SemaTemplateDeduction.cpp revision ee0a47998ca7db5d31291a397aca38219d3dfd7d
1//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===/
12
13#include "clang/Sema/TemplateDeduction.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Sema/DeclSpec.h"
22#include "clang/Sema/Sema.h"
23#include "clang/Sema/Template.h"
24#include "llvm/ADT/SmallBitVector.h"
25#include <algorithm>
26
27namespace clang {
28  using namespace sema;
29
30  /// \brief Various flags that control template argument deduction.
31  ///
32  /// These flags can be bitwise-OR'd together.
33  enum TemplateDeductionFlags {
34    /// \brief No template argument deduction flags, which indicates the
35    /// strictest results for template argument deduction (as used for, e.g.,
36    /// matching class template partial specializations).
37    TDF_None = 0,
38    /// \brief Within template argument deduction from a function call, we are
39    /// matching with a parameter type for which the original parameter was
40    /// a reference.
41    TDF_ParamWithReferenceType = 0x1,
42    /// \brief Within template argument deduction from a function call, we
43    /// are matching in a case where we ignore cv-qualifiers.
44    TDF_IgnoreQualifiers = 0x02,
45    /// \brief Within template argument deduction from a function call,
46    /// we are matching in a case where we can perform template argument
47    /// deduction from a template-id of a derived class of the argument type.
48    TDF_DerivedClass = 0x04,
49    /// \brief Allow non-dependent types to differ, e.g., when performing
50    /// template argument deduction from a function call where conversions
51    /// may apply.
52    TDF_SkipNonDependent = 0x08,
53    /// \brief Whether we are performing template argument deduction for
54    /// parameters and arguments in a top-level template argument
55    TDF_TopLevelParameterTypeList = 0x10,
56    /// \brief Within template argument deduction from overload resolution per
57    /// C++ [over.over] allow matching function types that are compatible in
58    /// terms of noreturn and default calling convention adjustments.
59    TDF_InOverloadResolution = 0x20
60  };
61}
62
63using namespace clang;
64
65/// \brief Compare two APSInts, extending and switching the sign as
66/// necessary to compare their values regardless of underlying type.
67static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
68  if (Y.getBitWidth() > X.getBitWidth())
69    X = X.extend(Y.getBitWidth());
70  else if (Y.getBitWidth() < X.getBitWidth())
71    Y = Y.extend(X.getBitWidth());
72
73  // If there is a signedness mismatch, correct it.
74  if (X.isSigned() != Y.isSigned()) {
75    // If the signed value is negative, then the values cannot be the same.
76    if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
77      return false;
78
79    Y.setIsSigned(true);
80    X.setIsSigned(true);
81  }
82
83  return X == Y;
84}
85
86static Sema::TemplateDeductionResult
87DeduceTemplateArguments(Sema &S,
88                        TemplateParameterList *TemplateParams,
89                        const TemplateArgument &Param,
90                        TemplateArgument Arg,
91                        TemplateDeductionInfo &Info,
92                      SmallVectorImpl<DeducedTemplateArgument> &Deduced);
93
94/// \brief Whether template argument deduction for two reference parameters
95/// resulted in the argument type, parameter type, or neither type being more
96/// qualified than the other.
97enum DeductionQualifierComparison {
98  NeitherMoreQualified = 0,
99  ParamMoreQualified,
100  ArgMoreQualified
101};
102
103/// \brief Stores the result of comparing two reference parameters while
104/// performing template argument deduction for partial ordering of function
105/// templates.
106struct RefParamPartialOrderingComparison {
107  /// \brief Whether the parameter type is an rvalue reference type.
108  bool ParamIsRvalueRef;
109  /// \brief Whether the argument type is an rvalue reference type.
110  bool ArgIsRvalueRef;
111
112  /// \brief Whether the parameter or argument (or neither) is more qualified.
113  DeductionQualifierComparison Qualifiers;
114};
115
116
117
118static Sema::TemplateDeductionResult
119DeduceTemplateArgumentsByTypeMatch(Sema &S,
120                                   TemplateParameterList *TemplateParams,
121                                   QualType Param,
122                                   QualType Arg,
123                                   TemplateDeductionInfo &Info,
124                                   SmallVectorImpl<DeducedTemplateArgument> &
125                                                      Deduced,
126                                   unsigned TDF,
127                                   bool PartialOrdering = false,
128                            SmallVectorImpl<RefParamPartialOrderingComparison> *
129                                                      RefParamComparisons = 0);
130
131static Sema::TemplateDeductionResult
132DeduceTemplateArguments(Sema &S,
133                        TemplateParameterList *TemplateParams,
134                        const TemplateArgument *Params, unsigned NumParams,
135                        const TemplateArgument *Args, unsigned NumArgs,
136                        TemplateDeductionInfo &Info,
137                        SmallVectorImpl<DeducedTemplateArgument> &Deduced);
138
139/// \brief If the given expression is of a form that permits the deduction
140/// of a non-type template parameter, return the declaration of that
141/// non-type template parameter.
142static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
143  // If we are within an alias template, the expression may have undergone
144  // any number of parameter substitutions already.
145  while (1) {
146    if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
147      E = IC->getSubExpr();
148    else if (SubstNonTypeTemplateParmExpr *Subst =
149               dyn_cast<SubstNonTypeTemplateParmExpr>(E))
150      E = Subst->getReplacement();
151    else
152      break;
153  }
154
155  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
156    return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
157
158  return 0;
159}
160
161/// \brief Determine whether two declaration pointers refer to the same
162/// declaration.
163static bool isSameDeclaration(Decl *X, Decl *Y) {
164  if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
165    X = NX->getUnderlyingDecl();
166  if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
167    Y = NY->getUnderlyingDecl();
168
169  return X->getCanonicalDecl() == Y->getCanonicalDecl();
170}
171
172/// \brief Verify that the given, deduced template arguments are compatible.
173///
174/// \returns The deduced template argument, or a NULL template argument if
175/// the deduced template arguments were incompatible.
176static DeducedTemplateArgument
177checkDeducedTemplateArguments(ASTContext &Context,
178                              const DeducedTemplateArgument &X,
179                              const DeducedTemplateArgument &Y) {
180  // We have no deduction for one or both of the arguments; they're compatible.
181  if (X.isNull())
182    return Y;
183  if (Y.isNull())
184    return X;
185
186  switch (X.getKind()) {
187  case TemplateArgument::Null:
188    llvm_unreachable("Non-deduced template arguments handled above");
189
190  case TemplateArgument::Type:
191    // If two template type arguments have the same type, they're compatible.
192    if (Y.getKind() == TemplateArgument::Type &&
193        Context.hasSameType(X.getAsType(), Y.getAsType()))
194      return X;
195
196    return DeducedTemplateArgument();
197
198  case TemplateArgument::Integral:
199    // If we deduced a constant in one case and either a dependent expression or
200    // declaration in another case, keep the integral constant.
201    // If both are integral constants with the same value, keep that value.
202    if (Y.getKind() == TemplateArgument::Expression ||
203        Y.getKind() == TemplateArgument::Declaration ||
204        (Y.getKind() == TemplateArgument::Integral &&
205         hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
206      return DeducedTemplateArgument(X,
207                                     X.wasDeducedFromArrayBound() &&
208                                     Y.wasDeducedFromArrayBound());
209
210    // All other combinations are incompatible.
211    return DeducedTemplateArgument();
212
213  case TemplateArgument::Template:
214    if (Y.getKind() == TemplateArgument::Template &&
215        Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
216      return X;
217
218    // All other combinations are incompatible.
219    return DeducedTemplateArgument();
220
221  case TemplateArgument::TemplateExpansion:
222    if (Y.getKind() == TemplateArgument::TemplateExpansion &&
223        Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
224                                    Y.getAsTemplateOrTemplatePattern()))
225      return X;
226
227    // All other combinations are incompatible.
228    return DeducedTemplateArgument();
229
230  case TemplateArgument::Expression:
231    // If we deduced a dependent expression in one case and either an integral
232    // constant or a declaration in another case, keep the integral constant
233    // or declaration.
234    if (Y.getKind() == TemplateArgument::Integral ||
235        Y.getKind() == TemplateArgument::Declaration)
236      return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
237                                     Y.wasDeducedFromArrayBound());
238
239    if (Y.getKind() == TemplateArgument::Expression) {
240      // Compare the expressions for equality
241      llvm::FoldingSetNodeID ID1, ID2;
242      X.getAsExpr()->Profile(ID1, Context, true);
243      Y.getAsExpr()->Profile(ID2, Context, true);
244      if (ID1 == ID2)
245        return X;
246    }
247
248    // All other combinations are incompatible.
249    return DeducedTemplateArgument();
250
251  case TemplateArgument::Declaration:
252    // If we deduced a declaration and a dependent expression, keep the
253    // declaration.
254    if (Y.getKind() == TemplateArgument::Expression)
255      return X;
256
257    // If we deduced a declaration and an integral constant, keep the
258    // integral constant.
259    if (Y.getKind() == TemplateArgument::Integral)
260      return Y;
261
262    // If we deduced two declarations, make sure they they refer to the
263    // same declaration.
264    if (Y.getKind() == TemplateArgument::Declaration &&
265        isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
266        X.isDeclForReferenceParam() == Y.isDeclForReferenceParam())
267      return X;
268
269    // All other combinations are incompatible.
270    return DeducedTemplateArgument();
271
272  case TemplateArgument::NullPtr:
273    // If we deduced a null pointer and a dependent expression, keep the
274    // null pointer.
275    if (Y.getKind() == TemplateArgument::Expression)
276      return X;
277
278    // If we deduced a null pointer and an integral constant, keep the
279    // integral constant.
280    if (Y.getKind() == TemplateArgument::Integral)
281      return Y;
282
283    // If we deduced two null pointers, make sure they have the same type.
284    if (Y.getKind() == TemplateArgument::NullPtr &&
285        Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
286      return X;
287
288    // All other combinations are incompatible.
289    return DeducedTemplateArgument();
290
291  case TemplateArgument::Pack:
292    if (Y.getKind() != TemplateArgument::Pack ||
293        X.pack_size() != Y.pack_size())
294      return DeducedTemplateArgument();
295
296    for (TemplateArgument::pack_iterator XA = X.pack_begin(),
297                                      XAEnd = X.pack_end(),
298                                         YA = Y.pack_begin();
299         XA != XAEnd; ++XA, ++YA) {
300      if (checkDeducedTemplateArguments(Context,
301                    DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
302                    DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
303            .isNull())
304        return DeducedTemplateArgument();
305    }
306
307    return X;
308  }
309
310  llvm_unreachable("Invalid TemplateArgument Kind!");
311}
312
313/// \brief Deduce the value of the given non-type template parameter
314/// from the given constant.
315static Sema::TemplateDeductionResult
316DeduceNonTypeTemplateArgument(Sema &S,
317                              NonTypeTemplateParmDecl *NTTP,
318                              llvm::APSInt Value, QualType ValueType,
319                              bool DeducedFromArrayBound,
320                              TemplateDeductionInfo &Info,
321                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
322  assert(NTTP->getDepth() == 0 &&
323         "Cannot deduce non-type template argument with depth > 0");
324
325  DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
326                                     DeducedFromArrayBound);
327  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
328                                                     Deduced[NTTP->getIndex()],
329                                                                 NewDeduced);
330  if (Result.isNull()) {
331    Info.Param = NTTP;
332    Info.FirstArg = Deduced[NTTP->getIndex()];
333    Info.SecondArg = NewDeduced;
334    return Sema::TDK_Inconsistent;
335  }
336
337  Deduced[NTTP->getIndex()] = Result;
338  return Sema::TDK_Success;
339}
340
341/// \brief Deduce the value of the given non-type template parameter
342/// from the given type- or value-dependent expression.
343///
344/// \returns true if deduction succeeded, false otherwise.
345static Sema::TemplateDeductionResult
346DeduceNonTypeTemplateArgument(Sema &S,
347                              NonTypeTemplateParmDecl *NTTP,
348                              Expr *Value,
349                              TemplateDeductionInfo &Info,
350                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
351  assert(NTTP->getDepth() == 0 &&
352         "Cannot deduce non-type template argument with depth > 0");
353  assert((Value->isTypeDependent() || Value->isValueDependent()) &&
354         "Expression template argument must be type- or value-dependent.");
355
356  DeducedTemplateArgument NewDeduced(Value);
357  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
358                                                     Deduced[NTTP->getIndex()],
359                                                                 NewDeduced);
360
361  if (Result.isNull()) {
362    Info.Param = NTTP;
363    Info.FirstArg = Deduced[NTTP->getIndex()];
364    Info.SecondArg = NewDeduced;
365    return Sema::TDK_Inconsistent;
366  }
367
368  Deduced[NTTP->getIndex()] = Result;
369  return Sema::TDK_Success;
370}
371
372/// \brief Deduce the value of the given non-type template parameter
373/// from the given declaration.
374///
375/// \returns true if deduction succeeded, false otherwise.
376static Sema::TemplateDeductionResult
377DeduceNonTypeTemplateArgument(Sema &S,
378                              NonTypeTemplateParmDecl *NTTP,
379                              ValueDecl *D,
380                              TemplateDeductionInfo &Info,
381                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
382  assert(NTTP->getDepth() == 0 &&
383         "Cannot deduce non-type template argument with depth > 0");
384
385  D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : 0;
386  TemplateArgument New(D, NTTP->getType()->isReferenceType());
387  DeducedTemplateArgument NewDeduced(New);
388  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
389                                                     Deduced[NTTP->getIndex()],
390                                                                 NewDeduced);
391  if (Result.isNull()) {
392    Info.Param = NTTP;
393    Info.FirstArg = Deduced[NTTP->getIndex()];
394    Info.SecondArg = NewDeduced;
395    return Sema::TDK_Inconsistent;
396  }
397
398  Deduced[NTTP->getIndex()] = Result;
399  return Sema::TDK_Success;
400}
401
402static Sema::TemplateDeductionResult
403DeduceTemplateArguments(Sema &S,
404                        TemplateParameterList *TemplateParams,
405                        TemplateName Param,
406                        TemplateName Arg,
407                        TemplateDeductionInfo &Info,
408                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
409  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
410  if (!ParamDecl) {
411    // The parameter type is dependent and is not a template template parameter,
412    // so there is nothing that we can deduce.
413    return Sema::TDK_Success;
414  }
415
416  if (TemplateTemplateParmDecl *TempParam
417        = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
418    DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
419    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
420                                                 Deduced[TempParam->getIndex()],
421                                                                   NewDeduced);
422    if (Result.isNull()) {
423      Info.Param = TempParam;
424      Info.FirstArg = Deduced[TempParam->getIndex()];
425      Info.SecondArg = NewDeduced;
426      return Sema::TDK_Inconsistent;
427    }
428
429    Deduced[TempParam->getIndex()] = Result;
430    return Sema::TDK_Success;
431  }
432
433  // Verify that the two template names are equivalent.
434  if (S.Context.hasSameTemplateName(Param, Arg))
435    return Sema::TDK_Success;
436
437  // Mismatch of non-dependent template parameter to argument.
438  Info.FirstArg = TemplateArgument(Param);
439  Info.SecondArg = TemplateArgument(Arg);
440  return Sema::TDK_NonDeducedMismatch;
441}
442
443/// \brief Deduce the template arguments by comparing the template parameter
444/// type (which is a template-id) with the template argument type.
445///
446/// \param S the Sema
447///
448/// \param TemplateParams the template parameters that we are deducing
449///
450/// \param Param the parameter type
451///
452/// \param Arg the argument type
453///
454/// \param Info information about the template argument deduction itself
455///
456/// \param Deduced the deduced template arguments
457///
458/// \returns the result of template argument deduction so far. Note that a
459/// "success" result means that template argument deduction has not yet failed,
460/// but it may still fail, later, for other reasons.
461static Sema::TemplateDeductionResult
462DeduceTemplateArguments(Sema &S,
463                        TemplateParameterList *TemplateParams,
464                        const TemplateSpecializationType *Param,
465                        QualType Arg,
466                        TemplateDeductionInfo &Info,
467                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
468  assert(Arg.isCanonical() && "Argument type must be canonical");
469
470  // Check whether the template argument is a dependent template-id.
471  if (const TemplateSpecializationType *SpecArg
472        = dyn_cast<TemplateSpecializationType>(Arg)) {
473    // Perform template argument deduction for the template name.
474    if (Sema::TemplateDeductionResult Result
475          = DeduceTemplateArguments(S, TemplateParams,
476                                    Param->getTemplateName(),
477                                    SpecArg->getTemplateName(),
478                                    Info, Deduced))
479      return Result;
480
481
482    // Perform template argument deduction on each template
483    // argument. Ignore any missing/extra arguments, since they could be
484    // filled in by default arguments.
485    return DeduceTemplateArguments(S, TemplateParams,
486                                   Param->getArgs(), Param->getNumArgs(),
487                                   SpecArg->getArgs(), SpecArg->getNumArgs(),
488                                   Info, Deduced);
489  }
490
491  // If the argument type is a class template specialization, we
492  // perform template argument deduction using its template
493  // arguments.
494  const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
495  if (!RecordArg) {
496    Info.FirstArg = TemplateArgument(QualType(Param, 0));
497    Info.SecondArg = TemplateArgument(Arg);
498    return Sema::TDK_NonDeducedMismatch;
499  }
500
501  ClassTemplateSpecializationDecl *SpecArg
502    = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
503  if (!SpecArg) {
504    Info.FirstArg = TemplateArgument(QualType(Param, 0));
505    Info.SecondArg = TemplateArgument(Arg);
506    return Sema::TDK_NonDeducedMismatch;
507  }
508
509  // Perform template argument deduction for the template name.
510  if (Sema::TemplateDeductionResult Result
511        = DeduceTemplateArguments(S,
512                                  TemplateParams,
513                                  Param->getTemplateName(),
514                               TemplateName(SpecArg->getSpecializedTemplate()),
515                                  Info, Deduced))
516    return Result;
517
518  // Perform template argument deduction for the template arguments.
519  return DeduceTemplateArguments(S, TemplateParams,
520                                 Param->getArgs(), Param->getNumArgs(),
521                                 SpecArg->getTemplateArgs().data(),
522                                 SpecArg->getTemplateArgs().size(),
523                                 Info, Deduced);
524}
525
526/// \brief Determines whether the given type is an opaque type that
527/// might be more qualified when instantiated.
528static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
529  switch (T->getTypeClass()) {
530  case Type::TypeOfExpr:
531  case Type::TypeOf:
532  case Type::DependentName:
533  case Type::Decltype:
534  case Type::UnresolvedUsing:
535  case Type::TemplateTypeParm:
536    return true;
537
538  case Type::ConstantArray:
539  case Type::IncompleteArray:
540  case Type::VariableArray:
541  case Type::DependentSizedArray:
542    return IsPossiblyOpaquelyQualifiedType(
543                                      cast<ArrayType>(T)->getElementType());
544
545  default:
546    return false;
547  }
548}
549
550/// \brief Retrieve the depth and index of a template parameter.
551static std::pair<unsigned, unsigned>
552getDepthAndIndex(NamedDecl *ND) {
553  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
554    return std::make_pair(TTP->getDepth(), TTP->getIndex());
555
556  if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
557    return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
558
559  TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
560  return std::make_pair(TTP->getDepth(), TTP->getIndex());
561}
562
563/// \brief Retrieve the depth and index of an unexpanded parameter pack.
564static std::pair<unsigned, unsigned>
565getDepthAndIndex(UnexpandedParameterPack UPP) {
566  if (const TemplateTypeParmType *TTP
567                          = UPP.first.dyn_cast<const TemplateTypeParmType *>())
568    return std::make_pair(TTP->getDepth(), TTP->getIndex());
569
570  return getDepthAndIndex(UPP.first.get<NamedDecl *>());
571}
572
573/// \brief Helper function to build a TemplateParameter when we don't
574/// know its type statically.
575static TemplateParameter makeTemplateParameter(Decl *D) {
576  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
577    return TemplateParameter(TTP);
578  else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
579    return TemplateParameter(NTTP);
580
581  return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
582}
583
584/// \brief Prepare to perform template argument deduction for all of the
585/// arguments in a set of argument packs.
586static void PrepareArgumentPackDeduction(Sema &S,
587                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
588                                           ArrayRef<unsigned> PackIndices,
589                     SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
590         SmallVectorImpl<
591           SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks) {
592  // Save the deduced template arguments for each parameter pack expanded
593  // by this pack expansion, then clear out the deduction.
594  for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
595    // Save the previously-deduced argument pack, then clear it out so that we
596    // can deduce a new argument pack.
597    SavedPacks[I] = Deduced[PackIndices[I]];
598    Deduced[PackIndices[I]] = TemplateArgument();
599
600    if (!S.CurrentInstantiationScope)
601      continue;
602
603    // If the template argument pack was explicitly specified, add that to
604    // the set of deduced arguments.
605    const TemplateArgument *ExplicitArgs;
606    unsigned NumExplicitArgs;
607    if (NamedDecl *PartiallySubstitutedPack
608        = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
609                                                           &ExplicitArgs,
610                                                           &NumExplicitArgs)) {
611      if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
612        NewlyDeducedPacks[I].append(ExplicitArgs,
613                                    ExplicitArgs + NumExplicitArgs);
614    }
615  }
616}
617
618/// \brief Finish template argument deduction for a set of argument packs,
619/// producing the argument packs and checking for consistency with prior
620/// deductions.
