SemaTemplateDeduction.cpp revision b832f6dea893f25b40500a04781286236281cb20
1//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===/
12
13#include "clang/Sema/Sema.h"
14#include "clang/Sema/DeclSpec.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "llvm/ADT/BitVector.h"
24#include "TreeTransform.h"
25#include <algorithm>
26
27namespace clang {
28  using namespace sema;
29
30  /// \brief Various flags that control template argument deduction.
31  ///
32  /// These flags can be bitwise-OR'd together.
33  enum TemplateDeductionFlags {
34    /// \brief No template argument deduction flags, which indicates the
35    /// strictest results for template argument deduction (as used for, e.g.,
36    /// matching class template partial specializations).
37    TDF_None = 0,
38    /// \brief Within template argument deduction from a function call, we are
39    /// matching with a parameter type for which the original parameter was
40    /// a reference.
41    TDF_ParamWithReferenceType = 0x1,
42    /// \brief Within template argument deduction from a function call, we
43    /// are matching in a case where we ignore cv-qualifiers.
44    TDF_IgnoreQualifiers = 0x02,
45    /// \brief Within template argument deduction from a function call,
46    /// we are matching in a case where we can perform template argument
47    /// deduction from a template-id of a derived class of the argument type.
48    TDF_DerivedClass = 0x04,
49    /// \brief Allow non-dependent types to differ, e.g., when performing
50    /// template argument deduction from a function call where conversions
51    /// may apply.
52    TDF_SkipNonDependent = 0x08,
53    /// \brief Whether we are performing template argument deduction for
54    /// parameters and arguments in a top-level template argument
55    TDF_TopLevelParameterTypeList = 0x10
56  };
57}
58
59using namespace clang;
60
61/// \brief Compare two APSInts, extending and switching the sign as
62/// necessary to compare their values regardless of underlying type.
63static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
64  if (Y.getBitWidth() > X.getBitWidth())
65    X = X.extend(Y.getBitWidth());
66  else if (Y.getBitWidth() < X.getBitWidth())
67    Y = Y.extend(X.getBitWidth());
68
69  // If there is a signedness mismatch, correct it.
70  if (X.isSigned() != Y.isSigned()) {
71    // If the signed value is negative, then the values cannot be the same.
72    if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
73      return false;
74
75    Y.setIsSigned(true);
76    X.setIsSigned(true);
77  }
78
79  return X == Y;
80}
81
82static Sema::TemplateDeductionResult
83DeduceTemplateArguments(Sema &S,
84                        TemplateParameterList *TemplateParams,
85                        const TemplateArgument &Param,
86                        TemplateArgument Arg,
87                        TemplateDeductionInfo &Info,
88                      SmallVectorImpl<DeducedTemplateArgument> &Deduced);
89
90/// \brief Whether template argument deduction for two reference parameters
91/// resulted in the argument type, parameter type, or neither type being more
92/// qualified than the other.
93enum DeductionQualifierComparison {
94  NeitherMoreQualified = 0,
95  ParamMoreQualified,
96  ArgMoreQualified
97};
98
99/// \brief Stores the result of comparing two reference parameters while
100/// performing template argument deduction for partial ordering of function
101/// templates.
102struct RefParamPartialOrderingComparison {
103  /// \brief Whether the parameter type is an rvalue reference type.
104  bool ParamIsRvalueRef;
105  /// \brief Whether the argument type is an rvalue reference type.
106  bool ArgIsRvalueRef;
107
108  /// \brief Whether the parameter or argument (or neither) is more qualified.
109  DeductionQualifierComparison Qualifiers;
110};
111
112
113
114static Sema::TemplateDeductionResult
115DeduceTemplateArgumentsByTypeMatch(Sema &S,
116                                   TemplateParameterList *TemplateParams,
117                                   QualType Param,
118                                   QualType Arg,
119                                   TemplateDeductionInfo &Info,
120                                   SmallVectorImpl<DeducedTemplateArgument> &
121                                                      Deduced,
122                                   unsigned TDF,
123                                   bool PartialOrdering = false,
124                            SmallVectorImpl<RefParamPartialOrderingComparison> *
125                                                      RefParamComparisons = 0);
126
127static Sema::TemplateDeductionResult
128DeduceTemplateArguments(Sema &S,
129                        TemplateParameterList *TemplateParams,
130                        const TemplateArgument *Params, unsigned NumParams,
131                        const TemplateArgument *Args, unsigned NumArgs,
132                        TemplateDeductionInfo &Info,
133                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
134                        bool NumberOfArgumentsMustMatch = true);
135
136/// \brief If the given expression is of a form that permits the deduction
137/// of a non-type template parameter, return the declaration of that
138/// non-type template parameter.
139static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
140  if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
141    E = IC->getSubExpr();
142
143  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
144    return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
145
146  return 0;
147}
148
149/// \brief Determine whether two declaration pointers refer to the same
150/// declaration.
151static bool isSameDeclaration(Decl *X, Decl *Y) {
152  if (!X || !Y)
153    return !X && !Y;
154
155  if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
156    X = NX->getUnderlyingDecl();
157  if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
158    Y = NY->getUnderlyingDecl();
159
160  return X->getCanonicalDecl() == Y->getCanonicalDecl();
161}
162
163/// \brief Verify that the given, deduced template arguments are compatible.
164///
165/// \returns The deduced template argument, or a NULL template argument if
166/// the deduced template arguments were incompatible.
167static DeducedTemplateArgument
168checkDeducedTemplateArguments(ASTContext &Context,
169                              const DeducedTemplateArgument &X,
170                              const DeducedTemplateArgument &Y) {
171  // We have no deduction for one or both of the arguments; they're compatible.
172  if (X.isNull())
173    return Y;
174  if (Y.isNull())
175    return X;
176
177  switch (X.getKind()) {
178  case TemplateArgument::Null:
179    llvm_unreachable("Non-deduced template arguments handled above");
180
181  case TemplateArgument::Type:
182    // If two template type arguments have the same type, they're compatible.
183    if (Y.getKind() == TemplateArgument::Type &&
184        Context.hasSameType(X.getAsType(), Y.getAsType()))
185      return X;
186
187    return DeducedTemplateArgument();
188
189  case TemplateArgument::Integral:
190    // If we deduced a constant in one case and either a dependent expression or
191    // declaration in another case, keep the integral constant.
192    // If both are integral constants with the same value, keep that value.
193    if (Y.getKind() == TemplateArgument::Expression ||
194        Y.getKind() == TemplateArgument::Declaration ||
195        (Y.getKind() == TemplateArgument::Integral &&
196         hasSameExtendedValue(*X.getAsIntegral(), *Y.getAsIntegral())))
197      return DeducedTemplateArgument(X,
198                                     X.wasDeducedFromArrayBound() &&
199                                     Y.wasDeducedFromArrayBound());
200
201    // All other combinations are incompatible.
202    return DeducedTemplateArgument();
203
204  case TemplateArgument::Template:
205    if (Y.getKind() == TemplateArgument::Template &&
206        Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
207      return X;
208
209    // All other combinations are incompatible.
210    return DeducedTemplateArgument();
211
212  case TemplateArgument::TemplateExpansion:
213    if (Y.getKind() == TemplateArgument::TemplateExpansion &&
214        Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
215                                    Y.getAsTemplateOrTemplatePattern()))
216      return X;
217
218    // All other combinations are incompatible.
219    return DeducedTemplateArgument();
220
221  case TemplateArgument::Expression:
222    // If we deduced a dependent expression in one case and either an integral
223    // constant or a declaration in another case, keep the integral constant
224    // or declaration.
225    if (Y.getKind() == TemplateArgument::Integral ||
226        Y.getKind() == TemplateArgument::Declaration)
227      return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
228                                     Y.wasDeducedFromArrayBound());
229
230    if (Y.getKind() == TemplateArgument::Expression) {
231      // Compare the expressions for equality
232      llvm::FoldingSetNodeID ID1, ID2;
233      X.getAsExpr()->Profile(ID1, Context, true);
234      Y.getAsExpr()->Profile(ID2, Context, true);
235      if (ID1 == ID2)
236        return X;
237    }
238
239    // All other combinations are incompatible.
240    return DeducedTemplateArgument();
241
242  case TemplateArgument::Declaration:
243    // If we deduced a declaration and a dependent expression, keep the
244    // declaration.
245    if (Y.getKind() == TemplateArgument::Expression)
246      return X;
247
248    // If we deduced a declaration and an integral constant, keep the
249    // integral constant.
250    if (Y.getKind() == TemplateArgument::Integral)
251      return Y;
252
253    // If we deduced two declarations, make sure they they refer to the
254    // same declaration.
255    if (Y.getKind() == TemplateArgument::Declaration &&
256        isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
257      return X;
258
259    // All other combinations are incompatible.
260    return DeducedTemplateArgument();
261
262  case TemplateArgument::Pack:
263    if (Y.getKind() != TemplateArgument::Pack ||
264        X.pack_size() != Y.pack_size())
265      return DeducedTemplateArgument();
266
267    for (TemplateArgument::pack_iterator XA = X.pack_begin(),
268                                      XAEnd = X.pack_end(),
269                                         YA = Y.pack_begin();
270         XA != XAEnd; ++XA, ++YA) {
271      if (checkDeducedTemplateArguments(Context,
272                    DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
273                    DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
274            .isNull())
275        return DeducedTemplateArgument();
276    }
277
278    return X;
279  }
280
281  llvm_unreachable("Invalid TemplateArgument Kind!");
282}
283
284/// \brief Deduce the value of the given non-type template parameter
285/// from the given constant.
286static Sema::TemplateDeductionResult
287DeduceNonTypeTemplateArgument(Sema &S,
288                              NonTypeTemplateParmDecl *NTTP,
289                              llvm::APSInt Value, QualType ValueType,
290                              bool DeducedFromArrayBound,
291                              TemplateDeductionInfo &Info,
292                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
293  assert(NTTP->getDepth() == 0 &&
294         "Cannot deduce non-type template argument with depth > 0");
295
296  DeducedTemplateArgument NewDeduced(Value, ValueType, DeducedFromArrayBound);
297  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
298                                                     Deduced[NTTP->getIndex()],
299                                                                 NewDeduced);
300  if (Result.isNull()) {
301    Info.Param = NTTP;
302    Info.FirstArg = Deduced[NTTP->getIndex()];
303    Info.SecondArg = NewDeduced;
304    return Sema::TDK_Inconsistent;
305  }
306
307  Deduced[NTTP->getIndex()] = Result;
308  return Sema::TDK_Success;
309}
310
311/// \brief Deduce the value of the given non-type template parameter
312/// from the given type- or value-dependent expression.
313///
314/// \returns true if deduction succeeded, false otherwise.
315static Sema::TemplateDeductionResult
316DeduceNonTypeTemplateArgument(Sema &S,
317                              NonTypeTemplateParmDecl *NTTP,
318                              Expr *Value,
319                              TemplateDeductionInfo &Info,
320                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
321  assert(NTTP->getDepth() == 0 &&
322         "Cannot deduce non-type template argument with depth > 0");
323  assert((Value->isTypeDependent() || Value->isValueDependent()) &&
324         "Expression template argument must be type- or value-dependent.");
325
326  DeducedTemplateArgument NewDeduced(Value);
327  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
328                                                     Deduced[NTTP->getIndex()],
329                                                                 NewDeduced);
330
331  if (Result.isNull()) {
332    Info.Param = NTTP;
333    Info.FirstArg = Deduced[NTTP->getIndex()];
334    Info.SecondArg = NewDeduced;
335    return Sema::TDK_Inconsistent;
336  }
337
338  Deduced[NTTP->getIndex()] = Result;
339  return Sema::TDK_Success;
340}
341
342/// \brief Deduce the value of the given non-type template parameter
343/// from the given declaration.
344///
345/// \returns true if deduction succeeded, false otherwise.
346static Sema::TemplateDeductionResult
347DeduceNonTypeTemplateArgument(Sema &S,
348                              NonTypeTemplateParmDecl *NTTP,
349                              Decl *D,
350                              TemplateDeductionInfo &Info,
351                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
352  assert(NTTP->getDepth() == 0 &&
353         "Cannot deduce non-type template argument with depth > 0");
354
355  DeducedTemplateArgument NewDeduced(D? D->getCanonicalDecl() : 0);
356  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
357                                                     Deduced[NTTP->getIndex()],
358                                                                 NewDeduced);
359  if (Result.isNull()) {
360    Info.Param = NTTP;
361    Info.FirstArg = Deduced[NTTP->getIndex()];
362    Info.SecondArg = NewDeduced;
363    return Sema::TDK_Inconsistent;
364  }
365
366  Deduced[NTTP->getIndex()] = Result;
367  return Sema::TDK_Success;
368}
369
370static Sema::TemplateDeductionResult
371DeduceTemplateArguments(Sema &S,
372                        TemplateParameterList *TemplateParams,
373                        TemplateName Param,
374                        TemplateName Arg,
375                        TemplateDeductionInfo &Info,
376                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
377  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
378  if (!ParamDecl) {
379    // The parameter type is dependent and is not a template template parameter,
380    // so there is nothing that we can deduce.
381    return Sema::TDK_Success;
382  }
383
384  if (TemplateTemplateParmDecl *TempParam
385        = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
386    DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
387    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
388                                                 Deduced[TempParam->getIndex()],
389                                                                   NewDeduced);
390    if (Result.isNull()) {
391      Info.Param = TempParam;
392      Info.FirstArg = Deduced[TempParam->getIndex()];
393      Info.SecondArg = NewDeduced;
394      return Sema::TDK_Inconsistent;
395    }
396
397    Deduced[TempParam->getIndex()] = Result;
398    return Sema::TDK_Success;
399  }
400
401  // Verify that the two template names are equivalent.
402  if (S.Context.hasSameTemplateName(Param, Arg))
403    return Sema::TDK_Success;
404
405  // Mismatch of non-dependent template parameter to argument.
406  Info.FirstArg = TemplateArgument(Param);
407  Info.SecondArg = TemplateArgument(Arg);
408  return Sema::TDK_NonDeducedMismatch;
409}
410
411/// \brief Deduce the template arguments by comparing the template parameter
412/// type (which is a template-id) with the template argument type.
413///
414/// \param S the Sema
415///
416/// \param TemplateParams the template parameters that we are deducing
417///
418/// \param Param the parameter type
419///
420/// \param Arg the argument type
421///
422/// \param Info information about the template argument deduction itself
423///
424/// \param Deduced the deduced template arguments
425///
426/// \returns the result of template argument deduction so far. Note that a
427/// "success" result means that template argument deduction has not yet failed,
428/// but it may still fail, later, for other reasons.
429static Sema::TemplateDeductionResult
430DeduceTemplateArguments(Sema &S,
431                        TemplateParameterList *TemplateParams,
432                        const TemplateSpecializationType *Param,
433                        QualType Arg,
434                        TemplateDeductionInfo &Info,
435                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
436  assert(Arg.isCanonical() && "Argument type must be canonical");
437
438  // Check whether the template argument is a dependent template-id.
439  if (const TemplateSpecializationType *SpecArg
440        = dyn_cast<TemplateSpecializationType>(Arg)) {
441    // Perform template argument deduction for the template name.
442    if (Sema::TemplateDeductionResult Result
443          = DeduceTemplateArguments(S, TemplateParams,
444                                    Param->getTemplateName(),
445                                    SpecArg->getTemplateName(),
446                                    Info, Deduced))
447      return Result;
448
449
450    // Perform template argument deduction on each template
451    // argument. Ignore any missing/extra arguments, since they could be
452    // filled in by default arguments.
453    return DeduceTemplateArguments(S, TemplateParams,
454                                   Param->getArgs(), Param->getNumArgs(),
455                                   SpecArg->getArgs(), SpecArg->getNumArgs(),
456                                   Info, Deduced,
457                                   /*NumberOfArgumentsMustMatch=*/false);
458  }
459
460  // If the argument type is a class template specialization, we
461  // perform template argument deduction using its template
462  // arguments.
463  const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
464  if (!RecordArg)
465    return Sema::TDK_NonDeducedMismatch;
466
467  ClassTemplateSpecializationDecl *SpecArg
468    = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
469  if (!SpecArg)
470    return Sema::TDK_NonDeducedMismatch;
471
472  // Perform template argument deduction for the template name.
473  if (Sema::TemplateDeductionResult Result
474        = DeduceTemplateArguments(S,
475                                  TemplateParams,
476                                  Param->getTemplateName(),
477                               TemplateName(SpecArg->getSpecializedTemplate()),
478                                  Info, Deduced))
479    return Result;
480
481  // Perform template argument deduction for the template arguments.
482  return DeduceTemplateArguments(S, TemplateParams,
483                                 Param->getArgs(), Param->getNumArgs(),
484                                 SpecArg->getTemplateArgs().data(),
485                                 SpecArg->getTemplateArgs().size(),
486                                 Info, Deduced);
487}
488
489/// \brief Determines whether the given type is an opaque type that
490/// might be more qualified when instantiated.
491static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
492  switch (T->getTypeClass()) {
493  case Type::TypeOfExpr:
494  case Type::TypeOf:
495  case Type::DependentName:
496  case Type::Decltype:
497  case Type::UnresolvedUsing:
498  case Type::TemplateTypeParm:
499    return true;
500
501  case Type::ConstantArray:
502  case Type::IncompleteArray:
503  case Type::VariableArray:
504  case Type::DependentSizedArray:
505    return IsPossiblyOpaquelyQualifiedType(
506                                      cast<ArrayType>(T)->getElementType());
507
508  default:
509    return false;
510  }
511}
512
513/// \brief Retrieve the depth and index of a template parameter.
514static std::pair<unsigned, unsigned>
515getDepthAndIndex(NamedDecl *ND) {
516  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
517    return std::make_pair(TTP->getDepth(), TTP->getIndex());
518
519  if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
520    return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
521
522  TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
523  return std::make_pair(TTP->getDepth(), TTP->getIndex());
524}
525
526/// \brief Retrieve the depth and index of an unexpanded parameter pack.
527static std::pair<unsigned, unsigned>
528getDepthAndIndex(UnexpandedParameterPack UPP) {
529  if (const TemplateTypeParmType *TTP
530                          = UPP.first.dyn_cast<const TemplateTypeParmType *>())
531    return std::make_pair(TTP->getDepth(), TTP->getIndex());
532
533  return getDepthAndIndex(UPP.first.get<NamedDecl *>());
534}
535
536/// \brief Helper function to build a TemplateParameter when we don't
537/// know its type statically.
538static TemplateParameter makeTemplateParameter(Decl *D) {
539  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
540    return TemplateParameter(TTP);
541  else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
542    return TemplateParameter(NTTP);
543
544  return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
545}
546
547/// \brief Prepare to perform template argument deduction for all of the
548/// arguments in a set of argument packs.
549static void PrepareArgumentPackDeduction(Sema &S,
550                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
551                             const SmallVectorImpl<unsigned> &PackIndices,
552                     SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
553         SmallVectorImpl<
554           SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks) {
555  // Save the deduced template arguments for each parameter pack expanded
556  // by this pack expansion, then clear out the deduction.
557  for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
558    // Save the previously-deduced argument pack, then clear it out so that we
559    // can deduce a new argument pack.
560    SavedPacks[I] = Deduced[PackIndices[I]];
561    Deduced[PackIndices[I]] = TemplateArgument();
562
563    // If the template arugment pack was explicitly specified, add that to
564    // the set of deduced arguments.
565    const TemplateArgument *ExplicitArgs;
566    unsigned NumExplicitArgs;
567    if (NamedDecl *PartiallySubstitutedPack
568        = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
569                                                           &ExplicitArgs,
570                                                           &NumExplicitArgs)) {
571      if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
572        NewlyDeducedPacks[I].append(ExplicitArgs,
573                                    ExplicitArgs + NumExplicitArgs);
574    }
575  }
576}
577
578/// \brief Finish template argument deduction for a set of argument packs,
579/// producing the argument packs and checking for consistency with prior
580/// deductions.
