->getTemplateName(),
298                                    Info, Deduced))
299      return Result;
300
301
302    // Perform template argument deduction on each template
303    // argument.
304    unsigned NumArgs = std::min(SpecArg->getNumArgs(), Param->getNumArgs());
305    for (unsigned I = 0; I != NumArgs; ++I)
306      if (Sema::TemplateDeductionResult Result
307            = DeduceTemplateArguments(S, TemplateParams,
308                                      Param->getArg(I),
309                                      SpecArg->getArg(I),
310                                      Info, Deduced))
311        return Result;
312
313    return Sema::TDK_Success;
314  }
315
316  // If the argument type is a class template specialization, we
317  // perform template argument deduction using its template
318  // arguments.
319  const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
320  if (!RecordArg)
321    return Sema::TDK_NonDeducedMismatch;
322
323  ClassTemplateSpecializationDecl *SpecArg
324    = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
325  if (!SpecArg)
326    return Sema::TDK_NonDeducedMismatch;
327
328  // Perform template argument deduction for the template name.
329  if (Sema::TemplateDeductionResult Result
330        = DeduceTemplateArguments(S,
331                                  TemplateParams,
332                                  Param->getTemplateName(),
333                               TemplateName(SpecArg->getSpecializedTemplate()),
334                                  Info, Deduced))
335    return Result;
336
337  unsigned NumArgs = Param->getNumArgs();
338  const TemplateArgumentList &ArgArgs = SpecArg->getTemplateArgs();
339  if (NumArgs != ArgArgs.size())
340    return Sema::TDK_NonDeducedMismatch;
341
342  for (unsigned I = 0; I != NumArgs; ++I)
343    if (Sema::TemplateDeductionResult Result
344          = DeduceTemplateArguments(S, TemplateParams,
345                                    Param->getArg(I),
346                                    ArgArgs.get(I),
347                                    Info, Deduced))
348      return Result;
349
350  return Sema::TDK_Success;
351}
352
353/// \brief Determines whether the given type is an opaque type that
354/// might be more qualified when instantiated.
355static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
356  switch (T->getTypeClass()) {
357  case Type::TypeOfExpr:
358  case Type::TypeOf:
359  case Type::DependentName:
360  case Type::Decltype:
361  case Type::UnresolvedUsing:
362    return true;
363
364  case Type::ConstantArray:
365  case Type::IncompleteArray:
366  case Type::VariableArray:
367  case Type::DependentSizedArray:
368    return IsPossiblyOpaquelyQualifiedType(
369                                      cast<ArrayType>(T)->getElementType());
370
371  default:
372    return false;
373  }
374}
375
376/// \brief Deduce the template arguments by comparing the parameter type and
377/// the argument type (C++ [temp.deduct.type]).
378///
379/// \param S the semantic analysis object within which we are deducing
380///
381/// \param TemplateParams the template parameters that we are deducing
382///
383/// \param ParamIn the parameter type
384///
385/// \param ArgIn the argument type
386///
387/// \param Info information about the template argument deduction itself
388///
389/// \param Deduced the deduced template arguments
390///
391/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
392/// how template argument deduction is performed.
393///
394/// \returns the result of template argument deduction so far. Note that a
395/// "success" result means that template argument deduction has not yet failed,
396/// but it may still fail, later, for other reasons.
397static Sema::TemplateDeductionResult
398DeduceTemplateArguments(Sema &S,
399                        TemplateParameterList *TemplateParams,
400                        QualType ParamIn, QualType ArgIn,
401                        TemplateDeductionInfo &Info,
402                     llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
403                        unsigned TDF) {
404  // We only want to look at the canonical types, since typedefs and
405  // sugar are not part of template argument deduction.
406  QualType Param = S.Context.getCanonicalType(ParamIn);
407  QualType Arg = S.Context.getCanonicalType(ArgIn);
408
409  // C++0x [temp.deduct.call]p4 bullet 1:
410  //   - If the original P is a reference type, the deduced A (i.e., the type
411  //     referred to by the reference) can be more cv-qualified than the
412  //     transformed A.
413  if (TDF & TDF_ParamWithReferenceType) {
414    Qualifiers Quals;
415    QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
416    Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
417                           Arg.getCVRQualifiersThroughArrayTypes());
418    Param = S.Context.getQualifiedType(UnqualParam, Quals);
419  }
420
421  // If the parameter type is not dependent, there is nothing to deduce.
422  if (!Param->isDependentType()) {
423    if (!(TDF & TDF_SkipNonDependent) && Param != Arg) {
424
425      return Sema::TDK_NonDeducedMismatch;
426    }
427
428    return Sema::TDK_Success;
429  }
430
431  // C++ [temp.deduct.type]p9:
432  //   A template type argument T, a template template argument TT or a
433  //   template non-type argument i can be deduced if P and A have one of
434  //   the following forms:
435  //
436  //     T
437  //     cv-list T
438  if (const TemplateTypeParmType *TemplateTypeParm
439        = Param->getAs<TemplateTypeParmType>()) {
440    unsigned Index = TemplateTypeParm->getIndex();
441    bool RecanonicalizeArg = false;
442
443    // If the argument type is an array type, move the qualifiers up to the
444    // top level, so they can be matched with the qualifiers on the parameter.
445    // FIXME: address spaces, ObjC GC qualifiers
446    if (isa<ArrayType>(Arg)) {
447      Qualifiers Quals;
448      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
449      if (Quals) {
450        Arg = S.Context.getQualifiedType(Arg, Quals);
451        RecanonicalizeArg = true;
452      }
453    }
454
455    // The argument type can not be less qualified than the parameter
456    // type.
457    if (Param.isMoreQualifiedThan(Arg) && !(TDF & TDF_IgnoreQualifiers)) {
458      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
459      Info.FirstArg = TemplateArgument(Param);
460      Info.SecondArg = TemplateArgument(Arg);
461      return Sema::TDK_Underqualified;
462    }
463
464    assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
465    assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
466    QualType DeducedType = Arg;
467    DeducedType.removeCVRQualifiers(Param.getCVRQualifiers());
468    if (RecanonicalizeArg)
469      DeducedType = S.Context.getCanonicalType(DeducedType);
470
471    if (Deduced[Index].isNull())
472      Deduced[Index] = TemplateArgument(DeducedType);
473    else {
474      // C++ [temp.deduct.type]p2:
475      //   [...] If type deduction cannot be done for any P/A pair, or if for
476      //   any pair the deduction leads to more than one possible set of
477      //   deduced values, or if different pairs yield different deduced
478      //   values, or if any template argument remains neither deduced nor
479      //   explicitly specified, template argument deduction fails.
480      if (Deduced[Index].getAsType() != DeducedType) {
481        Info.Param
482          = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
483        Info.FirstArg = Deduced[Index];
484        Info.SecondArg = TemplateArgument(Arg);
485        return Sema::TDK_Inconsistent;
486      }
487    }
488    return Sema::TDK_Success;
489  }
490
491  // Set up the template argument deduction information for a failure.
492  Info.FirstArg = TemplateArgument(ParamIn);
493  Info.SecondArg = TemplateArgument(ArgIn);
494
495  // Check the cv-qualifiers on the parameter and argument types.
496  if (!(TDF & TDF_IgnoreQualifiers)) {
497    if (TDF & TDF_ParamWithReferenceType) {
498      if (Param.isMoreQualifiedThan(Arg))
499        return Sema::TDK_NonDeducedMismatch;
500    } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
501      if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
502        return Sema::TDK_NonDeducedMismatch;
503    }
504  }
505
506  switch (Param->getTypeClass()) {
507    // No deduction possible for these types
508    case Type::Builtin:
509      return Sema::TDK_NonDeducedMismatch;
510
511    //     T *
512    case Type::Pointer: {
513      QualType PointeeType;
514      if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
515        PointeeType = PointerArg->getPointeeType();
516      } else if (const ObjCObjectPointerType *PointerArg
517                   = Arg->getAs<ObjCObjectPointerType>()) {
518        PointeeType = PointerArg->getPointeeType();
519      } else {
520        return Sema::TDK_NonDeducedMismatch;
521      }
522
523      unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
524      return DeduceTemplateArguments(S, TemplateParams,
525                                   cast<PointerType>(Param)->getPointeeType(),
526                                     PointeeType,
527                                     Info, Deduced, SubTDF);
528    }
529
530    //     T &
531    case Type::LValueReference: {
532      const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
533      if (!ReferenceArg)
534        return Sema::TDK_NonDeducedMismatch;
535
536      return DeduceTemplateArguments(S, TemplateParams,
537                           cast<LValueReferenceType>(Param)->getPointeeType(),
538                                     ReferenceArg->getPointeeType(),
539                                     Info, Deduced, 0);
540    }
541
542    //     T && [C++0x]
543    case Type::RValueReference: {
544      const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
545      if (!ReferenceArg)
546        return Sema::TDK_NonDeducedMismatch;
547
548      return DeduceTemplateArguments(S, TemplateParams,
549                           cast<RValueReferenceType>(Param)->getPointeeType(),
550                                     ReferenceArg->getPointeeType(),
551                                     Info, Deduced, 0);
552    }
553
554    //     T [] (implied, but not stated explicitly)
555    case Type::IncompleteArray: {
556      const IncompleteArrayType *IncompleteArrayArg =
557        S.Context.getAsIncompleteArrayType(Arg);
558      if (!IncompleteArrayArg)
559        return Sema::TDK_NonDeducedMismatch;
560
561      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
562      return DeduceTemplateArguments(S, TemplateParams,
563                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
564                                     IncompleteArrayArg->getElementType(),
565                                     Info, Deduced, SubTDF);
566    }
567
568    //     T [integer-constant]
569    case Type::ConstantArray: {
570      const ConstantArrayType *ConstantArrayArg =
571        S.Context.getAsConstantArrayType(Arg);
572      if (!ConstantArrayArg)
573        return Sema::TDK_NonDeducedMismatch;
574
575      const ConstantArrayType *ConstantArrayParm =
576        S.Context.getAsConstantArrayType(Param);
577      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
578        return Sema::TDK_NonDeducedMismatch;
579
580      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
581      return DeduceTemplateArguments(S, TemplateParams,
582                                     ConstantArrayParm->getElementType(),
583                                     ConstantArrayArg->getElementType(),
584                                     Info, Deduced, SubTDF);
585    }
586
587    //     type [i]
588    case Type::DependentSizedArray: {
589      const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
590      if (!ArrayArg)
591        return Sema::TDK_NonDeducedMismatch;
592
593      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
594
595      // Check the element type of the arrays
596      const DependentSizedArrayType *DependentArrayParm
597        = S.Context.getAsDependentSizedArrayType(Param);
598      if (Sema::TemplateDeductionResult Result
599            = DeduceTemplateArguments(S, TemplateParams,
600                                      DependentArrayParm->getElementType(),
601                                      ArrayArg->getElementType(),
602                                      Info, Deduced, SubTDF))
603        return Result;
604
605      // Determine the array bound is something we can deduce.
606      NonTypeTemplateParmDecl *NTTP
607        = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
608      if (!NTTP)
609        return Sema::TDK_Success;
610
611      // We can perform template argument deduction for the given non-type
612      // template parameter.
613      assert(NTTP->getDepth() == 0 &&
614             "Cannot deduce non-type template argument at depth > 0");
615      if (const ConstantArrayType *ConstantArrayArg
616            = dyn_cast<ConstantArrayType>(ArrayArg)) {
617        llvm::APSInt Size(ConstantArrayArg->getSize());
618        return DeduceNonTypeTemplateArgument(S, NTTP, Size,
619                                             S.Context.getSizeType(),
620                                             /*ArrayBound=*/true,
621                                             Info, Deduced);
622      }
623      if (const DependentSizedArrayType *DependentArrayArg
624            = dyn_cast<DependentSizedArrayType>(ArrayArg))
625        return DeduceNonTypeTemplateArgument(S, NTTP,
626                                             DependentArrayArg->getSizeExpr(),
627                                             Info, Deduced);
628
629      // Incomplete type does not match a dependently-sized array type
630      return Sema::TDK_NonDeducedMismatch;
631    }
632
633    //     type(*)(T)
634    //     T(*)()
635    //     T(*)(T)
636    case Type::FunctionProto: {
637      const FunctionProtoType *FunctionProtoArg =
638        dyn_cast<FunctionProtoType>(Arg);
639      if (!FunctionProtoArg)
640        return Sema::TDK_NonDeducedMismatch;
641
642      const FunctionProtoType *FunctionProtoParam =
643        cast<FunctionProtoType>(Param);
644
645      if (FunctionProtoParam->getTypeQuals() !=
646          FunctionProtoArg->getTypeQuals())
647        return Sema::TDK_NonDeducedMismatch;
648
649      if (FunctionProtoParam->getNumArgs() != FunctionProtoArg->getNumArgs())
650        return Sema::TDK_NonDeducedMismatch;
651
652      if (FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
653        return Sema::TDK_NonDeducedMismatch;
654
655      // Check return types.
