1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/TypeLoc.h"
24#include "clang/AST/TypeLocVisitor.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Parse/ParseDiagnostic.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/DelayedDiagnostic.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/ScopeInfo.h"
32#include "clang/Sema/Template.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallString.h"
35#include "llvm/Support/ErrorHandling.h"
36
37using namespace clang;
38
39enum TypeDiagSelector {
40  TDS_Function,
41  TDS_Pointer,
42  TDS_ObjCObjOrBlock
43};
44
45/// isOmittedBlockReturnType - Return true if this declarator is missing a
46/// return type because this is a omitted return type on a block literal.
47static bool isOmittedBlockReturnType(const Declarator &D) {
48  if (D.getContext() != Declarator::BlockLiteralContext ||
49      D.getDeclSpec().hasTypeSpecifier())
50    return false;
51
52  if (D.getNumTypeObjects() == 0)
53    return true;   // ^{ ... }
54
55  if (D.getNumTypeObjects() == 1 &&
56      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
57    return true;   // ^(int X, float Y) { ... }
58
59  return false;
60}
61
62/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
63/// doesn't apply to the given type.
64static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
65                                     QualType type) {
66  TypeDiagSelector WhichType;
67  bool useExpansionLoc = true;
68  switch (attr.getKind()) {
69  case AttributeList::AT_ObjCGC:        WhichType = TDS_Pointer; break;
70  case AttributeList::AT_ObjCOwnership: WhichType = TDS_ObjCObjOrBlock; break;
71  default:
72    // Assume everything else was a function attribute.
73    WhichType = TDS_Function;
74    useExpansionLoc = false;
75    break;
76  }
77
78  SourceLocation loc = attr.getLoc();
79  StringRef name = attr.getName()->getName();
80
81  // The GC attributes are usually written with macros;  special-case them.
82  IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
83                                          : nullptr;
84  if (useExpansionLoc && loc.isMacroID() && II) {
85    if (II->isStr("strong")) {
86      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
87    } else if (II->isStr("weak")) {
88      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
89    }
90  }
91
92  S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
93    << type;
94}
95
96// objc_gc applies to Objective-C pointers or, otherwise, to the
97// smallest available pointer type (i.e. 'void*' in 'void**').
98#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
99    case AttributeList::AT_ObjCGC: \
100    case AttributeList::AT_ObjCOwnership
101
102// Function type attributes.
103#define FUNCTION_TYPE_ATTRS_CASELIST \
104    case AttributeList::AT_NoReturn: \
105    case AttributeList::AT_CDecl: \
106    case AttributeList::AT_FastCall: \
107    case AttributeList::AT_StdCall: \
108    case AttributeList::AT_ThisCall: \
109    case AttributeList::AT_Pascal: \
110    case AttributeList::AT_MSABI: \
111    case AttributeList::AT_SysVABI: \
112    case AttributeList::AT_Regparm: \
113    case AttributeList::AT_Pcs: \
114    case AttributeList::AT_PnaclCall: \
115    case AttributeList::AT_IntelOclBicc
116
117// Microsoft-specific type qualifiers.
118#define MS_TYPE_ATTRS_CASELIST  \
119    case AttributeList::AT_Ptr32: \
120    case AttributeList::AT_Ptr64: \
121    case AttributeList::AT_SPtr: \
122    case AttributeList::AT_UPtr
123
124namespace {
125  /// An object which stores processing state for the entire
126  /// GetTypeForDeclarator process.
127  class TypeProcessingState {
128    Sema &sema;
129
130    /// The declarator being processed.
131    Declarator &declarator;
132
133    /// The index of the declarator chunk we're currently processing.
134    /// May be the total number of valid chunks, indicating the
135    /// DeclSpec.
136    unsigned chunkIndex;
137
138    /// Whether there are non-trivial modifications to the decl spec.
139    bool trivial;
140
141    /// Whether we saved the attributes in the decl spec.
142    bool hasSavedAttrs;
143
144    /// The original set of attributes on the DeclSpec.
145    SmallVector<AttributeList*, 2> savedAttrs;
146
147    /// A list of attributes to diagnose the uselessness of when the
148    /// processing is complete.
149    SmallVector<AttributeList*, 2> ignoredTypeAttrs;
150
151  public:
152    TypeProcessingState(Sema &sema, Declarator &declarator)
153      : sema(sema), declarator(declarator),
154        chunkIndex(declarator.getNumTypeObjects()),
155        trivial(true), hasSavedAttrs(false) {}
156
157    Sema &getSema() const {
158      return sema;
159    }
160
161    Declarator &getDeclarator() const {
162      return declarator;
163    }
164
165    bool isProcessingDeclSpec() const {
166      return chunkIndex == declarator.getNumTypeObjects();
167    }
168
169    unsigned getCurrentChunkIndex() const {
170      return chunkIndex;
171    }
172
173    void setCurrentChunkIndex(unsigned idx) {
174      assert(idx <= declarator.getNumTypeObjects());
175      chunkIndex = idx;
176    }
177
178    AttributeList *&getCurrentAttrListRef() const {
179      if (isProcessingDeclSpec())
180        return getMutableDeclSpec().getAttributes().getListRef();
181      return declarator.getTypeObject(chunkIndex).getAttrListRef();
182    }
183
184    /// Save the current set of attributes on the DeclSpec.
185    void saveDeclSpecAttrs() {
186      // Don't try to save them multiple times.
187      if (hasSavedAttrs) return;
188
189      DeclSpec &spec = getMutableDeclSpec();
190      for (AttributeList *attr = spec.getAttributes().getList(); attr;
191             attr = attr->getNext())
192        savedAttrs.push_back(attr);
193      trivial &= savedAttrs.empty();
194      hasSavedAttrs = true;
195    }
196
197    /// Record that we had nowhere to put the given type attribute.
198    /// We will diagnose such attributes later.
199    void addIgnoredTypeAttr(AttributeList &attr) {
200      ignoredTypeAttrs.push_back(&attr);
201    }
202
203    /// Diagnose all the ignored type attributes, given that the
204    /// declarator worked out to the given type.
205    void diagnoseIgnoredTypeAttrs(QualType type) const {
206      for (SmallVectorImpl<AttributeList*>::const_iterator
207             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
208           i != e; ++i)
209        diagnoseBadTypeAttribute(getSema(), **i, type);
210    }
211
212    ~TypeProcessingState() {
213      if (trivial) return;
214
215      restoreDeclSpecAttrs();
216    }
217
218  private:
219    DeclSpec &getMutableDeclSpec() const {
220      return const_cast<DeclSpec&>(declarator.getDeclSpec());
221    }
222
223    void restoreDeclSpecAttrs() {
224      assert(hasSavedAttrs);
225
226      if (savedAttrs.empty()) {
227        getMutableDeclSpec().getAttributes().set(nullptr);
228        return;
229      }
230
231      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
232      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
233        savedAttrs[i]->setNext(savedAttrs[i+1]);
234      savedAttrs.back()->setNext(nullptr);
235    }
236  };
237}
238
239static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
240  attr.setNext(head);
241  head = &attr;
242}
243
244static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
245  if (head == &attr) {
246    head = attr.getNext();
247    return;
248  }
249
250  AttributeList *cur = head;
251  while (true) {
252    assert(cur && cur->getNext() && "ran out of attrs?");
253    if (cur->getNext() == &attr) {
254      cur->setNext(attr.getNext());
255      return;
256    }
257    cur = cur->getNext();
258  }
259}
260
261static void moveAttrFromListToList(AttributeList &attr,
262                                   AttributeList *&fromList,
263                                   AttributeList *&toList) {
264  spliceAttrOutOfList(attr, fromList);
265  spliceAttrIntoList(attr, toList);
266}
267
268/// The location of a type attribute.
269enum TypeAttrLocation {
270  /// The attribute is in the decl-specifier-seq.
271  TAL_DeclSpec,
272  /// The attribute is part of a DeclaratorChunk.
273  TAL_DeclChunk,
274  /// The attribute is immediately after the declaration's name.
275  TAL_DeclName
276};
277
278static void processTypeAttrs(TypeProcessingState &state,
279                             QualType &type, TypeAttrLocation TAL,
280                             AttributeList *attrs);
281
282static bool handleFunctionTypeAttr(TypeProcessingState &state,
283                                   AttributeList &attr,
284                                   QualType &type);
285
286static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
287                                             AttributeList &attr,
288                                             QualType &type);
289
290static bool handleObjCGCTypeAttr(TypeProcessingState &state,
291                                 AttributeList &attr, QualType &type);
292
293static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
294                                       AttributeList &attr, QualType &type);
295
296static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
297                                      AttributeList &attr, QualType &type) {
298  if (attr.getKind() == AttributeList::AT_ObjCGC)
299    return handleObjCGCTypeAttr(state, attr, type);
300  assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
301  return handleObjCOwnershipTypeAttr(state, attr, type);
302}
303
304/// Given the index of a declarator chunk, check whether that chunk
305/// directly specifies the return type of a function and, if so, find
306/// an appropriate place for it.
307///
308/// \param i - a notional index which the search will start
309///   immediately inside
310static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
311                                                unsigned i) {
312  assert(i <= declarator.getNumTypeObjects());
313
314  DeclaratorChunk *result = nullptr;
315
316  // First, look inwards past parens for a function declarator.
317  for (; i != 0; --i) {
318    DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
319    switch (fnChunk.Kind) {
320    case DeclaratorChunk::Paren:
321      continue;
322
323    // If we find anything except a function, bail out.
324    case DeclaratorChunk::Pointer:
325    case DeclaratorChunk::BlockPointer:
326    case DeclaratorChunk::Array:
327    case DeclaratorChunk::Reference:
328    case DeclaratorChunk::MemberPointer:
329      return result;
330
331    // If we do find a function declarator, scan inwards from that,
332    // looking for a block-pointer declarator.
333    case DeclaratorChunk::Function:
334      for (--i; i != 0; --i) {
335        DeclaratorChunk &blockChunk = declarator.getTypeObject(i-1);
336        switch (blockChunk.Kind) {
337        case DeclaratorChunk::Paren:
338        case DeclaratorChunk::Pointer:
339        case DeclaratorChunk::Array:
340        case DeclaratorChunk::Function:
341        case DeclaratorChunk::Reference:
342        case DeclaratorChunk::MemberPointer:
343          continue;
344        case DeclaratorChunk::BlockPointer:
345          result = &blockChunk;
346          goto continue_outer;
347        }
348        llvm_unreachable("bad declarator chunk kind");
349      }
350
351      // If we run out of declarators doing that, we're done.
352      return result;
353    }
354    llvm_unreachable("bad declarator chunk kind");
355
356    // Okay, reconsider from our new point.
357  continue_outer: ;
358  }
359
360  // Ran out of chunks, bail out.
361  return result;
362}
363
364/// Given that an objc_gc attribute was written somewhere on a
365/// declaration *other* than on the declarator itself (for which, use
366/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
367/// didn't apply in whatever position it was written in, try to move
368/// it to a more appropriate position.
369static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
370                                          AttributeList &attr,
371                                          QualType type) {
372  Declarator &declarator = state.getDeclarator();
373
374  // Move it to the outermost normal or block pointer declarator.
375  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
376    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
377    switch (chunk.Kind) {
378    case DeclaratorChunk::Pointer:
379    case DeclaratorChunk::BlockPointer: {
380      // But don't move an ARC ownership attribute to the return type
381      // of a block.
382      DeclaratorChunk *destChunk = nullptr;
383      if (state.isProcessingDeclSpec() &&
384          attr.getKind() == AttributeList::AT_ObjCOwnership)
385        destChunk = maybeMovePastReturnType(declarator, i - 1);
386      if (!destChunk) destChunk = &chunk;
387
388      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
389                             destChunk->getAttrListRef());
390      return;
391    }
392
393    case DeclaratorChunk::Paren:
394    case DeclaratorChunk::Array:
395      continue;
396
397    // We may be starting at the return type of a block.
398    case DeclaratorChunk::Function:
399      if (state.isProcessingDeclSpec() &&
400          attr.getKind() == AttributeList::AT_ObjCOwnership) {
401        if (DeclaratorChunk *dest = maybeMovePastReturnType(declarator, i)) {
402          moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
403                                 dest->getAttrListRef());
404          return;
405        }
406      }
407      goto error;
408
409    // Don't walk through these.
410    case DeclaratorChunk::Reference:
411    case DeclaratorChunk::MemberPointer:
412      goto error;
413    }
414  }
415 error:
416
417  diagnoseBadTypeAttribute(state.getSema(), attr, type);
418}
419
420/// Distribute an objc_gc type attribute that was written on the
421/// declarator.
422static void
423distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
424                                            AttributeList &attr,
425                                            QualType &declSpecType) {
426  Declarator &declarator = state.getDeclarator();
427
428  // objc_gc goes on the innermost pointer to something that's not a
429  // pointer.
430  unsigned innermost = -1U;
431  bool considerDeclSpec = true;
432  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
433    DeclaratorChunk &chunk = declarator.getTypeObject(i);
434    switch (chunk.Kind) {
435    case DeclaratorChunk::Pointer:
436    case DeclaratorChunk::BlockPointer:
437      innermost = i;
438      continue;
439
440    case DeclaratorChunk::Reference:
441    case DeclaratorChunk::MemberPointer:
442    case DeclaratorChunk::Paren:
443    case DeclaratorChunk::Array:
444      continue;
445
446    case DeclaratorChunk::Function:
447      considerDeclSpec = false;
448      goto done;
449    }
450  }
451 done:
452
453  // That might actually be the decl spec if we weren't blocked by
454  // anything in the declarator.
455  if (considerDeclSpec) {
456    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
457      // Splice the attribute into the decl spec.  Prevents the
458      // attribute from being applied multiple times and gives
459      // the source-location-filler something to work with.
460      state.saveDeclSpecAttrs();
461      moveAttrFromListToList(attr, declarator.getAttrListRef(),
462               declarator.getMutableDeclSpec().getAttributes().getListRef());
463      return;
464    }
465  }
466
467  // Otherwise, if we found an appropriate chunk, splice the attribute
468  // into it.
469  if (innermost != -1U) {
470    moveAttrFromListToList(attr, declarator.getAttrListRef(),
471                       declarator.getTypeObject(innermost).getAttrListRef());
472    return;
473  }
474
475  // Otherwise, diagnose when we're done building the type.
476  spliceAttrOutOfList(attr, declarator.getAttrListRef());
477  state.addIgnoredTypeAttr(attr);
478}
479
480/// A function type attribute was written somewhere in a declaration
481/// *other* than on the declarator itself or in the decl spec.  Given
482/// that it didn't apply in whatever position it was written in, try
483/// to move it to a more appropriate position.
484static void distributeFunctionTypeAttr(TypeProcessingState &state,
485                                       AttributeList &attr,
486                                       QualType type) {
487  Declarator &declarator = state.getDeclarator();
488
489  // Try to push the attribute from the return type of a function to
490  // the function itself.
491  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
492    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
493    switch (chunk.Kind) {
494    case DeclaratorChunk::Function:
495      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
496                             chunk.getAttrListRef());
497      return;
498
499    case DeclaratorChunk::Paren:
500    case DeclaratorChunk::Pointer:
501    case DeclaratorChunk::BlockPointer:
502    case DeclaratorChunk::Array:
503    case DeclaratorChunk::Reference:
504    case DeclaratorChunk::MemberPointer:
505      continue;
506    }
507  }
508
509  diagnoseBadTypeAttribute(state.getSema(), attr, type);
510}
511
512/// Try to distribute a function type attribute to the innermost
513/// function chunk or type.  Returns true if the attribute was
514/// distributed, false if no location was found.
515static bool
516distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
517                                      AttributeList &attr,
518                                      AttributeList *&attrList,
519                                      QualType &declSpecType) {
520  Declarator &declarator = state.getDeclarator();
521
522  // Put it on the innermost function chunk, if there is one.
523  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
524    DeclaratorChunk &chunk = declarator.getTypeObject(i);
525    if (chunk.Kind != DeclaratorChunk::Function) continue;
526
527    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
528    return true;
529  }
530
531  return handleFunctionTypeAttr(state, attr, declSpecType);
532}
533
534/// A function type attribute was written in the decl spec.  Try to
535/// apply it somewhere.
536static void
537distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
538                                       AttributeList &attr,
539                                       QualType &declSpecType) {
540  state.saveDeclSpecAttrs();
541
542  // C++11 attributes before the decl specifiers actually appertain to
543  // the declarators. Move them straight there. We don't support the
544  // 'put them wherever you like' semantics we allow for GNU attributes.
545  if (attr.isCXX11Attribute()) {
546    moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
547                           state.getDeclarator().getAttrListRef());
548    return;
549  }
550
551  // Try to distribute to the innermost.
552  if (distributeFunctionTypeAttrToInnermost(state, attr,
553                                            state.getCurrentAttrListRef(),
554                                            declSpecType))
555    return;
556
557  // If that failed, diagnose the bad attribute when the declarator is
558  // fully built.
559  state.addIgnoredTypeAttr(attr);
560}
561
562/// A function type attribute was written on the declarator.  Try to
563/// apply it somewhere.
564static void
565distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
566                                         AttributeList &attr,
567                                         QualType &declSpecType) {
568  Declarator &declarator = state.getDeclarator();
569
570  // Try to distribute to the innermost.
571  if (distributeFunctionTypeAttrToInnermost(state, attr,
572                                            declarator.getAttrListRef(),
573                                            declSpecType))
574    return;
575
576  // If that failed, diagnose the bad attribute when the declarator is
577  // fully built.
578  spliceAttrOutOfList(attr, declarator.getAttrListRef());
579  state.addIgnoredTypeAttr(attr);
580}
581
582/// \brief Given that there are attributes written on the declarator
583/// itself, try to distribute any type attributes to the appropriate
584/// declarator chunk.
585///
586/// These are attributes like the following:
587///   int f ATTR;
588///   int (f ATTR)();
589/// but not necessarily this:
590///   int f() ATTR;
591static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
592                                              QualType &declSpecType) {
593  // Collect all the type attributes from the declarator itself.
594  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
595  AttributeList *attr = state.getDeclarator().getAttributes();
596  AttributeList *next;
597  do {
598    next = attr->getNext();
599
600    // Do not distribute C++11 attributes. They have strict rules for what
601    // they appertain to.