621static Sema::TemplateDeductionResult
622FinishArgumentPackDeduction(Sema &S,
623                            TemplateParameterList *TemplateParams,
624                            bool HasAnyArguments,
625                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
626                            ArrayRef<unsigned> PackIndices,
627                    SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
628        SmallVectorImpl<
629          SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks,
630                            TemplateDeductionInfo &Info) {
631  // Build argument packs for each of the parameter packs expanded by this
632  // pack expansion.
633  for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
634    if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
635      // We were not able to deduce anything for this parameter pack,
636      // so just restore the saved argument pack.
637      Deduced[PackIndices[I]] = SavedPacks[I];
638      continue;
639    }
640
641    DeducedTemplateArgument NewPack;
642
643    if (NewlyDeducedPacks[I].empty()) {
644      // If we deduced an empty argument pack, create it now.
645      NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
646    } else {
647      TemplateArgument *ArgumentPack
648        = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
649      std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
650                ArgumentPack);
651      NewPack
652        = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
653                                                   NewlyDeducedPacks[I].size()),
654                            NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
655    }
656
657    DeducedTemplateArgument Result
658      = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
659    if (Result.isNull()) {
660      Info.Param
661        = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
662      Info.FirstArg = SavedPacks[I];
663      Info.SecondArg = NewPack;
664      return Sema::TDK_Inconsistent;
665    }
666
667    Deduced[PackIndices[I]] = Result;
668  }
669
670  return Sema::TDK_Success;
671}
672
673/// \brief Deduce the template arguments by comparing the list of parameter
674/// types to the list of argument types, as in the parameter-type-lists of
675/// function types (C++ [temp.deduct.type]p10).
676///
677/// \param S The semantic analysis object within which we are deducing
678///
679/// \param TemplateParams The template parameters that we are deducing
680///
681/// \param Params The list of parameter types
682///
683/// \param NumParams The number of types in \c Params
684///
685/// \param Args The list of argument types
686///
687/// \param NumArgs The number of types in \c Args
688///
689/// \param Info information about the template argument deduction itself
690///
691/// \param Deduced the deduced template arguments
692///
693/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
694/// how template argument deduction is performed.
695///
696/// \param PartialOrdering If true, we are performing template argument
697/// deduction for during partial ordering for a call
698/// (C++0x [temp.deduct.partial]).
699///
700/// \param RefParamComparisons If we're performing template argument deduction
701/// in the context of partial ordering, the set of qualifier comparisons.
702///
703/// \returns the result of template argument deduction so far. Note that a
704/// "success" result means that template argument deduction has not yet failed,
705/// but it may still fail, later, for other reasons.
706static Sema::TemplateDeductionResult
707DeduceTemplateArguments(Sema &S,
708                        TemplateParameterList *TemplateParams,
709                        const QualType *Params, unsigned NumParams,
710                        const QualType *Args, unsigned NumArgs,
711                        TemplateDeductionInfo &Info,
712                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
713                        unsigned TDF,
714                        bool PartialOrdering = false,
715                        SmallVectorImpl<RefParamPartialOrderingComparison> *
716                                                     RefParamComparisons = 0) {
717  // Fast-path check to see if we have too many/too few arguments.
718  if (NumParams != NumArgs &&
719      !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
720      !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
721    return Sema::TDK_MiscellaneousDeductionFailure;
722
723  // C++0x [temp.deduct.type]p10:
724  //   Similarly, if P has a form that contains (T), then each parameter type
725  //   Pi of the respective parameter-type- list of P is compared with the
726  //   corresponding parameter type Ai of the corresponding parameter-type-list
727  //   of A. [...]
728  unsigned ArgIdx = 0, ParamIdx = 0;
729  for (; ParamIdx != NumParams; ++ParamIdx) {
730    // Check argument types.
731    const PackExpansionType *Expansion
732                                = dyn_cast<PackExpansionType>(Params[ParamIdx]);
733    if (!Expansion) {
734      // Simple case: compare the parameter and argument types at this point.
735
736      // Make sure we have an argument.
737      if (ArgIdx >= NumArgs)
738        return Sema::TDK_MiscellaneousDeductionFailure;
739
740      if (isa<PackExpansionType>(Args[ArgIdx])) {
741        // C++0x [temp.deduct.type]p22:
742        //   If the original function parameter associated with A is a function
743        //   parameter pack and the function parameter associated with P is not
744        //   a function parameter pack, then template argument deduction fails.
745        return Sema::TDK_MiscellaneousDeductionFailure;
746      }
747
748      if (Sema::TemplateDeductionResult Result
749            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
750                                                 Params[ParamIdx], Args[ArgIdx],
751                                                 Info, Deduced, TDF,
752                                                 PartialOrdering,
753                                                 RefParamComparisons))
754        return Result;
755
756      ++ArgIdx;
757      continue;
758    }
759
760    // C++0x [temp.deduct.type]p5:
761    //   The non-deduced contexts are:
762    //     - A function parameter pack that does not occur at the end of the
763    //       parameter-declaration-clause.
764    if (ParamIdx + 1 < NumParams)
765      return Sema::TDK_Success;
766
767    // C++0x [temp.deduct.type]p10:
768    //   If the parameter-declaration corresponding to Pi is a function
769    //   parameter pack, then the type of its declarator- id is compared with
770    //   each remaining parameter type in the parameter-type-list of A. Each
771    //   comparison deduces template arguments for subsequent positions in the
772    //   template parameter packs expanded by the function parameter pack.
773
774    // Compute the set of template parameter indices that correspond to
775    // parameter packs expanded by the pack expansion.
776    SmallVector<unsigned, 2> PackIndices;
777    QualType Pattern = Expansion->getPattern();
778    {
779      llvm::SmallBitVector SawIndices(TemplateParams->size());
780      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
781      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
782      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
783        unsigned Depth, Index;
784        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
785        if (Depth == 0 && !SawIndices[Index]) {
786          SawIndices[Index] = true;
787          PackIndices.push_back(Index);
788        }
789      }
790    }
791    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
792
793    // Keep track of the deduced template arguments for each parameter pack
794    // expanded by this pack expansion (the outer index) and for each
795    // template argument (the inner SmallVectors).
796    SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
797      NewlyDeducedPacks(PackIndices.size());
798    SmallVector<DeducedTemplateArgument, 2>
799      SavedPacks(PackIndices.size());
800    PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
801                                 NewlyDeducedPacks);
802
803    bool HasAnyArguments = false;
804    for (; ArgIdx < NumArgs; ++ArgIdx) {
805      HasAnyArguments = true;
806
807      // Deduce template arguments from the pattern.
808      if (Sema::TemplateDeductionResult Result
809            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
810                                                 Args[ArgIdx], Info, Deduced,
811                                                 TDF, PartialOrdering,
812                                                 RefParamComparisons))
813        return Result;
814
815      // Capture the deduced template arguments for each parameter pack expanded
816      // by this pack expansion, add them to the list of arguments we've deduced
817      // for that pack, then clear out the deduced argument.
818      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
819        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
820        if (!DeducedArg.isNull()) {
821          NewlyDeducedPacks[I].push_back(DeducedArg);
822          DeducedArg = DeducedTemplateArgument();
823        }
824      }
825    }
826
827    // Build argument packs for each of the parameter packs expanded by this
828    // pack expansion.
829    if (Sema::TemplateDeductionResult Result
830          = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
831                                        Deduced, PackIndices, SavedPacks,
832                                        NewlyDeducedPacks, Info))
833      return Result;
834  }
835
836  // Make sure we don't have any extra arguments.
837  if (ArgIdx < NumArgs)
838    return Sema::TDK_MiscellaneousDeductionFailure;
839
840  return Sema::TDK_Success;
841}
842
843/// \brief Determine whether the parameter has qualifiers that are either
844/// inconsistent with or a superset of the argument's qualifiers.
845static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
846                                                  QualType ArgType) {
847  Qualifiers ParamQs = ParamType.getQualifiers();
848  Qualifiers ArgQs = ArgType.getQualifiers();
849
850  if (ParamQs == ArgQs)
851    return false;
852
853  // Mismatched (but not missing) Objective-C GC attributes.
854  if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
855      ParamQs.hasObjCGCAttr())
856    return true;
857
858  // Mismatched (but not missing) address spaces.
859  if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
860      ParamQs.hasAddressSpace())
861    return true;
862
863  // Mismatched (but not missing) Objective-C lifetime qualifiers.
864  if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
865      ParamQs.hasObjCLifetime())
866    return true;
867
868  // CVR qualifier superset.
869  return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
870      ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
871                                                == ParamQs.getCVRQualifiers());
872}
873
874/// \brief Compare types for equality with respect to possibly compatible
875/// function types (noreturn adjustment, implicit calling conventions). If any
876/// of parameter and argument is not a function, just perform type comparison.
877///
878/// \param Param the template parameter type.
879///
880/// \param Arg the argument type.
881bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
882                                          CanQualType Arg) {
883  const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
884                     *ArgFunction   = Arg->getAs<FunctionType>();
885
886  // Just compare if not functions.
887  if (!ParamFunction || !ArgFunction)
888    return Param == Arg;
889
890  // Noreturn adjustment.
891  QualType AdjustedParam;
892  if (IsNoReturnConversion(Param, Arg, AdjustedParam))
893    return Arg == Context.getCanonicalType(AdjustedParam);
894
895  // FIXME: Compatible calling conventions.
896
897  return Param == Arg;
898}
899
900/// \brief Deduce the template arguments by comparing the parameter type and
901/// the argument type (C++ [temp.deduct.type]).
902///
903/// \param S the semantic analysis object within which we are deducing
904///
905/// \param TemplateParams the template parameters that we are deducing
906///
907/// \param ParamIn the parameter type
908///
909/// \param ArgIn the argument type
910///
911/// \param Info information about the template argument deduction itself
912///
913/// \param Deduced the deduced template arguments
914///
915/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
916/// how template argument deduction is performed.
917///
918/// \param PartialOrdering Whether we're performing template argument deduction
919/// in the context of partial ordering (C++0x [temp.deduct.partial]).
920///
921/// \param RefParamComparisons If we're performing template argument deduction
922/// in the context of partial ordering, the set of qualifier comparisons.
923///
924/// \returns the result of template argument deduction so far. Note that a
925/// "success" result means that template argument deduction has not yet failed,
926/// but it may still fail, later, for other reasons.
927static Sema::TemplateDeductionResult
928DeduceTemplateArgumentsByTypeMatch(Sema &S,
929                                   TemplateParameterList *TemplateParams,
930                                   QualType ParamIn, QualType ArgIn,
931                                   TemplateDeductionInfo &Info,
932                            SmallVectorImpl<DeducedTemplateArgument> &Deduced,
933                                   unsigned TDF,
934                                   bool PartialOrdering,
935                            SmallVectorImpl<RefParamPartialOrderingComparison> *
936                                                          RefParamComparisons) {
937  // We only want to look at the canonical types, since typedefs and
938  // sugar are not part of template argument deduction.
939  QualType Param = S.Context.getCanonicalType(ParamIn);
940  QualType Arg = S.Context.getCanonicalType(ArgIn);
941
942  // If the argument type is a pack expansion, look at its pattern.
943  // This isn't explicitly called out
944  if (const PackExpansionType *ArgExpansion
945                                            = dyn_cast<PackExpansionType>(Arg))
946    Arg = ArgExpansion->getPattern();
947
948  if (PartialOrdering) {
949    // C++0x [temp.deduct.partial]p5:
950    //   Before the partial ordering is done, certain transformations are
951    //   performed on the types used for partial ordering:
952    //     - If P is a reference type, P is replaced by the type referred to.
953    const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
954    if (ParamRef)
955      Param = ParamRef->getPointeeType();
956
957    //     - If A is a reference type, A is replaced by the type referred to.
958    const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
959    if (ArgRef)
960      Arg = ArgRef->getPointeeType();
961
962    if (RefParamComparisons && ParamRef && ArgRef) {
963      // C++0x [temp.deduct.partial]p6:
964      //   If both P and A were reference types (before being replaced with the
965      //   type referred to above), determine which of the two types (if any) is
966      //   more cv-qualified than the other; otherwise the types are considered
967      //   to be equally cv-qualified for partial ordering purposes. The result
968      //   of this determination will be used below.
969      //
970      // We save this information for later, using it only when deduction
971      // succeeds in both directions.
972      RefParamPartialOrderingComparison Comparison;
973      Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
974      Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
975      Comparison.Qualifiers = NeitherMoreQualified;
976
977      Qualifiers ParamQuals = Param.getQualifiers();
978      Qualifiers ArgQuals = Arg.getQualifiers();
979      if (ParamQuals.isStrictSupersetOf(ArgQuals))
980        Comparison.Qualifiers = ParamMoreQualified;
981      else if (ArgQuals.isStrictSupersetOf(ParamQuals))
982        Comparison.Qualifiers = ArgMoreQualified;
983      RefParamComparisons->push_back(Comparison);
984    }
985
986    // C++0x [temp.deduct.partial]p7:
987    //   Remove any top-level cv-qualifiers:
988    //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
989    //       version of P.
990    Param = Param.getUnqualifiedType();
991    //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
992    //       version of A.
993    Arg = Arg.getUnqualifiedType();
994  } else {
995    // C++0x [temp.deduct.call]p4 bullet 1:
996    //   - If the original P is a reference type, the deduced A (i.e., the type
997    //     referred to by the reference) can be more cv-qualified than the
998    //     transformed A.
999    if (TDF & TDF_ParamWithReferenceType) {
1000      Qualifiers Quals;
1001      QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
1002      Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
1003                             Arg.getCVRQualifiers());
1004      Param = S.Context.getQualifiedType(UnqualParam, Quals);
1005    }
1006
1007    if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
1008      // C++0x [temp.deduct.type]p10:
1009      //   If P and A are function types that originated from deduction when
1010      //   taking the address of a function template (14.8.2.2) or when deducing
1011      //   template arguments from a function declaration (14.8.2.6) and Pi and
1012      //   Ai are parameters of the top-level parameter-type-list of P and A,
1013      //   respectively, Pi is adjusted if it is an rvalue reference to a
1014      //   cv-unqualified template parameter and Ai is an lvalue reference, in
1015      //   which case the type of Pi is changed to be the template parameter
1016      //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
1017      //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
1018      //   deduced as X&. - end note ]
1019      TDF &= ~TDF_TopLevelParameterTypeList;
1020
1021      if (const RValueReferenceType *ParamRef
1022                                        = Param->getAs<RValueReferenceType>()) {
1023        if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
1024            !ParamRef->getPointeeType().getQualifiers())
1025          if (Arg->isLValueReferenceType())
1026            Param = ParamRef->getPointeeType();
1027      }
1028    }
1029  }
1030
1031  // C++ [temp.deduct.type]p9:
1032  //   A template type argument T, a template template argument TT or a
1033  //   template non-type argument i can be deduced if P and A have one of
1034  //   the following forms:
1035  //
1036  //     T
1037  //     cv-list T
1038  if (const TemplateTypeParmType *TemplateTypeParm
1039        = Param->getAs<TemplateTypeParmType>()) {
1040    // Just skip any attempts to deduce from a placeholder type.
1041    if (Arg->isPlaceholderType())
1042      return Sema::TDK_Success;
1043
1044    unsigned Index = TemplateTypeParm->getIndex();
1045    bool RecanonicalizeArg = false;
1046
1047    // If the argument type is an array type, move the qualifiers up to the
1048    // top level, so they can be matched with the qualifiers on the parameter.
1049    if (isa<ArrayType>(Arg)) {
1050      Qualifiers Quals;
1051      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
1052      if (Quals) {
1053        Arg = S.Context.getQualifiedType(Arg, Quals);
1054        RecanonicalizeArg = true;
1055      }
1056    }
1057
1058    // The argument type can not be less qualified than the parameter
1059    // type.
1060    if (!(TDF & TDF_IgnoreQualifiers) &&
1061        hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
1062      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1063      Info.FirstArg = TemplateArgument(Param);
1064      Info.SecondArg = TemplateArgument(Arg);
1065      return Sema::TDK_Underqualified;
1066    }
1067
1068    assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
1069    assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
1070    QualType DeducedType = Arg;
1071
1072    // Remove any qualifiers on the parameter from the deduced type.
1073    // We checked the qualifiers for consistency above.
1074    Qualifiers DeducedQs = DeducedType.getQualifiers();
1075    Qualifiers ParamQs = Param.getQualifiers();
1076    DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1077    if (ParamQs.hasObjCGCAttr())
1078      DeducedQs.removeObjCGCAttr();
1079    if (ParamQs.hasAddressSpace())
1080      DeducedQs.removeAddressSpace();
1081    if (ParamQs.hasObjCLifetime())
1082      DeducedQs.removeObjCLifetime();
1083
1084    // Objective-C ARC:
1085    //   If template deduction would produce a lifetime qualifier on a type
1086    //   that is not a lifetime type, template argument deduction fails.
1087    if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1088        !DeducedType->isDependentType()) {
1089      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1090      Info.FirstArg = TemplateArgument(Param);
1091      Info.SecondArg = TemplateArgument(Arg);
1092      return Sema::TDK_Underqualified;
1093    }
1094
1095    // Objective-C ARC:
1096    //   If template deduction would produce an argument type with lifetime type
1097    //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1098    if (S.getLangOpts().ObjCAutoRefCount &&
1099        DeducedType->isObjCLifetimeType() &&
1100        !DeducedQs.hasObjCLifetime())
1101      DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1102
1103    DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
1104                                             DeducedQs);
1105
1106    if (RecanonicalizeArg)
1107      DeducedType = S.Context.getCanonicalType(DeducedType);
1108
1109    DeducedTemplateArgument NewDeduced(DeducedType);
1110    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
1111                                                                 Deduced[Index],
1112                                                                   NewDeduced);
1113    if (Result.isNull()) {
1114      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1115      Info.FirstArg = Deduced[Index];
1116      Info.SecondArg = NewDeduced;
1117      return Sema::TDK_Inconsistent;
1118    }
1119
1120    Deduced[Index] = Result;
1121    return Sema::TDK_Success;
1122  }
1123
1124  // Set up the template argument deduction information for a failure.
1125  Info.FirstArg = TemplateArgument(ParamIn);
1126  Info.SecondArg = TemplateArgument(ArgIn);
1127
1128  // If the parameter is an already-substituted template parameter
1129  // pack, do nothing: we don't know which of its arguments to look
1130  // at, so we have to wait until all of the parameter packs in this
1131  // expansion have arguments.
1132  if (isa<SubstTemplateTypeParmPackType>(Param))
1133    return Sema::TDK_Success;
1134
1135  // Check the cv-qualifiers on the parameter and argument types.
1136  CanQualType CanParam = S.Context.getCanonicalType(Param);
1137  CanQualType CanArg = S.Context.getCanonicalType(Arg);
1138  if (!(TDF & TDF_IgnoreQualifiers)) {
1139    if (TDF & TDF_ParamWithReferenceType) {
1140      if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
1141        return Sema::TDK_NonDeducedMismatch;
1142    } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
1143      if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
1144        return Sema::TDK_NonDeducedMismatch;
1145    }
1146
1147    // If the parameter type is not dependent, there is nothing to deduce.
1148    if (!Param->isDependentType()) {
1149      if (!(TDF & TDF_SkipNonDependent)) {
1150        bool NonDeduced = (TDF & TDF_InOverloadResolution)?
1151                          !S.isSameOrCompatibleFunctionType(CanParam, CanArg) :
1152                          Param != Arg;
1153        if (NonDeduced) {
1154          return Sema::TDK_NonDeducedMismatch;
1155        }
1156      }
1157      return Sema::TDK_Success;
1158    }
1159  } else if (!Param->isDependentType()) {
1160    CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
1161                ArgUnqualType = CanArg.getUnqualifiedType();
1162    bool Success = (TDF & TDF_InOverloadResolution)?
1163                   S.isSameOrCompatibleFunctionType(ParamUnqualType,
1164                                                    ArgUnqualType) :
1165                   ParamUnqualType == ArgUnqualType;
1166    if (Success)
1167      return Sema::TDK_Success;
1168  }
1169
1170  switch (Param->getTypeClass()) {
1171    // Non-canonical types cannot appear here.
1172#define NON_CANONICAL_TYPE(Class, Base) \
1173  case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1174#define TYPE(Class, Base)
1175#include "clang/AST/TypeNodes.def"
1176
1177    case Type::TemplateTypeParm:
1178    case Type::SubstTemplateTypeParmPack:
1179      llvm_unreachable("Type nodes handled above");
1180
1181    // These types cannot be dependent, so simply check whether the types are
1182    // the same.