656      if (Sema::TemplateDeductionResult Result
657            = DeduceTemplateArguments(S, TemplateParams,
658                                      FunctionProtoParam->getResultType(),
659                                      FunctionProtoArg->getResultType(),
660                                      Info, Deduced, 0))
661        return Result;
662
663      for (unsigned I = 0, N = FunctionProtoParam->getNumArgs(); I != N; ++I) {
664        // Check argument types.
665        if (Sema::TemplateDeductionResult Result
666              = DeduceTemplateArguments(S, TemplateParams,
667                                        FunctionProtoParam->getArgType(I),
668                                        FunctionProtoArg->getArgType(I),
669                                        Info, Deduced, 0))
670          return Result;
671      }
672
673      return Sema::TDK_Success;
674    }
675
676    case Type::InjectedClassName: {
677      // Treat a template's injected-class-name as if the template
678      // specialization type had been used.
679      Param = cast<InjectedClassNameType>(Param)
680        ->getInjectedSpecializationType();
681      assert(isa<TemplateSpecializationType>(Param) &&
682             "injected class name is not a template specialization type");
683      // fall through
684    }
685
686    //     template-name<T> (where template-name refers to a class template)
687    //     template-name<i>
688    //     TT<T>
689    //     TT<i>
690    //     TT<>
691    case Type::TemplateSpecialization: {
692      const TemplateSpecializationType *SpecParam
693        = cast<TemplateSpecializationType>(Param);
694
695      // Try to deduce template arguments from the template-id.
696      Sema::TemplateDeductionResult Result
697        = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
698                                  Info, Deduced);
699
700      if (Result && (TDF & TDF_DerivedClass)) {
701        // C++ [temp.deduct.call]p3b3:
702        //   If P is a class, and P has the form template-id, then A can be a
703        //   derived class of the deduced A. Likewise, if P is a pointer to a
704        //   class of the form template-id, A can be a pointer to a derived
705        //   class pointed to by the deduced A.
706        //
707        // More importantly:
708        //   These alternatives are considered only if type deduction would
709        //   otherwise fail.
710        if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
711          // We cannot inspect base classes as part of deduction when the type
712          // is incomplete, so either instantiate any templates necessary to
713          // complete the type, or skip over it if it cannot be completed.
714          if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
715            return Result;
716
717          // Use data recursion to crawl through the list of base classes.
718          // Visited contains the set of nodes we have already visited, while
719          // ToVisit is our stack of records that we still need to visit.
720          llvm::SmallPtrSet<const RecordType *, 8> Visited;
721          llvm::SmallVector<const RecordType *, 8> ToVisit;
722          ToVisit.push_back(RecordT);
723          bool Successful = false;
724          llvm::SmallVectorImpl<DeducedTemplateArgument> DeducedOrig(0);
725          DeducedOrig = Deduced;
726          while (!ToVisit.empty()) {
727            // Retrieve the next class in the inheritance hierarchy.
728            const RecordType *NextT = ToVisit.back();
729            ToVisit.pop_back();
730
731            // If we have already seen this type, skip it.
732            if (!Visited.insert(NextT))
733              continue;
734
735            // If this is a base class, try to perform template argument
736            // deduction from it.
737            if (NextT != RecordT) {
738              Sema::TemplateDeductionResult BaseResult
739                = DeduceTemplateArguments(S, TemplateParams, SpecParam,
740                                          QualType(NextT, 0), Info, Deduced);
741
742              // If template argument deduction for this base was successful,
743              // note that we had some success. Otherwise, ignore any deductions
744              // from this base class.
745              if (BaseResult == Sema::TDK_Success) {
746                Successful = true;
747                DeducedOrig = Deduced;
748              }
749              else
750                Deduced = DeducedOrig;
751            }
752
753            // Visit base classes
754            CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
755            for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
756                                                 BaseEnd = Next->bases_end();
757                 Base != BaseEnd; ++Base) {
758              assert(Base->getType()->isRecordType() &&
759                     "Base class that isn't a record?");
760              ToVisit.push_back(Base->getType()->getAs<RecordType>());
761            }
762          }
763
764          if (Successful)
765            return Sema::TDK_Success;
766        }
767
768      }
769
770      return Result;
771    }
772
773    //     T type::*
774    //     T T::*
775    //     T (type::*)()
776    //     type (T::*)()
777    //     type (type::*)(T)
778    //     type (T::*)(T)
779    //     T (type::*)(T)
780    //     T (T::*)()
781    //     T (T::*)(T)
782    case Type::MemberPointer: {
783      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
784      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
785      if (!MemPtrArg)
786        return Sema::TDK_NonDeducedMismatch;
787
788      if (Sema::TemplateDeductionResult Result
789            = DeduceTemplateArguments(S, TemplateParams,
790                                      MemPtrParam->getPointeeType(),
791                                      MemPtrArg->getPointeeType(),
792                                      Info, Deduced,
793                                      TDF & TDF_IgnoreQualifiers))
794        return Result;
795
796      return DeduceTemplateArguments(S, TemplateParams,
797                                     QualType(MemPtrParam->getClass(), 0),
798                                     QualType(MemPtrArg->getClass(), 0),
799                                     Info, Deduced, 0);
800    }
801
802    //     (clang extension)
803    //
804    //     type(^)(T)
805    //     T(^)()
806    //     T(^)(T)
807    case Type::BlockPointer: {
808      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
809      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
810
811      if (!BlockPtrArg)
812        return Sema::TDK_NonDeducedMismatch;
813
814      return DeduceTemplateArguments(S, TemplateParams,
815                                     BlockPtrParam->getPointeeType(),
816                                     BlockPtrArg->getPointeeType(), Info,
817                                     Deduced, 0);
818    }
819
820    case Type::TypeOfExpr:
821    case Type::TypeOf:
822    case Type::DependentName:
823      // No template argument deduction for these types
824      return Sema::TDK_Success;
825
826    default:
827      break;
828  }
829
830  // FIXME: Many more cases to go (to go).
831  return Sema::TDK_Success;
832}
833
834static Sema::TemplateDeductionResult
835DeduceTemplateArguments(Sema &S,
836                        TemplateParameterList *TemplateParams,
837                        const TemplateArgument &Param,
838                        const TemplateArgument &Arg,
839                        TemplateDeductionInfo &Info,
840                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
841  switch (Param.getKind()) {
842  case TemplateArgument::Null:
843    assert(false && "Null template argument in parameter list");
844    break;
845
846  case TemplateArgument::Type:
847    if (Arg.getKind() == TemplateArgument::Type)
848      return DeduceTemplateArguments(S, TemplateParams, Param.getAsType(),
849                                     Arg.getAsType(), Info, Deduced, 0);
850    Info.FirstArg = Param;
851    Info.SecondArg = Arg;
852    return Sema::TDK_NonDeducedMismatch;
853
854  case TemplateArgument::Template:
855    if (Arg.getKind() == TemplateArgument::Template)
856      return DeduceTemplateArguments(S, TemplateParams,
857                                     Param.getAsTemplate(),
858                                     Arg.getAsTemplate(), Info, Deduced);
859    Info.FirstArg = Param;
860    Info.SecondArg = Arg;
861    return Sema::TDK_NonDeducedMismatch;
862
863  case TemplateArgument::Declaration:
864    if (Arg.getKind() == TemplateArgument::Declaration &&
865        Param.getAsDecl()->getCanonicalDecl() ==
866          Arg.getAsDecl()->getCanonicalDecl())
867      return Sema::TDK_Success;
868
869    Info.FirstArg = Param;
870    Info.SecondArg = Arg;
871    return Sema::TDK_NonDeducedMismatch;
872
873  case TemplateArgument::Integral:
874    if (Arg.getKind() == TemplateArgument::Integral) {
875      if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral()))
876        return Sema::TDK_Success;
877
878      Info.FirstArg = Param;
879      Info.SecondArg = Arg;
880      return Sema::TDK_NonDeducedMismatch;
881    }
882
883    if (Arg.getKind() == TemplateArgument::Expression) {
884      Info.FirstArg = Param;
885      Info.SecondArg = Arg;
886      return Sema::TDK_NonDeducedMismatch;
887    }
888
889    Info.FirstArg = Param;
890    Info.SecondArg = Arg;
891    return Sema::TDK_NonDeducedMismatch;
892
893  case TemplateArgument::Expression: {
894    if (NonTypeTemplateParmDecl *NTTP
895          = getDeducedParameterFromExpr(Param.getAsExpr())) {
896      if (Arg.getKind() == TemplateArgument::Integral)
897        return DeduceNonTypeTemplateArgument(S, NTTP,
898                                             *Arg.getAsIntegral(),
899                                             Arg.getIntegralType(),
900                                             /*ArrayBound=*/false,
901                                             Info, Deduced);
902      if (Arg.getKind() == TemplateArgument::Expression)
903        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
904                                             Info, Deduced);
905      if (Arg.getKind() == TemplateArgument::Declaration)
906        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
907                                             Info, Deduced);
908
909      Info.FirstArg = Param;
910      Info.SecondArg = Arg;
911      return Sema::TDK_NonDeducedMismatch;
912    }
913
914    // Can't deduce anything, but that's okay.
915    return Sema::TDK_Success;
916  }
917  case TemplateArgument::Pack:
918    assert(0 && "FIXME: Implement!");
919    break;
920  }
921
922  return Sema::TDK_Success;
923}
924
925static Sema::TemplateDeductionResult
926DeduceTemplateArguments(Sema &S,
927                        TemplateParameterList *TemplateParams,
928                        const TemplateArgumentList &ParamList,
929                        const TemplateArgumentList &ArgList,
930                        TemplateDeductionInfo &Info,
931                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
932  assert(ParamList.size() == ArgList.size());
933  for (unsigned I = 0, N = ParamList.size(); I != N; ++I) {
934    if (Sema::TemplateDeductionResult Result
935          = DeduceTemplateArguments(S, TemplateParams,
936                                    ParamList[I], ArgList[I],
937                                    Info, Deduced))
938      return Result;
939  }
940  return Sema::TDK_Success;
941}
942
943/// \brief Determine whether two template arguments are the same.
944static bool isSameTemplateArg(ASTContext &Context,
945                              const TemplateArgument &X,
946                              const TemplateArgument &Y) {
947  if (X.getKind() != Y.getKind())
948    return false;
949
950  switch (X.getKind()) {
951    case TemplateArgument::Null:
952      assert(false && "Comparing NULL template argument");
953      break;
954
955    case TemplateArgument::Type:
956      return Context.getCanonicalType(X.getAsType()) ==
957             Context.getCanonicalType(Y.getAsType());
958
959    case TemplateArgument::Declaration:
960      return X.getAsDecl()->getCanonicalDecl() ==
961             Y.getAsDecl()->getCanonicalDecl();
962
963    case TemplateArgument::Template:
964      return Context.getCanonicalTemplateName(X.getAsTemplate())
965               .getAsVoidPointer() ==
966             Context.getCanonicalTemplateName(Y.getAsTemplate())
967               .getAsVoidPointer();
968
969    case TemplateArgument::Integral:
970      return *X.getAsIntegral() == *Y.getAsIntegral();
971
972    case TemplateArgument::Expression: {
973      llvm::FoldingSetNodeID XID, YID;
974      X.getAsExpr()->Profile(XID, Context, true);
975      Y.getAsExpr()->Profile(YID, Context, true);
976      return XID == YID;
977    }
978
979    case TemplateArgument::Pack:
980      if (X.pack_size() != Y.pack_size())
981        return false;
982
983      for (TemplateArgument::pack_iterator XP = X.pack_begin(),
984                                        XPEnd = X.pack_end(),
985                                           YP = Y.pack_begin();
986           XP != XPEnd; ++XP, ++YP)
987        if (!isSameTemplateArg(Context, *XP, *YP))
988          return false;
989
990      return true;
991  }
992
993  return false;
994}
995
996/// \brief Helper function to build a TemplateParameter when we don't
997/// know its type statically.