581static Sema::TemplateDeductionResult
582FinishArgumentPackDeduction(Sema &S,
583                            TemplateParameterList *TemplateParams,
584                            bool HasAnyArguments,
585                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
586                            const SmallVectorImpl<unsigned> &PackIndices,
587                    SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
588        SmallVectorImpl<
589          SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks,
590                            TemplateDeductionInfo &Info) {
591  // Build argument packs for each of the parameter packs expanded by this
592  // pack expansion.
593  for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
594    if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
595      // We were not able to deduce anything for this parameter pack,
596      // so just restore the saved argument pack.
597      Deduced[PackIndices[I]] = SavedPacks[I];
598      continue;
599    }
600
601    DeducedTemplateArgument NewPack;
602
603    if (NewlyDeducedPacks[I].empty()) {
604      // If we deduced an empty argument pack, create it now.
605      NewPack = DeducedTemplateArgument(TemplateArgument(0, 0));
606    } else {
607      TemplateArgument *ArgumentPack
608        = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
609      std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
610                ArgumentPack);
611      NewPack
612        = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
613                                                   NewlyDeducedPacks[I].size()),
614                            NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
615    }
616
617    DeducedTemplateArgument Result
618      = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
619    if (Result.isNull()) {
620      Info.Param
621        = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
622      Info.FirstArg = SavedPacks[I];
623      Info.SecondArg = NewPack;
624      return Sema::TDK_Inconsistent;
625    }
626
627    Deduced[PackIndices[I]] = Result;
628  }
629
630  return Sema::TDK_Success;
631}
632
633/// \brief Deduce the template arguments by comparing the list of parameter
634/// types to the list of argument types, as in the parameter-type-lists of
635/// function types (C++ [temp.deduct.type]p10).
636///
637/// \param S The semantic analysis object within which we are deducing
638///
639/// \param TemplateParams The template parameters that we are deducing
640///
641/// \param Params The list of parameter types
642///
643/// \param NumParams The number of types in \c Params
644///
645/// \param Args The list of argument types
646///
647/// \param NumArgs The number of types in \c Args
648///
649/// \param Info information about the template argument deduction itself
650///
651/// \param Deduced the deduced template arguments
652///
653/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
654/// how template argument deduction is performed.
655///
656/// \param PartialOrdering If true, we are performing template argument
657/// deduction for during partial ordering for a call
658/// (C++0x [temp.deduct.partial]).
659///
660/// \param RefParamComparisons If we're performing template argument deduction
661/// in the context of partial ordering, the set of qualifier comparisons.
662///
663/// \returns the result of template argument deduction so far. Note that a
664/// "success" result means that template argument deduction has not yet failed,
665/// but it may still fail, later, for other reasons.
666static Sema::TemplateDeductionResult
667DeduceTemplateArguments(Sema &S,
668                        TemplateParameterList *TemplateParams,
669                        const QualType *Params, unsigned NumParams,
670                        const QualType *Args, unsigned NumArgs,
671                        TemplateDeductionInfo &Info,
672                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
673                        unsigned TDF,
674                        bool PartialOrdering = false,
675                        SmallVectorImpl<RefParamPartialOrderingComparison> *
676                                                     RefParamComparisons = 0) {
677  // Fast-path check to see if we have too many/too few arguments.
678  if (NumParams != NumArgs &&
679      !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
680      !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
681    return Sema::TDK_NonDeducedMismatch;
682
683  // C++0x [temp.deduct.type]p10:
684  //   Similarly, if P has a form that contains (T), then each parameter type
685  //   Pi of the respective parameter-type- list of P is compared with the
686  //   corresponding parameter type Ai of the corresponding parameter-type-list
687  //   of A. [...]
688  unsigned ArgIdx = 0, ParamIdx = 0;
689  for (; ParamIdx != NumParams; ++ParamIdx) {
690    // Check argument types.
691    const PackExpansionType *Expansion
692                                = dyn_cast<PackExpansionType>(Params[ParamIdx]);
693    if (!Expansion) {
694      // Simple case: compare the parameter and argument types at this point.
695
696      // Make sure we have an argument.
697      if (ArgIdx >= NumArgs)
698        return Sema::TDK_NonDeducedMismatch;
699
700      if (isa<PackExpansionType>(Args[ArgIdx])) {
701        // C++0x [temp.deduct.type]p22:
702        //   If the original function parameter associated with A is a function
703        //   parameter pack and the function parameter associated with P is not
704        //   a function parameter pack, then template argument deduction fails.
705        return Sema::TDK_NonDeducedMismatch;
706      }
707
708      if (Sema::TemplateDeductionResult Result
709            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
710                                                 Params[ParamIdx], Args[ArgIdx],
711                                                 Info, Deduced, TDF,
712                                                 PartialOrdering,
713                                                 RefParamComparisons))
714        return Result;
715
716      ++ArgIdx;
717      continue;
718    }
719
720    // C++0x [temp.deduct.type]p5:
721    //   The non-deduced contexts are:
722    //     - A function parameter pack that does not occur at the end of the
723    //       parameter-declaration-clause.
724    if (ParamIdx + 1 < NumParams)
725      return Sema::TDK_Success;
726
727    // C++0x [temp.deduct.type]p10:
728    //   If the parameter-declaration corresponding to Pi is a function
729    //   parameter pack, then the type of its declarator- id is compared with
730    //   each remaining parameter type in the parameter-type-list of A. Each
731    //   comparison deduces template arguments for subsequent positions in the
732    //   template parameter packs expanded by the function parameter pack.
733
734    // Compute the set of template parameter indices that correspond to
735    // parameter packs expanded by the pack expansion.
736    SmallVector<unsigned, 2> PackIndices;
737    QualType Pattern = Expansion->getPattern();
738    {
739      llvm::BitVector SawIndices(TemplateParams->size());
740      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
741      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
742      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
743        unsigned Depth, Index;
744        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
745        if (Depth == 0 && !SawIndices[Index]) {
746          SawIndices[Index] = true;
747          PackIndices.push_back(Index);
748        }
749      }
750    }
751    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
752
753    // Keep track of the deduced template arguments for each parameter pack
754    // expanded by this pack expansion (the outer index) and for each
755    // template argument (the inner SmallVectors).
756    SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
757      NewlyDeducedPacks(PackIndices.size());
758    SmallVector<DeducedTemplateArgument, 2>
759      SavedPacks(PackIndices.size());
760    PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
761                                 NewlyDeducedPacks);
762
763    bool HasAnyArguments = false;
764    for (; ArgIdx < NumArgs; ++ArgIdx) {
765      HasAnyArguments = true;
766
767      // Deduce template arguments from the pattern.
768      if (Sema::TemplateDeductionResult Result
769            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
770                                                 Args[ArgIdx], Info, Deduced,
771                                                 TDF, PartialOrdering,
772                                                 RefParamComparisons))
773        return Result;
774
775      // Capture the deduced template arguments for each parameter pack expanded
776      // by this pack expansion, add them to the list of arguments we've deduced
777      // for that pack, then clear out the deduced argument.
778      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
779        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
780        if (!DeducedArg.isNull()) {
781          NewlyDeducedPacks[I].push_back(DeducedArg);
782          DeducedArg = DeducedTemplateArgument();
783        }
784      }
785    }
786
787    // Build argument packs for each of the parameter packs expanded by this
788    // pack expansion.
789    if (Sema::TemplateDeductionResult Result
790          = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
791                                        Deduced, PackIndices, SavedPacks,
792                                        NewlyDeducedPacks, Info))
793      return Result;
794  }
795
796  // Make sure we don't have any extra arguments.
797  if (ArgIdx < NumArgs)
798    return Sema::TDK_NonDeducedMismatch;
799
800  return Sema::TDK_Success;
801}
802
803/// \brief Determine whether the parameter has qualifiers that are either
804/// inconsistent with or a superset of the argument's qualifiers.
805static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
806                                                  QualType ArgType) {
807  Qualifiers ParamQs = ParamType.getQualifiers();
808  Qualifiers ArgQs = ArgType.getQualifiers();
809
810  if (ParamQs == ArgQs)
811    return false;
812
813  // Mismatched (but not missing) Objective-C GC attributes.
814  if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
815      ParamQs.hasObjCGCAttr())
816    return true;
817
818  // Mismatched (but not missing) address spaces.
819  if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
820      ParamQs.hasAddressSpace())
821    return true;
822
823  // Mismatched (but not missing) Objective-C lifetime qualifiers.
824  if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
825      ParamQs.hasObjCLifetime())
826    return true;
827
828  // CVR qualifier superset.
829  return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
830      ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
831                                                == ParamQs.getCVRQualifiers());
832}
833
834/// \brief Deduce the template arguments by comparing the parameter type and
835/// the argument type (C++ [temp.deduct.type]).
836///
837/// \param S the semantic analysis object within which we are deducing
838///
839/// \param TemplateParams the template parameters that we are deducing
840///
841/// \param ParamIn the parameter type
842///
843/// \param ArgIn the argument type
844///
845/// \param Info information about the template argument deduction itself
846///
847/// \param Deduced the deduced template arguments
848///
849/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
850/// how template argument deduction is performed.
851///
852/// \param PartialOrdering Whether we're performing template argument deduction
853/// in the context of partial ordering (C++0x [temp.deduct.partial]).
854///
855/// \param RefParamComparisons If we're performing template argument deduction
856/// in the context of partial ordering, the set of qualifier comparisons.
857///
858/// \returns the result of template argument deduction so far. Note that a
859/// "success" result means that template argument deduction has not yet failed,
860/// but it may still fail, later, for other reasons.
861static Sema::TemplateDeductionResult
862DeduceTemplateArgumentsByTypeMatch(Sema &S,
863                                   TemplateParameterList *TemplateParams,
864                                   QualType ParamIn, QualType ArgIn,
865                                   TemplateDeductionInfo &Info,
866                            SmallVectorImpl<DeducedTemplateArgument> &Deduced,
867                                   unsigned TDF,
868                                   bool PartialOrdering,
869                            SmallVectorImpl<RefParamPartialOrderingComparison> *
870                                                          RefParamComparisons) {
871  // We only want to look at the canonical types, since typedefs and
872  // sugar are not part of template argument deduction.
873  QualType Param = S.Context.getCanonicalType(ParamIn);
874  QualType Arg = S.Context.getCanonicalType(ArgIn);
875
876  // If the argument type is a pack expansion, look at its pattern.
877  // This isn't explicitly called out
878  if (const PackExpansionType *ArgExpansion
879                                            = dyn_cast<PackExpansionType>(Arg))
880    Arg = ArgExpansion->getPattern();
881
882  if (PartialOrdering) {
883    // C++0x [temp.deduct.partial]p5:
884    //   Before the partial ordering is done, certain transformations are
885    //   performed on the types used for partial ordering:
886    //     - If P is a reference type, P is replaced by the type referred to.
887    const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
888    if (ParamRef)
889      Param = ParamRef->getPointeeType();
890
891    //     - If A is a reference type, A is replaced by the type referred to.
892    const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
893    if (ArgRef)
894      Arg = ArgRef->getPointeeType();
895
896    if (RefParamComparisons && ParamRef && ArgRef) {
897      // C++0x [temp.deduct.partial]p6:
898      //   If both P and A were reference types (before being replaced with the
899      //   type referred to above), determine which of the two types (if any) is
900      //   more cv-qualified than the other; otherwise the types are considered
901      //   to be equally cv-qualified for partial ordering purposes. The result
902      //   of this determination will be used below.
903      //
904      // We save this information for later, using it only when deduction
905      // succeeds in both directions.
906      RefParamPartialOrderingComparison Comparison;
907      Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
908      Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
909      Comparison.Qualifiers = NeitherMoreQualified;
910
911      Qualifiers ParamQuals = Param.getQualifiers();
912      Qualifiers ArgQuals = Arg.getQualifiers();
913      if (ParamQuals.isStrictSupersetOf(ArgQuals))
914        Comparison.Qualifiers = ParamMoreQualified;
915      else if (ArgQuals.isStrictSupersetOf(ParamQuals))
916        Comparison.Qualifiers = ArgMoreQualified;
917      RefParamComparisons->push_back(Comparison);
918    }
919
920    // C++0x [temp.deduct.partial]p7:
921    //   Remove any top-level cv-qualifiers:
922    //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
923    //       version of P.
924    Param = Param.getUnqualifiedType();
925    //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
926    //       version of A.
927    Arg = Arg.getUnqualifiedType();
928  } else {
929    // C++0x [temp.deduct.call]p4 bullet 1:
930    //   - If the original P is a reference type, the deduced A (i.e., the type
931    //     referred to by the reference) can be more cv-qualified than the
932    //     transformed A.
933    if (TDF & TDF_ParamWithReferenceType) {
934      Qualifiers Quals;
935      QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
936      Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
937                             Arg.getCVRQualifiers());
938      Param = S.Context.getQualifiedType(UnqualParam, Quals);
939    }
940
941    if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
942      // C++0x [temp.deduct.type]p10:
943      //   If P and A are function types that originated from deduction when
944      //   taking the address of a function template (14.8.2.2) or when deducing
945      //   template arguments from a function declaration (14.8.2.6) and Pi and
946      //   Ai are parameters of the top-level parameter-type-list of P and A,
947      //   respectively, Pi is adjusted if it is an rvalue reference to a
948      //   cv-unqualified template parameter and Ai is an lvalue reference, in
949      //   which case the type of Pi is changed to be the template parameter
950      //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
951      //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
952      //   deduced as X&. - end note ]
953      TDF &= ~TDF_TopLevelParameterTypeList;
954
955      if (const RValueReferenceType *ParamRef
956                                        = Param->getAs<RValueReferenceType>()) {
957        if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
958            !ParamRef->getPointeeType().getQualifiers())
959          if (Arg->isLValueReferenceType())
960            Param = ParamRef->getPointeeType();
961      }
962    }
963  }
964
965  // If the parameter type is not dependent, there is nothing to deduce.
966  if (!Param->isDependentType()) {
967    if (!(TDF & TDF_SkipNonDependent) && Param != Arg)
968      return Sema::TDK_NonDeducedMismatch;
969
970    return Sema::TDK_Success;
971  }
972
973  // C++ [temp.deduct.type]p9:
974  //   A template type argument T, a template template argument TT or a
975  //   template non-type argument i can be deduced if P and A have one of
976  //   the following forms:
977  //
978  //     T
979  //     cv-list T
980  if (const TemplateTypeParmType *TemplateTypeParm
981        = Param->getAs<TemplateTypeParmType>()) {
982    // Just skip any attempts to deduce from a placeholder type.
983    if (Arg->isPlaceholderType())
984      return Sema::TDK_Success;
985
986    unsigned Index = TemplateTypeParm->getIndex();
987    bool RecanonicalizeArg = false;
988
989    // If the argument type is an array type, move the qualifiers up to the
990    // top level, so they can be matched with the qualifiers on the parameter.
991    if (isa<ArrayType>(Arg)) {
992      Qualifiers Quals;
993      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
994      if (Quals) {
995        Arg = S.Context.getQualifiedType(Arg, Quals);
996        RecanonicalizeArg = true;
997      }
998    }
999
1000    // The argument type can not be less qualified than the parameter
1001    // type.
1002    if (!(TDF & TDF_IgnoreQualifiers) &&
1003        hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
1004      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1005      Info.FirstArg = TemplateArgument(Param);
1006      Info.SecondArg = TemplateArgument(Arg);
1007      return Sema::TDK_Underqualified;
1008    }
1009
1010    assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
1011    assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1012    QualType DeducedType = Arg;
1013
1014    // Remove any qualifiers on the parameter from the deduced type.
1015    // We checked the qualifiers for consistency above.
1016    Qualifiers DeducedQs = DeducedType.getQualifiers();
1017    Qualifiers ParamQs = Param.getQualifiers();
1018    DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1019    if (ParamQs.hasObjCGCAttr())
1020      DeducedQs.removeObjCGCAttr();
1021    if (ParamQs.hasAddressSpace())
1022      DeducedQs.removeAddressSpace();
1023    if (ParamQs.hasObjCLifetime())
1024      DeducedQs.removeObjCLifetime();
1025
1026    // Objective-C ARC:
1027    //   If template deduction would produce a lifetime qualifier on a type
1028    //   that is not a lifetime type, template argument deduction fails.
1029    if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1030        !DeducedType->isDependentType()) {
1031      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1032      Info.FirstArg = TemplateArgument(Param);
1033      Info.SecondArg = TemplateArgument(Arg);
1034      return Sema::TDK_Underqualified;
1035    }
1036
1037    // Objective-C ARC:
1038    //   If template deduction would produce an argument type with lifetime type
1039    //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1040    if (S.getLangOptions().ObjCAutoRefCount &&
1041        DeducedType->isObjCLifetimeType() &&
1042        !DeducedQs.hasObjCLifetime())
1043      DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1044
1045    DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1046                                             DeducedQs);
1047
1048    if (RecanonicalizeArg)
1049      DeducedType = S.Context.getCanonicalType(DeducedType);
1050
1051    DeducedTemplateArgument NewDeduced(DeducedType);
1052    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1053                                                                 Deduced[Index],
1054                                                                   NewDeduced);
1055    if (Result.isNull()) {
1056      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1057      Info.FirstArg = Deduced[Index];
1058      Info.SecondArg = NewDeduced;
1059      return Sema::TDK_Inconsistent;
1060    }
1061
1062    Deduced[Index] = Result;
1063    return Sema::TDK_Success;
1064  }
1065
1066  // Set up the template argument deduction information for a failure.
1067  Info.FirstArg = TemplateArgument(ParamIn);
1068  Info.SecondArg = TemplateArgument(ArgIn);
1069
1070  // If the parameter is an already-substituted template parameter
1071  // pack, do nothing: we don't know which of its arguments to look
1072  // at, so we have to wait until all of the parameter packs in this
1073  // expansion have arguments.
1074  if (isa<SubstTemplateTypeParmPackType>(Param))
1075    return Sema::TDK_Success;
1076
1077  // Check the cv-qualifiers on the parameter and argument types.
1078  if (!(TDF & TDF_IgnoreQualifiers)) {
1079    if (TDF & TDF_ParamWithReferenceType) {
1080      if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1081        return Sema::TDK_NonDeducedMismatch;
1082    } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1083      if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1084        return Sema::TDK_NonDeducedMismatch;
1085    }
1086  }
1087
1088  switch (Param->getTypeClass()) {
1089    // Non-canonical types cannot appear here.
1090#define NON_CANONICAL_TYPE(Class, Base) \
1091  case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1092#define TYPE(Class, Base)
1093#include "clang/AST/TypeNodes.def"
1094
1095    case Type::TemplateTypeParm:
1096    case Type::SubstTemplateTypeParmPack:
1097      llvm_unreachable("Type nodes handled above");
1098
1099    // These types cannot be used in templates or cannot be dependent, so
1100    // deduction always fails.