1183    case Type::Builtin:
1184    case Type::VariableArray:
1185    case Type::Vector:
1186    case Type::FunctionNoProto:
1187    case Type::Record:
1188    case Type::Enum:
1189    case Type::ObjCObject:
1190    case Type::ObjCInterface:
1191    case Type::ObjCObjectPointer: {
1192      if (TDF & TDF_SkipNonDependent)
1193        return Sema::TDK_Success;
1194
1195      if (TDF & TDF_IgnoreQualifiers) {
1196        Param = Param.getUnqualifiedType();
1197        Arg = Arg.getUnqualifiedType();
1198      }
1199
1200      return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
1201    }
1202
1203    //     _Complex T   [placeholder extension]
1204    case Type::Complex:
1205      if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
1206        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1207                                    cast<ComplexType>(Param)->getElementType(),
1208                                    ComplexArg->getElementType(),
1209                                    Info, Deduced, TDF);
1210
1211      return Sema::TDK_NonDeducedMismatch;
1212
1213    //     _Atomic T   [extension]
1214    case Type::Atomic:
1215      if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
1216        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1217                                       cast<AtomicType>(Param)->getValueType(),
1218                                       AtomicArg->getValueType(),
1219                                       Info, Deduced, TDF);
1220
1221      return Sema::TDK_NonDeducedMismatch;
1222
1223    //     T *
1224    case Type::Pointer: {
1225      QualType PointeeType;
1226      if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
1227        PointeeType = PointerArg->getPointeeType();
1228      } else if (const ObjCObjectPointerType *PointerArg
1229                   = Arg->getAs<ObjCObjectPointerType>()) {
1230        PointeeType = PointerArg->getPointeeType();
1231      } else {
1232        return Sema::TDK_NonDeducedMismatch;
1233      }
1234
1235      unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
1236      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1237                                     cast<PointerType>(Param)->getPointeeType(),
1238                                     PointeeType,
1239                                     Info, Deduced, SubTDF);
1240    }
1241
1242    //     T &
1243    case Type::LValueReference: {
1244      const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
1245      if (!ReferenceArg)
1246        return Sema::TDK_NonDeducedMismatch;
1247
1248      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1249                           cast<LValueReferenceType>(Param)->getPointeeType(),
1250                           ReferenceArg->getPointeeType(), Info, Deduced, 0);
1251    }
1252
1253    //     T && [C++0x]
1254    case Type::RValueReference: {
1255      const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
1256      if (!ReferenceArg)
1257        return Sema::TDK_NonDeducedMismatch;
1258
1259      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1260                             cast<RValueReferenceType>(Param)->getPointeeType(),
1261                             ReferenceArg->getPointeeType(),
1262                             Info, Deduced, 0);
1263    }
1264
1265    //     T [] (implied, but not stated explicitly)
1266    case Type::IncompleteArray: {
1267      const IncompleteArrayType *IncompleteArrayArg =
1268        S.Context.getAsIncompleteArrayType(Arg);
1269      if (!IncompleteArrayArg)
1270        return Sema::TDK_NonDeducedMismatch;
1271
1272      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1273      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1274                    S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1275                    IncompleteArrayArg->getElementType(),
1276                    Info, Deduced, SubTDF);
1277    }
1278
1279    //     T [integer-constant]
1280    case Type::ConstantArray: {
1281      const ConstantArrayType *ConstantArrayArg =
1282        S.Context.getAsConstantArrayType(Arg);
1283      if (!ConstantArrayArg)
1284        return Sema::TDK_NonDeducedMismatch;
1285
1286      const ConstantArrayType *ConstantArrayParm =
1287        S.Context.getAsConstantArrayType(Param);
1288      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1289        return Sema::TDK_NonDeducedMismatch;
1290
1291      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1292      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1293                                           ConstantArrayParm->getElementType(),
1294                                           ConstantArrayArg->getElementType(),
1295                                           Info, Deduced, SubTDF);
1296    }
1297
1298    //     type [i]
1299    case Type::DependentSizedArray: {
1300      const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1301      if (!ArrayArg)
1302        return Sema::TDK_NonDeducedMismatch;
1303
1304      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1305
1306      // Check the element type of the arrays
1307      const DependentSizedArrayType *DependentArrayParm
1308        = S.Context.getAsDependentSizedArrayType(Param);
1309      if (Sema::TemplateDeductionResult Result
1310            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1311                                          DependentArrayParm->getElementType(),
1312                                          ArrayArg->getElementType(),
1313                                          Info, Deduced, SubTDF))
1314        return Result;
1315
1316      // Determine the array bound is something we can deduce.
1317      NonTypeTemplateParmDecl *NTTP
1318        = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
1319      if (!NTTP)
1320        return Sema::TDK_Success;
1321
1322      // We can perform template argument deduction for the given non-type
1323      // template parameter.
1324      assert(NTTP->getDepth() == 0 &&
1325             "Cannot deduce non-type template argument at depth > 0");
1326      if (const ConstantArrayType *ConstantArrayArg
1327            = dyn_cast<ConstantArrayType>(ArrayArg)) {
1328        llvm::APSInt Size(ConstantArrayArg->getSize());
1329        return DeduceNonTypeTemplateArgument(S, NTTP, Size,
1330                                             S.Context.getSizeType(),
1331                                             /*ArrayBound=*/true,
1332                                             Info, Deduced);
1333      }
1334      if (const DependentSizedArrayType *DependentArrayArg
1335            = dyn_cast<DependentSizedArrayType>(ArrayArg))
1336        if (DependentArrayArg->getSizeExpr())
1337          return DeduceNonTypeTemplateArgument(S, NTTP,
1338                                               DependentArrayArg->getSizeExpr(),
1339                                               Info, Deduced);
1340
1341      // Incomplete type does not match a dependently-sized array type
1342      return Sema::TDK_NonDeducedMismatch;
1343    }
1344
1345    //     type(*)(T)
1346    //     T(*)()
1347    //     T(*)(T)
1348    case Type::FunctionProto: {
1349      unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
1350      const FunctionProtoType *FunctionProtoArg =
1351        dyn_cast<FunctionProtoType>(Arg);
1352      if (!FunctionProtoArg)
1353        return Sema::TDK_NonDeducedMismatch;
1354
1355      const FunctionProtoType *FunctionProtoParam =
1356        cast<FunctionProtoType>(Param);
1357
1358      if (FunctionProtoParam->getTypeQuals()
1359            != FunctionProtoArg->getTypeQuals() ||
1360          FunctionProtoParam->getRefQualifier()
1361            != FunctionProtoArg->getRefQualifier() ||
1362          FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1363        return Sema::TDK_NonDeducedMismatch;
1364
1365      // Check return types.
1366      if (Sema::TemplateDeductionResult Result
1367            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1368                                            FunctionProtoParam->getResultType(),
1369                                            FunctionProtoArg->getResultType(),
1370                                            Info, Deduced, 0))
1371        return Result;
1372
1373      return DeduceTemplateArguments(S, TemplateParams,
1374                                     FunctionProtoParam->arg_type_begin(),
1375                                     FunctionProtoParam->getNumArgs(),
1376                                     FunctionProtoArg->arg_type_begin(),
1377                                     FunctionProtoArg->getNumArgs(),
1378                                     Info, Deduced, SubTDF);
1379    }
1380
1381    case Type::InjectedClassName: {
1382      // Treat a template's injected-class-name as if the template
1383      // specialization type had been used.
1384      Param = cast<InjectedClassNameType>(Param)
1385        ->getInjectedSpecializationType();
1386      assert(isa<TemplateSpecializationType>(Param) &&
1387             "injected class name is not a template specialization type");
1388      // fall through
1389    }
1390
1391    //     template-name<T> (where template-name refers to a class template)
1392    //     template-name<i>
1393    //     TT<T>
1394    //     TT<i>
1395    //     TT<>
1396    case Type::TemplateSpecialization: {
1397      const TemplateSpecializationType *SpecParam
1398        = cast<TemplateSpecializationType>(Param);
1399
1400      // Try to deduce template arguments from the template-id.
1401      Sema::TemplateDeductionResult Result
1402        = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
1403                                  Info, Deduced);
1404
1405      if (Result && (TDF & TDF_DerivedClass)) {
1406        // C++ [temp.deduct.call]p3b3:
1407        //   If P is a class, and P has the form template-id, then A can be a
1408        //   derived class of the deduced A. Likewise, if P is a pointer to a
1409        //   class of the form template-id, A can be a pointer to a derived
1410        //   class pointed to by the deduced A.
1411        //
1412        // More importantly:
1413        //   These alternatives are considered only if type deduction would
1414        //   otherwise fail.
1415        if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
1416          // We cannot inspect base classes as part of deduction when the type
1417          // is incomplete, so either instantiate any templates necessary to
1418          // complete the type, or skip over it if it cannot be completed.
1419          if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
1420            return Result;
1421
1422          // Use data recursion to crawl through the list of base classes.
1423          // Visited contains the set of nodes we have already visited, while
1424          // ToVisit is our stack of records that we still need to visit.
1425          llvm::SmallPtrSet<const RecordType *, 8> Visited;
1426          SmallVector<const RecordType *, 8> ToVisit;
1427          ToVisit.push_back(RecordT);
1428          bool Successful = false;
1429          SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1430                                                              Deduced.end());
1431          while (!ToVisit.empty()) {
1432            // Retrieve the next class in the inheritance hierarchy.
1433            const RecordType *NextT = ToVisit.back();
1434            ToVisit.pop_back();
1435
1436            // If we have already seen this type, skip it.
1437            if (!Visited.insert(NextT))
1438              continue;
1439
1440            // If this is a base class, try to perform template argument
1441            // deduction from it.
1442            if (NextT != RecordT) {
1443              TemplateDeductionInfo BaseInfo(Info.getLocation());
1444              Sema::TemplateDeductionResult BaseResult
1445                = DeduceTemplateArguments(S, TemplateParams, SpecParam,
1446                                          QualType(NextT, 0), BaseInfo,
1447                                          Deduced);
1448
1449              // If template argument deduction for this base was successful,
1450              // note that we had some success. Otherwise, ignore any deductions
1451              // from this base class.
1452              if (BaseResult == Sema::TDK_Success) {
1453                Successful = true;
1454                DeducedOrig.clear();
1455                DeducedOrig.append(Deduced.begin(), Deduced.end());
1456                Info.Param = BaseInfo.Param;
1457                Info.FirstArg = BaseInfo.FirstArg;
1458                Info.SecondArg = BaseInfo.SecondArg;
1459              }
1460              else
1461                Deduced = DeducedOrig;
1462            }
1463
1464            // Visit base classes
1465            CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1466            for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
1467                                                 BaseEnd = Next->bases_end();
1468                 Base != BaseEnd; ++Base) {
1469              assert(Base->getType()->isRecordType() &&
1470                     "Base class that isn't a record?");
1471              ToVisit.push_back(Base->getType()->getAs<RecordType>());
1472            }
1473          }
1474
1475          if (Successful)
1476            return Sema::TDK_Success;
1477        }
1478
1479      }
1480
1481      return Result;
1482    }
1483
1484    //     T type::*
1485    //     T T::*
1486    //     T (type::*)()
1487    //     type (T::*)()
1488    //     type (type::*)(T)
1489    //     type (T::*)(T)
1490    //     T (type::*)(T)
1491    //     T (T::*)()
1492    //     T (T::*)(T)
1493    case Type::MemberPointer: {
1494      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1495      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1496      if (!MemPtrArg)
1497        return Sema::TDK_NonDeducedMismatch;
1498
1499      if (Sema::TemplateDeductionResult Result
1500            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1501                                                 MemPtrParam->getPointeeType(),
1502                                                 MemPtrArg->getPointeeType(),
1503                                                 Info, Deduced,
1504                                                 TDF & TDF_IgnoreQualifiers))
1505        return Result;
1506
1507      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1508                                           QualType(MemPtrParam->getClass(), 0),
1509                                           QualType(MemPtrArg->getClass(), 0),
1510                                           Info, Deduced,
1511                                           TDF & TDF_IgnoreQualifiers);
1512    }
1513
1514    //     (clang extension)
1515    //
1516    //     type(^)(T)
1517    //     T(^)()
1518    //     T(^)(T)
1519    case Type::BlockPointer: {
1520      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1521      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1522
1523      if (!BlockPtrArg)
1524        return Sema::TDK_NonDeducedMismatch;
1525
1526      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1527                                                BlockPtrParam->getPointeeType(),
1528                                                BlockPtrArg->getPointeeType(),
1529                                                Info, Deduced, 0);
1530    }
1531
1532    //     (clang extension)
1533    //
1534    //     T __attribute__(((ext_vector_type(<integral constant>))))
1535    case Type::ExtVector: {
1536      const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
1537      if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1538        // Make sure that the vectors have the same number of elements.
1539        if (VectorParam->getNumElements() != VectorArg->getNumElements())
1540          return Sema::TDK_NonDeducedMismatch;
1541
1542        // Perform deduction on the element types.
1543        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1544                                                  VectorParam->getElementType(),
1545                                                  VectorArg->getElementType(),
1546                                                  Info, Deduced, TDF);
1547      }
1548
1549      if (const DependentSizedExtVectorType *VectorArg
1550                                = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1551        // We can't check the number of elements, since the argument has a
1552        // dependent number of elements. This can only occur during partial
1553        // ordering.
1554
1555        // Perform deduction on the element types.
1556        return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1557                                                  VectorParam->getElementType(),
1558                                                  VectorArg->getElementType(),
1559                                                  Info, Deduced, TDF);
1560      }
1561
1562      return Sema::TDK_NonDeducedMismatch;
1563    }
1564
1565    //     (clang extension)
1566    //
1567    //     T __attribute__(((ext_vector_type(N))))
1568    case Type::DependentSizedExtVector: {
1569      const DependentSizedExtVectorType *VectorParam
1570        = cast<DependentSizedExtVectorType>(Param);
1571
1572      if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
1573        // Perform deduction on the element types.
1574        if (Sema::TemplateDeductionResult Result
1575              = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1576                                                  VectorParam->getElementType(),
1577                                                   VectorArg->getElementType(),
1578                                                   Info, Deduced, TDF))
1579          return Result;
1580
1581        // Perform deduction on the vector size, if we can.
1582        NonTypeTemplateParmDecl *NTTP
1583          = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1584        if (!NTTP)
1585          return Sema::TDK_Success;
1586
1587        llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1588        ArgSize = VectorArg->getNumElements();
1589        return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
1590                                             false, Info, Deduced);
1591      }
1592
1593      if (const DependentSizedExtVectorType *VectorArg
1594                                = dyn_cast<DependentSizedExtVectorType>(Arg)) {
1595        // Perform deduction on the element types.
1596        if (Sema::TemplateDeductionResult Result
1597            = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1598                                                 VectorParam->getElementType(),
1599                                                 VectorArg->getElementType(),
1600                                                 Info, Deduced, TDF))
1601          return Result;
1602
1603        // Perform deduction on the vector size, if we can.
1604        NonTypeTemplateParmDecl *NTTP
1605          = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
1606        if (!NTTP)
1607          return Sema::TDK_Success;
1608
1609        return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
1610                                             Info, Deduced);
1611      }
1612
1613      return Sema::TDK_NonDeducedMismatch;
1614    }
1615
1616    case Type::TypeOfExpr:
1617    case Type::TypeOf:
1618    case Type::DependentName:
1619    case Type::UnresolvedUsing:
1620    case Type::Decltype:
1621    case Type::UnaryTransform:
1622    case Type::Auto:
1623    case Type::DependentTemplateSpecialization:
1624    case Type::PackExpansion:
1625      // No template argument deduction for these types
1626      return Sema::TDK_Success;
1627  }
1628
1629  llvm_unreachable("Invalid Type Class!");
1630}
1631
1632static Sema::TemplateDeductionResult
1633DeduceTemplateArguments(Sema &S,
1634                        TemplateParameterList *TemplateParams,
1635                        const TemplateArgument &Param,
1636                        TemplateArgument Arg,
1637                        TemplateDeductionInfo &Info,
1638                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1639  // If the template argument is a pack expansion, perform template argument
1640  // deduction against the pattern of that expansion. This only occurs during
1641  // partial ordering.
1642  if (Arg.isPackExpansion())
1643    Arg = Arg.getPackExpansionPattern();
1644
1645  switch (Param.getKind()) {
1646  case TemplateArgument::Null:
1647    llvm_unreachable("Null template argument in parameter list");
1648
1649  case TemplateArgument::Type:
1650    if (Arg.getKind() == TemplateArgument::Type)
1651      return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
1652                                                Param.getAsType(),
1653                                                Arg.getAsType(),
1654                                                Info, Deduced, 0);
1655    Info.FirstArg = Param;
1656    Info.SecondArg = Arg;
1657    return Sema::TDK_NonDeducedMismatch;
1658
1659  case TemplateArgument::Template:
1660    if (Arg.getKind() == TemplateArgument::Template)
1661      return DeduceTemplateArguments(S, TemplateParams,
1662                                     Param.getAsTemplate(),
1663                                     Arg.getAsTemplate(), Info, Deduced);
1664    Info.FirstArg = Param;
1665    Info.SecondArg = Arg;
1666    return Sema::TDK_NonDeducedMismatch;
1667
1668  case TemplateArgument::TemplateExpansion:
1669    llvm_unreachable("caller should handle pack expansions");
1670
1671  case TemplateArgument::Declaration:
1672    if (Arg.getKind() == TemplateArgument::Declaration &&
1673        isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()) &&
1674        Param.isDeclForReferenceParam() == Arg.isDeclForReferenceParam())
1675      return Sema::TDK_Success;
1676
1677    Info.FirstArg = Param;
1678    Info.SecondArg = Arg;
1679    return Sema::TDK_NonDeducedMismatch;
1680
1681  case TemplateArgument::NullPtr:
1682    if (Arg.getKind() == TemplateArgument::NullPtr &&
1683        S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
1684      return Sema::TDK_Success;
1685
1686    Info.FirstArg = Param;
1687    Info.SecondArg = Arg;
1688    return Sema::TDK_NonDeducedMismatch;
1689
1690  case TemplateArgument::Integral:
1691    if (Arg.getKind() == TemplateArgument::Integral) {
1692      if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
1693        return Sema::TDK_Success;
1694
1695      Info.FirstArg = Param;
1696      Info.SecondArg = Arg;
1697      return Sema::TDK_NonDeducedMismatch;
1698    }
1699
1700    if (Arg.getKind() == TemplateArgument::Expression) {
1701      Info.FirstArg = Param;
1702      Info.SecondArg = Arg;
1703      return Sema::TDK_NonDeducedMismatch;
1704    }
1705
1706    Info.FirstArg = Param;
1707    Info.SecondArg = Arg;
1708    return Sema::TDK_NonDeducedMismatch;
1709
1710  case TemplateArgument::Expression: {
1711    if (NonTypeTemplateParmDecl *NTTP
1712          = getDeducedParameterFromExpr(Param.getAsExpr())) {
1713      if (Arg.getKind() == TemplateArgument::Integral)
1714        return DeduceNonTypeTemplateArgument(S, NTTP,
1715                                             Arg.getAsIntegral(),
1716                                             Arg.getIntegralType(),
1717                                             /*ArrayBound=*/false,
1718                                             Info, Deduced);
1719      if (Arg.getKind() == TemplateArgument::Expression)
1720        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
1721                                             Info, Deduced);
1722      if (Arg.getKind() == TemplateArgument::Declaration)
1723        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
1724                                             Info, Deduced);
1725
1726      Info.FirstArg = Param;
1727      Info.SecondArg = Arg;
1728      return Sema::TDK_NonDeducedMismatch;
1729    }
1730
1731    // Can't deduce anything, but that's okay.
1732    return Sema::TDK_Success;
1733  }
1734  case TemplateArgument::Pack:
1735    llvm_unreachable("Argument packs should be expanded by the caller!");
1736  }
1737
1738  llvm_unreachable("Invalid TemplateArgument Kind!");
1739}
1740
1741/// \brief Determine whether there is a template argument to be used for
1742/// deduction.
1743///
1744/// This routine "expands" argument packs in-place, overriding its input
1745/// parameters so that \c Args[ArgIdx] will be the available template argument.
1746///
1747/// \returns true if there is another template argument (which will be at
1748/// \c Args[ArgIdx]), false otherwise.
1749static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
1750                                            unsigned &ArgIdx,
1751                                            unsigned &NumArgs) {
1752  if (ArgIdx == NumArgs)
1753    return false;
1754
1755  const TemplateArgument &Arg = Args[ArgIdx];
1756  if (Arg.getKind() != TemplateArgument::Pack)
1757    return true;
1758
1759  assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
1760  Args = Arg.pack_begin();
1761  NumArgs = Arg.pack_size();
1762  ArgIdx = 0;
1763  return ArgIdx < NumArgs;
1764}
1765
1766/// \brief Determine whether the given set of template arguments has a pack
1767/// expansion that is not the last template argument.
1768static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
1769                                      unsigned NumArgs) {
1770  unsigned ArgIdx = 0;
1771  while (ArgIdx < NumArgs) {
1772    const TemplateArgument &Arg = Args[ArgIdx];
1773
1774    // Unwrap argument packs.
1775    if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
1776      Args = Arg.pack_begin();
1777      NumArgs = Arg.pack_size();
1778      ArgIdx = 0;
1779      continue;
1780    }
1781
1782    ++ArgIdx;
1783    if (ArgIdx == NumArgs)
1784      return false;
1785
1786    if (Arg.isPackExpansion())
1787      return true;
1788  }
1789
1790  return false;
1791}
1792
1793static Sema::TemplateDeductionResult
1794DeduceTemplateArguments(Sema &S,
1795                        TemplateParameterList *TemplateParams,
1796                        const TemplateArgument *Params, unsigned NumParams,
1797                        const TemplateArgument *Args, unsigned NumArgs,
1798                        TemplateDeductionInfo &Info,
1799                        SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1800  // C++0x [temp.deduct.type]p9:
1801  //   If the template argument list of P contains a pack expansion that is not
1802  //   the last template argument, the entire template argument list is a
1803  //   non-deduced context.