998static TemplateParameter makeTemplateParameter(Decl *D) {
999  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
1000    return TemplateParameter(TTP);
1001  else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
1002    return TemplateParameter(NTTP);
1003
1004  return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
1005}
1006
1007/// Complete template argument deduction for a class template partial
1008/// specialization.
1009static Sema::TemplateDeductionResult
1010FinishTemplateArgumentDeduction(Sema &S,
1011                                ClassTemplatePartialSpecializationDecl *Partial,
1012                                const TemplateArgumentList &TemplateArgs,
1013                      llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1014                                TemplateDeductionInfo &Info) {
1015  // Trap errors.
1016  Sema::SFINAETrap Trap(S);
1017
1018  Sema::ContextRAII SavedContext(S, Partial);
1019
1020  // C++ [temp.deduct.type]p2:
1021  //   [...] or if any template argument remains neither deduced nor
1022  //   explicitly specified, template argument deduction fails.
1023  llvm::SmallVector<TemplateArgument, 4> Builder;
1024  for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
1025    if (Deduced[I].isNull()) {
1026      Decl *Param
1027        = const_cast<NamedDecl *>(
1028                                Partial->getTemplateParameters()->getParam(I));
1029      Info.Param = makeTemplateParameter(Param);
1030      return Sema::TDK_Incomplete;
1031    }
1032
1033    Builder.push_back(Deduced[I]);
1034  }
1035
1036  // Form the template argument list from the deduced template arguments.
1037  TemplateArgumentList *DeducedArgumentList
1038    = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
1039                                       Builder.size());
1040
1041  Info.reset(DeducedArgumentList);
1042
1043  // Substitute the deduced template arguments into the template
1044  // arguments of the class template partial specialization, and
1045  // verify that the instantiated template arguments are both valid
1046  // and are equivalent to the template arguments originally provided
1047  // to the class template.
1048  // FIXME: Do we have to correct the types of deduced non-type template
1049  // arguments (in particular, integral non-type template arguments?).
1050  LocalInstantiationScope InstScope(S);
1051  ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
1052  const TemplateArgumentLoc *PartialTemplateArgs
1053    = Partial->getTemplateArgsAsWritten();
1054  unsigned N = Partial->getNumTemplateArgsAsWritten();
1055
1056  // Note that we don't provide the langle and rangle locations.
1057  TemplateArgumentListInfo InstArgs;
1058
1059  for (unsigned I = 0; I != N; ++I) {
1060    Decl *Param = const_cast<NamedDecl *>(
1061                    ClassTemplate->getTemplateParameters()->getParam(I));
1062    TemplateArgumentLoc InstArg;
1063    if (S.Subst(PartialTemplateArgs[I], InstArg,
1064                MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
1065      Info.Param = makeTemplateParameter(Param);
1066      Info.FirstArg = PartialTemplateArgs[I].getArgument();
1067      return Sema::TDK_SubstitutionFailure;
1068    }
1069    InstArgs.addArgument(InstArg);
1070  }
1071
1072  llvm::SmallVector<TemplateArgument, 4> ConvertedInstArgs;
1073  if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
1074                                InstArgs, false, ConvertedInstArgs))
1075    return Sema::TDK_SubstitutionFailure;
1076
1077  for (unsigned I = 0, E = ConvertedInstArgs.size(); I != E; ++I) {
1078    TemplateArgument InstArg = ConvertedInstArgs.data()[I];
1079
1080    Decl *Param = const_cast<NamedDecl *>(
1081                    ClassTemplate->getTemplateParameters()->getParam(I));
1082
1083    if (InstArg.getKind() == TemplateArgument::Expression) {
1084      // When the argument is an expression, check the expression result
1085      // against the actual template parameter to get down to the canonical
1086      // template argument.
1087      Expr *InstExpr = InstArg.getAsExpr();
1088      if (NonTypeTemplateParmDecl *NTTP
1089            = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1090        if (S.CheckTemplateArgument(NTTP, NTTP->getType(), InstExpr, InstArg)) {
1091          Info.Param = makeTemplateParameter(Param);
1092          Info.FirstArg = Partial->getTemplateArgs()[I];
1093          return Sema::TDK_SubstitutionFailure;
1094        }
1095      }
1096    }
1097
1098    if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
1099      Info.Param = makeTemplateParameter(Param);
1100      Info.FirstArg = TemplateArgs[I];
1101      Info.SecondArg = InstArg;
1102      return Sema::TDK_NonDeducedMismatch;
1103    }
1104  }
1105
1106  if (Trap.hasErrorOccurred())
1107    return Sema::TDK_SubstitutionFailure;
1108
1109  return Sema::TDK_Success;
1110}
1111
1112/// \brief Perform template argument deduction to determine whether
1113/// the given template arguments match the given class template
1114/// partial specialization per C++ [temp.class.spec.match].
1115Sema::TemplateDeductionResult
1116Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
1117                              const TemplateArgumentList &TemplateArgs,
1118                              TemplateDeductionInfo &Info) {
1119  // C++ [temp.class.spec.match]p2:
1120  //   A partial specialization matches a given actual template
1121  //   argument list if the template arguments of the partial
1122  //   specialization can be deduced from the actual template argument
1123  //   list (14.8.2).
1124  SFINAETrap Trap(*this);
1125  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1126  Deduced.resize(Partial->getTemplateParameters()->size());
1127  if (TemplateDeductionResult Result
1128        = ::DeduceTemplateArguments(*this,
1129                                    Partial->getTemplateParameters(),
1130                                    Partial->getTemplateArgs(),
1131                                    TemplateArgs, Info, Deduced))
1132    return Result;
1133
1134  InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
1135                             Deduced.data(), Deduced.size(), Info);
1136  if (Inst)
1137    return TDK_InstantiationDepth;
1138
1139  if (Trap.hasErrorOccurred())
1140    return Sema::TDK_SubstitutionFailure;
1141
1142  return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
1143                                           Deduced, Info);
1144}
1145
1146/// \brief Determine whether the given type T is a simple-template-id type.
1147static bool isSimpleTemplateIdType(QualType T) {
1148  if (const TemplateSpecializationType *Spec
1149        = T->getAs<TemplateSpecializationType>())
1150    return Spec->getTemplateName().getAsTemplateDecl() != 0;
1151
1152  return false;
1153}
1154
1155/// \brief Substitute the explicitly-provided template arguments into the
1156/// given function template according to C++ [temp.arg.explicit].
1157///
1158/// \param FunctionTemplate the function template into which the explicit
1159/// template arguments will be substituted.
1160///
1161/// \param ExplicitTemplateArguments the explicitly-specified template
1162/// arguments.
1163///
1164/// \param Deduced the deduced template arguments, which will be populated
1165/// with the converted and checked explicit template arguments.
1166///
1167/// \param ParamTypes will be populated with the instantiated function
1168/// parameters.
1169///
1170/// \param FunctionType if non-NULL, the result type of the function template
1171/// will also be instantiated and the pointed-to value will be updated with
1172/// the instantiated function type.
1173///
1174/// \param Info if substitution fails for any reason, this object will be
1175/// populated with more information about the failure.
1176///
1177/// \returns TDK_Success if substitution was successful, or some failure
1178/// condition.
1179Sema::TemplateDeductionResult
1180Sema::SubstituteExplicitTemplateArguments(
1181                                      FunctionTemplateDecl *FunctionTemplate,
1182                        const TemplateArgumentListInfo &ExplicitTemplateArgs,
1183                       llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1184                                 llvm::SmallVectorImpl<QualType> &ParamTypes,
1185                                          QualType *FunctionType,
1186                                          TemplateDeductionInfo &Info) {
1187  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1188  TemplateParameterList *TemplateParams
1189    = FunctionTemplate->getTemplateParameters();
1190
1191  if (ExplicitTemplateArgs.size() == 0) {
1192    // No arguments to substitute; just copy over the parameter types and
1193    // fill in the function type.
1194    for (FunctionDecl::param_iterator P = Function->param_begin(),
1195                                   PEnd = Function->param_end();
1196         P != PEnd;
1197         ++P)
1198      ParamTypes.push_back((*P)->getType());
1199
1200    if (FunctionType)
1201      *FunctionType = Function->getType();
1202    return TDK_Success;
1203  }
1204
1205  // Substitution of the explicit template arguments into a function template
1206  /// is a SFINAE context. Trap any errors that might occur.
1207  SFINAETrap Trap(*this);
1208
1209  // C++ [temp.arg.explicit]p3:
1210  //   Template arguments that are present shall be specified in the
1211  //   declaration order of their corresponding template-parameters. The
1212  //   template argument list shall not specify more template-arguments than
1213  //   there are corresponding template-parameters.
1214  llvm::SmallVector<TemplateArgument, 4> Builder;
1215
1216  // Enter a new template instantiation context where we check the
1217  // explicitly-specified template arguments against this function template,
1218  // and then substitute them into the function parameter types.
1219  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1220                             FunctionTemplate, Deduced.data(), Deduced.size(),
1221           ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
1222                             Info);
1223  if (Inst)
1224    return TDK_InstantiationDepth;
1225
1226  if (CheckTemplateArgumentList(FunctionTemplate,
1227                                SourceLocation(),
1228                                ExplicitTemplateArgs,
1229                                true,
1230                                Builder) || Trap.hasErrorOccurred()) {
1231    unsigned Index = Builder.size();
1232    if (Index >= TemplateParams->size())
1233      Index = TemplateParams->size() - 1;
1234    Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
1235    return TDK_InvalidExplicitArguments;
1236  }
1237
1238  // Form the template argument list from the explicitly-specified
1239  // template arguments.
1240  TemplateArgumentList *ExplicitArgumentList
1241    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
1242  Info.reset(ExplicitArgumentList);
1243
1244  // Template argument deduction and the final substitution should be
1245  // done in the context of the templated declaration.  Explicit
1246  // argument substitution, on the other hand, needs to happen in the
1247  // calling context.
1248  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
1249
1250  // Instantiate the types of each of the function parameters given the
1251  // explicitly-specified template arguments.
1252  for (FunctionDecl::param_iterator P = Function->param_begin(),
1253                                PEnd = Function->param_end();
1254       P != PEnd;
1255       ++P) {
1256    QualType ParamType
1257      = SubstType((*P)->getType(),
1258                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
1259                  (*P)->getLocation(), (*P)->getDeclName());
1260    if (ParamType.isNull() || Trap.hasErrorOccurred())
1261      return TDK_SubstitutionFailure;
1262
1263    ParamTypes.push_back(ParamType);
1264  }
1265
1266  // If the caller wants a full function type back, instantiate the return
1267  // type and form that function type.
1268  if (FunctionType) {
1269    // FIXME: exception-specifications?
1270    const FunctionProtoType *Proto
1271      = Function->getType()->getAs<FunctionProtoType>();
1272    assert(Proto && "Function template does not have a prototype?");
1273
1274    QualType ResultType
1275      = SubstType(Proto->getResultType(),
1276                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
1277                  Function->getTypeSpecStartLoc(),
1278                  Function->getDeclName());
1279    if (ResultType.isNull() || Trap.hasErrorOccurred())
1280      return TDK_SubstitutionFailure;
1281
1282    *FunctionType = BuildFunctionType(ResultType,
1283                                      ParamTypes.data(), ParamTypes.size(),
1284                                      Proto->isVariadic(),
1285                                      Proto->getTypeQuals(),
1286                                      Function->getLocation(),
1287                                      Function->getDeclName(),
1288                                      Proto->getExtInfo());
1289    if (FunctionType->isNull() || Trap.hasErrorOccurred())
1290      return TDK_SubstitutionFailure;
1291  }
1292
1293  // C++ [temp.arg.explicit]p2:
1294  //   Trailing template arguments that can be deduced (14.8.2) may be
1295  //   omitted from the list of explicit template-arguments. If all of the
1296  //   template arguments can be deduced, they may all be omitted; in this
1297  //   case, the empty template argument list <> itself may also be omitted.
