SemaTemplateDeduction.cpp revision d10099e5c8238fa0327f03921cf2e3c8975c881e
1//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===/
12
13#include "clang/Sema/Sema.h"
14#include "clang/Sema/DeclSpec.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "llvm/ADT/SmallBitVector.h"
24#include "TreeTransform.h"
25#include <algorithm>
26
27namespace clang {
28  using namespace sema;
29
30  /// \brief Various flags that control template argument deduction.
31  ///
32  /// These flags can be bitwise-OR'd together.
33  enum TemplateDeductionFlags {
34    /// \brief No template argument deduction flags, which indicates the
35    /// strictest results for template argument deduction (as used for, e.g.,
36    /// matching class template partial specializations).
37    TDF_None = 0,
38    /// \brief Within template argument deduction from a function call, we are
39    /// matching with a parameter type for which the original parameter was
40    /// a reference.
41    TDF_ParamWithReferenceType = 0x1,
42    /// \brief Within template argument deduction from a function call, we
43    /// are matching in a case where we ignore cv-qualifiers.
44    TDF_IgnoreQualifiers = 0x02,
45    /// \brief Within template argument deduction from a function call,
46    /// we are matching in a case where we can perform template argument
47    /// deduction from a template-id of a derived class of the argument type.
48    TDF_DerivedClass = 0x04,
49    /// \brief Allow non-dependent types to differ, e.g., when performing
50    /// template argument deduction from a function call where conversions
51    /// may apply.
52    TDF_SkipNonDependent = 0x08,
53    /// \brief Whether we are performing template argument deduction for
54    /// parameters and arguments in a top-level template argument
55    TDF_TopLevelParameterTypeList = 0x10
56  };
57}
58
59using namespace clang;
60
61/// \brief Compare two APSInts, extending and switching the sign as
62/// necessary to compare their values regardless of underlying type.
63static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
64  if (Y.getBitWidth() > X.getBitWidth())
65    X = X.extend(Y.getBitWidth());
66  else if (Y.getBitWidth() < X.getBitWidth())
67    Y = Y.extend(X.getBitWidth());
68
69  // If there is a signedness mismatch, correct it.
70  if (X.isSigned() != Y.isSigned()) {
71    // If the signed value is negative, then the values cannot be the same.
72    if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
73      return false;
74
75    Y.setIsSigned(true);
76    X.setIsSigned(true);
77  }
78
79  return X == Y;
80}
81
82static Sema::TemplateDeductionResult
83DeduceTemplateArguments(Sema &S,
84                        TemplateParameterList *TemplateParams,
85                        const TemplateArgument &Param,
86                        TemplateArgument Arg,
87                        TemplateDeductionInfo &Info,
88                      SmallVectorImpl<DeducedTemplateArgument> &Deduced);
89
90/// \brief Whether template argument deduction for two reference parameters
91/// resulted in the argument type, parameter type, or neither type being more
92/// qualified than the other.
93enum DeductionQualifierComparison {
94  NeitherMoreQualified = 0,
95  ParamMoreQualified,
96  ArgMoreQualified
97};
98
99/// \brief Stores the result of comparing two reference parameters while
100/// performing template argument deduction for partial ordering of function
101/// templates.
102struct RefParamPartialOrderingComparison {
103  /// \brief Whether the parameter type is an rvalue reference type.
104  bool ParamIsRvalueRef;
105  /// \brief Whether the argument type is an rvalue reference type.
106  bool ArgIsRvalueRef;
107
108  /// \brief Whether the parameter or argument (or neither) is more qualified.
109  DeductionQualifierComparison Qualifiers;
110};
111
112
113
114static Sema::TemplateDeductionResult
115DeduceTemplateArgumentsByTypeMatch(Sema &S,
116                                   TemplateParameterList *TemplateParams,
117                                   QualType Param,
118                                   QualType Arg,
119                                   TemplateDeductionInfo &Info,
120                                   SmallVectorImpl<DeducedTemplateArgument> &
121                                                      Deduced,
122                                   unsigned TDF,
123                                   bool PartialOrdering = false,
124                            SmallVectorImpl<RefParamPartialOrderingComparison> *
125                                                      RefParamComparisons = 0);
126
127static Sema::TemplateDeductionResult
128DeduceTemplateArguments(Sema &S,
129                        TemplateParameterList *TemplateParams,
130                        const TemplateArgument *Params, unsigned NumParams,
131                        const TemplateArgument *Args, unsigned NumArgs,
132                        TemplateDeductionInfo &Info,
133                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
134                        bool NumberOfArgumentsMustMatch = true);
135
136/// \brief If the given expression is of a form that permits the deduction
137/// of a non-type template parameter, return the declaration of that
138/// non-type template parameter.
139static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
140  if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
141    E = IC->getSubExpr();
142
143  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
144    return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
145
146  return 0;
147}
148
149/// \brief Determine whether two declaration pointers refer to the same
150/// declaration.
151static bool isSameDeclaration(Decl *X, Decl *Y) {
152  if (!X || !Y)
153    return !X && !Y;
154
155  if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
156    X = NX->getUnderlyingDecl();
157  if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
158    Y = NY->getUnderlyingDecl();
159
160  return X->getCanonicalDecl() == Y->getCanonicalDecl();
161}
162
163/// \brief Verify that the given, deduced template arguments are compatible.
164///
165/// \returns The deduced template argument, or a NULL template argument if
166/// the deduced template arguments were incompatible.
167static DeducedTemplateArgument
168checkDeducedTemplateArguments(ASTContext &Context,
169                              const DeducedTemplateArgument &X,
170                              const DeducedTemplateArgument &Y) {
171  // We have no deduction for one or both of the arguments; they're compatible.
172  if (X.isNull())
173    return Y;
174  if (Y.isNull())
175    return X;
176
177  switch (X.getKind()) {
178  case TemplateArgument::Null:
179    llvm_unreachable("Non-deduced template arguments handled above");
180
181  case TemplateArgument::Type:
182    // If two template type arguments have the same type, they're compatible.
183    if (Y.getKind() == TemplateArgument::Type &&
184        Context.hasSameType(X.getAsType(), Y.getAsType()))
185      return X;
186
187    return DeducedTemplateArgument();
188
189  case TemplateArgument::Integral:
190    // If we deduced a constant in one case and either a dependent expression or
191    // declaration in another case, keep the integral constant.
192    // If both are integral constants with the same value, keep that value.
193    if (Y.getKind() == TemplateArgument::Expression ||
194        Y.getKind() == TemplateArgument::Declaration ||
195        (Y.getKind() == TemplateArgument::Integral &&
196         hasSameExtendedValue(*X.getAsIntegral(), *Y.getAsIntegral())))
197      return DeducedTemplateArgument(X,
198                                     X.wasDeducedFromArrayBound() &&
199                                     Y.wasDeducedFromArrayBound());
200
201    // All other combinations are incompatible.
202    return DeducedTemplateArgument();
203
204  case TemplateArgument::Template:
205    if (Y.getKind() == TemplateArgument::Template &&
206        Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
207      return X;
208
209    // All other combinations are incompatible.
210    return DeducedTemplateArgument();
211
212  case TemplateArgument::TemplateExpansion:
213    if (Y.getKind() == TemplateArgument::TemplateExpansion &&
214        Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
215                                    Y.getAsTemplateOrTemplatePattern()))
216      return X;
217
218    // All other combinations are incompatible.
219    return DeducedTemplateArgument();
220
221  case TemplateArgument::Expression:
222    // If we deduced a dependent expression in one case and either an integral
223    // constant or a declaration in another case, keep the integral constant
224    // or declaration.
225    if (Y.getKind() == TemplateArgument::Integral ||
226        Y.getKind() == TemplateArgument::Declaration)
227      return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
228                                     Y.wasDeducedFromArrayBound());
229
230    if (Y.getKind() == TemplateArgument::Expression) {
231      // Compare the expressions for equality
232      llvm::FoldingSetNodeID ID1, ID2;
233      X.getAsExpr()->Profile(ID1, Context, true);
234      Y.getAsExpr()->Profile(ID2, Context, true);
235      if (ID1 == ID2)
236        return X;
237    }
238
239    // All other combinations are incompatible.
240    return DeducedTemplateArgument();
241
242  case TemplateArgument::Declaration:
243    // If we deduced a declaration and a dependent expression, keep the
244    // declaration.
245    if (Y.getKind() == TemplateArgument::Expression)
246      return X;
247
248    // If we deduced a declaration and an integral constant, keep the
249    // integral constant.
250    if (Y.getKind() == TemplateArgument::Integral)
251      return Y;
252
253    // If we deduced two declarations, make sure they they refer to the
254    // same declaration.
255    if (Y.getKind() == TemplateArgument::Declaration &&
256        isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
257      return X;
258
259    // All other combinations are incompatible.
260    return DeducedTemplateArgument();
261
262  case TemplateArgument::Pack:
263    if (Y.getKind() != TemplateArgument::Pack ||
264        X.pack_size() != Y.pack_size())
265      return DeducedTemplateArgument();
266
267    for (TemplateArgument::pack_iterator XA = X.pack_begin(),
268                                      XAEnd = X.pack_end(),
269                                         YA = Y.pack_begin();
270         XA != XAEnd; ++XA, ++YA) {
271      if (checkDeducedTemplateArguments(Context,
272                    DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
273                    DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
274            .isNull())
275        return DeducedTemplateArgument();
276    }
277
278    return X;
279  }
280
281  llvm_unreachable("Invalid TemplateArgument Kind!");
282}
283
284/// \brief Deduce the value of the given non-type template parameter
285/// from the given constant.
286static Sema::TemplateDeductionResult
287DeduceNonTypeTemplateArgument(Sema &S,
288                              NonTypeTemplateParmDecl *NTTP,
289                              llvm::APSInt Value, QualType ValueType,
290                              bool DeducedFromArrayBound,
291                              TemplateDeductionInfo &Info,
292                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
293  assert(NTTP->getDepth() == 0 &&
294         "Cannot deduce non-type template argument with depth > 0");
295
296  DeducedTemplateArgument NewDeduced(Value, ValueType, DeducedFromArrayBound);
297  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
298                                                     Deduced[NTTP->getIndex()],
299                                                                 NewDeduced);
300  if (Result.isNull()) {
301    Info.Param = NTTP;
302    Info.FirstArg = Deduced[NTTP->getIndex()];
303    Info.SecondArg = NewDeduced;
304    return Sema::TDK_Inconsistent;
305  }
306
307  Deduced[NTTP->getIndex()] = Result;
308  return Sema::TDK_Success;
309}
310
311/// \brief Deduce the value of the given non-type template parameter
312/// from the given type- or value-dependent expression.
313///
314/// \returns true if deduction succeeded, false otherwise.
315static Sema::TemplateDeductionResult
316DeduceNonTypeTemplateArgument(Sema &S,
317                              NonTypeTemplateParmDecl *NTTP,
318                              Expr *Value,
319                              TemplateDeductionInfo &Info,
320                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
321  assert(NTTP->getDepth() == 0 &&
322         "Cannot deduce non-type template argument with depth > 0");
323  assert((Value->isTypeDependent() || Value->isValueDependent()) &&
324         "Expression template argument must be type- or value-dependent.");
325
326  DeducedTemplateArgument NewDeduced(Value);
327  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
328                                                     Deduced[NTTP->getIndex()],
329                                                                 NewDeduced);
330
331  if (Result.isNull()) {
332    Info.Param = NTTP;
333    Info.FirstArg = Deduced[NTTP->getIndex()];
334    Info.SecondArg = NewDeduced;
335    return Sema::TDK_Inconsistent;
336  }
337
338  Deduced[NTTP->getIndex()] = Result;
339  return Sema::TDK_Success;
340}
341
342/// \brief Deduce the value of the given non-type template parameter
343/// from the given declaration.
344///
345/// \returns true if deduction succeeded, false otherwise.
346static Sema::TemplateDeductionResult
347DeduceNonTypeTemplateArgument(Sema &S,
348                              NonTypeTemplateParmDecl *NTTP,
349                              Decl *D,
350                              TemplateDeductionInfo &Info,
351                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
352  assert(NTTP->getDepth() == 0 &&
353         "Cannot deduce non-type template argument with depth > 0");
354
355  DeducedTemplateArgument NewDeduced(D? D->getCanonicalDecl() : 0);
356  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
357                                                     Deduced[NTTP->getIndex()],
358                                                                 NewDeduced);
359  if (Result.isNull()) {
360    Info.Param = NTTP;
361    Info.FirstArg = Deduced[NTTP->getIndex()];
362    Info.SecondArg = NewDeduced;
363    return Sema::TDK_Inconsistent;
364  }
365
366  Deduced[NTTP->getIndex()] = Result;
367  return Sema::TDK_Success;
368}
369
370static Sema::TemplateDeductionResult
371DeduceTemplateArguments(Sema &S,
372                        TemplateParameterList *TemplateParams,
373                        TemplateName Param,
374                        TemplateName Arg,
375                        TemplateDeductionInfo &Info,
376                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
377  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
378  if (!ParamDecl) {
379    // The parameter type is dependent and is not a template template parameter,
380    // so there is nothing that we can deduce.
381    return Sema::TDK_Success;
382  }
383
384  if (TemplateTemplateParmDecl *TempParam
385        = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
386    DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
387    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
388                                                 Deduced[TempParam->getIndex()],
389                                                                   NewDeduced);
390    if (Result.isNull()) {
391      Info.Param = TempParam;
392      Info.FirstArg = Deduced[TempParam->getIndex()];
393      Info.SecondArg = NewDeduced;
394      return Sema::TDK_Inconsistent;
395    }
396
397    Deduced[TempParam->getIndex()] = Result;
398    return Sema::TDK_Success;
399  }
400
401  // Verify that the two template names are equivalent.
402  if (S.Context.hasSameTemplateName(Param, Arg))
403    return Sema::TDK_Success;
404
405  // Mismatch of non-dependent template parameter to argument.
406  Info.FirstArg = TemplateArgument(Param);
407  Info.SecondArg = TemplateArgument(Arg);
408  return Sema::TDK_NonDeducedMismatch;
409}
410
411/// \brief Deduce the template arguments by comparing the template parameter
412/// type (which is a template-id) with the template argument type.
413///
414/// \param S the Sema
415///
416/// \param TemplateParams the template parameters that we are deducing
417///
418/// \param Param the parameter type
419///
420/// \param Arg the argument type
421///
422/// \param Info information about the template argument deduction itself
423///
424/// \param Deduced the deduced template arguments
425///
426/// \returns the result of template argument deduction so far. Note that a
427/// "success" result means that template argument deduction has not yet failed,
428/// but it may still fail, later, for other reasons.
429static Sema::TemplateDeductionResult
430DeduceTemplateArguments(Sema &S,
431                        TemplateParameterList *TemplateParams,
432                        const TemplateSpecializationType *Param,
433                        QualType Arg,
434                        TemplateDeductionInfo &Info,
435                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
436  assert(Arg.isCanonical() && "Argument type must be canonical");
437
438  // Check whether the template argument is a dependent template-id.
439  if (const TemplateSpecializationType *SpecArg
440        = dyn_cast<TemplateSpecializationType>(Arg)) {
441    // Perform template argument deduction for the template name.
442    if (Sema::TemplateDeductionResult Result
443          = DeduceTemplateArguments(S, TemplateParams,
444                                    Param->getTemplateName(),
445                                    SpecArg->getTemplateName(),
446                                    Info, Deduced))
447      return Result;
448
449
450    // Perform template argument deduction on each template
451    // argument. Ignore any missing/extra arguments, since they could be
452    // filled in by default arguments.
453    return DeduceTemplateArguments(S, TemplateParams,
454                                   Param->getArgs(), Param->getNumArgs(),
455                                   SpecArg->getArgs(), SpecArg->getNumArgs(),
456                                   Info, Deduced,
457                                   /*NumberOfArgumentsMustMatch=*/false);
458  }
459
460  // If the argument type is a class template specialization, we
461  // perform template argument deduction using its template
462  // arguments.
463  const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
464  if (!RecordArg)
465    return Sema::TDK_NonDeducedMismatch;
466
467  ClassTemplateSpecializationDecl *SpecArg
468    = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
469  if (!SpecArg)
470    return Sema::TDK_NonDeducedMismatch;
471
472  // Perform template argument deduction for the template name.
473  if (Sema::TemplateDeductionResult Result
474        = DeduceTemplateArguments(S,
475                                  TemplateParams,
476                                  Param->getTemplateName(),
477                               TemplateName(SpecArg->getSpecializedTemplate()),
478                                  Info, Deduced))
479    return Result;
480
481  // Perform template argument deduction for the template arguments.
482  return DeduceTemplateArguments(S, TemplateParams,
483                                 Param->getArgs(), Param->getNumArgs(),
484                                 SpecArg->getTemplateArgs().data(),
485                                 SpecArg->getTemplateArgs().size(),
486                                 Info, Deduced);
487}
488
489/// \brief Determines whether the given type is an opaque type that
490/// might be more qualified when instantiated.
491static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
492  switch (T->getTypeClass()) {
493  case Type::TypeOfExpr:
494  case Type::TypeOf:
495  case Type::DependentName:
496  case Type::Decltype:
497  case Type::UnresolvedUsing:
498  case Type::TemplateTypeParm:
499    return true;
500
501  case Type::ConstantArray:
502  case Type::IncompleteArray:
503  case Type::VariableArray:
504  case Type::DependentSizedArray:
505    return IsPossiblyOpaquelyQualifiedType(
506                                      cast<ArrayType>(T)->getElementType());
507
508  default:
509    return false;
510  }
511}
512
513/// \brief Retrieve the depth and index of a template parameter.
514static std::pair<unsigned, unsigned>
515getDepthAndIndex(NamedDecl *ND) {
516  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
517    return std::make_pair(TTP->getDepth(), TTP->getIndex());
518
519  if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
520    return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
521
522  TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
523  return std::make_pair(TTP->getDepth(), TTP->getIndex());
524}
525
526/// \brief Retrieve the depth and index of an unexpanded parameter pack.
527static std::pair<unsigned, unsigned>
528getDepthAndIndex(UnexpandedParameterPack UPP) {
529  if (const TemplateTypeParmType *TTP
530                          = UPP.first.dyn_cast<const TemplateTypeParmType *>())
531    return std::make_pair(TTP->getDepth(), TTP->getIndex());
532
533  return getDepthAndIndex(UPP.first.get<NamedDecl *>());
534}
535
536/// \brief Helper function to build a TemplateParameter when we don't
537/// know its type statically.
538static TemplateParameter makeTemplateParameter(Decl *D) {
539  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
540    return TemplateParameter(TTP);
541  else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
542    return TemplateParameter(NTTP);
543
544  return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
545}
546
547/// \brief Prepare to perform template argument deduction for all of the
548/// arguments in a set of argument packs.
549static void PrepareArgumentPackDeduction(Sema &S,
550                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
551                                           ArrayRef<unsigned> PackIndices,
552                     SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
553         SmallVectorImpl<
554           SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks) {
555  // Save the deduced template arguments for each parameter pack expanded
556  // by this pack expansion, then clear out the deduction.
557  for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
558    // Save the previously-deduced argument pack, then clear it out so that we
559    // can deduce a new argument pack.
560    SavedPacks[I] = Deduced[PackIndices[I]];
561    Deduced[PackIndices[I]] = TemplateArgument();
562
563    // If the template arugment pack was explicitly specified, add that to
564    // the set of deduced arguments.
565    const TemplateArgument *ExplicitArgs;
566    unsigned NumExplicitArgs;
567    if (NamedDecl *PartiallySubstitutedPack
568        = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
569                                                           &ExplicitArgs,
570                                                           &NumExplicitArgs)) {
571      if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
572        NewlyDeducedPacks[I].append(ExplicitArgs,
573                                    ExplicitArgs + NumExplicitArgs);
574    }
575  }
576}
577
578/// \brief Finish template argument deduction for a set of argument packs,
579/// producing the argument packs and checking for consistency with prior
580/// deductions.
581static Sema::TemplateDeductionResult
582FinishArgumentPackDeduction(Sema &S,
583                            TemplateParameterList *TemplateParams,
584                            bool HasAnyArguments,
585                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
586                            ArrayRef<unsigned> PackIndices,
587                    SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
588        SmallVectorImpl<
589          SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks,
590                            TemplateDeductionInfo &Info) {
591  // Build argument packs for each of the parameter packs expanded by this
592  // pack expansion.