602    if (attr->isCXX11Attribute())
603      continue;
604
605    switch (attr->getKind()) {
606    OBJC_POINTER_TYPE_ATTRS_CASELIST:
607      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
608      break;
609
610    case AttributeList::AT_NSReturnsRetained:
611      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
612        break;
613      // fallthrough
614
615    FUNCTION_TYPE_ATTRS_CASELIST:
616      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
617      break;
618
619    MS_TYPE_ATTRS_CASELIST:
620      // Microsoft type attributes cannot go after the declarator-id.
621      continue;
622
623    default:
624      break;
625    }
626  } while ((attr = next));
627}
628
629/// Add a synthetic '()' to a block-literal declarator if it is
630/// required, given the return type.
631static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
632                                          QualType declSpecType) {
633  Declarator &declarator = state.getDeclarator();
634
635  // First, check whether the declarator would produce a function,
636  // i.e. whether the innermost semantic chunk is a function.
637  if (declarator.isFunctionDeclarator()) {
638    // If so, make that declarator a prototyped declarator.
639    declarator.getFunctionTypeInfo().hasPrototype = true;
640    return;
641  }
642
643  // If there are any type objects, the type as written won't name a
644  // function, regardless of the decl spec type.  This is because a
645  // block signature declarator is always an abstract-declarator, and
646  // abstract-declarators can't just be parentheses chunks.  Therefore
647  // we need to build a function chunk unless there are no type
648  // objects and the decl spec type is a function.
649  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
650    return;
651
652  // Note that there *are* cases with invalid declarators where
653  // declarators consist solely of parentheses.  In general, these
654  // occur only in failed efforts to make function declarators, so
655  // faking up the function chunk is still the right thing to do.
656
657  // Otherwise, we need to fake up a function declarator.
658  SourceLocation loc = declarator.getLocStart();
659
660  // ...and *prepend* it to the declarator.
661  SourceLocation NoLoc;
662  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
663                             /*HasProto=*/true,
664                             /*IsAmbiguous=*/false,
665                             /*LParenLoc=*/NoLoc,
666                             /*ArgInfo=*/nullptr,
667                             /*NumArgs=*/0,
668                             /*EllipsisLoc=*/NoLoc,
669                             /*RParenLoc=*/NoLoc,
670                             /*TypeQuals=*/0,
671                             /*RefQualifierIsLvalueRef=*/true,
672                             /*RefQualifierLoc=*/NoLoc,
673                             /*ConstQualifierLoc=*/NoLoc,
674                             /*VolatileQualifierLoc=*/NoLoc,
675                             /*MutableLoc=*/NoLoc,
676                             EST_None,
677                             /*ESpecLoc=*/NoLoc,
678                             /*Exceptions=*/nullptr,
679                             /*ExceptionRanges=*/nullptr,
680                             /*NumExceptions=*/0,
681                             /*NoexceptExpr=*/nullptr,
682                             loc, loc, declarator));
683
684  // For consistency, make sure the state still has us as processing
685  // the decl spec.
686  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
687  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
688}
689
690/// \brief Convert the specified declspec to the appropriate type
691/// object.
692/// \param state Specifies the declarator containing the declaration specifier
693/// to be converted, along with other associated processing state.
694/// \returns The type described by the declaration specifiers.  This function
695/// never returns null.
696static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
697  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
698  // checking.
699
700  Sema &S = state.getSema();
701  Declarator &declarator = state.getDeclarator();
702  const DeclSpec &DS = declarator.getDeclSpec();
703  SourceLocation DeclLoc = declarator.getIdentifierLoc();
704  if (DeclLoc.isInvalid())
705    DeclLoc = DS.getLocStart();
706
707  ASTContext &Context = S.Context;
708
709  QualType Result;
710  switch (DS.getTypeSpecType()) {
711  case DeclSpec::TST_void:
712    Result = Context.VoidTy;
713    break;
714  case DeclSpec::TST_char:
715    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
716      Result = Context.CharTy;
717    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
718      Result = Context.SignedCharTy;
719    else {
720      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
721             "Unknown TSS value");
722      Result = Context.UnsignedCharTy;
723    }
724    break;
725  case DeclSpec::TST_wchar:
726    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
727      Result = Context.WCharTy;
728    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
729      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
730        << DS.getSpecifierName(DS.getTypeSpecType(),
731                               Context.getPrintingPolicy());
732      Result = Context.getSignedWCharType();
733    } else {
734      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
735        "Unknown TSS value");
736      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
737        << DS.getSpecifierName(DS.getTypeSpecType(),
738                               Context.getPrintingPolicy());
739      Result = Context.getUnsignedWCharType();
740    }
741    break;
742  case DeclSpec::TST_char16:
743      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
744        "Unknown TSS value");
745      Result = Context.Char16Ty;
746    break;
747  case DeclSpec::TST_char32:
748      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
749        "Unknown TSS value");
750      Result = Context.Char32Ty;
751    break;
752  case DeclSpec::TST_unspecified:
753    // "<proto1,proto2>" is an objc qualified ID with a missing id.
754    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
755      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
756                                         (ObjCProtocolDecl*const*)PQ,
757                                         DS.getNumProtocolQualifiers());
758      Result = Context.getObjCObjectPointerType(Result);
759      break;
760    }
761
762    // If this is a missing declspec in a block literal return context, then it
763    // is inferred from the return statements inside the block.
764    // The declspec is always missing in a lambda expr context; it is either
765    // specified with a trailing return type or inferred.
766    if (S.getLangOpts().CPlusPlus1y &&
767        declarator.getContext() == Declarator::LambdaExprContext) {
768      // In C++1y, a lambda's implicit return type is 'auto'.
769      Result = Context.getAutoDeductType();
770      break;
771    } else if (declarator.getContext() == Declarator::LambdaExprContext ||
772               isOmittedBlockReturnType(declarator)) {
773      Result = Context.DependentTy;
774      break;
775    }
776
777    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
778    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
779    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
780    // Note that the one exception to this is function definitions, which are
781    // allowed to be completely missing a declspec.  This is handled in the
782    // parser already though by it pretending to have seen an 'int' in this
783    // case.
784    if (S.getLangOpts().ImplicitInt) {
785      // In C89 mode, we only warn if there is a completely missing declspec
786      // when one is not allowed.
787      if (DS.isEmpty()) {
788        S.Diag(DeclLoc, diag::ext_missing_declspec)
789          << DS.getSourceRange()
790        << FixItHint::CreateInsertion(DS.getLocStart(), "int");
791      }
792    } else if (!DS.hasTypeSpecifier()) {
793      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
794      // "At least one type specifier shall be given in the declaration
795      // specifiers in each declaration, and in the specifier-qualifier list in
796      // each struct declaration and type name."
797      if (S.getLangOpts().CPlusPlus) {
798        S.Diag(DeclLoc, diag::err_missing_type_specifier)
799          << DS.getSourceRange();
800
801        // When this occurs in C++ code, often something is very broken with the
802        // value being declared, poison it as invalid so we don't get chains of
803        // errors.
804        declarator.setInvalidType(true);
805      } else {
806        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
807          << DS.getSourceRange();
808      }
809    }
810
811    // FALL THROUGH.
812  case DeclSpec::TST_int: {
813    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
814      switch (DS.getTypeSpecWidth()) {
815      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
816      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
817      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
818      case DeclSpec::TSW_longlong:
819        Result = Context.LongLongTy;
820
821        // 'long long' is a C99 or C++11 feature.
822        if (!S.getLangOpts().C99) {
823          if (S.getLangOpts().CPlusPlus)
824            S.Diag(DS.getTypeSpecWidthLoc(),
825                   S.getLangOpts().CPlusPlus11 ?
826                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
827          else
828            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
829        }
830        break;
831      }
832    } else {
833      switch (DS.getTypeSpecWidth()) {
834      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
835      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
836      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
837      case DeclSpec::TSW_longlong:
838        Result = Context.UnsignedLongLongTy;
839
840        // 'long long' is a C99 or C++11 feature.
841        if (!S.getLangOpts().C99) {
842          if (S.getLangOpts().CPlusPlus)
843            S.Diag(DS.getTypeSpecWidthLoc(),
844                   S.getLangOpts().CPlusPlus11 ?
845                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
846          else
847            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
848        }
849        break;
850      }
851    }
852    break;
853  }
854  case DeclSpec::TST_int128:
855    if (!S.Context.getTargetInfo().hasInt128Type())
856      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_int128_unsupported);
857    if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
858      Result = Context.UnsignedInt128Ty;
859    else
860      Result = Context.Int128Ty;
861    break;
862  case DeclSpec::TST_half: Result = Context.HalfTy; break;
863  case DeclSpec::TST_float: Result = Context.FloatTy; break;
864  case DeclSpec::TST_double:
865    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
866      Result = Context.LongDoubleTy;
867    else
868      Result = Context.DoubleTy;
869
870    if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
871      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
872      declarator.setInvalidType(true);
873    }
874    break;
875  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
876  case DeclSpec::TST_decimal32:    // _Decimal32
877  case DeclSpec::TST_decimal64:    // _Decimal64
878  case DeclSpec::TST_decimal128:   // _Decimal128
879    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
880    Result = Context.IntTy;
881    declarator.setInvalidType(true);
882    break;
883  case DeclSpec::TST_class:
884  case DeclSpec::TST_enum:
885  case DeclSpec::TST_union:
886  case DeclSpec::TST_struct:
887  case DeclSpec::TST_interface: {
888    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
889    if (!D) {
890      // This can happen in C++ with ambiguous lookups.
891      Result = Context.IntTy;
892      declarator.setInvalidType(true);
893      break;
894    }
895
896    // If the type is deprecated or unavailable, diagnose it.
897    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
898
899    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
900           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
901
902    // TypeQuals handled by caller.
903    Result = Context.getTypeDeclType(D);
904
905    // In both C and C++, make an ElaboratedType.
906    ElaboratedTypeKeyword Keyword
907      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
908    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
909    break;
910  }
911  case DeclSpec::TST_typename: {
912    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
913           DS.getTypeSpecSign() == 0 &&
914           "Can't handle qualifiers on typedef names yet!");
915    Result = S.GetTypeFromParser(DS.getRepAsType());
916    if (Result.isNull())
917      declarator.setInvalidType(true);
918    else if (DeclSpec::ProtocolQualifierListTy PQ
919               = DS.getProtocolQualifiers()) {
920      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
921        // Silently drop any existing protocol qualifiers.
922        // TODO: determine whether that's the right thing to do.
923        if (ObjT->getNumProtocols())
924          Result = ObjT->getBaseType();
925
926        if (DS.getNumProtocolQualifiers())
927          Result = Context.getObjCObjectType(Result,
928                                             (ObjCProtocolDecl*const*) PQ,
929                                             DS.getNumProtocolQualifiers());
930      } else if (Result->isObjCIdType()) {
931        // id<protocol-list>
932        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
933                                           (ObjCProtocolDecl*const*) PQ,
934                                           DS.getNumProtocolQualifiers());
935        Result = Context.getObjCObjectPointerType(Result);
936      } else if (Result->isObjCClassType()) {
937        // Class<protocol-list>
938        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
939                                           (ObjCProtocolDecl*const*) PQ,
940                                           DS.getNumProtocolQualifiers());
941        Result = Context.getObjCObjectPointerType(Result);
942      } else {
943        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
944          << DS.getSourceRange();
945        declarator.setInvalidType(true);
946      }
947    }
948
949    // TypeQuals handled by caller.
950    break;
951  }
952  case DeclSpec::TST_typeofType:
953    // FIXME: Preserve type source info.
954    Result = S.GetTypeFromParser(DS.getRepAsType());
955    assert(!Result.isNull() && "Didn't get a type for typeof?");
956    if (!Result->isDependentType())
957      if (const TagType *TT = Result->getAs<TagType>())
958        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
959    // TypeQuals handled by caller.
960    Result = Context.getTypeOfType(Result);
961    break;
962  case DeclSpec::TST_typeofExpr: {
963    Expr *E = DS.getRepAsExpr();
964    assert(E && "Didn't get an expression for typeof?");
965    // TypeQuals handled by caller.
966    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
967    if (Result.isNull()) {
968      Result = Context.IntTy;
969      declarator.setInvalidType(true);
970    }
971    break;
972  }
973  case DeclSpec::TST_decltype: {
974    Expr *E = DS.getRepAsExpr();
975    assert(E && "Didn't get an expression for decltype?");
976    // TypeQuals handled by caller.
977    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
978    if (Result.isNull()) {
979      Result = Context.IntTy;
980      declarator.setInvalidType(true);
981    }
982    break;
983  }
984  case DeclSpec::TST_underlyingType:
985    Result = S.GetTypeFromParser(DS.getRepAsType());
986    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
987    Result = S.BuildUnaryTransformType(Result,
988                                       UnaryTransformType::EnumUnderlyingType,
989                                       DS.getTypeSpecTypeLoc());
990    if (Result.isNull()) {
991      Result = Context.IntTy;
992      declarator.setInvalidType(true);
993    }
994    break;
995
996  case DeclSpec::TST_auto:
997    // TypeQuals handled by caller.
998    // If auto is mentioned in a lambda parameter context, convert it to a
999    // template parameter type immediately, with the appropriate depth and
1000    // index, and update sema's state (LambdaScopeInfo) for the current lambda
1001    // being analyzed (which tracks the invented type template parameter).
1002    if (declarator.getContext() == Declarator::LambdaExprParameterContext) {
1003      sema::LambdaScopeInfo *LSI = S.getCurLambda();
1004      assert(LSI && "No LambdaScopeInfo on the stack!");
1005      const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
1006      const unsigned AutoParameterPosition = LSI->AutoTemplateParams.size();
1007      const bool IsParameterPack = declarator.hasEllipsis();
1008
1009      // Create a name for the invented template parameter type.
1010      std::string InventedTemplateParamName = "$auto-";
1011      llvm::raw_string_ostream ss(InventedTemplateParamName);
1012      ss << TemplateParameterDepth;
1013      ss << "-" << AutoParameterPosition;
1014      ss.flush();
1015
1016      IdentifierInfo& TemplateParamII = Context.Idents.get(
1017                                        InventedTemplateParamName.c_str());
1018      // Turns out we must create the TemplateTypeParmDecl here to
1019      // retrieve the corresponding template parameter type.
1020      TemplateTypeParmDecl *CorrespondingTemplateParam =
1021        TemplateTypeParmDecl::Create(Context,
1022        // Temporarily add to the TranslationUnit DeclContext.  When the
1023        // associated TemplateParameterList is attached to a template
1024        // declaration (such as FunctionTemplateDecl), the DeclContext
1025        // for each template parameter gets updated appropriately via
1026        // a call to AdoptTemplateParameterList.
1027        Context.getTranslationUnitDecl(),
1028        /*KeyLoc*/ SourceLocation(),
1029        /*NameLoc*/ declarator.getLocStart(),
1030        TemplateParameterDepth,
1031        AutoParameterPosition,  // our template param index
1032        /* Identifier*/ &TemplateParamII, false, IsParameterPack);
1033      LSI->AutoTemplateParams.push_back(CorrespondingTemplateParam);
1034      // Replace the 'auto' in the function parameter with this invented
1035      // template type parameter.
1036      Result = QualType(CorrespondingTemplateParam->getTypeForDecl(), 0);
1037    } else {
1038      Result = Context.getAutoType(QualType(), /*decltype(auto)*/false, false);
1039    }
1040    break;
1041
1042  case DeclSpec::TST_decltype_auto:
1043    Result = Context.getAutoType(QualType(),
1044                                 /*decltype(auto)*/true,
1045                                 /*IsDependent*/   false);
1046    break;
1047
1048  case DeclSpec::TST_unknown_anytype:
1049    Result = Context.UnknownAnyTy;
1050    break;
1051
1052  case DeclSpec::TST_atomic:
1053    Result = S.GetTypeFromParser(DS.getRepAsType());
1054    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1055    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1056    if (Result.isNull()) {
1057      Result = Context.IntTy;
1058      declarator.setInvalidType(true);
1059    }
1060    break;
1061
1062  case DeclSpec::TST_error:
1063    Result = Context.IntTy;
1064    declarator.setInvalidType(true);
1065    break;
1066  }
1067
1068  // Handle complex types.
1069  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1070    if (S.getLangOpts().Freestanding)
1071      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1072    Result = Context.getComplexType(Result);
1073  } else if (DS.isTypeAltiVecVector()) {
1074    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1075    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1076    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1077    if (DS.isTypeAltiVecPixel())
1078      VecKind = VectorType::AltiVecPixel;
1079    else if (DS.isTypeAltiVecBool())
1080      VecKind = VectorType::AltiVecBool;
1081    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1082  }
1083
1084  // FIXME: Imaginary.
1085  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1086    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1087
1088  // Before we process any type attributes, synthesize a block literal
1089  // function declarator if necessary.
1090  if (declarator.getContext() == Declarator::BlockLiteralContext)
1091    maybeSynthesizeBlockSignature(state, Result);
1092
1093  // Apply any type attributes from the decl spec.  This may cause the
1094  // list of type attributes to be temporarily saved while the type
1095  // attributes are pushed around.
1096  if (AttributeList *attrs = DS.getAttributes().getList())
1097    processTypeAttrs(state, Result, TAL_DeclSpec, attrs);
1098
1099  // Apply const/volatile/restrict qualifiers to T.
1100  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1101
1102    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
1103    // of a function type includes any type qualifiers, the behavior is
1104    // undefined."
1105    if (Result->isFunctionType() && TypeQuals) {
1106      if (TypeQuals & DeclSpec::TQ_const)
1107        S.Diag(DS.getConstSpecLoc(), diag::warn_typecheck_function_qualifiers)
1108          << Result << DS.getSourceRange();
1109      else if (TypeQuals & DeclSpec::TQ_volatile)
1110        S.Diag(DS.getVolatileSpecLoc(), diag::warn_typecheck_function_qualifiers)
1111          << Result << DS.getSourceRange();
1112      else {
1113        assert((TypeQuals & (DeclSpec::TQ_restrict | DeclSpec::TQ_atomic)) &&
1114               "Has CVRA quals but not C, V, R, or A?");
1115        // No diagnostic; we'll diagnose 'restrict' or '_Atomic' applied to a
1116        // function type later, in BuildQualifiedType.