1298  //
1299  // Take all of the explicitly-specified arguments and put them into the
1300  // set of deduced template arguments.
1301  Deduced.reserve(TemplateParams->size());
1302  for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I)
1303    Deduced.push_back(ExplicitArgumentList->get(I));
1304
1305  return TDK_Success;
1306}
1307
1308/// \brief Allocate a TemplateArgumentLoc where all locations have
1309/// been initialized to the given location.
1310///
1311/// \param S The semantic analysis object.
1312///
1313/// \param The template argument we are producing template argument
1314/// location information for.
1315///
1316/// \param NTTPType For a declaration template argument, the type of
1317/// the non-type template parameter that corresponds to this template
1318/// argument.
1319///
1320/// \param Loc The source location to use for the resulting template
1321/// argument.
1322static TemplateArgumentLoc
1323getTrivialTemplateArgumentLoc(Sema &S,
1324                              const TemplateArgument &Arg,
1325                              QualType NTTPType,
1326                              SourceLocation Loc) {
1327  switch (Arg.getKind()) {
1328  case TemplateArgument::Null:
1329    llvm_unreachable("Can't get a NULL template argument here");
1330    break;
1331
1332  case TemplateArgument::Type:
1333    return TemplateArgumentLoc(Arg,
1334                    S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
1335
1336  case TemplateArgument::Declaration: {
1337    Expr *E
1338      = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
1339                                                              .takeAs<Expr>();
1340    return TemplateArgumentLoc(TemplateArgument(E), E);
1341  }
1342
1343  case TemplateArgument::Integral: {
1344    Expr *E
1345      = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
1346    return TemplateArgumentLoc(TemplateArgument(E), E);
1347  }
1348
1349  case TemplateArgument::Template:
1350    return TemplateArgumentLoc(Arg, SourceRange(), Loc);
1351
1352  case TemplateArgument::Expression:
1353    return TemplateArgumentLoc(Arg, Arg.getAsExpr());
1354
1355  case TemplateArgument::Pack:
1356    llvm_unreachable("Template parameter packs are not yet supported");
1357  }
1358
1359  return TemplateArgumentLoc();
1360}
1361
1362/// \brief Finish template argument deduction for a function template,
1363/// checking the deduced template arguments for completeness and forming
1364/// the function template specialization.
1365Sema::TemplateDeductionResult
1366Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
1367                       llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1368                                      unsigned NumExplicitlySpecified,
1369                                      FunctionDecl *&Specialization,
1370                                      TemplateDeductionInfo &Info) {
1371  TemplateParameterList *TemplateParams
1372    = FunctionTemplate->getTemplateParameters();
1373
1374  // Template argument deduction for function templates in a SFINAE context.
1375  // Trap any errors that might occur.
1376  SFINAETrap Trap(*this);
1377
1378  // Enter a new template instantiation context while we instantiate the
1379  // actual function declaration.
1380  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1381                             FunctionTemplate, Deduced.data(), Deduced.size(),
1382              ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
1383                             Info);
1384  if (Inst)
1385    return TDK_InstantiationDepth;
1386
1387  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
1388
1389  // C++ [temp.deduct.type]p2:
1390  //   [...] or if any template argument remains neither deduced nor
1391  //   explicitly specified, template argument deduction fails.
1392  llvm::SmallVector<TemplateArgument, 4> Builder;
1393  for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
1394    NamedDecl *Param = FunctionTemplate->getTemplateParameters()->getParam(I);
1395    if (!Deduced[I].isNull()) {
1396      if (I < NumExplicitlySpecified) {
1397        // We have already fully type-checked and converted this
1398        // argument, because it was explicitly-specified. Just record the
1399        // presence of this argument.
1400        Builder.push_back(Deduced[I]);
1401        continue;
1402      }
1403
1404      // We have deduced this argument, so it still needs to be
1405      // checked and converted.
1406
1407      // First, for a non-type template parameter type that is
1408      // initialized by a declaration, we need the type of the
1409      // corresponding non-type template parameter.
1410      QualType NTTPType;
1411      if (NonTypeTemplateParmDecl *NTTP
1412                                = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1413        if (Deduced[I].getKind() == TemplateArgument::Declaration) {
1414          NTTPType = NTTP->getType();
1415          if (NTTPType->isDependentType()) {
1416            TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1417                                              Builder.data(), Builder.size());
1418            NTTPType = SubstType(NTTPType,
1419                                 MultiLevelTemplateArgumentList(TemplateArgs),
1420                                 NTTP->getLocation(),
1421                                 NTTP->getDeclName());
1422            if (NTTPType.isNull()) {
1423              Info.Param = makeTemplateParameter(Param);
1424              // FIXME: These template arguments are temporary. Free them!
1425              Info.reset(TemplateArgumentList::CreateCopy(Context,
1426                                                          Builder.data(),
1427                                                          Builder.size()));
1428              return TDK_SubstitutionFailure;
1429            }
1430          }
1431        }
1432      }
1433
1434      // Convert the deduced template argument into a template
1435      // argument that we can check, almost as if the user had written
1436      // the template argument explicitly.
1437      TemplateArgumentLoc Arg = getTrivialTemplateArgumentLoc(*this,
1438                                                              Deduced[I],
1439                                                              NTTPType,
1440                                                            Info.getLocation());
1441
1442      // Check the template argument, converting it as necessary.
1443      if (CheckTemplateArgument(Param, Arg,
1444                                FunctionTemplate,
1445                                FunctionTemplate->getLocation(),
1446                                FunctionTemplate->getSourceRange().getEnd(),
1447                                Builder,
1448                                Deduced[I].wasDeducedFromArrayBound()
1449                                  ? CTAK_DeducedFromArrayBound
1450                                  : CTAK_Deduced)) {
1451        Info.Param = makeTemplateParameter(
1452                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1453        // FIXME: These template arguments are temporary. Free them!
1454        Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
1455                                                    Builder.size()));
1456        return TDK_SubstitutionFailure;
1457      }
1458
1459      continue;
1460    }
1461
1462    // Substitute into the default template argument, if available.
1463    TemplateArgumentLoc DefArg
1464      = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
1465                                              FunctionTemplate->getLocation(),
1466                                  FunctionTemplate->getSourceRange().getEnd(),
1467                                                Param,
1468                                                Builder);
1469
1470    // If there was no default argument, deduction is incomplete.
1471    if (DefArg.getArgument().isNull()) {
1472      Info.Param = makeTemplateParameter(
1473                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1474      return TDK_Incomplete;
1475    }
1476
1477    // Check whether we can actually use the default argument.
1478    if (CheckTemplateArgument(Param, DefArg,
1479                              FunctionTemplate,
1480                              FunctionTemplate->getLocation(),
1481                              FunctionTemplate->getSourceRange().getEnd(),
1482                              Builder,
1483                              CTAK_Deduced)) {
1484      Info.Param = makeTemplateParameter(
1485                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1486      // FIXME: These template arguments are temporary. Free them!
1487      Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
1488                                                  Builder.size()));
1489      return TDK_SubstitutionFailure;
1490    }
1491
1492    // If we get here, we successfully used the default template argument.
1493  }
1494
1495  // Form the template argument list from the deduced template arguments.
1496  TemplateArgumentList *DeducedArgumentList
1497    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
1498  Info.reset(DeducedArgumentList);
1499
1500  // Substitute the deduced template arguments into the function template
1501  // declaration to produce the function template specialization.
1502  DeclContext *Owner = FunctionTemplate->getDeclContext();
1503  if (FunctionTemplate->getFriendObjectKind())
1504    Owner = FunctionTemplate->getLexicalDeclContext();
1505  Specialization = cast_or_null<FunctionDecl>(
1506                      SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
1507                         MultiLevelTemplateArgumentList(*DeducedArgumentList)));
1508  if (!Specialization)
1509    return TDK_SubstitutionFailure;
1510
1511  assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
1512         FunctionTemplate->getCanonicalDecl());
1513
1514  // If the template argument list is owned by the function template
1515  // specialization, release it.
1516  if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
1517      !Trap.hasErrorOccurred())
1518    Info.take();
1519
1520  // There may have been an error that did not prevent us from constructing a
1521  // declaration. Mark the declaration invalid and return with a substitution
1522  // failure.
1523  if (Trap.hasErrorOccurred()) {
1524    Specialization->setInvalidDecl(true);
1525    return TDK_SubstitutionFailure;
1526  }
1527
1528  // If we suppressed any diagnostics while performing template argument
1529  // deduction, and if we haven't already instantiated this declaration,
1530  // keep track of these diagnostics. They'll be emitted if this specialization
1531  // is actually used.
1532  if (Info.diag_begin() != Info.diag_end()) {
1533    llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator
1534      Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
1535    if (Pos == SuppressedDiagnostics.end())
1536        SuppressedDiagnostics[Specialization->getCanonicalDecl()]
1537          .append(Info.diag_begin(), Info.diag_end());
1538  }
1539
1540  return TDK_Success;
1541}
1542
1543/// Gets the type of a function for template-argument-deducton
1544/// purposes when it's considered as part of an overload set.
1545static QualType GetTypeOfFunction(ASTContext &Context,
1546                                  const OverloadExpr::FindResult &R,
1547                                  FunctionDecl *Fn) {
1548  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
1549    if (Method->isInstance()) {
1550      // An instance method that's referenced in a form that doesn't
1551      // look like a member pointer is just invalid.
1552      if (!R.HasFormOfMemberPointer) return QualType();
1553
1554      return Context.getMemberPointerType(Fn->getType(),
1555               Context.getTypeDeclType(Method->getParent()).getTypePtr());
1556    }
1557
1558  if (!R.IsAddressOfOperand) return Fn->getType();
1559  return Context.getPointerType(Fn->getType());
1560}
1561
1562/// Apply the deduction rules for overload sets.
1563///
1564/// \return the null type if this argument should be treated as an
1565/// undeduced context
1566static QualType
1567ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
1568                            Expr *Arg, QualType ParamType,
1569                            bool ParamWasReference) {
1570
1571  OverloadExpr::FindResult R = OverloadExpr::find(Arg);
1572
1573  OverloadExpr *Ovl = R.Expression;
1574
1575  // C++0x [temp.deduct.call]p4
1576  unsigned TDF = 0;
1577  if (ParamWasReference)
1578    TDF |= TDF_ParamWithReferenceType;
1579  if (R.IsAddressOfOperand)
1580    TDF |= TDF_IgnoreQualifiers;
1581
1582  // If there were explicit template arguments, we can only find
1583  // something via C++ [temp.arg.explicit]p3, i.e. if the arguments
1584  // unambiguously name a full specialization.
1585  if (Ovl->hasExplicitTemplateArgs()) {
1586    // But we can still look for an explicit specialization.
1587    if (FunctionDecl *ExplicitSpec
1588          = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
1589      return GetTypeOfFunction(S.Context, R, ExplicitSpec);
1590    return QualType();
1591  }
1592
1593  // C++0x [temp.deduct.call]p6:
1594  //   When P is a function type, pointer to function type, or pointer
1595  //   to member function type:
1596
1597  if (!ParamType->isFunctionType() &&
1598      !ParamType->isFunctionPointerType() &&
1599      !ParamType->isMemberFunctionPointerType())
1600    return QualType();
1601
1602  QualType Match;
1603  for (UnresolvedSetIterator I = Ovl->decls_begin(),
1604         E = Ovl->decls_end(); I != E; ++I) {
1605    NamedDecl *D = (*I)->getUnderlyingDecl();
1606
1607    //   - If the argument is an overload set containing one or more
1608    //     function templates, the parameter is treated as a
1609    //     non-deduced context.
1610    if (isa<FunctionTemplateDecl>(D))
1611      return QualType();
1612
1613    FunctionDecl *Fn = cast<FunctionDecl>(D);
1614    QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
1615    if (ArgType.isNull()) continue;
1616
1617    // Function-to-pointer conversion.