1101    case Type::Builtin:
1102    case Type::VariableArray:
1103    case Type::Vector:
1104    case Type::FunctionNoProto:
1105    case Type::Record:
1106    case Type::Enum:
1107    case Type::ObjCObject:
1108    case Type::ObjCInterface:
1109    case Type::ObjCObjectPointer:
1110      return Sema::TDK_NonDeducedMismatch;
1111
1112    //     _Complex T   [placeholder extension]
1113    case Type::Complex:
1114      if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1115        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1116                                    cast<ComplexType>(Param)->getElementType(),
1117                                    ComplexArg->getElementType(),
1118                                    Info, Deduced, TDF);
1119
1120      return Sema::TDK_NonDeducedMismatch;
1121
1122    //     _Atomic T   [extension]
1123    case Type::Atomic:
1124      if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
1125        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1126                                       cast<AtomicType>(Param)->getValueType(),
1127                                       AtomicArg->getValueType(),
1128                                       Info, Deduced, TDF);
1129
1130      return Sema::TDK_NonDeducedMismatch;
1131
1132    //     T *
1133    case Type::Pointer: {
1134      QualType PointeeType;
1135      if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1136        PointeeType = PointerArg->getPointeeType();
1137      } else if (const ObjCObjectPointerType *PointerArg
1138                   = Arg->getAs<ObjCObjectPointerType>()) {
1139        PointeeType = PointerArg->getPointeeType();
1140      } else {
1141        return Sema::TDK_NonDeducedMismatch;
1142      }
1143
1144      unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1145      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1146                                     cast<PointerType>(Param)->getPointeeType(),
1147                                     PointeeType,
1148                                     Info, Deduced, SubTDF);
1149    }
1150
1151    //     T &
1152    case Type::LValueReference: {
1153      const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
1154      if (!ReferenceArg)
1155        return Sema::TDK_NonDeducedMismatch;
1156
1157      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1158                           cast<LValueReferenceType>(Param)->getPointeeType(),
1159                           ReferenceArg->getPointeeType(), Info, Deduced, 0);
1160    }
1161
1162    //     T && [C++0x]
1163    case Type::RValueReference: {
1164      const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
1165      if (!ReferenceArg)
1166        return Sema::TDK_NonDeducedMismatch;
1167
1168      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1169                             cast<RValueReferenceType>(Param)->getPointeeType(),
1170                             ReferenceArg->getPointeeType(),
1171                             Info, Deduced, 0);
1172    }
1173
1174    //     T [] (implied, but not stated explicitly)
1175    case Type::IncompleteArray: {
1176      const IncompleteArrayType *IncompleteArrayArg =
1177        S.Context.getAsIncompleteArrayType(Arg);
1178      if (!IncompleteArrayArg)
1179        return Sema::TDK_NonDeducedMismatch;
1180
1181      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1182      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1183                    S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1184                    IncompleteArrayArg->getElementType(),
1185                    Info, Deduced, SubTDF);
1186    }
1187
1188    //     T [integer-constant]
1189    case Type::ConstantArray: {
1190      const ConstantArrayType *ConstantArrayArg =
1191        S.Context.getAsConstantArrayType(Arg);
1192      if (!ConstantArrayArg)
1193        return Sema::TDK_NonDeducedMismatch;
1194
1195      const ConstantArrayType *ConstantArrayParm =
1196        S.Context.getAsConstantArrayType(Param);
1197      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1198        return Sema::TDK_NonDeducedMismatch;
1199
1200      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1201      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1202                                           ConstantArrayParm->getElementType(),
1203                                           ConstantArrayArg->getElementType(),
1204                                           Info, Deduced, SubTDF);
1205    }
1206
1207    //     type [i]
1208    case Type::DependentSizedArray: {
1209      const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1210      if (!ArrayArg)
1211        return Sema::TDK_NonDeducedMismatch;
1212
1213      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1214
1215      // Check the element type of the arrays
1216      const DependentSizedArrayType *DependentArrayParm
1217        = S.Context.getAsDependentSizedArrayType(Param);
1218      if (Sema::TemplateDeductionResult Result
1219            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1220                                          DependentArrayParm->getElementType(),
1221                                          ArrayArg->getElementType(),
1222                                          Info, Deduced, SubTDF))
1223        return Result;
1224
1225      // Determine the array bound is something we can deduce.
1226      NonTypeTemplateParmDecl *NTTP
1227        = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
1228      if (!NTTP)
1229        return Sema::TDK_Success;
1230
1231      // We can perform template argument deduction for the given non-type
1232      // template parameter.
1233      assert(NTTP->getDepth() == 0 &&
1234             "Cannot deduce non-type template argument at depth > 0");
1235      if (const ConstantArrayType *ConstantArrayArg
1236            = dyn_cast<ConstantArrayType>(ArrayArg)) {
1237        llvm::APSInt Size(ConstantArrayArg->getSize());
1238        return DeduceNonTypeTemplateArgument(S, NTTP, Size,
1239                                             S.Context.getSizeType(),
1240                                             /*ArrayBound=*/true,
1241                                             Info, Deduced);
1242      }
1243      if (const DependentSizedArrayType *DependentArrayArg
1244            = dyn_cast<DependentSizedArrayType>(ArrayArg))
1245        if (DependentArrayArg->getSizeExpr())
1246          return DeduceNonTypeTemplateArgument(S, NTTP,
1247                                               DependentArrayArg->getSizeExpr(),
1248                                               Info, Deduced);
1249
1250      // Incomplete type does not match a dependently-sized array type
1251      return Sema::TDK_NonDeducedMismatch;
1252    }
1253
1254    //     type(*)(T)
1255    //     T(*)()
1256    //     T(*)(T)
1257    case Type::FunctionProto: {
1258      unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1259      const FunctionProtoType *FunctionProtoArg =
1260        dyn_cast<FunctionProtoType>(Arg);
1261      if (!FunctionProtoArg)
1262        return Sema::TDK_NonDeducedMismatch;
1263
1264      const FunctionProtoType *FunctionProtoParam =
1265        cast<FunctionProtoType>(Param);
1266
1267      if (FunctionProtoParam->getTypeQuals()
1268            != FunctionProtoArg->getTypeQuals() ||
1269          FunctionProtoParam->getRefQualifier()
1270            != FunctionProtoArg->getRefQualifier() ||
1271          FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1272        return Sema::TDK_NonDeducedMismatch;
1273
1274      // Check return types.
1275      if (Sema::TemplateDeductionResult Result
1276            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1277                                            FunctionProtoParam->getResultType(),
1278                                            FunctionProtoArg->getResultType(),
1279                                            Info, Deduced, 0))
1280        return Result;
1281
1282      return DeduceTemplateArguments(S, TemplateParams,
1283                                     FunctionProtoParam->arg_type_begin(),
1284                                     FunctionProtoParam->getNumArgs(),
1285                                     FunctionProtoArg->arg_type_begin(),
1286                                     FunctionProtoArg->getNumArgs(),
1287                                     Info, Deduced, SubTDF);
1288    }
1289
1290    case Type::InjectedClassName: {
1291      // Treat a template's injected-class-name as if the template
1292      // specialization type had been used.
1293      Param = cast<InjectedClassNameType>(Param)
1294        ->getInjectedSpecializationType();
1295      assert(isa<TemplateSpecializationType>(Param) &&
1296             "injected class name is not a template specialization type");
1297      // fall through
1298    }
1299
1300    //     template-name<T> (where template-name refers to a class template)
1301    //     template-name<i>
1302    //     TT<T>
1303    //     TT<i>
1304    //     TT<>
1305    case Type::TemplateSpecialization: {
1306      const TemplateSpecializationType *SpecParam
1307        = cast<TemplateSpecializationType>(Param);
1308
1309      // Try to deduce template arguments from the template-id.
1310      Sema::TemplateDeductionResult Result
1311        = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
1312                                  Info, Deduced);
1313
1314      if (Result && (TDF & TDF_DerivedClass)) {
1315        // C++ [temp.deduct.call]p3b3:
1316        //   If P is a class, and P has the form template-id, then A can be a
1317        //   derived class of the deduced A. Likewise, if P is a pointer to a
1318        //   class of the form template-id, A can be a pointer to a derived
1319        //   class pointed to by the deduced A.
1320        //
1321        // More importantly:
1322        //   These alternatives are considered only if type deduction would
1323        //   otherwise fail.
1324        if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
1325          // We cannot inspect base classes as part of deduction when the type
1326          // is incomplete, so either instantiate any templates necessary to
1327          // complete the type, or skip over it if it cannot be completed.
1328          if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
1329            return Result;
1330
1331          // Use data recursion to crawl through the list of base classes.
1332          // Visited contains the set of nodes we have already visited, while
1333          // ToVisit is our stack of records that we still need to visit.
1334          llvm::SmallPtrSet<const RecordType *, 8> Visited;
1335          SmallVector<const RecordType *, 8> ToVisit;
1336          ToVisit.push_back(RecordT);
1337          bool Successful = false;
1338          SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1339                                                              Deduced.end());
1340          while (!ToVisit.empty()) {
1341            // Retrieve the next class in the inheritance hierarchy.
1342            const RecordType *NextT = ToVisit.back();
1343            ToVisit.pop_back();
1344
1345            // If we have already seen this type, skip it.
1346            if (!Visited.insert(NextT))
1347              continue;
1348
1349            // If this is a base class, try to perform template argument
1350            // deduction from it.
1351            if (NextT != RecordT) {
1352              Sema::TemplateDeductionResult BaseResult
1353                = DeduceTemplateArguments(S, TemplateParams, SpecParam,
1354                                          QualType(NextT, 0), Info, Deduced);
1355
1356              // If template argument deduction for this base was successful,
1357              // note that we had some success. Otherwise, ignore any deductions
1358              // from this base class.
1359              if (BaseResult == Sema::TDK_Success) {
1360                Successful = true;
1361                DeducedOrig.clear();
1362                DeducedOrig.append(Deduced.begin(), Deduced.end());
1363              }
1364              else
1365                Deduced = DeducedOrig;
1366            }
1367
1368            // Visit base classes
1369            CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1370            for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
1371                                                 BaseEnd = Next->bases_end();
1372                 Base != BaseEnd; ++Base) {
1373              assert(Base->getType()->isRecordType() &&
1374                     "Base class that isn't a record?");
1375              ToVisit.push_back(Base->getType()->getAs<RecordType>());
1376            }
1377          }
1378
1379          if (Successful)
1380            return Sema::TDK_Success;
1381        }
1382
1383      }
1384
1385      return Result;
1386    }
1387
1388    //     T type::*
1389    //     T T::*
1390    //     T (type::*)()
1391    //     type (T::*)()
1392    //     type (type::*)(T)
1393    //     type (T::*)(T)
1394    //     T (type::*)(T)
1395    //     T (T::*)()
1396    //     T (T::*)(T)
1397    case Type::MemberPointer: {
1398      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1399      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1400      if (!MemPtrArg)
1401        return Sema::TDK_NonDeducedMismatch;
1402
1403      if (Sema::TemplateDeductionResult Result
1404            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1405                                                 MemPtrParam->getPointeeType(),
1406                                                 MemPtrArg->getPointeeType(),
1407                                                 Info, Deduced,
1408                                                 TDF & TDF_IgnoreQualifiers))
1409        return Result;
1410
1411      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1412                                           QualType(MemPtrParam->getClass(), 0),
1413                                           QualType(MemPtrArg->getClass(), 0),
1414                                           Info, Deduced, 0);
1415    }
1416
1417    //     (clang extension)
1418    //
1419    //     type(^)(T)
1420    //     T(^)()
1421    //     T(^)(T)
1422    case Type::BlockPointer: {
1423      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1424      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1425
1426      if (!BlockPtrArg)
1427        return Sema::TDK_NonDeducedMismatch;
1428
1429      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1430                                                BlockPtrParam->getPointeeType(),
1431                                                BlockPtrArg->getPointeeType(),
1432                                                Info, Deduced, 0);
1433    }
1434
1435    //     (clang extension)
1436    //
1437    //     T __attribute__(((ext_vector_type(<integral constant>))))
1438    case Type::ExtVector: {
1439      const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1440      if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1441        // Make sure that the vectors have the same number of elements.
1442        if (VectorParam->getNumElements() != VectorArg->getNumElements())
1443          return Sema::TDK_NonDeducedMismatch;
1444
1445        // Perform deduction on the element types.
1446        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1447                                                  VectorParam->getElementType(),
1448                                                  VectorArg->getElementType(),
1449                                                  Info, Deduced, TDF);
1450      }
1451
1452      if (const DependentSizedExtVectorType *VectorArg
1453                                = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1454        // We can't check the number of elements, since the argument has a
1455        // dependent number of elements. This can only occur during partial
1456        // ordering.
1457
1458        // Perform deduction on the element types.
1459        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1460                                                  VectorParam->getElementType(),
1461                                                  VectorArg->getElementType(),
1462                                                  Info, Deduced, TDF);
1463      }
1464
1465      return Sema::TDK_NonDeducedMismatch;
1466    }
1467
1468    //     (clang extension)
1469    //
1470    //     T __attribute__(((ext_vector_type(N))))
1471    case Type::DependentSizedExtVector: {
1472      const DependentSizedExtVectorType *VectorParam
1473        = cast<DependentSizedExtVectorType>(Param);
1474
1475      if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1476        // Perform deduction on the element types.
1477        if (Sema::TemplateDeductionResult Result
1478              = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1479                                                  VectorParam->getElementType(),
1480                                                   VectorArg->getElementType(),
1481                                                   Info, Deduced, TDF))
1482          return Result;
1483
1484        // Perform deduction on the vector size, if we can.
1485        NonTypeTemplateParmDecl *NTTP
1486          = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1487        if (!NTTP)
1488          return Sema::TDK_Success;
1489
1490        llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1491        ArgSize = VectorArg->getNumElements();
1492        return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
1493                                             false, Info, Deduced);
1494      }
1495
1496      if (const DependentSizedExtVectorType *VectorArg
1497                                = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1498        // Perform deduction on the element types.
1499        if (Sema::TemplateDeductionResult Result
1500            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1501                                                 VectorParam->getElementType(),
1502                                                 VectorArg->getElementType(),
1503                                                 Info, Deduced, TDF))
1504          return Result;
1505
1506        // Perform deduction on the vector size, if we can.
1507        NonTypeTemplateParmDecl *NTTP
1508          = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1509        if (!NTTP)
1510          return Sema::TDK_Success;
1511
1512        return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
1513                                             Info, Deduced);
1514      }
1515
1516      return Sema::TDK_NonDeducedMismatch;
1517    }
1518
1519    case Type::TypeOfExpr:
1520    case Type::TypeOf:
1521    case Type::DependentName:
1522    case Type::UnresolvedUsing:
1523    case Type::Decltype:
1524    case Type::UnaryTransform:
1525    case Type::Auto:
1526    case Type::DependentTemplateSpecialization:
1527    case Type::PackExpansion:
1528      // No template argument deduction for these types
1529      return Sema::TDK_Success;
1530  }
1531
1532  llvm_unreachable("Invalid Type Class!");
1533}
1534
1535static Sema::TemplateDeductionResult
1536DeduceTemplateArguments(Sema &S,
1537                        TemplateParameterList *TemplateParams,
1538                        const TemplateArgument &Param,
1539                        TemplateArgument Arg,
1540                        TemplateDeductionInfo &Info,
1541                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1542  // If the template argument is a pack expansion, perform template argument
1543  // deduction against the pattern of that expansion. This only occurs during
1544  // partial ordering.
1545  if (Arg.isPackExpansion())
1546    Arg = Arg.getPackExpansionPattern();
1547
1548  switch (Param.getKind()) {
1549  case TemplateArgument::Null:
1550    llvm_unreachable("Null template argument in parameter list");
1551
1552  case TemplateArgument::Type:
1553    if (Arg.getKind() == TemplateArgument::Type)
1554      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1555                                                Param.getAsType(),
1556                                                Arg.getAsType(),
1557                                                Info, Deduced, 0);
1558    Info.FirstArg = Param;
1559    Info.SecondArg = Arg;
1560    return Sema::TDK_NonDeducedMismatch;
1561
1562  case TemplateArgument::Template:
1563    if (Arg.getKind() == TemplateArgument::Template)
1564      return DeduceTemplateArguments(S, TemplateParams,
1565                                     Param.getAsTemplate(),
1566                                     Arg.getAsTemplate(), Info, Deduced);
1567    Info.FirstArg = Param;
1568    Info.SecondArg = Arg;
1569    return Sema::TDK_NonDeducedMismatch;
1570
1571  case TemplateArgument::TemplateExpansion:
1572    llvm_unreachable("caller should handle pack expansions");
1573
1574  case TemplateArgument::Declaration:
1575    if (Arg.getKind() == TemplateArgument::Declaration &&
1576        Param.getAsDecl()->getCanonicalDecl() ==
1577          Arg.getAsDecl()->getCanonicalDecl())
1578      return Sema::TDK_Success;
1579
1580    Info.FirstArg = Param;
1581    Info.SecondArg = Arg;
1582    return Sema::TDK_NonDeducedMismatch;
1583
1584  case TemplateArgument::Integral:
1585    if (Arg.getKind() == TemplateArgument::Integral) {
1586      if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral()))
1587        return Sema::TDK_Success;
1588
1589      Info.FirstArg = Param;
1590      Info.SecondArg = Arg;
1591      return Sema::TDK_NonDeducedMismatch;
1592    }
1593
1594    if (Arg.getKind() == TemplateArgument::Expression) {
1595      Info.FirstArg = Param;
1596      Info.SecondArg = Arg;
1597      return Sema::TDK_NonDeducedMismatch;
1598    }
1599
1600    Info.FirstArg = Param;
1601    Info.SecondArg = Arg;
1602    return Sema::TDK_NonDeducedMismatch;
1603
1604  case TemplateArgument::Expression: {
1605    if (NonTypeTemplateParmDecl *NTTP
1606          = getDeducedParameterFromExpr(Param.getAsExpr())) {
1607      if (Arg.getKind() == TemplateArgument::Integral)
1608        return DeduceNonTypeTemplateArgument(S, NTTP,
1609                                             *Arg.getAsIntegral(),
1610                                             Arg.getIntegralType(),
1611                                             /*ArrayBound=*/false,
1612                                             Info, Deduced);
1613      if (Arg.getKind() == TemplateArgument::Expression)
1614        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
1615                                             Info, Deduced);
1616      if (Arg.getKind() == TemplateArgument::Declaration)
1617        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
1618                                             Info, Deduced);
1619
1620      Info.FirstArg = Param;
1621      Info.SecondArg = Arg;
1622      return Sema::TDK_NonDeducedMismatch;
1623    }
1624
1625    // Can't deduce anything, but that's okay.
1626    return Sema::TDK_Success;
1627  }
1628  case TemplateArgument::Pack:
1629    llvm_unreachable("Argument packs should be expanded by the caller!");
1630  }
1631
1632  llvm_unreachable("Invalid TemplateArgument Kind!");
1633}
1634
1635/// \brief Determine whether there is a template argument to be used for
1636/// deduction.
1637///
1638/// This routine "expands" argument packs in-place, overriding its input
1639/// parameters so that \c Args[ArgIdx] will be the available template argument.
1640///
1641/// \returns true if there is another template argument (which will be at
1642/// \c Args[ArgIdx]), false otherwise.
1643static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
1644                                            unsigned &ArgIdx,
1645                                            unsigned &NumArgs) {
1646  if (ArgIdx == NumArgs)
1647    return false;
1648
1649  const TemplateArgument &Arg = Args[ArgIdx];
1650  if (Arg.getKind() != TemplateArgument::Pack)
1651    return true;
1652
1653  assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
1654  Args = Arg.pack_begin();
1655  NumArgs = Arg.pack_size();
1656  ArgIdx = 0;
1657  return ArgIdx < NumArgs;
1658}
1659
1660/// \brief Determine whether the given set of template arguments has a pack
1661/// expansion that is not the last template argument.
1662static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
1663                                      unsigned NumArgs) {
1664  unsigned ArgIdx = 0;
1665  while (ArgIdx < NumArgs) {
1666    const TemplateArgument &Arg = Args[ArgIdx];
1667
1668    // Unwrap argument packs.
1669    if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
1670      Args = Arg.pack_begin();
1671      NumArgs = Arg.pack_size();
1672      ArgIdx = 0;
1673      continue;
1674    }
1675
1676    ++ArgIdx;
1677    if (ArgIdx == NumArgs)
1678      return false;
1679
1680    if (Arg.isPackExpansion())
1681      return true;
1682  }
1683
1684  return false;
1685}
1686
1687static Sema::TemplateDeductionResult
1688DeduceTemplateArguments(Sema &S,
1689                        TemplateParameterList *TemplateParams,
1690                        const TemplateArgument *Params, unsigned NumParams,
1691                        const TemplateArgument *Args, unsigned NumArgs,
1692                        TemplateDeductionInfo &Info,
1693                    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1694                        bool NumberOfArgumentsMustMatch) {
1695  // C++0x [temp.deduct.type]p9:
1696  //   If the template argument list of P contains a pack expansion that is not
1697  //   the last template argument, the entire template argument list is a
1698  //   non-deduced context.