1804  if (hasPackExpansionBeforeEnd(Params, NumParams))
1805    return Sema::TDK_Success;
1806
1807  // C++0x [temp.deduct.type]p9:
1808  //   If P has a form that contains <T> or <i>, then each argument Pi of the
1809  //   respective template argument list P is compared with the corresponding
1810  //   argument Ai of the corresponding template argument list of A.
1811  unsigned ArgIdx = 0, ParamIdx = 0;
1812  for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
1813       ++ParamIdx) {
1814    if (!Params[ParamIdx].isPackExpansion()) {
1815      // The simple case: deduce template arguments by matching Pi and Ai.
1816
1817      // Check whether we have enough arguments.
1818      if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1819        return Sema::TDK_Success;
1820
1821      if (Args[ArgIdx].isPackExpansion()) {
1822        // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
1823        // but applied to pack expansions that are template arguments.
1824        return Sema::TDK_MiscellaneousDeductionFailure;
1825      }
1826
1827      // Perform deduction for this Pi/Ai pair.
1828      if (Sema::TemplateDeductionResult Result
1829            = DeduceTemplateArguments(S, TemplateParams,
1830                                      Params[ParamIdx], Args[ArgIdx],
1831                                      Info, Deduced))
1832        return Result;
1833
1834      // Move to the next argument.
1835      ++ArgIdx;
1836      continue;
1837    }
1838
1839    // The parameter is a pack expansion.
1840
1841    // C++0x [temp.deduct.type]p9:
1842    //   If Pi is a pack expansion, then the pattern of Pi is compared with
1843    //   each remaining argument in the template argument list of A. Each
1844    //   comparison deduces template arguments for subsequent positions in the
1845    //   template parameter packs expanded by Pi.
1846    TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
1847
1848    // Compute the set of template parameter indices that correspond to
1849    // parameter packs expanded by the pack expansion.
1850    SmallVector<unsigned, 2> PackIndices;
1851    {
1852      llvm::SmallBitVector SawIndices(TemplateParams->size());
1853      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
1854      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
1855      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
1856        unsigned Depth, Index;
1857        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
1858        if (Depth == 0 && !SawIndices[Index]) {
1859          SawIndices[Index] = true;
1860          PackIndices.push_back(Index);
1861        }
1862      }
1863    }
1864    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
1865
1866    // FIXME: If there are no remaining arguments, we can bail out early
1867    // and set any deduced parameter packs to an empty argument pack.
1868    // The latter part of this is a (minor) correctness issue.
1869
1870    // Save the deduced template arguments for each parameter pack expanded
1871    // by this pack expansion, then clear out the deduction.
1872    SmallVector<DeducedTemplateArgument, 2>
1873      SavedPacks(PackIndices.size());
1874    SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
1875      NewlyDeducedPacks(PackIndices.size());
1876    PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
1877                                 NewlyDeducedPacks);
1878
1879    // Keep track of the deduced template arguments for each parameter pack
1880    // expanded by this pack expansion (the outer index) and for each
1881    // template argument (the inner SmallVectors).
1882    bool HasAnyArguments = false;
1883    while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
1884      HasAnyArguments = true;
1885
1886      // Deduce template arguments from the pattern.
1887      if (Sema::TemplateDeductionResult Result
1888            = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
1889                                      Info, Deduced))
1890        return Result;
1891
1892      // Capture the deduced template arguments for each parameter pack expanded
1893      // by this pack expansion, add them to the list of arguments we've deduced
1894      // for that pack, then clear out the deduced argument.
1895      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1896        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
1897        if (!DeducedArg.isNull()) {
1898          NewlyDeducedPacks[I].push_back(DeducedArg);
1899          DeducedArg = DeducedTemplateArgument();
1900        }
1901      }
1902
1903      ++ArgIdx;
1904    }
1905
1906    // Build argument packs for each of the parameter packs expanded by this
1907    // pack expansion.
1908    if (Sema::TemplateDeductionResult Result
1909          = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
1910                                        Deduced, PackIndices, SavedPacks,
1911                                        NewlyDeducedPacks, Info))
1912      return Result;
1913  }
1914
1915  return Sema::TDK_Success;
1916}
1917
1918static Sema::TemplateDeductionResult
1919DeduceTemplateArguments(Sema &S,
1920                        TemplateParameterList *TemplateParams,
1921                        const TemplateArgumentList &ParamList,
1922                        const TemplateArgumentList &ArgList,
1923                        TemplateDeductionInfo &Info,
1924                    SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1925  return DeduceTemplateArguments(S, TemplateParams,
1926                                 ParamList.data(), ParamList.size(),
1927                                 ArgList.data(), ArgList.size(),
1928                                 Info, Deduced);
1929}
1930
1931/// \brief Determine whether two template arguments are the same.
1932static bool isSameTemplateArg(ASTContext &Context,
1933                              const TemplateArgument &X,
1934                              const TemplateArgument &Y) {
1935  if (X.getKind() != Y.getKind())
1936    return false;
1937
1938  switch (X.getKind()) {
1939    case TemplateArgument::Null:
1940      llvm_unreachable("Comparing NULL template argument");
1941
1942    case TemplateArgument::Type:
1943      return Context.getCanonicalType(X.getAsType()) ==
1944             Context.getCanonicalType(Y.getAsType());
1945
1946    case TemplateArgument::Declaration:
1947      return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
1948             X.isDeclForReferenceParam() == Y.isDeclForReferenceParam();
1949
1950    case TemplateArgument::NullPtr:
1951      return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
1952
1953    case TemplateArgument::Template:
1954    case TemplateArgument::TemplateExpansion:
1955      return Context.getCanonicalTemplateName(
1956                    X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
1957             Context.getCanonicalTemplateName(
1958                    Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
1959
1960    case TemplateArgument::Integral:
1961      return X.getAsIntegral() == Y.getAsIntegral();
1962
1963    case TemplateArgument::Expression: {
1964      llvm::FoldingSetNodeID XID, YID;
1965      X.getAsExpr()->Profile(XID, Context, true);
1966      Y.getAsExpr()->Profile(YID, Context, true);
1967      return XID == YID;
1968    }
1969
1970    case TemplateArgument::Pack:
1971      if (X.pack_size() != Y.pack_size())
1972        return false;
1973
1974      for (TemplateArgument::pack_iterator XP = X.pack_begin(),
1975                                        XPEnd = X.pack_end(),
1976                                           YP = Y.pack_begin();
1977           XP != XPEnd; ++XP, ++YP)
1978        if (!isSameTemplateArg(Context, *XP, *YP))
1979          return false;
1980
1981      return true;
1982  }
1983
1984  llvm_unreachable("Invalid TemplateArgument Kind!");
1985}
1986
1987/// \brief Allocate a TemplateArgumentLoc where all locations have
1988/// been initialized to the given location.
1989///
1990/// \param S The semantic analysis object.
1991///
1992/// \param Arg The template argument we are producing template argument
1993/// location information for.
1994///
1995/// \param NTTPType For a declaration template argument, the type of
1996/// the non-type template parameter that corresponds to this template
1997/// argument.
1998///
1999/// \param Loc The source location to use for the resulting template
2000/// argument.
2001static TemplateArgumentLoc
2002getTrivialTemplateArgumentLoc(Sema &S,
2003                              const TemplateArgument &Arg,
2004                              QualType NTTPType,
2005                              SourceLocation Loc) {
2006  switch (Arg.getKind()) {
2007  case TemplateArgument::Null:
2008    llvm_unreachable("Can't get a NULL template argument here");
2009
2010  case TemplateArgument::Type:
2011    return TemplateArgumentLoc(Arg,
2012                     S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
2013
2014  case TemplateArgument::Declaration: {
2015    Expr *E
2016      = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2017          .takeAs<Expr>();
2018    return TemplateArgumentLoc(TemplateArgument(E), E);
2019  }
2020
2021  case TemplateArgument::NullPtr: {
2022    Expr *E
2023      = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2024          .takeAs<Expr>();
2025    return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
2026                               E);
2027  }
2028
2029  case TemplateArgument::Integral: {
2030    Expr *E
2031      = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
2032    return TemplateArgumentLoc(TemplateArgument(E), E);
2033  }
2034
2035    case TemplateArgument::Template:
2036    case TemplateArgument::TemplateExpansion: {
2037      NestedNameSpecifierLocBuilder Builder;
2038      TemplateName Template = Arg.getAsTemplate();
2039      if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
2040        Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
2041      else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2042        Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
2043
2044      if (Arg.getKind() == TemplateArgument::Template)
2045        return TemplateArgumentLoc(Arg,
2046                                   Builder.getWithLocInContext(S.Context),
2047                                   Loc);
2048
2049
2050      return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
2051                                 Loc, Loc);
2052    }
2053
2054  case TemplateArgument::Expression:
2055    return TemplateArgumentLoc(Arg, Arg.getAsExpr());
2056
2057  case TemplateArgument::Pack:
2058    return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
2059  }
2060
2061  llvm_unreachable("Invalid TemplateArgument Kind!");
2062}
2063
2064
2065/// \brief Convert the given deduced template argument and add it to the set of
2066/// fully-converted template arguments.
2067static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
2068                                           DeducedTemplateArgument Arg,
2069                                           NamedDecl *Template,
2070                                           QualType NTTPType,
2071                                           unsigned ArgumentPackIndex,
2072                                           TemplateDeductionInfo &Info,
2073                                           bool InFunctionTemplate,
2074                             SmallVectorImpl<TemplateArgument> &Output) {
2075  if (Arg.getKind() == TemplateArgument::Pack) {
2076    // This is a template argument pack, so check each of its arguments against
2077    // the template parameter.
2078    SmallVector<TemplateArgument, 2> PackedArgsBuilder;
2079    for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
2080                                      PAEnd = Arg.pack_end();
2081         PA != PAEnd; ++PA) {
2082      // When converting the deduced template argument, append it to the
2083      // general output list. We need to do this so that the template argument
2084      // checking logic has all of the prior template arguments available.
2085      DeducedTemplateArgument InnerArg(*PA);
2086      InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
2087      if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
2088                                         NTTPType, PackedArgsBuilder.size(),
2089                                         Info, InFunctionTemplate, Output))
2090        return true;
2091
2092      // Move the converted template argument into our argument pack.
2093      PackedArgsBuilder.push_back(Output.back());
2094      Output.pop_back();
2095    }
2096
2097    // Create the resulting argument pack.
2098    Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
2099                                                      PackedArgsBuilder.data(),
2100                                                     PackedArgsBuilder.size()));
2101    return false;
2102  }
2103
2104  // Convert the deduced template argument into a template
2105  // argument that we can check, almost as if the user had written
2106  // the template argument explicitly.
2107  TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
2108                                                             Info.getLocation());
2109
2110  // Check the template argument, converting it as necessary.
2111  return S.CheckTemplateArgument(Param, ArgLoc,
2112                                 Template,
2113                                 Template->getLocation(),
2114                                 Template->getSourceRange().getEnd(),
2115                                 ArgumentPackIndex,
2116                                 Output,
2117                                 InFunctionTemplate
2118                                  ? (Arg.wasDeducedFromArrayBound()
2119                                       ? Sema::CTAK_DeducedFromArrayBound
2120                                       : Sema::CTAK_Deduced)
2121                                 : Sema::CTAK_Specified);
2122}
2123
2124/// Complete template argument deduction for a class template partial
2125/// specialization.
2126static Sema::TemplateDeductionResult
2127FinishTemplateArgumentDeduction(Sema &S,
2128                                ClassTemplatePartialSpecializationDecl *Partial,
2129                                const TemplateArgumentList &TemplateArgs,
2130                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2131                                TemplateDeductionInfo &Info) {
2132  // Unevaluated SFINAE context.
2133  EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
2134  Sema::SFINAETrap Trap(S);
2135
2136  Sema::ContextRAII SavedContext(S, Partial);
2137
2138  // C++ [temp.deduct.type]p2:
2139  //   [...] or if any template argument remains neither deduced nor
2140  //   explicitly specified, template argument deduction fails.
2141  SmallVector<TemplateArgument, 4> Builder;
2142  TemplateParameterList *PartialParams = Partial->getTemplateParameters();
2143  for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
2144    NamedDecl *Param = PartialParams->getParam(I);
2145    if (Deduced[I].isNull()) {
2146      Info.Param = makeTemplateParameter(Param);
2147      return Sema::TDK_Incomplete;
2148    }
2149
2150    // We have deduced this argument, so it still needs to be
2151    // checked and converted.
2152
2153    // First, for a non-type template parameter type that is
2154    // initialized by a declaration, we need the type of the
2155    // corresponding non-type template parameter.
2156    QualType NTTPType;
2157    if (NonTypeTemplateParmDecl *NTTP
2158                                  = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2159      NTTPType = NTTP->getType();
2160      if (NTTPType->isDependentType()) {
2161        TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2162                                          Builder.data(), Builder.size());
2163        NTTPType = S.SubstType(NTTPType,
2164                               MultiLevelTemplateArgumentList(TemplateArgs),
2165                               NTTP->getLocation(),
2166                               NTTP->getDeclName());
2167        if (NTTPType.isNull()) {
2168          Info.Param = makeTemplateParameter(Param);
2169          // FIXME: These template arguments are temporary. Free them!
2170          Info.reset(TemplateArgumentList::CreateCopy(S.Context,
2171                                                      Builder.data(),
2172                                                      Builder.size()));
2173          return Sema::TDK_SubstitutionFailure;
2174        }
2175      }
2176    }
2177
2178    if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
2179                                       Partial, NTTPType, 0, Info, false,
2180                                       Builder)) {
2181      Info.Param = makeTemplateParameter(Param);
2182      // FIXME: These template arguments are temporary. Free them!
2183      Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2184                                                  Builder.size()));
2185      return Sema::TDK_SubstitutionFailure;
2186    }
2187  }
2188
2189  // Form the template argument list from the deduced template arguments.
2190  TemplateArgumentList *DeducedArgumentList
2191    = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
2192                                       Builder.size());
2193
2194  Info.reset(DeducedArgumentList);
2195
2196  // Substitute the deduced template arguments into the template
2197  // arguments of the class template partial specialization, and
2198  // verify that the instantiated template arguments are both valid
2199  // and are equivalent to the template arguments originally provided
2200  // to the class template.
2201  LocalInstantiationScope InstScope(S);
2202  ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
2203  const TemplateArgumentLoc *PartialTemplateArgs
2204    = Partial->getTemplateArgsAsWritten();
2205
2206  // Note that we don't provide the langle and rangle locations.
2207  TemplateArgumentListInfo InstArgs;
2208
2209  if (S.Subst(PartialTemplateArgs,
2210              Partial->getNumTemplateArgsAsWritten(),
2211              InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
2212    unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2213    if (ParamIdx >= Partial->getTemplateParameters()->size())
2214      ParamIdx = Partial->getTemplateParameters()->size() - 1;
2215
2216    Decl *Param
2217      = const_cast<NamedDecl *>(
2218                          Partial->getTemplateParameters()->getParam(ParamIdx));
2219    Info.Param = makeTemplateParameter(Param);
2220    Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
2221    return Sema::TDK_SubstitutionFailure;
2222  }
2223
2224  SmallVector<TemplateArgument, 4> ConvertedInstArgs;
2225  if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
2226                                  InstArgs, false, ConvertedInstArgs))
2227    return Sema::TDK_SubstitutionFailure;
2228
2229  TemplateParameterList *TemplateParams
2230    = ClassTemplate->getTemplateParameters();
2231  for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2232    TemplateArgument InstArg = ConvertedInstArgs.data()[I];
2233    if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
2234      Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2235      Info.FirstArg = TemplateArgs[I];
2236      Info.SecondArg = InstArg;
2237      return Sema::TDK_NonDeducedMismatch;
2238    }
2239  }
2240
2241  if (Trap.hasErrorOccurred())
2242    return Sema::TDK_SubstitutionFailure;
2243
2244  return Sema::TDK_Success;
2245}
2246
2247/// \brief Perform template argument deduction to determine whether
2248/// the given template arguments match the given class template
2249/// partial specialization per C++ [temp.class.spec.match].
2250Sema::TemplateDeductionResult
2251Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2252                              const TemplateArgumentList &TemplateArgs,
2253                              TemplateDeductionInfo &Info) {
2254  if (Partial->isInvalidDecl())
2255    return TDK_Invalid;
2256
2257  // C++ [temp.class.spec.match]p2:
2258  //   A partial specialization matches a given actual template
2259  //   argument list if the template arguments of the partial
2260  //   specialization can be deduced from the actual template argument
2261  //   list (14.8.2).
2262
2263  // Unevaluated SFINAE context.
2264  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2265  SFINAETrap Trap(*this);
2266
2267  SmallVector<DeducedTemplateArgument, 4> Deduced;
2268  Deduced.resize(Partial->getTemplateParameters()->size());
2269  if (TemplateDeductionResult Result
2270        = ::DeduceTemplateArguments(*this,
2271                                    Partial->getTemplateParameters(),
2272                                    Partial->getTemplateArgs(),
2273                                    TemplateArgs, Info, Deduced))
2274    return Result;
2275
2276  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2277  InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
2278                             DeducedArgs, Info);
2279  if (Inst)
2280    return TDK_InstantiationDepth;
2281
2282  if (Trap.hasErrorOccurred())
2283    return Sema::TDK_SubstitutionFailure;
2284
2285  return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
2286                                           Deduced, Info);
2287}
2288
2289/// \brief Determine whether the given type T is a simple-template-id type.
2290static bool isSimpleTemplateIdType(QualType T) {
2291  if (const TemplateSpecializationType *Spec
2292        = T->getAs<TemplateSpecializationType>())
2293    return Spec->getTemplateName().getAsTemplateDecl() != 0;
2294
2295  return false;
2296}
2297
2298/// \brief Substitute the explicitly-provided template arguments into the
2299/// given function template according to C++ [temp.arg.explicit].
2300///
2301/// \param FunctionTemplate the function template into which the explicit
2302/// template arguments will be substituted.
2303///
2304/// \param ExplicitTemplateArgs the explicitly-specified template
2305/// arguments.
2306///
2307/// \param Deduced the deduced template arguments, which will be populated
2308/// with the converted and checked explicit template arguments.
2309///
2310/// \param ParamTypes will be populated with the instantiated function
2311/// parameters.
2312///
2313/// \param FunctionType if non-NULL, the result type of the function template
2314/// will also be instantiated and the pointed-to value will be updated with
2315/// the instantiated function type.
2316///
2317/// \param Info if substitution fails for any reason, this object will be
2318/// populated with more information about the failure.
2319///
2320/// \returns TDK_Success if substitution was successful, or some failure
2321/// condition.
2322Sema::TemplateDeductionResult
2323Sema::SubstituteExplicitTemplateArguments(
2324                                      FunctionTemplateDecl *FunctionTemplate,
2325                               TemplateArgumentListInfo &ExplicitTemplateArgs,
2326                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2327                                 SmallVectorImpl<QualType> &ParamTypes,
2328                                          QualType *FunctionType,
2329                                          TemplateDeductionInfo &Info) {
2330  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2331  TemplateParameterList *TemplateParams
2332    = FunctionTemplate->getTemplateParameters();
2333
2334  if (ExplicitTemplateArgs.size() == 0) {
2335    // No arguments to substitute; just copy over the parameter types and
2336    // fill in the function type.
2337    for (FunctionDecl::param_iterator P = Function->param_begin(),
2338                                   PEnd = Function->param_end();
2339         P != PEnd;
2340         ++P)
2341      ParamTypes.push_back((*P)->getType());
2342
2343    if (FunctionType)
2344      *FunctionType = Function->getType();
2345    return TDK_Success;
2346  }
2347
2348  // Unevaluated SFINAE context.
2349  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2350  SFINAETrap Trap(*this);
2351
2352  // C++ [temp.arg.explicit]p3:
2353  //   Template arguments that are present shall be specified in the
2354  //   declaration order of their corresponding template-parameters. The
2355  //   template argument list shall not specify more template-arguments than
2356  //   there are corresponding template-parameters.
2357  SmallVector<TemplateArgument, 4> Builder;
2358
2359  // Enter a new template instantiation context where we check the
2360  // explicitly-specified template arguments against this function template,
2361  // and then substitute them into the function parameter types.
2362  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2363  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2364                             FunctionTemplate, DeducedArgs,
2365           ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
2366                             Info);
2367  if (Inst)
2368    return TDK_InstantiationDepth;
2369
2370  if (CheckTemplateArgumentList(FunctionTemplate,
2371                                SourceLocation(),
2372                                ExplicitTemplateArgs,
2373                                true,
2374                                Builder) || Trap.hasErrorOccurred()) {
2375    unsigned Index = Builder.size();
2376    if (Index >= TemplateParams->size())
2377      Index = TemplateParams->size() - 1;
2378    Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
2379    return TDK_InvalidExplicitArguments;
2380  }
2381
2382  // Form the template argument list from the explicitly-specified
2383  // template arguments.
2384  TemplateArgumentList *ExplicitArgumentList
2385    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2386  Info.reset(ExplicitArgumentList);
2387
2388  // Template argument deduction and the final substitution should be
2389  // done in the context of the templated declaration.  Explicit
2390  // argument substitution, on the other hand, needs to happen in the
2391  // calling context.
2392  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2393
2394  // If we deduced template arguments for a template parameter pack,
2395  // note that the template argument pack is partially substituted and record
2396  // the explicit template arguments. They'll be used as part of deduction
2397  // for this template parameter pack.