1618    if (!ParamWasReference && ParamType->isPointerType() &&
1619        ArgType->isFunctionType())
1620      ArgType = S.Context.getPointerType(ArgType);
1621
1622    //   - If the argument is an overload set (not containing function
1623    //     templates), trial argument deduction is attempted using each
1624    //     of the members of the set. If deduction succeeds for only one
1625    //     of the overload set members, that member is used as the
1626    //     argument value for the deduction. If deduction succeeds for
1627    //     more than one member of the overload set the parameter is
1628    //     treated as a non-deduced context.
1629
1630    // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
1631    //   Type deduction is done independently for each P/A pair, and
1632    //   the deduced template argument values are then combined.
1633    // So we do not reject deductions which were made elsewhere.
1634    llvm::SmallVector<DeducedTemplateArgument, 8>
1635      Deduced(TemplateParams->size());
1636    TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
1637    Sema::TemplateDeductionResult Result
1638      = DeduceTemplateArguments(S, TemplateParams,
1639                                ParamType, ArgType,
1640                                Info, Deduced, TDF);
1641    if (Result) continue;
1642    if (!Match.isNull()) return QualType();
1643    Match = ArgType;
1644  }
1645
1646  return Match;
1647}
1648
1649/// \brief Perform template argument deduction from a function call
1650/// (C++ [temp.deduct.call]).
1651///
1652/// \param FunctionTemplate the function template for which we are performing
1653/// template argument deduction.
1654///
1655/// \param ExplicitTemplateArguments the explicit template arguments provided
1656/// for this call.
1657///
1658/// \param Args the function call arguments
1659///
1660/// \param NumArgs the number of arguments in Args
1661///
1662/// \param Name the name of the function being called. This is only significant
1663/// when the function template is a conversion function template, in which
1664/// case this routine will also perform template argument deduction based on
1665/// the function to which
1666///
1667/// \param Specialization if template argument deduction was successful,
1668/// this will be set to the function template specialization produced by
1669/// template argument deduction.
1670///
1671/// \param Info the argument will be updated to provide additional information
1672/// about template argument deduction.
1673///
1674/// \returns the result of template argument deduction.
1675Sema::TemplateDeductionResult
1676Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1677                          const TemplateArgumentListInfo *ExplicitTemplateArgs,
1678                              Expr **Args, unsigned NumArgs,
1679                              FunctionDecl *&Specialization,
1680                              TemplateDeductionInfo &Info) {
1681  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1682
1683  // C++ [temp.deduct.call]p1:
1684  //   Template argument deduction is done by comparing each function template
1685  //   parameter type (call it P) with the type of the corresponding argument
1686  //   of the call (call it A) as described below.
1687  unsigned CheckArgs = NumArgs;
1688  if (NumArgs < Function->getMinRequiredArguments())
1689    return TDK_TooFewArguments;
1690  else if (NumArgs > Function->getNumParams()) {
1691    const FunctionProtoType *Proto
1692      = Function->getType()->getAs<FunctionProtoType>();
1693    if (!Proto->isVariadic())
1694      return TDK_TooManyArguments;
1695
1696    CheckArgs = Function->getNumParams();
1697  }
1698
1699  // The types of the parameters from which we will perform template argument
1700  // deduction.
1701  LocalInstantiationScope InstScope(*this);
1702  TemplateParameterList *TemplateParams
1703    = FunctionTemplate->getTemplateParameters();
1704  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1705  llvm::SmallVector<QualType, 4> ParamTypes;
1706  unsigned NumExplicitlySpecified = 0;
1707  if (ExplicitTemplateArgs) {
1708    TemplateDeductionResult Result =
1709      SubstituteExplicitTemplateArguments(FunctionTemplate,
1710                                          *ExplicitTemplateArgs,
1711                                          Deduced,
1712                                          ParamTypes,
1713                                          0,
1714                                          Info);
1715    if (Result)
1716      return Result;
1717
1718    NumExplicitlySpecified = Deduced.size();
1719  } else {
1720    // Just fill in the parameter types from the function declaration.
1721    for (unsigned I = 0; I != CheckArgs; ++I)
1722      ParamTypes.push_back(Function->getParamDecl(I)->getType());
1723  }
1724
1725  // Deduce template arguments from the function parameters.
1726  Deduced.resize(TemplateParams->size());
1727  for (unsigned I = 0; I != CheckArgs; ++I) {
1728    QualType ParamType = ParamTypes[I];
1729    QualType ArgType = Args[I]->getType();
1730
1731    // C++0x [temp.deduct.call]p3:
1732    //   If P is a cv-qualified type, the top level cv-qualifiers of P’s type
1733    //   are ignored for type deduction.
1734    if (ParamType.getCVRQualifiers())
1735      ParamType = ParamType.getLocalUnqualifiedType();
1736    const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
1737    if (ParamRefType) {
1738      //   [...] If P is a reference type, the type referred to by P is used
1739      //   for type deduction.
1740      ParamType = ParamRefType->getPointeeType();
1741    }
1742
1743    // Overload sets usually make this parameter an undeduced
1744    // context, but there are sometimes special circumstances.
1745    if (ArgType == Context.OverloadTy) {
1746      ArgType = ResolveOverloadForDeduction(*this, TemplateParams,
1747                                            Args[I], ParamType,
1748                                            ParamRefType != 0);
1749      if (ArgType.isNull())
1750        continue;
1751    }
1752
1753    if (ParamRefType) {
1754      // C++0x [temp.deduct.call]p3:
1755      //   [...] If P is of the form T&&, where T is a template parameter, and
1756      //   the argument is an lvalue, the type A& is used in place of A for
1757      //   type deduction.
1758      if (ParamRefType->isRValueReferenceType() &&
1759          ParamRefType->getAs<TemplateTypeParmType>() &&
1760          Args[I]->isLvalue(Context) == Expr::LV_Valid)
1761        ArgType = Context.getLValueReferenceType(ArgType);
1762    } else {
1763      // C++ [temp.deduct.call]p2:
1764      //   If P is not a reference type:
1765      //   - If A is an array type, the pointer type produced by the
1766      //     array-to-pointer standard conversion (4.2) is used in place of
1767      //     A for type deduction; otherwise,
1768      if (ArgType->isArrayType())
1769        ArgType = Context.getArrayDecayedType(ArgType);
1770      //   - If A is a function type, the pointer type produced by the
1771      //     function-to-pointer standard conversion (4.3) is used in place
1772      //     of A for type deduction; otherwise,
1773      else if (ArgType->isFunctionType())
1774        ArgType = Context.getPointerType(ArgType);
1775      else {
1776        // - If A is a cv-qualified type, the top level cv-qualifiers of A’s
1777        //   type are ignored for type deduction.
1778        QualType CanonArgType = Context.getCanonicalType(ArgType);
1779        if (ArgType.getCVRQualifiers())
1780          ArgType = ArgType.getUnqualifiedType();
1781      }
1782    }
1783
1784    // C++0x [temp.deduct.call]p4:
1785    //   In general, the deduction process attempts to find template argument
1786    //   values that will make the deduced A identical to A (after the type A
1787    //   is transformed as described above). [...]
1788    unsigned TDF = TDF_SkipNonDependent;
1789
1790    //     - If the original P is a reference type, the deduced A (i.e., the
1791    //       type referred to by the reference) can be more cv-qualified than
1792    //       the transformed A.
1793    if (ParamRefType)
1794      TDF |= TDF_ParamWithReferenceType;
1795    //     - The transformed A can be another pointer or pointer to member
1796    //       type that can be converted to the deduced A via a qualification
1797    //       conversion (4.4).
1798    if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
1799        ArgType->isObjCObjectPointerType())
1800      TDF |= TDF_IgnoreQualifiers;
1801    //     - If P is a class and P has the form simple-template-id, then the
1802    //       transformed A can be a derived class of the deduced A. Likewise,
1803    //       if P is a pointer to a class of the form simple-template-id, the
1804    //       transformed A can be a pointer to a derived class pointed to by
1805    //       the deduced A.
1806    if (isSimpleTemplateIdType(ParamType) ||
1807        (isa<PointerType>(ParamType) &&
1808         isSimpleTemplateIdType(
1809                              ParamType->getAs<PointerType>()->getPointeeType())))
1810      TDF |= TDF_DerivedClass;
1811
1812    if (TemplateDeductionResult Result
1813        = ::DeduceTemplateArguments(*this, TemplateParams,
1814                                    ParamType, ArgType, Info, Deduced,
1815                                    TDF))
1816      return Result;
1817
1818    // FIXME: we need to check that the deduced A is the same as A,
1819    // modulo the various allowed differences.
1820  }
1821
1822  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
1823                                         NumExplicitlySpecified,
1824                                         Specialization, Info);
1825}
1826
1827/// \brief Deduce template arguments when taking the address of a function
1828/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
1829/// a template.
1830///
1831/// \param FunctionTemplate the function template for which we are performing
1832/// template argument deduction.
1833///
1834/// \param ExplicitTemplateArguments the explicitly-specified template
1835/// arguments.
1836///
1837/// \param ArgFunctionType the function type that will be used as the
1838/// "argument" type (A) when performing template argument deduction from the
1839/// function template's function type. This type may be NULL, if there is no
1840/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
1841///
1842/// \param Specialization if template argument deduction was successful,
1843/// this will be set to the function template specialization produced by
1844/// template argument deduction.
1845///
1846/// \param Info the argument will be updated to provide additional information
1847/// about template argument deduction.
1848///
1849/// \returns the result of template argument deduction.
1850Sema::TemplateDeductionResult
1851Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1852                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
1853                              QualType ArgFunctionType,
1854                              FunctionDecl *&Specialization,
1855                              TemplateDeductionInfo &Info) {
1856  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1857  TemplateParameterList *TemplateParams
1858    = FunctionTemplate->getTemplateParameters();
1859  QualType FunctionType = Function->getType();
1860
1861  // Substitute any explicit template arguments.
1862  LocalInstantiationScope InstScope(*this);
1863  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1864  unsigned NumExplicitlySpecified = 0;
1865  llvm::SmallVector<QualType, 4> ParamTypes;
1866  if (ExplicitTemplateArgs) {
1867    if (TemplateDeductionResult Result
1868          = SubstituteExplicitTemplateArguments(FunctionTemplate,
1869                                                *ExplicitTemplateArgs,
1870                                                Deduced, ParamTypes,
1871                                                &FunctionType, Info))
1872      return Result;
1873
1874    NumExplicitlySpecified = Deduced.size();
1875  }
1876
1877  // Template argument deduction for function templates in a SFINAE context.
1878  // Trap any errors that might occur.
1879  SFINAETrap Trap(*this);
1880
1881  Deduced.resize(TemplateParams->size());
1882
1883  if (!ArgFunctionType.isNull()) {
1884    // Deduce template arguments from the function type.
1885    if (TemplateDeductionResult Result
1886          = ::DeduceTemplateArguments(*this, TemplateParams,
1887                                      FunctionType, ArgFunctionType, Info,
1888                                      Deduced, 0))
1889      return Result;
1890  }
1891
1892  if (TemplateDeductionResult Result
1893        = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
1894                                          NumExplicitlySpecified,
1895                                          Specialization, Info))
1896    return Result;
1897
1898  // If the requested function type does not match the actual type of the
1899  // specialization, template argument deduction fails.
1900  if (!ArgFunctionType.isNull() &&
1901      !Context.hasSameType(ArgFunctionType, Specialization->getType()))
1902    return TDK_NonDeducedMismatch;
1903
1904  return TDK_Success;
1905}
1906
1907/// \brief Deduce template arguments for a templated conversion
1908/// function (C++ [temp.deduct.conv]) and, if successful, produce a
1909/// conversion function template specialization.
1910Sema::TemplateDeductionResult
1911Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1912                              QualType ToType,
1913                              CXXConversionDecl *&Specialization,
1914                              TemplateDeductionInfo &Info) {
1915  CXXConversionDecl *Conv
1916    = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
1917  QualType FromType = Conv->getConversionType();
1918
1919  // Canonicalize the types for deduction.
1920  QualType P = Context.getCanonicalType(FromType);
1921  QualType A = Context.getCanonicalType(ToType);
1922
1923  // C++0x [temp.deduct.conv]p3:
1924  //   If P is a reference type, the type referred to by P is used for
1925  //   type deduction.