1699  if (hasPackExpansionBeforeEnd(Params, NumParams))
1700    return Sema::TDK_Success;
1701
1702  // C++0x [temp.deduct.type]p9:
1703  //   If P has a form that contains <T> or <i>, then each argument Pi of the
1704  //   respective template argument list P is compared with the corresponding
1705  //   argument Ai of the corresponding template argument list of A.
1706  unsigned ArgIdx = 0, ParamIdx = 0;
1707  for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
1708       ++ParamIdx) {
1709    if (!Params[ParamIdx].isPackExpansion()) {
1710      // The simple case: deduce template arguments by matching Pi and Ai.
1711
1712      // Check whether we have enough arguments.
1713      if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1714        return NumberOfArgumentsMustMatch? Sema::TDK_NonDeducedMismatch
1715                                         : Sema::TDK_Success;
1716
1717      if (Args[ArgIdx].isPackExpansion()) {
1718        // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
1719        // but applied to pack expansions that are template arguments.
1720        return Sema::TDK_NonDeducedMismatch;
1721      }
1722
1723      // Perform deduction for this Pi/Ai pair.
1724      if (Sema::TemplateDeductionResult Result
1725            = DeduceTemplateArguments(S, TemplateParams,
1726                                      Params[ParamIdx], Args[ArgIdx],
1727                                      Info, Deduced))
1728        return Result;
1729
1730      // Move to the next argument.
1731      ++ArgIdx;
1732      continue;
1733    }
1734
1735    // The parameter is a pack expansion.
1736
1737    // C++0x [temp.deduct.type]p9:
1738    //   If Pi is a pack expansion, then the pattern of Pi is compared with
1739    //   each remaining argument in the template argument list of A. Each
1740    //   comparison deduces template arguments for subsequent positions in the
1741    //   template parameter packs expanded by Pi.
1742    TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
1743
1744    // Compute the set of template parameter indices that correspond to
1745    // parameter packs expanded by the pack expansion.
1746    SmallVector<unsigned, 2> PackIndices;
1747    {
1748      llvm::BitVector SawIndices(TemplateParams->size());
1749      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
1750      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
1751      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
1752        unsigned Depth, Index;
1753        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
1754        if (Depth == 0 && !SawIndices[Index]) {
1755          SawIndices[Index] = true;
1756          PackIndices.push_back(Index);
1757        }
1758      }
1759    }
1760    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
1761
1762    // FIXME: If there are no remaining arguments, we can bail out early
1763    // and set any deduced parameter packs to an empty argument pack.
1764    // The latter part of this is a (minor) correctness issue.
1765
1766    // Save the deduced template arguments for each parameter pack expanded
1767    // by this pack expansion, then clear out the deduction.
1768    SmallVector<DeducedTemplateArgument, 2>
1769      SavedPacks(PackIndices.size());
1770    SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
1771      NewlyDeducedPacks(PackIndices.size());
1772    PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
1773                                 NewlyDeducedPacks);
1774
1775    // Keep track of the deduced template arguments for each parameter pack
1776    // expanded by this pack expansion (the outer index) and for each
1777    // template argument (the inner SmallVectors).
1778    bool HasAnyArguments = false;
1779    while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
1780      HasAnyArguments = true;
1781
1782      // Deduce template arguments from the pattern.
1783      if (Sema::TemplateDeductionResult Result
1784            = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
1785                                      Info, Deduced))
1786        return Result;
1787
1788      // Capture the deduced template arguments for each parameter pack expanded
1789      // by this pack expansion, add them to the list of arguments we've deduced
1790      // for that pack, then clear out the deduced argument.
1791      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1792        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
1793        if (!DeducedArg.isNull()) {
1794          NewlyDeducedPacks[I].push_back(DeducedArg);
1795          DeducedArg = DeducedTemplateArgument();
1796        }
1797      }
1798
1799      ++ArgIdx;
1800    }
1801
1802    // Build argument packs for each of the parameter packs expanded by this
1803    // pack expansion.
1804    if (Sema::TemplateDeductionResult Result
1805          = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
1806                                        Deduced, PackIndices, SavedPacks,
1807                                        NewlyDeducedPacks, Info))
1808      return Result;
1809  }
1810
1811  // If there is an argument remaining, then we had too many arguments.
1812  if (NumberOfArgumentsMustMatch &&
1813      hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1814    return Sema::TDK_NonDeducedMismatch;
1815
1816  return Sema::TDK_Success;
1817}
1818
1819static Sema::TemplateDeductionResult
1820DeduceTemplateArguments(Sema &S,
1821                        TemplateParameterList *TemplateParams,
1822                        const TemplateArgumentList &ParamList,
1823                        const TemplateArgumentList &ArgList,
1824                        TemplateDeductionInfo &Info,
1825                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1826  return DeduceTemplateArguments(S, TemplateParams,
1827                                 ParamList.data(), ParamList.size(),
1828                                 ArgList.data(), ArgList.size(),
1829                                 Info, Deduced);
1830}
1831
1832/// \brief Determine whether two template arguments are the same.
1833static bool isSameTemplateArg(ASTContext &Context,
1834                              const TemplateArgument &X,
1835                              const TemplateArgument &Y) {
1836  if (X.getKind() != Y.getKind())
1837    return false;
1838
1839  switch (X.getKind()) {
1840    case TemplateArgument::Null:
1841      llvm_unreachable("Comparing NULL template argument");
1842
1843    case TemplateArgument::Type:
1844      return Context.getCanonicalType(X.getAsType()) ==
1845             Context.getCanonicalType(Y.getAsType());
1846
1847    case TemplateArgument::Declaration:
1848      return X.getAsDecl()->getCanonicalDecl() ==
1849             Y.getAsDecl()->getCanonicalDecl();
1850
1851    case TemplateArgument::Template:
1852    case TemplateArgument::TemplateExpansion:
1853      return Context.getCanonicalTemplateName(
1854                    X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
1855             Context.getCanonicalTemplateName(
1856                    Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
1857
1858    case TemplateArgument::Integral:
1859      return *X.getAsIntegral() == *Y.getAsIntegral();
1860
1861    case TemplateArgument::Expression: {
1862      llvm::FoldingSetNodeID XID, YID;
1863      X.getAsExpr()->Profile(XID, Context, true);
1864      Y.getAsExpr()->Profile(YID, Context, true);
1865      return XID == YID;
1866    }
1867
1868    case TemplateArgument::Pack:
1869      if (X.pack_size() != Y.pack_size())
1870        return false;
1871
1872      for (TemplateArgument::pack_iterator XP = X.pack_begin(),
1873                                        XPEnd = X.pack_end(),
1874                                           YP = Y.pack_begin();
1875           XP != XPEnd; ++XP, ++YP)
1876        if (!isSameTemplateArg(Context, *XP, *YP))
1877          return false;
1878
1879      return true;
1880  }
1881
1882  llvm_unreachable("Invalid TemplateArgument Kind!");
1883}
1884
1885/// \brief Allocate a TemplateArgumentLoc where all locations have
1886/// been initialized to the given location.
1887///
1888/// \param S The semantic analysis object.
1889///
1890/// \param The template argument we are producing template argument
1891/// location information for.
1892///
1893/// \param NTTPType For a declaration template argument, the type of
1894/// the non-type template parameter that corresponds to this template
1895/// argument.
1896///
1897/// \param Loc The source location to use for the resulting template
1898/// argument.
1899static TemplateArgumentLoc
1900getTrivialTemplateArgumentLoc(Sema &S,
1901                              const TemplateArgument &Arg,
1902                              QualType NTTPType,
1903                              SourceLocation Loc) {
1904  switch (Arg.getKind()) {
1905  case TemplateArgument::Null:
1906    llvm_unreachable("Can't get a NULL template argument here");
1907
1908  case TemplateArgument::Type:
1909    return TemplateArgumentLoc(Arg,
1910                     S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
1911
1912  case TemplateArgument::Declaration: {
1913    Expr *E
1914      = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
1915    .takeAs<Expr>();
1916    return TemplateArgumentLoc(TemplateArgument(E), E);
1917  }
1918
1919  case TemplateArgument::Integral: {
1920    Expr *E
1921      = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
1922    return TemplateArgumentLoc(TemplateArgument(E), E);
1923  }
1924
1925    case TemplateArgument::Template:
1926    case TemplateArgument::TemplateExpansion: {
1927      NestedNameSpecifierLocBuilder Builder;
1928      TemplateName Template = Arg.getAsTemplate();
1929      if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
1930        Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
1931      else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
1932        Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
1933
1934      if (Arg.getKind() == TemplateArgument::Template)
1935        return TemplateArgumentLoc(Arg,
1936                                   Builder.getWithLocInContext(S.Context),
1937                                   Loc);
1938
1939
1940      return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
1941                                 Loc, Loc);
1942    }
1943
1944  case TemplateArgument::Expression:
1945    return TemplateArgumentLoc(Arg, Arg.getAsExpr());
1946
1947  case TemplateArgument::Pack:
1948    return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
1949  }
1950
1951  llvm_unreachable("Invalid TemplateArgument Kind!");
1952}
1953
1954
1955/// \brief Convert the given deduced template argument and add it to the set of
1956/// fully-converted template arguments.
1957static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
1958                                           DeducedTemplateArgument Arg,
1959                                           NamedDecl *Template,
1960                                           QualType NTTPType,
1961                                           unsigned ArgumentPackIndex,
1962                                           TemplateDeductionInfo &Info,
1963                                           bool InFunctionTemplate,
1964                             SmallVectorImpl<TemplateArgument> &Output) {
1965  if (Arg.getKind() == TemplateArgument::Pack) {
1966    // This is a template argument pack, so check each of its arguments against
1967    // the template parameter.
1968    SmallVector<TemplateArgument, 2> PackedArgsBuilder;
1969    for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
1970                                      PAEnd = Arg.pack_end();
1971         PA != PAEnd; ++PA) {
1972      // When converting the deduced template argument, append it to the
1973      // general output list. We need to do this so that the template argument
1974      // checking logic has all of the prior template arguments available.
1975      DeducedTemplateArgument InnerArg(*PA);
1976      InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
1977      if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
1978                                         NTTPType, PackedArgsBuilder.size(),
1979                                         Info, InFunctionTemplate, Output))
1980        return true;
1981
1982      // Move the converted template argument into our argument pack.
1983      PackedArgsBuilder.push_back(Output.back());
1984      Output.pop_back();
1985    }
1986
1987    // Create the resulting argument pack.
1988    Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
1989                                                      PackedArgsBuilder.data(),
1990                                                     PackedArgsBuilder.size()));
1991    return false;
1992  }
1993
1994  // Convert the deduced template argument into a template
1995  // argument that we can check, almost as if the user had written
1996  // the template argument explicitly.
1997  TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
1998                                                             Info.getLocation());
1999
2000  // Check the template argument, converting it as necessary.
2001  return S.CheckTemplateArgument(Param, ArgLoc,
2002                                 Template,
2003                                 Template->getLocation(),
2004                                 Template->getSourceRange().getEnd(),
2005                                 ArgumentPackIndex,
2006                                 Output,
2007                                 InFunctionTemplate
2008                                  ? (Arg.wasDeducedFromArrayBound()
2009                                       ? Sema::CTAK_DeducedFromArrayBound
2010                                       : Sema::CTAK_Deduced)
2011                                 : Sema::CTAK_Specified);
2012}
2013
2014/// Complete template argument deduction for a class template partial
2015/// specialization.
2016static Sema::TemplateDeductionResult
2017FinishTemplateArgumentDeduction(Sema &S,
2018                                ClassTemplatePartialSpecializationDecl *Partial,
2019                                const TemplateArgumentList &TemplateArgs,
2020                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2021                                TemplateDeductionInfo &Info) {
2022  // Trap errors.
2023  Sema::SFINAETrap Trap(S);
2024
2025  Sema::ContextRAII SavedContext(S, Partial);
2026
2027  // C++ [temp.deduct.type]p2:
2028  //   [...] or if any template argument remains neither deduced nor
2029  //   explicitly specified, template argument deduction fails.
2030  SmallVector<TemplateArgument, 4> Builder;
2031  TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2032  for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2033    NamedDecl *Param = PartialParams->getParam(I);
2034    if (Deduced[I].isNull()) {
2035      Info.Param = makeTemplateParameter(Param);
2036      return Sema::TDK_Incomplete;
2037    }
2038
2039    // We have deduced this argument, so it still needs to be
2040    // checked and converted.
2041
2042    // First, for a non-type template parameter type that is
2043    // initialized by a declaration, we need the type of the
2044    // corresponding non-type template parameter.
2045    QualType NTTPType;
2046    if (NonTypeTemplateParmDecl *NTTP
2047                                  = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2048      NTTPType = NTTP->getType();
2049      if (NTTPType->isDependentType()) {
2050        TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2051                                          Builder.data(), Builder.size());
2052        NTTPType = S.SubstType(NTTPType,
2053                               MultiLevelTemplateArgumentList(TemplateArgs),
2054                               NTTP->getLocation(),
2055                               NTTP->getDeclName());
2056        if (NTTPType.isNull()) {
2057          Info.Param = makeTemplateParameter(Param);
2058          // FIXME: These template arguments are temporary. Free them!
2059          Info.reset(TemplateArgumentList::CreateCopy(S.Context,
2060                                                      Builder.data(),
2061                                                      Builder.size()));
2062          return Sema::TDK_SubstitutionFailure;
2063        }
2064      }
2065    }
2066
2067    if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
2068                                       Partial, NTTPType, 0, Info, false,
2069                                       Builder)) {
2070      Info.Param = makeTemplateParameter(Param);
2071      // FIXME: These template arguments are temporary. Free them!
2072      Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2073                                                  Builder.size()));
2074      return Sema::TDK_SubstitutionFailure;
2075    }
2076  }
2077
2078  // Form the template argument list from the deduced template arguments.
2079  TemplateArgumentList *DeducedArgumentList
2080    = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2081                                       Builder.size());
2082
2083  Info.reset(DeducedArgumentList);
2084
2085  // Substitute the deduced template arguments into the template
2086  // arguments of the class template partial specialization, and
2087  // verify that the instantiated template arguments are both valid
2088  // and are equivalent to the template arguments originally provided
2089  // to the class template.
2090  LocalInstantiationScope InstScope(S);
2091  ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
2092  const TemplateArgumentLoc *PartialTemplateArgs
2093    = Partial->getTemplateArgsAsWritten();
2094
2095  // Note that we don't provide the langle and rangle locations.
2096  TemplateArgumentListInfo InstArgs;
2097
2098  if (S.Subst(PartialTemplateArgs,
2099              Partial->getNumTemplateArgsAsWritten(),
2100              InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2101    unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2102    if (ParamIdx >= Partial->getTemplateParameters()->size())
2103      ParamIdx = Partial->getTemplateParameters()->size() - 1;
2104
2105    Decl *Param
2106      = const_cast<NamedDecl *>(
2107                          Partial->getTemplateParameters()->getParam(ParamIdx));
2108    Info.Param = makeTemplateParameter(Param);
2109    Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2110    return Sema::TDK_SubstitutionFailure;
2111  }
2112
2113  SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2114  if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
2115                                  InstArgs, false, ConvertedInstArgs))
2116    return Sema::TDK_SubstitutionFailure;
2117
2118  TemplateParameterList *TemplateParams
2119    = ClassTemplate->getTemplateParameters();
2120  for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2121    TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2122    if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2123      Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2124      Info.FirstArg = TemplateArgs[I];
2125      Info.SecondArg = InstArg;
2126      return Sema::TDK_NonDeducedMismatch;
2127    }
2128  }
2129
2130  if (Trap.hasErrorOccurred())
2131    return Sema::TDK_SubstitutionFailure;
2132
2133  return Sema::TDK_Success;
2134}
2135
2136/// \brief Perform template argument deduction to determine whether
2137/// the given template arguments match the given class template
2138/// partial specialization per C++ [temp.class.spec.match].
2139Sema::TemplateDeductionResult
2140Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2141                              const TemplateArgumentList &TemplateArgs,
2142                              TemplateDeductionInfo &Info) {
2143  // C++ [temp.class.spec.match]p2:
2144  //   A partial specialization matches a given actual template
2145  //   argument list if the template arguments of the partial
2146  //   specialization can be deduced from the actual template argument
2147  //   list (14.8.2).
2148  SFINAETrap Trap(*this);
2149  SmallVector<DeducedTemplateArgument, 4> Deduced;
2150  Deduced.resize(Partial->getTemplateParameters()->size());
2151  if (TemplateDeductionResult Result
2152        = ::DeduceTemplateArguments(*this,
2153                                    Partial->getTemplateParameters(),
2154                                    Partial->getTemplateArgs(),
2155                                    TemplateArgs, Info, Deduced))
2156    return Result;
2157
2158  InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
2159                             Deduced.data(), Deduced.size(), Info);
2160  if (Inst)
2161    return TDK_InstantiationDepth;
2162
2163  if (Trap.hasErrorOccurred())
2164    return Sema::TDK_SubstitutionFailure;
2165
2166  return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2167                                           Deduced, Info);
2168}
2169
2170/// \brief Determine whether the given type T is a simple-template-id type.
2171static bool isSimpleTemplateIdType(QualType T) {
2172  if (const TemplateSpecializationType *Spec
2173        = T->getAs<TemplateSpecializationType>())
2174    return Spec->getTemplateName().getAsTemplateDecl() != 0;
2175
2176  return false;
2177}
2178
2179/// \brief Substitute the explicitly-provided template arguments into the
2180/// given function template according to C++ [temp.arg.explicit].
2181///
2182/// \param FunctionTemplate the function template into which the explicit
2183/// template arguments will be substituted.
2184///
2185/// \param ExplicitTemplateArguments the explicitly-specified template
2186/// arguments.
2187///
2188/// \param Deduced the deduced template arguments, which will be populated
2189/// with the converted and checked explicit template arguments.
2190///
2191/// \param ParamTypes will be populated with the instantiated function
2192/// parameters.
2193///
2194/// \param FunctionType if non-NULL, the result type of the function template
2195/// will also be instantiated and the pointed-to value will be updated with
2196/// the instantiated function type.
2197///
2198/// \param Info if substitution fails for any reason, this object will be
2199/// populated with more information about the failure.
2200///
2201/// \returns TDK_Success if substitution was successful, or some failure
2202/// condition.
2203Sema::TemplateDeductionResult
2204Sema::SubstituteExplicitTemplateArguments(
2205                                      FunctionTemplateDecl *FunctionTemplate,
2206                               TemplateArgumentListInfo &ExplicitTemplateArgs,
2207                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2208                                 SmallVectorImpl<QualType> &ParamTypes,
2209                                          QualType *FunctionType,
2210                                          TemplateDeductionInfo &Info) {
2211  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2212  TemplateParameterList *TemplateParams
2213    = FunctionTemplate->getTemplateParameters();
2214
2215  if (ExplicitTemplateArgs.size() == 0) {
2216    // No arguments to substitute; just copy over the parameter types and
2217    // fill in the function type.
2218    for (FunctionDecl::param_iterator P = Function->param_begin(),
2219                                   PEnd = Function->param_end();
2220         P != PEnd;
2221         ++P)
2222      ParamTypes.push_back((*P)->getType());
2223
2224    if (FunctionType)
2225      *FunctionType = Function->getType();
2226    return TDK_Success;
2227  }
2228
2229  // Substitution of the explicit template arguments into a function template
2230  /// is a SFINAE context. Trap any errors that might occur.
2231  SFINAETrap Trap(*this);
2232
2233  // C++ [temp.arg.explicit]p3:
2234  //   Template arguments that are present shall be specified in the
2235  //   declaration order of their corresponding template-parameters. The
2236  //   template argument list shall not specify more template-arguments than
2237  //   there are corresponding template-parameters.