2398  for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
2399    const TemplateArgument &Arg = Builder[I];
2400    if (Arg.getKind() == TemplateArgument::Pack) {
2401      CurrentInstantiationScope->SetPartiallySubstitutedPack(
2402                                                 TemplateParams->getParam(I),
2403                                                             Arg.pack_begin(),
2404                                                             Arg.pack_size());
2405      break;
2406    }
2407  }
2408
2409  const FunctionProtoType *Proto
2410    = Function->getType()->getAs<FunctionProtoType>();
2411  assert(Proto && "Function template does not have a prototype?");
2412
2413  // Instantiate the types of each of the function parameters given the
2414  // explicitly-specified template arguments. If the function has a trailing
2415  // return type, substitute it after the arguments to ensure we substitute
2416  // in lexical order.
2417  if (Proto->hasTrailingReturn()) {
2418    if (SubstParmTypes(Function->getLocation(),
2419                       Function->param_begin(), Function->getNumParams(),
2420                       MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2421                       ParamTypes))
2422      return TDK_SubstitutionFailure;
2423  }
2424
2425  // Instantiate the return type.
2426  // FIXME: exception-specifications?
2427  QualType ResultType;
2428  {
2429    // C++11 [expr.prim.general]p3:
2430    //   If a declaration declares a member function or member function
2431    //   template of a class X, the expression this is a prvalue of type
2432    //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
2433    //   and the end of the function-definition, member-declarator, or
2434    //   declarator.
2435    unsigned ThisTypeQuals = 0;
2436    CXXRecordDecl *ThisContext = 0;
2437    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2438      ThisContext = Method->getParent();
2439      ThisTypeQuals = Method->getTypeQualifiers();
2440    }
2441
2442    CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
2443                               getLangOpts().CPlusPlus11);
2444
2445    ResultType = SubstType(Proto->getResultType(),
2446                   MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2447                   Function->getTypeSpecStartLoc(),
2448                   Function->getDeclName());
2449    if (ResultType.isNull() || Trap.hasErrorOccurred())
2450      return TDK_SubstitutionFailure;
2451  }
2452
2453  // Instantiate the types of each of the function parameters given the
2454  // explicitly-specified template arguments if we didn't do so earlier.
2455  if (!Proto->hasTrailingReturn() &&
2456      SubstParmTypes(Function->getLocation(),
2457                     Function->param_begin(), Function->getNumParams(),
2458                     MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2459                     ParamTypes))
2460    return TDK_SubstitutionFailure;
2461
2462  if (FunctionType) {
2463    *FunctionType = BuildFunctionType(ResultType, ParamTypes,
2464                                      Function->getLocation(),
2465                                      Function->getDeclName(),
2466                                      Proto->getExtProtoInfo());
2467    if (FunctionType->isNull() || Trap.hasErrorOccurred())
2468      return TDK_SubstitutionFailure;
2469  }
2470
2471  // C++ [temp.arg.explicit]p2:
2472  //   Trailing template arguments that can be deduced (14.8.2) may be
2473  //   omitted from the list of explicit template-arguments. If all of the
2474  //   template arguments can be deduced, they may all be omitted; in this
2475  //   case, the empty template argument list <> itself may also be omitted.
2476  //
2477  // Take all of the explicitly-specified arguments and put them into
2478  // the set of deduced template arguments. Explicitly-specified
2479  // parameter packs, however, will be set to NULL since the deduction
2480  // mechanisms handle explicitly-specified argument packs directly.
2481  Deduced.reserve(TemplateParams->size());
2482  for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
2483    const TemplateArgument &Arg = ExplicitArgumentList->get(I);
2484    if (Arg.getKind() == TemplateArgument::Pack)
2485      Deduced.push_back(DeducedTemplateArgument());
2486    else
2487      Deduced.push_back(Arg);
2488  }
2489
2490  return TDK_Success;
2491}
2492
2493/// \brief Check whether the deduced argument type for a call to a function
2494/// template matches the actual argument type per C++ [temp.deduct.call]p4.
2495static bool
2496CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
2497                              QualType DeducedA) {
2498  ASTContext &Context = S.Context;
2499
2500  QualType A = OriginalArg.OriginalArgType;
2501  QualType OriginalParamType = OriginalArg.OriginalParamType;
2502
2503  // Check for type equality (top-level cv-qualifiers are ignored).
2504  if (Context.hasSameUnqualifiedType(A, DeducedA))
2505    return false;
2506
2507  // Strip off references on the argument types; they aren't needed for
2508  // the following checks.
2509  if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
2510    DeducedA = DeducedARef->getPointeeType();
2511  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
2512    A = ARef->getPointeeType();
2513
2514  // C++ [temp.deduct.call]p4:
2515  //   [...] However, there are three cases that allow a difference:
2516  //     - If the original P is a reference type, the deduced A (i.e., the
2517  //       type referred to by the reference) can be more cv-qualified than
2518  //       the transformed A.
2519  if (const ReferenceType *OriginalParamRef
2520      = OriginalParamType->getAs<ReferenceType>()) {
2521    // We don't want to keep the reference around any more.
2522    OriginalParamType = OriginalParamRef->getPointeeType();
2523
2524    Qualifiers AQuals = A.getQualifiers();
2525    Qualifiers DeducedAQuals = DeducedA.getQualifiers();
2526
2527    // Under Objective-C++ ARC, the deduced type may have implicitly been
2528    // given strong lifetime. If so, update the original qualifiers to
2529    // include this strong lifetime.
2530    if (S.getLangOpts().ObjCAutoRefCount &&
2531        DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
2532        AQuals.getObjCLifetime() == Qualifiers::OCL_None) {
2533      AQuals.setObjCLifetime(Qualifiers::OCL_Strong);
2534    }
2535
2536    if (AQuals == DeducedAQuals) {
2537      // Qualifiers match; there's nothing to do.
2538    } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
2539      return true;
2540    } else {
2541      // Qualifiers are compatible, so have the argument type adopt the
2542      // deduced argument type's qualifiers as if we had performed the
2543      // qualification conversion.
2544      A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
2545    }
2546  }
2547
2548  //    - The transformed A can be another pointer or pointer to member
2549  //      type that can be converted to the deduced A via a qualification
2550  //      conversion.
2551  //
2552  // Also allow conversions which merely strip [[noreturn]] from function types
2553  // (recursively) as an extension.
2554  // FIXME: Currently, this doesn't place nicely with qualfication conversions.
2555  bool ObjCLifetimeConversion = false;
2556  QualType ResultTy;
2557  if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
2558      (S.IsQualificationConversion(A, DeducedA, false,
2559                                   ObjCLifetimeConversion) ||
2560       S.IsNoReturnConversion(A, DeducedA, ResultTy)))
2561    return false;
2562
2563
2564  //    - If P is a class and P has the form simple-template-id, then the
2565  //      transformed A can be a derived class of the deduced A. [...]
2566  //     [...] Likewise, if P is a pointer to a class of the form
2567  //      simple-template-id, the transformed A can be a pointer to a
2568  //      derived class pointed to by the deduced A.
2569  if (const PointerType *OriginalParamPtr
2570      = OriginalParamType->getAs<PointerType>()) {
2571    if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
2572      if (const PointerType *APtr = A->getAs<PointerType>()) {
2573        if (A->getPointeeType()->isRecordType()) {
2574          OriginalParamType = OriginalParamPtr->getPointeeType();
2575          DeducedA = DeducedAPtr->getPointeeType();
2576          A = APtr->getPointeeType();
2577        }
2578      }
2579    }
2580  }
2581
2582  if (Context.hasSameUnqualifiedType(A, DeducedA))
2583    return false;
2584
2585  if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
2586      S.IsDerivedFrom(A, DeducedA))
2587    return false;
2588
2589  return true;
2590}
2591
2592/// \brief Finish template argument deduction for a function template,
2593/// checking the deduced template arguments for completeness and forming
2594/// the function template specialization.
2595///
2596/// \param OriginalCallArgs If non-NULL, the original call arguments against
2597/// which the deduced argument types should be compared.
2598Sema::TemplateDeductionResult
2599Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
2600                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2601                                      unsigned NumExplicitlySpecified,
2602                                      FunctionDecl *&Specialization,
2603                                      TemplateDeductionInfo &Info,
2604        SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
2605  TemplateParameterList *TemplateParams
2606    = FunctionTemplate->getTemplateParameters();
2607
2608  // Unevaluated SFINAE context.
2609  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
2610  SFINAETrap Trap(*this);
2611
2612  // Enter a new template instantiation context while we instantiate the
2613  // actual function declaration.
2614  SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
2615  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2616                             FunctionTemplate, DeducedArgs,
2617              ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
2618                             Info);
2619  if (Inst)
2620    return TDK_InstantiationDepth;
2621
2622  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2623
2624  // C++ [temp.deduct.type]p2:
2625  //   [...] or if any template argument remains neither deduced nor
2626  //   explicitly specified, template argument deduction fails.
2627  SmallVector<TemplateArgument, 4> Builder;
2628  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2629    NamedDecl *Param = TemplateParams->getParam(I);
2630
2631    if (!Deduced[I].isNull()) {
2632      if (I < NumExplicitlySpecified) {
2633        // We have already fully type-checked and converted this
2634        // argument, because it was explicitly-specified. Just record the
2635        // presence of this argument.
2636        Builder.push_back(Deduced[I]);
2637        continue;
2638      }
2639
2640      // We have deduced this argument, so it still needs to be
2641      // checked and converted.
2642
2643      // First, for a non-type template parameter type that is
2644      // initialized by a declaration, we need the type of the
2645      // corresponding non-type template parameter.
2646      QualType NTTPType;
2647      if (NonTypeTemplateParmDecl *NTTP
2648                                = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2649        NTTPType = NTTP->getType();
2650        if (NTTPType->isDependentType()) {
2651          TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2652                                            Builder.data(), Builder.size());
2653          NTTPType = SubstType(NTTPType,
2654                               MultiLevelTemplateArgumentList(TemplateArgs),
2655                               NTTP->getLocation(),
2656                               NTTP->getDeclName());
2657          if (NTTPType.isNull()) {
2658            Info.Param = makeTemplateParameter(Param);
2659            // FIXME: These template arguments are temporary. Free them!
2660            Info.reset(TemplateArgumentList::CreateCopy(Context,
2661                                                        Builder.data(),
2662                                                        Builder.size()));
2663            return TDK_SubstitutionFailure;
2664          }
2665        }
2666      }
2667
2668      if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
2669                                         FunctionTemplate, NTTPType, 0, Info,
2670                                         true, Builder)) {
2671        Info.Param = makeTemplateParameter(Param);
2672        // FIXME: These template arguments are temporary. Free them!
2673        Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2674                                                    Builder.size()));
2675        return TDK_SubstitutionFailure;
2676      }
2677
2678      continue;
2679    }
2680
2681    // C++0x [temp.arg.explicit]p3:
2682    //    A trailing template parameter pack (14.5.3) not otherwise deduced will
2683    //    be deduced to an empty sequence of template arguments.
2684    // FIXME: Where did the word "trailing" come from?
2685    if (Param->isTemplateParameterPack()) {
2686      // We may have had explicitly-specified template arguments for this
2687      // template parameter pack. If so, our empty deduction extends the
2688      // explicitly-specified set (C++0x [temp.arg.explicit]p9).
2689      const TemplateArgument *ExplicitArgs;
2690      unsigned NumExplicitArgs;
2691      if (CurrentInstantiationScope &&
2692          CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
2693                                                             &NumExplicitArgs)
2694            == Param) {
2695        Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
2696
2697        // Forget the partially-substituted pack; it's substitution is now
2698        // complete.
2699        CurrentInstantiationScope->ResetPartiallySubstitutedPack();
2700      } else {
2701        Builder.push_back(TemplateArgument::getEmptyPack());
2702      }
2703      continue;
2704    }
2705
2706    // Substitute into the default template argument, if available.
2707    bool HasDefaultArg = false;
2708    TemplateArgumentLoc DefArg
2709      = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
2710                                              FunctionTemplate->getLocation(),
2711                                  FunctionTemplate->getSourceRange().getEnd(),
2712                                                Param,
2713                                                Builder, HasDefaultArg);
2714
2715    // If there was no default argument, deduction is incomplete.
2716    if (DefArg.getArgument().isNull()) {
2717      Info.Param = makeTemplateParameter(
2718                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2719      Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2720                                                  Builder.size()));
2721      return HasDefaultArg ? TDK_SubstitutionFailure : TDK_Incomplete;
2722    }
2723
2724    // Check whether we can actually use the default argument.
2725    if (CheckTemplateArgument(Param, DefArg,
2726                              FunctionTemplate,
2727                              FunctionTemplate->getLocation(),
2728                              FunctionTemplate->getSourceRange().getEnd(),
2729                              0, Builder,
2730                              CTAK_Specified)) {
2731      Info.Param = makeTemplateParameter(
2732                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2733      // FIXME: These template arguments are temporary. Free them!
2734      Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2735                                                  Builder.size()));
2736      return TDK_SubstitutionFailure;
2737    }
2738
2739    // If we get here, we successfully used the default template argument.
2740  }
2741
2742  // Form the template argument list from the deduced template arguments.
2743  TemplateArgumentList *DeducedArgumentList
2744    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2745  Info.reset(DeducedArgumentList);
2746
2747  // Substitute the deduced template arguments into the function template
2748  // declaration to produce the function template specialization.
2749  DeclContext *Owner = FunctionTemplate->getDeclContext();
2750  if (FunctionTemplate->getFriendObjectKind())
2751    Owner = FunctionTemplate->getLexicalDeclContext();
2752  Specialization = cast_or_null<FunctionDecl>(
2753                      SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
2754                         MultiLevelTemplateArgumentList(*DeducedArgumentList)));
2755  if (!Specialization || Specialization->isInvalidDecl())
2756    return TDK_SubstitutionFailure;
2757
2758  assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
2759         FunctionTemplate->getCanonicalDecl());
2760
2761  // If the template argument list is owned by the function template
2762  // specialization, release it.
2763  if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
2764      !Trap.hasErrorOccurred())
2765    Info.take();
2766
2767  // There may have been an error that did not prevent us from constructing a
2768  // declaration. Mark the declaration invalid and return with a substitution
2769  // failure.
2770  if (Trap.hasErrorOccurred()) {
2771    Specialization->setInvalidDecl(true);
2772    return TDK_SubstitutionFailure;
2773  }
2774
2775  if (OriginalCallArgs) {
2776    // C++ [temp.deduct.call]p4:
2777    //   In general, the deduction process attempts to find template argument
2778    //   values that will make the deduced A identical to A (after the type A
2779    //   is transformed as described above). [...]
2780    for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
2781      OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
2782      unsigned ParamIdx = OriginalArg.ArgIdx;
2783
2784      if (ParamIdx >= Specialization->getNumParams())
2785        continue;
2786
2787      QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
2788      if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
2789        return Sema::TDK_SubstitutionFailure;
2790    }
2791  }
2792
2793  // If we suppressed any diagnostics while performing template argument
2794  // deduction, and if we haven't already instantiated this declaration,
2795  // keep track of these diagnostics. They'll be emitted if this specialization
2796  // is actually used.
2797  if (Info.diag_begin() != Info.diag_end()) {
2798    SuppressedDiagnosticsMap::iterator
2799      Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
2800    if (Pos == SuppressedDiagnostics.end())
2801        SuppressedDiagnostics[Specialization->getCanonicalDecl()]
2802          .append(Info.diag_begin(), Info.diag_end());
2803  }
2804
2805  return TDK_Success;
2806}
2807
2808/// Gets the type of a function for template-argument-deducton
2809/// purposes when it's considered as part of an overload set.
2810static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
2811                                  FunctionDecl *Fn) {
2812  // We may need to deduce the return type of the function now.
2813  if (S.getLangOpts().CPlusPlus1y && Fn->getResultType()->isUndeducedType() &&
2814      S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/false))
2815    return QualType();
2816
2817  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
2818    if (Method->isInstance()) {
2819      // An instance method that's referenced in a form that doesn't
2820      // look like a member pointer is just invalid.
2821      if (!R.HasFormOfMemberPointer) return QualType();
2822
2823      return S.Context.getMemberPointerType(Fn->getType(),
2824               S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
2825    }
2826
2827  if (!R.IsAddressOfOperand) return Fn->getType();
2828  return S.Context.getPointerType(Fn->getType());
2829}
2830
2831/// Apply the deduction rules for overload sets.
2832///
2833/// \return the null type if this argument should be treated as an
2834/// undeduced context
2835static QualType
2836ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
2837                            Expr *Arg, QualType ParamType,
2838                            bool ParamWasReference) {
2839
2840  OverloadExpr::FindResult R = OverloadExpr::find(Arg);
2841
2842  OverloadExpr *Ovl = R.Expression;
2843
2844  // C++0x [temp.deduct.call]p4
2845  unsigned TDF = 0;
2846  if (ParamWasReference)
2847    TDF |= TDF_ParamWithReferenceType;
2848  if (R.IsAddressOfOperand)
2849    TDF |= TDF_IgnoreQualifiers;
2850
2851  // C++0x [temp.deduct.call]p6:
2852  //   When P is a function type, pointer to function type, or pointer
2853  //   to member function type:
2854
2855  if (!ParamType->isFunctionType() &&
2856      !ParamType->isFunctionPointerType() &&
2857      !ParamType->isMemberFunctionPointerType()) {
2858    if (Ovl->hasExplicitTemplateArgs()) {
2859      // But we can still look for an explicit specialization.
2860      if (FunctionDecl *ExplicitSpec
2861            = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
2862        return GetTypeOfFunction(S, R, ExplicitSpec);
2863    }
2864
2865    return QualType();
2866  }
2867
2868  // Gather the explicit template arguments, if any.
2869  TemplateArgumentListInfo ExplicitTemplateArgs;
2870  if (Ovl->hasExplicitTemplateArgs())
2871    Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
2872  QualType Match;
2873  for (UnresolvedSetIterator I = Ovl->decls_begin(),
2874         E = Ovl->decls_end(); I != E; ++I) {
2875    NamedDecl *D = (*I)->getUnderlyingDecl();
2876
2877    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
2878      //   - If the argument is an overload set containing one or more
2879      //     function templates, the parameter is treated as a
2880      //     non-deduced context.
2881      if (!Ovl->hasExplicitTemplateArgs())
2882        return QualType();
2883
2884      // Otherwise, see if we can resolve a function type
2885      FunctionDecl *Specialization = 0;
2886      TemplateDeductionInfo Info(Ovl->getNameLoc());
2887      if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
2888                                    Specialization, Info))
2889        continue;
2890
2891      D = Specialization;
2892    }
2893
2894    FunctionDecl *Fn = cast<FunctionDecl>(D);
2895    QualType ArgType = GetTypeOfFunction(S, R, Fn);
2896    if (ArgType.isNull()) continue;
2897
2898    // Function-to-pointer conversion.
2899    if (!ParamWasReference && ParamType->isPointerType() &&
2900        ArgType->isFunctionType())
2901      ArgType = S.Context.getPointerType(ArgType);
2902
2903    //   - If the argument is an overload set (not containing function
2904    //     templates), trial argument deduction is attempted using each
2905    //     of the members of the set. If deduction succeeds for only one
2906    //     of the overload set members, that member is used as the
2907    //     argument value for the deduction. If deduction succeeds for
2908    //     more than one member of the overload set the parameter is
2909    //     treated as a non-deduced context.
2910
2911    // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
2912    //   Type deduction is done independently for each P/A pair, and
2913    //   the deduced template argument values are then combined.
2914    // So we do not reject deductions which were made elsewhere.
2915    SmallVector<DeducedTemplateArgument, 8>
2916      Deduced(TemplateParams->size());
2917    TemplateDeductionInfo Info(Ovl->getNameLoc());
2918    Sema::TemplateDeductionResult Result
2919      = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
2920                                           ArgType, Info, Deduced, TDF);
2921    if (Result) continue;
2922    if (!Match.isNull()) return QualType();
2923    Match = ArgType;
2924  }
2925
2926  return Match;
2927}
2928
2929/// \brief Perform the adjustments to the parameter and argument types
2930/// described in C++ [temp.deduct.call].
2931///
2932/// \returns true if the caller should not attempt to perform any template
2933/// argument deduction based on this P/A pair because the argument is an
2934/// overloaded function set that could not be resolved.
2935static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
2936                                          TemplateParameterList *TemplateParams,
2937                                                      QualType &ParamType,
2938                                                      QualType &ArgType,
2939                                                      Expr *Arg,
2940                                                      unsigned &TDF) {
2941  // C++0x [temp.deduct.call]p3:
2942  //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
2943  //   are ignored for type deduction.
2944  if (ParamType.hasQualifiers())
2945    ParamType = ParamType.getUnqualifiedType();
2946  const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
2947  if (ParamRefType) {
2948    QualType PointeeType = ParamRefType->getPointeeType();
2949
2950    // If the argument has incomplete array type, try to complete its type.
2951    if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
2952      ArgType = Arg->getType();
2953
2954    //   [C++0x] If P is an rvalue reference to a cv-unqualified
2955    //   template parameter and the argument is an lvalue, the type
2956    //   "lvalue reference to A" is used in place of A for type
2957    //   deduction.