1926  if (const ReferenceType *PRef = P->getAs<ReferenceType>())
1927    P = PRef->getPointeeType();
1928
1929  // C++0x [temp.deduct.conv]p3:
1930  //   If A is a reference type, the type referred to by A is used
1931  //   for type deduction.
1932  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
1933    A = ARef->getPointeeType();
1934  // C++ [temp.deduct.conv]p2:
1935  //
1936  //   If A is not a reference type:
1937  else {
1938    assert(!A->isReferenceType() && "Reference types were handled above");
1939
1940    //   - If P is an array type, the pointer type produced by the
1941    //     array-to-pointer standard conversion (4.2) is used in place
1942    //     of P for type deduction; otherwise,
1943    if (P->isArrayType())
1944      P = Context.getArrayDecayedType(P);
1945    //   - If P is a function type, the pointer type produced by the
1946    //     function-to-pointer standard conversion (4.3) is used in
1947    //     place of P for type deduction; otherwise,
1948    else if (P->isFunctionType())
1949      P = Context.getPointerType(P);
1950    //   - If P is a cv-qualified type, the top level cv-qualifiers of
1951    //     P’s type are ignored for type deduction.
1952    else
1953      P = P.getUnqualifiedType();
1954
1955    // C++0x [temp.deduct.conv]p3:
1956    //   If A is a cv-qualified type, the top level cv-qualifiers of A’s
1957    //   type are ignored for type deduction.
1958    A = A.getUnqualifiedType();
1959  }
1960
1961  // Template argument deduction for function templates in a SFINAE context.
1962  // Trap any errors that might occur.
1963  SFINAETrap Trap(*this);
1964
1965  // C++ [temp.deduct.conv]p1:
1966  //   Template argument deduction is done by comparing the return
1967  //   type of the template conversion function (call it P) with the
1968  //   type that is required as the result of the conversion (call it
1969  //   A) as described in 14.8.2.4.
1970  TemplateParameterList *TemplateParams
1971    = FunctionTemplate->getTemplateParameters();
1972  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1973  Deduced.resize(TemplateParams->size());
1974
1975  // C++0x [temp.deduct.conv]p4:
1976  //   In general, the deduction process attempts to find template
1977  //   argument values that will make the deduced A identical to
1978  //   A. However, there are two cases that allow a difference:
1979  unsigned TDF = 0;
1980  //     - If the original A is a reference type, A can be more
1981  //       cv-qualified than the deduced A (i.e., the type referred to
1982  //       by the reference)
1983  if (ToType->isReferenceType())
1984    TDF |= TDF_ParamWithReferenceType;
1985  //     - The deduced A can be another pointer or pointer to member
1986  //       type that can be converted to A via a qualification
1987  //       conversion.
1988  //
1989  // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
1990  // both P and A are pointers or member pointers. In this case, we
1991  // just ignore cv-qualifiers completely).
1992  if ((P->isPointerType() && A->isPointerType()) ||
1993      (P->isMemberPointerType() && P->isMemberPointerType()))
1994    TDF |= TDF_IgnoreQualifiers;
1995  if (TemplateDeductionResult Result
1996        = ::DeduceTemplateArguments(*this, TemplateParams,
1997                                    P, A, Info, Deduced, TDF))
1998    return Result;
1999
2000  // FIXME: we need to check that the deduced A is the same as A,
2001  // modulo the various allowed differences.
2002
2003  // Finish template argument deduction.
2004  LocalInstantiationScope InstScope(*this);
2005  FunctionDecl *Spec = 0;
2006  TemplateDeductionResult Result
2007    = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
2008                                      Info);
2009  Specialization = cast_or_null<CXXConversionDecl>(Spec);
2010  return Result;
2011}
2012
2013/// \brief Deduce template arguments for a function template when there is
2014/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
2015///
2016/// \param FunctionTemplate the function template for which we are performing
2017/// template argument deduction.
2018///
2019/// \param ExplicitTemplateArguments the explicitly-specified template
2020/// arguments.
2021///
2022/// \param Specialization if template argument deduction was successful,
2023/// this will be set to the function template specialization produced by
2024/// template argument deduction.
2025///
2026/// \param Info the argument will be updated to provide additional information
2027/// about template argument deduction.
2028///
2029/// \returns the result of template argument deduction.
2030Sema::TemplateDeductionResult
2031Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2032                           const TemplateArgumentListInfo *ExplicitTemplateArgs,
2033                              FunctionDecl *&Specialization,
2034                              TemplateDeductionInfo &Info) {
2035  return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
2036                                 QualType(), Specialization, Info);
2037}
2038
2039/// \brief Stores the result of comparing the qualifiers of two types.
2040enum DeductionQualifierComparison {
2041  NeitherMoreQualified = 0,
2042  ParamMoreQualified,
2043  ArgMoreQualified
2044};
2045
2046/// \brief Deduce the template arguments during partial ordering by comparing
2047/// the parameter type and the argument type (C++0x [temp.deduct.partial]).
2048///
2049/// \param S the semantic analysis object within which we are deducing
2050///
2051/// \param TemplateParams the template parameters that we are deducing
2052///
2053/// \param ParamIn the parameter type
2054///
2055/// \param ArgIn the argument type
2056///
2057/// \param Info information about the template argument deduction itself
2058///
2059/// \param Deduced the deduced template arguments
2060///
2061/// \returns the result of template argument deduction so far. Note that a
2062/// "success" result means that template argument deduction has not yet failed,
2063/// but it may still fail, later, for other reasons.
2064static Sema::TemplateDeductionResult
2065DeduceTemplateArgumentsDuringPartialOrdering(Sema &S,
2066                                        TemplateParameterList *TemplateParams,
2067                                             QualType ParamIn, QualType ArgIn,
2068                                             TemplateDeductionInfo &Info,
2069                      llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2070   llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
2071  CanQualType Param = S.Context.getCanonicalType(ParamIn);
2072  CanQualType Arg = S.Context.getCanonicalType(ArgIn);
2073
2074  // C++0x [temp.deduct.partial]p5:
2075  //   Before the partial ordering is done, certain transformations are
2076  //   performed on the types used for partial ordering:
2077  //     - If P is a reference type, P is replaced by the type referred to.
2078  CanQual<ReferenceType> ParamRef = Param->getAs<ReferenceType>();
2079  if (!ParamRef.isNull())
2080    Param = ParamRef->getPointeeType();
2081
2082  //     - If A is a reference type, A is replaced by the type referred to.
2083  CanQual<ReferenceType> ArgRef = Arg->getAs<ReferenceType>();
2084  if (!ArgRef.isNull())
2085    Arg = ArgRef->getPointeeType();
2086
2087  if (QualifierComparisons && !ParamRef.isNull() && !ArgRef.isNull()) {
2088    // C++0x [temp.deduct.partial]p6:
2089    //   If both P and A were reference types (before being replaced with the
2090    //   type referred to above), determine which of the two types (if any) is
2091    //   more cv-qualified than the other; otherwise the types are considered to
2092    //   be equally cv-qualified for partial ordering purposes. The result of this
2093    //   determination will be used below.
2094    //
2095    // We save this information for later, using it only when deduction
2096    // succeeds in both directions.
2097    DeductionQualifierComparison QualifierResult = NeitherMoreQualified;
2098    if (Param.isMoreQualifiedThan(Arg))
2099      QualifierResult = ParamMoreQualified;
2100    else if (Arg.isMoreQualifiedThan(Param))
2101      QualifierResult = ArgMoreQualified;
2102    QualifierComparisons->push_back(QualifierResult);
2103  }
2104
2105  // C++0x [temp.deduct.partial]p7:
2106  //   Remove any top-level cv-qualifiers:
2107  //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
2108  //       version of P.
2109  Param = Param.getUnqualifiedType();
2110  //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
2111  //       version of A.
2112  Arg = Arg.getUnqualifiedType();
2113
2114  // C++0x [temp.deduct.partial]p8:
2115  //   Using the resulting types P and A the deduction is then done as
2116  //   described in 14.9.2.5. If deduction succeeds for a given type, the type
2117  //   from the argument template is considered to be at least as specialized
2118  //   as the type from the parameter template.
2119  return DeduceTemplateArguments(S, TemplateParams, Param, Arg, Info,
2120                                 Deduced, TDF_None);
2121}
2122
2123static void
2124MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
2125                           bool OnlyDeduced,
2126                           unsigned Level,
2127                           llvm::SmallVectorImpl<bool> &Deduced);
2128
2129/// \brief If this is a non-static member function,
2130static void MaybeAddImplicitObjectParameterType(ASTContext &Context,
2131                                                CXXMethodDecl *Method,
2132                                 llvm::SmallVectorImpl<QualType> &ArgTypes) {
2133  if (Method->isStatic())
2134    return;
2135
2136  // C++ [over.match.funcs]p4:
2137  //
2138  //   For non-static member functions, the type of the implicit
2139  //   object parameter is
2140  //     — "lvalue reference to cv X" for functions declared without a
2141  //       ref-qualifier or with the & ref-qualifier
2142  //     - "rvalue reference to cv X" for functions declared with the
2143  //       && ref-qualifier
2144  //
2145  // FIXME: We don't have ref-qualifiers yet, so we don't do that part.
2146  QualType ArgTy = Context.getTypeDeclType(Method->getParent());
2147  ArgTy = Context.getQualifiedType(ArgTy,
2148                        Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
2149  ArgTy = Context.getLValueReferenceType(ArgTy);
2150  ArgTypes.push_back(ArgTy);
2151}
2152
2153/// \brief Determine whether the function template \p FT1 is at least as
2154/// specialized as \p FT2.
2155static bool isAtLeastAsSpecializedAs(Sema &S,
2156                                     SourceLocation Loc,
2157                                     FunctionTemplateDecl *FT1,
2158                                     FunctionTemplateDecl *FT2,
2159                                     TemplatePartialOrderingContext TPOC,
2160    llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
2161  FunctionDecl *FD1 = FT1->getTemplatedDecl();
2162  FunctionDecl *FD2 = FT2->getTemplatedDecl();
2163  const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
2164  const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
2165
2166  assert(Proto1 && Proto2 && "Function templates must have prototypes");
2167  TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
2168  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2169  Deduced.resize(TemplateParams->size());
2170
2171  // C++0x [temp.deduct.partial]p3:
2172  //   The types used to determine the ordering depend on the context in which
2173  //   the partial ordering is done:
2174  TemplateDeductionInfo Info(S.Context, Loc);
2175  CXXMethodDecl *Method1 = 0;
2176  CXXMethodDecl *Method2 = 0;
2177  bool IsNonStatic2 = false;
2178  bool IsNonStatic1 = false;
2179  unsigned Skip2 = 0;
2180  switch (TPOC) {
2181  case TPOC_Call: {
2182    //   - In the context of a function call, the function parameter types are
2183    //     used.
2184    Method1 = dyn_cast<CXXMethodDecl>(FD1);
2185    Method2 = dyn_cast<CXXMethodDecl>(FD2);
2186    IsNonStatic1 = Method1 && !Method1->isStatic();
2187    IsNonStatic2 = Method2 && !Method2->isStatic();
2188
2189    // C++0x [temp.func.order]p3:
2190    //   [...] If only one of the function templates is a non-static
2191    //   member, that function template is considered to have a new
2192    //   first parameter inserted in its function parameter list. The
2193    //   new parameter is of type "reference to cv A," where cv are
2194    //   the cv-qualifiers of the function template (if any) and A is
2195    //   the class of which the function template is a member.
2196    //
2197    // C++98/03 doesn't have this provision, so instead we drop the
2198    // first argument of the free function or static member, which
2199    // seems to match existing practice.