593  for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
594    if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
595      // We were not able to deduce anything for this parameter pack,
596      // so just restore the saved argument pack.
597      Deduced[PackIndices[I]] = SavedPacks[I];
598      continue;
599    }
600
601    DeducedTemplateArgument NewPack;
602
603    if (NewlyDeducedPacks[I].empty()) {
604      // If we deduced an empty argument pack, create it now.
605      NewPack = DeducedTemplateArgument(TemplateArgument(0, 0));
606    } else {
607      TemplateArgument *ArgumentPack
608        = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
609      std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
610                ArgumentPack);
611      NewPack
612        = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
613                                                   NewlyDeducedPacks[I].size()),
614                            NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
615    }
616
617    DeducedTemplateArgument Result
618      = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
619    if (Result.isNull()) {
620      Info.Param
621        = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
622      Info.FirstArg = SavedPacks[I];
623      Info.SecondArg = NewPack;
624      return Sema::TDK_Inconsistent;
625    }
626
627    Deduced[PackIndices[I]] = Result;
628  }
629
630  return Sema::TDK_Success;
631}
632
633/// \brief Deduce the template arguments by comparing the list of parameter
634/// types to the list of argument types, as in the parameter-type-lists of
635/// function types (C++ [temp.deduct.type]p10).
636///
637/// \param S The semantic analysis object within which we are deducing
638///
639/// \param TemplateParams The template parameters that we are deducing
640///
641/// \param Params The list of parameter types
642///
643/// \param NumParams The number of types in \c Params
644///
645/// \param Args The list of argument types
646///
647/// \param NumArgs The number of types in \c Args
648///
649/// \param Info information about the template argument deduction itself
650///
651/// \param Deduced the deduced template arguments
652///
653/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
654/// how template argument deduction is performed.
655///
656/// \param PartialOrdering If true, we are performing template argument
657/// deduction for during partial ordering for a call
658/// (C++0x [temp.deduct.partial]).
659///
660/// \param RefParamComparisons If we're performing template argument deduction
661/// in the context of partial ordering, the set of qualifier comparisons.
662///
663/// \returns the result of template argument deduction so far. Note that a
664/// "success" result means that template argument deduction has not yet failed,
665/// but it may still fail, later, for other reasons.
666static Sema::TemplateDeductionResult
667DeduceTemplateArguments(Sema &S,
668                        TemplateParameterList *TemplateParams,
669                        const QualType *Params, unsigned NumParams,
670                        const QualType *Args, unsigned NumArgs,
671                        TemplateDeductionInfo &Info,
672                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
673                        unsigned TDF,
674                        bool PartialOrdering = false,
675                        SmallVectorImpl<RefParamPartialOrderingComparison> *
676                                                     RefParamComparisons = 0) {
677  // Fast-path check to see if we have too many/too few arguments.
678  if (NumParams != NumArgs &&
679      !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
680      !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
681    return Sema::TDK_NonDeducedMismatch;
682
683  // C++0x [temp.deduct.type]p10:
684  //   Similarly, if P has a form that contains (T), then each parameter type
685  //   Pi of the respective parameter-type- list of P is compared with the
686  //   corresponding parameter type Ai of the corresponding parameter-type-list
687  //   of A. [...]
688  unsigned ArgIdx = 0, ParamIdx = 0;
689  for (; ParamIdx != NumParams; ++ParamIdx) {
690    // Check argument types.
691    const PackExpansionType *Expansion
692                                = dyn_cast<PackExpansionType>(Params[ParamIdx]);
693    if (!Expansion) {
694      // Simple case: compare the parameter and argument types at this point.
695
696      // Make sure we have an argument.
697      if (ArgIdx >= NumArgs)
698        return Sema::TDK_NonDeducedMismatch;
699
700      if (isa<PackExpansionType>(Args[ArgIdx])) {
701        // C++0x [temp.deduct.type]p22:
702        //   If the original function parameter associated with A is a function
703        //   parameter pack and the function parameter associated with P is not
704        //   a function parameter pack, then template argument deduction fails.
705        return Sema::TDK_NonDeducedMismatch;
706      }
707
708      if (Sema::TemplateDeductionResult Result
709            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
710                                                 Params[ParamIdx], Args[ArgIdx],
711                                                 Info, Deduced, TDF,
712                                                 PartialOrdering,
713                                                 RefParamComparisons))
714        return Result;
715
716      ++ArgIdx;
717      continue;
718    }
719
720    // C++0x [temp.deduct.type]p5:
721    //   The non-deduced contexts are:
722    //     - A function parameter pack that does not occur at the end of the
723    //       parameter-declaration-clause.
724    if (ParamIdx + 1 < NumParams)
725      return Sema::TDK_Success;
726
727    // C++0x [temp.deduct.type]p10:
728    //   If the parameter-declaration corresponding to Pi is a function
729    //   parameter pack, then the type of its declarator- id is compared with
730    //   each remaining parameter type in the parameter-type-list of A. Each
731    //   comparison deduces template arguments for subsequent positions in the
732    //   template parameter packs expanded by the function parameter pack.
733
734    // Compute the set of template parameter indices that correspond to
735    // parameter packs expanded by the pack expansion.
736    SmallVector<unsigned, 2> PackIndices;
737    QualType Pattern = Expansion->getPattern();
738    {
739      llvm::SmallBitVector SawIndices(TemplateParams->size());
740      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
741      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
742      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
743        unsigned Depth, Index;
744        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
745        if (Depth == 0 && !SawIndices[Index]) {
746          SawIndices[Index] = true;
747          PackIndices.push_back(Index);
748        }
749      }
750    }
751    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
752
753    // Keep track of the deduced template arguments for each parameter pack
754    // expanded by this pack expansion (the outer index) and for each
755    // template argument (the inner SmallVectors).
756    SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
757      NewlyDeducedPacks(PackIndices.size());
758    SmallVector<DeducedTemplateArgument, 2>
759      SavedPacks(PackIndices.size());
760    PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
761                                 NewlyDeducedPacks);
762
763    bool HasAnyArguments = false;
764    for (; ArgIdx < NumArgs; ++ArgIdx) {
765      HasAnyArguments = true;
766
767      // Deduce template arguments from the pattern.
768      if (Sema::TemplateDeductionResult Result
769            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
770                                                 Args[ArgIdx], Info, Deduced,
771                                                 TDF, PartialOrdering,
772                                                 RefParamComparisons))
773        return Result;
774
775      // Capture the deduced template arguments for each parameter pack expanded
776      // by this pack expansion, add them to the list of arguments we've deduced
777      // for that pack, then clear out the deduced argument.
778      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
779        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
780        if (!DeducedArg.isNull()) {
781          NewlyDeducedPacks[I].push_back(DeducedArg);
782          DeducedArg = DeducedTemplateArgument();
783        }
784      }
785    }
786
787    // Build argument packs for each of the parameter packs expanded by this
788    // pack expansion.
789    if (Sema::TemplateDeductionResult Result
790          = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
791                                        Deduced, PackIndices, SavedPacks,
792                                        NewlyDeducedPacks, Info))
793      return Result;
794  }
795
796  // Make sure we don't have any extra arguments.
797  if (ArgIdx < NumArgs)
798    return Sema::TDK_NonDeducedMismatch;
799
800  return Sema::TDK_Success;
801}
802
803/// \brief Determine whether the parameter has qualifiers that are either
804/// inconsistent with or a superset of the argument's qualifiers.
805static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
806                                                  QualType ArgType) {
807  Qualifiers ParamQs = ParamType.getQualifiers();
808  Qualifiers ArgQs = ArgType.getQualifiers();
809
810  if (ParamQs == ArgQs)
811    return false;
812
813  // Mismatched (but not missing) Objective-C GC attributes.
814  if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
815      ParamQs.hasObjCGCAttr())
816    return true;
817
818  // Mismatched (but not missing) address spaces.
819  if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
820      ParamQs.hasAddressSpace())
821    return true;
822
823  // Mismatched (but not missing) Objective-C lifetime qualifiers.
824  if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
825      ParamQs.hasObjCLifetime())
826    return true;
827
828  // CVR qualifier superset.
829  return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
830      ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
831                                                == ParamQs.getCVRQualifiers());
832}
833
834/// \brief Deduce the template arguments by comparing the parameter type and
835/// the argument type (C++ [temp.deduct.type]).
836///
837/// \param S the semantic analysis object within which we are deducing
838///
839/// \param TemplateParams the template parameters that we are deducing
840///
841/// \param ParamIn the parameter type
842///
843/// \param ArgIn the argument type
844///
845/// \param Info information about the template argument deduction itself
846///
847/// \param Deduced the deduced template arguments
848///
849/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
850/// how template argument deduction is performed.
851///
852/// \param PartialOrdering Whether we're performing template argument deduction
853/// in the context of partial ordering (C++0x [temp.deduct.partial]).
854///
855/// \param RefParamComparisons If we're performing template argument deduction
856/// in the context of partial ordering, the set of qualifier comparisons.
857///
858/// \returns the result of template argument deduction so far. Note that a
859/// "success" result means that template argument deduction has not yet failed,
860/// but it may still fail, later, for other reasons.
861static Sema::TemplateDeductionResult
862DeduceTemplateArgumentsByTypeMatch(Sema &S,
863                                   TemplateParameterList *TemplateParams,
864                                   QualType ParamIn, QualType ArgIn,
865                                   TemplateDeductionInfo &Info,
866                            SmallVectorImpl<DeducedTemplateArgument> &Deduced,
867                                   unsigned TDF,
868                                   bool PartialOrdering,
869                            SmallVectorImpl<RefParamPartialOrderingComparison> *
870                                                          RefParamComparisons) {
871  // We only want to look at the canonical types, since typedefs and
872  // sugar are not part of template argument deduction.
873  QualType Param = S.Context.getCanonicalType(ParamIn);
874  QualType Arg = S.Context.getCanonicalType(ArgIn);
875
876  // If the argument type is a pack expansion, look at its pattern.
877  // This isn't explicitly called out
878  if (const PackExpansionType *ArgExpansion
879                                            = dyn_cast<PackExpansionType>(Arg))
880    Arg = ArgExpansion->getPattern();
881
882  if (PartialOrdering) {
883    // C++0x [temp.deduct.partial]p5:
884    //   Before the partial ordering is done, certain transformations are
885    //   performed on the types used for partial ordering:
886    //     - If P is a reference type, P is replaced by the type referred to.
887    const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
888    if (ParamRef)
889      Param = ParamRef->getPointeeType();
890
891    //     - If A is a reference type, A is replaced by the type referred to.
892    const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
893    if (ArgRef)
894      Arg = ArgRef->getPointeeType();
895
896    if (RefParamComparisons && ParamRef && ArgRef) {
897      // C++0x [temp.deduct.partial]p6:
898      //   If both P and A were reference types (before being replaced with the
899      //   type referred to above), determine which of the two types (if any) is
900      //   more cv-qualified than the other; otherwise the types are considered
901      //   to be equally cv-qualified for partial ordering purposes. The result
902      //   of this determination will be used below.
903      //
904      // We save this information for later, using it only when deduction
905      // succeeds in both directions.
906      RefParamPartialOrderingComparison Comparison;
907      Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
908      Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
909      Comparison.Qualifiers = NeitherMoreQualified;
910
911      Qualifiers ParamQuals = Param.getQualifiers();
912      Qualifiers ArgQuals = Arg.getQualifiers();
913      if (ParamQuals.isStrictSupersetOf(ArgQuals))
914        Comparison.Qualifiers = ParamMoreQualified;
915      else if (ArgQuals.isStrictSupersetOf(ParamQuals))
916        Comparison.Qualifiers = ArgMoreQualified;
917      RefParamComparisons->push_back(Comparison);
918    }
919
920    // C++0x [temp.deduct.partial]p7:
921    //   Remove any top-level cv-qualifiers:
922    //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
923    //       version of P.
924    Param = Param.getUnqualifiedType();
925    //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
926    //       version of A.
927    Arg = Arg.getUnqualifiedType();
928  } else {
929    // C++0x [temp.deduct.call]p4 bullet 1:
930    //   - If the original P is a reference type, the deduced A (i.e., the type
931    //     referred to by the reference) can be more cv-qualified than the
932    //     transformed A.
933    if (TDF & TDF_ParamWithReferenceType) {
934      Qualifiers Quals;
935      QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
936      Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
937                             Arg.getCVRQualifiers());
938      Param = S.Context.getQualifiedType(UnqualParam, Quals);
939    }
940
941    if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
942      // C++0x [temp.deduct.type]p10:
943      //   If P and A are function types that originated from deduction when
944      //   taking the address of a function template (14.8.2.2) or when deducing
945      //   template arguments from a function declaration (14.8.2.6) and Pi and
946      //   Ai are parameters of the top-level parameter-type-list of P and A,
947      //   respectively, Pi is adjusted if it is an rvalue reference to a
948      //   cv-unqualified template parameter and Ai is an lvalue reference, in
949      //   which case the type of Pi is changed to be the template parameter
950      //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
951      //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
952      //   deduced as X&. - end note ]
953      TDF &= ~TDF_TopLevelParameterTypeList;
954
955      if (const RValueReferenceType *ParamRef
956                                        = Param->getAs<RValueReferenceType>()) {
957        if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
958            !ParamRef->getPointeeType().getQualifiers())
959          if (Arg->isLValueReferenceType())
960            Param = ParamRef->getPointeeType();
961      }
962    }
963  }
964
965  // C++ [temp.deduct.type]p9:
966  //   A template type argument T, a template template argument TT or a
967  //   template non-type argument i can be deduced if P and A have one of
968  //   the following forms:
969  //
970  //     T
971  //     cv-list T
972  if (const TemplateTypeParmType *TemplateTypeParm
973        = Param->getAs<TemplateTypeParmType>()) {
974    // Just skip any attempts to deduce from a placeholder type.
975    if (Arg->isPlaceholderType())
976      return Sema::TDK_Success;
977
978    unsigned Index = TemplateTypeParm->getIndex();
979    bool RecanonicalizeArg = false;
980
981    // If the argument type is an array type, move the qualifiers up to the
982    // top level, so they can be matched with the qualifiers on the parameter.
983    if (isa<ArrayType>(Arg)) {
984      Qualifiers Quals;
985      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
986      if (Quals) {
987        Arg = S.Context.getQualifiedType(Arg, Quals);
988        RecanonicalizeArg = true;
989      }
990    }
991
992    // The argument type can not be less qualified than the parameter
993    // type.
994    if (!(TDF & TDF_IgnoreQualifiers) &&
995        hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
996      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
997      Info.FirstArg = TemplateArgument(Param);
998      Info.SecondArg = TemplateArgument(Arg);
999      return Sema::TDK_Underqualified;
1000    }
1001
1002    assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
1003    assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1004    QualType DeducedType = Arg;
1005
1006    // Remove any qualifiers on the parameter from the deduced type.
1007    // We checked the qualifiers for consistency above.
1008    Qualifiers DeducedQs = DeducedType.getQualifiers();
1009    Qualifiers ParamQs = Param.getQualifiers();
1010    DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1011    if (ParamQs.hasObjCGCAttr())
1012      DeducedQs.removeObjCGCAttr();
1013    if (ParamQs.hasAddressSpace())
1014      DeducedQs.removeAddressSpace();
1015    if (ParamQs.hasObjCLifetime())
1016      DeducedQs.removeObjCLifetime();
1017
1018    // Objective-C ARC:
1019    //   If template deduction would produce a lifetime qualifier on a type
1020    //   that is not a lifetime type, template argument deduction fails.
1021    if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1022        !DeducedType->isDependentType()) {
1023      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1024      Info.FirstArg = TemplateArgument(Param);
1025      Info.SecondArg = TemplateArgument(Arg);
1026      return Sema::TDK_Underqualified;
1027    }
1028
1029    // Objective-C ARC:
1030    //   If template deduction would produce an argument type with lifetime type
1031    //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1032    if (S.getLangOpts().ObjCAutoRefCount &&
1033        DeducedType->isObjCLifetimeType() &&
1034        !DeducedQs.hasObjCLifetime())
1035      DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1036
1037    DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1038                                             DeducedQs);
1039
1040    if (RecanonicalizeArg)
1041      DeducedType = S.Context.getCanonicalType(DeducedType);
1042
1043    DeducedTemplateArgument NewDeduced(DeducedType);
1044    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1045                                                                 Deduced[Index],
1046                                                                   NewDeduced);
1047    if (Result.isNull()) {
1048      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1049      Info.FirstArg = Deduced[Index];
1050      Info.SecondArg = NewDeduced;
1051      return Sema::TDK_Inconsistent;
1052    }
1053
1054    Deduced[Index] = Result;
1055    return Sema::TDK_Success;
1056  }
1057
1058  // Set up the template argument deduction information for a failure.
1059  Info.FirstArg = TemplateArgument(ParamIn);
1060  Info.SecondArg = TemplateArgument(ArgIn);
1061
1062  // If the parameter is an already-substituted template parameter
1063  // pack, do nothing: we don't know which of its arguments to look
1064  // at, so we have to wait until all of the parameter packs in this
1065  // expansion have arguments.
1066  if (isa<SubstTemplateTypeParmPackType>(Param))
1067    return Sema::TDK_Success;
1068
1069  // Check the cv-qualifiers on the parameter and argument types.
1070  if (!(TDF & TDF_IgnoreQualifiers)) {
1071    if (TDF & TDF_ParamWithReferenceType) {
1072      if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1073        return Sema::TDK_NonDeducedMismatch;
1074    } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1075      if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1076        return Sema::TDK_NonDeducedMismatch;
1077    }
1078
1079    // If the parameter type is not dependent, there is nothing to deduce.
1080    if (!Param->isDependentType()) {
1081      if (!(TDF & TDF_SkipNonDependent) && Param != Arg)
1082        return Sema::TDK_NonDeducedMismatch;
1083
1084      return Sema::TDK_Success;
1085    }
1086  } else if (!Param->isDependentType() &&
1087             Param.getUnqualifiedType() == Arg.getUnqualifiedType()) {
1088    return Sema::TDK_Success;
1089  }
1090
1091  switch (Param->getTypeClass()) {
1092    // Non-canonical types cannot appear here.
1093#define NON_CANONICAL_TYPE(Class, Base) \
1094  case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1095#define TYPE(Class, Base)
1096#include "clang/AST/TypeNodes.def"
1097
1098    case Type::TemplateTypeParm:
1099    case Type::SubstTemplateTypeParmPack:
1100      llvm_unreachable("Type nodes handled above");
1101
1102    // These types cannot be dependent, so simply check whether the types are
1103    // the same.