2238  SmallVector<TemplateArgument, 4> Builder;
2239
2240  // Enter a new template instantiation context where we check the
2241  // explicitly-specified template arguments against this function template,
2242  // and then substitute them into the function parameter types.
2243  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2244                             FunctionTemplate, Deduced.data(), Deduced.size(),
2245           ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
2246                             Info);
2247  if (Inst)
2248    return TDK_InstantiationDepth;
2249
2250  if (CheckTemplateArgumentList(FunctionTemplate,
2251                                SourceLocation(),
2252                                ExplicitTemplateArgs,
2253                                true,
2254                                Builder) || Trap.hasErrorOccurred()) {
2255    unsigned Index = Builder.size();
2256    if (Index >= TemplateParams->size())
2257      Index = TemplateParams->size() - 1;
2258    Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
2259    return TDK_InvalidExplicitArguments;
2260  }
2261
2262  // Form the template argument list from the explicitly-specified
2263  // template arguments.
2264  TemplateArgumentList *ExplicitArgumentList
2265    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2266  Info.reset(ExplicitArgumentList);
2267
2268  // Template argument deduction and the final substitution should be
2269  // done in the context of the templated declaration.  Explicit
2270  // argument substitution, on the other hand, needs to happen in the
2271  // calling context.
2272  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2273
2274  // If we deduced template arguments for a template parameter pack,
2275  // note that the template argument pack is partially substituted and record
2276  // the explicit template arguments. They'll be used as part of deduction
2277  // for this template parameter pack.
2278  for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
2279    const TemplateArgument &Arg = Builder[I];
2280    if (Arg.getKind() == TemplateArgument::Pack) {
2281      CurrentInstantiationScope->SetPartiallySubstitutedPack(
2282                                                 TemplateParams->getParam(I),
2283                                                             Arg.pack_begin(),
2284                                                             Arg.pack_size());
2285      break;
2286    }
2287  }
2288
2289  // Instantiate the types of each of the function parameters given the
2290  // explicitly-specified template arguments.
2291  if (SubstParmTypes(Function->getLocation(),
2292                     Function->param_begin(), Function->getNumParams(),
2293                     MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2294                     ParamTypes))
2295    return TDK_SubstitutionFailure;
2296
2297  // If the caller wants a full function type back, instantiate the return
2298  // type and form that function type.
2299  if (FunctionType) {
2300    // FIXME: exception-specifications?
2301    const FunctionProtoType *Proto
2302      = Function->getType()->getAs<FunctionProtoType>();
2303    assert(Proto && "Function template does not have a prototype?");
2304
2305    QualType ResultType
2306      = SubstType(Proto->getResultType(),
2307                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2308                  Function->getTypeSpecStartLoc(),
2309                  Function->getDeclName());
2310    if (ResultType.isNull() || Trap.hasErrorOccurred())
2311      return TDK_SubstitutionFailure;
2312
2313    *FunctionType = BuildFunctionType(ResultType,
2314                                      ParamTypes.data(), ParamTypes.size(),
2315                                      Proto->isVariadic(),
2316                                      Proto->getTypeQuals(),
2317                                      Proto->getRefQualifier(),
2318                                      Function->getLocation(),
2319                                      Function->getDeclName(),
2320                                      Proto->getExtInfo());
2321    if (FunctionType->isNull() || Trap.hasErrorOccurred())
2322      return TDK_SubstitutionFailure;
2323  }
2324
2325  // C++ [temp.arg.explicit]p2:
2326  //   Trailing template arguments that can be deduced (14.8.2) may be
2327  //   omitted from the list of explicit template-arguments. If all of the
2328  //   template arguments can be deduced, they may all be omitted; in this
2329  //   case, the empty template argument list <> itself may also be omitted.
2330  //
2331  // Take all of the explicitly-specified arguments and put them into
2332  // the set of deduced template arguments. Explicitly-specified
2333  // parameter packs, however, will be set to NULL since the deduction
2334  // mechanisms handle explicitly-specified argument packs directly.
2335  Deduced.reserve(TemplateParams->size());
2336  for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
2337    const TemplateArgument &Arg = ExplicitArgumentList->get(I);
2338    if (Arg.getKind() == TemplateArgument::Pack)
2339      Deduced.push_back(DeducedTemplateArgument());
2340    else
2341      Deduced.push_back(Arg);
2342  }
2343
2344  return TDK_Success;
2345}
2346
2347/// \brief Check whether the deduced argument type for a call to a function
2348/// template matches the actual argument type per C++ [temp.deduct.call]p4.
2349static bool
2350CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
2351                              QualType DeducedA) {
2352  ASTContext &Context = S.Context;
2353
2354  QualType A = OriginalArg.OriginalArgType;
2355  QualType OriginalParamType = OriginalArg.OriginalParamType;
2356
2357  // Check for type equality (top-level cv-qualifiers are ignored).
2358  if (Context.hasSameUnqualifiedType(A, DeducedA))
2359    return false;
2360
2361  // Strip off references on the argument types; they aren't needed for
2362  // the following checks.
2363  if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
2364    DeducedA = DeducedARef->getPointeeType();
2365  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
2366    A = ARef->getPointeeType();
2367
2368  // C++ [temp.deduct.call]p4:
2369  //   [...] However, there are three cases that allow a difference:
2370  //     - If the original P is a reference type, the deduced A (i.e., the
2371  //       type referred to by the reference) can be more cv-qualified than
2372  //       the transformed A.
2373  if (const ReferenceType *OriginalParamRef
2374      = OriginalParamType->getAs<ReferenceType>()) {
2375    // We don't want to keep the reference around any more.
2376    OriginalParamType = OriginalParamRef->getPointeeType();
2377
2378    Qualifiers AQuals = A.getQualifiers();
2379    Qualifiers DeducedAQuals = DeducedA.getQualifiers();
2380    if (AQuals == DeducedAQuals) {
2381      // Qualifiers match; there's nothing to do.
2382    } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
2383      return true;
2384    } else {
2385      // Qualifiers are compatible, so have the argument type adopt the
2386      // deduced argument type's qualifiers as if we had performed the
2387      // qualification conversion.
2388      A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
2389    }
2390  }
2391
2392  //    - The transformed A can be another pointer or pointer to member
2393  //      type that can be converted to the deduced A via a qualification
2394  //      conversion.
2395  //
2396  // Also allow conversions which merely strip [[noreturn]] from function types
2397  // (recursively) as an extension.
2398  // FIXME: Currently, this doesn't place nicely with qualfication conversions.
2399  bool ObjCLifetimeConversion = false;
2400  QualType ResultTy;
2401  if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
2402      (S.IsQualificationConversion(A, DeducedA, false,
2403                                   ObjCLifetimeConversion) ||
2404       S.IsNoReturnConversion(A, DeducedA, ResultTy)))
2405    return false;
2406
2407
2408  //    - If P is a class and P has the form simple-template-id, then the
2409  //      transformed A can be a derived class of the deduced A. [...]
2410  //     [...] Likewise, if P is a pointer to a class of the form
2411  //      simple-template-id, the transformed A can be a pointer to a
2412  //      derived class pointed to by the deduced A.
2413  if (const PointerType *OriginalParamPtr
2414      = OriginalParamType->getAs<PointerType>()) {
2415    if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
2416      if (const PointerType *APtr = A->getAs<PointerType>()) {
2417        if (A->getPointeeType()->isRecordType()) {
2418          OriginalParamType = OriginalParamPtr->getPointeeType();
2419          DeducedA = DeducedAPtr->getPointeeType();
2420          A = APtr->getPointeeType();
2421        }
2422      }
2423    }
2424  }
2425
2426  if (Context.hasSameUnqualifiedType(A, DeducedA))
2427    return false;
2428
2429  if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
2430      S.IsDerivedFrom(A, DeducedA))
2431    return false;
2432
2433  return true;
2434}
2435
2436/// \brief Finish template argument deduction for a function template,
2437/// checking the deduced template arguments for completeness and forming
2438/// the function template specialization.
2439///
2440/// \param OriginalCallArgs If non-NULL, the original call arguments against
2441/// which the deduced argument types should be compared.
2442Sema::TemplateDeductionResult
2443Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
2444                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2445                                      unsigned NumExplicitlySpecified,
2446                                      FunctionDecl *&Specialization,
2447                                      TemplateDeductionInfo &Info,
2448        SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
2449  TemplateParameterList *TemplateParams
2450    = FunctionTemplate->getTemplateParameters();
2451
2452  // Template argument deduction for function templates in a SFINAE context.
2453  // Trap any errors that might occur.
2454  SFINAETrap Trap(*this);
2455
2456  // Enter a new template instantiation context while we instantiate the
2457  // actual function declaration.
2458  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2459                             FunctionTemplate, Deduced.data(), Deduced.size(),
2460              ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
2461                             Info);
2462  if (Inst)
2463    return TDK_InstantiationDepth;
2464
2465  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2466
2467  // C++ [temp.deduct.type]p2:
2468  //   [...] or if any template argument remains neither deduced nor
2469  //   explicitly specified, template argument deduction fails.
2470  SmallVector<TemplateArgument, 4> Builder;
2471  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2472    NamedDecl *Param = TemplateParams->getParam(I);
2473
2474    if (!Deduced[I].isNull()) {
2475      if (I < NumExplicitlySpecified) {
2476        // We have already fully type-checked and converted this
2477        // argument, because it was explicitly-specified. Just record the
2478        // presence of this argument.
2479        Builder.push_back(Deduced[I]);
2480        continue;
2481      }
2482
2483      // We have deduced this argument, so it still needs to be
2484      // checked and converted.
2485
2486      // First, for a non-type template parameter type that is
2487      // initialized by a declaration, we need the type of the
2488      // corresponding non-type template parameter.
2489      QualType NTTPType;
2490      if (NonTypeTemplateParmDecl *NTTP
2491                                = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2492        NTTPType = NTTP->getType();
2493        if (NTTPType->isDependentType()) {
2494          TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2495                                            Builder.data(), Builder.size());
2496          NTTPType = SubstType(NTTPType,
2497                               MultiLevelTemplateArgumentList(TemplateArgs),
2498                               NTTP->getLocation(),
2499                               NTTP->getDeclName());
2500          if (NTTPType.isNull()) {
2501            Info.Param = makeTemplateParameter(Param);
2502            // FIXME: These template arguments are temporary. Free them!
2503            Info.reset(TemplateArgumentList::CreateCopy(Context,
2504                                                        Builder.data(),
2505                                                        Builder.size()));
2506            return TDK_SubstitutionFailure;
2507          }
2508        }
2509      }
2510
2511      if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
2512                                         FunctionTemplate, NTTPType, 0, Info,
2513                                         true, Builder)) {
2514        Info.Param = makeTemplateParameter(Param);
2515        // FIXME: These template arguments are temporary. Free them!
2516        Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2517                                                    Builder.size()));
2518        return TDK_SubstitutionFailure;
2519      }
2520
2521      continue;
2522    }
2523
2524    // C++0x [temp.arg.explicit]p3:
2525    //    A trailing template parameter pack (14.5.3) not otherwise deduced will
2526    //    be deduced to an empty sequence of template arguments.
2527    // FIXME: Where did the word "trailing" come from?
2528    if (Param->isTemplateParameterPack()) {
2529      // We may have had explicitly-specified template arguments for this
2530      // template parameter pack. If so, our empty deduction extends the
2531      // explicitly-specified set (C++0x [temp.arg.explicit]p9).
2532      const TemplateArgument *ExplicitArgs;
2533      unsigned NumExplicitArgs;
2534      if (CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
2535                                                             &NumExplicitArgs)
2536          == Param)
2537        Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
2538      else
2539        Builder.push_back(TemplateArgument(0, 0));
2540
2541      continue;
2542    }
2543
2544    // Substitute into the default template argument, if available.
2545    TemplateArgumentLoc DefArg
2546      = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
2547                                              FunctionTemplate->getLocation(),
2548                                  FunctionTemplate->getSourceRange().getEnd(),
2549                                                Param,
2550                                                Builder);
2551
2552    // If there was no default argument, deduction is incomplete.
2553    if (DefArg.getArgument().isNull()) {
2554      Info.Param = makeTemplateParameter(
2555                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2556      return TDK_Incomplete;
2557    }
2558
2559    // Check whether we can actually use the default argument.
2560    if (CheckTemplateArgument(Param, DefArg,
2561                              FunctionTemplate,
2562                              FunctionTemplate->getLocation(),
2563                              FunctionTemplate->getSourceRange().getEnd(),
2564                              0, Builder,
2565                              CTAK_Specified)) {
2566      Info.Param = makeTemplateParameter(
2567                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2568      // FIXME: These template arguments are temporary. Free them!
2569      Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2570                                                  Builder.size()));
2571      return TDK_SubstitutionFailure;
2572    }
2573
2574    // If we get here, we successfully used the default template argument.
2575  }
2576
2577  // Form the template argument list from the deduced template arguments.
2578  TemplateArgumentList *DeducedArgumentList
2579    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2580  Info.reset(DeducedArgumentList);
2581
2582  // Substitute the deduced template arguments into the function template
2583  // declaration to produce the function template specialization.
2584  DeclContext *Owner = FunctionTemplate->getDeclContext();
2585  if (FunctionTemplate->getFriendObjectKind())
2586    Owner = FunctionTemplate->getLexicalDeclContext();
2587  Specialization = cast_or_null<FunctionDecl>(
2588                      SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
2589                         MultiLevelTemplateArgumentList(*DeducedArgumentList)));
2590  if (!Specialization || Specialization->isInvalidDecl())
2591    return TDK_SubstitutionFailure;
2592
2593  assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
2594         FunctionTemplate->getCanonicalDecl());
2595
2596  // If the template argument list is owned by the function template
2597  // specialization, release it.
2598  if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
2599      !Trap.hasErrorOccurred())
2600    Info.take();
2601
2602  // There may have been an error that did not prevent us from constructing a
2603  // declaration. Mark the declaration invalid and return with a substitution
2604  // failure.
2605  if (Trap.hasErrorOccurred()) {
2606    Specialization->setInvalidDecl(true);
2607    return TDK_SubstitutionFailure;
2608  }
2609
2610  if (OriginalCallArgs) {
2611    // C++ [temp.deduct.call]p4:
2612    //   In general, the deduction process attempts to find template argument
2613    //   values that will make the deduced A identical to A (after the type A
2614    //   is transformed as described above). [...]
2615    for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
2616      OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
2617      unsigned ParamIdx = OriginalArg.ArgIdx;
2618
2619      if (ParamIdx >= Specialization->getNumParams())
2620        continue;
2621
2622      QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
2623      if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
2624        return Sema::TDK_SubstitutionFailure;
2625    }
2626  }
2627
2628  // If we suppressed any diagnostics while performing template argument
2629  // deduction, and if we haven't already instantiated this declaration,
2630  // keep track of these diagnostics. They'll be emitted if this specialization
2631  // is actually used.
2632  if (Info.diag_begin() != Info.diag_end()) {
2633    llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
2634      Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
2635    if (Pos == SuppressedDiagnostics.end())
2636        SuppressedDiagnostics[Specialization->getCanonicalDecl()]
2637          .append(Info.diag_begin(), Info.diag_end());
2638  }
2639
2640  return TDK_Success;
2641}
2642
2643/// Gets the type of a function for template-argument-deducton
2644/// purposes when it's considered as part of an overload set.
2645static QualType GetTypeOfFunction(ASTContext &Context,
2646                                  const OverloadExpr::FindResult &R,
2647                                  FunctionDecl *Fn) {
2648  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
2649    if (Method->isInstance()) {
2650      // An instance method that's referenced in a form that doesn't
2651      // look like a member pointer is just invalid.
2652      if (!R.HasFormOfMemberPointer) return QualType();
2653
2654      return Context.getMemberPointerType(Fn->getType(),
2655               Context.getTypeDeclType(Method->getParent()).getTypePtr());
2656    }
2657
2658  if (!R.IsAddressOfOperand) return Fn->getType();
2659  return Context.getPointerType(Fn->getType());
2660}
2661
2662/// Apply the deduction rules for overload sets.
2663///
2664/// \return the null type if this argument should be treated as an
2665/// undeduced context
2666static QualType
2667ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
2668                            Expr *Arg, QualType ParamType,
2669                            bool ParamWasReference) {
2670
2671  OverloadExpr::FindResult R = OverloadExpr::find(Arg);
2672
2673  OverloadExpr *Ovl = R.Expression;
2674
2675  // C++0x [temp.deduct.call]p4
2676  unsigned TDF = 0;
2677  if (ParamWasReference)
2678    TDF |= TDF_ParamWithReferenceType;
2679  if (R.IsAddressOfOperand)
2680    TDF |= TDF_IgnoreQualifiers;
2681
2682  // If there were explicit template arguments, we can only find
2683  // something via C++ [temp.arg.explicit]p3, i.e. if the arguments
2684  // unambiguously name a full specialization.
2685  if (Ovl->hasExplicitTemplateArgs()) {
2686    // But we can still look for an explicit specialization.
2687    if (FunctionDecl *ExplicitSpec
2688          = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
2689      return GetTypeOfFunction(S.Context, R, ExplicitSpec);
2690    return QualType();
2691  }
2692
2693  // C++0x [temp.deduct.call]p6:
2694  //   When P is a function type, pointer to function type, or pointer
2695  //   to member function type:
2696
2697  if (!ParamType->isFunctionType() &&
2698      !ParamType->isFunctionPointerType() &&
2699      !ParamType->isMemberFunctionPointerType())
2700    return QualType();
2701
2702  QualType Match;
2703  for (UnresolvedSetIterator I = Ovl->decls_begin(),
2704         E = Ovl->decls_end(); I != E; ++I) {
2705    NamedDecl *D = (*I)->getUnderlyingDecl();
2706
2707    //   - If the argument is an overload set containing one or more
2708    //     function templates, the parameter is treated as a
2709    //     non-deduced context.
2710    if (isa<FunctionTemplateDecl>(D))
2711      return QualType();
2712
2713    FunctionDecl *Fn = cast<FunctionDecl>(D);
2714    QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
2715    if (ArgType.isNull()) continue;
2716
2717    // Function-to-pointer conversion.
2718    if (!ParamWasReference && ParamType->isPointerType() &&
2719        ArgType->isFunctionType())
2720      ArgType = S.Context.getPointerType(ArgType);
2721
2722    //   - If the argument is an overload set (not containing function
2723    //     templates), trial argument deduction is attempted using each
2724    //     of the members of the set. If deduction succeeds for only one
2725    //     of the overload set members, that member is used as the
2726    //     argument value for the deduction. If deduction succeeds for
2727    //     more than one member of the overload set the parameter is
2728    //     treated as a non-deduced context.
2729
2730    // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
2731    //   Type deduction is done independently for each P/A pair, and
2732    //   the deduced template argument values are then combined.
2733    // So we do not reject deductions which were made elsewhere.
2734    SmallVector<DeducedTemplateArgument, 8>
2735      Deduced(TemplateParams->size());
2736    TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
2737    Sema::TemplateDeductionResult Result
2738      = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
2739                                           ArgType, Info, Deduced, TDF);
2740    if (Result) continue;
2741    if (!Match.isNull()) return QualType();
2742    Match = ArgType;
2743  }
2744
2745  return Match;
2746}
2747
2748/// \brief Perform the adjustments to the parameter and argument types
2749/// described in C++ [temp.deduct.call].
2750///
2751/// \returns true if the caller should not attempt to perform any template
2752/// argument deduction based on this P/A pair.
2753static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
2754                                          TemplateParameterList *TemplateParams,
2755                                                      QualType &ParamType,
2756                                                      QualType &ArgType,
2757                                                      Expr *Arg,
2758                                                      unsigned &TDF) {
2759  // C++0x [temp.deduct.call]p3:
2760  //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
2761  //   are ignored for type deduction.