2200    llvm::SmallVector<QualType, 4> Args1;
2201    unsigned Skip1 = !S.getLangOptions().CPlusPlus0x &&
2202      IsNonStatic2 && !IsNonStatic1;
2203    if (S.getLangOptions().CPlusPlus0x && IsNonStatic1 && !IsNonStatic2)
2204      MaybeAddImplicitObjectParameterType(S.Context, Method1, Args1);
2205    Args1.insert(Args1.end(),
2206                 Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
2207
2208    llvm::SmallVector<QualType, 4> Args2;
2209    Skip2 = !S.getLangOptions().CPlusPlus0x &&
2210      IsNonStatic1 && !IsNonStatic2;
2211    if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
2212      MaybeAddImplicitObjectParameterType(S.Context, Method2, Args2);
2213    Args2.insert(Args2.end(),
2214                 Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
2215
2216    unsigned NumParams = std::min(Args1.size(), Args2.size());
2217    for (unsigned I = 0; I != NumParams; ++I)
2218      if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2219                                                       TemplateParams,
2220                                                       Args2[I],
2221                                                       Args1[I],
2222                                                       Info,
2223                                                       Deduced,
2224                                                       QualifierComparisons))
2225        return false;
2226
2227    break;
2228  }
2229
2230  case TPOC_Conversion:
2231    //   - In the context of a call to a conversion operator, the return types
2232    //     of the conversion function templates are used.
2233    if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2234                                                     TemplateParams,
2235                                                     Proto2->getResultType(),
2236                                                     Proto1->getResultType(),
2237                                                     Info,
2238                                                     Deduced,
2239                                                     QualifierComparisons))
2240      return false;
2241    break;
2242
2243  case TPOC_Other:
2244    //   - In other contexts (14.6.6.2) the function template’s function type
2245    //     is used.
2246    if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2247                                                     TemplateParams,
2248                                                     FD2->getType(),
2249                                                     FD1->getType(),
2250                                                     Info,
2251                                                     Deduced,
2252                                                     QualifierComparisons))
2253      return false;
2254    break;
2255  }
2256
2257  // C++0x [temp.deduct.partial]p11:
2258  //   In most cases, all template parameters must have values in order for
2259  //   deduction to succeed, but for partial ordering purposes a template
2260  //   parameter may remain without a value provided it is not used in the
2261  //   types being used for partial ordering. [ Note: a template parameter used
2262  //   in a non-deduced context is considered used. -end note]
2263  unsigned ArgIdx = 0, NumArgs = Deduced.size();
2264  for (; ArgIdx != NumArgs; ++ArgIdx)
2265    if (Deduced[ArgIdx].isNull())
2266      break;
2267
2268  if (ArgIdx == NumArgs) {
2269    // All template arguments were deduced. FT1 is at least as specialized
2270    // as FT2.
2271    return true;
2272  }
2273
2274  // Figure out which template parameters were used.
2275  llvm::SmallVector<bool, 4> UsedParameters;
2276  UsedParameters.resize(TemplateParams->size());
2277  switch (TPOC) {
2278  case TPOC_Call: {
2279    unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
2280    if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
2281      ::MarkUsedTemplateParameters(S, Method2->getThisType(S.Context), false,
2282                                   TemplateParams->getDepth(), UsedParameters);
2283    for (unsigned I = Skip2; I < NumParams; ++I)
2284      ::MarkUsedTemplateParameters(S, Proto2->getArgType(I), false,
2285                                   TemplateParams->getDepth(),
2286                                   UsedParameters);
2287    break;
2288  }
2289
2290  case TPOC_Conversion:
2291    ::MarkUsedTemplateParameters(S, Proto2->getResultType(), false,
2292                                 TemplateParams->getDepth(),
2293                                 UsedParameters);
2294    break;
2295
2296  case TPOC_Other:
2297    ::MarkUsedTemplateParameters(S, FD2->getType(), false,
2298                                 TemplateParams->getDepth(),
2299                                 UsedParameters);
2300    break;
2301  }
2302
2303  for (; ArgIdx != NumArgs; ++ArgIdx)
2304    // If this argument had no value deduced but was used in one of the types
2305    // used for partial ordering, then deduction fails.
2306    if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
2307      return false;
2308
2309  return true;
2310}
2311
2312
2313/// \brief Returns the more specialized function template according
2314/// to the rules of function template partial ordering (C++ [temp.func.order]).
2315///
2316/// \param FT1 the first function template
2317///
2318/// \param FT2 the second function template
2319///
2320/// \param TPOC the context in which we are performing partial ordering of
2321/// function templates.
2322///
2323/// \returns the more specialized function template. If neither
2324/// template is more specialized, returns NULL.
2325FunctionTemplateDecl *
2326Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
2327                                 FunctionTemplateDecl *FT2,
2328                                 SourceLocation Loc,
2329                                 TemplatePartialOrderingContext TPOC) {
2330  llvm::SmallVector<DeductionQualifierComparison, 4> QualifierComparisons;
2331  bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 0);
2332  bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
2333                                          &QualifierComparisons);
2334
2335  if (Better1 != Better2) // We have a clear winner
2336    return Better1? FT1 : FT2;
2337
2338  if (!Better1 && !Better2) // Neither is better than the other
2339    return 0;
2340
2341
2342  // C++0x [temp.deduct.partial]p10:
2343  //   If for each type being considered a given template is at least as
2344  //   specialized for all types and more specialized for some set of types and
2345  //   the other template is not more specialized for any types or is not at
2346  //   least as specialized for any types, then the given template is more
2347  //   specialized than the other template. Otherwise, neither template is more
2348  //   specialized than the other.
2349  Better1 = false;
2350  Better2 = false;
2351  for (unsigned I = 0, N = QualifierComparisons.size(); I != N; ++I) {
2352    // C++0x [temp.deduct.partial]p9:
2353    //   If, for a given type, deduction succeeds in both directions (i.e., the
2354    //   types are identical after the transformations above) and if the type
2355    //   from the argument template is more cv-qualified than the type from the
2356    //   parameter template (as described above) that type is considered to be
2357    //   more specialized than the other. If neither type is more cv-qualified
2358    //   than the other then neither type is more specialized than the other.
2359    switch (QualifierComparisons[I]) {
2360      case NeitherMoreQualified:
2361        break;
2362
2363      case ParamMoreQualified:
2364        Better1 = true;
2365        if (Better2)
2366          return 0;
2367        break;
2368
2369      case ArgMoreQualified:
2370        Better2 = true;
2371        if (Better1)
2372          return 0;
2373        break;
2374    }
2375  }
2376
2377  assert(!(Better1 && Better2) && "Should have broken out in the loop above");
2378  if (Better1)
2379    return FT1;
2380  else if (Better2)
2381    return FT2;
2382  else
2383    return 0;
2384}
2385
2386/// \brief Determine if the two templates are equivalent.
2387static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
2388  if (T1 == T2)
2389    return true;
2390
2391  if (!T1 || !T2)
2392    return false;
2393
2394  return T1->getCanonicalDecl() == T2->getCanonicalDecl();
2395}
2396
2397/// \brief Retrieve the most specialized of the given function template
2398/// specializations.
2399///
2400/// \param SpecBegin the start iterator of the function template
2401/// specializations that we will be comparing.
2402///
2403/// \param SpecEnd the end iterator of the function template
2404/// specializations, paired with \p SpecBegin.
2405///
2406/// \param TPOC the partial ordering context to use to compare the function
2407/// template specializations.
2408///
2409/// \param Loc the location where the ambiguity or no-specializations
2410/// diagnostic should occur.
2411///
2412/// \param NoneDiag partial diagnostic used to diagnose cases where there are
2413/// no matching candidates.
2414///
2415/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
2416/// occurs.
2417///
2418/// \param CandidateDiag partial diagnostic used for each function template
2419/// specialization that is a candidate in the ambiguous ordering. One parameter
2420/// in this diagnostic should be unbound, which will correspond to the string
2421/// describing the template arguments for the function template specialization.
2422///
2423/// \param Index if non-NULL and the result of this function is non-nULL,
2424/// receives the index corresponding to the resulting function template
2425/// specialization.
2426///
2427/// \returns the most specialized function template specialization, if
2428/// found. Otherwise, returns SpecEnd.
2429///
2430/// \todo FIXME: Consider passing in the "also-ran" candidates that failed
2431/// template argument deduction.
2432UnresolvedSetIterator
2433Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
2434                         UnresolvedSetIterator SpecEnd,
2435                         TemplatePartialOrderingContext TPOC,
2436                         SourceLocation Loc,
2437                         const PartialDiagnostic &NoneDiag,
2438                         const PartialDiagnostic &AmbigDiag,
2439                         const PartialDiagnostic &CandidateDiag) {
2440  if (SpecBegin == SpecEnd) {
2441    Diag(Loc, NoneDiag);
2442    return SpecEnd;
2443  }
2444
2445  if (SpecBegin + 1 == SpecEnd)
2446    return SpecBegin;
2447
2448  // Find the function template that is better than all of the templates it
2449  // has been compared to.
2450  UnresolvedSetIterator Best = SpecBegin;
2451  FunctionTemplateDecl *BestTemplate
2452    = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
2453  assert(BestTemplate && "Not a function template specialization?");
2454  for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
2455    FunctionTemplateDecl *Challenger
2456      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
2457    assert(Challenger && "Not a function template specialization?");
2458    if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
2459                                                  Loc, TPOC),
2460                       Challenger)) {
2461      Best = I;
2462      BestTemplate = Challenger;
2463    }
2464  }
2465
2466  // Make sure that the "best" function template is more specialized than all
2467  // of the others.
2468  bool Ambiguous = false;
2469  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
2470    FunctionTemplateDecl *Challenger
2471      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
2472    if (I != Best &&
2473        !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
2474                                                   Loc, TPOC),
2475                        BestTemplate)) {
2476      Ambiguous = true;
2477      break;
2478    }
2479  }
2480
2481  if (!Ambiguous) {
2482    // We found an answer. Return it.
2483    return Best;
2484  }
2485
2486  // Diagnose the ambiguity.
2487  Diag(Loc, AmbigDiag);
2488
2489  // FIXME: Can we order the candidates in some sane way?
2490  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I)
2491    Diag((*I)->getLocation(), CandidateDiag)
2492      << getTemplateArgumentBindingsText(
2493        cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
2494                    *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
2495
2496  return SpecEnd;
2497}
2498
2499/// \brief Returns the more specialized class template partial specialization
2500/// according to the rules of partial ordering of class template partial
2501/// specializations (C++ [temp.class.order]).
2502///
2503/// \param PS1 the first class template partial specialization
2504///
2505/// \param PS2 the second class template partial specialization
2506///
2507/// \returns the more specialized class template partial specialization. If
2508/// neither partial specialization is more specialized, returns NULL.
2509ClassTemplatePartialSpecializationDecl *
2510Sema::getMoreSpecializedPartialSpecialization(
2511                                  ClassTemplatePartialSpecializationDecl *PS1,
2512                                  ClassTemplatePartialSpecializationDecl *PS2,
2513                                              SourceLocation Loc) {
2514  // C++ [temp.class.order]p1:
2515  //   For two class template partial specializations, the first is at least as
2516  //   specialized as the second if, given the following rewrite to two
2517  //   function templates, the first function template is at least as
2518  //   specialized as the second according to the ordering rules for function
2519  //   templates (14.6.6.2):
2520  //     - the first function template has the same template parameters as the
2521  //       first partial specialization and has a single function parameter
2522  //       whose type is a class template specialization with the template
2523  //       arguments of the first partial specialization, and
2524  //     - the second function template has the same template parameters as the
2525  //       second partial specialization and has a single function parameter
2526  //       whose type is a class template specialization with the template
2527  //       arguments of the second partial specialization.
2528  //
2529  // Rather than synthesize function templates, we merely perform the
2530  // equivalent partial ordering by performing deduction directly on
2531  // the template arguments of the class template partial
2532  // specializations. This computation is slightly simpler than the
2533  // general problem of function template partial ordering, because
2534  // class template partial specializations are more constrained. We
2535  // know that every template parameter is deducible from the class
2536  // template partial specialization's template arguments, for
2537  // example.