1117      }
1118    }
1119
1120    // C++11 [dcl.ref]p1:
1121    //   Cv-qualified references are ill-formed except when the
1122    //   cv-qualifiers are introduced through the use of a typedef-name
1123    //   or decltype-specifier, in which case the cv-qualifiers are ignored.
1124    //
1125    // There don't appear to be any other contexts in which a cv-qualified
1126    // reference type could be formed, so the 'ill-formed' clause here appears
1127    // to never happen.
1128    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1129        TypeQuals && Result->isReferenceType()) {
1130      // If this occurs outside a template instantiation, warn the user about
1131      // it; they probably didn't mean to specify a redundant qualifier.
1132      typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
1133      QualLoc Quals[] = {
1134        QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
1135        QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
1136        QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())
1137      };
1138      for (unsigned I = 0, N = llvm::array_lengthof(Quals); I != N; ++I) {
1139        if (S.ActiveTemplateInstantiations.empty()) {
1140          if (TypeQuals & Quals[I].first)
1141            S.Diag(Quals[I].second, diag::warn_typecheck_reference_qualifiers)
1142              << DeclSpec::getSpecifierName(Quals[I].first) << Result
1143              << FixItHint::CreateRemoval(Quals[I].second);
1144        }
1145        TypeQuals &= ~Quals[I].first;
1146      }
1147    }
1148
1149    // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1150    // than once in the same specifier-list or qualifier-list, either directly
1151    // or via one or more typedefs."
1152    if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1153        && TypeQuals & Result.getCVRQualifiers()) {
1154      if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1155        S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1156          << "const";
1157      }
1158
1159      if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1160        S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1161          << "volatile";
1162      }
1163
1164      // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1165      // produce a warning in this case.
1166    }
1167
1168    QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1169
1170    // If adding qualifiers fails, just use the unqualified type.
1171    if (Qualified.isNull())
1172      declarator.setInvalidType(true);
1173    else
1174      Result = Qualified;
1175  }
1176
1177  return Result;
1178}
1179
1180static std::string getPrintableNameForEntity(DeclarationName Entity) {
1181  if (Entity)
1182    return Entity.getAsString();
1183
1184  return "type name";
1185}
1186
1187QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1188                                  Qualifiers Qs, const DeclSpec *DS) {
1189  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1190  // object or incomplete types shall not be restrict-qualified."
1191  if (Qs.hasRestrict()) {
1192    unsigned DiagID = 0;
1193    QualType ProblemTy;
1194
1195    if (T->isAnyPointerType() || T->isReferenceType() ||
1196        T->isMemberPointerType()) {
1197      QualType EltTy;
1198      if (T->isObjCObjectPointerType())
1199        EltTy = T;
1200      else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1201        EltTy = PTy->getPointeeType();
1202      else
1203        EltTy = T->getPointeeType();
1204
1205      // If we have a pointer or reference, the pointee must have an object
1206      // incomplete type.
1207      if (!EltTy->isIncompleteOrObjectType()) {
1208        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1209        ProblemTy = EltTy;
1210      }
1211    } else if (!T->isDependentType()) {
1212      DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1213      ProblemTy = T;
1214    }
1215
1216    if (DiagID) {
1217      Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1218      Qs.removeRestrict();
1219    }
1220  }
1221
1222  return Context.getQualifiedType(T, Qs);
1223}
1224
1225QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1226                                  unsigned CVRA, const DeclSpec *DS) {
1227  // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic.
1228  unsigned CVR = CVRA & ~DeclSpec::TQ_atomic;
1229
1230  // C11 6.7.3/5:
1231  //   If the same qualifier appears more than once in the same
1232  //   specifier-qualifier-list, either directly or via one or more typedefs,
1233  //   the behavior is the same as if it appeared only once.
1234  //
1235  // It's not specified what happens when the _Atomic qualifier is applied to
1236  // a type specified with the _Atomic specifier, but we assume that this
1237  // should be treated as if the _Atomic qualifier appeared multiple times.
1238  if (CVRA & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1239    // C11 6.7.3/5:
1240    //   If other qualifiers appear along with the _Atomic qualifier in a
1241    //   specifier-qualifier-list, the resulting type is the so-qualified
1242    //   atomic type.
1243    //
1244    // Don't need to worry about array types here, since _Atomic can't be
1245    // applied to such types.
1246    SplitQualType Split = T.getSplitUnqualifiedType();
1247    T = BuildAtomicType(QualType(Split.Ty, 0),
1248                        DS ? DS->getAtomicSpecLoc() : Loc);
1249    if (T.isNull())
1250      return T;
1251    Split.Quals.addCVRQualifiers(CVR);
1252    return BuildQualifiedType(T, Loc, Split.Quals);
1253  }
1254
1255  return BuildQualifiedType(T, Loc, Qualifiers::fromCVRMask(CVR), DS);
1256}
1257
1258/// \brief Build a paren type including \p T.
1259QualType Sema::BuildParenType(QualType T) {
1260  return Context.getParenType(T);
1261}
1262
1263/// Given that we're building a pointer or reference to the given
1264static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1265                                           SourceLocation loc,
1266                                           bool isReference) {
1267  // Bail out if retention is unrequired or already specified.
1268  if (!type->isObjCLifetimeType() ||
1269      type.getObjCLifetime() != Qualifiers::OCL_None)
1270    return type;
1271
1272  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1273
1274  // If the object type is const-qualified, we can safely use
1275  // __unsafe_unretained.  This is safe (because there are no read
1276  // barriers), and it'll be safe to coerce anything but __weak* to
1277  // the resulting type.
1278  if (type.isConstQualified()) {
1279    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1280
1281  // Otherwise, check whether the static type does not require
1282  // retaining.  This currently only triggers for Class (possibly
1283  // protocol-qualifed, and arrays thereof).
1284  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1285    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1286
1287  // If we are in an unevaluated context, like sizeof, skip adding a
1288  // qualification.
1289  } else if (S.isUnevaluatedContext()) {
1290    return type;
1291
1292  // If that failed, give an error and recover using __strong.  __strong
1293  // is the option most likely to prevent spurious second-order diagnostics,
1294  // like when binding a reference to a field.
1295  } else {
1296    // These types can show up in private ivars in system headers, so
1297    // we need this to not be an error in those cases.  Instead we
1298    // want to delay.
1299    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1300      S.DelayedDiagnostics.add(
1301          sema::DelayedDiagnostic::makeForbiddenType(loc,
1302              diag::err_arc_indirect_no_ownership, type, isReference));
1303    } else {
1304      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1305    }
1306    implicitLifetime = Qualifiers::OCL_Strong;
1307  }
1308  assert(implicitLifetime && "didn't infer any lifetime!");
1309
1310  Qualifiers qs;
1311  qs.addObjCLifetime(implicitLifetime);
1312  return S.Context.getQualifiedType(type, qs);
1313}
1314
1315static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1316  std::string Quals =
1317    Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
1318
1319  switch (FnTy->getRefQualifier()) {
1320  case RQ_None:
1321    break;
1322
1323  case RQ_LValue:
1324    if (!Quals.empty())
1325      Quals += ' ';
1326    Quals += '&';
1327    break;
1328
1329  case RQ_RValue:
1330    if (!Quals.empty())
1331      Quals += ' ';
1332    Quals += "&&";
1333    break;
1334  }
1335
1336  return Quals;
1337}
1338
1339namespace {
1340/// Kinds of declarator that cannot contain a qualified function type.
1341///
1342/// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1343///     a function type with a cv-qualifier or a ref-qualifier can only appear
1344///     at the topmost level of a type.
1345///
1346/// Parens and member pointers are permitted. We don't diagnose array and
1347/// function declarators, because they don't allow function types at all.
1348///
1349/// The values of this enum are used in diagnostics.
1350enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1351}
1352
1353/// Check whether the type T is a qualified function type, and if it is,
1354/// diagnose that it cannot be contained within the given kind of declarator.
1355static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
1356                                   QualifiedFunctionKind QFK) {
1357  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1358  const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1359  if (!FPT || (FPT->getTypeQuals() == 0 && FPT->getRefQualifier() == RQ_None))
1360    return false;
1361
1362  S.Diag(Loc, diag::err_compound_qualified_function_type)
1363    << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1364    << getFunctionQualifiersAsString(FPT);
1365  return true;
1366}
1367
1368/// \brief Build a pointer type.
1369///
1370/// \param T The type to which we'll be building a pointer.
1371///
1372/// \param Loc The location of the entity whose type involves this
1373/// pointer type or, if there is no such entity, the location of the
1374/// type that will have pointer type.
1375///
1376/// \param Entity The name of the entity that involves the pointer
1377/// type, if known.
1378///
1379/// \returns A suitable pointer type, if there are no
1380/// errors. Otherwise, returns a NULL type.
1381QualType Sema::BuildPointerType(QualType T,
1382                                SourceLocation Loc, DeclarationName Entity) {
1383  if (T->isReferenceType()) {
1384    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1385    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1386      << getPrintableNameForEntity(Entity) << T;
1387    return QualType();
1388  }
1389
1390  if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
1391    return QualType();
1392
1393  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1394
1395  // In ARC, it is forbidden to build pointers to unqualified pointers.
1396  if (getLangOpts().ObjCAutoRefCount)
1397    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1398
1399  // Build the pointer type.
1400  return Context.getPointerType(T);
1401}
1402
1403/// \brief Build a reference type.
1404///
1405/// \param T The type to which we'll be building a reference.
1406///
1407/// \param Loc The location of the entity whose type involves this
1408/// reference type or, if there is no such entity, the location of the
1409/// type that will have reference type.
1410///
1411/// \param Entity The name of the entity that involves the reference
1412/// type, if known.
1413///
1414/// \returns A suitable reference type, if there are no
1415/// errors. Otherwise, returns a NULL type.
1416QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1417                                  SourceLocation Loc,
1418                                  DeclarationName Entity) {
1419  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1420         "Unresolved overloaded function type");
1421
1422  // C++0x [dcl.ref]p6:
1423  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1424  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1425  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1426  //   the type "lvalue reference to T", while an attempt to create the type
1427  //   "rvalue reference to cv TR" creates the type TR.
1428  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1429
1430  // C++ [dcl.ref]p4: There shall be no references to references.
1431  //
1432  // According to C++ DR 106, references to references are only
1433  // diagnosed when they are written directly (e.g., "int & &"),
1434  // but not when they happen via a typedef:
1435  //
1436  //   typedef int& intref;
1437  //   typedef intref& intref2;
1438  //
1439  // Parser::ParseDeclaratorInternal diagnoses the case where
1440  // references are written directly; here, we handle the
1441  // collapsing of references-to-references as described in C++0x.
1442  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1443
1444  // C++ [dcl.ref]p1:
1445  //   A declarator that specifies the type "reference to cv void"
1446  //   is ill-formed.
1447  if (T->isVoidType()) {
1448    Diag(Loc, diag::err_reference_to_void);
1449    return QualType();
1450  }
1451
1452  if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
1453    return QualType();
1454
1455  // In ARC, it is forbidden to build references to unqualified pointers.
1456  if (getLangOpts().ObjCAutoRefCount)
1457    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1458
1459  // Handle restrict on references.
1460  if (LValueRef)
1461    return Context.getLValueReferenceType(T, SpelledAsLValue);
1462  return Context.getRValueReferenceType(T);
1463}
1464
1465/// Check whether the specified array size makes the array type a VLA.  If so,
1466/// return true, if not, return the size of the array in SizeVal.
1467static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1468  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1469  // (like gnu99, but not c99) accept any evaluatable value as an extension.
1470  class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1471  public:
1472    VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
1473
1474    void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
1475    }
1476
1477    void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
1478      S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
1479    }
1480  } Diagnoser;
1481
1482  return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
1483                                           S.LangOpts.GNUMode).isInvalid();
1484}
1485
1486
1487/// \brief Build an array type.
1488///
1489/// \param T The type of each element in the array.
1490///
1491/// \param ASM C99 array size modifier (e.g., '*', 'static').
1492///
1493/// \param ArraySize Expression describing the size of the array.
1494///
1495/// \param Brackets The range from the opening '[' to the closing ']'.
1496///
1497/// \param Entity The name of the entity that involves the array
1498/// type, if known.
1499///
1500/// \returns A suitable array type, if there are no errors. Otherwise,
1501/// returns a NULL type.
1502QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1503                              Expr *ArraySize, unsigned Quals,
1504                              SourceRange Brackets, DeclarationName Entity) {
1505
1506  SourceLocation Loc = Brackets.getBegin();
1507  if (getLangOpts().CPlusPlus) {
1508    // C++ [dcl.array]p1:
1509    //   T is called the array element type; this type shall not be a reference
1510    //   type, the (possibly cv-qualified) type void, a function type or an
1511    //   abstract class type.
1512    //
1513    // C++ [dcl.array]p3:
1514    //   When several "array of" specifications are adjacent, [...] only the
1515    //   first of the constant expressions that specify the bounds of the arrays
1516    //   may be omitted.
1517    //
1518    // Note: function types are handled in the common path with C.
1519    if (T->isReferenceType()) {
1520      Diag(Loc, diag::err_illegal_decl_array_of_references)
1521      << getPrintableNameForEntity(Entity) << T;
1522      return QualType();
1523    }
1524
1525    if (T->isVoidType() || T->isIncompleteArrayType()) {
1526      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1527      return QualType();
1528    }
1529
1530    if (RequireNonAbstractType(Brackets.getBegin(), T,
1531                               diag::err_array_of_abstract_type))
1532      return QualType();
1533
1534    // Mentioning a member pointer type for an array type causes us to lock in
1535    // an inheritance model, even if it's inside an unused typedef.
1536    if (Context.getTargetInfo().getCXXABI().isMicrosoft())
1537      if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
1538        if (!MPTy->getClass()->isDependentType())
1539          RequireCompleteType(Loc, T, 0);
1540
1541  } else {
1542    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1543    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1544    if (RequireCompleteType(Loc, T,
1545                            diag::err_illegal_decl_array_incomplete_type))
1546      return QualType();
1547  }
1548
1549  if (T->isFunctionType()) {
1550    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1551      << getPrintableNameForEntity(Entity) << T;
1552    return QualType();
1553  }
1554
1555  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1556    // If the element type is a struct or union that contains a variadic
1557    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1558    if (EltTy->getDecl()->hasFlexibleArrayMember())
1559      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1560  } else if (T->isObjCObjectType()) {
1561    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1562    return QualType();
1563  }
1564
1565  // Do placeholder conversions on the array size expression.
1566  if (ArraySize && ArraySize->hasPlaceholderType()) {
1567    ExprResult Result = CheckPlaceholderExpr(ArraySize);
1568    if (Result.isInvalid()) return QualType();
1569    ArraySize = Result.get();
1570  }
1571
1572  // Do lvalue-to-rvalue conversions on the array size expression.
1573  if (ArraySize && !ArraySize->isRValue()) {
1574    ExprResult Result = DefaultLvalueConversion(ArraySize);
1575    if (Result.isInvalid())
1576      return QualType();
1577
1578    ArraySize = Result.get();
1579  }
1580
1581  // C99 6.7.5.2p1: The size expression shall have integer type.
1582  // C++11 allows contextual conversions to such types.
1583  if (!getLangOpts().CPlusPlus11 &&
1584      ArraySize && !ArraySize->isTypeDependent() &&
1585      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1586    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1587      << ArraySize->getType() << ArraySize->getSourceRange();
1588    return QualType();
1589  }
1590
1591  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1592  if (!ArraySize) {
1593    if (ASM == ArrayType::Star)
1594      T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
1595    else
1596      T = Context.getIncompleteArrayType(T, ASM, Quals);
1597  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1598    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1599  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
1600              !T->isConstantSizeType()) ||
1601             isArraySizeVLA(*this, ArraySize, ConstVal)) {
1602    // Even in C++11, don't allow contextual conversions in the array bound
1603    // of a VLA.
1604    if (getLangOpts().CPlusPlus11 &&
1605        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1606      Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1607        << ArraySize->getType() << ArraySize->getSourceRange();
1608      return QualType();
1609    }
1610
1611    // C99: an array with an element type that has a non-constant-size is a VLA.
1612    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1613    // that we can fold to a non-zero positive value as an extension.
1614    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1615  } else {
1616    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1617    // have a value greater than zero.
1618    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1619      if (Entity)
1620        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1621          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1622      else
1623        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1624          << ArraySize->getSourceRange();
1625      return QualType();
1626    }
1627    if (ConstVal == 0) {
1628      // GCC accepts zero sized static arrays. We allow them when
1629      // we're not in a SFINAE context.
1630      Diag(ArraySize->getLocStart(),
1631           isSFINAEContext()? diag::err_typecheck_zero_array_size
1632                            : diag::ext_typecheck_zero_array_size)
1633        << ArraySize->getSourceRange();
1634
1635      if (ASM == ArrayType::Static) {
1636        Diag(ArraySize->getLocStart(),
1637             diag::warn_typecheck_zero_static_array_size)
1638          << ArraySize->getSourceRange();
1639        ASM = ArrayType::Normal;
1640      }
1641    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1642               !T->isIncompleteType() && !T->isUndeducedType()) {
1643      // Is the array too large?
1644      unsigned ActiveSizeBits
1645        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1646      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1647        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1648          << ConstVal.toString(10)
1649          << ArraySize->getSourceRange();
1650        return QualType();
1651      }
1652    }
1653
1654    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1655  }
1656
1657  // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
1658  if (getLangOpts().OpenCL && T->isVariableArrayType()) {
1659    Diag(Loc, diag::err_opencl_vla);
1660    return QualType();
1661  }
1662  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1663  if (!getLangOpts().C99) {
1664    if (T->isVariableArrayType()) {
1665      // Prohibit the use of non-POD types in VLAs.
1666      QualType BaseT = Context.getBaseElementType(T);
1667      if (!T->isDependentType() &&
1668          !RequireCompleteType(Loc, BaseT, 0) &&
1669          !BaseT.isPODType(Context) &&
1670          !BaseT->isObjCLifetimeType()) {
1671        Diag(Loc, diag::err_vla_non_pod)
1672          << BaseT;
1673        return QualType();
1674      }
1675      // Prohibit the use of VLAs during template argument deduction.