1104    case Type::Builtin:
1105    case Type::VariableArray:
1106    case Type::Vector:
1107    case Type::FunctionNoProto:
1108    case Type::Record:
1109    case Type::Enum:
1110    case Type::ObjCObject:
1111    case Type::ObjCInterface:
1112    case Type::ObjCObjectPointer: {
1113      if (TDF & TDF_SkipNonDependent)
1114        return Sema::TDK_Success;
1115
1116      if (TDF & TDF_IgnoreQualifiers) {
1117        Param = Param.getUnqualifiedType();
1118        Arg = Arg.getUnqualifiedType();
1119      }
1120
1121      return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
1122    }
1123
1124    //     _Complex T   [placeholder extension]
1125    case Type::Complex:
1126      if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1127        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1128                                    cast<ComplexType>(Param)->getElementType(),
1129                                    ComplexArg->getElementType(),
1130                                    Info, Deduced, TDF);
1131
1132      return Sema::TDK_NonDeducedMismatch;
1133
1134    //     _Atomic T   [extension]
1135    case Type::Atomic:
1136      if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
1137        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1138                                       cast<AtomicType>(Param)->getValueType(),
1139                                       AtomicArg->getValueType(),
1140                                       Info, Deduced, TDF);
1141
1142      return Sema::TDK_NonDeducedMismatch;
1143
1144    //     T *
1145    case Type::Pointer: {
1146      QualType PointeeType;
1147      if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1148        PointeeType = PointerArg->getPointeeType();
1149      } else if (const ObjCObjectPointerType *PointerArg
1150                   = Arg->getAs<ObjCObjectPointerType>()) {
1151        PointeeType = PointerArg->getPointeeType();
1152      } else {
1153        return Sema::TDK_NonDeducedMismatch;
1154      }
1155
1156      unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1157      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1158                                     cast<PointerType>(Param)->getPointeeType(),
1159                                     PointeeType,
1160                                     Info, Deduced, SubTDF);
1161    }
1162
1163    //     T &
1164    case Type::LValueReference: {
1165      const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
1166      if (!ReferenceArg)
1167        return Sema::TDK_NonDeducedMismatch;
1168
1169      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1170                           cast<LValueReferenceType>(Param)->getPointeeType(),
1171                           ReferenceArg->getPointeeType(), Info, Deduced, 0);
1172    }
1173
1174    //     T && [C++0x]
1175    case Type::RValueReference: {
1176      const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
1177      if (!ReferenceArg)
1178        return Sema::TDK_NonDeducedMismatch;
1179
1180      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1181                             cast<RValueReferenceType>(Param)->getPointeeType(),
1182                             ReferenceArg->getPointeeType(),
1183                             Info, Deduced, 0);
1184    }
1185
1186    //     T [] (implied, but not stated explicitly)
1187    case Type::IncompleteArray: {
1188      const IncompleteArrayType *IncompleteArrayArg =
1189        S.Context.getAsIncompleteArrayType(Arg);
1190      if (!IncompleteArrayArg)
1191        return Sema::TDK_NonDeducedMismatch;
1192
1193      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1194      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1195                    S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1196                    IncompleteArrayArg->getElementType(),
1197                    Info, Deduced, SubTDF);
1198    }
1199
1200    //     T [integer-constant]
1201    case Type::ConstantArray: {
1202      const ConstantArrayType *ConstantArrayArg =
1203        S.Context.getAsConstantArrayType(Arg);
1204      if (!ConstantArrayArg)
1205        return Sema::TDK_NonDeducedMismatch;
1206
1207      const ConstantArrayType *ConstantArrayParm =
1208        S.Context.getAsConstantArrayType(Param);
1209      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1210        return Sema::TDK_NonDeducedMismatch;
1211
1212      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1213      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1214                                           ConstantArrayParm->getElementType(),
1215                                           ConstantArrayArg->getElementType(),
1216                                           Info, Deduced, SubTDF);
1217    }
1218
1219    //     type [i]
1220    case Type::DependentSizedArray: {
1221      const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1222      if (!ArrayArg)
1223        return Sema::TDK_NonDeducedMismatch;
1224
1225      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1226
1227      // Check the element type of the arrays
1228      const DependentSizedArrayType *DependentArrayParm
1229        = S.Context.getAsDependentSizedArrayType(Param);
1230      if (Sema::TemplateDeductionResult Result
1231            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1232                                          DependentArrayParm->getElementType(),
1233                                          ArrayArg->getElementType(),
1234                                          Info, Deduced, SubTDF))
1235        return Result;
1236
1237      // Determine the array bound is something we can deduce.
1238      NonTypeTemplateParmDecl *NTTP
1239        = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
1240      if (!NTTP)
1241        return Sema::TDK_Success;
1242
1243      // We can perform template argument deduction for the given non-type
1244      // template parameter.
1245      assert(NTTP->getDepth() == 0 &&
1246             "Cannot deduce non-type template argument at depth > 0");
1247      if (const ConstantArrayType *ConstantArrayArg
1248            = dyn_cast<ConstantArrayType>(ArrayArg)) {
1249        llvm::APSInt Size(ConstantArrayArg->getSize());
1250        return DeduceNonTypeTemplateArgument(S, NTTP, Size,
1251                                             S.Context.getSizeType(),
1252                                             /*ArrayBound=*/true,
1253                                             Info, Deduced);
1254      }
1255      if (const DependentSizedArrayType *DependentArrayArg
1256            = dyn_cast<DependentSizedArrayType>(ArrayArg))
1257        if (DependentArrayArg->getSizeExpr())
1258          return DeduceNonTypeTemplateArgument(S, NTTP,
1259                                               DependentArrayArg->getSizeExpr(),
1260                                               Info, Deduced);
1261
1262      // Incomplete type does not match a dependently-sized array type
1263      return Sema::TDK_NonDeducedMismatch;
1264    }
1265
1266    //     type(*)(T)
1267    //     T(*)()
1268    //     T(*)(T)
1269    case Type::FunctionProto: {
1270      unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1271      const FunctionProtoType *FunctionProtoArg =
1272        dyn_cast<FunctionProtoType>(Arg);
1273      if (!FunctionProtoArg)
1274        return Sema::TDK_NonDeducedMismatch;
1275
1276      const FunctionProtoType *FunctionProtoParam =
1277        cast<FunctionProtoType>(Param);
1278
1279      if (FunctionProtoParam->getTypeQuals()
1280            != FunctionProtoArg->getTypeQuals() ||
1281          FunctionProtoParam->getRefQualifier()
1282            != FunctionProtoArg->getRefQualifier() ||
1283          FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1284        return Sema::TDK_NonDeducedMismatch;
1285
1286      // Check return types.
1287      if (Sema::TemplateDeductionResult Result
1288            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1289                                            FunctionProtoParam->getResultType(),
1290                                            FunctionProtoArg->getResultType(),
1291                                            Info, Deduced, 0))
1292        return Result;
1293
1294      return DeduceTemplateArguments(S, TemplateParams,
1295                                     FunctionProtoParam->arg_type_begin(),
1296                                     FunctionProtoParam->getNumArgs(),
1297                                     FunctionProtoArg->arg_type_begin(),
1298                                     FunctionProtoArg->getNumArgs(),
1299                                     Info, Deduced, SubTDF);
1300    }
1301
1302    case Type::InjectedClassName: {
1303      // Treat a template's injected-class-name as if the template
1304      // specialization type had been used.
1305      Param = cast<InjectedClassNameType>(Param)
1306        ->getInjectedSpecializationType();
1307      assert(isa<TemplateSpecializationType>(Param) &&
1308             "injected class name is not a template specialization type");
1309      // fall through
1310    }
1311
1312    //     template-name<T> (where template-name refers to a class template)
1313    //     template-name<i>
1314    //     TT<T>
1315    //     TT<i>
1316    //     TT<>
1317    case Type::TemplateSpecialization: {
1318      const TemplateSpecializationType *SpecParam
1319        = cast<TemplateSpecializationType>(Param);
1320
1321      // Try to deduce template arguments from the template-id.
1322      Sema::TemplateDeductionResult Result
1323        = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
1324                                  Info, Deduced);
1325
1326      if (Result && (TDF & TDF_DerivedClass)) {
1327        // C++ [temp.deduct.call]p3b3:
1328        //   If P is a class, and P has the form template-id, then A can be a
1329        //   derived class of the deduced A. Likewise, if P is a pointer to a
1330        //   class of the form template-id, A can be a pointer to a derived
1331        //   class pointed to by the deduced A.
1332        //
1333        // More importantly:
1334        //   These alternatives are considered only if type deduction would
1335        //   otherwise fail.
1336        if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
1337          // We cannot inspect base classes as part of deduction when the type
1338          // is incomplete, so either instantiate any templates necessary to
1339          // complete the type, or skip over it if it cannot be completed.
1340          if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
1341            return Result;
1342
1343          // Use data recursion to crawl through the list of base classes.
1344          // Visited contains the set of nodes we have already visited, while
1345          // ToVisit is our stack of records that we still need to visit.
1346          llvm::SmallPtrSet<const RecordType *, 8> Visited;
1347          SmallVector<const RecordType *, 8> ToVisit;
1348          ToVisit.push_back(RecordT);
1349          bool Successful = false;
1350          SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1351                                                              Deduced.end());
1352          while (!ToVisit.empty()) {
1353            // Retrieve the next class in the inheritance hierarchy.
1354            const RecordType *NextT = ToVisit.back();
1355            ToVisit.pop_back();
1356
1357            // If we have already seen this type, skip it.
1358            if (!Visited.insert(NextT))
1359              continue;
1360
1361            // If this is a base class, try to perform template argument
1362            // deduction from it.
1363            if (NextT != RecordT) {
1364              Sema::TemplateDeductionResult BaseResult
1365                = DeduceTemplateArguments(S, TemplateParams, SpecParam,
1366                                          QualType(NextT, 0), Info, Deduced);
1367
1368              // If template argument deduction for this base was successful,
1369              // note that we had some success. Otherwise, ignore any deductions
1370              // from this base class.
1371              if (BaseResult == Sema::TDK_Success) {
1372                Successful = true;
1373                DeducedOrig.clear();
1374                DeducedOrig.append(Deduced.begin(), Deduced.end());
1375              }
1376              else
1377                Deduced = DeducedOrig;
1378            }
1379
1380            // Visit base classes
1381            CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1382            for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
1383                                                 BaseEnd = Next->bases_end();
1384                 Base != BaseEnd; ++Base) {
1385              assert(Base->getType()->isRecordType() &&
1386                     "Base class that isn't a record?");
1387              ToVisit.push_back(Base->getType()->getAs<RecordType>());
1388            }
1389          }
1390
1391          if (Successful)
1392            return Sema::TDK_Success;
1393        }
1394
1395      }
1396
1397      return Result;
1398    }
1399
1400    //     T type::*
1401    //     T T::*
1402    //     T (type::*)()
1403    //     type (T::*)()
1404    //     type (type::*)(T)
1405    //     type (T::*)(T)
1406    //     T (type::*)(T)
1407    //     T (T::*)()
1408    //     T (T::*)(T)
1409    case Type::MemberPointer: {
1410      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1411      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1412      if (!MemPtrArg)
1413        return Sema::TDK_NonDeducedMismatch;
1414
1415      if (Sema::TemplateDeductionResult Result
1416            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1417                                                 MemPtrParam->getPointeeType(),
1418                                                 MemPtrArg->getPointeeType(),
1419                                                 Info, Deduced,
1420                                                 TDF & TDF_IgnoreQualifiers))
1421        return Result;
1422
1423      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1424                                           QualType(MemPtrParam->getClass(), 0),
1425                                           QualType(MemPtrArg->getClass(), 0),
1426                                           Info, Deduced,
1427                                           TDF & TDF_IgnoreQualifiers);
1428    }
1429
1430    //     (clang extension)
1431    //
1432    //     type(^)(T)
1433    //     T(^)()
1434    //     T(^)(T)
1435    case Type::BlockPointer: {
1436      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1437      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1438
1439      if (!BlockPtrArg)
1440        return Sema::TDK_NonDeducedMismatch;
1441
1442      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1443                                                BlockPtrParam->getPointeeType(),
1444                                                BlockPtrArg->getPointeeType(),
1445                                                Info, Deduced, 0);
1446    }
1447
1448    //     (clang extension)
1449    //
1450    //     T __attribute__(((ext_vector_type(<integral constant>))))
1451    case Type::ExtVector: {
1452      const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1453      if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1454        // Make sure that the vectors have the same number of elements.
1455        if (VectorParam->getNumElements() != VectorArg->getNumElements())
1456          return Sema::TDK_NonDeducedMismatch;
1457
1458        // Perform deduction on the element types.
1459        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1460                                                  VectorParam->getElementType(),
1461                                                  VectorArg->getElementType(),
1462                                                  Info, Deduced, TDF);
1463      }
1464
1465      if (const DependentSizedExtVectorType *VectorArg
1466                                = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1467        // We can't check the number of elements, since the argument has a
1468        // dependent number of elements. This can only occur during partial
1469        // ordering.
1470
1471        // Perform deduction on the element types.
1472        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1473                                                  VectorParam->getElementType(),
1474                                                  VectorArg->getElementType(),
1475                                                  Info, Deduced, TDF);
1476      }
1477
1478      return Sema::TDK_NonDeducedMismatch;
1479    }
1480
1481    //     (clang extension)
1482    //
1483    //     T __attribute__(((ext_vector_type(N))))
1484    case Type::DependentSizedExtVector: {
1485      const DependentSizedExtVectorType *VectorParam
1486        = cast<DependentSizedExtVectorType>(Param);
1487
1488      if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1489        // Perform deduction on the element types.
1490        if (Sema::TemplateDeductionResult Result
1491              = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1492                                                  VectorParam->getElementType(),
1493                                                   VectorArg->getElementType(),
1494                                                   Info, Deduced, TDF))
1495          return Result;
1496
1497        // Perform deduction on the vector size, if we can.
1498        NonTypeTemplateParmDecl *NTTP
1499          = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1500        if (!NTTP)
1501          return Sema::TDK_Success;
1502
1503        llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1504        ArgSize = VectorArg->getNumElements();
1505        return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
1506                                             false, Info, Deduced);
1507      }
1508
1509      if (const DependentSizedExtVectorType *VectorArg
1510                                = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1511        // Perform deduction on the element types.
1512        if (Sema::TemplateDeductionResult Result
1513            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1514                                                 VectorParam->getElementType(),
1515                                                 VectorArg->getElementType(),
1516                                                 Info, Deduced, TDF))
1517          return Result;
1518
1519        // Perform deduction on the vector size, if we can.
1520        NonTypeTemplateParmDecl *NTTP
1521          = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1522        if (!NTTP)
1523          return Sema::TDK_Success;
1524
1525        return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
1526                                             Info, Deduced);
1527      }
1528
1529      return Sema::TDK_NonDeducedMismatch;
1530    }
1531
1532    case Type::TypeOfExpr:
1533    case Type::TypeOf:
1534    case Type::DependentName:
1535    case Type::UnresolvedUsing:
1536    case Type::Decltype:
1537    case Type::UnaryTransform:
1538    case Type::Auto:
1539    case Type::DependentTemplateSpecialization:
1540    case Type::PackExpansion:
1541      // No template argument deduction for these types
1542      return Sema::TDK_Success;
1543  }
1544
1545  llvm_unreachable("Invalid Type Class!");
1546}
1547
1548static Sema::TemplateDeductionResult
1549DeduceTemplateArguments(Sema &S,
1550                        TemplateParameterList *TemplateParams,
1551                        const TemplateArgument &Param,
1552                        TemplateArgument Arg,
1553                        TemplateDeductionInfo &Info,
1554                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1555  // If the template argument is a pack expansion, perform template argument
1556  // deduction against the pattern of that expansion. This only occurs during
1557  // partial ordering.
1558  if (Arg.isPackExpansion())
1559    Arg = Arg.getPackExpansionPattern();
1560
1561  switch (Param.getKind()) {
1562  case TemplateArgument::Null:
1563    llvm_unreachable("Null template argument in parameter list");
1564
1565  case TemplateArgument::Type:
1566    if (Arg.getKind() == TemplateArgument::Type)
1567      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1568                                                Param.getAsType(),
1569                                                Arg.getAsType(),
1570                                                Info, Deduced, 0);
1571    Info.FirstArg = Param;
1572    Info.SecondArg = Arg;
1573    return Sema::TDK_NonDeducedMismatch;
1574
1575  case TemplateArgument::Template:
1576    if (Arg.getKind() == TemplateArgument::Template)
1577      return DeduceTemplateArguments(S, TemplateParams,
1578                                     Param.getAsTemplate(),
1579                                     Arg.getAsTemplate(), Info, Deduced);
1580    Info.FirstArg = Param;
1581    Info.SecondArg = Arg;
1582    return Sema::TDK_NonDeducedMismatch;
1583
1584  case TemplateArgument::TemplateExpansion:
1585    llvm_unreachable("caller should handle pack expansions");
1586
1587  case TemplateArgument::Declaration:
1588    if (Arg.getKind() == TemplateArgument::Declaration &&
1589        isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
1590      return Sema::TDK_Success;
1591
1592    Info.FirstArg = Param;
1593    Info.SecondArg = Arg;
1594    return Sema::TDK_NonDeducedMismatch;
1595
1596  case TemplateArgument::Integral:
1597    if (Arg.getKind() == TemplateArgument::Integral) {
1598      if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral()))
1599        return Sema::TDK_Success;
1600
1601      Info.FirstArg = Param;
1602      Info.SecondArg = Arg;
1603      return Sema::TDK_NonDeducedMismatch;
1604    }
1605
1606    if (Arg.getKind() == TemplateArgument::Expression) {
1607      Info.FirstArg = Param;
1608      Info.SecondArg = Arg;
1609      return Sema::TDK_NonDeducedMismatch;
1610    }
1611
1612    Info.FirstArg = Param;
1613    Info.SecondArg = Arg;
1614    return Sema::TDK_NonDeducedMismatch;
1615
1616  case TemplateArgument::Expression: {
1617    if (NonTypeTemplateParmDecl *NTTP
1618          = getDeducedParameterFromExpr(Param.getAsExpr())) {
1619      if (Arg.getKind() == TemplateArgument::Integral)
1620        return DeduceNonTypeTemplateArgument(S, NTTP,
1621                                             *Arg.getAsIntegral(),
1622                                             Arg.getIntegralType(),
1623                                             /*ArrayBound=*/false,
1624                                             Info, Deduced);
1625      if (Arg.getKind() == TemplateArgument::Expression)
1626        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
1627                                             Info, Deduced);
1628      if (Arg.getKind() == TemplateArgument::Declaration)
1629        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
1630                                             Info, Deduced);
1631
1632      Info.FirstArg = Param;
1633      Info.SecondArg = Arg;
1634      return Sema::TDK_NonDeducedMismatch;
1635    }
1636
1637    // Can't deduce anything, but that's okay.
1638    return Sema::TDK_Success;
1639  }
1640  case TemplateArgument::Pack:
1641    llvm_unreachable("Argument packs should be expanded by the caller!");
1642  }
1643
1644  llvm_unreachable("Invalid TemplateArgument Kind!");
1645}
1646
1647/// \brief Determine whether there is a template argument to be used for
1648/// deduction.
1649///
1650/// This routine "expands" argument packs in-place, overriding its input
1651/// parameters so that \c Args[ArgIdx] will be the available template argument.
1652///
1653/// \returns true if there is another template argument (which will be at
1654/// \c Args[ArgIdx]), false otherwise.
1655static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
1656                                            unsigned &ArgIdx,
1657                                            unsigned &NumArgs) {
1658  if (ArgIdx == NumArgs)
1659    return false;
1660
1661  const TemplateArgument &Arg = Args[ArgIdx];
1662  if (Arg.getKind() != TemplateArgument::Pack)
1663    return true;
1664
1665  assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
1666  Args = Arg.pack_begin();
1667  NumArgs = Arg.pack_size();
1668  ArgIdx = 0;
1669  return ArgIdx < NumArgs;
1670}
1671
1672/// \brief Determine whether the given set of template arguments has a pack
1673/// expansion that is not the last template argument.
1674static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
1675                                      unsigned NumArgs) {
1676  unsigned ArgIdx = 0;
1677  while (ArgIdx < NumArgs) {
1678    const TemplateArgument &Arg = Args[ArgIdx];
1679
1680    // Unwrap argument packs.
1681    if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
1682      Args = Arg.pack_begin();
1683      NumArgs = Arg.pack_size();
1684      ArgIdx = 0;
1685      continue;
1686    }
1687
1688    ++ArgIdx;
1689    if (ArgIdx == NumArgs)
1690      return false;
1691
1692    if (Arg.isPackExpansion())
1693      return true;
1694  }
1695
1696  return false;
1697}
1698
1699static Sema::TemplateDeductionResult
1700DeduceTemplateArguments(Sema &S,
1701                        TemplateParameterList *TemplateParams,
1702                        const TemplateArgument *Params, unsigned NumParams,
1703                        const TemplateArgument *Args, unsigned NumArgs,
1704                        TemplateDeductionInfo &Info,
1705                    SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1706                        bool NumberOfArgumentsMustMatch) {
1707  // C++0x [temp.deduct.type]p9:
1708  //   If the template argument list of P contains a pack expansion that is not
1709  //   the last template argument, the entire template argument list is a
1710  //   non-deduced context.
1711  if (hasPackExpansionBeforeEnd(Params, NumParams))
1712    return Sema::TDK_Success;
1713
1714  // C++0x [temp.deduct.type]p9:
1715  //   If P has a form that contains <T> or <i>, then each argument Pi of the
1716  //   respective template argument list P is compared with the corresponding
1717  //   argument Ai of the corresponding template argument list of A.