2538  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2539  TemplateDeductionInfo Info(Context, Loc);
2540
2541  QualType PT1 = PS1->getInjectedSpecializationType();
2542  QualType PT2 = PS2->getInjectedSpecializationType();
2543
2544  // Determine whether PS1 is at least as specialized as PS2
2545  Deduced.resize(PS2->getTemplateParameters()->size());
2546  bool Better1 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
2547                                                  PS2->getTemplateParameters(),
2548                                                               PT2,
2549                                                               PT1,
2550                                                               Info,
2551                                                               Deduced,
2552                                                               0);
2553  if (Better1) {
2554    InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
2555                               Deduced.data(), Deduced.size(), Info);
2556    Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
2557                                                 PS1->getTemplateArgs(),
2558                                                 Deduced, Info);
2559  }
2560
2561  // Determine whether PS2 is at least as specialized as PS1
2562  Deduced.clear();
2563  Deduced.resize(PS1->getTemplateParameters()->size());
2564  bool Better2 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
2565                                                  PS1->getTemplateParameters(),
2566                                                               PT1,
2567                                                               PT2,
2568                                                               Info,
2569                                                               Deduced,
2570                                                               0);
2571  if (Better2) {
2572    InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
2573                               Deduced.data(), Deduced.size(), Info);
2574    Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
2575                                                 PS2->getTemplateArgs(),
2576                                                 Deduced, Info);
2577  }
2578
2579  if (Better1 == Better2)
2580    return 0;
2581
2582  return Better1? PS1 : PS2;
2583}
2584
2585static void
2586MarkUsedTemplateParameters(Sema &SemaRef,
2587                           const TemplateArgument &TemplateArg,
2588                           bool OnlyDeduced,
2589                           unsigned Depth,
2590                           llvm::SmallVectorImpl<bool> &Used);
2591
2592/// \brief Mark the template parameters that are used by the given
2593/// expression.
2594static void
2595MarkUsedTemplateParameters(Sema &SemaRef,
2596                           const Expr *E,
2597                           bool OnlyDeduced,
2598                           unsigned Depth,
2599                           llvm::SmallVectorImpl<bool> &Used) {
2600  // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
2601  // find other occurrences of template parameters.
2602  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
2603  if (!DRE)
2604    return;
2605
2606  const NonTypeTemplateParmDecl *NTTP
2607    = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2608  if (!NTTP)
2609    return;
2610
2611  if (NTTP->getDepth() == Depth)
2612    Used[NTTP->getIndex()] = true;
2613}
2614
2615/// \brief Mark the template parameters that are used by the given
2616/// nested name specifier.
2617static void
2618MarkUsedTemplateParameters(Sema &SemaRef,
2619                           NestedNameSpecifier *NNS,
2620                           bool OnlyDeduced,
2621                           unsigned Depth,
2622                           llvm::SmallVectorImpl<bool> &Used) {
2623  if (!NNS)
2624    return;
2625
2626  MarkUsedTemplateParameters(SemaRef, NNS->getPrefix(), OnlyDeduced, Depth,
2627                             Used);
2628  MarkUsedTemplateParameters(SemaRef, QualType(NNS->getAsType(), 0),
2629                             OnlyDeduced, Depth, Used);
2630}
2631
2632/// \brief Mark the template parameters that are used by the given
2633/// template name.
2634static void
2635MarkUsedTemplateParameters(Sema &SemaRef,
2636                           TemplateName Name,
2637                           bool OnlyDeduced,
2638                           unsigned Depth,
2639                           llvm::SmallVectorImpl<bool> &Used) {
2640  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2641    if (TemplateTemplateParmDecl *TTP
2642          = dyn_cast<TemplateTemplateParmDecl>(Template)) {
2643      if (TTP->getDepth() == Depth)
2644        Used[TTP->getIndex()] = true;
2645    }
2646    return;
2647  }
2648
2649  if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
2650    MarkUsedTemplateParameters(SemaRef, QTN->getQualifier(), OnlyDeduced,
2651                               Depth, Used);
2652  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
2653    MarkUsedTemplateParameters(SemaRef, DTN->getQualifier(), OnlyDeduced,
2654                               Depth, Used);
2655}
2656
2657/// \brief Mark the template parameters that are used by the given
2658/// type.
2659static void
2660MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
2661                           bool OnlyDeduced,
2662                           unsigned Depth,
2663                           llvm::SmallVectorImpl<bool> &Used) {
2664  if (T.isNull())
2665    return;
2666
2667  // Non-dependent types have nothing deducible
2668  if (!T->isDependentType())
2669    return;
2670
2671  T = SemaRef.Context.getCanonicalType(T);
2672  switch (T->getTypeClass()) {
2673  case Type::Pointer:
2674    MarkUsedTemplateParameters(SemaRef,
2675                               cast<PointerType>(T)->getPointeeType(),
2676                               OnlyDeduced,
2677                               Depth,
2678                               Used);
2679    break;
2680
2681  case Type::BlockPointer:
2682    MarkUsedTemplateParameters(SemaRef,
2683                               cast<BlockPointerType>(T)->getPointeeType(),
2684                               OnlyDeduced,
2685                               Depth,
2686                               Used);
2687    break;
2688
2689  case Type::LValueReference:
2690  case Type::RValueReference:
2691    MarkUsedTemplateParameters(SemaRef,
2692                               cast<ReferenceType>(T)->getPointeeType(),
2693                               OnlyDeduced,
2694                               Depth,
2695                               Used);
2696    break;
2697
2698  case Type::MemberPointer: {
2699    const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
2700    MarkUsedTemplateParameters(SemaRef, MemPtr->getPointeeType(), OnlyDeduced,
2701                               Depth, Used);
2702    MarkUsedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0),
2703                               OnlyDeduced, Depth, Used);
2704    break;
2705  }
2706
2707  case Type::DependentSizedArray:
2708    MarkUsedTemplateParameters(SemaRef,
2709                               cast<DependentSizedArrayType>(T)->getSizeExpr(),
2710                               OnlyDeduced, Depth, Used);
2711    // Fall through to check the element type
2712
2713  case Type::ConstantArray:
2714  case Type::IncompleteArray:
2715    MarkUsedTemplateParameters(SemaRef,
2716                               cast<ArrayType>(T)->getElementType(),
2717                               OnlyDeduced, Depth, Used);
2718    break;
2719
2720  case Type::Vector:
2721  case Type::ExtVector:
2722    MarkUsedTemplateParameters(SemaRef,
2723                               cast<VectorType>(T)->getElementType(),
2724                               OnlyDeduced, Depth, Used);
2725    break;
2726
2727  case Type::DependentSizedExtVector: {
2728    const DependentSizedExtVectorType *VecType
2729      = cast<DependentSizedExtVectorType>(T);
2730    MarkUsedTemplateParameters(SemaRef, VecType->getElementType(), OnlyDeduced,
2731                               Depth, Used);
2732    MarkUsedTemplateParameters(SemaRef, VecType->getSizeExpr(), OnlyDeduced,
2733                               Depth, Used);
2734    break;
2735  }
2736
2737  case Type::FunctionProto: {
2738    const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2739    MarkUsedTemplateParameters(SemaRef, Proto->getResultType(), OnlyDeduced,
2740                               Depth, Used);
2741    for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
2742      MarkUsedTemplateParameters(SemaRef, Proto->getArgType(I), OnlyDeduced,
2743                                 Depth, Used);
2744    break;
2745  }
2746
2747  case Type::TemplateTypeParm: {
2748    const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
2749    if (TTP->getDepth() == Depth)
2750      Used[TTP->getIndex()] = true;
2751    break;
2752  }
2753
2754  case Type::InjectedClassName:
2755    T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
2756    // fall through
2757
2758  case Type::TemplateSpecialization: {
2759    const TemplateSpecializationType *Spec
2760      = cast<TemplateSpecializationType>(T);
2761    MarkUsedTemplateParameters(SemaRef, Spec->getTemplateName(), OnlyDeduced,
2762                               Depth, Used);
2763    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
2764      MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
2765                                 Used);
2766    break;
2767  }
2768
2769  case Type::Complex:
2770    if (!OnlyDeduced)
2771      MarkUsedTemplateParameters(SemaRef,
2772                                 cast<ComplexType>(T)->getElementType(),
2773                                 OnlyDeduced, Depth, Used);
2774    break;
2775
2776  case Type::DependentName:
2777    if (!OnlyDeduced)
2778      MarkUsedTemplateParameters(SemaRef,
2779                                 cast<DependentNameType>(T)->getQualifier(),
2780                                 OnlyDeduced, Depth, Used);
2781    break;
2782
2783  case Type::DependentTemplateSpecialization: {
2784    const DependentTemplateSpecializationType *Spec
2785      = cast<DependentTemplateSpecializationType>(T);
2786    if (!OnlyDeduced)
2787      MarkUsedTemplateParameters(SemaRef, Spec->getQualifier(),
2788                                 OnlyDeduced, Depth, Used);
2789    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
2790      MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
2791                                 Used);
2792    break;
2793  }
2794
2795  case Type::TypeOf:
2796    if (!OnlyDeduced)
2797      MarkUsedTemplateParameters(SemaRef,
2798                                 cast<TypeOfType>(T)->getUnderlyingType(),
2799                                 OnlyDeduced, Depth, Used);
2800    break;
2801
2802  case Type::TypeOfExpr:
2803    if (!OnlyDeduced)
2804      MarkUsedTemplateParameters(SemaRef,
2805                                 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
2806                                 OnlyDeduced, Depth, Used);
2807    break;
2808
2809  case Type::Decltype:
2810    if (!OnlyDeduced)
2811      MarkUsedTemplateParameters(SemaRef,
2812                                 cast<DecltypeType>(T)->getUnderlyingExpr(),
2813                                 OnlyDeduced, Depth, Used);
2814    break;
2815
2816  // None of these types have any template parameters in them.
2817  case Type::Builtin:
2818  case Type::VariableArray:
2819  case Type::FunctionNoProto:
2820  case Type::Record:
2821  case Type::Enum:
2822  case Type::ObjCInterface:
2823  case Type::ObjCObject:
2824  case Type::ObjCObjectPointer:
2825  case Type::UnresolvedUsing:
2826#define TYPE(Class, Base)
2827#define ABSTRACT_TYPE(Class, Base)
2828#define DEPENDENT_TYPE(Class, Base)
2829#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2830#include "clang/AST/TypeNodes.def"
2831    break;
2832  }
2833}
2834
2835/// \brief Mark the template parameters that are used by this
2836/// template argument.
2837static void
2838MarkUsedTemplateParameters(Sema &SemaRef,
2839                           const TemplateArgument &TemplateArg,
2840                           bool OnlyDeduced,
2841                           unsigned Depth,
2842                           llvm::SmallVectorImpl<bool> &Used) {
2843  switch (TemplateArg.getKind()) {
2844  case TemplateArgument::Null:
2845  case TemplateArgument::Integral:
2846    case TemplateArgument::Declaration:
2847    break;
2848
2849  case TemplateArgument::Type:
2850    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsType(), OnlyDeduced,
2851                               Depth, Used);
2852    break;
2853
2854  case TemplateArgument::Template:
2855    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsTemplate(),
2856                               OnlyDeduced, Depth, Used);
2857    break;
2858
2859  case TemplateArgument::Expression:
2860    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsExpr(), OnlyDeduced,
2861                               Depth, Used);
2862    break;
2863
2864  case TemplateArgument::Pack:
2865    for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
2866                                      PEnd = TemplateArg.pack_end();
2867         P != PEnd; ++P)
2868      MarkUsedTemplateParameters(SemaRef, *P, OnlyDeduced, Depth, Used);
2869    break;
2870  }
2871}
2872
2873/// \brief Mark the template parameters can be deduced by the given
2874/// template argument list.
2875///
2876/// \param TemplateArgs the template argument list from which template
2877/// parameters will be deduced.
2878///
2879/// \param Deduced a bit vector whose elements will be set to \c true
2880/// to indicate when the corresponding template parameter will be
2881/// deduced.
2882void
2883Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
2884                                 bool OnlyDeduced, unsigned Depth,
2885                                 llvm::SmallVectorImpl<bool> &Used) {
2886  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2887    ::MarkUsedTemplateParameters(*this, TemplateArgs[I], OnlyDeduced,
2888                                 Depth, Used);
2889}
2890
2891/// \brief Marks all of the template parameters that will be deduced by a
2892/// call to the given function template.
2893void
2894Sema::MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate,
2895                                    llvm::SmallVectorImpl<bool> &Deduced) {
2896  TemplateParameterList *TemplateParams
2897    = FunctionTemplate->getTemplateParameters();
2898  Deduced.clear();
2899  Deduced.resize(TemplateParams->size());
2900
2901  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2902  for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
2903    ::MarkUsedTemplateParameters(*this, Function->getParamDecl(I)->getType(),
2904                                 true, TemplateParams->getDepth(), Deduced);
2905}
2906