2958    if (isa<RValueReferenceType>(ParamType)) {
2959      if (!PointeeType.getQualifiers() &&
2960          isa<TemplateTypeParmType>(PointeeType) &&
2961          Arg->Classify(S.Context).isLValue() &&
2962          Arg->getType() != S.Context.OverloadTy &&
2963          Arg->getType() != S.Context.BoundMemberTy)
2964        ArgType = S.Context.getLValueReferenceType(ArgType);
2965    }
2966
2967    //   [...] If P is a reference type, the type referred to by P is used
2968    //   for type deduction.
2969    ParamType = PointeeType;
2970  }
2971
2972  // Overload sets usually make this parameter an undeduced
2973  // context, but there are sometimes special circumstances.
2974  if (ArgType == S.Context.OverloadTy) {
2975    ArgType = ResolveOverloadForDeduction(S, TemplateParams,
2976                                          Arg, ParamType,
2977                                          ParamRefType != 0);
2978    if (ArgType.isNull())
2979      return true;
2980  }
2981
2982  if (ParamRefType) {
2983    // C++0x [temp.deduct.call]p3:
2984    //   [...] If P is of the form T&&, where T is a template parameter, and
2985    //   the argument is an lvalue, the type A& is used in place of A for
2986    //   type deduction.
2987    if (ParamRefType->isRValueReferenceType() &&
2988        ParamRefType->getAs<TemplateTypeParmType>() &&
2989        Arg->isLValue())
2990      ArgType = S.Context.getLValueReferenceType(ArgType);
2991  } else {
2992    // C++ [temp.deduct.call]p2:
2993    //   If P is not a reference type:
2994    //   - If A is an array type, the pointer type produced by the
2995    //     array-to-pointer standard conversion (4.2) is used in place of
2996    //     A for type deduction; otherwise,
2997    if (ArgType->isArrayType())
2998      ArgType = S.Context.getArrayDecayedType(ArgType);
2999    //   - If A is a function type, the pointer type produced by the
3000    //     function-to-pointer standard conversion (4.3) is used in place
3001    //     of A for type deduction; otherwise,
3002    else if (ArgType->isFunctionType())
3003      ArgType = S.Context.getPointerType(ArgType);
3004    else {
3005      // - If A is a cv-qualified type, the top level cv-qualifiers of A's
3006      //   type are ignored for type deduction.
3007      ArgType = ArgType.getUnqualifiedType();
3008    }
3009  }
3010
3011  // C++0x [temp.deduct.call]p4:
3012  //   In general, the deduction process attempts to find template argument
3013  //   values that will make the deduced A identical to A (after the type A
3014  //   is transformed as described above). [...]
3015  TDF = TDF_SkipNonDependent;
3016
3017  //     - If the original P is a reference type, the deduced A (i.e., the
3018  //       type referred to by the reference) can be more cv-qualified than
3019  //       the transformed A.
3020  if (ParamRefType)
3021    TDF |= TDF_ParamWithReferenceType;
3022  //     - The transformed A can be another pointer or pointer to member
3023  //       type that can be converted to the deduced A via a qualification
3024  //       conversion (4.4).
3025  if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
3026      ArgType->isObjCObjectPointerType())
3027    TDF |= TDF_IgnoreQualifiers;
3028  //     - If P is a class and P has the form simple-template-id, then the
3029  //       transformed A can be a derived class of the deduced A. Likewise,
3030  //       if P is a pointer to a class of the form simple-template-id, the
3031  //       transformed A can be a pointer to a derived class pointed to by
3032  //       the deduced A.
3033  if (isSimpleTemplateIdType(ParamType) ||
3034      (isa<PointerType>(ParamType) &&
3035       isSimpleTemplateIdType(
3036                              ParamType->getAs<PointerType>()->getPointeeType())))
3037    TDF |= TDF_DerivedClass;
3038
3039  return false;
3040}
3041
3042static bool hasDeducibleTemplateParameters(Sema &S,
3043                                           FunctionTemplateDecl *FunctionTemplate,
3044                                           QualType T);
3045
3046/// \brief Perform template argument deduction by matching a parameter type
3047///        against a single expression, where the expression is an element of
3048///        an initializer list that was originally matched against a parameter
3049///        of type \c initializer_list\<ParamType\>.
3050static Sema::TemplateDeductionResult
3051DeduceTemplateArgumentByListElement(Sema &S,
3052                                    TemplateParameterList *TemplateParams,
3053                                    QualType ParamType, Expr *Arg,
3054                                    TemplateDeductionInfo &Info,
3055                              SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3056                                    unsigned TDF) {
3057  // Handle the case where an init list contains another init list as the
3058  // element.
3059  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3060    QualType X;
3061    if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
3062      return Sema::TDK_Success; // Just ignore this expression.
3063
3064    // Recurse down into the init list.
3065    for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3066      if (Sema::TemplateDeductionResult Result =
3067            DeduceTemplateArgumentByListElement(S, TemplateParams, X,
3068                                                 ILE->getInit(i),
3069                                                 Info, Deduced, TDF))
3070        return Result;
3071    }
3072    return Sema::TDK_Success;
3073  }
3074
3075  // For all other cases, just match by type.
3076  QualType ArgType = Arg->getType();
3077  if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
3078                                                ArgType, Arg, TDF)) {
3079    Info.Expression = Arg;
3080    return Sema::TDK_FailedOverloadResolution;
3081  }
3082  return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3083                                            ArgType, Info, Deduced, TDF);
3084}
3085
3086/// \brief Perform template argument deduction from a function call
3087/// (C++ [temp.deduct.call]).
3088///
3089/// \param FunctionTemplate the function template for which we are performing
3090/// template argument deduction.
3091///
3092/// \param ExplicitTemplateArgs the explicit template arguments provided
3093/// for this call.
3094///
3095/// \param Args the function call arguments
3096///
3097/// \param Specialization if template argument deduction was successful,
3098/// this will be set to the function template specialization produced by
3099/// template argument deduction.
3100///
3101/// \param Info the argument will be updated to provide additional information
3102/// about template argument deduction.
3103///
3104/// \returns the result of template argument deduction.
3105Sema::TemplateDeductionResult
3106Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3107                              TemplateArgumentListInfo *ExplicitTemplateArgs,
3108                              llvm::ArrayRef<Expr *> Args,
3109                              FunctionDecl *&Specialization,
3110                              TemplateDeductionInfo &Info) {
3111  if (FunctionTemplate->isInvalidDecl())
3112    return TDK_Invalid;
3113
3114  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3115
3116  // C++ [temp.deduct.call]p1:
3117  //   Template argument deduction is done by comparing each function template
3118  //   parameter type (call it P) with the type of the corresponding argument
3119  //   of the call (call it A) as described below.
3120  unsigned CheckArgs = Args.size();
3121  if (Args.size() < Function->getMinRequiredArguments())
3122    return TDK_TooFewArguments;
3123  else if (Args.size() > Function->getNumParams()) {
3124    const FunctionProtoType *Proto
3125      = Function->getType()->getAs<FunctionProtoType>();
3126    if (Proto->isTemplateVariadic())
3127      /* Do nothing */;
3128    else if (Proto->isVariadic())
3129      CheckArgs = Function->getNumParams();
3130    else
3131      return TDK_TooManyArguments;
3132  }
3133
3134  // The types of the parameters from which we will perform template argument
3135  // deduction.
3136  LocalInstantiationScope InstScope(*this);
3137  TemplateParameterList *TemplateParams
3138    = FunctionTemplate->getTemplateParameters();
3139  SmallVector<DeducedTemplateArgument, 4> Deduced;
3140  SmallVector<QualType, 4> ParamTypes;
3141  unsigned NumExplicitlySpecified = 0;
3142  if (ExplicitTemplateArgs) {
3143    TemplateDeductionResult Result =
3144      SubstituteExplicitTemplateArguments(FunctionTemplate,
3145                                          *ExplicitTemplateArgs,
3146                                          Deduced,
3147                                          ParamTypes,
3148                                          0,
3149                                          Info);
3150    if (Result)
3151      return Result;
3152
3153    NumExplicitlySpecified = Deduced.size();
3154  } else {
3155    // Just fill in the parameter types from the function declaration.
3156    for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
3157      ParamTypes.push_back(Function->getParamDecl(I)->getType());
3158  }
3159
3160  // Deduce template arguments from the function parameters.
3161  Deduced.resize(TemplateParams->size());
3162  unsigned ArgIdx = 0;
3163  SmallVector<OriginalCallArg, 4> OriginalCallArgs;
3164  for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
3165       ParamIdx != NumParams; ++ParamIdx) {
3166    QualType OrigParamType = ParamTypes[ParamIdx];
3167    QualType ParamType = OrigParamType;
3168
3169    const PackExpansionType *ParamExpansion
3170      = dyn_cast<PackExpansionType>(ParamType);
3171    if (!ParamExpansion) {
3172      // Simple case: matching a function parameter to a function argument.
3173      if (ArgIdx >= CheckArgs)
3174        break;
3175
3176      Expr *Arg = Args[ArgIdx++];
3177      QualType ArgType = Arg->getType();
3178
3179      unsigned TDF = 0;
3180      if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3181                                                    ParamType, ArgType, Arg,
3182                                                    TDF))
3183        continue;
3184
3185      // If we have nothing to deduce, we're done.
3186      if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3187        continue;
3188
3189      // If the argument is an initializer list ...
3190      if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3191        // ... then the parameter is an undeduced context, unless the parameter
3192        // type is (reference to cv) std::initializer_list<P'>, in which case
3193        // deduction is done for each element of the initializer list, and the
3194        // result is the deduced type if it's the same for all elements.
3195        QualType X;
3196        // Removing references was already done.
3197        if (!isStdInitializerList(ParamType, &X))
3198          continue;
3199
3200        for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3201          if (TemplateDeductionResult Result =
3202                DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
3203                                                     ILE->getInit(i),
3204                                                     Info, Deduced, TDF))
3205            return Result;
3206        }
3207        // Don't track the argument type, since an initializer list has none.
3208        continue;
3209      }
3210
3211      // Keep track of the argument type and corresponding parameter index,
3212      // so we can check for compatibility between the deduced A and A.
3213      OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
3214                                                 ArgType));
3215
3216      if (TemplateDeductionResult Result
3217            = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3218                                                 ParamType, ArgType,
3219                                                 Info, Deduced, TDF))
3220        return Result;
3221
3222      continue;
3223    }
3224
3225    // C++0x [temp.deduct.call]p1:
3226    //   For a function parameter pack that occurs at the end of the
3227    //   parameter-declaration-list, the type A of each remaining argument of
3228    //   the call is compared with the type P of the declarator-id of the
3229    //   function parameter pack. Each comparison deduces template arguments
3230    //   for subsequent positions in the template parameter packs expanded by
3231    //   the function parameter pack. For a function parameter pack that does
3232    //   not occur at the end of the parameter-declaration-list, the type of
3233    //   the parameter pack is a non-deduced context.
3234    if (ParamIdx + 1 < NumParams)
3235      break;
3236
3237    QualType ParamPattern = ParamExpansion->getPattern();
3238    SmallVector<unsigned, 2> PackIndices;
3239    {
3240      llvm::SmallBitVector SawIndices(TemplateParams->size());
3241      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3242      collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
3243      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
3244        unsigned Depth, Index;
3245        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
3246        if (Depth == 0 && !SawIndices[Index]) {
3247          SawIndices[Index] = true;
3248          PackIndices.push_back(Index);
3249        }
3250      }
3251    }
3252    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
3253
3254    // Keep track of the deduced template arguments for each parameter pack
3255    // expanded by this pack expansion (the outer index) and for each
3256    // template argument (the inner SmallVectors).
3257    SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
3258      NewlyDeducedPacks(PackIndices.size());
3259    SmallVector<DeducedTemplateArgument, 2>
3260      SavedPacks(PackIndices.size());
3261    PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
3262                                 NewlyDeducedPacks);
3263    bool HasAnyArguments = false;
3264    for (; ArgIdx < Args.size(); ++ArgIdx) {
3265      HasAnyArguments = true;
3266
3267      QualType OrigParamType = ParamPattern;
3268      ParamType = OrigParamType;
3269      Expr *Arg = Args[ArgIdx];
3270      QualType ArgType = Arg->getType();
3271
3272      unsigned TDF = 0;
3273      if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
3274                                                    ParamType, ArgType, Arg,
3275                                                    TDF)) {
3276        // We can't actually perform any deduction for this argument, so stop
3277        // deduction at this point.
3278        ++ArgIdx;
3279        break;
3280      }
3281
3282      // As above, initializer lists need special handling.
3283      if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
3284        QualType X;
3285        if (!isStdInitializerList(ParamType, &X)) {
3286          ++ArgIdx;
3287          break;
3288        }
3289
3290        for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
3291          if (TemplateDeductionResult Result =
3292                DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
3293                                                   ILE->getInit(i)->getType(),
3294                                                   Info, Deduced, TDF))
3295            return Result;
3296        }
3297      } else {
3298
3299        // Keep track of the argument type and corresponding argument index,
3300        // so we can check for compatibility between the deduced A and A.
3301        if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
3302          OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
3303                                                     ArgType));
3304
3305        if (TemplateDeductionResult Result
3306            = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3307                                                 ParamType, ArgType, Info,
3308                                                 Deduced, TDF))
3309          return Result;
3310      }
3311
3312      // Capture the deduced template arguments for each parameter pack expanded
3313      // by this pack expansion, add them to the list of arguments we've deduced
3314      // for that pack, then clear out the deduced argument.
3315      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
3316        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
3317        if (!DeducedArg.isNull()) {
3318          NewlyDeducedPacks[I].push_back(DeducedArg);
3319          DeducedArg = DeducedTemplateArgument();
3320        }
3321      }
3322    }
3323
3324    // Build argument packs for each of the parameter packs expanded by this
3325    // pack expansion.
3326    if (Sema::TemplateDeductionResult Result
3327          = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
3328                                        Deduced, PackIndices, SavedPacks,
3329                                        NewlyDeducedPacks, Info))
3330      return Result;
3331
3332    // After we've matching against a parameter pack, we're done.
3333    break;
3334  }
3335
3336  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3337                                         NumExplicitlySpecified,
3338                                         Specialization, Info, &OriginalCallArgs);
3339}
3340
3341/// \brief Deduce template arguments when taking the address of a function
3342/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
3343/// a template.
3344///
3345/// \param FunctionTemplate the function template for which we are performing
3346/// template argument deduction.
3347///
3348/// \param ExplicitTemplateArgs the explicitly-specified template
3349/// arguments.
3350///
3351/// \param ArgFunctionType the function type that will be used as the
3352/// "argument" type (A) when performing template argument deduction from the
3353/// function template's function type. This type may be NULL, if there is no
3354/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
3355///
3356/// \param Specialization if template argument deduction was successful,
3357/// this will be set to the function template specialization produced by
3358/// template argument deduction.
3359///
3360/// \param Info the argument will be updated to provide additional information
3361/// about template argument deduction.
3362///
3363/// \returns the result of template argument deduction.
3364Sema::TemplateDeductionResult
3365Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3366                              TemplateArgumentListInfo *ExplicitTemplateArgs,
3367                              QualType ArgFunctionType,
3368                              FunctionDecl *&Specialization,
3369                              TemplateDeductionInfo &Info,
3370                              bool InOverloadResolution) {
3371  if (FunctionTemplate->isInvalidDecl())
3372    return TDK_Invalid;
3373
3374  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3375  TemplateParameterList *TemplateParams
3376    = FunctionTemplate->getTemplateParameters();
3377  QualType FunctionType = Function->getType();
3378
3379  // Substitute any explicit template arguments.
3380  LocalInstantiationScope InstScope(*this);
3381  SmallVector<DeducedTemplateArgument, 4> Deduced;
3382  unsigned NumExplicitlySpecified = 0;
3383  SmallVector<QualType, 4> ParamTypes;
3384  if (ExplicitTemplateArgs) {
3385    if (TemplateDeductionResult Result
3386          = SubstituteExplicitTemplateArguments(FunctionTemplate,
3387                                                *ExplicitTemplateArgs,
3388                                                Deduced, ParamTypes,
3389                                                &FunctionType, Info))
3390      return Result;
3391
3392    NumExplicitlySpecified = Deduced.size();
3393  }
3394
3395  // Unevaluated SFINAE context.
3396  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3397  SFINAETrap Trap(*this);
3398
3399  Deduced.resize(TemplateParams->size());
3400
3401  // If the function has a deduced return type, substitute it for a dependent
3402  // type so that we treat it as a non-deduced context in what follows.
3403  bool HasUndeducedReturnType = false;
3404  if (getLangOpts().CPlusPlus1y && InOverloadResolution &&
3405      Function->getResultType()->isUndeducedType()) {
3406    FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
3407    HasUndeducedReturnType = true;
3408  }
3409
3410  if (!ArgFunctionType.isNull()) {
3411    unsigned TDF = TDF_TopLevelParameterTypeList;
3412    if (InOverloadResolution) TDF |= TDF_InOverloadResolution;
3413    // Deduce template arguments from the function type.
3414    if (TemplateDeductionResult Result
3415          = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3416                                               FunctionType, ArgFunctionType,
3417                                               Info, Deduced, TDF))
3418      return Result;
3419  }
3420
3421  if (TemplateDeductionResult Result
3422        = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
3423                                          NumExplicitlySpecified,
3424                                          Specialization, Info))
3425    return Result;
3426
3427  // If the function has a deduced return type, deduce it now, so we can check
3428  // that the deduced function type matches the requested type.
3429  if (HasUndeducedReturnType &&
3430      Specialization->getResultType()->isUndeducedType() &&
3431      DeduceReturnType(Specialization, Info.getLocation(), false))
3432    return TDK_MiscellaneousDeductionFailure;
3433
3434  // If the requested function type does not match the actual type of the
3435  // specialization with respect to arguments of compatible pointer to function
3436  // types, template argument deduction fails.
3437  if (!ArgFunctionType.isNull()) {
3438    if (InOverloadResolution && !isSameOrCompatibleFunctionType(
3439                           Context.getCanonicalType(Specialization->getType()),
3440                           Context.getCanonicalType(ArgFunctionType)))
3441      return TDK_MiscellaneousDeductionFailure;
3442    else if(!InOverloadResolution &&
3443            !Context.hasSameType(Specialization->getType(), ArgFunctionType))
3444      return TDK_MiscellaneousDeductionFailure;
3445  }
3446
3447  return TDK_Success;
3448}
3449
3450/// \brief Deduce template arguments for a templated conversion
3451/// function (C++ [temp.deduct.conv]) and, if successful, produce a
3452/// conversion function template specialization.
3453Sema::TemplateDeductionResult
3454Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3455                              QualType ToType,
3456                              CXXConversionDecl *&Specialization,
3457                              TemplateDeductionInfo &Info) {
3458  if (FunctionTemplate->isInvalidDecl())
3459    return TDK_Invalid;
3460
3461  CXXConversionDecl *Conv
3462    = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
3463  QualType FromType = Conv->getConversionType();
3464
3465  // Canonicalize the types for deduction.
3466  QualType P = Context.getCanonicalType(FromType);
3467  QualType A = Context.getCanonicalType(ToType);
3468
3469  // C++0x [temp.deduct.conv]p2:
3470  //   If P is a reference type, the type referred to by P is used for
3471  //   type deduction.
3472  if (const ReferenceType *PRef = P->getAs<ReferenceType>())
3473    P = PRef->getPointeeType();
3474
3475  // C++0x [temp.deduct.conv]p4:
3476  //   [...] If A is a reference type, the type referred to by A is used
3477  //   for type deduction.
3478  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3479    A = ARef->getPointeeType().getUnqualifiedType();
3480  // C++ [temp.deduct.conv]p3:
3481  //
3482  //   If A is not a reference type:
3483  else {
3484    assert(!A->isReferenceType() && "Reference types were handled above");
3485
3486    //   - If P is an array type, the pointer type produced by the
3487    //     array-to-pointer standard conversion (4.2) is used in place
3488    //     of P for type deduction; otherwise,
3489    if (P->isArrayType())
3490      P = Context.getArrayDecayedType(P);
3491    //   - If P is a function type, the pointer type produced by the
3492    //     function-to-pointer standard conversion (4.3) is used in
3493    //     place of P for type deduction; otherwise,
3494    else if (P->isFunctionType())
3495      P = Context.getPointerType(P);
3496    //   - If P is a cv-qualified type, the top level cv-qualifiers of
3497    //     P's type are ignored for type deduction.
3498    else
3499      P = P.getUnqualifiedType();
3500
3501    // C++0x [temp.deduct.conv]p4:
3502    //   If A is a cv-qualified type, the top level cv-qualifiers of A's
3503    //   type are ignored for type deduction. If A is a reference type, the type
3504    //   referred to by A is used for type deduction.
3505    A = A.getUnqualifiedType();
3506  }
3507
3508  // Unevaluated SFINAE context.
3509  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3510  SFINAETrap Trap(*this);
3511
3512  // C++ [temp.deduct.conv]p1:
3513  //   Template argument deduction is done by comparing the return
3514  //   type of the template conversion function (call it P) with the
3515  //   type that is required as the result of the conversion (call it
3516  //   A) as described in 14.8.2.4.