1676      else if (isSFINAEContext()) {
1677        Diag(Loc, diag::err_vla_in_sfinae);
1678        return QualType();
1679      }
1680      // Just extwarn about VLAs.
1681      else
1682        Diag(Loc, diag::ext_vla);
1683    } else if (ASM != ArrayType::Normal || Quals != 0)
1684      Diag(Loc,
1685           getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
1686                                     : diag::ext_c99_array_usage) << ASM;
1687  }
1688
1689  if (T->isVariableArrayType()) {
1690    // Warn about VLAs for -Wvla.
1691    Diag(Loc, diag::warn_vla_used);
1692  }
1693
1694  return T;
1695}
1696
1697/// \brief Build an ext-vector type.
1698///
1699/// Run the required checks for the extended vector type.
1700QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1701                                  SourceLocation AttrLoc) {
1702  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1703  // in conjunction with complex types (pointers, arrays, functions, etc.).
1704  if (!T->isDependentType() &&
1705      !T->isIntegerType() && !T->isRealFloatingType()) {
1706    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1707    return QualType();
1708  }
1709
1710  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1711    llvm::APSInt vecSize(32);
1712    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1713      Diag(AttrLoc, diag::err_attribute_argument_type)
1714        << "ext_vector_type" << AANT_ArgumentIntegerConstant
1715        << ArraySize->getSourceRange();
1716      return QualType();
1717    }
1718
1719    // unlike gcc's vector_size attribute, the size is specified as the
1720    // number of elements, not the number of bytes.
1721    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1722
1723    if (vectorSize == 0) {
1724      Diag(AttrLoc, diag::err_attribute_zero_size)
1725      << ArraySize->getSourceRange();
1726      return QualType();
1727    }
1728
1729    if (VectorType::isVectorSizeTooLarge(vectorSize)) {
1730      Diag(AttrLoc, diag::err_attribute_size_too_large)
1731        << ArraySize->getSourceRange();
1732      return QualType();
1733    }
1734
1735    return Context.getExtVectorType(T, vectorSize);
1736  }
1737
1738  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1739}
1740
1741bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
1742  if (T->isArrayType() || T->isFunctionType()) {
1743    Diag(Loc, diag::err_func_returning_array_function)
1744      << T->isFunctionType() << T;
1745    return true;
1746  }
1747
1748  // Functions cannot return half FP.
1749  if (T->isHalfType()) {
1750    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1751      FixItHint::CreateInsertion(Loc, "*");
1752    return true;
1753  }
1754
1755  // Methods cannot return interface types. All ObjC objects are
1756  // passed by reference.
1757  if (T->isObjCObjectType()) {
1758    Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) << 0 << T;
1759    return 0;
1760  }
1761
1762  return false;
1763}
1764
1765QualType Sema::BuildFunctionType(QualType T,
1766                                 MutableArrayRef<QualType> ParamTypes,
1767                                 SourceLocation Loc, DeclarationName Entity,
1768                                 const FunctionProtoType::ExtProtoInfo &EPI) {
1769  bool Invalid = false;
1770
1771  Invalid |= CheckFunctionReturnType(T, Loc);
1772
1773  for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
1774    // FIXME: Loc is too inprecise here, should use proper locations for args.
1775    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1776    if (ParamType->isVoidType()) {
1777      Diag(Loc, diag::err_param_with_void_type);
1778      Invalid = true;
1779    } else if (ParamType->isHalfType()) {
1780      // Disallow half FP arguments.
1781      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1782        FixItHint::CreateInsertion(Loc, "*");
1783      Invalid = true;
1784    }
1785
1786    ParamTypes[Idx] = ParamType;
1787  }
1788
1789  if (Invalid)
1790    return QualType();
1791
1792  return Context.getFunctionType(T, ParamTypes, EPI);
1793}
1794
1795/// \brief Build a member pointer type \c T Class::*.
1796///
1797/// \param T the type to which the member pointer refers.
1798/// \param Class the class type into which the member pointer points.
1799/// \param Loc the location where this type begins
1800/// \param Entity the name of the entity that will have this member pointer type
1801///
1802/// \returns a member pointer type, if successful, or a NULL type if there was
1803/// an error.
1804QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1805                                      SourceLocation Loc,
1806                                      DeclarationName Entity) {
1807  // Verify that we're not building a pointer to pointer to function with
1808  // exception specification.
1809  if (CheckDistantExceptionSpec(T)) {
1810    Diag(Loc, diag::err_distant_exception_spec);
1811
1812    // FIXME: If we're doing this as part of template instantiation,
1813    // we should return immediately.
1814
1815    // Build the type anyway, but use the canonical type so that the
1816    // exception specifiers are stripped off.
1817    T = Context.getCanonicalType(T);
1818  }
1819
1820  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1821  //   with reference type, or "cv void."
1822  if (T->isReferenceType()) {
1823    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1824      << getPrintableNameForEntity(Entity) << T;
1825    return QualType();
1826  }
1827
1828  if (T->isVoidType()) {
1829    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1830      << getPrintableNameForEntity(Entity);
1831    return QualType();
1832  }
1833
1834  if (!Class->isDependentType() && !Class->isRecordType()) {
1835    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1836    return QualType();
1837  }
1838
1839  // Adjust the default free function calling convention to the default method
1840  // calling convention.
1841  if (T->isFunctionType())
1842    adjustMemberFunctionCC(T, /*IsStatic=*/false);
1843
1844  return Context.getMemberPointerType(T, Class.getTypePtr());
1845}
1846
1847/// \brief Build a block pointer type.
1848///
1849/// \param T The type to which we'll be building a block pointer.
1850///
1851/// \param Loc The source location, used for diagnostics.
1852///
1853/// \param Entity The name of the entity that involves the block pointer
1854/// type, if known.
1855///
1856/// \returns A suitable block pointer type, if there are no
1857/// errors. Otherwise, returns a NULL type.
1858QualType Sema::BuildBlockPointerType(QualType T,
1859                                     SourceLocation Loc,
1860                                     DeclarationName Entity) {
1861  if (!T->isFunctionType()) {
1862    Diag(Loc, diag::err_nonfunction_block_type);
1863    return QualType();
1864  }
1865
1866  if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
1867    return QualType();
1868
1869  return Context.getBlockPointerType(T);
1870}
1871
1872QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1873  QualType QT = Ty.get();
1874  if (QT.isNull()) {
1875    if (TInfo) *TInfo = nullptr;
1876    return QualType();
1877  }
1878
1879  TypeSourceInfo *DI = nullptr;
1880  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1881    QT = LIT->getType();
1882    DI = LIT->getTypeSourceInfo();
1883  }
1884
1885  if (TInfo) *TInfo = DI;
1886  return QT;
1887}
1888
1889static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1890                                            Qualifiers::ObjCLifetime ownership,
1891                                            unsigned chunkIndex);
1892
1893/// Given that this is the declaration of a parameter under ARC,
1894/// attempt to infer attributes and such for pointer-to-whatever
1895/// types.
1896static void inferARCWriteback(TypeProcessingState &state,
1897                              QualType &declSpecType) {
1898  Sema &S = state.getSema();
1899  Declarator &declarator = state.getDeclarator();
1900
1901  // TODO: should we care about decl qualifiers?
1902
1903  // Check whether the declarator has the expected form.  We walk
1904  // from the inside out in order to make the block logic work.
1905  unsigned outermostPointerIndex = 0;
1906  bool isBlockPointer = false;
1907  unsigned numPointers = 0;
1908  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1909    unsigned chunkIndex = i;
1910    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1911    switch (chunk.Kind) {
1912    case DeclaratorChunk::Paren:
1913      // Ignore parens.
1914      break;
1915
1916    case DeclaratorChunk::Reference:
1917    case DeclaratorChunk::Pointer:
1918      // Count the number of pointers.  Treat references
1919      // interchangeably as pointers; if they're mis-ordered, normal
1920      // type building will discover that.
1921      outermostPointerIndex = chunkIndex;
1922      numPointers++;
1923      break;
1924
1925    case DeclaratorChunk::BlockPointer:
1926      // If we have a pointer to block pointer, that's an acceptable
1927      // indirect reference; anything else is not an application of
1928      // the rules.
1929      if (numPointers != 1) return;
1930      numPointers++;
1931      outermostPointerIndex = chunkIndex;
1932      isBlockPointer = true;
1933
1934      // We don't care about pointer structure in return values here.
1935      goto done;
1936
1937    case DeclaratorChunk::Array: // suppress if written (id[])?
1938    case DeclaratorChunk::Function:
1939    case DeclaratorChunk::MemberPointer:
1940      return;
1941    }
1942  }
1943 done:
1944
1945  // If we have *one* pointer, then we want to throw the qualifier on
1946  // the declaration-specifiers, which means that it needs to be a
1947  // retainable object type.
1948  if (numPointers == 1) {
1949    // If it's not a retainable object type, the rule doesn't apply.
1950    if (!declSpecType->isObjCRetainableType()) return;
1951
1952    // If it already has lifetime, don't do anything.
1953    if (declSpecType.getObjCLifetime()) return;
1954
1955    // Otherwise, modify the type in-place.
1956    Qualifiers qs;
1957
1958    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1959      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1960    else
1961      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1962    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1963
1964  // If we have *two* pointers, then we want to throw the qualifier on
1965  // the outermost pointer.
1966  } else if (numPointers == 2) {
1967    // If we don't have a block pointer, we need to check whether the
1968    // declaration-specifiers gave us something that will turn into a
1969    // retainable object pointer after we slap the first pointer on it.
1970    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1971      return;
1972
1973    // Look for an explicit lifetime attribute there.
1974    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1975    if (chunk.Kind != DeclaratorChunk::Pointer &&
1976        chunk.Kind != DeclaratorChunk::BlockPointer)
1977      return;
1978    for (const AttributeList *attr = chunk.getAttrs(); attr;
1979           attr = attr->getNext())
1980      if (attr->getKind() == AttributeList::AT_ObjCOwnership)
1981        return;
1982
1983    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1984                                          outermostPointerIndex);
1985
1986  // Any other number of pointers/references does not trigger the rule.
1987  } else return;
1988
1989  // TODO: mark whether we did this inference?
1990}
1991
1992void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
1993                                     SourceLocation FallbackLoc,
1994                                     SourceLocation ConstQualLoc,
1995                                     SourceLocation VolatileQualLoc,
1996                                     SourceLocation RestrictQualLoc,
1997                                     SourceLocation AtomicQualLoc) {
1998  if (!Quals)
1999    return;
2000
2001  struct Qual {
2002    unsigned Mask;
2003    const char *Name;
2004    SourceLocation Loc;
2005  } const QualKinds[4] = {
2006    { DeclSpec::TQ_const, "const", ConstQualLoc },
2007    { DeclSpec::TQ_volatile, "volatile", VolatileQualLoc },
2008    { DeclSpec::TQ_restrict, "restrict", RestrictQualLoc },
2009    { DeclSpec::TQ_atomic, "_Atomic", AtomicQualLoc }
2010  };
2011
2012  SmallString<32> QualStr;
2013  unsigned NumQuals = 0;
2014  SourceLocation Loc;
2015  FixItHint FixIts[4];
2016
2017  // Build a string naming the redundant qualifiers.
2018  for (unsigned I = 0; I != 4; ++I) {
2019    if (Quals & QualKinds[I].Mask) {
2020      if (!QualStr.empty()) QualStr += ' ';
2021      QualStr += QualKinds[I].Name;
2022
2023      // If we have a location for the qualifier, offer a fixit.
2024      SourceLocation QualLoc = QualKinds[I].Loc;
2025      if (!QualLoc.isInvalid()) {
2026        FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2027        if (Loc.isInvalid() ||
2028            getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2029          Loc = QualLoc;
2030      }
2031
2032      ++NumQuals;
2033    }
2034  }
2035
2036  Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2037    << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2038}
2039
2040// Diagnose pointless type qualifiers on the return type of a function.
2041static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
2042                                                  Declarator &D,
2043                                                  unsigned FunctionChunkIndex) {
2044  if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
2045    // FIXME: TypeSourceInfo doesn't preserve location information for
2046    // qualifiers.
2047    S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2048                                RetTy.getLocalCVRQualifiers(),
2049                                D.getIdentifierLoc());
2050    return;
2051  }
2052
2053  for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2054                End = D.getNumTypeObjects();
2055       OuterChunkIndex != End; ++OuterChunkIndex) {
2056    DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2057    switch (OuterChunk.Kind) {
2058    case DeclaratorChunk::Paren:
2059      continue;
2060
2061    case DeclaratorChunk::Pointer: {
2062      DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2063      S.diagnoseIgnoredQualifiers(
2064          diag::warn_qual_return_type,
2065          PTI.TypeQuals,
2066          SourceLocation(),
2067          SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2068          SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2069          SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2070          SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc));
2071      return;
2072    }
2073
2074    case DeclaratorChunk::Function:
2075    case DeclaratorChunk::BlockPointer:
2076    case DeclaratorChunk::Reference:
2077    case DeclaratorChunk::Array:
2078    case DeclaratorChunk::MemberPointer:
2079      // FIXME: We can't currently provide an accurate source location and a
2080      // fix-it hint for these.
2081      unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2082      S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2083                                  RetTy.getCVRQualifiers() | AtomicQual,
2084                                  D.getIdentifierLoc());
2085      return;
2086    }
2087
2088    llvm_unreachable("unknown declarator chunk kind");
2089  }
2090
2091  // If the qualifiers come from a conversion function type, don't diagnose
2092  // them -- they're not necessarily redundant, since such a conversion
2093  // operator can be explicitly called as "x.operator const int()".
2094  if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
2095    return;
2096
2097  // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2098  // which are present there.
2099  S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2100                              D.getDeclSpec().getTypeQualifiers(),
2101                              D.getIdentifierLoc(),
2102                              D.getDeclSpec().getConstSpecLoc(),
2103                              D.getDeclSpec().getVolatileSpecLoc(),
2104                              D.getDeclSpec().getRestrictSpecLoc(),
2105                              D.getDeclSpec().getAtomicSpecLoc());
2106}
2107
2108static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
2109                                             TypeSourceInfo *&ReturnTypeInfo) {
2110  Sema &SemaRef = state.getSema();
2111  Declarator &D = state.getDeclarator();
2112  QualType T;
2113  ReturnTypeInfo = nullptr;
2114
2115  // The TagDecl owned by the DeclSpec.
2116  TagDecl *OwnedTagDecl = nullptr;
2117
2118  bool ContainsPlaceholderType = false;
2119
2120  switch (D.getName().getKind()) {
2121  case UnqualifiedId::IK_ImplicitSelfParam:
2122  case UnqualifiedId::IK_OperatorFunctionId:
2123  case UnqualifiedId::IK_Identifier:
2124  case UnqualifiedId::IK_LiteralOperatorId:
2125  case UnqualifiedId::IK_TemplateId:
2126    T = ConvertDeclSpecToType(state);
2127    ContainsPlaceholderType = D.getDeclSpec().containsPlaceholderType();
2128
2129    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
2130      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2131      // Owned declaration is embedded in declarator.
2132      OwnedTagDecl->setEmbeddedInDeclarator(true);
2133    }
2134    break;
2135
2136  case UnqualifiedId::IK_ConstructorName:
2137  case UnqualifiedId::IK_ConstructorTemplateId:
2138  case UnqualifiedId::IK_DestructorName:
2139    // Constructors and destructors don't have return types. Use
2140    // "void" instead.
2141    T = SemaRef.Context.VoidTy;
2142    if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
2143      processTypeAttrs(state, T, TAL_DeclSpec, attrs);
2144    break;
2145
2146  case UnqualifiedId::IK_ConversionFunctionId:
2147    // The result type of a conversion function is the type that it
2148    // converts to.
2149    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
2150                                  &ReturnTypeInfo);
2151    ContainsPlaceholderType = T->getContainedAutoType();
2152    break;
2153  }
2154
2155  if (D.getAttributes())
2156    distributeTypeAttrsFromDeclarator(state, T);
2157
2158  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
2159  // In C++11, a function declarator using 'auto' must have a trailing return
2160  // type (this is checked later) and we can skip this. In other languages
2161  // using auto, we need to check regardless.
2162  // C++14 In generic lambdas allow 'auto' in their parameters.
2163  if (ContainsPlaceholderType &&
2164      (!SemaRef.getLangOpts().CPlusPlus11 || !D.isFunctionDeclarator())) {
2165    int Error = -1;
2166
2167    switch (D.getContext()) {
2168    case Declarator::KNRTypeListContext:
2169      llvm_unreachable("K&R type lists aren't allowed in C++");
2170    case Declarator::LambdaExprContext:
2171      llvm_unreachable("Can't specify a type specifier in lambda grammar");
2172    case Declarator::ObjCParameterContext:
2173    case Declarator::ObjCResultContext:
2174    case Declarator::PrototypeContext:
2175      Error = 0;
2176      break;
2177    case Declarator::LambdaExprParameterContext:
2178      if (!(SemaRef.getLangOpts().CPlusPlus1y
2179              && D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto))
2180        Error = 14;
2181      break;
2182    case Declarator::MemberContext:
2183      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
2184        break;
2185      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
2186      case TTK_Enum: llvm_unreachable("unhandled tag kind");
2187      case TTK_Struct: Error = 1; /* Struct member */ break;
2188      case TTK_Union:  Error = 2; /* Union member */ break;
2189      case TTK_Class:  Error = 3; /* Class member */ break;
2190      case TTK_Interface: Error = 4; /* Interface member */ break;
2191      }
2192      break;
2193    case Declarator::CXXCatchContext:
2194    case Declarator::ObjCCatchContext:
2195      Error = 5; // Exception declaration
2196      break;
2197    case Declarator::TemplateParamContext:
2198      Error = 6; // Template parameter
2199      break;
2200    case Declarator::BlockLiteralContext:
2201      Error = 7; // Block literal
2202      break;
2203    case Declarator::TemplateTypeArgContext:
2204      Error = 8; // Template type argument
2205      break;
2206    case Declarator::AliasDeclContext:
2207    case Declarator::AliasTemplateContext:
2208      Error = 10; // Type alias
2209      break;
2210    case Declarator::TrailingReturnContext:
2211      if (!SemaRef.getLangOpts().CPlusPlus1y)
2212        Error = 11; // Function return type
2213      break;
2214    case Declarator::ConversionIdContext:
2215      if (!SemaRef.getLangOpts().CPlusPlus1y)
2216        Error = 12; // conversion-type-id
2217      break;
2218    case Declarator::TypeNameContext:
2219      Error = 13; // Generic
2220      break;
2221    case Declarator::FileContext:
2222    case Declarator::BlockContext:
2223    case Declarator::ForContext:
2224    case Declarator::ConditionContext:
2225    case Declarator::CXXNewContext:
2226      break;
2227    }
2228
2229    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2230      Error = 9;
2231
2232    // In Objective-C it is an error to use 'auto' on a function declarator.