1718  unsigned ArgIdx = 0, ParamIdx = 0;
1719  for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
1720       ++ParamIdx) {
1721    if (!Params[ParamIdx].isPackExpansion()) {
1722      // The simple case: deduce template arguments by matching Pi and Ai.
1723
1724      // Check whether we have enough arguments.
1725      if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1726        return NumberOfArgumentsMustMatch? Sema::TDK_NonDeducedMismatch
1727                                         : Sema::TDK_Success;
1728
1729      if (Args[ArgIdx].isPackExpansion()) {
1730        // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
1731        // but applied to pack expansions that are template arguments.
1732        return Sema::TDK_NonDeducedMismatch;
1733      }
1734
1735      // Perform deduction for this Pi/Ai pair.
1736      if (Sema::TemplateDeductionResult Result
1737            = DeduceTemplateArguments(S, TemplateParams,
1738                                      Params[ParamIdx], Args[ArgIdx],
1739                                      Info, Deduced))
1740        return Result;
1741
1742      // Move to the next argument.
1743      ++ArgIdx;
1744      continue;
1745    }
1746
1747    // The parameter is a pack expansion.
1748
1749    // C++0x [temp.deduct.type]p9:
1750    //   If Pi is a pack expansion, then the pattern of Pi is compared with
1751    //   each remaining argument in the template argument list of A. Each
1752    //   comparison deduces template arguments for subsequent positions in the
1753    //   template parameter packs expanded by Pi.
1754    TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
1755
1756    // Compute the set of template parameter indices that correspond to
1757    // parameter packs expanded by the pack expansion.
1758    SmallVector<unsigned, 2> PackIndices;
1759    {
1760      llvm::SmallBitVector SawIndices(TemplateParams->size());
1761      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
1762      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
1763      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
1764        unsigned Depth, Index;
1765        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
1766        if (Depth == 0 && !SawIndices[Index]) {
1767          SawIndices[Index] = true;
1768          PackIndices.push_back(Index);
1769        }
1770      }
1771    }
1772    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
1773
1774    // FIXME: If there are no remaining arguments, we can bail out early
1775    // and set any deduced parameter packs to an empty argument pack.
1776    // The latter part of this is a (minor) correctness issue.
1777
1778    // Save the deduced template arguments for each parameter pack expanded
1779    // by this pack expansion, then clear out the deduction.
1780    SmallVector<DeducedTemplateArgument, 2>
1781      SavedPacks(PackIndices.size());
1782    SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
1783      NewlyDeducedPacks(PackIndices.size());
1784    PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
1785                                 NewlyDeducedPacks);
1786
1787    // Keep track of the deduced template arguments for each parameter pack
1788    // expanded by this pack expansion (the outer index) and for each
1789    // template argument (the inner SmallVectors).
1790    bool HasAnyArguments = false;
1791    while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
1792      HasAnyArguments = true;
1793
1794      // Deduce template arguments from the pattern.
1795      if (Sema::TemplateDeductionResult Result
1796            = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
1797                                      Info, Deduced))
1798        return Result;
1799
1800      // Capture the deduced template arguments for each parameter pack expanded
1801      // by this pack expansion, add them to the list of arguments we've deduced
1802      // for that pack, then clear out the deduced argument.
1803      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1804        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
1805        if (!DeducedArg.isNull()) {
1806          NewlyDeducedPacks[I].push_back(DeducedArg);
1807          DeducedArg = DeducedTemplateArgument();
1808        }
1809      }
1810
1811      ++ArgIdx;
1812    }
1813
1814    // Build argument packs for each of the parameter packs expanded by this
1815    // pack expansion.
1816    if (Sema::TemplateDeductionResult Result
1817          = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
1818                                        Deduced, PackIndices, SavedPacks,
1819                                        NewlyDeducedPacks, Info))
1820      return Result;
1821  }
1822
1823  // If there is an argument remaining, then we had too many arguments.
1824  if (NumberOfArgumentsMustMatch &&
1825      hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1826    return Sema::TDK_NonDeducedMismatch;
1827
1828  return Sema::TDK_Success;
1829}
1830
1831static Sema::TemplateDeductionResult
1832DeduceTemplateArguments(Sema &S,
1833                        TemplateParameterList *TemplateParams,
1834                        const TemplateArgumentList &ParamList,
1835                        const TemplateArgumentList &ArgList,
1836                        TemplateDeductionInfo &Info,
1837                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1838  return DeduceTemplateArguments(S, TemplateParams,
1839                                 ParamList.data(), ParamList.size(),
1840                                 ArgList.data(), ArgList.size(),
1841                                 Info, Deduced);
1842}
1843
1844/// \brief Determine whether two template arguments are the same.
1845static bool isSameTemplateArg(ASTContext &Context,
1846                              const TemplateArgument &X,
1847                              const TemplateArgument &Y) {
1848  if (X.getKind() != Y.getKind())
1849    return false;
1850
1851  switch (X.getKind()) {
1852    case TemplateArgument::Null:
1853      llvm_unreachable("Comparing NULL template argument");
1854
1855    case TemplateArgument::Type:
1856      return Context.getCanonicalType(X.getAsType()) ==
1857             Context.getCanonicalType(Y.getAsType());
1858
1859    case TemplateArgument::Declaration:
1860      return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
1861
1862    case TemplateArgument::Template:
1863    case TemplateArgument::TemplateExpansion:
1864      return Context.getCanonicalTemplateName(
1865                    X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
1866             Context.getCanonicalTemplateName(
1867                    Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
1868
1869    case TemplateArgument::Integral:
1870      return *X.getAsIntegral() == *Y.getAsIntegral();
1871
1872    case TemplateArgument::Expression: {
1873      llvm::FoldingSetNodeID XID, YID;
1874      X.getAsExpr()->Profile(XID, Context, true);
1875      Y.getAsExpr()->Profile(YID, Context, true);
1876      return XID == YID;
1877    }
1878
1879    case TemplateArgument::Pack:
1880      if (X.pack_size() != Y.pack_size())
1881        return false;
1882
1883      for (TemplateArgument::pack_iterator XP = X.pack_begin(),
1884                                        XPEnd = X.pack_end(),
1885                                           YP = Y.pack_begin();
1886           XP != XPEnd; ++XP, ++YP)
1887        if (!isSameTemplateArg(Context, *XP, *YP))
1888          return false;
1889
1890      return true;
1891  }
1892
1893  llvm_unreachable("Invalid TemplateArgument Kind!");
1894}
1895
1896/// \brief Allocate a TemplateArgumentLoc where all locations have
1897/// been initialized to the given location.
1898///
1899/// \param S The semantic analysis object.
1900///
1901/// \param The template argument we are producing template argument
1902/// location information for.
1903///
1904/// \param NTTPType For a declaration template argument, the type of
1905/// the non-type template parameter that corresponds to this template
1906/// argument.
1907///
1908/// \param Loc The source location to use for the resulting template
1909/// argument.
1910static TemplateArgumentLoc
1911getTrivialTemplateArgumentLoc(Sema &S,
1912                              const TemplateArgument &Arg,
1913                              QualType NTTPType,
1914                              SourceLocation Loc) {
1915  switch (Arg.getKind()) {
1916  case TemplateArgument::Null:
1917    llvm_unreachable("Can't get a NULL template argument here");
1918
1919  case TemplateArgument::Type:
1920    return TemplateArgumentLoc(Arg,
1921                     S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
1922
1923  case TemplateArgument::Declaration: {
1924    Expr *E
1925      = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
1926          .takeAs<Expr>();
1927    return TemplateArgumentLoc(TemplateArgument(E), E);
1928  }
1929
1930  case TemplateArgument::Integral: {
1931    Expr *E
1932      = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
1933    return TemplateArgumentLoc(TemplateArgument(E), E);
1934  }
1935
1936    case TemplateArgument::Template:
1937    case TemplateArgument::TemplateExpansion: {
1938      NestedNameSpecifierLocBuilder Builder;
1939      TemplateName Template = Arg.getAsTemplate();
1940      if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
1941        Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
1942      else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
1943        Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
1944
1945      if (Arg.getKind() == TemplateArgument::Template)
1946        return TemplateArgumentLoc(Arg,
1947                                   Builder.getWithLocInContext(S.Context),
1948                                   Loc);
1949
1950
1951      return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
1952                                 Loc, Loc);
1953    }
1954
1955  case TemplateArgument::Expression:
1956    return TemplateArgumentLoc(Arg, Arg.getAsExpr());
1957
1958  case TemplateArgument::Pack:
1959    return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
1960  }
1961
1962  llvm_unreachable("Invalid TemplateArgument Kind!");
1963}
1964
1965
1966/// \brief Convert the given deduced template argument and add it to the set of
1967/// fully-converted template arguments.
1968static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
1969                                           DeducedTemplateArgument Arg,
1970                                           NamedDecl *Template,
1971                                           QualType NTTPType,
1972                                           unsigned ArgumentPackIndex,
1973                                           TemplateDeductionInfo &Info,
1974                                           bool InFunctionTemplate,
1975                             SmallVectorImpl<TemplateArgument> &Output) {
1976  if (Arg.getKind() == TemplateArgument::Pack) {
1977    // This is a template argument pack, so check each of its arguments against
1978    // the template parameter.
1979    SmallVector<TemplateArgument, 2> PackedArgsBuilder;
1980    for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
1981                                      PAEnd = Arg.pack_end();
1982         PA != PAEnd; ++PA) {
1983      // When converting the deduced template argument, append it to the
1984      // general output list. We need to do this so that the template argument
1985      // checking logic has all of the prior template arguments available.
1986      DeducedTemplateArgument InnerArg(*PA);
1987      InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
1988      if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
1989                                         NTTPType, PackedArgsBuilder.size(),
1990                                         Info, InFunctionTemplate, Output))
1991        return true;
1992
1993      // Move the converted template argument into our argument pack.
1994      PackedArgsBuilder.push_back(Output.back());
1995      Output.pop_back();
1996    }
1997
1998    // Create the resulting argument pack.
1999    Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
2000                                                      PackedArgsBuilder.data(),
2001                                                     PackedArgsBuilder.size()));
2002    return false;
2003  }
2004
2005  // Convert the deduced template argument into a template
2006  // argument that we can check, almost as if the user had written
2007  // the template argument explicitly.
2008  TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
2009                                                             Info.getLocation());
2010
2011  // Check the template argument, converting it as necessary.
2012  return S.CheckTemplateArgument(Param, ArgLoc,
2013                                 Template,
2014                                 Template->getLocation(),
2015                                 Template->getSourceRange().getEnd(),
2016                                 ArgumentPackIndex,
2017                                 Output,
2018                                 InFunctionTemplate
2019                                  ? (Arg.wasDeducedFromArrayBound()
2020                                       ? Sema::CTAK_DeducedFromArrayBound
2021                                       : Sema::CTAK_Deduced)
2022                                 : Sema::CTAK_Specified);
2023}
2024
2025/// Complete template argument deduction for a class template partial
2026/// specialization.
2027static Sema::TemplateDeductionResult
2028FinishTemplateArgumentDeduction(Sema &S,
2029                                ClassTemplatePartialSpecializationDecl *Partial,
2030                                const TemplateArgumentList &TemplateArgs,
2031                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2032                                TemplateDeductionInfo &Info) {
2033  // Unevaluated SFINAE context.
2034  EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
2035  Sema::SFINAETrap Trap(S);
2036
2037  Sema::ContextRAII SavedContext(S, Partial);
2038
2039  // C++ [temp.deduct.type]p2:
2040  //   [...] or if any template argument remains neither deduced nor
2041  //   explicitly specified, template argument deduction fails.
2042  SmallVector<TemplateArgument, 4> Builder;
2043  TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2044  for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2045    NamedDecl *Param = PartialParams->getParam(I);
2046    if (Deduced[I].isNull()) {
2047      Info.Param = makeTemplateParameter(Param);
2048      return Sema::TDK_Incomplete;
2049    }
2050
2051    // We have deduced this argument, so it still needs to be
2052    // checked and converted.
2053
2054    // First, for a non-type template parameter type that is
2055    // initialized by a declaration, we need the type of the
2056    // corresponding non-type template parameter.
2057    QualType NTTPType;
2058    if (NonTypeTemplateParmDecl *NTTP
2059                                  = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2060      NTTPType = NTTP->getType();
2061      if (NTTPType->isDependentType()) {
2062        TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2063                                          Builder.data(), Builder.size());
2064        NTTPType = S.SubstType(NTTPType,
2065                               MultiLevelTemplateArgumentList(TemplateArgs),
2066                               NTTP->getLocation(),
2067                               NTTP->getDeclName());
2068        if (NTTPType.isNull()) {
2069          Info.Param = makeTemplateParameter(Param);
2070          // FIXME: These template arguments are temporary. Free them!
2071          Info.reset(TemplateArgumentList::CreateCopy(S.Context,
2072                                                      Builder.data(),
2073                                                      Builder.size()));
2074          return Sema::TDK_SubstitutionFailure;
2075        }
2076      }
2077    }
2078
2079    if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
2080                                       Partial, NTTPType, 0, Info, false,
2081                                       Builder)) {
2082      Info.Param = makeTemplateParameter(Param);
2083      // FIXME: These template arguments are temporary. Free them!
2084      Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2085                                                  Builder.size()));
2086      return Sema::TDK_SubstitutionFailure;
2087    }
2088  }
2089
2090  // Form the template argument list from the deduced template arguments.
2091  TemplateArgumentList *DeducedArgumentList
2092    = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2093                                       Builder.size());
2094
2095  Info.reset(DeducedArgumentList);
2096
2097  // Substitute the deduced template arguments into the template
2098  // arguments of the class template partial specialization, and
2099  // verify that the instantiated template arguments are both valid
2100  // and are equivalent to the template arguments originally provided
2101  // to the class template.
2102  LocalInstantiationScope InstScope(S);
2103  ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
2104  const TemplateArgumentLoc *PartialTemplateArgs
2105    = Partial->getTemplateArgsAsWritten();
2106
2107  // Note that we don't provide the langle and rangle locations.
2108  TemplateArgumentListInfo InstArgs;
2109
2110  if (S.Subst(PartialTemplateArgs,
2111              Partial->getNumTemplateArgsAsWritten(),
2112              InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2113    unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2114    if (ParamIdx >= Partial->getTemplateParameters()->size())
2115      ParamIdx = Partial->getTemplateParameters()->size() - 1;
2116
2117    Decl *Param
2118      = const_cast<NamedDecl *>(
2119                          Partial->getTemplateParameters()->getParam(ParamIdx));
2120    Info.Param = makeTemplateParameter(Param);
2121    Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2122    return Sema::TDK_SubstitutionFailure;
2123  }
2124
2125  SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2126  if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
2127                                  InstArgs, false, ConvertedInstArgs))
2128    return Sema::TDK_SubstitutionFailure;
2129
2130  TemplateParameterList *TemplateParams
2131    = ClassTemplate->getTemplateParameters();
2132  for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2133    TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2134    if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2135      Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2136      Info.FirstArg = TemplateArgs[I];
2137      Info.SecondArg = InstArg;
2138      return Sema::TDK_NonDeducedMismatch;
2139    }
2140  }
2141
2142  if (Trap.hasErrorOccurred())
2143    return Sema::TDK_SubstitutionFailure;
2144
2145  return Sema::TDK_Success;
2146}
2147
2148/// \brief Perform template argument deduction to determine whether
2149/// the given template arguments match the given class template
2150/// partial specialization per C++ [temp.class.spec.match].
2151Sema::TemplateDeductionResult
2152Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2153                              const TemplateArgumentList &TemplateArgs,
2154                              TemplateDeductionInfo &Info) {
2155  // C++ [temp.class.spec.match]p2:
2156  //   A partial specialization matches a given actual template
2157  //   argument list if the template arguments of the partial
2158  //   specialization can be deduced from the actual template argument
2159  //   list (14.8.2).
2160
2161  // Unevaluated SFINAE context.
2162  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2163  SFINAETrap Trap(*this);
2164
2165  SmallVector<DeducedTemplateArgument, 4> Deduced;
2166  Deduced.resize(Partial->getTemplateParameters()->size());
2167  if (TemplateDeductionResult Result
2168        = ::DeduceTemplateArguments(*this,
2169                                    Partial->getTemplateParameters(),
2170                                    Partial->getTemplateArgs(),
2171                                    TemplateArgs, Info, Deduced))
2172    return Result;
2173
2174  InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
2175                             Deduced.data(), Deduced.size(), Info);
2176  if (Inst)
2177    return TDK_InstantiationDepth;
2178
2179  if (Trap.hasErrorOccurred())
2180    return Sema::TDK_SubstitutionFailure;
2181
2182  return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2183                                           Deduced, Info);
2184}
2185
2186/// \brief Determine whether the given type T is a simple-template-id type.
2187static bool isSimpleTemplateIdType(QualType T) {
2188  if (const TemplateSpecializationType *Spec
2189        = T->getAs<TemplateSpecializationType>())
2190    return Spec->getTemplateName().getAsTemplateDecl() != 0;
2191
2192  return false;
2193}
2194
2195/// \brief Substitute the explicitly-provided template arguments into the
2196/// given function template according to C++ [temp.arg.explicit].
2197///
2198/// \param FunctionTemplate the function template into which the explicit
2199/// template arguments will be substituted.
2200///
2201/// \param ExplicitTemplateArguments the explicitly-specified template
2202/// arguments.
2203///
2204/// \param Deduced the deduced template arguments, which will be populated
2205/// with the converted and checked explicit template arguments.
2206///
2207/// \param ParamTypes will be populated with the instantiated function
2208/// parameters.
2209///
2210/// \param FunctionType if non-NULL, the result type of the function template
2211/// will also be instantiated and the pointed-to value will be updated with
2212/// the instantiated function type.
2213///
2214/// \param Info if substitution fails for any reason, this object will be
2215/// populated with more information about the failure.
2216///
2217/// \returns TDK_Success if substitution was successful, or some failure
2218/// condition.
2219Sema::TemplateDeductionResult
2220Sema::SubstituteExplicitTemplateArguments(
2221                                      FunctionTemplateDecl *FunctionTemplate,
2222                               TemplateArgumentListInfo &ExplicitTemplateArgs,
2223                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2224                                 SmallVectorImpl<QualType> &ParamTypes,
2225                                          QualType *FunctionType,
2226                                          TemplateDeductionInfo &Info) {
2227  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2228  TemplateParameterList *TemplateParams
2229    = FunctionTemplate->getTemplateParameters();
2230
2231  if (ExplicitTemplateArgs.size() == 0) {
2232    // No arguments to substitute; just copy over the parameter types and
2233    // fill in the function type.
2234    for (FunctionDecl::param_iterator P = Function->param_begin(),
2235                                   PEnd = Function->param_end();
2236         P != PEnd;
2237         ++P)
2238      ParamTypes.push_back((*P)->getType());
2239
2240    if (FunctionType)
2241      *FunctionType = Function->getType();
2242    return TDK_Success;
2243  }
2244
2245  // Unevaluated SFINAE context.
2246  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2247  SFINAETrap Trap(*this);
2248
2249  // C++ [temp.arg.explicit]p3:
2250  //   Template arguments that are present shall be specified in the
2251  //   declaration order of their corresponding template-parameters. The
2252  //   template argument list shall not specify more template-arguments than
2253  //   there are corresponding template-parameters.
2254  SmallVector<TemplateArgument, 4> Builder;
2255
2256  // Enter a new template instantiation context where we check the
2257  // explicitly-specified template arguments against this function template,
2258  // and then substitute them into the function parameter types.
2259  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2260                             FunctionTemplate, Deduced.data(), Deduced.size(),
2261           ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
2262                             Info);
2263  if (Inst)
2264    return TDK_InstantiationDepth;
2265
2266  if (CheckTemplateArgumentList(FunctionTemplate,
2267                                SourceLocation(),
2268                                ExplicitTemplateArgs,
2269                                true,
2270                                Builder) || Trap.hasErrorOccurred()) {
2271    unsigned Index = Builder.size();
2272    if (Index >= TemplateParams->size())
2273      Index = TemplateParams->size() - 1;
2274    Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
2275    return TDK_InvalidExplicitArguments;
2276  }
2277
2278  // Form the template argument list from the explicitly-specified
2279  // template arguments.