2762  if (ParamType.hasQualifiers())
2763    ParamType = ParamType.getUnqualifiedType();
2764  const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
2765  if (ParamRefType) {
2766    QualType PointeeType = ParamRefType->getPointeeType();
2767
2768    // If the argument has incomplete array type, try to complete it's type.
2769    if (ArgType->isIncompleteArrayType() &&
2770        !S.RequireCompleteExprType(Arg, S.PDiag(),
2771                                   std::make_pair(SourceLocation(), S.PDiag())))
2772      ArgType = Arg->getType();
2773
2774    //   [C++0x] If P is an rvalue reference to a cv-unqualified
2775    //   template parameter and the argument is an lvalue, the type
2776    //   "lvalue reference to A" is used in place of A for type
2777    //   deduction.
2778    if (isa<RValueReferenceType>(ParamType)) {
2779      if (!PointeeType.getQualifiers() &&
2780          isa<TemplateTypeParmType>(PointeeType) &&
2781          Arg->Classify(S.Context).isLValue() &&
2782          Arg->getType() != S.Context.OverloadTy &&
2783          Arg->getType() != S.Context.BoundMemberTy)
2784        ArgType = S.Context.getLValueReferenceType(ArgType);
2785    }
2786
2787    //   [...] If P is a reference type, the type referred to by P is used
2788    //   for type deduction.
2789    ParamType = PointeeType;
2790  }
2791
2792  // Overload sets usually make this parameter an undeduced
2793  // context, but there are sometimes special circumstances.
2794  if (ArgType == S.Context.OverloadTy) {
2795    ArgType = ResolveOverloadForDeduction(S, TemplateParams,
2796                                          Arg, ParamType,
2797                                          ParamRefType != 0);
2798    if (ArgType.isNull())
2799      return true;
2800  }
2801
2802  if (ParamRefType) {
2803    // C++0x [temp.deduct.call]p3:
2804    //   [...] If P is of the form T&&, where T is a template parameter, and
2805    //   the argument is an lvalue, the type A& is used in place of A for
2806    //   type deduction.
2807    if (ParamRefType->isRValueReferenceType() &&
2808        ParamRefType->getAs<TemplateTypeParmType>() &&
2809        Arg->isLValue())
2810      ArgType = S.Context.getLValueReferenceType(ArgType);
2811  } else {
2812    // C++ [temp.deduct.call]p2:
2813    //   If P is not a reference type:
2814    //   - If A is an array type, the pointer type produced by the
2815    //     array-to-pointer standard conversion (4.2) is used in place of
2816    //     A for type deduction; otherwise,
2817    if (ArgType->isArrayType())
2818      ArgType = S.Context.getArrayDecayedType(ArgType);
2819    //   - If A is a function type, the pointer type produced by the
2820    //     function-to-pointer standard conversion (4.3) is used in place
2821    //     of A for type deduction; otherwise,
2822    else if (ArgType->isFunctionType())
2823      ArgType = S.Context.getPointerType(ArgType);
2824    else {
2825      // - If A is a cv-qualified type, the top level cv-qualifiers of A's
2826      //   type are ignored for type deduction.
2827      ArgType = ArgType.getUnqualifiedType();
2828    }
2829  }
2830
2831  // C++0x [temp.deduct.call]p4:
2832  //   In general, the deduction process attempts to find template argument
2833  //   values that will make the deduced A identical to A (after the type A
2834  //   is transformed as described above). [...]
2835  TDF = TDF_SkipNonDependent;
2836
2837  //     - If the original P is a reference type, the deduced A (i.e., the
2838  //       type referred to by the reference) can be more cv-qualified than
2839  //       the transformed A.
2840  if (ParamRefType)
2841    TDF |= TDF_ParamWithReferenceType;
2842  //     - The transformed A can be another pointer or pointer to member
2843  //       type that can be converted to the deduced A via a qualification
2844  //       conversion (4.4).
2845  if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
2846      ArgType->isObjCObjectPointerType())
2847    TDF |= TDF_IgnoreQualifiers;
2848  //     - If P is a class and P has the form simple-template-id, then the
2849  //       transformed A can be a derived class of the deduced A. Likewise,
2850  //       if P is a pointer to a class of the form simple-template-id, the
2851  //       transformed A can be a pointer to a derived class pointed to by
2852  //       the deduced A.
2853  if (isSimpleTemplateIdType(ParamType) ||
2854      (isa<PointerType>(ParamType) &&
2855       isSimpleTemplateIdType(
2856                              ParamType->getAs<PointerType>()->getPointeeType())))
2857    TDF |= TDF_DerivedClass;
2858
2859  return false;
2860}
2861
2862static bool hasDeducibleTemplateParameters(Sema &S,
2863                                           FunctionTemplateDecl *FunctionTemplate,
2864                                           QualType T);
2865
2866/// \brief Perform template argument deduction from a function call
2867/// (C++ [temp.deduct.call]).
2868///
2869/// \param FunctionTemplate the function template for which we are performing
2870/// template argument deduction.
2871///
2872/// \param ExplicitTemplateArguments the explicit template arguments provided
2873/// for this call.
2874///
2875/// \param Args the function call arguments
2876///
2877/// \param NumArgs the number of arguments in Args
2878///
2879/// \param Name the name of the function being called. This is only significant
2880/// when the function template is a conversion function template, in which
2881/// case this routine will also perform template argument deduction based on
2882/// the function to which
2883///
2884/// \param Specialization if template argument deduction was successful,
2885/// this will be set to the function template specialization produced by
2886/// template argument deduction.
2887///
2888/// \param Info the argument will be updated to provide additional information
2889/// about template argument deduction.
2890///
2891/// \returns the result of template argument deduction.
2892Sema::TemplateDeductionResult
2893Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2894                              TemplateArgumentListInfo *ExplicitTemplateArgs,
2895                              Expr **Args, unsigned NumArgs,
2896                              FunctionDecl *&Specialization,
2897                              TemplateDeductionInfo &Info) {
2898  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2899
2900  // C++ [temp.deduct.call]p1:
2901  //   Template argument deduction is done by comparing each function template
2902  //   parameter type (call it P) with the type of the corresponding argument
2903  //   of the call (call it A) as described below.
2904  unsigned CheckArgs = NumArgs;
2905  if (NumArgs < Function->getMinRequiredArguments())
2906    return TDK_TooFewArguments;
2907  else if (NumArgs > Function->getNumParams()) {
2908    const FunctionProtoType *Proto
2909      = Function->getType()->getAs<FunctionProtoType>();
2910    if (Proto->isTemplateVariadic())
2911      /* Do nothing */;
2912    else if (Proto->isVariadic())
2913      CheckArgs = Function->getNumParams();
2914    else
2915      return TDK_TooManyArguments;
2916  }
2917
2918  // The types of the parameters from which we will perform template argument
2919  // deduction.
2920  LocalInstantiationScope InstScope(*this);
2921  TemplateParameterList *TemplateParams
2922    = FunctionTemplate->getTemplateParameters();
2923  SmallVector<DeducedTemplateArgument, 4> Deduced;
2924  SmallVector<QualType, 4> ParamTypes;
2925  unsigned NumExplicitlySpecified = 0;
2926  if (ExplicitTemplateArgs) {
2927    TemplateDeductionResult Result =
2928      SubstituteExplicitTemplateArguments(FunctionTemplate,
2929                                          *ExplicitTemplateArgs,
2930                                          Deduced,
2931                                          ParamTypes,
2932                                          0,
2933                                          Info);
2934    if (Result)
2935      return Result;
2936
2937    NumExplicitlySpecified = Deduced.size();
2938  } else {
2939    // Just fill in the parameter types from the function declaration.
2940    for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
2941      ParamTypes.push_back(Function->getParamDecl(I)->getType());
2942  }
2943
2944  // Deduce template arguments from the function parameters.
2945  Deduced.resize(TemplateParams->size());
2946  unsigned ArgIdx = 0;
2947  SmallVector<OriginalCallArg, 4> OriginalCallArgs;
2948  for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
2949       ParamIdx != NumParams; ++ParamIdx) {
2950    QualType OrigParamType = ParamTypes[ParamIdx];
2951    QualType ParamType = OrigParamType;
2952
2953    const PackExpansionType *ParamExpansion
2954      = dyn_cast<PackExpansionType>(ParamType);
2955    if (!ParamExpansion) {
2956      // Simple case: matching a function parameter to a function argument.
2957      if (ArgIdx >= CheckArgs)
2958        break;
2959
2960      Expr *Arg = Args[ArgIdx++];
2961      QualType ArgType = Arg->getType();
2962
2963      unsigned TDF = 0;
2964      if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
2965                                                    ParamType, ArgType, Arg,
2966                                                    TDF))
2967        continue;
2968
2969      // If we have nothing to deduce, we're done.
2970      if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
2971        continue;
2972
2973      // If the argument is an initializer list ...
2974      if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
2975        // ... then the parameter is an undeduced context, unless the parameter
2976        // type is (reference to cv) std::initializer_list<P'>, in which case
2977        // deduction is done for each element of the initializer list, and the
2978        // result is the deduced type if it's the same for all elements.
2979        QualType X;
2980        // Removing references was already done.
2981        if (!isStdInitializerList(ParamType, &X))
2982          continue;
2983
2984        for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
2985          if (TemplateDeductionResult Result =
2986                DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
2987                                                   ILE->getInit(i)->getType(),
2988                                                   Info, Deduced, TDF))
2989            return Result;
2990        }
2991        // Don't track the argument type, since an initializer list has none.
2992        continue;
2993      }
2994
2995      // Keep track of the argument type and corresponding parameter index,
2996      // so we can check for compatibility between the deduced A and A.
2997      OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
2998                                                 ArgType));
2999
3000      if (TemplateDeductionResult Result
3001            = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3002                                                 ParamType, ArgType,
3003                                                 Info, Deduced, TDF))
3004        return Result;
3005
3006      continue;
3007    }
3008
3009    // C++0x [temp.deduct.call]p1:
3010    //   For a function parameter pack that occurs at the end of the
3011    //   parameter-declaration-list, the type A of each remaining argument of
3012    //   the call is compared with the type P of the declarator-id of the
3013    //   function parameter pack. Each comparison deduces template arguments
3014    //   for subsequent positions in the template parameter packs expanded by
3015    //   the function parameter pack. For a function parameter pack that does
3016    //   not occur at the end of the parameter-declaration-list, the type of
3017    //   the parameter pack is a non-deduced context.
3018    if (ParamIdx + 1 < NumParams)
3019      break;
3020
3021    QualType ParamPattern = ParamExpansion->getPattern();
3022    SmallVector<unsigned, 2> PackIndices;
3023    {
3024      llvm::BitVector SawIndices(TemplateParams->size());
3025      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3026      collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
3027      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
3028        unsigned Depth, Index;
3029        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
3030        if (Depth == 0 && !SawIndices[Index]) {
3031          SawIndices[Index] = true;
3032          PackIndices.push_back(Index);
3033        }
3034      }
3035    }
3036    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
3037
3038    // Keep track of the deduced template arguments for each parameter pack
3039    // expanded by this pack expansion (the outer index) and for each
3040    // template argument (the inner SmallVectors).
3041    SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
3042      NewlyDeducedPacks(PackIndices.size());
3043    SmallVector<DeducedTemplateArgument, 2>
3044      SavedPacks(PackIndices.size());
3045    PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
3046                                 NewlyDeducedPacks);
3047    bool HasAnyArguments = false;
3048    for (; ArgIdx < NumArgs; ++ArgIdx) {
3049      HasAnyArguments = true;
3050
3051      QualType OrigParamType = ParamPattern;
3052      ParamType = OrigParamType;
3053      Expr *Arg = Args[ArgIdx];
3054      QualType ArgType = Arg->getType();
3055
3056      unsigned TDF = 0;
3057      if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3058                                                    ParamType, ArgType, Arg,
3059                                                    TDF)) {
3060        // We can't actually perform any deduction for this argument, so stop
3061        // deduction at this point.
3062        ++ArgIdx;
3063        break;
3064      }
3065
3066      // As above, initializer lists need special handling.
3067      if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3068        QualType X;
3069        if (!isStdInitializerList(ParamType, &X)) {
3070          ++ArgIdx;
3071          break;
3072        }
3073
3074        for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3075          if (TemplateDeductionResult Result =
3076                DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
3077                                                   ILE->getInit(i)->getType(),
3078                                                   Info, Deduced, TDF))
3079            return Result;
3080        }
3081      } else {
3082
3083        // Keep track of the argument type and corresponding argument index,
3084        // so we can check for compatibility between the deduced A and A.
3085        if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3086          OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
3087                                                     ArgType));
3088
3089        if (TemplateDeductionResult Result
3090            = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3091                                                 ParamType, ArgType, Info,
3092                                                 Deduced, TDF))
3093          return Result;
3094      }
3095
3096      // Capture the deduced template arguments for each parameter pack expanded
3097      // by this pack expansion, add them to the list of arguments we've deduced
3098      // for that pack, then clear out the deduced argument.
3099      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
3100        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
3101        if (!DeducedArg.isNull()) {
3102          NewlyDeducedPacks[I].push_back(DeducedArg);
3103          DeducedArg = DeducedTemplateArgument();
3104        }
3105      }
3106    }
3107
3108    // Build argument packs for each of the parameter packs expanded by this
3109    // pack expansion.
3110    if (Sema::TemplateDeductionResult Result
3111          = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
3112                                        Deduced, PackIndices, SavedPacks,
3113                                        NewlyDeducedPacks, Info))
3114      return Result;
3115
3116    // After we've matching against a parameter pack, we're done.
3117    break;
3118  }
3119
3120  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3121                                         NumExplicitlySpecified,
3122                                         Specialization, Info, &OriginalCallArgs);
3123}
3124
3125/// \brief Deduce template arguments when taking the address of a function
3126/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
3127/// a template.
3128///
3129/// \param FunctionTemplate the function template for which we are performing
3130/// template argument deduction.
3131///
3132/// \param ExplicitTemplateArguments the explicitly-specified template
3133/// arguments.
3134///
3135/// \param ArgFunctionType the function type that will be used as the
3136/// "argument" type (A) when performing template argument deduction from the
3137/// function template's function type. This type may be NULL, if there is no
3138/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
3139///
3140/// \param Specialization if template argument deduction was successful,
3141/// this will be set to the function template specialization produced by
3142/// template argument deduction.
3143///
3144/// \param Info the argument will be updated to provide additional information
3145/// about template argument deduction.
3146///
3147/// \returns the result of template argument deduction.
3148Sema::TemplateDeductionResult
3149Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3150                              TemplateArgumentListInfo *ExplicitTemplateArgs,
3151                              QualType ArgFunctionType,
3152                              FunctionDecl *&Specialization,
3153                              TemplateDeductionInfo &Info) {
3154  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3155  TemplateParameterList *TemplateParams
3156    = FunctionTemplate->getTemplateParameters();
3157  QualType FunctionType = Function->getType();
3158
3159  // Substitute any explicit template arguments.
3160  LocalInstantiationScope InstScope(*this);
3161  SmallVector<DeducedTemplateArgument, 4> Deduced;
3162  unsigned NumExplicitlySpecified = 0;
3163  SmallVector<QualType, 4> ParamTypes;
3164  if (ExplicitTemplateArgs) {
3165    if (TemplateDeductionResult Result
3166          = SubstituteExplicitTemplateArguments(FunctionTemplate,
3167                                                *ExplicitTemplateArgs,
3168                                                Deduced, ParamTypes,
3169                                                &FunctionType, Info))
3170      return Result;
3171
3172    NumExplicitlySpecified = Deduced.size();
3173  }
3174
3175  // Template argument deduction for function templates in a SFINAE context.
3176  // Trap any errors that might occur.
3177  SFINAETrap Trap(*this);
3178
3179  Deduced.resize(TemplateParams->size());
3180
3181  if (!ArgFunctionType.isNull()) {
3182    // Deduce template arguments from the function type.
3183    if (TemplateDeductionResult Result
3184          = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3185                                      FunctionType, ArgFunctionType, Info,
3186                                      Deduced, TDF_TopLevelParameterTypeList))
3187      return Result;
3188  }
3189
3190  if (TemplateDeductionResult Result
3191        = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3192                                          NumExplicitlySpecified,
3193                                          Specialization, Info))
3194    return Result;
3195
3196  // If the requested function type does not match the actual type of the
3197  // specialization, template argument deduction fails.
3198  if (!ArgFunctionType.isNull() &&
3199      !Context.hasSameType(ArgFunctionType, Specialization->getType()))
3200    return TDK_NonDeducedMismatch;
3201
3202  return TDK_Success;
3203}
3204
3205/// \brief Deduce template arguments for a templated conversion
3206/// function (C++ [temp.deduct.conv]) and, if successful, produce a
3207/// conversion function template specialization.
3208Sema::TemplateDeductionResult
3209Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3210                              QualType ToType,
3211                              CXXConversionDecl *&Specialization,
3212                              TemplateDeductionInfo &Info) {
3213  CXXConversionDecl *Conv
3214    = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
3215  QualType FromType = Conv->getConversionType();
3216
3217  // Canonicalize the types for deduction.
3218  QualType P = Context.getCanonicalType(FromType);
3219  QualType A = Context.getCanonicalType(ToType);
3220
3221  // C++0x [temp.deduct.conv]p2:
3222  //   If P is a reference type, the type referred to by P is used for
3223  //   type deduction.
3224  if (const ReferenceType *PRef = P->getAs<ReferenceType>())
3225    P = PRef->getPointeeType();
3226
3227  // C++0x [temp.deduct.conv]p4:
3228  //   [...] If A is a reference type, the type referred to by A is used
3229  //   for type deduction.
3230  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3231    A = ARef->getPointeeType().getUnqualifiedType();
3232  // C++ [temp.deduct.conv]p3:
3233  //
3234  //   If A is not a reference type:
3235  else {
3236    assert(!A->isReferenceType() && "Reference types were handled above");
3237
3238    //   - If P is an array type, the pointer type produced by the
3239    //     array-to-pointer standard conversion (4.2) is used in place
3240    //     of P for type deduction; otherwise,
3241    if (P->isArrayType())
3242      P = Context.getArrayDecayedType(P);
3243    //   - If P is a function type, the pointer type produced by the
3244    //     function-to-pointer standard conversion (4.3) is used in
3245    //     place of P for type deduction; otherwise,
3246    else if (P->isFunctionType())
3247      P = Context.getPointerType(P);
3248    //   - If P is a cv-qualified type, the top level cv-qualifiers of
3249    //     P's type are ignored for type deduction.
3250    else
3251      P = P.getUnqualifiedType();
3252
3253    // C++0x [temp.deduct.conv]p4:
3254    //   If A is a cv-qualified type, the top level cv-qualifiers of A's
3255    //   type are ignored for type deduction. If A is a reference type, the type
3256    //   referred to by A is used for type deduction.
3257    A = A.getUnqualifiedType();
3258  }
3259
3260  // Template argument deduction for function templates in a SFINAE context.
3261  // Trap any errors that might occur.
3262  SFINAETrap Trap(*this);
3263
3264  // C++ [temp.deduct.conv]p1:
3265  //   Template argument deduction is done by comparing the return
3266  //   type of the template conversion function (call it P) with the
3267  //   type that is required as the result of the conversion (call it
3268  //   A) as described in 14.8.2.4.
3269  TemplateParameterList *TemplateParams
3270    = FunctionTemplate->getTemplateParameters();
3271  SmallVector<DeducedTemplateArgument, 4> Deduced;
3272  Deduced.resize(TemplateParams->size());
3273
3274  // C++0x [temp.deduct.conv]p4:
3275  //   In general, the deduction process attempts to find template
3276  //   argument values that will make the deduced A identical to
3277  //   A. However, there are two cases that allow a difference:
3278  unsigned TDF = 0;
3279  //     - If the original A is a reference type, A can be more
3280  //       cv-qualified than the deduced A (i.e., the type referred to
3281  //       by the reference)
3282  if (ToType->isReferenceType())
3283    TDF |= TDF_ParamWithReferenceType;
3284  //     - The deduced A can be another pointer or pointer to member
3285  //       type that can be converted to A via a qualification
3286  //       conversion.