2233    if (D.isFunctionDeclarator())
2234      Error = 11;
2235
2236    // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
2237    // contains a trailing return type. That is only legal at the outermost
2238    // level. Check all declarator chunks (outermost first) anyway, to give
2239    // better diagnostics.
2240    if (SemaRef.getLangOpts().CPlusPlus11 && Error != -1) {
2241      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2242        unsigned chunkIndex = e - i - 1;
2243        state.setCurrentChunkIndex(chunkIndex);
2244        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2245        if (DeclType.Kind == DeclaratorChunk::Function) {
2246          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2247          if (FTI.hasTrailingReturnType()) {
2248            Error = -1;
2249            break;
2250          }
2251        }
2252      }
2253    }
2254
2255    SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
2256    if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
2257      AutoRange = D.getName().getSourceRange();
2258
2259    if (Error != -1) {
2260      const bool IsDeclTypeAuto =
2261          D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_decltype_auto;
2262      SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
2263        << IsDeclTypeAuto << Error << AutoRange;
2264      T = SemaRef.Context.IntTy;
2265      D.setInvalidType(true);
2266    } else
2267      SemaRef.Diag(AutoRange.getBegin(),
2268                   diag::warn_cxx98_compat_auto_type_specifier)
2269        << AutoRange;
2270  }
2271
2272  if (SemaRef.getLangOpts().CPlusPlus &&
2273      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
2274    // Check the contexts where C++ forbids the declaration of a new class
2275    // or enumeration in a type-specifier-seq.
2276    switch (D.getContext()) {
2277    case Declarator::TrailingReturnContext:
2278      // Class and enumeration definitions are syntactically not allowed in
2279      // trailing return types.
2280      llvm_unreachable("parser should not have allowed this");
2281      break;
2282    case Declarator::FileContext:
2283    case Declarator::MemberContext:
2284    case Declarator::BlockContext:
2285    case Declarator::ForContext:
2286    case Declarator::BlockLiteralContext:
2287    case Declarator::LambdaExprContext:
2288      // C++11 [dcl.type]p3:
2289      //   A type-specifier-seq shall not define a class or enumeration unless
2290      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
2291      //   the declaration of a template-declaration.
2292    case Declarator::AliasDeclContext:
2293      break;
2294    case Declarator::AliasTemplateContext:
2295      SemaRef.Diag(OwnedTagDecl->getLocation(),
2296             diag::err_type_defined_in_alias_template)
2297        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2298      D.setInvalidType(true);
2299      break;
2300    case Declarator::TypeNameContext:
2301    case Declarator::ConversionIdContext:
2302    case Declarator::TemplateParamContext:
2303    case Declarator::CXXNewContext:
2304    case Declarator::CXXCatchContext:
2305    case Declarator::ObjCCatchContext:
2306    case Declarator::TemplateTypeArgContext:
2307      SemaRef.Diag(OwnedTagDecl->getLocation(),
2308             diag::err_type_defined_in_type_specifier)
2309        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2310      D.setInvalidType(true);
2311      break;
2312    case Declarator::PrototypeContext:
2313    case Declarator::LambdaExprParameterContext:
2314    case Declarator::ObjCParameterContext:
2315    case Declarator::ObjCResultContext:
2316    case Declarator::KNRTypeListContext:
2317      // C++ [dcl.fct]p6:
2318      //   Types shall not be defined in return or parameter types.
2319      SemaRef.Diag(OwnedTagDecl->getLocation(),
2320                   diag::err_type_defined_in_param_type)
2321        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2322      D.setInvalidType(true);
2323      break;
2324    case Declarator::ConditionContext:
2325      // C++ 6.4p2:
2326      // The type-specifier-seq shall not contain typedef and shall not declare
2327      // a new class or enumeration.
2328      SemaRef.Diag(OwnedTagDecl->getLocation(),
2329                   diag::err_type_defined_in_condition);
2330      D.setInvalidType(true);
2331      break;
2332    }
2333  }
2334
2335  return T;
2336}
2337
2338/// Produce an appropriate diagnostic for an ambiguity between a function
2339/// declarator and a C++ direct-initializer.
2340static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
2341                                       DeclaratorChunk &DeclType, QualType RT) {
2342  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2343  assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
2344
2345  // If the return type is void there is no ambiguity.
2346  if (RT->isVoidType())
2347    return;
2348
2349  // An initializer for a non-class type can have at most one argument.
2350  if (!RT->isRecordType() && FTI.NumParams > 1)
2351    return;
2352
2353  // An initializer for a reference must have exactly one argument.
2354  if (RT->isReferenceType() && FTI.NumParams != 1)
2355    return;
2356
2357  // Only warn if this declarator is declaring a function at block scope, and
2358  // doesn't have a storage class (such as 'extern') specified.
2359  if (!D.isFunctionDeclarator() ||
2360      D.getFunctionDefinitionKind() != FDK_Declaration ||
2361      !S.CurContext->isFunctionOrMethod() ||
2362      D.getDeclSpec().getStorageClassSpec()
2363        != DeclSpec::SCS_unspecified)
2364    return;
2365
2366  // Inside a condition, a direct initializer is not permitted. We allow one to
2367  // be parsed in order to give better diagnostics in condition parsing.
2368  if (D.getContext() == Declarator::ConditionContext)
2369    return;
2370
2371  SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
2372
2373  S.Diag(DeclType.Loc,
2374         FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
2375                       : diag::warn_empty_parens_are_function_decl)
2376      << ParenRange;
2377
2378  // If the declaration looks like:
2379  //   T var1,
2380  //   f();
2381  // and name lookup finds a function named 'f', then the ',' was
2382  // probably intended to be a ';'.
2383  if (!D.isFirstDeclarator() && D.getIdentifier()) {
2384    FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
2385    FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
2386    if (Comma.getFileID() != Name.getFileID() ||
2387        Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
2388      LookupResult Result(S, D.getIdentifier(), SourceLocation(),
2389                          Sema::LookupOrdinaryName);
2390      if (S.LookupName(Result, S.getCurScope()))
2391        S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
2392          << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
2393          << D.getIdentifier();
2394    }
2395  }
2396
2397  if (FTI.NumParams > 0) {
2398    // For a declaration with parameters, eg. "T var(T());", suggest adding
2399    // parens around the first parameter to turn the declaration into a
2400    // variable declaration.
2401    SourceRange Range = FTI.Params[0].Param->getSourceRange();
2402    SourceLocation B = Range.getBegin();
2403    SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
2404    // FIXME: Maybe we should suggest adding braces instead of parens
2405    // in C++11 for classes that don't have an initializer_list constructor.
2406    S.Diag(B, diag::note_additional_parens_for_variable_declaration)
2407      << FixItHint::CreateInsertion(B, "(")
2408      << FixItHint::CreateInsertion(E, ")");
2409  } else {
2410    // For a declaration without parameters, eg. "T var();", suggest replacing
2411    // the parens with an initializer to turn the declaration into a variable
2412    // declaration.
2413    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
2414
2415    // Empty parens mean value-initialization, and no parens mean
2416    // default initialization. These are equivalent if the default
2417    // constructor is user-provided or if zero-initialization is a
2418    // no-op.
2419    if (RD && RD->hasDefinition() &&
2420        (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
2421      S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
2422        << FixItHint::CreateRemoval(ParenRange);
2423    else {
2424      std::string Init =
2425          S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
2426      if (Init.empty() && S.LangOpts.CPlusPlus11)
2427        Init = "{}";
2428      if (!Init.empty())
2429        S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
2430          << FixItHint::CreateReplacement(ParenRange, Init);
2431    }
2432  }
2433}
2434
2435/// Helper for figuring out the default CC for a function declarator type.  If
2436/// this is the outermost chunk, then we can determine the CC from the
2437/// declarator context.  If not, then this could be either a member function
2438/// type or normal function type.
2439static CallingConv
2440getCCForDeclaratorChunk(Sema &S, Declarator &D,
2441                        const DeclaratorChunk::FunctionTypeInfo &FTI,
2442                        unsigned ChunkIndex) {
2443  assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
2444
2445  bool IsCXXInstanceMethod = false;
2446
2447  if (S.getLangOpts().CPlusPlus) {
2448    // Look inwards through parentheses to see if this chunk will form a
2449    // member pointer type or if we're the declarator.  Any type attributes
2450    // between here and there will override the CC we choose here.
2451    unsigned I = ChunkIndex;
2452    bool FoundNonParen = false;
2453    while (I && !FoundNonParen) {
2454      --I;
2455      if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
2456        FoundNonParen = true;
2457    }
2458
2459    if (FoundNonParen) {
2460      // If we're not the declarator, we're a regular function type unless we're
2461      // in a member pointer.
2462      IsCXXInstanceMethod =
2463          D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
2464    } else {
2465      // We're the innermost decl chunk, so must be a function declarator.
2466      assert(D.isFunctionDeclarator());
2467
2468      // If we're inside a record, we're declaring a method, but it could be
2469      // explicitly or implicitly static.
2470      IsCXXInstanceMethod =
2471          D.isFirstDeclarationOfMember() &&
2472          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
2473          !D.isStaticMember();
2474    }
2475  }
2476
2477  return S.Context.getDefaultCallingConvention(FTI.isVariadic,
2478                                               IsCXXInstanceMethod);
2479}
2480
2481static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
2482                                                QualType declSpecType,
2483                                                TypeSourceInfo *TInfo) {
2484
2485  QualType T = declSpecType;
2486  Declarator &D = state.getDeclarator();
2487  Sema &S = state.getSema();
2488  ASTContext &Context = S.Context;
2489  const LangOptions &LangOpts = S.getLangOpts();
2490
2491  // The name we're declaring, if any.
2492  DeclarationName Name;
2493  if (D.getIdentifier())
2494    Name = D.getIdentifier();
2495
2496  // Does this declaration declare a typedef-name?
2497  bool IsTypedefName =
2498    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2499    D.getContext() == Declarator::AliasDeclContext ||
2500    D.getContext() == Declarator::AliasTemplateContext;
2501
2502  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2503  bool IsQualifiedFunction = T->isFunctionProtoType() &&
2504      (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
2505       T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
2506
2507  // If T is 'decltype(auto)', the only declarators we can have are parens
2508  // and at most one function declarator if this is a function declaration.
2509  if (const AutoType *AT = T->getAs<AutoType>()) {
2510    if (AT->isDecltypeAuto()) {
2511      for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2512        unsigned Index = E - I - 1;
2513        DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
2514        unsigned DiagId = diag::err_decltype_auto_compound_type;
2515        unsigned DiagKind = 0;
2516        switch (DeclChunk.Kind) {
2517        case DeclaratorChunk::Paren:
2518          continue;
2519        case DeclaratorChunk::Function: {
2520          unsigned FnIndex;
2521          if (D.isFunctionDeclarationContext() &&
2522              D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
2523            continue;
2524          DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
2525          break;
2526        }
2527        case DeclaratorChunk::Pointer:
2528        case DeclaratorChunk::BlockPointer:
2529        case DeclaratorChunk::MemberPointer:
2530          DiagKind = 0;
2531          break;
2532        case DeclaratorChunk::Reference:
2533          DiagKind = 1;
2534          break;
2535        case DeclaratorChunk::Array:
2536          DiagKind = 2;
2537          break;
2538        }
2539
2540        S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
2541        D.setInvalidType(true);
2542        break;
2543      }
2544    }
2545  }
2546
2547  // Walk the DeclTypeInfo, building the recursive type as we go.
2548  // DeclTypeInfos are ordered from the identifier out, which is
2549  // opposite of what we want :).
2550  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2551    unsigned chunkIndex = e - i - 1;
2552    state.setCurrentChunkIndex(chunkIndex);
2553    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2554    IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
2555    switch (DeclType.Kind) {
2556    case DeclaratorChunk::Paren:
2557      T = S.BuildParenType(T);
2558      break;
2559    case DeclaratorChunk::BlockPointer:
2560      // If blocks are disabled, emit an error.
2561      if (!LangOpts.Blocks)
2562        S.Diag(DeclType.Loc, diag::err_blocks_disable);
2563
2564      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
2565      if (DeclType.Cls.TypeQuals)
2566        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
2567      break;
2568    case DeclaratorChunk::Pointer:
2569      // Verify that we're not building a pointer to pointer to function with
2570      // exception specification.
2571      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2572        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2573        D.setInvalidType(true);
2574        // Build the type anyway.
2575      }
2576      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
2577        T = Context.getObjCObjectPointerType(T);
2578        if (DeclType.Ptr.TypeQuals)
2579          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2580        break;
2581      }
2582      T = S.BuildPointerType(T, DeclType.Loc, Name);
2583      if (DeclType.Ptr.TypeQuals)
2584        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2585
2586      break;
2587    case DeclaratorChunk::Reference: {
2588      // Verify that we're not building a reference to pointer to function with
2589      // exception specification.
2590      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2591        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2592        D.setInvalidType(true);
2593        // Build the type anyway.
2594      }
2595      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2596
2597      if (DeclType.Ref.HasRestrict)
2598        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2599      break;
2600    }
2601    case DeclaratorChunk::Array: {
2602      // Verify that we're not building an array of pointers to function with
2603      // exception specification.
2604      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2605        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2606        D.setInvalidType(true);
2607        // Build the type anyway.
2608      }
2609      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2610      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2611      ArrayType::ArraySizeModifier ASM;
2612      if (ATI.isStar)
2613        ASM = ArrayType::Star;
2614      else if (ATI.hasStatic)
2615        ASM = ArrayType::Static;
2616      else
2617        ASM = ArrayType::Normal;
2618      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2619        // FIXME: This check isn't quite right: it allows star in prototypes
2620        // for function definitions, and disallows some edge cases detailed
2621        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2622        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2623        ASM = ArrayType::Normal;
2624        D.setInvalidType(true);
2625      }
2626
2627      // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
2628      // shall appear only in a declaration of a function parameter with an
2629      // array type, ...
2630      if (ASM == ArrayType::Static || ATI.TypeQuals) {
2631        if (!(D.isPrototypeContext() ||
2632              D.getContext() == Declarator::KNRTypeListContext)) {
2633          S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
2634              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2635          // Remove the 'static' and the type qualifiers.
2636          if (ASM == ArrayType::Static)
2637            ASM = ArrayType::Normal;
2638          ATI.TypeQuals = 0;
2639          D.setInvalidType(true);
2640        }
2641
2642        // C99 6.7.5.2p1: ... and then only in the outermost array type
2643        // derivation.
2644        unsigned x = chunkIndex;
2645        while (x != 0) {
2646          // Walk outwards along the declarator chunks.
2647          x--;
2648          const DeclaratorChunk &DC = D.getTypeObject(x);
2649          switch (DC.Kind) {
2650          case DeclaratorChunk::Paren:
2651            continue;
2652          case DeclaratorChunk::Array:
2653          case DeclaratorChunk::Pointer:
2654          case DeclaratorChunk::Reference:
2655          case DeclaratorChunk::MemberPointer:
2656            S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
2657              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2658            if (ASM == ArrayType::Static)
2659              ASM = ArrayType::Normal;
2660            ATI.TypeQuals = 0;
2661            D.setInvalidType(true);
2662            break;
2663          case DeclaratorChunk::Function:
2664          case DeclaratorChunk::BlockPointer:
2665            // These are invalid anyway, so just ignore.
2666            break;
2667          }
2668        }
2669      }
2670      const AutoType *AT = T->getContainedAutoType();
2671      // Allow arrays of auto if we are a generic lambda parameter.
2672      // i.e. [](auto (&array)[5]) { return array[0]; }; OK
2673      if (AT && D.getContext() != Declarator::LambdaExprParameterContext) {
2674        // We've already diagnosed this for decltype(auto).
2675        if (!AT->isDecltypeAuto())
2676          S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
2677            << getPrintableNameForEntity(Name) << T;
2678        T = QualType();
2679        break;
2680      }
2681
2682      T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2683                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2684      break;
2685    }
2686    case DeclaratorChunk::Function: {
2687      // If the function declarator has a prototype (i.e. it is not () and
2688      // does not have a K&R-style identifier list), then the arguments are part
2689      // of the type, otherwise the argument list is ().
2690      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2691      IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
2692
2693      // Check for auto functions and trailing return type and adjust the
2694      // return type accordingly.
2695      if (!D.isInvalidType()) {
2696        // trailing-return-type is only required if we're declaring a function,
2697        // and not, for instance, a pointer to a function.
2698        if (D.getDeclSpec().containsPlaceholderType() &&
2699            !FTI.hasTrailingReturnType() && chunkIndex == 0 &&
2700            !S.getLangOpts().CPlusPlus1y) {
2701          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2702                 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
2703                     ? diag::err_auto_missing_trailing_return
2704                     : diag::err_deduced_return_type);
2705          T = Context.IntTy;
2706          D.setInvalidType(true);
2707        } else if (FTI.hasTrailingReturnType()) {
2708          // T must be exactly 'auto' at this point. See CWG issue 681.
2709          if (isa<ParenType>(T)) {
2710            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2711                 diag::err_trailing_return_in_parens)
2712              << T << D.getDeclSpec().getSourceRange();
2713            D.setInvalidType(true);
2714          } else if (D.getContext() != Declarator::LambdaExprContext &&
2715                     (T.hasQualifiers() || !isa<AutoType>(T) ||
2716                      cast<AutoType>(T)->isDecltypeAuto())) {
2717            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2718                 diag::err_trailing_return_without_auto)
2719              << T << D.getDeclSpec().getSourceRange();
2720            D.setInvalidType(true);
2721          }
2722          T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
2723          if (T.isNull()) {
2724            // An error occurred parsing the trailing return type.
2725            T = Context.IntTy;
2726            D.setInvalidType(true);
2727          }
2728        }
2729      }
2730
2731      // C99 6.7.5.3p1: The return type may not be a function or array type.