2280  TemplateArgumentList *ExplicitArgumentList
2281    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2282  Info.reset(ExplicitArgumentList);
2283
2284  // Template argument deduction and the final substitution should be
2285  // done in the context of the templated declaration.  Explicit
2286  // argument substitution, on the other hand, needs to happen in the
2287  // calling context.
2288  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2289
2290  // If we deduced template arguments for a template parameter pack,
2291  // note that the template argument pack is partially substituted and record
2292  // the explicit template arguments. They'll be used as part of deduction
2293  // for this template parameter pack.
2294  for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
2295    const TemplateArgument &Arg = Builder[I];
2296    if (Arg.getKind() == TemplateArgument::Pack) {
2297      CurrentInstantiationScope->SetPartiallySubstitutedPack(
2298                                                 TemplateParams->getParam(I),
2299                                                             Arg.pack_begin(),
2300                                                             Arg.pack_size());
2301      break;
2302    }
2303  }
2304
2305  const FunctionProtoType *Proto
2306    = Function->getType()->getAs<FunctionProtoType>();
2307  assert(Proto && "Function template does not have a prototype?");
2308
2309  // Instantiate the types of each of the function parameters given the
2310  // explicitly-specified template arguments. If the function has a trailing
2311  // return type, substitute it after the arguments to ensure we substitute
2312  // in lexical order.
2313  if (Proto->hasTrailingReturn()) {
2314    if (SubstParmTypes(Function->getLocation(),
2315                       Function->param_begin(), Function->getNumParams(),
2316                       MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2317                       ParamTypes))
2318      return TDK_SubstitutionFailure;
2319  }
2320
2321  // Instantiate the return type.
2322  // FIXME: exception-specifications?
2323  QualType ResultType;
2324  {
2325    // C++11 [expr.prim.general]p3:
2326    //   If a declaration declares a member function or member function
2327    //   template of a class X, the expression this is a prvalue of type
2328    //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
2329    //   and the end of the function-definition, member-declarator, or
2330    //   declarator.
2331    unsigned ThisTypeQuals = 0;
2332    CXXRecordDecl *ThisContext = 0;
2333    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2334      ThisContext = Method->getParent();
2335      ThisTypeQuals = Method->getTypeQualifiers();
2336    }
2337
2338    CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
2339                               getLangOpts().CPlusPlus0x);
2340
2341    ResultType = SubstType(Proto->getResultType(),
2342                   MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2343                   Function->getTypeSpecStartLoc(),
2344                   Function->getDeclName());
2345    if (ResultType.isNull() || Trap.hasErrorOccurred())
2346      return TDK_SubstitutionFailure;
2347  }
2348
2349  // Instantiate the types of each of the function parameters given the
2350  // explicitly-specified template arguments if we didn't do so earlier.
2351  if (!Proto->hasTrailingReturn() &&
2352      SubstParmTypes(Function->getLocation(),
2353                     Function->param_begin(), Function->getNumParams(),
2354                     MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2355                     ParamTypes))
2356    return TDK_SubstitutionFailure;
2357
2358  if (FunctionType) {
2359    *FunctionType = BuildFunctionType(ResultType,
2360                                      ParamTypes.data(), ParamTypes.size(),
2361                                      Proto->isVariadic(),
2362                                      Proto->hasTrailingReturn(),
2363                                      Proto->getTypeQuals(),
2364                                      Proto->getRefQualifier(),
2365                                      Function->getLocation(),
2366                                      Function->getDeclName(),
2367                                      Proto->getExtInfo());
2368    if (FunctionType->isNull() || Trap.hasErrorOccurred())
2369      return TDK_SubstitutionFailure;
2370  }
2371
2372  // C++ [temp.arg.explicit]p2:
2373  //   Trailing template arguments that can be deduced (14.8.2) may be
2374  //   omitted from the list of explicit template-arguments. If all of the
2375  //   template arguments can be deduced, they may all be omitted; in this
2376  //   case, the empty template argument list <> itself may also be omitted.
2377  //
2378  // Take all of the explicitly-specified arguments and put them into
2379  // the set of deduced template arguments. Explicitly-specified
2380  // parameter packs, however, will be set to NULL since the deduction
2381  // mechanisms handle explicitly-specified argument packs directly.
2382  Deduced.reserve(TemplateParams->size());
2383  for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
2384    const TemplateArgument &Arg = ExplicitArgumentList->get(I);
2385    if (Arg.getKind() == TemplateArgument::Pack)
2386      Deduced.push_back(DeducedTemplateArgument());
2387    else
2388      Deduced.push_back(Arg);
2389  }
2390
2391  return TDK_Success;
2392}
2393
2394/// \brief Check whether the deduced argument type for a call to a function
2395/// template matches the actual argument type per C++ [temp.deduct.call]p4.
2396static bool
2397CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
2398                              QualType DeducedA) {
2399  ASTContext &Context = S.Context;
2400
2401  QualType A = OriginalArg.OriginalArgType;
2402  QualType OriginalParamType = OriginalArg.OriginalParamType;
2403
2404  // Check for type equality (top-level cv-qualifiers are ignored).
2405  if (Context.hasSameUnqualifiedType(A, DeducedA))
2406    return false;
2407
2408  // Strip off references on the argument types; they aren't needed for
2409  // the following checks.
2410  if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
2411    DeducedA = DeducedARef->getPointeeType();
2412  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
2413    A = ARef->getPointeeType();
2414
2415  // C++ [temp.deduct.call]p4:
2416  //   [...] However, there are three cases that allow a difference:
2417  //     - If the original P is a reference type, the deduced A (i.e., the
2418  //       type referred to by the reference) can be more cv-qualified than
2419  //       the transformed A.
2420  if (const ReferenceType *OriginalParamRef
2421      = OriginalParamType->getAs<ReferenceType>()) {
2422    // We don't want to keep the reference around any more.
2423    OriginalParamType = OriginalParamRef->getPointeeType();
2424
2425    Qualifiers AQuals = A.getQualifiers();
2426    Qualifiers DeducedAQuals = DeducedA.getQualifiers();
2427    if (AQuals == DeducedAQuals) {
2428      // Qualifiers match; there's nothing to do.
2429    } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
2430      return true;
2431    } else {
2432      // Qualifiers are compatible, so have the argument type adopt the
2433      // deduced argument type's qualifiers as if we had performed the
2434      // qualification conversion.
2435      A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
2436    }
2437  }
2438
2439  //    - The transformed A can be another pointer or pointer to member
2440  //      type that can be converted to the deduced A via a qualification
2441  //      conversion.
2442  //
2443  // Also allow conversions which merely strip [[noreturn]] from function types
2444  // (recursively) as an extension.
2445  // FIXME: Currently, this doesn't place nicely with qualfication conversions.
2446  bool ObjCLifetimeConversion = false;
2447  QualType ResultTy;
2448  if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
2449      (S.IsQualificationConversion(A, DeducedA, false,
2450                                   ObjCLifetimeConversion) ||
2451       S.IsNoReturnConversion(A, DeducedA, ResultTy)))
2452    return false;
2453
2454
2455  //    - If P is a class and P has the form simple-template-id, then the
2456  //      transformed A can be a derived class of the deduced A. [...]
2457  //     [...] Likewise, if P is a pointer to a class of the form
2458  //      simple-template-id, the transformed A can be a pointer to a
2459  //      derived class pointed to by the deduced A.
2460  if (const PointerType *OriginalParamPtr
2461      = OriginalParamType->getAs<PointerType>()) {
2462    if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
2463      if (const PointerType *APtr = A->getAs<PointerType>()) {
2464        if (A->getPointeeType()->isRecordType()) {
2465          OriginalParamType = OriginalParamPtr->getPointeeType();
2466          DeducedA = DeducedAPtr->getPointeeType();
2467          A = APtr->getPointeeType();
2468        }
2469      }
2470    }
2471  }
2472
2473  if (Context.hasSameUnqualifiedType(A, DeducedA))
2474    return false;
2475
2476  if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
2477      S.IsDerivedFrom(A, DeducedA))
2478    return false;
2479
2480  return true;
2481}
2482
2483/// \brief Finish template argument deduction for a function template,
2484/// checking the deduced template arguments for completeness and forming
2485/// the function template specialization.
2486///
2487/// \param OriginalCallArgs If non-NULL, the original call arguments against
2488/// which the deduced argument types should be compared.
2489Sema::TemplateDeductionResult
2490Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
2491                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2492                                      unsigned NumExplicitlySpecified,
2493                                      FunctionDecl *&Specialization,
2494                                      TemplateDeductionInfo &Info,
2495        SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
2496  TemplateParameterList *TemplateParams
2497    = FunctionTemplate->getTemplateParameters();
2498
2499  // Unevaluated SFINAE context.
2500  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2501  SFINAETrap Trap(*this);
2502
2503  // Enter a new template instantiation context while we instantiate the
2504  // actual function declaration.
2505  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2506                             FunctionTemplate, Deduced.data(), Deduced.size(),
2507              ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
2508                             Info);
2509  if (Inst)
2510    return TDK_InstantiationDepth;
2511
2512  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2513
2514  // C++ [temp.deduct.type]p2:
2515  //   [...] or if any template argument remains neither deduced nor
2516  //   explicitly specified, template argument deduction fails.
2517  SmallVector<TemplateArgument, 4> Builder;
2518  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2519    NamedDecl *Param = TemplateParams->getParam(I);
2520
2521    if (!Deduced[I].isNull()) {
2522      if (I < NumExplicitlySpecified) {
2523        // We have already fully type-checked and converted this
2524        // argument, because it was explicitly-specified. Just record the
2525        // presence of this argument.
2526        Builder.push_back(Deduced[I]);
2527        continue;
2528      }
2529
2530      // We have deduced this argument, so it still needs to be
2531      // checked and converted.
2532
2533      // First, for a non-type template parameter type that is
2534      // initialized by a declaration, we need the type of the
2535      // corresponding non-type template parameter.
2536      QualType NTTPType;
2537      if (NonTypeTemplateParmDecl *NTTP
2538                                = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2539        NTTPType = NTTP->getType();
2540        if (NTTPType->isDependentType()) {
2541          TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2542                                            Builder.data(), Builder.size());
2543          NTTPType = SubstType(NTTPType,
2544                               MultiLevelTemplateArgumentList(TemplateArgs),
2545                               NTTP->getLocation(),
2546                               NTTP->getDeclName());
2547          if (NTTPType.isNull()) {
2548            Info.Param = makeTemplateParameter(Param);
2549            // FIXME: These template arguments are temporary. Free them!
2550            Info.reset(TemplateArgumentList::CreateCopy(Context,
2551                                                        Builder.data(),
2552                                                        Builder.size()));
2553            return TDK_SubstitutionFailure;
2554          }
2555        }
2556      }
2557
2558      if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
2559                                         FunctionTemplate, NTTPType, 0, Info,
2560                                         true, Builder)) {
2561        Info.Param = makeTemplateParameter(Param);
2562        // FIXME: These template arguments are temporary. Free them!
2563        Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2564                                                    Builder.size()));
2565        return TDK_SubstitutionFailure;
2566      }
2567
2568      continue;
2569    }
2570
2571    // C++0x [temp.arg.explicit]p3:
2572    //    A trailing template parameter pack (14.5.3) not otherwise deduced will
2573    //    be deduced to an empty sequence of template arguments.
2574    // FIXME: Where did the word "trailing" come from?
2575    if (Param->isTemplateParameterPack()) {
2576      // We may have had explicitly-specified template arguments for this
2577      // template parameter pack. If so, our empty deduction extends the
2578      // explicitly-specified set (C++0x [temp.arg.explicit]p9).
2579      const TemplateArgument *ExplicitArgs;
2580      unsigned NumExplicitArgs;
2581      if (CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
2582                                                             &NumExplicitArgs)
2583          == Param)
2584        Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
2585      else
2586        Builder.push_back(TemplateArgument(0, 0));
2587
2588      continue;
2589    }
2590
2591    // Substitute into the default template argument, if available.
2592    TemplateArgumentLoc DefArg
2593      = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
2594                                              FunctionTemplate->getLocation(),
2595                                  FunctionTemplate->getSourceRange().getEnd(),
2596                                                Param,
2597                                                Builder);
2598
2599    // If there was no default argument, deduction is incomplete.
2600    if (DefArg.getArgument().isNull()) {
2601      Info.Param = makeTemplateParameter(
2602                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2603      return TDK_Incomplete;
2604    }
2605
2606    // Check whether we can actually use the default argument.
2607    if (CheckTemplateArgument(Param, DefArg,
2608                              FunctionTemplate,
2609                              FunctionTemplate->getLocation(),
2610                              FunctionTemplate->getSourceRange().getEnd(),
2611                              0, Builder,
2612                              CTAK_Specified)) {
2613      Info.Param = makeTemplateParameter(
2614                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2615      // FIXME: These template arguments are temporary. Free them!
2616      Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2617                                                  Builder.size()));
2618      return TDK_SubstitutionFailure;
2619    }
2620
2621    // If we get here, we successfully used the default template argument.
2622  }
2623
2624  // Form the template argument list from the deduced template arguments.
2625  TemplateArgumentList *DeducedArgumentList
2626    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2627  Info.reset(DeducedArgumentList);
2628
2629  // Substitute the deduced template arguments into the function template
2630  // declaration to produce the function template specialization.
2631  DeclContext *Owner = FunctionTemplate->getDeclContext();
2632  if (FunctionTemplate->getFriendObjectKind())
2633    Owner = FunctionTemplate->getLexicalDeclContext();
2634  Specialization = cast_or_null<FunctionDecl>(
2635                      SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
2636                         MultiLevelTemplateArgumentList(*DeducedArgumentList)));
2637  if (!Specialization || Specialization->isInvalidDecl())
2638    return TDK_SubstitutionFailure;
2639
2640  assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
2641         FunctionTemplate->getCanonicalDecl());
2642
2643  // If the template argument list is owned by the function template
2644  // specialization, release it.
2645  if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
2646      !Trap.hasErrorOccurred())
2647    Info.take();
2648
2649  // There may have been an error that did not prevent us from constructing a
2650  // declaration. Mark the declaration invalid and return with a substitution
2651  // failure.
2652  if (Trap.hasErrorOccurred()) {
2653    Specialization->setInvalidDecl(true);
2654    return TDK_SubstitutionFailure;
2655  }
2656
2657  if (OriginalCallArgs) {
2658    // C++ [temp.deduct.call]p4:
2659    //   In general, the deduction process attempts to find template argument
2660    //   values that will make the deduced A identical to A (after the type A
2661    //   is transformed as described above). [...]
2662    for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
2663      OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
2664      unsigned ParamIdx = OriginalArg.ArgIdx;
2665
2666      if (ParamIdx >= Specialization->getNumParams())
2667        continue;
2668
2669      QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
2670      if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
2671        return Sema::TDK_SubstitutionFailure;
2672    }
2673  }
2674
2675  // If we suppressed any diagnostics while performing template argument
2676  // deduction, and if we haven't already instantiated this declaration,
2677  // keep track of these diagnostics. They'll be emitted if this specialization
2678  // is actually used.
2679  if (Info.diag_begin() != Info.diag_end()) {
2680    llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
2681      Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
2682    if (Pos == SuppressedDiagnostics.end())
2683        SuppressedDiagnostics[Specialization->getCanonicalDecl()]
2684          .append(Info.diag_begin(), Info.diag_end());
2685  }
2686
2687  return TDK_Success;
2688}
2689
2690/// Gets the type of a function for template-argument-deducton
2691/// purposes when it's considered as part of an overload set.
2692static QualType GetTypeOfFunction(ASTContext &Context,
2693                                  const OverloadExpr::FindResult &R,
2694                                  FunctionDecl *Fn) {
2695  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
2696    if (Method->isInstance()) {
2697      // An instance method that's referenced in a form that doesn't
2698      // look like a member pointer is just invalid.
2699      if (!R.HasFormOfMemberPointer) return QualType();
2700
2701      return Context.getMemberPointerType(Fn->getType(),
2702               Context.getTypeDeclType(Method->getParent()).getTypePtr());
2703    }
2704
2705  if (!R.IsAddressOfOperand) return Fn->getType();
2706  return Context.getPointerType(Fn->getType());
2707}
2708
2709/// Apply the deduction rules for overload sets.
2710///
2711/// \return the null type if this argument should be treated as an
2712/// undeduced context
2713static QualType
2714ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
2715                            Expr *Arg, QualType ParamType,
2716                            bool ParamWasReference) {
2717
2718  OverloadExpr::FindResult R = OverloadExpr::find(Arg);
2719
2720  OverloadExpr *Ovl = R.Expression;
2721
2722  // C++0x [temp.deduct.call]p4
2723  unsigned TDF = 0;
2724  if (ParamWasReference)
2725    TDF |= TDF_ParamWithReferenceType;
2726  if (R.IsAddressOfOperand)
2727    TDF |= TDF_IgnoreQualifiers;
2728
2729  // C++0x [temp.deduct.call]p6:
2730  //   When P is a function type, pointer to function type, or pointer
2731  //   to member function type:
2732
2733  if (!ParamType->isFunctionType() &&
2734      !ParamType->isFunctionPointerType() &&
2735      !ParamType->isMemberFunctionPointerType()) {
2736    if (Ovl->hasExplicitTemplateArgs()) {
2737      // But we can still look for an explicit specialization.
2738      if (FunctionDecl *ExplicitSpec
2739            = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
2740        return GetTypeOfFunction(S.Context, R, ExplicitSpec);
2741    }
2742
2743    return QualType();
2744  }
2745
2746  // Gather the explicit template arguments, if any.
2747  TemplateArgumentListInfo ExplicitTemplateArgs;
2748  if (Ovl->hasExplicitTemplateArgs())
2749    Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
2750  QualType Match;
2751  for (UnresolvedSetIterator I = Ovl->decls_begin(),
2752         E = Ovl->decls_end(); I != E; ++I) {
2753    NamedDecl *D = (*I)->getUnderlyingDecl();
2754
2755    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
2756      //   - If the argument is an overload set containing one or more
2757      //     function templates, the parameter is treated as a
2758      //     non-deduced context.
2759      if (!Ovl->hasExplicitTemplateArgs())
2760        return QualType();
2761
2762      // Otherwise, see if we can resolve a function type
2763      FunctionDecl *Specialization = 0;
2764      TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
2765      if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
2766                                    Specialization, Info))
2767        continue;
2768
2769      D = Specialization;
2770    }
2771
2772    FunctionDecl *Fn = cast<FunctionDecl>(D);
2773    QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
2774    if (ArgType.isNull()) continue;
2775
2776    // Function-to-pointer conversion.
2777    if (!ParamWasReference && ParamType->isPointerType() &&
2778        ArgType->isFunctionType())
2779      ArgType = S.Context.getPointerType(ArgType);
2780
2781    //   - If the argument is an overload set (not containing function
2782    //     templates), trial argument deduction is attempted using each
2783    //     of the members of the set. If deduction succeeds for only one
2784    //     of the overload set members, that member is used as the
2785    //     argument value for the deduction. If deduction succeeds for
2786    //     more than one member of the overload set the parameter is
2787    //     treated as a non-deduced context.
2788
2789    // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
2790    //   Type deduction is done independently for each P/A pair, and
2791    //   the deduced template argument values are then combined.
2792    // So we do not reject deductions which were made elsewhere.
2793    SmallVector<DeducedTemplateArgument, 8>
2794      Deduced(TemplateParams->size());
2795    TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
2796    Sema::TemplateDeductionResult Result
2797      = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
2798                                           ArgType, Info, Deduced, TDF);
2799    if (Result) continue;
2800    if (!Match.isNull()) return QualType();
2801    Match = ArgType;
2802  }
2803
2804  return Match;
2805}
2806
2807/// \brief Perform the adjustments to the parameter and argument types
2808/// described in C++ [temp.deduct.call].
2809///
2810/// \returns true if the caller should not attempt to perform any template
2811/// argument deduction based on this P/A pair.
2812static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
2813                                          TemplateParameterList *TemplateParams,
2814                                                      QualType &ParamType,
2815                                                      QualType &ArgType,
2816                                                      Expr *Arg,
2817                                                      unsigned &TDF) {
2818  // C++0x [temp.deduct.call]p3:
2819  //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
2820  //   are ignored for type deduction.