3517  TemplateParameterList *TemplateParams
3518    = FunctionTemplate->getTemplateParameters();
3519  SmallVector<DeducedTemplateArgument, 4> Deduced;
3520  Deduced.resize(TemplateParams->size());
3521
3522  // C++0x [temp.deduct.conv]p4:
3523  //   In general, the deduction process attempts to find template
3524  //   argument values that will make the deduced A identical to
3525  //   A. However, there are two cases that allow a difference:
3526  unsigned TDF = 0;
3527  //     - If the original A is a reference type, A can be more
3528  //       cv-qualified than the deduced A (i.e., the type referred to
3529  //       by the reference)
3530  if (ToType->isReferenceType())
3531    TDF |= TDF_ParamWithReferenceType;
3532  //     - The deduced A can be another pointer or pointer to member
3533  //       type that can be converted to A via a qualification
3534  //       conversion.
3535  //
3536  // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
3537  // both P and A are pointers or member pointers. In this case, we
3538  // just ignore cv-qualifiers completely).
3539  if ((P->isPointerType() && A->isPointerType()) ||
3540      (P->isMemberPointerType() && A->isMemberPointerType()))
3541    TDF |= TDF_IgnoreQualifiers;
3542  if (TemplateDeductionResult Result
3543        = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
3544                                             P, A, Info, Deduced, TDF))
3545    return Result;
3546
3547  // Finish template argument deduction.
3548  LocalInstantiationScope InstScope(*this);
3549  FunctionDecl *Spec = 0;
3550  TemplateDeductionResult Result
3551    = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
3552                                      Info);
3553  Specialization = cast_or_null<CXXConversionDecl>(Spec);
3554  return Result;
3555}
3556
3557/// \brief Deduce template arguments for a function template when there is
3558/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
3559///
3560/// \param FunctionTemplate the function template for which we are performing
3561/// template argument deduction.
3562///
3563/// \param ExplicitTemplateArgs the explicitly-specified template
3564/// arguments.
3565///
3566/// \param Specialization if template argument deduction was successful,
3567/// this will be set to the function template specialization produced by
3568/// template argument deduction.
3569///
3570/// \param Info the argument will be updated to provide additional information
3571/// about template argument deduction.
3572///
3573/// \returns the result of template argument deduction.
3574Sema::TemplateDeductionResult
3575Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
3576                              TemplateArgumentListInfo *ExplicitTemplateArgs,
3577                              FunctionDecl *&Specialization,
3578                              TemplateDeductionInfo &Info,
3579                              bool InOverloadResolution) {
3580  return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3581                                 QualType(), Specialization, Info,
3582                                 InOverloadResolution);
3583}
3584
3585namespace {
3586  /// Substitute the 'auto' type specifier within a type for a given replacement
3587  /// type.
3588  class SubstituteAutoTransform :
3589    public TreeTransform<SubstituteAutoTransform> {
3590    QualType Replacement;
3591  public:
3592    SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
3593      TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
3594    }
3595    QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
3596      // If we're building the type pattern to deduce against, don't wrap the
3597      // substituted type in an AutoType. Certain template deduction rules
3598      // apply only when a template type parameter appears directly (and not if
3599      // the parameter is found through desugaring). For instance:
3600      //   auto &&lref = lvalue;
3601      // must transform into "rvalue reference to T" not "rvalue reference to
3602      // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
3603      if (!Replacement.isNull() && isa<TemplateTypeParmType>(Replacement)) {
3604        QualType Result = Replacement;
3605        TemplateTypeParmTypeLoc NewTL =
3606          TLB.push<TemplateTypeParmTypeLoc>(Result);
3607        NewTL.setNameLoc(TL.getNameLoc());
3608        return Result;
3609      } else {
3610        bool Dependent =
3611          !Replacement.isNull() && Replacement->isDependentType();
3612        QualType Result =
3613          SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement,
3614                                      TL.getTypePtr()->isDecltypeAuto(),
3615                                      Dependent);
3616        AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
3617        NewTL.setNameLoc(TL.getNameLoc());
3618        return Result;
3619      }
3620    }
3621
3622    ExprResult TransformLambdaExpr(LambdaExpr *E) {
3623      // Lambdas never need to be transformed.
3624      return E;
3625    }
3626
3627    QualType Apply(TypeLoc TL) {
3628      // Create some scratch storage for the transformed type locations.
3629      // FIXME: We're just going to throw this information away. Don't build it.
3630      TypeLocBuilder TLB;
3631      TLB.reserve(TL.getFullDataSize());
3632      return TransformType(TLB, TL);
3633    }
3634  };
3635}
3636
3637Sema::DeduceAutoResult
3638Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result) {
3639  return DeduceAutoType(Type->getTypeLoc(), Init, Result);
3640}
3641
3642/// \brief Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
3643///
3644/// \param Type the type pattern using the auto type-specifier.
3645/// \param Init the initializer for the variable whose type is to be deduced.
3646/// \param Result if type deduction was successful, this will be set to the
3647///        deduced type.
3648Sema::DeduceAutoResult
3649Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result) {
3650  if (Init->getType()->isNonOverloadPlaceholderType()) {
3651    ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
3652    if (NonPlaceholder.isInvalid())
3653      return DAR_FailedAlreadyDiagnosed;
3654    Init = NonPlaceholder.take();
3655  }
3656
3657  if (Init->isTypeDependent() || Type.getType()->isDependentType()) {
3658    Result = SubstituteAutoTransform(*this, Context.DependentTy).Apply(Type);
3659    assert(!Result.isNull() && "substituting DependentTy can't fail");
3660    return DAR_Succeeded;
3661  }
3662
3663  // If this is a 'decltype(auto)' specifier, do the decltype dance.
3664  // Since 'decltype(auto)' can only occur at the top of the type, we
3665  // don't need to go digging for it.
3666  if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
3667    if (AT->isDecltypeAuto()) {
3668      if (isa<InitListExpr>(Init)) {
3669        Diag(Init->getLocStart(), diag::err_decltype_auto_initializer_list);
3670        return DAR_FailedAlreadyDiagnosed;
3671      }
3672
3673      QualType Deduced = BuildDecltypeType(Init, Init->getLocStart());
3674      // FIXME: Support a non-canonical deduced type for 'auto'.
3675      Deduced = Context.getCanonicalType(Deduced);
3676      Result = SubstituteAutoTransform(*this, Deduced).Apply(Type);
3677      if (Result.isNull())
3678        return DAR_FailedAlreadyDiagnosed;
3679      return DAR_Succeeded;
3680    }
3681  }
3682
3683  SourceLocation Loc = Init->getExprLoc();
3684
3685  LocalInstantiationScope InstScope(*this);
3686
3687  // Build template<class TemplParam> void Func(FuncParam);
3688  TemplateTypeParmDecl *TemplParam =
3689    TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
3690                                 false, false);
3691  QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
3692  NamedDecl *TemplParamPtr = TemplParam;
3693  FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
3694                                                   Loc);
3695
3696  QualType FuncParam = SubstituteAutoTransform(*this, TemplArg).Apply(Type);
3697  assert(!FuncParam.isNull() &&
3698         "substituting template parameter for 'auto' failed");
3699
3700  // Deduce type of TemplParam in Func(Init)
3701  SmallVector<DeducedTemplateArgument, 1> Deduced;
3702  Deduced.resize(1);
3703  QualType InitType = Init->getType();
3704  unsigned TDF = 0;
3705
3706  TemplateDeductionInfo Info(Loc);
3707
3708  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
3709  if (InitList) {
3710    for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
3711      if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
3712                                              TemplArg,
3713                                              InitList->getInit(i),
3714                                              Info, Deduced, TDF))
3715        return DAR_Failed;
3716    }
3717  } else {
3718    if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
3719                                                  FuncParam, InitType, Init,
3720                                                  TDF))
3721      return DAR_Failed;
3722
3723    if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
3724                                           InitType, Info, Deduced, TDF))
3725      return DAR_Failed;
3726  }
3727
3728  if (Deduced[0].getKind() != TemplateArgument::Type)
3729    return DAR_Failed;
3730
3731  QualType DeducedType = Deduced[0].getAsType();
3732
3733  if (InitList) {
3734    DeducedType = BuildStdInitializerList(DeducedType, Loc);
3735    if (DeducedType.isNull())
3736      return DAR_FailedAlreadyDiagnosed;
3737  }
3738
3739  Result = SubstituteAutoTransform(*this, DeducedType).Apply(Type);
3740  if (Result.isNull())
3741   return DAR_FailedAlreadyDiagnosed;
3742
3743  // Check that the deduced argument type is compatible with the original
3744  // argument type per C++ [temp.deduct.call]p4.
3745  if (!InitList && !Result.isNull() &&
3746      CheckOriginalCallArgDeduction(*this,
3747                                    Sema::OriginalCallArg(FuncParam,0,InitType),
3748                                    Result)) {
3749    Result = QualType();
3750    return DAR_Failed;
3751  }
3752
3753  return DAR_Succeeded;
3754}
3755
3756QualType Sema::SubstAutoType(QualType Type, QualType Deduced) {
3757  return SubstituteAutoTransform(*this, Deduced).TransformType(Type);
3758}
3759
3760void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
3761  if (isa<InitListExpr>(Init))
3762    Diag(VDecl->getLocation(),
3763         diag::err_auto_var_deduction_failure_from_init_list)
3764      << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
3765  else
3766    Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
3767      << VDecl->getDeclName() << VDecl->getType() << Init->getType()
3768      << Init->getSourceRange();
3769}
3770
3771bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
3772                            bool Diagnose) {
3773  assert(FD->getResultType()->isUndeducedType());
3774
3775  if (FD->getTemplateInstantiationPattern())
3776    InstantiateFunctionDefinition(Loc, FD);
3777
3778  bool StillUndeduced = FD->getResultType()->isUndeducedType();
3779  if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
3780    Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
3781    Diag(FD->getLocation(), diag::note_callee_decl) << FD;
3782  }
3783
3784  return StillUndeduced;
3785}
3786
3787static void
3788MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
3789                           bool OnlyDeduced,
3790                           unsigned Level,
3791                           llvm::SmallBitVector &Deduced);
3792
3793/// \brief If this is a non-static member function,
3794static void AddImplicitObjectParameterType(ASTContext &Context,
3795                                                CXXMethodDecl *Method,
3796                                 SmallVectorImpl<QualType> &ArgTypes) {
3797  // C++11 [temp.func.order]p3:
3798  //   [...] The new parameter is of type "reference to cv A," where cv are
3799  //   the cv-qualifiers of the function template (if any) and A is
3800  //   the class of which the function template is a member.
3801  //
3802  // The standard doesn't say explicitly, but we pick the appropriate kind of
3803  // reference type based on [over.match.funcs]p4.
3804  QualType ArgTy = Context.getTypeDeclType(Method->getParent());
3805  ArgTy = Context.getQualifiedType(ArgTy,
3806                        Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
3807  if (Method->getRefQualifier() == RQ_RValue)
3808    ArgTy = Context.getRValueReferenceType(ArgTy);
3809  else
3810    ArgTy = Context.getLValueReferenceType(ArgTy);
3811  ArgTypes.push_back(ArgTy);
3812}
3813
3814/// \brief Determine whether the function template \p FT1 is at least as
3815/// specialized as \p FT2.
3816static bool isAtLeastAsSpecializedAs(Sema &S,
3817                                     SourceLocation Loc,
3818                                     FunctionTemplateDecl *FT1,
3819                                     FunctionTemplateDecl *FT2,
3820                                     TemplatePartialOrderingContext TPOC,
3821                                     unsigned NumCallArguments,
3822    SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
3823  FunctionDecl *FD1 = FT1->getTemplatedDecl();
3824  FunctionDecl *FD2 = FT2->getTemplatedDecl();
3825  const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
3826  const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
3827
3828  assert(Proto1 && Proto2 && "Function templates must have prototypes");
3829  TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
3830  SmallVector<DeducedTemplateArgument, 4> Deduced;
3831  Deduced.resize(TemplateParams->size());
3832
3833  // C++0x [temp.deduct.partial]p3:
3834  //   The types used to determine the ordering depend on the context in which
3835  //   the partial ordering is done:
3836  TemplateDeductionInfo Info(Loc);
3837  CXXMethodDecl *Method1 = 0;
3838  CXXMethodDecl *Method2 = 0;
3839  bool IsNonStatic2 = false;
3840  bool IsNonStatic1 = false;
3841  unsigned Skip2 = 0;
3842  switch (TPOC) {
3843  case TPOC_Call: {
3844    //   - In the context of a function call, the function parameter types are
3845    //     used.
3846    Method1 = dyn_cast<CXXMethodDecl>(FD1);
3847    Method2 = dyn_cast<CXXMethodDecl>(FD2);
3848    IsNonStatic1 = Method1 && !Method1->isStatic();
3849    IsNonStatic2 = Method2 && !Method2->isStatic();
3850
3851    // C++11 [temp.func.order]p3:
3852    //   [...] If only one of the function templates is a non-static
3853    //   member, that function template is considered to have a new
3854    //   first parameter inserted in its function parameter list. The
3855    //   new parameter is of type "reference to cv A," where cv are
3856    //   the cv-qualifiers of the function template (if any) and A is
3857    //   the class of which the function template is a member.
3858    //
3859    // Note that we interpret this to mean "if one of the function
3860    // templates is a non-static member and the other is a non-member";
3861    // otherwise, the ordering rules for static functions against non-static
3862    // functions don't make any sense.
3863    //
3864    // C++98/03 doesn't have this provision, so instead we drop the
3865    // first argument of the free function, which seems to match
3866    // existing practice.
3867    SmallVector<QualType, 4> Args1;
3868    unsigned Skip1 = !S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !Method1;
3869    if (S.getLangOpts().CPlusPlus11 && IsNonStatic1 && !Method2)
3870      AddImplicitObjectParameterType(S.Context, Method1, Args1);
3871    Args1.insert(Args1.end(),
3872                 Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
3873
3874    SmallVector<QualType, 4> Args2;
3875    Skip2 = !S.getLangOpts().CPlusPlus11 && IsNonStatic1 && !Method2;
3876    if (S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !Method1)
3877      AddImplicitObjectParameterType(S.Context, Method2, Args2);
3878    Args2.insert(Args2.end(),
3879                 Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
3880
3881    // C++ [temp.func.order]p5:
3882    //   The presence of unused ellipsis and default arguments has no effect on
3883    //   the partial ordering of function templates.
3884    if (Args1.size() > NumCallArguments)
3885      Args1.resize(NumCallArguments);
3886    if (Args2.size() > NumCallArguments)
3887      Args2.resize(NumCallArguments);
3888    if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
3889                                Args1.data(), Args1.size(), Info, Deduced,
3890                                TDF_None, /*PartialOrdering=*/true,
3891                                RefParamComparisons))
3892        return false;
3893
3894    break;
3895  }
3896
3897  case TPOC_Conversion:
3898    //   - In the context of a call to a conversion operator, the return types
3899    //     of the conversion function templates are used.
3900    if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
3901                                           Proto2->getResultType(),
3902                                           Proto1->getResultType(),
3903                                           Info, Deduced, TDF_None,
3904                                           /*PartialOrdering=*/true,
3905                                           RefParamComparisons))
3906      return false;
3907    break;
3908
3909  case TPOC_Other:
3910    //   - In other contexts (14.6.6.2) the function template's function type
3911    //     is used.
3912    if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
3913                                           FD2->getType(), FD1->getType(),
3914                                           Info, Deduced, TDF_None,
3915                                           /*PartialOrdering=*/true,
3916                                           RefParamComparisons))
3917      return false;
3918    break;
3919  }
3920
3921  // C++0x [temp.deduct.partial]p11:
3922  //   In most cases, all template parameters must have values in order for
3923  //   deduction to succeed, but for partial ordering purposes a template
3924  //   parameter may remain without a value provided it is not used in the
3925  //   types being used for partial ordering. [ Note: a template parameter used
3926  //   in a non-deduced context is considered used. -end note]
3927  unsigned ArgIdx = 0, NumArgs = Deduced.size();
3928  for (; ArgIdx != NumArgs; ++ArgIdx)
3929    if (Deduced[ArgIdx].isNull())
3930      break;
3931
3932  if (ArgIdx == NumArgs) {
3933    // All template arguments were deduced. FT1 is at least as specialized
3934    // as FT2.
3935    return true;
3936  }
3937
3938  // Figure out which template parameters were used.
3939  llvm::SmallBitVector UsedParameters(TemplateParams->size());
3940  switch (TPOC) {
3941  case TPOC_Call: {
3942    unsigned NumParams = std::min(NumCallArguments,
3943                                  std::min(Proto1->getNumArgs(),
3944                                           Proto2->getNumArgs()));
3945    if (S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !IsNonStatic1)
3946      ::MarkUsedTemplateParameters(S.Context, Method2->getThisType(S.Context),
3947                                   false,
3948                                   TemplateParams->getDepth(), UsedParameters);
3949    for (unsigned I = Skip2; I < NumParams; ++I)
3950      ::MarkUsedTemplateParameters(S.Context, Proto2->getArgType(I), false,
3951                                   TemplateParams->getDepth(),
3952                                   UsedParameters);
3953    break;
3954  }
3955
3956  case TPOC_Conversion:
3957    ::MarkUsedTemplateParameters(S.Context, Proto2->getResultType(), false,
3958                                 TemplateParams->getDepth(),
3959                                 UsedParameters);
3960    break;
3961
3962  case TPOC_Other:
3963    ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
3964                                 TemplateParams->getDepth(),
3965                                 UsedParameters);
3966    break;
3967  }
3968
3969  for (; ArgIdx != NumArgs; ++ArgIdx)
3970    // If this argument had no value deduced but was used in one of the types
3971    // used for partial ordering, then deduction fails.
3972    if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
3973      return false;
3974
3975  return true;
3976}
3977
3978/// \brief Determine whether this a function template whose parameter-type-list
3979/// ends with a function parameter pack.
3980static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
3981  FunctionDecl *Function = FunTmpl->getTemplatedDecl();
3982  unsigned NumParams = Function->getNumParams();
3983  if (NumParams == 0)
3984    return false;
3985
3986  ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
3987  if (!Last->isParameterPack())
3988    return false;
3989
3990  // Make sure that no previous parameter is a parameter pack.
3991  while (--NumParams > 0) {
3992    if (Function->getParamDecl(NumParams - 1)->isParameterPack())
3993      return false;
3994  }
3995
3996  return true;
3997}
3998
3999/// \brief Returns the more specialized function template according
4000/// to the rules of function template partial ordering (C++ [temp.func.order]).
4001///
4002/// \param FT1 the first function template
4003///
4004/// \param FT2 the second function template
4005///
4006/// \param TPOC the context in which we are performing partial ordering of
4007/// function templates.
4008///
4009/// \param NumCallArguments The number of arguments in a call, used only
4010/// when \c TPOC is \c TPOC_Call.
4011///
4012/// \returns the more specialized function template. If neither
4013/// template is more specialized, returns NULL.
4014FunctionTemplateDecl *
4015Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
4016                                 FunctionTemplateDecl *FT2,
4017                                 SourceLocation Loc,
4018                                 TemplatePartialOrderingContext TPOC,
4019                                 unsigned NumCallArguments) {
4020  SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
4021  bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
4022                                          NumCallArguments, 0);
4023  bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
4024                                          NumCallArguments,
4025                                          &RefParamComparisons);
4026
4027  if (Better1 != Better2) // We have a clear winner
4028    return Better1? FT1 : FT2;
4029
4030  if (!Better1 && !Better2) // Neither is better than the other
4031    return 0;
4032
4033  // C++0x [temp.deduct.partial]p10:
4034  //   If for each type being considered a given template is at least as
4035  //   specialized for all types and more specialized for some set of types and
4036  //   the other template is not more specialized for any types or is not at
4037  //   least as specialized for any types, then the given template is more
4038  //   specialized than the other template. Otherwise, neither template is more
4039  //   specialized than the other.
4040  Better1 = false;
4041  Better2 = false;
4042  for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
4043    // C++0x [temp.deduct.partial]p9:
4044    //   If, for a given type, deduction succeeds in both directions (i.e., the
4045    //   types are identical after the transformations above) and both P and A
4046    //   were reference types (before being replaced with the type referred to
4047    //   above):
4048
4049    //     -- if the type from the argument template was an lvalue reference
4050    //        and the type from the parameter template was not, the argument
4051    //        type is considered to be more specialized than the other;
4052    //        otherwise,
4053    if (!RefParamComparisons[I].ArgIsRvalueRef &&
4054        RefParamComparisons[I].ParamIsRvalueRef) {
4055      Better2 = true;
4056      if (Better1)
4057        return 0;
4058      continue;
4059    } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
4060               RefParamComparisons[I].ArgIsRvalueRef) {
4061      Better1 = true;
4062      if (Better2)
4063        return 0;
4064      continue;
4065    }
4066
4067    //     -- if the type from the argument template is more cv-qualified than
4068    //        the type from the parameter template (as described above), the
4069    //        argument type is considered to be more specialized than the
4070    //        other; otherwise,
4071    switch (RefParamComparisons[I].Qualifiers) {
4072    case NeitherMoreQualified:
4073      break;
4074
4075    case ParamMoreQualified:
4076      Better1 = true;
4077      if (Better2)
4078        return 0;
4079      continue;
4080
4081    case ArgMoreQualified:
4082      Better2 = true;
4083      if (Better1)
4084        return 0;
4085      continue;
4086    }
4087
4088    //     -- neither type is more specialized than the other.