2732      // For conversion functions, we'll diagnose this particular error later.
2733      if ((T->isArrayType() || T->isFunctionType()) &&
2734          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2735        unsigned diagID = diag::err_func_returning_array_function;
2736        // Last processing chunk in block context means this function chunk
2737        // represents the block.
2738        if (chunkIndex == 0 &&
2739            D.getContext() == Declarator::BlockLiteralContext)
2740          diagID = diag::err_block_returning_array_function;
2741        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2742        T = Context.IntTy;
2743        D.setInvalidType(true);
2744      }
2745
2746      // Do not allow returning half FP value.
2747      // FIXME: This really should be in BuildFunctionType.
2748      if (T->isHalfType()) {
2749        if (S.getLangOpts().OpenCL) {
2750          if (!S.getOpenCLOptions().cl_khr_fp16) {
2751            S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
2752            D.setInvalidType(true);
2753          }
2754        } else {
2755          S.Diag(D.getIdentifierLoc(),
2756            diag::err_parameters_retval_cannot_have_fp16_type) << 1;
2757          D.setInvalidType(true);
2758        }
2759      }
2760
2761      // Methods cannot return interface types. All ObjC objects are
2762      // passed by reference.
2763      if (T->isObjCObjectType()) {
2764        SourceLocation DiagLoc, FixitLoc;
2765        if (TInfo) {
2766          DiagLoc = TInfo->getTypeLoc().getLocStart();
2767          FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getLocEnd());
2768        } else {
2769          DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
2770          FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getLocEnd());
2771        }
2772        S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
2773          << 0 << T
2774          << FixItHint::CreateInsertion(FixitLoc, "*");
2775
2776        T = Context.getObjCObjectPointerType(T);
2777        if (TInfo) {
2778          TypeLocBuilder TLB;
2779          TLB.pushFullCopy(TInfo->getTypeLoc());
2780          ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
2781          TLoc.setStarLoc(FixitLoc);
2782          TInfo = TLB.getTypeSourceInfo(Context, T);
2783        }
2784
2785        D.setInvalidType(true);
2786      }
2787
2788      // cv-qualifiers on return types are pointless except when the type is a
2789      // class type in C++.
2790      if ((T.getCVRQualifiers() || T->isAtomicType()) &&
2791          !(S.getLangOpts().CPlusPlus &&
2792            (T->isDependentType() || T->isRecordType())))
2793        diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
2794
2795      // Objective-C ARC ownership qualifiers are ignored on the function
2796      // return type (by type canonicalization). Complain if this attribute
2797      // was written here.
2798      if (T.getQualifiers().hasObjCLifetime()) {
2799        SourceLocation AttrLoc;
2800        if (chunkIndex + 1 < D.getNumTypeObjects()) {
2801          DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2802          for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
2803               Attr; Attr = Attr->getNext()) {
2804            if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
2805              AttrLoc = Attr->getLoc();
2806              break;
2807            }
2808          }
2809        }
2810        if (AttrLoc.isInvalid()) {
2811          for (const AttributeList *Attr
2812                 = D.getDeclSpec().getAttributes().getList();
2813               Attr; Attr = Attr->getNext()) {
2814            if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
2815              AttrLoc = Attr->getLoc();
2816              break;
2817            }
2818          }
2819        }
2820
2821        if (AttrLoc.isValid()) {
2822          // The ownership attributes are almost always written via
2823          // the predefined
2824          // __strong/__weak/__autoreleasing/__unsafe_unretained.
2825          if (AttrLoc.isMacroID())
2826            AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
2827
2828          S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
2829            << T.getQualifiers().getObjCLifetime();
2830        }
2831      }
2832
2833      if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
2834        // C++ [dcl.fct]p6:
2835        //   Types shall not be defined in return or parameter types.
2836        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2837        S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2838          << Context.getTypeDeclType(Tag);
2839      }
2840
2841      // Exception specs are not allowed in typedefs. Complain, but add it
2842      // anyway.
2843      if (IsTypedefName && FTI.getExceptionSpecType())
2844        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2845          << (D.getContext() == Declarator::AliasDeclContext ||
2846              D.getContext() == Declarator::AliasTemplateContext);
2847
2848      // If we see "T var();" or "T var(T());" at block scope, it is probably
2849      // an attempt to initialize a variable, not a function declaration.
2850      if (FTI.isAmbiguous)
2851        warnAboutAmbiguousFunction(S, D, DeclType, T);
2852
2853      FunctionType::ExtInfo EI(getCCForDeclaratorChunk(S, D, FTI, chunkIndex));
2854
2855      if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2856        // Simple void foo(), where the incoming T is the result type.
2857        T = Context.getFunctionNoProtoType(T, EI);
2858      } else {
2859        // We allow a zero-parameter variadic function in C if the
2860        // function is marked with the "overloadable" attribute. Scan
2861        // for this attribute now.
2862        if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
2863          bool Overloadable = false;
2864          for (const AttributeList *Attrs = D.getAttributes();
2865               Attrs; Attrs = Attrs->getNext()) {
2866            if (Attrs->getKind() == AttributeList::AT_Overloadable) {
2867              Overloadable = true;
2868              break;
2869            }
2870          }
2871
2872          if (!Overloadable)
2873            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
2874        }
2875
2876        if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
2877          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2878          // definition.
2879          S.Diag(FTI.Params[0].IdentLoc,
2880                 diag::err_ident_list_in_fn_declaration);
2881          D.setInvalidType(true);
2882          // Recover by creating a K&R-style function type.
2883          T = Context.getFunctionNoProtoType(T, EI);
2884          break;
2885        }
2886
2887        FunctionProtoType::ExtProtoInfo EPI;
2888        EPI.ExtInfo = EI;
2889        EPI.Variadic = FTI.isVariadic;
2890        EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
2891        EPI.TypeQuals = FTI.TypeQuals;
2892        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2893                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2894                    : RQ_RValue;
2895
2896        // Otherwise, we have a function with a parameter list that is
2897        // potentially variadic.
2898        SmallVector<QualType, 16> ParamTys;
2899        ParamTys.reserve(FTI.NumParams);
2900
2901        SmallVector<bool, 16> ConsumedParameters;
2902        ConsumedParameters.reserve(FTI.NumParams);
2903        bool HasAnyConsumedParameters = false;
2904
2905        for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
2906          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
2907          QualType ParamTy = Param->getType();
2908          assert(!ParamTy.isNull() && "Couldn't parse type?");
2909
2910          // Look for 'void'.  void is allowed only as a single parameter to a
2911          // function with no other parameters (C99 6.7.5.3p10).  We record
2912          // int(void) as a FunctionProtoType with an empty parameter list.
2913          if (ParamTy->isVoidType()) {
2914            // If this is something like 'float(int, void)', reject it.  'void'
2915            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2916            // have parameters of incomplete type.
2917            if (FTI.NumParams != 1 || FTI.isVariadic) {
2918              S.Diag(DeclType.Loc, diag::err_void_only_param);
2919              ParamTy = Context.IntTy;
2920              Param->setType(ParamTy);
2921            } else if (FTI.Params[i].Ident) {
2922              // Reject, but continue to parse 'int(void abc)'.
2923              S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
2924              ParamTy = Context.IntTy;
2925              Param->setType(ParamTy);
2926            } else {
2927              // Reject, but continue to parse 'float(const void)'.
2928              if (ParamTy.hasQualifiers())
2929                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2930
2931              // Do not add 'void' to the list.
2932              break;
2933            }
2934          } else if (ParamTy->isHalfType()) {
2935            // Disallow half FP parameters.
2936            // FIXME: This really should be in BuildFunctionType.
2937            if (S.getLangOpts().OpenCL) {
2938              if (!S.getOpenCLOptions().cl_khr_fp16) {
2939                S.Diag(Param->getLocation(),
2940                  diag::err_opencl_half_param) << ParamTy;
2941                D.setInvalidType();
2942                Param->setInvalidDecl();
2943              }
2944            } else {
2945              S.Diag(Param->getLocation(),
2946                diag::err_parameters_retval_cannot_have_fp16_type) << 0;
2947              D.setInvalidType();
2948            }
2949          } else if (!FTI.hasPrototype) {
2950            if (ParamTy->isPromotableIntegerType()) {
2951              ParamTy = Context.getPromotedIntegerType(ParamTy);
2952              Param->setKNRPromoted(true);
2953            } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
2954              if (BTy->getKind() == BuiltinType::Float) {
2955                ParamTy = Context.DoubleTy;
2956                Param->setKNRPromoted(true);
2957              }
2958            }
2959          }
2960
2961          if (LangOpts.ObjCAutoRefCount) {
2962            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2963            ConsumedParameters.push_back(Consumed);
2964            HasAnyConsumedParameters |= Consumed;
2965          }
2966
2967          ParamTys.push_back(ParamTy);
2968        }
2969
2970        if (HasAnyConsumedParameters)
2971          EPI.ConsumedParameters = ConsumedParameters.data();
2972
2973        SmallVector<QualType, 4> Exceptions;
2974        SmallVector<ParsedType, 2> DynamicExceptions;
2975        SmallVector<SourceRange, 2> DynamicExceptionRanges;
2976        Expr *NoexceptExpr = nullptr;
2977
2978        if (FTI.getExceptionSpecType() == EST_Dynamic) {
2979          // FIXME: It's rather inefficient to have to split into two vectors
2980          // here.
2981          unsigned N = FTI.NumExceptions;
2982          DynamicExceptions.reserve(N);
2983          DynamicExceptionRanges.reserve(N);
2984          for (unsigned I = 0; I != N; ++I) {
2985            DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
2986            DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
2987          }
2988        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2989          NoexceptExpr = FTI.NoexceptExpr;
2990        }
2991
2992        S.checkExceptionSpecification(FTI.getExceptionSpecType(),
2993                                      DynamicExceptions,
2994                                      DynamicExceptionRanges,
2995                                      NoexceptExpr,
2996                                      Exceptions,
2997                                      EPI);
2998
2999        T = Context.getFunctionType(T, ParamTys, EPI);
3000      }
3001
3002      break;
3003    }
3004    case DeclaratorChunk::MemberPointer:
3005      // The scope spec must refer to a class, or be dependent.
3006      CXXScopeSpec &SS = DeclType.Mem.Scope();
3007      QualType ClsType;
3008      if (SS.isInvalid()) {
3009        // Avoid emitting extra errors if we already errored on the scope.
3010        D.setInvalidType(true);
3011      } else if (S.isDependentScopeSpecifier(SS) ||
3012                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
3013        NestedNameSpecifier *NNS = SS.getScopeRep();
3014        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
3015        switch (NNS->getKind()) {
3016        case NestedNameSpecifier::Identifier:
3017          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
3018                                                 NNS->getAsIdentifier());
3019          break;
3020
3021        case NestedNameSpecifier::Namespace:
3022        case NestedNameSpecifier::NamespaceAlias:
3023        case NestedNameSpecifier::Global:
3024          llvm_unreachable("Nested-name-specifier must name a type");
3025
3026        case NestedNameSpecifier::TypeSpec:
3027        case NestedNameSpecifier::TypeSpecWithTemplate:
3028          ClsType = QualType(NNS->getAsType(), 0);
3029          // Note: if the NNS has a prefix and ClsType is a nondependent
3030          // TemplateSpecializationType, then the NNS prefix is NOT included
3031          // in ClsType; hence we wrap ClsType into an ElaboratedType.
3032          // NOTE: in particular, no wrap occurs if ClsType already is an
3033          // Elaborated, DependentName, or DependentTemplateSpecialization.
3034          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
3035            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
3036          break;
3037        }
3038      } else {
3039        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
3040             diag::err_illegal_decl_mempointer_in_nonclass)
3041          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
3042          << DeclType.Mem.Scope().getRange();
3043        D.setInvalidType(true);
3044      }
3045
3046      if (!ClsType.isNull())
3047        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
3048      if (T.isNull()) {
3049        T = Context.IntTy;
3050        D.setInvalidType(true);
3051      } else if (DeclType.Mem.TypeQuals) {
3052        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
3053      }
3054      break;
3055    }
3056
3057    if (T.isNull()) {
3058      D.setInvalidType(true);
3059      T = Context.IntTy;
3060    }
3061
3062    // See if there are any attributes on this declarator chunk.
3063    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
3064      processTypeAttrs(state, T, TAL_DeclChunk, attrs);
3065  }
3066
3067  if (LangOpts.CPlusPlus && T->isFunctionType()) {
3068    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
3069    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
3070
3071    // C++ 8.3.5p4:
3072    //   A cv-qualifier-seq shall only be part of the function type
3073    //   for a nonstatic member function, the function type to which a pointer
3074    //   to member refers, or the top-level function type of a function typedef
3075    //   declaration.
3076    //
3077    // Core issue 547 also allows cv-qualifiers on function types that are
3078    // top-level template type arguments.
3079    bool FreeFunction;
3080    if (!D.getCXXScopeSpec().isSet()) {
3081      FreeFunction = ((D.getContext() != Declarator::MemberContext &&
3082                       D.getContext() != Declarator::LambdaExprContext) ||
3083                      D.getDeclSpec().isFriendSpecified());
3084    } else {
3085      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
3086      FreeFunction = (DC && !DC->isRecord());
3087    }
3088
3089    // C++11 [dcl.fct]p6 (w/DR1417):
3090    // An attempt to specify a function type with a cv-qualifier-seq or a
3091    // ref-qualifier (including by typedef-name) is ill-formed unless it is:
3092    //  - the function type for a non-static member function,
3093    //  - the function type to which a pointer to member refers,
3094    //  - the top-level function type of a function typedef declaration or
3095    //    alias-declaration,
3096    //  - the type-id in the default argument of a type-parameter, or
3097    //  - the type-id of a template-argument for a type-parameter
3098    //
3099    // FIXME: Checking this here is insufficient. We accept-invalid on:
3100    //
3101    //   template<typename T> struct S { void f(T); };
3102    //   S<int() const> s;
3103    //
3104    // ... for instance.
3105    if (IsQualifiedFunction &&
3106        !(!FreeFunction &&
3107          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
3108        !IsTypedefName &&
3109        D.getContext() != Declarator::TemplateTypeArgContext) {
3110      SourceLocation Loc = D.getLocStart();
3111      SourceRange RemovalRange;
3112      unsigned I;
3113      if (D.isFunctionDeclarator(I)) {
3114        SmallVector<SourceLocation, 4> RemovalLocs;
3115        const DeclaratorChunk &Chunk = D.getTypeObject(I);
3116        assert(Chunk.Kind == DeclaratorChunk::Function);
3117        if (Chunk.Fun.hasRefQualifier())
3118          RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
3119        if (Chunk.Fun.TypeQuals & Qualifiers::Const)
3120          RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
3121        if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
3122          RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
3123        // FIXME: We do not track the location of the __restrict qualifier.
3124        //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
3125        //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
3126        if (!RemovalLocs.empty()) {
3127          std::sort(RemovalLocs.begin(), RemovalLocs.end(),
3128                    BeforeThanCompare<SourceLocation>(S.getSourceManager()));
3129          RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
3130          Loc = RemovalLocs.front();
3131        }
3132      }
3133
3134      S.Diag(Loc, diag::err_invalid_qualified_function_type)
3135        << FreeFunction << D.isFunctionDeclarator() << T
3136        << getFunctionQualifiersAsString(FnTy)
3137        << FixItHint::CreateRemoval(RemovalRange);
3138
3139      // Strip the cv-qualifiers and ref-qualifiers from the type.
3140      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
3141      EPI.TypeQuals = 0;
3142      EPI.RefQualifier = RQ_None;
3143
3144      T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
3145                                  EPI);
3146      // Rebuild any parens around the identifier in the function type.
3147      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3148        if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
3149          break;
3150        T = S.BuildParenType(T);
3151      }
3152    }
3153  }
3154
3155  // Apply any undistributed attributes from the declarator.
3156  if (!T.isNull())
3157    if (AttributeList *attrs = D.getAttributes())
3158      processTypeAttrs(state, T, TAL_DeclName, attrs);
3159
3160  // Diagnose any ignored type attributes.
3161  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
3162
3163  // C++0x [dcl.constexpr]p9:
3164  //  A constexpr specifier used in an object declaration declares the object
3165  //  as const.
3166  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
3167    T.addConst();
3168  }
3169
3170  // If there was an ellipsis in the declarator, the declaration declares a
3171  // parameter pack whose type may be a pack expansion type.
3172  if (D.hasEllipsis() && !T.isNull()) {
3173    // C++0x [dcl.fct]p13:
3174    //   A declarator-id or abstract-declarator containing an ellipsis shall
3175    //   only be used in a parameter-declaration. Such a parameter-declaration
3176    //   is a parameter pack (14.5.3). [...]
3177    switch (D.getContext()) {
3178    case Declarator::PrototypeContext:
3179    case Declarator::LambdaExprParameterContext:
3180      // C++0x [dcl.fct]p13:
3181      //   [...] When it is part of a parameter-declaration-clause, the
3182      //   parameter pack is a function parameter pack (14.5.3). The type T
3183      //   of the declarator-id of the function parameter pack shall contain
3184      //   a template parameter pack; each template parameter pack in T is
3185      //   expanded by the function parameter pack.
3186      //
3187      // We represent function parameter packs as function parameters whose
3188      // type is a pack expansion.
3189      if (!T->containsUnexpandedParameterPack()) {
3190        S.Diag(D.getEllipsisLoc(),
3191             diag::err_function_parameter_pack_without_parameter_packs)
3192          << T <<  D.getSourceRange();
3193        D.setEllipsisLoc(SourceLocation());
3194      } else {
3195        T = Context.getPackExpansionType(T, None);
3196      }
3197      break;
3198    case Declarator::TemplateParamContext:
3199      // C++0x [temp.param]p15:
3200      //   If a template-parameter is a [...] is a parameter-declaration that
3201      //   declares a parameter pack (8.3.5), then the template-parameter is a
3202      //   template parameter pack (14.5.3).
3203      //
3204      // Note: core issue 778 clarifies that, if there are any unexpanded
3205      // parameter packs in the type of the non-type template parameter, then
3206      // it expands those parameter packs.