2821  if (ParamType.hasQualifiers())
2822    ParamType = ParamType.getUnqualifiedType();
2823  const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
2824  if (ParamRefType) {
2825    QualType PointeeType = ParamRefType->getPointeeType();
2826
2827    // If the argument has incomplete array type, try to complete it's type.
2828    if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
2829      ArgType = Arg->getType();
2830
2831    //   [C++0x] If P is an rvalue reference to a cv-unqualified
2832    //   template parameter and the argument is an lvalue, the type
2833    //   "lvalue reference to A" is used in place of A for type
2834    //   deduction.
2835    if (isa<RValueReferenceType>(ParamType)) {
2836      if (!PointeeType.getQualifiers() &&
2837          isa<TemplateTypeParmType>(PointeeType) &&
2838          Arg->Classify(S.Context).isLValue() &&
2839          Arg->getType() != S.Context.OverloadTy &&
2840          Arg->getType() != S.Context.BoundMemberTy)
2841        ArgType = S.Context.getLValueReferenceType(ArgType);
2842    }
2843
2844    //   [...] If P is a reference type, the type referred to by P is used
2845    //   for type deduction.
2846    ParamType = PointeeType;
2847  }
2848
2849  // Overload sets usually make this parameter an undeduced
2850  // context, but there are sometimes special circumstances.
2851  if (ArgType == S.Context.OverloadTy) {
2852    ArgType = ResolveOverloadForDeduction(S, TemplateParams,
2853                                          Arg, ParamType,
2854                                          ParamRefType != 0);
2855    if (ArgType.isNull())
2856      return true;
2857  }
2858
2859  if (ParamRefType) {
2860    // C++0x [temp.deduct.call]p3:
2861    //   [...] If P is of the form T&&, where T is a template parameter, and
2862    //   the argument is an lvalue, the type A& is used in place of A for
2863    //   type deduction.
2864    if (ParamRefType->isRValueReferenceType() &&
2865        ParamRefType->getAs<TemplateTypeParmType>() &&
2866        Arg->isLValue())
2867      ArgType = S.Context.getLValueReferenceType(ArgType);
2868  } else {
2869    // C++ [temp.deduct.call]p2:
2870    //   If P is not a reference type:
2871    //   - If A is an array type, the pointer type produced by the
2872    //     array-to-pointer standard conversion (4.2) is used in place of
2873    //     A for type deduction; otherwise,
2874    if (ArgType->isArrayType())
2875      ArgType = S.Context.getArrayDecayedType(ArgType);
2876    //   - If A is a function type, the pointer type produced by the
2877    //     function-to-pointer standard conversion (4.3) is used in place
2878    //     of A for type deduction; otherwise,
2879    else if (ArgType->isFunctionType())
2880      ArgType = S.Context.getPointerType(ArgType);
2881    else {
2882      // - If A is a cv-qualified type, the top level cv-qualifiers of A's
2883      //   type are ignored for type deduction.
2884      ArgType = ArgType.getUnqualifiedType();
2885    }
2886  }
2887
2888  // C++0x [temp.deduct.call]p4:
2889  //   In general, the deduction process attempts to find template argument
2890  //   values that will make the deduced A identical to A (after the type A
2891  //   is transformed as described above). [...]
2892  TDF = TDF_SkipNonDependent;
2893
2894  //     - If the original P is a reference type, the deduced A (i.e., the
2895  //       type referred to by the reference) can be more cv-qualified than
2896  //       the transformed A.
2897  if (ParamRefType)
2898    TDF |= TDF_ParamWithReferenceType;
2899  //     - The transformed A can be another pointer or pointer to member
2900  //       type that can be converted to the deduced A via a qualification
2901  //       conversion (4.4).
2902  if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
2903      ArgType->isObjCObjectPointerType())
2904    TDF |= TDF_IgnoreQualifiers;
2905  //     - If P is a class and P has the form simple-template-id, then the
2906  //       transformed A can be a derived class of the deduced A. Likewise,
2907  //       if P is a pointer to a class of the form simple-template-id, the
2908  //       transformed A can be a pointer to a derived class pointed to by
2909  //       the deduced A.
2910  if (isSimpleTemplateIdType(ParamType) ||
2911      (isa<PointerType>(ParamType) &&
2912       isSimpleTemplateIdType(
2913                              ParamType->getAs<PointerType>()->getPointeeType())))
2914    TDF |= TDF_DerivedClass;
2915
2916  return false;
2917}
2918
2919static bool hasDeducibleTemplateParameters(Sema &S,
2920                                           FunctionTemplateDecl *FunctionTemplate,
2921                                           QualType T);
2922
2923/// \brief Perform template argument deduction by matching a parameter type
2924///        against a single expression, where the expression is an element of
2925///        an initializer list that was originally matched against the argument
2926///        type.
2927static Sema::TemplateDeductionResult
2928DeduceTemplateArgumentByListElement(Sema &S,
2929                                    TemplateParameterList *TemplateParams,
2930                                    QualType ParamType, Expr *Arg,
2931                                    TemplateDeductionInfo &Info,
2932                              SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2933                                    unsigned TDF) {
2934  // Handle the case where an init list contains another init list as the
2935  // element.
2936  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
2937    QualType X;
2938    if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
2939      return Sema::TDK_Success; // Just ignore this expression.
2940
2941    // Recurse down into the init list.
2942    for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
2943      if (Sema::TemplateDeductionResult Result =
2944            DeduceTemplateArgumentByListElement(S, TemplateParams, X,
2945                                                 ILE->getInit(i),
2946                                                 Info, Deduced, TDF))
2947        return Result;
2948    }
2949    return Sema::TDK_Success;
2950  }
2951
2952  // For all other cases, just match by type.
2953  QualType ArgType = Arg->getType();
2954  if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
2955                                                ArgType, Arg, TDF))
2956    return Sema::TDK_FailedOverloadResolution;
2957  return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
2958                                            ArgType, Info, Deduced, TDF);
2959}
2960
2961/// \brief Perform template argument deduction from a function call
2962/// (C++ [temp.deduct.call]).
2963///
2964/// \param FunctionTemplate the function template for which we are performing
2965/// template argument deduction.
2966///
2967/// \param ExplicitTemplateArguments the explicit template arguments provided
2968/// for this call.
2969///
2970/// \param Args the function call arguments
2971///
2972/// \param NumArgs the number of arguments in Args
2973///
2974/// \param Name the name of the function being called. This is only significant
2975/// when the function template is a conversion function template, in which
2976/// case this routine will also perform template argument deduction based on
2977/// the function to which
2978///
2979/// \param Specialization if template argument deduction was successful,
2980/// this will be set to the function template specialization produced by
2981/// template argument deduction.
2982///
2983/// \param Info the argument will be updated to provide additional information
2984/// about template argument deduction.
2985///
2986/// \returns the result of template argument deduction.
2987Sema::TemplateDeductionResult
2988Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2989                              TemplateArgumentListInfo *ExplicitTemplateArgs,
2990                              llvm::ArrayRef<Expr *> Args,
2991                              FunctionDecl *&Specialization,
2992                              TemplateDeductionInfo &Info) {
2993  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2994
2995  // C++ [temp.deduct.call]p1:
2996  //   Template argument deduction is done by comparing each function template
2997  //   parameter type (call it P) with the type of the corresponding argument
2998  //   of the call (call it A) as described below.
2999  unsigned CheckArgs = Args.size();
3000  if (Args.size() < Function->getMinRequiredArguments())
3001    return TDK_TooFewArguments;
3002  else if (Args.size() > Function->getNumParams()) {
3003    const FunctionProtoType *Proto
3004      = Function->getType()->getAs<FunctionProtoType>();
3005    if (Proto->isTemplateVariadic())
3006      /* Do nothing */;
3007    else if (Proto->isVariadic())
3008      CheckArgs = Function->getNumParams();
3009    else
3010      return TDK_TooManyArguments;
3011  }
3012
3013  // The types of the parameters from which we will perform template argument
3014  // deduction.
3015  LocalInstantiationScope InstScope(*this);
3016  TemplateParameterList *TemplateParams
3017    = FunctionTemplate->getTemplateParameters();
3018  SmallVector<DeducedTemplateArgument, 4> Deduced;
3019  SmallVector<QualType, 4> ParamTypes;
3020  unsigned NumExplicitlySpecified = 0;
3021  if (ExplicitTemplateArgs) {
3022    TemplateDeductionResult Result =
3023      SubstituteExplicitTemplateArguments(FunctionTemplate,
3024                                          *ExplicitTemplateArgs,
3025                                          Deduced,
3026                                          ParamTypes,
3027                                          0,
3028                                          Info);
3029    if (Result)
3030      return Result;
3031
3032    NumExplicitlySpecified = Deduced.size();
3033  } else {
3034    // Just fill in the parameter types from the function declaration.
3035    for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
3036      ParamTypes.push_back(Function->getParamDecl(I)->getType());
3037  }
3038
3039  // Deduce template arguments from the function parameters.
3040  Deduced.resize(TemplateParams->size());
3041  unsigned ArgIdx = 0;
3042  SmallVector<OriginalCallArg, 4> OriginalCallArgs;
3043  for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
3044       ParamIdx != NumParams; ++ParamIdx) {
3045    QualType OrigParamType = ParamTypes[ParamIdx];
3046    QualType ParamType = OrigParamType;
3047
3048    const PackExpansionType *ParamExpansion
3049      = dyn_cast<PackExpansionType>(ParamType);
3050    if (!ParamExpansion) {
3051      // Simple case: matching a function parameter to a function argument.
3052      if (ArgIdx >= CheckArgs)
3053        break;
3054
3055      Expr *Arg = Args[ArgIdx++];
3056      QualType ArgType = Arg->getType();
3057
3058      unsigned TDF = 0;
3059      if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3060                                                    ParamType, ArgType, Arg,
3061                                                    TDF))
3062        continue;
3063
3064      // If we have nothing to deduce, we're done.
3065      if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3066        continue;
3067
3068      // If the argument is an initializer list ...
3069      if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3070        // ... then the parameter is an undeduced context, unless the parameter
3071        // type is (reference to cv) std::initializer_list<P'>, in which case
3072        // deduction is done for each element of the initializer list, and the
3073        // result is the deduced type if it's the same for all elements.
3074        QualType X;
3075        // Removing references was already done.
3076        if (!isStdInitializerList(ParamType, &X))
3077          continue;
3078
3079        for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3080          if (TemplateDeductionResult Result =
3081                DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
3082                                                     ILE->getInit(i),
3083                                                     Info, Deduced, TDF))
3084            return Result;
3085        }
3086        // Don't track the argument type, since an initializer list has none.
3087        continue;
3088      }
3089
3090      // Keep track of the argument type and corresponding parameter index,
3091      // so we can check for compatibility between the deduced A and A.
3092      OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
3093                                                 ArgType));
3094
3095      if (TemplateDeductionResult Result
3096            = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3097                                                 ParamType, ArgType,
3098                                                 Info, Deduced, TDF))
3099        return Result;
3100
3101      continue;
3102    }
3103
3104    // C++0x [temp.deduct.call]p1:
3105    //   For a function parameter pack that occurs at the end of the
3106    //   parameter-declaration-list, the type A of each remaining argument of
3107    //   the call is compared with the type P of the declarator-id of the
3108    //   function parameter pack. Each comparison deduces template arguments
3109    //   for subsequent positions in the template parameter packs expanded by
3110    //   the function parameter pack. For a function parameter pack that does
3111    //   not occur at the end of the parameter-declaration-list, the type of
3112    //   the parameter pack is a non-deduced context.
3113    if (ParamIdx + 1 < NumParams)
3114      break;
3115
3116    QualType ParamPattern = ParamExpansion->getPattern();
3117    SmallVector<unsigned, 2> PackIndices;
3118    {
3119      llvm::SmallBitVector SawIndices(TemplateParams->size());
3120      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3121      collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
3122      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
3123        unsigned Depth, Index;
3124        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
3125        if (Depth == 0 && !SawIndices[Index]) {
3126          SawIndices[Index] = true;
3127          PackIndices.push_back(Index);
3128        }
3129      }
3130    }
3131    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
3132
3133    // Keep track of the deduced template arguments for each parameter pack
3134    // expanded by this pack expansion (the outer index) and for each
3135    // template argument (the inner SmallVectors).
3136    SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
3137      NewlyDeducedPacks(PackIndices.size());
3138    SmallVector<DeducedTemplateArgument, 2>
3139      SavedPacks(PackIndices.size());
3140    PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
3141                                 NewlyDeducedPacks);
3142    bool HasAnyArguments = false;
3143    for (; ArgIdx < Args.size(); ++ArgIdx) {
3144      HasAnyArguments = true;
3145
3146      QualType OrigParamType = ParamPattern;
3147      ParamType = OrigParamType;
3148      Expr *Arg = Args[ArgIdx];
3149      QualType ArgType = Arg->getType();
3150
3151      unsigned TDF = 0;
3152      if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3153                                                    ParamType, ArgType, Arg,
3154                                                    TDF)) {
3155        // We can't actually perform any deduction for this argument, so stop
3156        // deduction at this point.
3157        ++ArgIdx;
3158        break;
3159      }
3160
3161      // As above, initializer lists need special handling.
3162      if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3163        QualType X;
3164        if (!isStdInitializerList(ParamType, &X)) {
3165          ++ArgIdx;
3166          break;
3167        }
3168
3169        for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3170          if (TemplateDeductionResult Result =
3171                DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
3172                                                   ILE->getInit(i)->getType(),
3173                                                   Info, Deduced, TDF))
3174            return Result;
3175        }
3176      } else {
3177
3178        // Keep track of the argument type and corresponding argument index,
3179        // so we can check for compatibility between the deduced A and A.
3180        if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3181          OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
3182                                                     ArgType));
3183
3184        if (TemplateDeductionResult Result
3185            = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3186                                                 ParamType, ArgType, Info,
3187                                                 Deduced, TDF))
3188          return Result;
3189      }
3190
3191      // Capture the deduced template arguments for each parameter pack expanded
3192      // by this pack expansion, add them to the list of arguments we've deduced
3193      // for that pack, then clear out the deduced argument.
3194      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
3195        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
3196        if (!DeducedArg.isNull()) {
3197          NewlyDeducedPacks[I].push_back(DeducedArg);
3198          DeducedArg = DeducedTemplateArgument();
3199        }
3200      }
3201    }
3202
3203    // Build argument packs for each of the parameter packs expanded by this
3204    // pack expansion.
3205    if (Sema::TemplateDeductionResult Result
3206          = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
3207                                        Deduced, PackIndices, SavedPacks,
3208                                        NewlyDeducedPacks, Info))
3209      return Result;
3210
3211    // After we've matching against a parameter pack, we're done.
3212    break;
3213  }
3214
3215  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3216                                         NumExplicitlySpecified,
3217                                         Specialization, Info, &OriginalCallArgs);
3218}
3219
3220/// \brief Deduce template arguments when taking the address of a function
3221/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
3222/// a template.
3223///
3224/// \param FunctionTemplate the function template for which we are performing
3225/// template argument deduction.
3226///
3227/// \param ExplicitTemplateArguments the explicitly-specified template
3228/// arguments.
3229///
3230/// \param ArgFunctionType the function type that will be used as the
3231/// "argument" type (A) when performing template argument deduction from the
3232/// function template's function type. This type may be NULL, if there is no
3233/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
3234///
3235/// \param Specialization if template argument deduction was successful,
3236/// this will be set to the function template specialization produced by
3237/// template argument deduction.
3238///
3239/// \param Info the argument will be updated to provide additional information
3240/// about template argument deduction.
3241///
3242/// \returns the result of template argument deduction.
3243Sema::TemplateDeductionResult
3244Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3245                              TemplateArgumentListInfo *ExplicitTemplateArgs,
3246                              QualType ArgFunctionType,
3247                              FunctionDecl *&Specialization,
3248                              TemplateDeductionInfo &Info) {
3249  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3250  TemplateParameterList *TemplateParams
3251    = FunctionTemplate->getTemplateParameters();
3252  QualType FunctionType = Function->getType();
3253
3254  // Substitute any explicit template arguments.
3255  LocalInstantiationScope InstScope(*this);
3256  SmallVector<DeducedTemplateArgument, 4> Deduced;
3257  unsigned NumExplicitlySpecified = 0;
3258  SmallVector<QualType, 4> ParamTypes;
3259  if (ExplicitTemplateArgs) {
3260    if (TemplateDeductionResult Result
3261          = SubstituteExplicitTemplateArguments(FunctionTemplate,
3262                                                *ExplicitTemplateArgs,
3263                                                Deduced, ParamTypes,
3264                                                &FunctionType, Info))
3265      return Result;
3266
3267    NumExplicitlySpecified = Deduced.size();
3268  }
3269
3270  // Unevaluated SFINAE context.
3271  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3272  SFINAETrap Trap(*this);
3273
3274  Deduced.resize(TemplateParams->size());
3275
3276  if (!ArgFunctionType.isNull()) {
3277    // Deduce template arguments from the function type.
3278    if (TemplateDeductionResult Result
3279          = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3280                                      FunctionType, ArgFunctionType, Info,
3281                                      Deduced, TDF_TopLevelParameterTypeList))
3282      return Result;
3283  }
3284
3285  if (TemplateDeductionResult Result
3286        = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3287                                          NumExplicitlySpecified,
3288                                          Specialization, Info))
3289    return Result;
3290
3291  // If the requested function type does not match the actual type of the
3292  // specialization, template argument deduction fails.
3293  if (!ArgFunctionType.isNull() &&
3294      !Context.hasSameType(ArgFunctionType, Specialization->getType()))
3295    return TDK_NonDeducedMismatch;
3296
3297  return TDK_Success;
3298}
3299
3300/// \brief Deduce template arguments for a templated conversion
3301/// function (C++ [temp.deduct.conv]) and, if successful, produce a
3302/// conversion function template specialization.
3303Sema::TemplateDeductionResult
3304Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3305                              QualType ToType,
3306                              CXXConversionDecl *&Specialization,
3307                              TemplateDeductionInfo &Info) {
3308  CXXConversionDecl *Conv
3309    = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
3310  QualType FromType = Conv->getConversionType();
3311
3312  // Canonicalize the types for deduction.
3313  QualType P = Context.getCanonicalType(FromType);
3314  QualType A = Context.getCanonicalType(ToType);
3315
3316  // C++0x [temp.deduct.conv]p2:
3317  //   If P is a reference type, the type referred to by P is used for
3318  //   type deduction.
3319  if (const ReferenceType *PRef = P->getAs<ReferenceType>())
3320    P = PRef->getPointeeType();
3321
3322  // C++0x [temp.deduct.conv]p4:
3323  //   [...] If A is a reference type, the type referred to by A is used
3324  //   for type deduction.
3325  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3326    A = ARef->getPointeeType().getUnqualifiedType();
3327  // C++ [temp.deduct.conv]p3:
3328  //
3329  //   If A is not a reference type:
3330  else {
3331    assert(!A->isReferenceType() && "Reference types were handled above");
3332
3333    //   - If P is an array type, the pointer type produced by the
3334    //     array-to-pointer standard conversion (4.2) is used in place
3335    //     of P for type deduction; otherwise,
3336    if (P->isArrayType())
3337      P = Context.getArrayDecayedType(P);
3338    //   - If P is a function type, the pointer type produced by the
3339    //     function-to-pointer standard conversion (4.3) is used in
3340    //     place of P for type deduction; otherwise,
3341    else if (P->isFunctionType())
3342      P = Context.getPointerType(P);
3343    //   - If P is a cv-qualified type, the top level cv-qualifiers of
3344    //     P's type are ignored for type deduction.
3345    else
3346      P = P.getUnqualifiedType();
3347
3348    // C++0x [temp.deduct.conv]p4:
3349    //   If A is a cv-qualified type, the top level cv-qualifiers of A's
3350    //   type are ignored for type deduction. If A is a reference type, the type
3351    //   referred to by A is used for type deduction.
3352    A = A.getUnqualifiedType();
3353  }
3354
3355  // Unevaluated SFINAE context.
3356  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3357  SFINAETrap Trap(*this);
3358
3359  // C++ [temp.deduct.conv]p1:
3360  //   Template argument deduction is done by comparing the return
3361  //   type of the template conversion function (call it P) with the
3362  //   type that is required as the result of the conversion (call it
3363  //   A) as described in 14.8.2.4.