3287  //
3288  // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
3289  // both P and A are pointers or member pointers. In this case, we
3290  // just ignore cv-qualifiers completely).
3291  if ((P->isPointerType() && A->isPointerType()) ||
3292      (P->isMemberPointerType() && A->isMemberPointerType()))
3293    TDF |= TDF_IgnoreQualifiers;
3294  if (TemplateDeductionResult Result
3295        = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3296                                             P, A, Info, Deduced, TDF))
3297    return Result;
3298
3299  // Finish template argument deduction.
3300  LocalInstantiationScope InstScope(*this);
3301  FunctionDecl *Spec = 0;
3302  TemplateDeductionResult Result
3303    = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
3304                                      Info);
3305  Specialization = cast_or_null<CXXConversionDecl>(Spec);
3306  return Result;
3307}
3308
3309/// \brief Deduce template arguments for a function template when there is
3310/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
3311///
3312/// \param FunctionTemplate the function template for which we are performing
3313/// template argument deduction.
3314///
3315/// \param ExplicitTemplateArguments the explicitly-specified template
3316/// arguments.
3317///
3318/// \param Specialization if template argument deduction was successful,
3319/// this will be set to the function template specialization produced by
3320/// template argument deduction.
3321///
3322/// \param Info the argument will be updated to provide additional information
3323/// about template argument deduction.
3324///
3325/// \returns the result of template argument deduction.
3326Sema::TemplateDeductionResult
3327Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3328                              TemplateArgumentListInfo *ExplicitTemplateArgs,
3329                              FunctionDecl *&Specialization,
3330                              TemplateDeductionInfo &Info) {
3331  return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3332                                 QualType(), Specialization, Info);
3333}
3334
3335namespace {
3336  /// Substitute the 'auto' type specifier within a type for a given replacement
3337  /// type.
3338  class SubstituteAutoTransform :
3339    public TreeTransform<SubstituteAutoTransform> {
3340    QualType Replacement;
3341  public:
3342    SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
3343      TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
3344    }
3345    QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
3346      // If we're building the type pattern to deduce against, don't wrap the
3347      // substituted type in an AutoType. Certain template deduction rules
3348      // apply only when a template type parameter appears directly (and not if
3349      // the parameter is found through desugaring). For instance:
3350      //   auto &&lref = lvalue;
3351      // must transform into "rvalue reference to T" not "rvalue reference to
3352      // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
3353      if (isa<TemplateTypeParmType>(Replacement)) {
3354        QualType Result = Replacement;
3355        TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
3356        NewTL.setNameLoc(TL.getNameLoc());
3357        return Result;
3358      } else {
3359        QualType Result = RebuildAutoType(Replacement);
3360        AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
3361        NewTL.setNameLoc(TL.getNameLoc());
3362        return Result;
3363      }
3364    }
3365  };
3366}
3367
3368/// \brief Deduce the type for an auto type-specifier (C++0x [dcl.spec.auto]p6)
3369///
3370/// \param Type the type pattern using the auto type-specifier.
3371///
3372/// \param Init the initializer for the variable whose type is to be deduced.
3373///
3374/// \param Result if type deduction was successful, this will be set to the
3375/// deduced type. This may still contain undeduced autos if the type is
3376/// dependent. This will be set to null if deduction succeeded, but auto
3377/// substitution failed; the appropriate diagnostic will already have been
3378/// produced in that case.
3379Sema::DeduceAutoResult
3380Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init,
3381                     TypeSourceInfo *&Result) {
3382  if (Init->getType()->isNonOverloadPlaceholderType()) {
3383    ExprResult result = CheckPlaceholderExpr(Init);
3384    if (result.isInvalid()) return DAR_FailedAlreadyDiagnosed;
3385    Init = result.take();
3386  }
3387
3388  if (Init->isTypeDependent()) {
3389    Result = Type;
3390    return DAR_Succeeded;
3391  }
3392
3393  SourceLocation Loc = Init->getExprLoc();
3394
3395  LocalInstantiationScope InstScope(*this);
3396
3397  // Build template<class TemplParam> void Func(FuncParam);
3398  TemplateTypeParmDecl *TemplParam =
3399    TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
3400                                 false, false);
3401  QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
3402  NamedDecl *TemplParamPtr = TemplParam;
3403  FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
3404                                                   Loc);
3405
3406  TypeSourceInfo *FuncParamInfo =
3407    SubstituteAutoTransform(*this, TemplArg).TransformType(Type);
3408  assert(FuncParamInfo && "substituting template parameter for 'auto' failed");
3409  QualType FuncParam = FuncParamInfo->getType();
3410
3411  // Deduce type of TemplParam in Func(Init)
3412  SmallVector<DeducedTemplateArgument, 1> Deduced;
3413  Deduced.resize(1);
3414  QualType InitType = Init->getType();
3415  unsigned TDF = 0;
3416  if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
3417                                                FuncParam, InitType, Init,
3418                                                TDF))
3419    return DAR_Failed;
3420
3421  TemplateDeductionInfo Info(Context, Loc);
3422
3423  InitListExpr * InitList = dyn_cast<InitListExpr>(Init);
3424  if (InitList) {
3425    for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
3426      if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
3427                                             InitList->getInit(i)->getType(),
3428                                             Info, Deduced, TDF))
3429        return DAR_Failed;
3430    }
3431  } else {
3432    if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
3433                                           InitType, Info, Deduced, TDF))
3434      return DAR_Failed;
3435  }
3436
3437  QualType DeducedType = Deduced[0].getAsType();
3438  if (DeducedType.isNull())
3439    return DAR_Failed;
3440
3441  if (InitList) {
3442    DeducedType = BuildStdInitializerList(DeducedType, Loc);
3443    if (DeducedType.isNull())
3444      return DAR_FailedAlreadyDiagnosed;
3445  }
3446
3447  Result = SubstituteAutoTransform(*this, DeducedType).TransformType(Type);
3448
3449  // Check that the deduced argument type is compatible with the original
3450  // argument type per C++ [temp.deduct.call]p4.
3451  if (!InitList && Result &&
3452      CheckOriginalCallArgDeduction(*this,
3453                                    Sema::OriginalCallArg(FuncParam,0,InitType),
3454                                    Result->getType())) {
3455    Result = 0;
3456    return DAR_Failed;
3457  }
3458
3459  return DAR_Succeeded;
3460}
3461
3462void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
3463  if (isa<InitListExpr>(Init))
3464    Diag(VDecl->getLocation(),
3465         diag::err_auto_var_deduction_failure_from_init_list)
3466      << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
3467  else
3468    Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
3469      << VDecl->getDeclName() << VDecl->getType() << Init->getType()
3470      << Init->getSourceRange();
3471}
3472
3473static void
3474MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
3475                           bool OnlyDeduced,
3476                           unsigned Level,
3477                           SmallVectorImpl<bool> &Deduced);
3478
3479/// \brief If this is a non-static member function,
3480static void MaybeAddImplicitObjectParameterType(ASTContext &Context,
3481                                                CXXMethodDecl *Method,
3482                                 SmallVectorImpl<QualType> &ArgTypes) {
3483  if (Method->isStatic())
3484    return;
3485
3486  // C++ [over.match.funcs]p4:
3487  //
3488  //   For non-static member functions, the type of the implicit
3489  //   object parameter is
3490  //     - "lvalue reference to cv X" for functions declared without a
3491  //       ref-qualifier or with the & ref-qualifier
3492  //     - "rvalue reference to cv X" for functions declared with the
3493  //       && ref-qualifier
3494  //
3495  // FIXME: We don't have ref-qualifiers yet, so we don't do that part.
3496  QualType ArgTy = Context.getTypeDeclType(Method->getParent());
3497  ArgTy = Context.getQualifiedType(ArgTy,
3498                        Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
3499  ArgTy = Context.getLValueReferenceType(ArgTy);
3500  ArgTypes.push_back(ArgTy);
3501}
3502
3503/// \brief Determine whether the function template \p FT1 is at least as
3504/// specialized as \p FT2.
3505static bool isAtLeastAsSpecializedAs(Sema &S,
3506                                     SourceLocation Loc,
3507                                     FunctionTemplateDecl *FT1,
3508                                     FunctionTemplateDecl *FT2,
3509                                     TemplatePartialOrderingContext TPOC,
3510                                     unsigned NumCallArguments,
3511    SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
3512  FunctionDecl *FD1 = FT1->getTemplatedDecl();
3513  FunctionDecl *FD2 = FT2->getTemplatedDecl();
3514  const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
3515  const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
3516
3517  assert(Proto1 && Proto2 && "Function templates must have prototypes");
3518  TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
3519  SmallVector<DeducedTemplateArgument, 4> Deduced;
3520  Deduced.resize(TemplateParams->size());
3521
3522  // C++0x [temp.deduct.partial]p3:
3523  //   The types used to determine the ordering depend on the context in which
3524  //   the partial ordering is done:
3525  TemplateDeductionInfo Info(S.Context, Loc);
3526  CXXMethodDecl *Method1 = 0;
3527  CXXMethodDecl *Method2 = 0;
3528  bool IsNonStatic2 = false;
3529  bool IsNonStatic1 = false;
3530  unsigned Skip2 = 0;
3531  switch (TPOC) {
3532  case TPOC_Call: {
3533    //   - In the context of a function call, the function parameter types are
3534    //     used.
3535    Method1 = dyn_cast<CXXMethodDecl>(FD1);
3536    Method2 = dyn_cast<CXXMethodDecl>(FD2);
3537    IsNonStatic1 = Method1 && !Method1->isStatic();
3538    IsNonStatic2 = Method2 && !Method2->isStatic();
3539
3540    // C++0x [temp.func.order]p3:
3541    //   [...] If only one of the function templates is a non-static
3542    //   member, that function template is considered to have a new
3543    //   first parameter inserted in its function parameter list. The
3544    //   new parameter is of type "reference to cv A," where cv are
3545    //   the cv-qualifiers of the function template (if any) and A is
3546    //   the class of which the function template is a member.
3547    //
3548    // C++98/03 doesn't have this provision, so instead we drop the
3549    // first argument of the free function or static member, which
3550    // seems to match existing practice.
3551    SmallVector<QualType, 4> Args1;
3552    unsigned Skip1 = !S.getLangOptions().CPlusPlus0x &&
3553      IsNonStatic2 && !IsNonStatic1;
3554    if (S.getLangOptions().CPlusPlus0x && IsNonStatic1 && !IsNonStatic2)
3555      MaybeAddImplicitObjectParameterType(S.Context, Method1, Args1);
3556    Args1.insert(Args1.end(),
3557                 Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
3558
3559    SmallVector<QualType, 4> Args2;
3560    Skip2 = !S.getLangOptions().CPlusPlus0x &&
3561      IsNonStatic1 && !IsNonStatic2;
3562    if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
3563      MaybeAddImplicitObjectParameterType(S.Context, Method2, Args2);
3564    Args2.insert(Args2.end(),
3565                 Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
3566
3567    // C++ [temp.func.order]p5:
3568    //   The presence of unused ellipsis and default arguments has no effect on
3569    //   the partial ordering of function templates.
3570    if (Args1.size() > NumCallArguments)
3571      Args1.resize(NumCallArguments);
3572    if (Args2.size() > NumCallArguments)
3573      Args2.resize(NumCallArguments);
3574    if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
3575                                Args1.data(), Args1.size(), Info, Deduced,
3576                                TDF_None, /*PartialOrdering=*/true,
3577                                RefParamComparisons))
3578        return false;
3579
3580    break;
3581  }
3582
3583  case TPOC_Conversion:
3584    //   - In the context of a call to a conversion operator, the return types
3585    //     of the conversion function templates are used.
3586    if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
3587                                           Proto2->getResultType(),
3588                                           Proto1->getResultType(),
3589                                           Info, Deduced, TDF_None,
3590                                           /*PartialOrdering=*/true,
3591                                           RefParamComparisons))
3592      return false;
3593    break;
3594
3595  case TPOC_Other:
3596    //   - In other contexts (14.6.6.2) the function template's function type
3597    //     is used.
3598    if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
3599                                           FD2->getType(), FD1->getType(),
3600                                           Info, Deduced, TDF_None,
3601                                           /*PartialOrdering=*/true,
3602                                           RefParamComparisons))
3603      return false;
3604    break;
3605  }
3606
3607  // C++0x [temp.deduct.partial]p11:
3608  //   In most cases, all template parameters must have values in order for
3609  //   deduction to succeed, but for partial ordering purposes a template
3610  //   parameter may remain without a value provided it is not used in the
3611  //   types being used for partial ordering. [ Note: a template parameter used
3612  //   in a non-deduced context is considered used. -end note]
3613  unsigned ArgIdx = 0, NumArgs = Deduced.size();
3614  for (; ArgIdx != NumArgs; ++ArgIdx)
3615    if (Deduced[ArgIdx].isNull())
3616      break;
3617
3618  if (ArgIdx == NumArgs) {
3619    // All template arguments were deduced. FT1 is at least as specialized
3620    // as FT2.
3621    return true;
3622  }
3623
3624  // Figure out which template parameters were used.
3625  SmallVector<bool, 4> UsedParameters;
3626  UsedParameters.resize(TemplateParams->size());
3627  switch (TPOC) {
3628  case TPOC_Call: {
3629    unsigned NumParams = std::min(NumCallArguments,
3630                                  std::min(Proto1->getNumArgs(),
3631                                           Proto2->getNumArgs()));
3632    if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
3633      ::MarkUsedTemplateParameters(S.Context, Method2->getThisType(S.Context),
3634                                   false,
3635                                   TemplateParams->getDepth(), UsedParameters);
3636    for (unsigned I = Skip2; I < NumParams; ++I)
3637      ::MarkUsedTemplateParameters(S.Context, Proto2->getArgType(I), false,
3638                                   TemplateParams->getDepth(),
3639                                   UsedParameters);
3640    break;
3641  }
3642
3643  case TPOC_Conversion:
3644    ::MarkUsedTemplateParameters(S.Context, Proto2->getResultType(), false,
3645                                 TemplateParams->getDepth(),
3646                                 UsedParameters);
3647    break;
3648
3649  case TPOC_Other:
3650    ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
3651                                 TemplateParams->getDepth(),
3652                                 UsedParameters);
3653    break;
3654  }
3655
3656  for (; ArgIdx != NumArgs; ++ArgIdx)
3657    // If this argument had no value deduced but was used in one of the types
3658    // used for partial ordering, then deduction fails.
3659    if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
3660      return false;
3661
3662  return true;
3663}
3664
3665/// \brief Determine whether this a function template whose parameter-type-list
3666/// ends with a function parameter pack.
3667static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
3668  FunctionDecl *Function = FunTmpl->getTemplatedDecl();
3669  unsigned NumParams = Function->getNumParams();
3670  if (NumParams == 0)
3671    return false;
3672
3673  ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
3674  if (!Last->isParameterPack())
3675    return false;
3676
3677  // Make sure that no previous parameter is a parameter pack.
3678  while (--NumParams > 0) {
3679    if (Function->getParamDecl(NumParams - 1)->isParameterPack())
3680      return false;
3681  }
3682
3683  return true;
3684}
3685
3686/// \brief Returns the more specialized function template according
3687/// to the rules of function template partial ordering (C++ [temp.func.order]).
3688///
3689/// \param FT1 the first function template
3690///
3691/// \param FT2 the second function template
3692///
3693/// \param TPOC the context in which we are performing partial ordering of
3694/// function templates.
3695///
3696/// \param NumCallArguments The number of arguments in a call, used only
3697/// when \c TPOC is \c TPOC_Call.
3698///
3699/// \returns the more specialized function template. If neither
3700/// template is more specialized, returns NULL.
3701FunctionTemplateDecl *
3702Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
3703                                 FunctionTemplateDecl *FT2,
3704                                 SourceLocation Loc,
3705                                 TemplatePartialOrderingContext TPOC,
3706                                 unsigned NumCallArguments) {
3707  SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
3708  bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
3709                                          NumCallArguments, 0);
3710  bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
3711                                          NumCallArguments,
3712                                          &RefParamComparisons);
3713
3714  if (Better1 != Better2) // We have a clear winner
3715    return Better1? FT1 : FT2;
3716
3717  if (!Better1 && !Better2) // Neither is better than the other
3718    return 0;
3719
3720  // C++0x [temp.deduct.partial]p10:
3721  //   If for each type being considered a given template is at least as
3722  //   specialized for all types and more specialized for some set of types and
3723  //   the other template is not more specialized for any types or is not at
3724  //   least as specialized for any types, then the given template is more
3725  //   specialized than the other template. Otherwise, neither template is more
3726  //   specialized than the other.
3727  Better1 = false;
3728  Better2 = false;
3729  for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
3730    // C++0x [temp.deduct.partial]p9:
3731    //   If, for a given type, deduction succeeds in both directions (i.e., the
3732    //   types are identical after the transformations above) and both P and A
3733    //   were reference types (before being replaced with the type referred to
3734    //   above):
3735
3736    //     -- if the type from the argument template was an lvalue reference
3737    //        and the type from the parameter template was not, the argument
3738    //        type is considered to be more specialized than the other;
3739    //        otherwise,
3740    if (!RefParamComparisons[I].ArgIsRvalueRef &&
3741        RefParamComparisons[I].ParamIsRvalueRef) {
3742      Better2 = true;
3743      if (Better1)
3744        return 0;
3745      continue;
3746    } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
3747               RefParamComparisons[I].ArgIsRvalueRef) {
3748      Better1 = true;
3749      if (Better2)
3750        return 0;
3751      continue;
3752    }
3753
3754    //     -- if the type from the argument template is more cv-qualified than
3755    //        the type from the parameter template (as described above), the
3756    //        argument type is considered to be more specialized than the
3757    //        other; otherwise,
3758    switch (RefParamComparisons[I].Qualifiers) {
3759    case NeitherMoreQualified:
3760      break;
3761
3762    case ParamMoreQualified:
3763      Better1 = true;
3764      if (Better2)
3765        return 0;
3766      continue;
3767
3768    case ArgMoreQualified:
3769      Better2 = true;
3770      if (Better1)
3771        return 0;
3772      continue;
3773    }
3774
3775    //     -- neither type is more specialized than the other.
3776  }
3777
3778  assert(!(Better1 && Better2) && "Should have broken out in the loop above");
3779  if (Better1)
3780    return FT1;
3781  else if (Better2)
3782    return FT2;
3783
3784  // FIXME: This mimics what GCC implements, but doesn't match up with the
3785  // proposed resolution for core issue 692. This area needs to be sorted out,
3786  // but for now we attempt to maintain compatibility.
3787  bool Variadic1 = isVariadicFunctionTemplate(FT1);
3788  bool Variadic2 = isVariadicFunctionTemplate(FT2);
3789  if (Variadic1 != Variadic2)
3790    return Variadic1? FT2 : FT1;
3791
3792  return 0;
3793}
3794
3795/// \brief Determine if the two templates are equivalent.
3796static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
3797  if (T1 == T2)
3798    return true;
3799
3800  if (!T1 || !T2)
3801    return false;
3802
3803  return T1->getCanonicalDecl() == T2->getCanonicalDecl();
3804}
3805
3806/// \brief Retrieve the most specialized of the given function template
3807/// specializations.
3808///
3809/// \param SpecBegin the start iterator of the function template
3810/// specializations that we will be comparing.
3811///
3812/// \param SpecEnd the end iterator of the function template
3813/// specializations, paired with \p SpecBegin.
3814///
3815/// \param TPOC the partial ordering context to use to compare the function
3816/// template specializations.
3817///
3818/// \param NumCallArguments The number of arguments in a call, used only
3819/// when \c TPOC is \c TPOC_Call.
3820///
3821/// \param Loc the location where the ambiguity or no-specializations
3822/// diagnostic should occur.