3207      if (T->containsUnexpandedParameterPack())
3208        T = Context.getPackExpansionType(T, None);
3209      else
3210        S.Diag(D.getEllipsisLoc(),
3211               LangOpts.CPlusPlus11
3212                 ? diag::warn_cxx98_compat_variadic_templates
3213                 : diag::ext_variadic_templates);
3214      break;
3215
3216    case Declarator::FileContext:
3217    case Declarator::KNRTypeListContext:
3218    case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
3219    case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
3220    case Declarator::TypeNameContext:
3221    case Declarator::CXXNewContext:
3222    case Declarator::AliasDeclContext:
3223    case Declarator::AliasTemplateContext:
3224    case Declarator::MemberContext:
3225    case Declarator::BlockContext:
3226    case Declarator::ForContext:
3227    case Declarator::ConditionContext:
3228    case Declarator::CXXCatchContext:
3229    case Declarator::ObjCCatchContext:
3230    case Declarator::BlockLiteralContext:
3231    case Declarator::LambdaExprContext:
3232    case Declarator::ConversionIdContext:
3233    case Declarator::TrailingReturnContext:
3234    case Declarator::TemplateTypeArgContext:
3235      // FIXME: We may want to allow parameter packs in block-literal contexts
3236      // in the future.
3237      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
3238      D.setEllipsisLoc(SourceLocation());
3239      break;
3240    }
3241  }
3242
3243  if (T.isNull())
3244    return Context.getNullTypeSourceInfo();
3245  else if (D.isInvalidType())
3246    return Context.getTrivialTypeSourceInfo(T);
3247
3248  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
3249}
3250
3251/// GetTypeForDeclarator - Convert the type for the specified
3252/// declarator to Type instances.
3253///
3254/// The result of this call will never be null, but the associated
3255/// type may be a null type if there's an unrecoverable error.
3256TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
3257  // Determine the type of the declarator. Not all forms of declarator
3258  // have a type.
3259
3260  TypeProcessingState state(*this, D);
3261
3262  TypeSourceInfo *ReturnTypeInfo = nullptr;
3263  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
3264  if (T.isNull())
3265    return Context.getNullTypeSourceInfo();
3266
3267  if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
3268    inferARCWriteback(state, T);
3269
3270  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
3271}
3272
3273static void transferARCOwnershipToDeclSpec(Sema &S,
3274                                           QualType &declSpecTy,
3275                                           Qualifiers::ObjCLifetime ownership) {
3276  if (declSpecTy->isObjCRetainableType() &&
3277      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
3278    Qualifiers qs;
3279    qs.addObjCLifetime(ownership);
3280    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
3281  }
3282}
3283
3284static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
3285                                            Qualifiers::ObjCLifetime ownership,
3286                                            unsigned chunkIndex) {
3287  Sema &S = state.getSema();
3288  Declarator &D = state.getDeclarator();
3289
3290  // Look for an explicit lifetime attribute.
3291  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
3292  for (const AttributeList *attr = chunk.getAttrs(); attr;
3293         attr = attr->getNext())
3294    if (attr->getKind() == AttributeList::AT_ObjCOwnership)
3295      return;
3296
3297  const char *attrStr = nullptr;
3298  switch (ownership) {
3299  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
3300  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
3301  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
3302  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
3303  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
3304  }
3305
3306  IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
3307  Arg->Ident = &S.Context.Idents.get(attrStr);
3308  Arg->Loc = SourceLocation();
3309
3310  ArgsUnion Args(Arg);
3311
3312  // If there wasn't one, add one (with an invalid source location
3313  // so that we don't make an AttributedType for it).
3314  AttributeList *attr = D.getAttributePool()
3315    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
3316            /*scope*/ nullptr, SourceLocation(),
3317            /*args*/ &Args, 1, AttributeList::AS_GNU);
3318  spliceAttrIntoList(*attr, chunk.getAttrListRef());
3319
3320  // TODO: mark whether we did this inference?
3321}
3322
3323/// \brief Used for transferring ownership in casts resulting in l-values.
3324static void transferARCOwnership(TypeProcessingState &state,
3325                                 QualType &declSpecTy,
3326                                 Qualifiers::ObjCLifetime ownership) {
3327  Sema &S = state.getSema();
3328  Declarator &D = state.getDeclarator();
3329
3330  int inner = -1;
3331  bool hasIndirection = false;
3332  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3333    DeclaratorChunk &chunk = D.getTypeObject(i);
3334    switch (chunk.Kind) {
3335    case DeclaratorChunk::Paren:
3336      // Ignore parens.
3337      break;
3338
3339    case DeclaratorChunk::Array:
3340    case DeclaratorChunk::Reference:
3341    case DeclaratorChunk::Pointer:
3342      if (inner != -1)
3343        hasIndirection = true;
3344      inner = i;
3345      break;
3346
3347    case DeclaratorChunk::BlockPointer:
3348      if (inner != -1)
3349        transferARCOwnershipToDeclaratorChunk(state, ownership, i);
3350      return;
3351
3352    case DeclaratorChunk::Function:
3353    case DeclaratorChunk::MemberPointer:
3354      return;
3355    }
3356  }
3357
3358  if (inner == -1)
3359    return;
3360
3361  DeclaratorChunk &chunk = D.getTypeObject(inner);
3362  if (chunk.Kind == DeclaratorChunk::Pointer) {
3363    if (declSpecTy->isObjCRetainableType())
3364      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
3365    if (declSpecTy->isObjCObjectType() && hasIndirection)
3366      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
3367  } else {
3368    assert(chunk.Kind == DeclaratorChunk::Array ||
3369           chunk.Kind == DeclaratorChunk::Reference);
3370    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
3371  }
3372}
3373
3374TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
3375  TypeProcessingState state(*this, D);
3376
3377  TypeSourceInfo *ReturnTypeInfo = nullptr;
3378  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
3379  if (declSpecTy.isNull())
3380    return Context.getNullTypeSourceInfo();
3381
3382  if (getLangOpts().ObjCAutoRefCount) {
3383    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
3384    if (ownership != Qualifiers::OCL_None)
3385      transferARCOwnership(state, declSpecTy, ownership);
3386  }
3387
3388  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
3389}
3390
3391/// Map an AttributedType::Kind to an AttributeList::Kind.
3392static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
3393  switch (kind) {
3394  case AttributedType::attr_address_space:
3395    return AttributeList::AT_AddressSpace;
3396  case AttributedType::attr_regparm:
3397    return AttributeList::AT_Regparm;
3398  case AttributedType::attr_vector_size:
3399    return AttributeList::AT_VectorSize;
3400  case AttributedType::attr_neon_vector_type:
3401    return AttributeList::AT_NeonVectorType;
3402  case AttributedType::attr_neon_polyvector_type:
3403    return AttributeList::AT_NeonPolyVectorType;
3404  case AttributedType::attr_objc_gc:
3405    return AttributeList::AT_ObjCGC;
3406  case AttributedType::attr_objc_ownership:
3407    return AttributeList::AT_ObjCOwnership;
3408  case AttributedType::attr_noreturn:
3409    return AttributeList::AT_NoReturn;
3410  case AttributedType::attr_cdecl:
3411    return AttributeList::AT_CDecl;
3412  case AttributedType::attr_fastcall:
3413    return AttributeList::AT_FastCall;
3414  case AttributedType::attr_stdcall:
3415    return AttributeList::AT_StdCall;
3416  case AttributedType::attr_thiscall:
3417    return AttributeList::AT_ThisCall;
3418  case AttributedType::attr_pascal:
3419    return AttributeList::AT_Pascal;
3420  case AttributedType::attr_pcs:
3421  case AttributedType::attr_pcs_vfp:
3422    return AttributeList::AT_Pcs;
3423  case AttributedType::attr_pnaclcall:
3424    return AttributeList::AT_PnaclCall;
3425  case AttributedType::attr_inteloclbicc:
3426    return AttributeList::AT_IntelOclBicc;
3427  case AttributedType::attr_ms_abi:
3428    return AttributeList::AT_MSABI;
3429  case AttributedType::attr_sysv_abi:
3430    return AttributeList::AT_SysVABI;
3431  case AttributedType::attr_ptr32:
3432    return AttributeList::AT_Ptr32;
3433  case AttributedType::attr_ptr64:
3434    return AttributeList::AT_Ptr64;
3435  case AttributedType::attr_sptr:
3436    return AttributeList::AT_SPtr;
3437  case AttributedType::attr_uptr:
3438    return AttributeList::AT_UPtr;
3439  }
3440  llvm_unreachable("unexpected attribute kind!");
3441}
3442
3443static void fillAttributedTypeLoc(AttributedTypeLoc TL,
3444                                  const AttributeList *attrs) {
3445  AttributedType::Kind kind = TL.getAttrKind();
3446
3447  assert(attrs && "no type attributes in the expected location!");
3448  AttributeList::Kind parsedKind = getAttrListKind(kind);
3449  while (attrs->getKind() != parsedKind) {
3450    attrs = attrs->getNext();
3451    assert(attrs && "no matching attribute in expected location!");
3452  }
3453
3454  TL.setAttrNameLoc(attrs->getLoc());
3455  if (TL.hasAttrExprOperand()) {
3456    assert(attrs->isArgExpr(0) && "mismatched attribute operand kind");
3457    TL.setAttrExprOperand(attrs->getArgAsExpr(0));
3458  } else if (TL.hasAttrEnumOperand()) {
3459    assert((attrs->isArgIdent(0) || attrs->isArgExpr(0)) &&
3460           "unexpected attribute operand kind");
3461    if (attrs->isArgIdent(0))
3462      TL.setAttrEnumOperandLoc(attrs->getArgAsIdent(0)->Loc);
3463    else
3464      TL.setAttrEnumOperandLoc(attrs->getArgAsExpr(0)->getExprLoc());
3465  }
3466
3467  // FIXME: preserve this information to here.
3468  if (TL.hasAttrOperand())
3469    TL.setAttrOperandParensRange(SourceRange());
3470}
3471
3472namespace {
3473  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
3474    ASTContext &Context;
3475    const DeclSpec &DS;
3476
3477  public:
3478    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
3479      : Context(Context), DS(DS) {}
3480
3481    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3482      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
3483      Visit(TL.getModifiedLoc());
3484    }
3485    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3486      Visit(TL.getUnqualifiedLoc());
3487    }
3488    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
3489      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3490    }
3491    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
3492      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3493      // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
3494      // addition field. What we have is good enough for dispay of location
3495      // of 'fixit' on interface name.
3496      TL.setNameEndLoc(DS.getLocEnd());
3497    }
3498    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
3499      // Handle the base type, which might not have been written explicitly.
3500      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
3501        TL.setHasBaseTypeAsWritten(false);
3502        TL.getBaseLoc().initialize(Context, SourceLocation());
3503      } else {
3504        TL.setHasBaseTypeAsWritten(true);
3505        Visit(TL.getBaseLoc());
3506      }
3507
3508      // Protocol qualifiers.
3509      if (DS.getProtocolQualifiers()) {
3510        assert(TL.getNumProtocols() > 0);
3511        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
3512        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
3513        TL.setRAngleLoc(DS.getSourceRange().getEnd());
3514        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
3515          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
3516      } else {
3517        assert(TL.getNumProtocols() == 0);
3518        TL.setLAngleLoc(SourceLocation());
3519        TL.setRAngleLoc(SourceLocation());
3520      }
3521    }
3522    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3523      TL.setStarLoc(SourceLocation());
3524      Visit(TL.getPointeeLoc());
3525    }
3526    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
3527      TypeSourceInfo *TInfo = nullptr;
3528      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3529
3530      // If we got no declarator info from previous Sema routines,
3531      // just fill with the typespec loc.
3532      if (!TInfo) {
3533        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
3534        return;
3535      }
3536
3537      TypeLoc OldTL = TInfo->getTypeLoc();
3538      if (TInfo->getType()->getAs<ElaboratedType>()) {
3539        ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
3540        TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
3541            .castAs<TemplateSpecializationTypeLoc>();
3542        TL.copy(NamedTL);
3543      } else {
3544        TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
3545        assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
3546      }
3547
3548    }
3549    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
3550      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
3551      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3552      TL.setParensRange(DS.getTypeofParensRange());
3553    }
3554    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
3555      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
3556      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3557      TL.setParensRange(DS.getTypeofParensRange());
3558      assert(DS.getRepAsType());
3559      TypeSourceInfo *TInfo = nullptr;
3560      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3561      TL.setUnderlyingTInfo(TInfo);
3562    }
3563    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
3564      // FIXME: This holds only because we only have one unary transform.
3565      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
3566      TL.setKWLoc(DS.getTypeSpecTypeLoc());
3567      TL.setParensRange(DS.getTypeofParensRange());
3568      assert(DS.getRepAsType());
3569      TypeSourceInfo *TInfo = nullptr;
3570      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3571      TL.setUnderlyingTInfo(TInfo);
3572    }
3573    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
3574      // By default, use the source location of the type specifier.
3575      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
3576      if (TL.needsExtraLocalData()) {
3577        // Set info for the written builtin specifiers.
3578        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
3579        // Try to have a meaningful source location.
3580        if (TL.getWrittenSignSpec() != TSS_unspecified)
3581          // Sign spec loc overrides the others (e.g., 'unsigned long').
3582          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
3583        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
3584          // Width spec loc overrides type spec loc (e.g., 'short int').
3585          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
3586      }
3587    }
3588    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
3589      ElaboratedTypeKeyword Keyword
3590        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
3591      if (DS.getTypeSpecType() == TST_typename) {
3592        TypeSourceInfo *TInfo = nullptr;
3593        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3594        if (TInfo) {
3595          TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
3596          return;
3597        }
3598      }
3599      TL.setElaboratedKeywordLoc(Keyword != ETK_None
3600                                 ? DS.getTypeSpecTypeLoc()
3601                                 : SourceLocation());
3602      const CXXScopeSpec& SS = DS.getTypeSpecScope();
3603      TL.setQualifierLoc(SS.getWithLocInContext(Context));
3604      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
3605    }
3606    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
3607      assert(DS.getTypeSpecType() == TST_typename);
3608      TypeSourceInfo *TInfo = nullptr;
3609      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3610      assert(TInfo);
3611      TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
3612    }
3613    void VisitDependentTemplateSpecializationTypeLoc(
3614                                 DependentTemplateSpecializationTypeLoc TL) {
3615      assert(DS.getTypeSpecType() == TST_typename);
3616      TypeSourceInfo *TInfo = nullptr;
3617      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3618      assert(TInfo);
3619      TL.copy(
3620          TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
3621    }
3622    void VisitTagTypeLoc(TagTypeLoc TL) {
3623      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
3624    }
3625    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
3626      // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
3627      // or an _Atomic qualifier.
3628      if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
3629        TL.setKWLoc(DS.getTypeSpecTypeLoc());
3630        TL.setParensRange(DS.getTypeofParensRange());
3631
3632        TypeSourceInfo *TInfo = nullptr;
3633        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3634        assert(TInfo);
3635        TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
3636      } else {
3637        TL.setKWLoc(DS.getAtomicSpecLoc());
3638        // No parens, to indicate this was spelled as an _Atomic qualifier.
3639        TL.setParensRange(SourceRange());
3640        Visit(TL.getValueLoc());
3641      }
3642    }
3643
3644    void VisitTypeLoc(TypeLoc TL) {
3645      // FIXME: add other typespec types and change this to an assert.
3646      TL.initialize(Context, DS.getTypeSpecTypeLoc());
3647    }
3648  };
3649
3650  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
3651    ASTContext &Context;
3652    const DeclaratorChunk &Chunk;
3653
3654  public:
3655    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
3656      : Context(Context), Chunk(Chunk) {}
3657
3658    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3659      llvm_unreachable("qualified type locs not expected here!");
3660    }
3661    void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
3662      llvm_unreachable("decayed type locs not expected here!");
3663    }
3664
3665    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3666      fillAttributedTypeLoc(TL, Chunk.getAttrs());
3667    }
3668    void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
3669      // nothing
3670    }
3671    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
3672      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3673      TL.setCaretLoc(Chunk.Loc);
3674    }
3675    void VisitPointerTypeLoc(PointerTypeLoc TL) {
3676      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3677      TL.setStarLoc(Chunk.Loc);
3678    }
3679    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3680      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3681      TL.setStarLoc(Chunk.Loc);
3682    }
3683    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3684      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3685      const CXXScopeSpec& SS = Chunk.Mem.Scope();
3686      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3687
3688      const Type* ClsTy = TL.getClass();
3689      QualType ClsQT = QualType(ClsTy, 0);
3690      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3691      // Now copy source location info into the type loc component.
3692      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3693      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3694      case NestedNameSpecifier::Identifier:
3695        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3696        {
3697          DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
3698          DNTLoc.setElaboratedKeywordLoc(SourceLocation());
3699          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3700          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3701        }
3702        break;
3703
3704      case NestedNameSpecifier::TypeSpec:
3705      case NestedNameSpecifier::TypeSpecWithTemplate:
3706        if (isa<ElaboratedType>(ClsTy)) {
3707          ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
3708          ETLoc.setElaboratedKeywordLoc(SourceLocation());
3709          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3710          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3711          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3712        } else {
3713          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3714        }
3715        break;
3716
3717      case NestedNameSpecifier::Namespace:
3718      case NestedNameSpecifier::NamespaceAlias:
3719      case NestedNameSpecifier::Global:
3720        llvm_unreachable("Nested-name-specifier must name a type");
3721      }
3722
3723      // Finally fill in MemberPointerLocInfo fields.
3724      TL.setStarLoc(Chunk.Loc);
3725      TL.setClassTInfo(ClsTInfo);
3726    }
3727    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3728      assert(Chunk.Kind == DeclaratorChunk::Reference);
3729      // 'Amp' is misleading: this might have been originally
3730      /// spelled with AmpAmp.