4089  }
4090
4091  assert(!(Better1 && Better2) && "Should have broken out in the loop above");
4092  if (Better1)
4093    return FT1;
4094  else if (Better2)
4095    return FT2;
4096
4097  // FIXME: This mimics what GCC implements, but doesn't match up with the
4098  // proposed resolution for core issue 692. This area needs to be sorted out,
4099  // but for now we attempt to maintain compatibility.
4100  bool Variadic1 = isVariadicFunctionTemplate(FT1);
4101  bool Variadic2 = isVariadicFunctionTemplate(FT2);
4102  if (Variadic1 != Variadic2)
4103    return Variadic1? FT2 : FT1;
4104
4105  return 0;
4106}
4107
4108/// \brief Determine if the two templates are equivalent.
4109static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
4110  if (T1 == T2)
4111    return true;
4112
4113  if (!T1 || !T2)
4114    return false;
4115
4116  return T1->getCanonicalDecl() == T2->getCanonicalDecl();
4117}
4118
4119/// \brief Retrieve the most specialized of the given function template
4120/// specializations.
4121///
4122/// \param SpecBegin the start iterator of the function template
4123/// specializations that we will be comparing.
4124///
4125/// \param SpecEnd the end iterator of the function template
4126/// specializations, paired with \p SpecBegin.
4127///
4128/// \param TPOC the partial ordering context to use to compare the function
4129/// template specializations.
4130///
4131/// \param NumCallArguments The number of arguments in a call, used only
4132/// when \c TPOC is \c TPOC_Call.
4133///
4134/// \param Loc the location where the ambiguity or no-specializations
4135/// diagnostic should occur.
4136///
4137/// \param NoneDiag partial diagnostic used to diagnose cases where there are
4138/// no matching candidates.
4139///
4140/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
4141/// occurs.
4142///
4143/// \param CandidateDiag partial diagnostic used for each function template
4144/// specialization that is a candidate in the ambiguous ordering. One parameter
4145/// in this diagnostic should be unbound, which will correspond to the string
4146/// describing the template arguments for the function template specialization.
4147///
4148/// \returns the most specialized function template specialization, if
4149/// found. Otherwise, returns SpecEnd.
4150///
4151/// \todo FIXME: Consider passing in the "also-ran" candidates that failed
4152/// template argument deduction.
4153UnresolvedSetIterator
4154Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
4155                         UnresolvedSetIterator SpecEnd,
4156                         TemplatePartialOrderingContext TPOC,
4157                         unsigned NumCallArguments,
4158                         SourceLocation Loc,
4159                         const PartialDiagnostic &NoneDiag,
4160                         const PartialDiagnostic &AmbigDiag,
4161                         const PartialDiagnostic &CandidateDiag,
4162                         bool Complain,
4163                         QualType TargetType) {
4164  if (SpecBegin == SpecEnd) {
4165    if (Complain)
4166      Diag(Loc, NoneDiag);
4167    return SpecEnd;
4168  }
4169
4170  if (SpecBegin + 1 == SpecEnd)
4171    return SpecBegin;
4172
4173  // Find the function template that is better than all of the templates it
4174  // has been compared to.
4175  UnresolvedSetIterator Best = SpecBegin;
4176  FunctionTemplateDecl *BestTemplate
4177    = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
4178  assert(BestTemplate && "Not a function template specialization?");
4179  for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
4180    FunctionTemplateDecl *Challenger
4181      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4182    assert(Challenger && "Not a function template specialization?");
4183    if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4184                                                  Loc, TPOC, NumCallArguments),
4185                       Challenger)) {
4186      Best = I;
4187      BestTemplate = Challenger;
4188    }
4189  }
4190
4191  // Make sure that the "best" function template is more specialized than all
4192  // of the others.
4193  bool Ambiguous = false;
4194  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4195    FunctionTemplateDecl *Challenger
4196      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
4197    if (I != Best &&
4198        !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
4199                                                   Loc, TPOC, NumCallArguments),
4200                        BestTemplate)) {
4201      Ambiguous = true;
4202      break;
4203    }
4204  }
4205
4206  if (!Ambiguous) {
4207    // We found an answer. Return it.
4208    return Best;
4209  }
4210
4211  // Diagnose the ambiguity.
4212  if (Complain) {
4213    Diag(Loc, AmbigDiag);
4214
4215    // FIXME: Can we order the candidates in some sane way?
4216    for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
4217      PartialDiagnostic PD = CandidateDiag;
4218      PD << getTemplateArgumentBindingsText(
4219          cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
4220                    *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
4221      if (!TargetType.isNull())
4222        HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
4223                                   TargetType);
4224      Diag((*I)->getLocation(), PD);
4225    }
4226  }
4227
4228  return SpecEnd;
4229}
4230
4231/// \brief Returns the more specialized class template partial specialization
4232/// according to the rules of partial ordering of class template partial
4233/// specializations (C++ [temp.class.order]).
4234///
4235/// \param PS1 the first class template partial specialization
4236///
4237/// \param PS2 the second class template partial specialization
4238///
4239/// \returns the more specialized class template partial specialization. If
4240/// neither partial specialization is more specialized, returns NULL.
4241ClassTemplatePartialSpecializationDecl *
4242Sema::getMoreSpecializedPartialSpecialization(
4243                                  ClassTemplatePartialSpecializationDecl *PS1,
4244                                  ClassTemplatePartialSpecializationDecl *PS2,
4245                                              SourceLocation Loc) {
4246  // C++ [temp.class.order]p1:
4247  //   For two class template partial specializations, the first is at least as
4248  //   specialized as the second if, given the following rewrite to two
4249  //   function templates, the first function template is at least as
4250  //   specialized as the second according to the ordering rules for function
4251  //   templates (14.6.6.2):
4252  //     - the first function template has the same template parameters as the
4253  //       first partial specialization and has a single function parameter
4254  //       whose type is a class template specialization with the template
4255  //       arguments of the first partial specialization, and
4256  //     - the second function template has the same template parameters as the
4257  //       second partial specialization and has a single function parameter
4258  //       whose type is a class template specialization with the template
4259  //       arguments of the second partial specialization.
4260  //
4261  // Rather than synthesize function templates, we merely perform the
4262  // equivalent partial ordering by performing deduction directly on
4263  // the template arguments of the class template partial
4264  // specializations. This computation is slightly simpler than the
4265  // general problem of function template partial ordering, because
4266  // class template partial specializations are more constrained. We
4267  // know that every template parameter is deducible from the class
4268  // template partial specialization's template arguments, for
4269  // example.
4270  SmallVector<DeducedTemplateArgument, 4> Deduced;
4271  TemplateDeductionInfo Info(Loc);
4272
4273  QualType PT1 = PS1->getInjectedSpecializationType();
4274  QualType PT2 = PS2->getInjectedSpecializationType();
4275
4276  // Determine whether PS1 is at least as specialized as PS2
4277  Deduced.resize(PS2->getTemplateParameters()->size());
4278  bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
4279                                            PS2->getTemplateParameters(),
4280                                            PT2, PT1, Info, Deduced, TDF_None,
4281                                            /*PartialOrdering=*/true,
4282                                            /*RefParamComparisons=*/0);
4283  if (Better1) {
4284    SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
4285    InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
4286                               DeducedArgs, Info);
4287    Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
4288                                                 PS1->getTemplateArgs(),
4289                                                 Deduced, Info);
4290  }
4291
4292  // Determine whether PS2 is at least as specialized as PS1
4293  Deduced.clear();
4294  Deduced.resize(PS1->getTemplateParameters()->size());
4295  bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
4296                                            PS1->getTemplateParameters(),
4297                                            PT1, PT2, Info, Deduced, TDF_None,
4298                                            /*PartialOrdering=*/true,
4299                                            /*RefParamComparisons=*/0);
4300  if (Better2) {
4301    SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
4302    InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
4303                               DeducedArgs, Info);
4304    Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
4305                                                 PS2->getTemplateArgs(),
4306                                                 Deduced, Info);
4307  }
4308
4309  if (Better1 == Better2)
4310    return 0;
4311
4312  return Better1? PS1 : PS2;
4313}
4314
4315static void
4316MarkUsedTemplateParameters(ASTContext &Ctx,
4317                           const TemplateArgument &TemplateArg,
4318                           bool OnlyDeduced,
4319                           unsigned Depth,
4320                           llvm::SmallBitVector &Used);
4321
4322/// \brief Mark the template parameters that are used by the given
4323/// expression.
4324static void
4325MarkUsedTemplateParameters(ASTContext &Ctx,
4326                           const Expr *E,
4327                           bool OnlyDeduced,
4328                           unsigned Depth,
4329                           llvm::SmallBitVector &Used) {
4330  // We can deduce from a pack expansion.
4331  if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
4332    E = Expansion->getPattern();
4333
4334  // Skip through any implicit casts we added while type-checking, and any
4335  // substitutions performed by template alias expansion.
4336  while (1) {
4337    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4338      E = ICE->getSubExpr();
4339    else if (const SubstNonTypeTemplateParmExpr *Subst =
4340               dyn_cast<SubstNonTypeTemplateParmExpr>(E))
4341      E = Subst->getReplacement();
4342    else
4343      break;
4344  }
4345
4346  // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
4347  // find other occurrences of template parameters.
4348  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4349  if (!DRE)
4350    return;
4351
4352  const NonTypeTemplateParmDecl *NTTP
4353    = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
4354  if (!NTTP)
4355    return;
4356
4357  if (NTTP->getDepth() == Depth)
4358    Used[NTTP->getIndex()] = true;
4359}
4360
4361/// \brief Mark the template parameters that are used by the given
4362/// nested name specifier.
4363static void
4364MarkUsedTemplateParameters(ASTContext &Ctx,
4365                           NestedNameSpecifier *NNS,
4366                           bool OnlyDeduced,
4367                           unsigned Depth,
4368                           llvm::SmallBitVector &Used) {
4369  if (!NNS)
4370    return;
4371
4372  MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
4373                             Used);
4374  MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
4375                             OnlyDeduced, Depth, Used);
4376}
4377
4378/// \brief Mark the template parameters that are used by the given
4379/// template name.
4380static void
4381MarkUsedTemplateParameters(ASTContext &Ctx,
4382                           TemplateName Name,
4383                           bool OnlyDeduced,
4384                           unsigned Depth,
4385                           llvm::SmallBitVector &Used) {
4386  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
4387    if (TemplateTemplateParmDecl *TTP
4388          = dyn_cast<TemplateTemplateParmDecl>(Template)) {
4389      if (TTP->getDepth() == Depth)
4390        Used[TTP->getIndex()] = true;
4391    }
4392    return;
4393  }
4394
4395  if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
4396    MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
4397                               Depth, Used);
4398  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
4399    MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
4400                               Depth, Used);
4401}
4402
4403/// \brief Mark the template parameters that are used by the given
4404/// type.
4405static void
4406MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
4407                           bool OnlyDeduced,
4408                           unsigned Depth,
4409                           llvm::SmallBitVector &Used) {
4410  if (T.isNull())
4411    return;
4412
4413  // Non-dependent types have nothing deducible
4414  if (!T->isDependentType())
4415    return;
4416
4417  T = Ctx.getCanonicalType(T);
4418  switch (T->getTypeClass()) {
4419  case Type::Pointer:
4420    MarkUsedTemplateParameters(Ctx,
4421                               cast<PointerType>(T)->getPointeeType(),
4422                               OnlyDeduced,
4423                               Depth,
4424                               Used);
4425    break;
4426
4427  case Type::BlockPointer:
4428    MarkUsedTemplateParameters(Ctx,
4429                               cast<BlockPointerType>(T)->getPointeeType(),
4430                               OnlyDeduced,
4431                               Depth,
4432                               Used);
4433    break;
4434
4435  case Type::LValueReference:
4436  case Type::RValueReference:
4437    MarkUsedTemplateParameters(Ctx,
4438                               cast<ReferenceType>(T)->getPointeeType(),
4439                               OnlyDeduced,
4440                               Depth,
4441                               Used);
4442    break;
4443
4444  case Type::MemberPointer: {
4445    const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
4446    MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
4447                               Depth, Used);
4448    MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
4449                               OnlyDeduced, Depth, Used);
4450    break;
4451  }
4452
4453  case Type::DependentSizedArray:
4454    MarkUsedTemplateParameters(Ctx,
4455                               cast<DependentSizedArrayType>(T)->getSizeExpr(),
4456                               OnlyDeduced, Depth, Used);
4457    // Fall through to check the element type
4458
4459  case Type::ConstantArray:
4460  case Type::IncompleteArray:
4461    MarkUsedTemplateParameters(Ctx,
4462                               cast<ArrayType>(T)->getElementType(),
4463                               OnlyDeduced, Depth, Used);
4464    break;
4465
4466  case Type::Vector:
4467  case Type::ExtVector:
4468    MarkUsedTemplateParameters(Ctx,
4469                               cast<VectorType>(T)->getElementType(),
4470                               OnlyDeduced, Depth, Used);
4471    break;
4472
4473  case Type::DependentSizedExtVector: {
4474    const DependentSizedExtVectorType *VecType
4475      = cast<DependentSizedExtVectorType>(T);
4476    MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
4477                               Depth, Used);
4478    MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
4479                               Depth, Used);
4480    break;
4481  }
4482
4483  case Type::FunctionProto: {
4484    const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
4485    MarkUsedTemplateParameters(Ctx, Proto->getResultType(), OnlyDeduced,
4486                               Depth, Used);
4487    for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
4488      MarkUsedTemplateParameters(Ctx, Proto->getArgType(I), OnlyDeduced,
4489                                 Depth, Used);
4490    break;
4491  }
4492
4493  case Type::TemplateTypeParm: {
4494    const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
4495    if (TTP->getDepth() == Depth)
4496      Used[TTP->getIndex()] = true;
4497    break;
4498  }
4499
4500  case Type::SubstTemplateTypeParmPack: {
4501    const SubstTemplateTypeParmPackType *Subst
4502      = cast<SubstTemplateTypeParmPackType>(T);
4503    MarkUsedTemplateParameters(Ctx,
4504                               QualType(Subst->getReplacedParameter(), 0),
4505                               OnlyDeduced, Depth, Used);
4506    MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
4507                               OnlyDeduced, Depth, Used);
4508    break;
4509  }
4510
4511  case Type::InjectedClassName:
4512    T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
4513    // fall through
4514
4515  case Type::TemplateSpecialization: {
4516    const TemplateSpecializationType *Spec
4517      = cast<TemplateSpecializationType>(T);
4518    MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
4519                               Depth, Used);
4520
4521    // C++0x [temp.deduct.type]p9:
4522    //   If the template argument list of P contains a pack expansion that is not
4523    //   the last template argument, the entire template argument list is a
4524    //   non-deduced context.
4525    if (OnlyDeduced &&
4526        hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4527      break;
4528
4529    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4530      MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4531                                 Used);
4532    break;
4533  }
4534
4535  case Type::Complex:
4536    if (!OnlyDeduced)
4537      MarkUsedTemplateParameters(Ctx,
4538                                 cast<ComplexType>(T)->getElementType(),
4539                                 OnlyDeduced, Depth, Used);
4540    break;
4541
4542  case Type::Atomic:
4543    if (!OnlyDeduced)
4544      MarkUsedTemplateParameters(Ctx,
4545                                 cast<AtomicType>(T)->getValueType(),
4546                                 OnlyDeduced, Depth, Used);
4547    break;
4548
4549  case Type::DependentName:
4550    if (!OnlyDeduced)
4551      MarkUsedTemplateParameters(Ctx,
4552                                 cast<DependentNameType>(T)->getQualifier(),
4553                                 OnlyDeduced, Depth, Used);
4554    break;
4555
4556  case Type::DependentTemplateSpecialization: {
4557    const DependentTemplateSpecializationType *Spec
4558      = cast<DependentTemplateSpecializationType>(T);
4559    if (!OnlyDeduced)
4560      MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
4561                                 OnlyDeduced, Depth, Used);
4562
4563    // C++0x [temp.deduct.type]p9:
4564    //   If the template argument list of P contains a pack expansion that is not
4565    //   the last template argument, the entire template argument list is a
4566    //   non-deduced context.
4567    if (OnlyDeduced &&
4568        hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
4569      break;
4570
4571    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
4572      MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
4573                                 Used);
4574    break;
4575  }
4576
4577  case Type::TypeOf:
4578    if (!OnlyDeduced)
4579      MarkUsedTemplateParameters(Ctx,
4580                                 cast<TypeOfType>(T)->getUnderlyingType(),
4581                                 OnlyDeduced, Depth, Used);
4582    break;
4583
4584  case Type::TypeOfExpr:
4585    if (!OnlyDeduced)
4586      MarkUsedTemplateParameters(Ctx,
4587                                 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
4588                                 OnlyDeduced, Depth, Used);
4589    break;
4590
4591  case Type::Decltype:
4592    if (!OnlyDeduced)
4593      MarkUsedTemplateParameters(Ctx,
4594                                 cast<DecltypeType>(T)->getUnderlyingExpr(),
4595                                 OnlyDeduced, Depth, Used);
4596    break;
4597
4598  case Type::UnaryTransform:
4599    if (!OnlyDeduced)
4600      MarkUsedTemplateParameters(Ctx,
4601                               cast<UnaryTransformType>(T)->getUnderlyingType(),
4602                                 OnlyDeduced, Depth, Used);
4603    break;
4604
4605  case Type::PackExpansion:
4606    MarkUsedTemplateParameters(Ctx,
4607                               cast<PackExpansionType>(T)->getPattern(),
4608                               OnlyDeduced, Depth, Used);
4609    break;
4610
4611  case Type::Auto:
4612    MarkUsedTemplateParameters(Ctx,
4613                               cast<AutoType>(T)->getDeducedType(),
4614                               OnlyDeduced, Depth, Used);
4615
4616  // None of these types have any template parameters in them.
4617  case Type::Builtin:
4618  case Type::VariableArray:
4619  case Type::FunctionNoProto:
4620  case Type::Record:
4621  case Type::Enum:
4622  case Type::ObjCInterface:
4623  case Type::ObjCObject:
4624  case Type::ObjCObjectPointer:
4625  case Type::UnresolvedUsing:
4626#define TYPE(Class, Base)
4627#define ABSTRACT_TYPE(Class, Base)
4628#define DEPENDENT_TYPE(Class, Base)
4629#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4630#include "clang/AST/TypeNodes.def"
4631    break;
4632  }
4633}
4634
4635/// \brief Mark the template parameters that are used by this
4636/// template argument.
4637static void
4638MarkUsedTemplateParameters(ASTContext &Ctx,
4639                           const TemplateArgument &TemplateArg,
4640                           bool OnlyDeduced,
4641                           unsigned Depth,
4642                           llvm::SmallBitVector &Used) {
4643  switch (TemplateArg.getKind()) {
4644  case TemplateArgument::Null:
4645  case TemplateArgument::Integral:
4646  case TemplateArgument::Declaration:
4647    break;
4648
4649  case TemplateArgument::NullPtr:
4650    MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
4651                               Depth, Used);
4652    break;
4653
4654  case TemplateArgument::Type:
4655    MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
4656                               Depth, Used);
4657    break;
4658
4659  case TemplateArgument::Template:
4660  case TemplateArgument::TemplateExpansion:
4661    MarkUsedTemplateParameters(Ctx,
4662                               TemplateArg.getAsTemplateOrTemplatePattern(),
4663                               OnlyDeduced, Depth, Used);
4664    break;
4665
4666  case TemplateArgument::Expression:
4667    MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
4668                               Depth, Used);
4669    break;
4670
4671  case TemplateArgument::Pack:
4672    for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
4673                                      PEnd = TemplateArg.pack_end();
4674         P != PEnd; ++P)
4675      MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
4676    break;
4677  }
4678}
4679
4680/// \brief Mark which template parameters can be deduced from a given
4681/// template argument list.
4682///
4683/// \param TemplateArgs the template argument list from which template
4684/// parameters will be deduced.
4685///
4686/// \param Used a bit vector whose elements will be set to \c true
4687/// to indicate when the corresponding template parameter will be
4688/// deduced.
4689void
4690Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
4691                                 bool OnlyDeduced, unsigned Depth,
4692                                 llvm::SmallBitVector &Used) {
4693  // C++0x [temp.deduct.type]p9:
4694  //   If the template argument list of P contains a pack expansion that is not
4695  //   the last template argument, the entire template argument list is a
4696  //   non-deduced context.
4697  if (OnlyDeduced &&
4698      hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
4699    return;
4700
4701  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4702    ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
4703                                 Depth, Used);
4704}
4705
4706/// \brief Marks all of the template parameters that will be deduced by a
4707/// call to the given function template.
4708void
4709Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
4710                                    const FunctionTemplateDecl *FunctionTemplate,
4711                                    llvm::SmallBitVector &Deduced) {
4712  TemplateParameterList *TemplateParams
4713    = FunctionTemplate->getTemplateParameters();
4714  Deduced.clear();
4715  Deduced.resize(TemplateParams->size());
4716
4717  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4718  for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
4719    ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
4720                                 true, TemplateParams->getDepth(), Deduced);
4721}
4722
4723bool hasDeducibleTemplateParameters(Sema &S,
4724                                    FunctionTemplateDecl *FunctionTemplate,
4725                                    QualType T) {
4726  if (!T->isDependentType())
4727    return false;
4728
4729  TemplateParameterList *TemplateParams
4730    = FunctionTemplate->getTemplateParameters();
4731  llvm::SmallBitVector Deduced(TemplateParams->size());
4732  ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
4733                               Deduced);
4734
4735  return Deduced.any();
4736}
4737