3823///
3824/// \param NoneDiag partial diagnostic used to diagnose cases where there are
3825/// no matching candidates.
3826///
3827/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
3828/// occurs.
3829///
3830/// \param CandidateDiag partial diagnostic used for each function template
3831/// specialization that is a candidate in the ambiguous ordering. One parameter
3832/// in this diagnostic should be unbound, which will correspond to the string
3833/// describing the template arguments for the function template specialization.
3834///
3835/// \param Index if non-NULL and the result of this function is non-nULL,
3836/// receives the index corresponding to the resulting function template
3837/// specialization.
3838///
3839/// \returns the most specialized function template specialization, if
3840/// found. Otherwise, returns SpecEnd.
3841///
3842/// \todo FIXME: Consider passing in the "also-ran" candidates that failed
3843/// template argument deduction.
3844UnresolvedSetIterator
3845Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
3846                        UnresolvedSetIterator SpecEnd,
3847                         TemplatePartialOrderingContext TPOC,
3848                         unsigned NumCallArguments,
3849                         SourceLocation Loc,
3850                         const PartialDiagnostic &NoneDiag,
3851                         const PartialDiagnostic &AmbigDiag,
3852                         const PartialDiagnostic &CandidateDiag,
3853                         bool Complain,
3854                         QualType TargetType) {
3855  if (SpecBegin == SpecEnd) {
3856    if (Complain)
3857      Diag(Loc, NoneDiag);
3858    return SpecEnd;
3859  }
3860
3861  if (SpecBegin + 1 == SpecEnd)
3862    return SpecBegin;
3863
3864  // Find the function template that is better than all of the templates it
3865  // has been compared to.
3866  UnresolvedSetIterator Best = SpecBegin;
3867  FunctionTemplateDecl *BestTemplate
3868    = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
3869  assert(BestTemplate && "Not a function template specialization?");
3870  for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
3871    FunctionTemplateDecl *Challenger
3872      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
3873    assert(Challenger && "Not a function template specialization?");
3874    if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
3875                                                  Loc, TPOC, NumCallArguments),
3876                       Challenger)) {
3877      Best = I;
3878      BestTemplate = Challenger;
3879    }
3880  }
3881
3882  // Make sure that the "best" function template is more specialized than all
3883  // of the others.
3884  bool Ambiguous = false;
3885  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
3886    FunctionTemplateDecl *Challenger
3887      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
3888    if (I != Best &&
3889        !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
3890                                                   Loc, TPOC, NumCallArguments),
3891                        BestTemplate)) {
3892      Ambiguous = true;
3893      break;
3894    }
3895  }
3896
3897  if (!Ambiguous) {
3898    // We found an answer. Return it.
3899    return Best;
3900  }
3901
3902  // Diagnose the ambiguity.
3903  if (Complain)
3904    Diag(Loc, AmbigDiag);
3905
3906  if (Complain)
3907  // FIXME: Can we order the candidates in some sane way?
3908    for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
3909      PartialDiagnostic PD = CandidateDiag;
3910      PD << getTemplateArgumentBindingsText(
3911          cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
3912                    *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
3913      if (!TargetType.isNull())
3914        HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
3915                                   TargetType);
3916      Diag((*I)->getLocation(), PD);
3917    }
3918
3919  return SpecEnd;
3920}
3921
3922/// \brief Returns the more specialized class template partial specialization
3923/// according to the rules of partial ordering of class template partial
3924/// specializations (C++ [temp.class.order]).
3925///
3926/// \param PS1 the first class template partial specialization
3927///
3928/// \param PS2 the second class template partial specialization
3929///
3930/// \returns the more specialized class template partial specialization. If
3931/// neither partial specialization is more specialized, returns NULL.
3932ClassTemplatePartialSpecializationDecl *
3933Sema::getMoreSpecializedPartialSpecialization(
3934                                  ClassTemplatePartialSpecializationDecl *PS1,
3935                                  ClassTemplatePartialSpecializationDecl *PS2,
3936                                              SourceLocation Loc) {
3937  // C++ [temp.class.order]p1:
3938  //   For two class template partial specializations, the first is at least as
3939  //   specialized as the second if, given the following rewrite to two
3940  //   function templates, the first function template is at least as
3941  //   specialized as the second according to the ordering rules for function
3942  //   templates (14.6.6.2):
3943  //     - the first function template has the same template parameters as the
3944  //       first partial specialization and has a single function parameter
3945  //       whose type is a class template specialization with the template
3946  //       arguments of the first partial specialization, and
3947  //     - the second function template has the same template parameters as the
3948  //       second partial specialization and has a single function parameter
3949  //       whose type is a class template specialization with the template
3950  //       arguments of the second partial specialization.
3951  //
3952  // Rather than synthesize function templates, we merely perform the
3953  // equivalent partial ordering by performing deduction directly on
3954  // the template arguments of the class template partial
3955  // specializations. This computation is slightly simpler than the
3956  // general problem of function template partial ordering, because
3957  // class template partial specializations are more constrained. We
3958  // know that every template parameter is deducible from the class
3959  // template partial specialization's template arguments, for
3960  // example.
3961  SmallVector<DeducedTemplateArgument, 4> Deduced;
3962  TemplateDeductionInfo Info(Context, Loc);
3963
3964  QualType PT1 = PS1->getInjectedSpecializationType();
3965  QualType PT2 = PS2->getInjectedSpecializationType();
3966
3967  // Determine whether PS1 is at least as specialized as PS2
3968  Deduced.resize(PS2->getTemplateParameters()->size());
3969  bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
3970                                            PS2->getTemplateParameters(),
3971                                            PT2, PT1, Info, Deduced, TDF_None,
3972                                            /*PartialOrdering=*/true,
3973                                            /*RefParamComparisons=*/0);
3974  if (Better1) {
3975    InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
3976                               Deduced.data(), Deduced.size(), Info);
3977    Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
3978                                                 PS1->getTemplateArgs(),
3979                                                 Deduced, Info);
3980  }
3981
3982  // Determine whether PS2 is at least as specialized as PS1
3983  Deduced.clear();
3984  Deduced.resize(PS1->getTemplateParameters()->size());
3985  bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
3986                                            PS1->getTemplateParameters(),
3987                                            PT1, PT2, Info, Deduced, TDF_None,
3988                                            /*PartialOrdering=*/true,
3989                                            /*RefParamComparisons=*/0);
3990  if (Better2) {
3991    InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
3992                               Deduced.data(), Deduced.size(), Info);
3993    Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
3994                                                 PS2->getTemplateArgs(),
3995                                                 Deduced, Info);
3996  }
3997
3998  if (Better1 == Better2)
3999    return 0;
4000
4001  return Better1? PS1 : PS2;
4002}
4003
4004static void
4005MarkUsedTemplateParameters(ASTContext &Ctx,
4006                           const TemplateArgument &TemplateArg,
4007                           bool OnlyDeduced,
4008                           unsigned Depth,
4009                           SmallVectorImpl<bool> &Used);
4010
4011/// \brief Mark the template parameters that are used by the given
4012/// expression.
4013static void
4014MarkUsedTemplateParameters(ASTContext &Ctx,
4015                           const Expr *E,
4016                           bool OnlyDeduced,
4017                           unsigned Depth,
4018                           SmallVectorImpl<bool> &Used) {
4019  // We can deduce from a pack expansion.
4020  if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
4021    E = Expansion->getPattern();
4022
4023  // Skip through any implicit casts we added while type-checking.
4024  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4025    E = ICE->getSubExpr();
4026
4027  // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
4028  // find other occurrences of template parameters.
4029  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4030  if (!DRE)
4031    return;
4032
4033  const NonTypeTemplateParmDecl *NTTP
4034    = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4035  if (!NTTP)
4036    return;
4037
4038  if (NTTP->getDepth() == Depth)
4039    Used[NTTP->getIndex()] = true;
4040}
4041
4042/// \brief Mark the template parameters that are used by the given
4043/// nested name specifier.
4044static void
4045MarkUsedTemplateParameters(ASTContext &Ctx,
4046                           NestedNameSpecifier *NNS,
4047                           bool OnlyDeduced,
4048                           unsigned Depth,
4049                           SmallVectorImpl<bool> &Used) {
4050  if (!NNS)
4051    return;
4052
4053  MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
4054                             Used);
4055  MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
4056                             OnlyDeduced, Depth, Used);
4057}
4058
4059/// \brief Mark the template parameters that are used by the given
4060/// template name.
4061static void
4062MarkUsedTemplateParameters(ASTContext &Ctx,
4063                           TemplateName Name,
4064                           bool OnlyDeduced,
4065                           unsigned Depth,
4066                           SmallVectorImpl<bool> &Used) {
4067  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
4068    if (TemplateTemplateParmDecl *TTP
4069          = dyn_cast<TemplateTemplateParmDecl>(Template)) {
4070      if (TTP->getDepth() == Depth)
4071        Used[TTP->getIndex()] = true;
4072    }
4073    return;
4074  }
4075
4076  if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
4077    MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
4078                               Depth, Used);
4079  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
4080    MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
4081                               Depth, Used);
4082}
4083
4084/// \brief Mark the template parameters that are used by the given
4085/// type.
4086static void
4087MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
4088                           bool OnlyDeduced,
4089                           unsigned Depth,
4090                           SmallVectorImpl<bool> &Used) {
4091  if (T.isNull())
4092    return;
4093
4094  // Non-dependent types have nothing deducible
4095  if (!T->isDependentType())
4096    return;
4097
4098  T = Ctx.getCanonicalType(T);
4099  switch (T->getTypeClass()) {
4100  case Type::Pointer:
4101    MarkUsedTemplateParameters(Ctx,
4102                               cast<PointerType>(T)->getPointeeType(),
4103                               OnlyDeduced,
4104                               Depth,
4105                               Used);
4106    break;
4107
4108  case Type::BlockPointer:
4109    MarkUsedTemplateParameters(Ctx,
4110                               cast<BlockPointerType>(T)->getPointeeType(),
4111                               OnlyDeduced,
4112                               Depth,
4113                               Used);
4114    break;
4115
4116  case Type::LValueReference:
4117  case Type::RValueReference:
4118    MarkUsedTemplateParameters(Ctx,
4119                               cast<ReferenceType>(T)->getPointeeType(),
4120                               OnlyDeduced,
4121                               Depth,
4122                               Used);
4123    break;
4124
4125  case Type::MemberPointer: {
4126    const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
4127    MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
4128                               Depth, Used);
4129    MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
4130                               OnlyDeduced, Depth, Used);
4131    break;
4132  }
4133
4134  case Type::DependentSizedArray:
4135    MarkUsedTemplateParameters(Ctx,
4136                               cast<DependentSizedArrayType>(T)->getSizeExpr(),
4137                               OnlyDeduced, Depth, Used);
4138    // Fall through to check the element type
4139
4140  case Type::ConstantArray:
4141  case Type::IncompleteArray:
4142    MarkUsedTemplateParameters(Ctx,
4143                               cast<ArrayType>(T)->getElementType(),
4144                               OnlyDeduced, Depth, Used);
4145    break;
4146
4147  case Type::Vector:
4148  case Type::ExtVector:
4149    MarkUsedTemplateParameters(Ctx,
4150                               cast<VectorType>(T)->getElementType(),
4151                               OnlyDeduced, Depth, Used);
4152    break;
4153
4154  case Type::DependentSizedExtVector: {
4155    const DependentSizedExtVectorType *VecType
4156      = cast<DependentSizedExtVectorType>(T);
4157    MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
4158                               Depth, Used);
4159    MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
4160                               Depth, Used);
4161    break;
4162  }
4163
4164  case Type::FunctionProto: {
4165    const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
4166    MarkUsedTemplateParameters(Ctx, Proto->getResultType(), OnlyDeduced,
4167                               Depth, Used);
4168    for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
4169      MarkUsedTemplateParameters(Ctx, Proto->getArgType(I), OnlyDeduced,
4170                                 Depth, Used);
4171    break;
4172  }
4173
4174  case Type::TemplateTypeParm: {
4175    const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
4176    if (TTP->getDepth() == Depth)
4177      Used[TTP->getIndex()] = true;
4178    break;
4179  }
4180
4181  case Type::SubstTemplateTypeParmPack: {
4182    const SubstTemplateTypeParmPackType *Subst
4183      = cast<SubstTemplateTypeParmPackType>(T);
4184    MarkUsedTemplateParameters(Ctx,
4185                               QualType(Subst->getReplacedParameter(), 0),
4186                               OnlyDeduced, Depth, Used);
4187    MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
4188                               OnlyDeduced, Depth, Used);
4189    break;
4190  }
4191
4192  case Type::InjectedClassName:
4193    T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
4194    // fall through
4195
4196  case Type::TemplateSpecialization: {
4197    const TemplateSpecializationType *Spec
4198      = cast<TemplateSpecializationType>(T);
4199    MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
4200                               Depth, Used);
4201
4202    // C++0x [temp.deduct.type]p9:
4203    //   If the template argument list of P contains a pack expansion that is not
4204    //   the last template argument, the entire template argument list is a
4205    //   non-deduced context.
4206    if (OnlyDeduced &&
4207        hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4208      break;
4209
4210    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4211      MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4212                                 Used);
4213    break;
4214  }
4215
4216  case Type::Complex:
4217    if (!OnlyDeduced)
4218      MarkUsedTemplateParameters(Ctx,
4219                                 cast<ComplexType>(T)->getElementType(),
4220                                 OnlyDeduced, Depth, Used);
4221    break;
4222
4223  case Type::Atomic:
4224    if (!OnlyDeduced)
4225      MarkUsedTemplateParameters(Ctx,
4226                                 cast<AtomicType>(T)->getValueType(),
4227                                 OnlyDeduced, Depth, Used);
4228    break;
4229
4230  case Type::DependentName:
4231    if (!OnlyDeduced)
4232      MarkUsedTemplateParameters(Ctx,
4233                                 cast<DependentNameType>(T)->getQualifier(),
4234                                 OnlyDeduced, Depth, Used);
4235    break;
4236
4237  case Type::DependentTemplateSpecialization: {
4238    const DependentTemplateSpecializationType *Spec
4239      = cast<DependentTemplateSpecializationType>(T);
4240    if (!OnlyDeduced)
4241      MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
4242                                 OnlyDeduced, Depth, Used);
4243
4244    // C++0x [temp.deduct.type]p9:
4245    //   If the template argument list of P contains a pack expansion that is not
4246    //   the last template argument, the entire template argument list is a
4247    //   non-deduced context.
4248    if (OnlyDeduced &&
4249        hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4250      break;
4251
4252    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4253      MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4254                                 Used);
4255    break;
4256  }
4257
4258  case Type::TypeOf:
4259    if (!OnlyDeduced)
4260      MarkUsedTemplateParameters(Ctx,
4261                                 cast<TypeOfType>(T)->getUnderlyingType(),
4262                                 OnlyDeduced, Depth, Used);
4263    break;
4264
4265  case Type::TypeOfExpr:
4266    if (!OnlyDeduced)
4267      MarkUsedTemplateParameters(Ctx,
4268                                 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
4269                                 OnlyDeduced, Depth, Used);
4270    break;
4271
4272  case Type::Decltype:
4273    if (!OnlyDeduced)
4274      MarkUsedTemplateParameters(Ctx,
4275                                 cast<DecltypeType>(T)->getUnderlyingExpr(),
4276                                 OnlyDeduced, Depth, Used);
4277    break;
4278
4279  case Type::UnaryTransform:
4280    if (!OnlyDeduced)
4281      MarkUsedTemplateParameters(Ctx,
4282                               cast<UnaryTransformType>(T)->getUnderlyingType(),
4283                                 OnlyDeduced, Depth, Used);
4284    break;
4285
4286  case Type::PackExpansion:
4287    MarkUsedTemplateParameters(Ctx,
4288                               cast<PackExpansionType>(T)->getPattern(),
4289                               OnlyDeduced, Depth, Used);
4290    break;
4291
4292  case Type::Auto:
4293    MarkUsedTemplateParameters(Ctx,
4294                               cast<AutoType>(T)->getDeducedType(),
4295                               OnlyDeduced, Depth, Used);
4296
4297  // None of these types have any template parameters in them.
4298  case Type::Builtin:
4299  case Type::VariableArray:
4300  case Type::FunctionNoProto:
4301  case Type::Record:
4302  case Type::Enum:
4303  case Type::ObjCInterface:
4304  case Type::ObjCObject:
4305  case Type::ObjCObjectPointer:
4306  case Type::UnresolvedUsing:
4307#define TYPE(Class, Base)
4308#define ABSTRACT_TYPE(Class, Base)
4309#define DEPENDENT_TYPE(Class, Base)
4310#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4311#include "clang/AST/TypeNodes.def"
4312    break;
4313  }
4314}
4315
4316/// \brief Mark the template parameters that are used by this
4317/// template argument.
4318static void
4319MarkUsedTemplateParameters(ASTContext &Ctx,
4320                           const TemplateArgument &TemplateArg,
4321                           bool OnlyDeduced,
4322                           unsigned Depth,
4323                           SmallVectorImpl<bool> &Used) {
4324  switch (TemplateArg.getKind()) {
4325  case TemplateArgument::Null:
4326  case TemplateArgument::Integral:
4327    case TemplateArgument::Declaration:
4328    break;
4329
4330  case TemplateArgument::Type:
4331    MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
4332                               Depth, Used);
4333    break;
4334
4335  case TemplateArgument::Template:
4336  case TemplateArgument::TemplateExpansion:
4337    MarkUsedTemplateParameters(Ctx,
4338                               TemplateArg.getAsTemplateOrTemplatePattern(),
4339                               OnlyDeduced, Depth, Used);
4340    break;
4341
4342  case TemplateArgument::Expression:
4343    MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
4344                               Depth, Used);
4345    break;
4346
4347  case TemplateArgument::Pack:
4348    for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
4349                                      PEnd = TemplateArg.pack_end();
4350         P != PEnd; ++P)
4351      MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
4352    break;
4353  }
4354}
4355
4356/// \brief Mark the template parameters can be deduced by the given
4357/// template argument list.
4358///
4359/// \param TemplateArgs the template argument list from which template
4360/// parameters will be deduced.
4361///
4362/// \param Deduced a bit vector whose elements will be set to \c true
4363/// to indicate when the corresponding template parameter will be
4364/// deduced.
4365void
4366Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
4367                                 bool OnlyDeduced, unsigned Depth,
4368                                 SmallVectorImpl<bool> &Used) {
4369  // C++0x [temp.deduct.type]p9:
4370  //   If the template argument list of P contains a pack expansion that is not
4371  //   the last template argument, the entire template argument list is a
4372  //   non-deduced context.
4373  if (OnlyDeduced &&
4374      hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
4375    return;
4376
4377  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4378    ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
4379                                 Depth, Used);
4380}
4381
4382/// \brief Marks all of the template parameters that will be deduced by a
4383/// call to the given function template.
4384void
4385Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
4386                                    FunctionTemplateDecl *FunctionTemplate,
4387                                    SmallVectorImpl<bool> &Deduced) {
4388  TemplateParameterList *TemplateParams
4389    = FunctionTemplate->getTemplateParameters();
4390  Deduced.clear();
4391  Deduced.resize(TemplateParams->size());
4392
4393  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4394  for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
4395    ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
4396                                 true, TemplateParams->getDepth(), Deduced);
4397}
4398
4399bool hasDeducibleTemplateParameters(Sema &S,
4400                                    FunctionTemplateDecl *FunctionTemplate,
4401                                    QualType T) {
4402  if (!T->isDependentType())
4403    return false;
4404
4405  TemplateParameterList *TemplateParams
4406    = FunctionTemplate->getTemplateParameters();
4407  SmallVector<bool, 4> Deduced;
4408  Deduced.resize(TemplateParams->size());
4409  ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
4410                               Deduced);
4411
4412  for (unsigned I = 0, N = Deduced.size(); I != N; ++I)
4413    if (Deduced[I])
4414      return true;
4415
4416  return false;
4417}
4418