3364  TemplateParameterList *TemplateParams
3365    = FunctionTemplate->getTemplateParameters();
3366  SmallVector<DeducedTemplateArgument, 4> Deduced;
3367  Deduced.resize(TemplateParams->size());
3368
3369  // C++0x [temp.deduct.conv]p4:
3370  //   In general, the deduction process attempts to find template
3371  //   argument values that will make the deduced A identical to
3372  //   A. However, there are two cases that allow a difference:
3373  unsigned TDF = 0;
3374  //     - If the original A is a reference type, A can be more
3375  //       cv-qualified than the deduced A (i.e., the type referred to
3376  //       by the reference)
3377  if (ToType->isReferenceType())
3378    TDF |= TDF_ParamWithReferenceType;
3379  //     - The deduced A can be another pointer or pointer to member
3380  //       type that can be converted to A via a qualification
3381  //       conversion.
3382  //
3383  // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
3384  // both P and A are pointers or member pointers. In this case, we
3385  // just ignore cv-qualifiers completely).
3386  if ((P->isPointerType() && A->isPointerType()) ||
3387      (P->isMemberPointerType() && A->isMemberPointerType()))
3388    TDF |= TDF_IgnoreQualifiers;
3389  if (TemplateDeductionResult Result
3390        = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3391                                             P, A, Info, Deduced, TDF))
3392    return Result;
3393
3394  // Finish template argument deduction.
3395  LocalInstantiationScope InstScope(*this);
3396  FunctionDecl *Spec = 0;
3397  TemplateDeductionResult Result
3398    = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
3399                                      Info);
3400  Specialization = cast_or_null<CXXConversionDecl>(Spec);
3401  return Result;
3402}
3403
3404/// \brief Deduce template arguments for a function template when there is
3405/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
3406///
3407/// \param FunctionTemplate the function template for which we are performing
3408/// template argument deduction.
3409///
3410/// \param ExplicitTemplateArguments the explicitly-specified template
3411/// arguments.
3412///
3413/// \param Specialization if template argument deduction was successful,
3414/// this will be set to the function template specialization produced by
3415/// template argument deduction.
3416///
3417/// \param Info the argument will be updated to provide additional information
3418/// about template argument deduction.
3419///
3420/// \returns the result of template argument deduction.
3421Sema::TemplateDeductionResult
3422Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3423                              TemplateArgumentListInfo *ExplicitTemplateArgs,
3424                              FunctionDecl *&Specialization,
3425                              TemplateDeductionInfo &Info) {
3426  return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3427                                 QualType(), Specialization, Info);
3428}
3429
3430namespace {
3431  /// Substitute the 'auto' type specifier within a type for a given replacement
3432  /// type.
3433  class SubstituteAutoTransform :
3434    public TreeTransform<SubstituteAutoTransform> {
3435    QualType Replacement;
3436  public:
3437    SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
3438      TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
3439    }
3440    QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
3441      // If we're building the type pattern to deduce against, don't wrap the
3442      // substituted type in an AutoType. Certain template deduction rules
3443      // apply only when a template type parameter appears directly (and not if
3444      // the parameter is found through desugaring). For instance:
3445      //   auto &&lref = lvalue;
3446      // must transform into "rvalue reference to T" not "rvalue reference to
3447      // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
3448      if (isa<TemplateTypeParmType>(Replacement)) {
3449        QualType Result = Replacement;
3450        TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
3451        NewTL.setNameLoc(TL.getNameLoc());
3452        return Result;
3453      } else {
3454        QualType Result = RebuildAutoType(Replacement);
3455        AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
3456        NewTL.setNameLoc(TL.getNameLoc());
3457        return Result;
3458      }
3459    }
3460
3461    ExprResult TransformLambdaExpr(LambdaExpr *E) {
3462      // Lambdas never need to be transformed.
3463      return E;
3464    }
3465  };
3466}
3467
3468/// \brief Deduce the type for an auto type-specifier (C++0x [dcl.spec.auto]p6)
3469///
3470/// \param Type the type pattern using the auto type-specifier.
3471///
3472/// \param Init the initializer for the variable whose type is to be deduced.
3473///
3474/// \param Result if type deduction was successful, this will be set to the
3475/// deduced type. This may still contain undeduced autos if the type is
3476/// dependent. This will be set to null if deduction succeeded, but auto
3477/// substitution failed; the appropriate diagnostic will already have been
3478/// produced in that case.
3479Sema::DeduceAutoResult
3480Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init,
3481                     TypeSourceInfo *&Result) {
3482  if (Init->getType()->isNonOverloadPlaceholderType()) {
3483    ExprResult result = CheckPlaceholderExpr(Init);
3484    if (result.isInvalid()) return DAR_FailedAlreadyDiagnosed;
3485    Init = result.take();
3486  }
3487
3488  if (Init->isTypeDependent()) {
3489    Result = Type;
3490    return DAR_Succeeded;
3491  }
3492
3493  SourceLocation Loc = Init->getExprLoc();
3494
3495  LocalInstantiationScope InstScope(*this);
3496
3497  // Build template<class TemplParam> void Func(FuncParam);
3498  TemplateTypeParmDecl *TemplParam =
3499    TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
3500                                 false, false);
3501  QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
3502  NamedDecl *TemplParamPtr = TemplParam;
3503  FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
3504                                                   Loc);
3505
3506  TypeSourceInfo *FuncParamInfo =
3507    SubstituteAutoTransform(*this, TemplArg).TransformType(Type);
3508  assert(FuncParamInfo && "substituting template parameter for 'auto' failed");
3509  QualType FuncParam = FuncParamInfo->getType();
3510
3511  // Deduce type of TemplParam in Func(Init)
3512  SmallVector<DeducedTemplateArgument, 1> Deduced;
3513  Deduced.resize(1);
3514  QualType InitType = Init->getType();
3515  unsigned TDF = 0;
3516
3517  TemplateDeductionInfo Info(Context, Loc);
3518
3519  InitListExpr * InitList = dyn_cast<InitListExpr>(Init);
3520  if (InitList) {
3521    for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
3522      if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
3523                                              TemplArg,
3524                                              InitList->getInit(i),
3525                                              Info, Deduced, TDF))
3526        return DAR_Failed;
3527    }
3528  } else {
3529    if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
3530                                                  FuncParam, InitType, Init,
3531                                                  TDF))
3532      return DAR_Failed;
3533
3534    if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
3535                                           InitType, Info, Deduced, TDF))
3536      return DAR_Failed;
3537  }
3538
3539  QualType DeducedType = Deduced[0].getAsType();
3540  if (DeducedType.isNull())
3541    return DAR_Failed;
3542
3543  if (InitList) {
3544    DeducedType = BuildStdInitializerList(DeducedType, Loc);
3545    if (DeducedType.isNull())
3546      return DAR_FailedAlreadyDiagnosed;
3547  }
3548
3549  Result = SubstituteAutoTransform(*this, DeducedType).TransformType(Type);
3550
3551  // Check that the deduced argument type is compatible with the original
3552  // argument type per C++ [temp.deduct.call]p4.
3553  if (!InitList && Result &&
3554      CheckOriginalCallArgDeduction(*this,
3555                                    Sema::OriginalCallArg(FuncParam,0,InitType),
3556                                    Result->getType())) {
3557    Result = 0;
3558    return DAR_Failed;
3559  }
3560
3561  return DAR_Succeeded;
3562}
3563
3564void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
3565  if (isa<InitListExpr>(Init))
3566    Diag(VDecl->getLocation(),
3567         diag::err_auto_var_deduction_failure_from_init_list)
3568      << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
3569  else
3570    Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
3571      << VDecl->getDeclName() << VDecl->getType() << Init->getType()
3572      << Init->getSourceRange();
3573}
3574
3575static void
3576MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
3577                           bool OnlyDeduced,
3578                           unsigned Level,
3579                           llvm::SmallBitVector &Deduced);
3580
3581/// \brief If this is a non-static member function,
3582static void MaybeAddImplicitObjectParameterType(ASTContext &Context,
3583                                                CXXMethodDecl *Method,
3584                                 SmallVectorImpl<QualType> &ArgTypes) {
3585  if (Method->isStatic())
3586    return;
3587
3588  // C++ [over.match.funcs]p4:
3589  //
3590  //   For non-static member functions, the type of the implicit
3591  //   object parameter is
3592  //     - "lvalue reference to cv X" for functions declared without a
3593  //       ref-qualifier or with the & ref-qualifier
3594  //     - "rvalue reference to cv X" for functions declared with the
3595  //       && ref-qualifier
3596  //
3597  // FIXME: We don't have ref-qualifiers yet, so we don't do that part.
3598  QualType ArgTy = Context.getTypeDeclType(Method->getParent());
3599  ArgTy = Context.getQualifiedType(ArgTy,
3600                        Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
3601  ArgTy = Context.getLValueReferenceType(ArgTy);
3602  ArgTypes.push_back(ArgTy);
3603}
3604
3605/// \brief Determine whether the function template \p FT1 is at least as
3606/// specialized as \p FT2.
3607static bool isAtLeastAsSpecializedAs(Sema &S,
3608                                     SourceLocation Loc,
3609                                     FunctionTemplateDecl *FT1,
3610                                     FunctionTemplateDecl *FT2,
3611                                     TemplatePartialOrderingContext TPOC,
3612                                     unsigned NumCallArguments,
3613    SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
3614  FunctionDecl *FD1 = FT1->getTemplatedDecl();
3615  FunctionDecl *FD2 = FT2->getTemplatedDecl();
3616  const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
3617  const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
3618
3619  assert(Proto1 && Proto2 && "Function templates must have prototypes");
3620  TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
3621  SmallVector<DeducedTemplateArgument, 4> Deduced;
3622  Deduced.resize(TemplateParams->size());
3623
3624  // C++0x [temp.deduct.partial]p3:
3625  //   The types used to determine the ordering depend on the context in which
3626  //   the partial ordering is done:
3627  TemplateDeductionInfo Info(S.Context, Loc);
3628  CXXMethodDecl *Method1 = 0;
3629  CXXMethodDecl *Method2 = 0;
3630  bool IsNonStatic2 = false;
3631  bool IsNonStatic1 = false;
3632  unsigned Skip2 = 0;
3633  switch (TPOC) {
3634  case TPOC_Call: {
3635    //   - In the context of a function call, the function parameter types are
3636    //     used.
3637    Method1 = dyn_cast<CXXMethodDecl>(FD1);
3638    Method2 = dyn_cast<CXXMethodDecl>(FD2);
3639    IsNonStatic1 = Method1 && !Method1->isStatic();
3640    IsNonStatic2 = Method2 && !Method2->isStatic();
3641
3642    // C++0x [temp.func.order]p3:
3643    //   [...] If only one of the function templates is a non-static
3644    //   member, that function template is considered to have a new
3645    //   first parameter inserted in its function parameter list. The
3646    //   new parameter is of type "reference to cv A," where cv are
3647    //   the cv-qualifiers of the function template (if any) and A is
3648    //   the class of which the function template is a member.
3649    //
3650    // C++98/03 doesn't have this provision, so instead we drop the
3651    // first argument of the free function or static member, which
3652    // seems to match existing practice.
3653    SmallVector<QualType, 4> Args1;
3654    unsigned Skip1 = !S.getLangOpts().CPlusPlus0x &&
3655      IsNonStatic2 && !IsNonStatic1;
3656    if (S.getLangOpts().CPlusPlus0x && IsNonStatic1 && !IsNonStatic2)
3657      MaybeAddImplicitObjectParameterType(S.Context, Method1, Args1);
3658    Args1.insert(Args1.end(),
3659                 Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
3660
3661    SmallVector<QualType, 4> Args2;
3662    Skip2 = !S.getLangOpts().CPlusPlus0x &&
3663      IsNonStatic1 && !IsNonStatic2;
3664    if (S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
3665      MaybeAddImplicitObjectParameterType(S.Context, Method2, Args2);
3666    Args2.insert(Args2.end(),
3667                 Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
3668
3669    // C++ [temp.func.order]p5:
3670    //   The presence of unused ellipsis and default arguments has no effect on
3671    //   the partial ordering of function templates.
3672    if (Args1.size() > NumCallArguments)
3673      Args1.resize(NumCallArguments);
3674    if (Args2.size() > NumCallArguments)
3675      Args2.resize(NumCallArguments);
3676    if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
3677                                Args1.data(), Args1.size(), Info, Deduced,
3678                                TDF_None, /*PartialOrdering=*/true,
3679                                RefParamComparisons))
3680        return false;
3681
3682    break;
3683  }
3684
3685  case TPOC_Conversion:
3686    //   - In the context of a call to a conversion operator, the return types
3687    //     of the conversion function templates are used.
3688    if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
3689                                           Proto2->getResultType(),
3690                                           Proto1->getResultType(),
3691                                           Info, Deduced, TDF_None,
3692                                           /*PartialOrdering=*/true,
3693                                           RefParamComparisons))
3694      return false;
3695    break;
3696
3697  case TPOC_Other:
3698    //   - In other contexts (14.6.6.2) the function template's function type
3699    //     is used.
3700    if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
3701                                           FD2->getType(), FD1->getType(),
3702                                           Info, Deduced, TDF_None,
3703                                           /*PartialOrdering=*/true,
3704                                           RefParamComparisons))
3705      return false;
3706    break;
3707  }
3708
3709  // C++0x [temp.deduct.partial]p11:
3710  //   In most cases, all template parameters must have values in order for
3711  //   deduction to succeed, but for partial ordering purposes a template
3712  //   parameter may remain without a value provided it is not used in the
3713  //   types being used for partial ordering. [ Note: a template parameter used
3714  //   in a non-deduced context is considered used. -end note]
3715  unsigned ArgIdx = 0, NumArgs = Deduced.size();
3716  for (; ArgIdx != NumArgs; ++ArgIdx)
3717    if (Deduced[ArgIdx].isNull())
3718      break;
3719
3720  if (ArgIdx == NumArgs) {
3721    // All template arguments were deduced. FT1 is at least as specialized
3722    // as FT2.
3723    return true;
3724  }
3725
3726  // Figure out which template parameters were used.
3727  llvm::SmallBitVector UsedParameters(TemplateParams->size());
3728  switch (TPOC) {
3729  case TPOC_Call: {
3730    unsigned NumParams = std::min(NumCallArguments,
3731                                  std::min(Proto1->getNumArgs(),
3732                                           Proto2->getNumArgs()));
3733    if (S.getLangOpts().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
3734      ::MarkUsedTemplateParameters(S.Context, Method2->getThisType(S.Context),
3735                                   false,
3736                                   TemplateParams->getDepth(), UsedParameters);
3737    for (unsigned I = Skip2; I < NumParams; ++I)
3738      ::MarkUsedTemplateParameters(S.Context, Proto2->getArgType(I), false,
3739                                   TemplateParams->getDepth(),
3740                                   UsedParameters);
3741    break;
3742  }
3743
3744  case TPOC_Conversion:
3745    ::MarkUsedTemplateParameters(S.Context, Proto2->getResultType(), false,
3746                                 TemplateParams->getDepth(),
3747                                 UsedParameters);
3748    break;
3749
3750  case TPOC_Other:
3751    ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
3752                                 TemplateParams->getDepth(),
3753                                 UsedParameters);
3754    break;
3755  }
3756
3757  for (; ArgIdx != NumArgs; ++ArgIdx)
3758    // If this argument had no value deduced but was used in one of the types
3759    // used for partial ordering, then deduction fails.
3760    if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
3761      return false;
3762
3763  return true;
3764}
3765
3766/// \brief Determine whether this a function template whose parameter-type-list
3767/// ends with a function parameter pack.
3768static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
3769  FunctionDecl *Function = FunTmpl->getTemplatedDecl();
3770  unsigned NumParams = Function->getNumParams();
3771  if (NumParams == 0)
3772    return false;
3773
3774  ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
3775  if (!Last->isParameterPack())
3776    return false;
3777
3778  // Make sure that no previous parameter is a parameter pack.
3779  while (--NumParams > 0) {
3780    if (Function->getParamDecl(NumParams - 1)->isParameterPack())
3781      return false;
3782  }
3783
3784  return true;
3785}
3786
3787/// \brief Returns the more specialized function template according
3788/// to the rules of function template partial ordering (C++ [temp.func.order]).
3789///
3790/// \param FT1 the first function template
3791///
3792/// \param FT2 the second function template
3793///
3794/// \param TPOC the context in which we are performing partial ordering of
3795/// function templates.
3796///
3797/// \param NumCallArguments The number of arguments in a call, used only
3798/// when \c TPOC is \c TPOC_Call.
3799///
3800/// \returns the more specialized function template. If neither
3801/// template is more specialized, returns NULL.
3802FunctionTemplateDecl *
3803Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
3804                                 FunctionTemplateDecl *FT2,
3805                                 SourceLocation Loc,
3806                                 TemplatePartialOrderingContext TPOC,
3807                                 unsigned NumCallArguments) {
3808  SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
3809  bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
3810                                          NumCallArguments, 0);
3811  bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
3812                                          NumCallArguments,
3813                                          &RefParamComparisons);
3814
3815  if (Better1 != Better2) // We have a clear winner
3816    return Better1? FT1 : FT2;
3817
3818  if (!Better1 && !Better2) // Neither is better than the other
3819    return 0;
3820
3821  // C++0x [temp.deduct.partial]p10:
3822  //   If for each type being considered a given template is at least as
3823  //   specialized for all types and more specialized for some set of types and
3824  //   the other template is not more specialized for any types or is not at
3825  //   least as specialized for any types, then the given template is more
3826  //   specialized than the other template. Otherwise, neither template is more
3827  //   specialized than the other.
3828  Better1 = false;
3829  Better2 = false;
3830  for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
3831    // C++0x [temp.deduct.partial]p9:
3832    //   If, for a given type, deduction succeeds in both directions (i.e., the
3833    //   types are identical after the transformations above) and both P and A
3834    //   were reference types (before being replaced with the type referred to
3835    //   above):
3836
3837    //     -- if the type from the argument template was an lvalue reference
3838    //        and the type from the parameter template was not, the argument
3839    //        type is considered to be more specialized than the other;
3840    //        otherwise,
3841    if (!RefParamComparisons[I].ArgIsRvalueRef &&
3842        RefParamComparisons[I].ParamIsRvalueRef) {
3843      Better2 = true;
3844      if (Better1)
3845        return 0;
3846      continue;
3847    } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
3848               RefParamComparisons[I].ArgIsRvalueRef) {
3849      Better1 = true;
3850      if (Better2)
3851        return 0;
3852      continue;
3853    }
3854
3855    //     -- if the type from the argument template is more cv-qualified than
3856    //        the type from the parameter template (as described above), the
3857    //        argument type is considered to be more specialized than the
3858    //        other; otherwise,
3859    switch (RefParamComparisons[I].Qualifiers) {
3860    case NeitherMoreQualified:
3861      break;
3862
3863    case ParamMoreQualified:
3864      Better1 = true;
3865      if (Better2)
3866        return 0;
3867      continue;
3868
3869    case ArgMoreQualified:
3870      Better2 = true;
3871      if (Better1)
3872        return 0;
3873      continue;
3874    }
3875
3876    //     -- neither type is more specialized than the other.
3877  }
3878
3879  assert(!(Better1 && Better2) && "Should have broken out in the loop above");
3880  if (Better1)
3881    return FT1;
3882  else if (Better2)
3883    return FT2;
3884
3885  // FIXME: This mimics what GCC implements, but doesn't match up with the
3886  // proposed resolution for core issue 692. This area needs to be sorted out,
3887  // but for now we attempt to maintain compatibility.
3888  bool Variadic1 = isVariadicFunctionTemplate(FT1);
3889  bool Variadic2 = isVariadicFunctionTemplate(FT2);
3890  if (Variadic1 != Variadic2)
3891    return Variadic1? FT2 : FT1;
3892
3893  return 0;
3894}
3895
3896/// \brief Determine if the two templates are equivalent.
3897static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
3898  if (T1 == T2)
3899    return true;
3900
3901  if (!T1 || !T2)
3902    return false;
3903
3904  return T1->getCanonicalDecl() == T2->getCanonicalDecl();
3905}
3906
3907/// \brief Retrieve the most specialized of the given function template
3908/// specializations.
3909///
3910/// \param SpecBegin the start iterator of the function template
3911/// specializations that we will be comparing.
3912///
3913/// \param SpecEnd the end iterator of the function template
3914/// specializations, paired with \p SpecBegin.
3915///
3916/// \param TPOC the partial ordering context to use to compare the function
3917/// template specializations.
3918///
3919/// \param NumCallArguments The number of arguments in a call, used only
3920/// when \c TPOC is \c TPOC_Call.
3921///
3922/// \param Loc the location where the ambiguity or no-specializations
3923/// diagnostic should occur.
3924///
3925/// \param NoneDiag partial diagnostic used to diagnose cases where there are
3926/// no matching candidates.
3927///
3928/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
3929/// occurs.
3930///
3931/// \param CandidateDiag partial diagnostic used for each function template
3932/// specialization that is a candidate in the ambiguous ordering. One parameter
3933/// in this diagnostic should be unbound, which will correspond to the string
3934/// describing the template arguments for the function template specialization.
3935///
3936/// \param Index if non-NULL and the result of this function is non-nULL,
3937/// receives the index corresponding to the resulting function template
3938/// specialization.
3939///
3940/// \returns the most specialized function template specialization, if
3941/// found. Otherwise, returns SpecEnd.
3942///
3943/// \todo FIXME: Consider passing in the "also-ran" candidates that failed
3944/// template argument deduction.
3945UnresolvedSetIterator
3946Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
3947                        UnresolvedSetIterator SpecEnd,
3948                         TemplatePartialOrderingContext TPOC,
3949                         unsigned NumCallArguments,
3950                         SourceLocation Loc,
3951                         const PartialDiagnostic &NoneDiag,
3952                         const PartialDiagnostic &AmbigDiag,
3953                         const PartialDiagnostic &CandidateDiag,
3954                         bool Complain,
3955                         QualType TargetType) {
3956  if (SpecBegin == SpecEnd) {
3957    if (Complain)
3958      Diag(Loc, NoneDiag);
3959    return SpecEnd;
3960  }
3961
3962  if (SpecBegin + 1 == SpecEnd)
3963    return SpecBegin;
3964
3965  // Find the function template that is better than all of the templates it
3966  // has been compared to.
3967  UnresolvedSetIterator Best = SpecBegin;
3968  FunctionTemplateDecl *BestTemplate
3969    = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
3970  assert(BestTemplate && "Not a function template specialization?");
3971  for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
3972    FunctionTemplateDecl *Challenger
3973      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
3974    assert(Challenger && "Not a function template specialization?");
3975    if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
3976                                                  Loc, TPOC, NumCallArguments),
3977                       Challenger)) {
3978      Best = I;
3979      BestTemplate = Challenger;
3980    }
3981  }
3982
3983  // Make sure that the "best" function template is more specialized than all
3984  // of the others.
3985  bool Ambiguous = false;
3986  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
3987    FunctionTemplateDecl *Challenger
3988      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
3989    if (I != Best &&
3990        !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
3991                                                   Loc, TPOC, NumCallArguments),
3992                        BestTemplate)) {
3993      Ambiguous = true;
3994      break;
3995    }
3996  }
3997
3998  if (!Ambiguous) {
3999    // We found an answer. Return it.
4000    return Best;
4001  }
4002
4003  // Diagnose the ambiguity.
4004  if (Complain)
4005    Diag(Loc, AmbigDiag);
4006
4007  if (Complain)
4008  // FIXME: Can we order the candidates in some sane way?
4009    for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4010      PartialDiagnostic PD = CandidateDiag;
4011      PD << getTemplateArgumentBindingsText(
4012          cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
4013                    *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
4014      if (!TargetType.isNull())
4015        HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
4016                                   TargetType);
4017      Diag((*I)->getLocation(), PD);
4018    }
4019
4020  return SpecEnd;
4021}
4022
4023/// \brief Returns the more specialized class template partial specialization
4024/// according to the rules of partial ordering of class template partial
4025/// specializations (C++ [temp.class.order]).
4026///
4027/// \param PS1 the first class template partial specialization
4028///
4029/// \param PS2 the second class template partial specialization
4030///
4031/// \returns the more specialized class template partial specialization. If
4032/// neither partial specialization is more specialized, returns NULL.
4033ClassTemplatePartialSpecializationDecl *
4034Sema::getMoreSpecializedPartialSpecialization(
4035                                  ClassTemplatePartialSpecializationDecl *PS1,
4036                                  ClassTemplatePartialSpecializationDecl *PS2,
4037                                              SourceLocation Loc) {
4038  // C++ [temp.class.order]p1:
4039  //   For two class template partial specializations, the first is at least as
4040  //   specialized as the second if, given the following rewrite to two
4041  //   function templates, the first function template is at least as
4042  //   specialized as the second according to the ordering rules for function
4043  //   templates (14.6.6.2):
4044  //     - the first function template has the same template parameters as the
4045  //       first partial specialization and has a single function parameter
4046  //       whose type is a class template specialization with the template
4047  //       arguments of the first partial specialization, and
4048  //     - the second function template has the same template parameters as the
4049  //       second partial specialization and has a single function parameter
4050  //       whose type is a class template specialization with the template
4051  //       arguments of the second partial specialization.
4052  //
4053  // Rather than synthesize function templates, we merely perform the
4054  // equivalent partial ordering by performing deduction directly on
4055  // the template arguments of the class template partial
4056  // specializations. This computation is slightly simpler than the
4057  // general problem of function template partial ordering, because
4058  // class template partial specializations are more constrained. We
4059  // know that every template parameter is deducible from the class
4060  // template partial specialization's template arguments, for
4061  // example.
4062  SmallVector<DeducedTemplateArgument, 4> Deduced;
4063  TemplateDeductionInfo Info(Context, Loc);
4064
4065  QualType PT1 = PS1->getInjectedSpecializationType();
4066  QualType PT2 = PS2->getInjectedSpecializationType();
4067
4068  // Determine whether PS1 is at least as specialized as PS2
4069  Deduced.resize(PS2->getTemplateParameters()->size());
4070  bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
4071                                            PS2->getTemplateParameters(),
4072                                            PT2, PT1, Info, Deduced, TDF_None,
4073                                            /*PartialOrdering=*/true,
4074                                            /*RefParamComparisons=*/0);
4075  if (Better1) {
4076    InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
4077                               Deduced.data(), Deduced.size(), Info);
4078    Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
4079                                                 PS1->getTemplateArgs(),
4080                                                 Deduced, Info);
4081  }
4082
4083  // Determine whether PS2 is at least as specialized as PS1
4084  Deduced.clear();
4085  Deduced.resize(PS1->getTemplateParameters()->size());
4086  bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
4087                                            PS1->getTemplateParameters(),
4088                                            PT1, PT2, Info, Deduced, TDF_None,
4089                                            /*PartialOrdering=*/true,
4090                                            /*RefParamComparisons=*/0);
4091  if (Better2) {
4092    InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
4093                               Deduced.data(), Deduced.size(), Info);
4094    Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
4095                                                 PS2->getTemplateArgs(),
4096                                                 Deduced, Info);
4097  }
4098
4099  if (Better1 == Better2)
4100    return 0;
4101
4102  return Better1? PS1 : PS2;
4103}
4104
4105static void
4106MarkUsedTemplateParameters(ASTContext &Ctx,
4107                           const TemplateArgument &TemplateArg,
4108                           bool OnlyDeduced,
4109                           unsigned Depth,
4110                           llvm::SmallBitVector &Used);
4111
4112/// \brief Mark the template parameters that are used by the given
4113/// expression.
4114static void
4115MarkUsedTemplateParameters(ASTContext &Ctx,
4116                           const Expr *E,
4117                           bool OnlyDeduced,
4118                           unsigned Depth,
4119                           llvm::SmallBitVector &Used) {
4120  // We can deduce from a pack expansion.
4121  if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
4122    E = Expansion->getPattern();
4123
4124  // Skip through any implicit casts we added while type-checking.
4125  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4126    E = ICE->getSubExpr();
4127
4128  // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
4129  // find other occurrences of template parameters.
4130  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4131  if (!DRE)
4132    return;
4133
4134  const NonTypeTemplateParmDecl *NTTP
4135    = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4136  if (!NTTP)
4137    return;
4138
4139  if (NTTP->getDepth() == Depth)
4140    Used[NTTP->getIndex()] = true;
4141}
4142
4143/// \brief Mark the template parameters that are used by the given
4144/// nested name specifier.
4145static void
4146MarkUsedTemplateParameters(ASTContext &Ctx,
4147                           NestedNameSpecifier *NNS,
4148                           bool OnlyDeduced,
4149                           unsigned Depth,
4150                           llvm::SmallBitVector &Used) {
4151  if (!NNS)
4152    return;
4153
4154  MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
4155                             Used);
4156  MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
4157                             OnlyDeduced, Depth, Used);
4158}
4159
4160/// \brief Mark the template parameters that are used by the given
4161/// template name.
4162static void
4163MarkUsedTemplateParameters(ASTContext &Ctx,
4164                           TemplateName Name,
4165                           bool OnlyDeduced,
4166                           unsigned Depth,
4167                           llvm::SmallBitVector &Used) {
4168  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
4169    if (TemplateTemplateParmDecl *TTP
4170          = dyn_cast<TemplateTemplateParmDecl>(Template)) {
4171      if (TTP->getDepth() == Depth)
4172        Used[TTP->getIndex()] = true;
4173    }
4174    return;
4175  }
4176
4177  if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
4178    MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
4179                               Depth, Used);
4180  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
4181    MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
4182                               Depth, Used);
4183}
4184
4185/// \brief Mark the template parameters that are used by the given
4186/// type.
4187static void
4188MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
4189                           bool OnlyDeduced,
4190                           unsigned Depth,
4191                           llvm::SmallBitVector &Used) {
4192  if (T.isNull())
4193    return;
4194
4195  // Non-dependent types have nothing deducible
4196  if (!T->isDependentType())
4197    return;
4198
4199  T = Ctx.getCanonicalType(T);
4200  switch (T->getTypeClass()) {
4201  case Type::Pointer:
4202    MarkUsedTemplateParameters(Ctx,
4203                               cast<PointerType>(T)->getPointeeType(),
4204                               OnlyDeduced,
4205                               Depth,
4206                               Used);
4207    break;
4208
4209  case Type::BlockPointer:
4210    MarkUsedTemplateParameters(Ctx,
4211                               cast<BlockPointerType>(T)->getPointeeType(),
4212                               OnlyDeduced,
4213                               Depth,
4214                               Used);
4215    break;
4216
4217  case Type::LValueReference:
4218  case Type::RValueReference:
4219    MarkUsedTemplateParameters(Ctx,
4220                               cast<ReferenceType>(T)->getPointeeType(),
4221                               OnlyDeduced,
4222                               Depth,
4223                               Used);
4224    break;
4225
4226  case Type::MemberPointer: {
4227    const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
4228    MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
4229                               Depth, Used);
4230    MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
4231                               OnlyDeduced, Depth, Used);
4232    break;
4233  }
4234
4235  case Type::DependentSizedArray:
4236    MarkUsedTemplateParameters(Ctx,
4237                               cast<DependentSizedArrayType>(T)->getSizeExpr(),
4238                               OnlyDeduced, Depth, Used);
4239    // Fall through to check the element type
4240
4241  case Type::ConstantArray:
4242  case Type::IncompleteArray:
4243    MarkUsedTemplateParameters(Ctx,
4244                               cast<ArrayType>(T)->getElementType(),
4245                               OnlyDeduced, Depth, Used);
4246    break;
4247
4248  case Type::Vector:
4249  case Type::ExtVector:
4250    MarkUsedTemplateParameters(Ctx,
4251                               cast<VectorType>(T)->getElementType(),
4252                               OnlyDeduced, Depth, Used);
4253    break;
4254
4255  case Type::DependentSizedExtVector: {
4256    const DependentSizedExtVectorType *VecType
4257      = cast<DependentSizedExtVectorType>(T);
4258    MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
4259                               Depth, Used);
4260    MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
4261                               Depth, Used);
4262    break;
4263  }
4264
4265  case Type::FunctionProto: {
4266    const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
4267    MarkUsedTemplateParameters(Ctx, Proto->getResultType(), OnlyDeduced,
4268                               Depth, Used);
4269    for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
4270      MarkUsedTemplateParameters(Ctx, Proto->getArgType(I), OnlyDeduced,
4271                                 Depth, Used);
4272    break;
4273  }
4274
4275  case Type::TemplateTypeParm: {
4276    const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
4277    if (TTP->getDepth() == Depth)
4278      Used[TTP->getIndex()] = true;
4279    break;
4280  }
4281
4282  case Type::SubstTemplateTypeParmPack: {
4283    const SubstTemplateTypeParmPackType *Subst
4284      = cast<SubstTemplateTypeParmPackType>(T);
4285    MarkUsedTemplateParameters(Ctx,
4286                               QualType(Subst->getReplacedParameter(), 0),
4287                               OnlyDeduced, Depth, Used);
4288    MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
4289                               OnlyDeduced, Depth, Used);
4290    break;
4291  }
4292
4293  case Type::InjectedClassName:
4294    T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
4295    // fall through
4296
4297  case Type::TemplateSpecialization: {
4298    const TemplateSpecializationType *Spec
4299      = cast<TemplateSpecializationType>(T);
4300    MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
4301                               Depth, Used);
4302
4303    // C++0x [temp.deduct.type]p9:
4304    //   If the template argument list of P contains a pack expansion that is not
4305    //   the last template argument, the entire template argument list is a
4306    //   non-deduced context.
4307    if (OnlyDeduced &&
4308        hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4309      break;
4310
4311    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4312      MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4313                                 Used);
4314    break;
4315  }
4316
4317  case Type::Complex:
4318    if (!OnlyDeduced)
4319      MarkUsedTemplateParameters(Ctx,
4320                                 cast<ComplexType>(T)->getElementType(),
4321                                 OnlyDeduced, Depth, Used);
4322    break;
4323
4324  case Type::Atomic:
4325    if (!OnlyDeduced)
4326      MarkUsedTemplateParameters(Ctx,
4327                                 cast<AtomicType>(T)->getValueType(),
4328                                 OnlyDeduced, Depth, Used);
4329    break;
4330
4331  case Type::DependentName:
4332    if (!OnlyDeduced)
4333      MarkUsedTemplateParameters(Ctx,
4334                                 cast<DependentNameType>(T)->getQualifier(),
4335                                 OnlyDeduced, Depth, Used);
4336    break;
4337
4338  case Type::DependentTemplateSpecialization: {
4339    const DependentTemplateSpecializationType *Spec
4340      = cast<DependentTemplateSpecializationType>(T);
4341    if (!OnlyDeduced)
4342      MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
4343                                 OnlyDeduced, Depth, Used);
4344
4345    // C++0x [temp.deduct.type]p9:
4346    //   If the template argument list of P contains a pack expansion that is not
4347    //   the last template argument, the entire template argument list is a
4348    //   non-deduced context.
4349    if (OnlyDeduced &&
4350        hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4351      break;
4352
4353    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4354      MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4355                                 Used);
4356    break;
4357  }
4358
4359  case Type::TypeOf:
4360    if (!OnlyDeduced)
4361      MarkUsedTemplateParameters(Ctx,
4362                                 cast<TypeOfType>(T)->getUnderlyingType(),
4363                                 OnlyDeduced, Depth, Used);
4364    break;
4365
4366  case Type::TypeOfExpr:
4367    if (!OnlyDeduced)
4368      MarkUsedTemplateParameters(Ctx,
4369                                 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
4370                                 OnlyDeduced, Depth, Used);
4371    break;
4372
4373  case Type::Decltype:
4374    if (!OnlyDeduced)
4375      MarkUsedTemplateParameters(Ctx,
4376                                 cast<DecltypeType>(T)->getUnderlyingExpr(),
4377                                 OnlyDeduced, Depth, Used);
4378    break;
4379
4380  case Type::UnaryTransform:
4381    if (!OnlyDeduced)
4382      MarkUsedTemplateParameters(Ctx,
4383                               cast<UnaryTransformType>(T)->getUnderlyingType(),
4384                                 OnlyDeduced, Depth, Used);
4385    break;
4386
4387  case Type::PackExpansion:
4388    MarkUsedTemplateParameters(Ctx,
4389                               cast<PackExpansionType>(T)->getPattern(),
4390                               OnlyDeduced, Depth, Used);
4391    break;
4392
4393  case Type::Auto:
4394    MarkUsedTemplateParameters(Ctx,
4395                               cast<AutoType>(T)->getDeducedType(),
4396                               OnlyDeduced, Depth, Used);
4397
4398  // None of these types have any template parameters in them.
4399  case Type::Builtin:
4400  case Type::VariableArray:
4401  case Type::FunctionNoProto:
4402  case Type::Record:
4403  case Type::Enum:
4404  case Type::ObjCInterface:
4405  case Type::ObjCObject:
4406  case Type::ObjCObjectPointer:
4407  case Type::UnresolvedUsing:
4408#define TYPE(Class, Base)
4409#define ABSTRACT_TYPE(Class, Base)
4410#define DEPENDENT_TYPE(Class, Base)
4411#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4412#include "clang/AST/TypeNodes.def"
4413    break;
4414  }
4415}
4416
4417/// \brief Mark the template parameters that are used by this
4418/// template argument.
4419static void
4420MarkUsedTemplateParameters(ASTContext &Ctx,
4421                           const TemplateArgument &TemplateArg,
4422                           bool OnlyDeduced,
4423                           unsigned Depth,
4424                           llvm::SmallBitVector &Used) {
4425  switch (TemplateArg.getKind()) {
4426  case TemplateArgument::Null:
4427  case TemplateArgument::Integral:
4428  case TemplateArgument::Declaration:
4429    break;
4430
4431  case TemplateArgument::Type:
4432    MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
4433                               Depth, Used);
4434    break;
4435
4436  case TemplateArgument::Template:
4437  case TemplateArgument::TemplateExpansion:
4438    MarkUsedTemplateParameters(Ctx,
4439                               TemplateArg.getAsTemplateOrTemplatePattern(),
4440                               OnlyDeduced, Depth, Used);
4441    break;
4442
4443  case TemplateArgument::Expression:
4444    MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
4445                               Depth, Used);
4446    break;
4447
4448  case TemplateArgument::Pack:
4449    for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
4450                                      PEnd = TemplateArg.pack_end();
4451         P != PEnd; ++P)
4452      MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
4453    break;
4454  }
4455}
4456
4457/// \brief Mark the template parameters can be deduced by the given
4458/// template argument list.
4459///
4460/// \param TemplateArgs the template argument list from which template
4461/// parameters will be deduced.
4462///
4463/// \param Deduced a bit vector whose elements will be set to \c true
4464/// to indicate when the corresponding template parameter will be
4465/// deduced.
4466void
4467Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
4468                                 bool OnlyDeduced, unsigned Depth,
4469                                 llvm::SmallBitVector &Used) {
4470  // C++0x [temp.deduct.type]p9:
4471  //   If the template argument list of P contains a pack expansion that is not
4472  //   the last template argument, the entire template argument list is a
4473  //   non-deduced context.
4474  if (OnlyDeduced &&
4475      hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
4476    return;
4477
4478  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4479    ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
4480                                 Depth, Used);
4481}
4482
4483/// \brief Marks all of the template parameters that will be deduced by a
4484/// call to the given function template.
4485void
4486Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
4487                                    FunctionTemplateDecl *FunctionTemplate,
4488                                    llvm::SmallBitVector &Deduced) {
4489  TemplateParameterList *TemplateParams
4490    = FunctionTemplate->getTemplateParameters();
4491  Deduced.clear();
4492  Deduced.resize(TemplateParams->size());
4493
4494  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4495  for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
4496    ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
4497                                 true, TemplateParams->getDepth(), Deduced);
4498}
4499
4500bool hasDeducibleTemplateParameters(Sema &S,
4501                                    FunctionTemplateDecl *FunctionTemplate,
4502                                    QualType T) {
4503  if (!T->isDependentType())
4504    return false;
4505
4506  TemplateParameterList *TemplateParams
4507    = FunctionTemplate->getTemplateParameters();
4508  llvm::SmallBitVector Deduced(TemplateParams->size());
4509  ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
4510                               Deduced);
4511
4512  return Deduced.any();
4513}
4514