3731      TL.setAmpLoc(Chunk.Loc);
3732    }
3733    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3734      assert(Chunk.Kind == DeclaratorChunk::Reference);
3735      assert(!Chunk.Ref.LValueRef);
3736      TL.setAmpAmpLoc(Chunk.Loc);
3737    }
3738    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3739      assert(Chunk.Kind == DeclaratorChunk::Array);
3740      TL.setLBracketLoc(Chunk.Loc);
3741      TL.setRBracketLoc(Chunk.EndLoc);
3742      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3743    }
3744    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3745      assert(Chunk.Kind == DeclaratorChunk::Function);
3746      TL.setLocalRangeBegin(Chunk.Loc);
3747      TL.setLocalRangeEnd(Chunk.EndLoc);
3748
3749      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3750      TL.setLParenLoc(FTI.getLParenLoc());
3751      TL.setRParenLoc(FTI.getRParenLoc());
3752      for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
3753        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
3754        TL.setParam(tpi++, Param);
3755      }
3756      // FIXME: exception specs
3757    }
3758    void VisitParenTypeLoc(ParenTypeLoc TL) {
3759      assert(Chunk.Kind == DeclaratorChunk::Paren);
3760      TL.setLParenLoc(Chunk.Loc);
3761      TL.setRParenLoc(Chunk.EndLoc);
3762    }
3763
3764    void VisitTypeLoc(TypeLoc TL) {
3765      llvm_unreachable("unsupported TypeLoc kind in declarator!");
3766    }
3767  };
3768}
3769
3770static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
3771  SourceLocation Loc;
3772  switch (Chunk.Kind) {
3773  case DeclaratorChunk::Function:
3774  case DeclaratorChunk::Array:
3775  case DeclaratorChunk::Paren:
3776    llvm_unreachable("cannot be _Atomic qualified");
3777
3778  case DeclaratorChunk::Pointer:
3779    Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
3780    break;
3781
3782  case DeclaratorChunk::BlockPointer:
3783  case DeclaratorChunk::Reference:
3784  case DeclaratorChunk::MemberPointer:
3785    // FIXME: Provide a source location for the _Atomic keyword.
3786    break;
3787  }
3788
3789  ATL.setKWLoc(Loc);
3790  ATL.setParensRange(SourceRange());
3791}
3792
3793/// \brief Create and instantiate a TypeSourceInfo with type source information.
3794///
3795/// \param T QualType referring to the type as written in source code.
3796///
3797/// \param ReturnTypeInfo For declarators whose return type does not show
3798/// up in the normal place in the declaration specifiers (such as a C++
3799/// conversion function), this pointer will refer to a type source information
3800/// for that return type.
3801TypeSourceInfo *
3802Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3803                                     TypeSourceInfo *ReturnTypeInfo) {
3804  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3805  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3806
3807  // Handle parameter packs whose type is a pack expansion.
3808  if (isa<PackExpansionType>(T)) {
3809    CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
3810    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3811  }
3812
3813  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3814    // An AtomicTypeLoc might be produced by an atomic qualifier in this
3815    // declarator chunk.
3816    if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
3817      fillAtomicQualLoc(ATL, D.getTypeObject(i));
3818      CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
3819    }
3820
3821    while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
3822      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3823      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3824    }
3825
3826    // FIXME: Ordering here?
3827    while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
3828      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3829
3830    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3831    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3832  }
3833
3834  // If we have different source information for the return type, use
3835  // that.  This really only applies to C++ conversion functions.
3836  if (ReturnTypeInfo) {
3837    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3838    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3839    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3840  } else {
3841    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3842  }
3843
3844  return TInfo;
3845}
3846
3847/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3848ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3849  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3850  // and Sema during declaration parsing. Try deallocating/caching them when
3851  // it's appropriate, instead of allocating them and keeping them around.
3852  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3853                                                       TypeAlignment);
3854  new (LocT) LocInfoType(T, TInfo);
3855  assert(LocT->getTypeClass() != T->getTypeClass() &&
3856         "LocInfoType's TypeClass conflicts with an existing Type class");
3857  return ParsedType::make(QualType(LocT, 0));
3858}
3859
3860void LocInfoType::getAsStringInternal(std::string &Str,
3861                                      const PrintingPolicy &Policy) const {
3862  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3863         " was used directly instead of getting the QualType through"
3864         " GetTypeFromParser");
3865}
3866
3867TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3868  // C99 6.7.6: Type names have no identifier.  This is already validated by
3869  // the parser.
3870  assert(D.getIdentifier() == nullptr &&
3871         "Type name should have no identifier!");
3872
3873  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3874  QualType T = TInfo->getType();
3875  if (D.isInvalidType())
3876    return true;
3877
3878  // Make sure there are no unused decl attributes on the declarator.
3879  // We don't want to do this for ObjC parameters because we're going
3880  // to apply them to the actual parameter declaration.
3881  // Likewise, we don't want to do this for alias declarations, because
3882  // we are actually going to build a declaration from this eventually.
3883  if (D.getContext() != Declarator::ObjCParameterContext &&
3884      D.getContext() != Declarator::AliasDeclContext &&
3885      D.getContext() != Declarator::AliasTemplateContext)
3886    checkUnusedDeclAttributes(D);
3887
3888  if (getLangOpts().CPlusPlus) {
3889    // Check that there are no default arguments (C++ only).
3890    CheckExtraCXXDefaultArguments(D);
3891  }
3892
3893  return CreateParsedType(T, TInfo);
3894}
3895
3896ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3897  QualType T = Context.getObjCInstanceType();
3898  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3899  return CreateParsedType(T, TInfo);
3900}
3901
3902
3903//===----------------------------------------------------------------------===//
3904// Type Attribute Processing
3905//===----------------------------------------------------------------------===//
3906
3907/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3908/// specified type.  The attribute contains 1 argument, the id of the address
3909/// space for the type.
3910static void HandleAddressSpaceTypeAttribute(QualType &Type,
3911                                            const AttributeList &Attr, Sema &S){
3912
3913  // If this type is already address space qualified, reject it.
3914  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3915  // qualifiers for two or more different address spaces."
3916  if (Type.getAddressSpace()) {
3917    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3918    Attr.setInvalid();
3919    return;
3920  }
3921
3922  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3923  // qualified by an address-space qualifier."
3924  if (Type->isFunctionType()) {
3925    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3926    Attr.setInvalid();
3927    return;
3928  }
3929
3930  unsigned ASIdx;
3931  if (Attr.getKind() == AttributeList::AT_AddressSpace) {
3932    // Check the attribute arguments.
3933    if (Attr.getNumArgs() != 1) {
3934      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
3935        << Attr.getName() << 1;
3936      Attr.setInvalid();
3937      return;
3938    }
3939    Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
3940    llvm::APSInt addrSpace(32);
3941    if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3942        !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3943      S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
3944        << Attr.getName() << AANT_ArgumentIntegerConstant
3945        << ASArgExpr->getSourceRange();
3946      Attr.setInvalid();
3947      return;
3948    }
3949
3950    // Bounds checking.
3951    if (addrSpace.isSigned()) {
3952      if (addrSpace.isNegative()) {
3953        S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3954          << ASArgExpr->getSourceRange();
3955        Attr.setInvalid();
3956        return;
3957      }
3958      addrSpace.setIsSigned(false);
3959    }
3960    llvm::APSInt max(addrSpace.getBitWidth());
3961    max = Qualifiers::MaxAddressSpace;
3962    if (addrSpace > max) {
3963      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3964        << int(Qualifiers::MaxAddressSpace) << ASArgExpr->getSourceRange();
3965      Attr.setInvalid();
3966      return;
3967    }
3968    ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3969  } else {
3970    // The keyword-based type attributes imply which address space to use.
3971    switch (Attr.getKind()) {
3972    case AttributeList::AT_OpenCLGlobalAddressSpace:
3973      ASIdx = LangAS::opencl_global; break;
3974    case AttributeList::AT_OpenCLLocalAddressSpace:
3975      ASIdx = LangAS::opencl_local; break;
3976    case AttributeList::AT_OpenCLConstantAddressSpace:
3977      ASIdx = LangAS::opencl_constant; break;
3978    default:
3979      assert(Attr.getKind() == AttributeList::AT_OpenCLPrivateAddressSpace);
3980      ASIdx = 0; break;
3981    }
3982  }
3983
3984  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3985}
3986
3987/// Does this type have a "direct" ownership qualifier?  That is,
3988/// is it written like "__strong id", as opposed to something like
3989/// "typeof(foo)", where that happens to be strong?
3990static bool hasDirectOwnershipQualifier(QualType type) {
3991  // Fast path: no qualifier at all.
3992  assert(type.getQualifiers().hasObjCLifetime());
3993
3994  while (true) {
3995    // __strong id
3996    if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
3997      if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
3998        return true;
3999
4000      type = attr->getModifiedType();
4001
4002    // X *__strong (...)
4003    } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
4004      type = paren->getInnerType();
4005
4006    // That's it for things we want to complain about.  In particular,
4007    // we do not want to look through typedefs, typeof(expr),
4008    // typeof(type), or any other way that the type is somehow
4009    // abstracted.
4010    } else {
4011
4012      return false;
4013    }
4014  }
4015}
4016
4017/// handleObjCOwnershipTypeAttr - Process an objc_ownership
4018/// attribute on the specified type.
4019///
4020/// Returns 'true' if the attribute was handled.
4021static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
4022                                       AttributeList &attr,
4023                                       QualType &type) {
4024  bool NonObjCPointer = false;
4025
4026  if (!type->isDependentType() && !type->isUndeducedType()) {
4027    if (const PointerType *ptr = type->getAs<PointerType>()) {
4028      QualType pointee = ptr->getPointeeType();
4029      if (pointee->isObjCRetainableType() || pointee->isPointerType())
4030        return false;
4031      // It is important not to lose the source info that there was an attribute
4032      // applied to non-objc pointer. We will create an attributed type but
4033      // its type will be the same as the original type.
4034      NonObjCPointer = true;
4035    } else if (!type->isObjCRetainableType()) {
4036      return false;
4037    }
4038
4039    // Don't accept an ownership attribute in the declspec if it would
4040    // just be the return type of a block pointer.
4041    if (state.isProcessingDeclSpec()) {
4042      Declarator &D = state.getDeclarator();
4043      if (maybeMovePastReturnType(D, D.getNumTypeObjects()))
4044        return false;
4045    }
4046  }
4047
4048  Sema &S = state.getSema();
4049  SourceLocation AttrLoc = attr.getLoc();
4050  if (AttrLoc.isMacroID())
4051    AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
4052
4053  if (!attr.isArgIdent(0)) {
4054    S.Diag(AttrLoc, diag::err_attribute_argument_type)
4055      << attr.getName() << AANT_ArgumentString;
4056    attr.setInvalid();
4057    return true;
4058  }
4059
4060  // Consume lifetime attributes without further comment outside of
4061  // ARC mode.
4062  if (!S.getLangOpts().ObjCAutoRefCount)
4063    return true;
4064
4065  IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
4066  Qualifiers::ObjCLifetime lifetime;
4067  if (II->isStr("none"))
4068    lifetime = Qualifiers::OCL_ExplicitNone;
4069  else if (II->isStr("strong"))
4070    lifetime = Qualifiers::OCL_Strong;
4071  else if (II->isStr("weak"))
4072    lifetime = Qualifiers::OCL_Weak;
4073  else if (II->isStr("autoreleasing"))
4074    lifetime = Qualifiers::OCL_Autoreleasing;
4075  else {
4076    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
4077      << attr.getName() << II;
4078    attr.setInvalid();
4079    return true;
4080  }
4081
4082  SplitQualType underlyingType = type.split();
4083
4084  // Check for redundant/conflicting ownership qualifiers.
4085  if (Qualifiers::ObjCLifetime previousLifetime
4086        = type.getQualifiers().getObjCLifetime()) {
4087    // If it's written directly, that's an error.
4088    if (hasDirectOwnershipQualifier(type)) {
4089      S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
4090        << type;
4091      return true;
4092    }
4093
4094    // Otherwise, if the qualifiers actually conflict, pull sugar off
4095    // until we reach a type that is directly qualified.
4096    if (previousLifetime != lifetime) {
4097      // This should always terminate: the canonical type is
4098      // qualified, so some bit of sugar must be hiding it.
4099      while (!underlyingType.Quals.hasObjCLifetime()) {
4100        underlyingType = underlyingType.getSingleStepDesugaredType();
4101      }
4102      underlyingType.Quals.removeObjCLifetime();
4103    }
4104  }
4105
4106  underlyingType.Quals.addObjCLifetime(lifetime);
4107
4108  if (NonObjCPointer) {
4109    StringRef name = attr.getName()->getName();
4110    switch (lifetime) {
4111    case Qualifiers::OCL_None:
4112    case Qualifiers::OCL_ExplicitNone:
4113      break;
4114    case Qualifiers::OCL_Strong: name = "__strong"; break;
4115    case Qualifiers::OCL_Weak: name = "__weak"; break;
4116    case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
4117    }
4118    S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
4119      << TDS_ObjCObjOrBlock << type;
4120  }
4121
4122  QualType origType = type;
4123  if (!NonObjCPointer)
4124    type = S.Context.getQualifiedType(underlyingType);
4125
4126  // If we have a valid source location for the attribute, use an
4127  // AttributedType instead.
4128  if (AttrLoc.isValid())
4129    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
4130                                       origType, type);
4131
4132  // Forbid __weak if the runtime doesn't support it.
4133  if (lifetime == Qualifiers::OCL_Weak &&
4134      !S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {
4135
4136    // Actually, delay this until we know what we're parsing.
4137    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
4138      S.DelayedDiagnostics.add(
4139          sema::DelayedDiagnostic::makeForbiddenType(
4140              S.getSourceManager().getExpansionLoc(AttrLoc),
4141              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
4142    } else {
4143      S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
4144    }
4145
4146    attr.setInvalid();
4147    return true;
4148  }
4149
4150  // Forbid __weak for class objects marked as
4151  // objc_arc_weak_reference_unavailable
4152  if (lifetime == Qualifiers::OCL_Weak) {
4153    if (const ObjCObjectPointerType *ObjT =
4154          type->getAs<ObjCObjectPointerType>()) {
4155      if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
4156        if (Class->isArcWeakrefUnavailable()) {
4157            S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
4158            S.Diag(ObjT->getInterfaceDecl()->getLocation(),
4159                   diag::note_class_declared);
4160        }
4161      }
4162    }
4163  }
4164
4165  return true;
4166}
4167
4168/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
4169/// attribute on the specified type.  Returns true to indicate that
4170/// the attribute was handled, false to indicate that the type does
4171/// not permit the attribute.
4172static bool handleObjCGCTypeAttr(TypeProcessingState &state,
4173                                 AttributeList &attr,
4174                                 QualType &type) {
4175  Sema &S = state.getSema();
4176
4177  // Delay if this isn't some kind of pointer.
4178  if (!type->isPointerType() &&
4179      !type->isObjCObjectPointerType() &&
4180      !type->isBlockPointerType())
4181    return false;
4182
4183  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
4184    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
4185    attr.setInvalid();
4186    return true;
4187  }
4188
4189  // Check the attribute arguments.
4190  if (!attr.isArgIdent(0)) {
4191    S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
4192      << attr.getName() << AANT_ArgumentString;
4193    attr.setInvalid();
4194    return true;
4195  }
4196  Qualifiers::GC GCAttr;
4197  if (attr.getNumArgs() > 1) {
4198    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4199      << attr.getName() << 1;
4200    attr.setInvalid();
4201    return true;
4202  }
4203
4204  IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
4205  if (II->isStr("weak"))
4206    GCAttr = Qualifiers::Weak;
4207  else if (II->isStr("strong"))
4208    GCAttr = Qualifiers::Strong;
4209  else {
4210    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
4211      << attr.getName() << II;
4212    attr.setInvalid();
4213    return true;
4214  }
4215
4216  QualType origType = type;
4217  type = S.Context.getObjCGCQualType(origType, GCAttr);
4218
4219  // Make an attributed type to preserve the source information.
4220  if (attr.getLoc().isValid())
4221    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
4222                                       origType, type);
4223
4224  return true;
4225}
4226
4227namespace {
4228  /// A helper class to unwrap a type down to a function for the
4229  /// purposes of applying attributes there.
4230  ///
4231  /// Use:
4232  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
4233  ///   if (unwrapped.isFunctionType()) {
4234  ///     const FunctionType *fn = unwrapped.get();
4235  ///     // change fn somehow
4236  ///     T = unwrapped.wrap(fn);
4237  ///   }
4238  struct FunctionTypeUnwrapper {
4239    enum WrapKind {
4240      Desugar,
4241      Parens,
4242      Pointer,
4243      BlockPointer,
4244      Reference,
4245      MemberPointer
4246    };
4247
4248    QualType Original;
4249    const FunctionType *Fn;
4250    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
4251
4252    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
4253      while (true) {
4254        const Type *Ty = T.getTypePtr();
4255        if (isa<FunctionType>(Ty)) {
4256          Fn = cast<FunctionType>(Ty);
4257          return;
4258        } else if (isa<ParenType>(Ty)) {
4259          T = cast<ParenType>(Ty)->getInnerType();
4260          Stack.push_back(Parens);
4261        } else if (isa<PointerType>(Ty)) {
4262          T = cast<PointerType>(Ty)->getPointeeType();
4263          Stack.push_back(Pointer);
4264        } else if (isa<BlockPointerType>(Ty)) {
4265          T = cast<BlockPointerType>(Ty)->getPointeeType();
4266          Stack.push_back(BlockPointer);
4267        } else if (isa<MemberPointerType>(Ty)) {
4268          T = cast<MemberPointerType>(Ty)->getPointeeType();
4269          Stack.push_back(MemberPointer);
4270        } else if (isa<ReferenceType>(Ty)) {
4271          T = cast<ReferenceType>(Ty)->getPointeeType();
4272          Stack.push_back(Reference);
4273        } else {
4274          const Type *DTy = Ty->getUnqualifiedDesugaredType();
4275          if (Ty == DTy) {
4276            Fn = nullptr;
4277            return;
4278          }
4279
4280          T = QualType(DTy, 0);
4281          Stack.push_back(Desugar);
4282        }
4283      }
4284    }
4285
4286    bool isFunctionType() const { return (Fn != nullptr); }
4287    const FunctionType *get() const { return Fn; }
4288
4289    QualType wrap(Sema &S, const FunctionType *New) {
4290      // If T wasn't modified from the unwrapped type, do nothing.
4291      if (New == get()) return Original;
4292
4293      Fn = New;
4294      return wrap(S.Context, Original, 0);
4295    }
4296
4297  private:
4298    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
4299      if (I == Stack.size())
4300        return C.getQualifiedType(Fn, Old.getQualifiers());
4301
4302      // Build up the inner type, applying the qualifiers from the old
4303      // type to the new type.
4304      SplitQualType SplitOld = Old.split();
4305
4306      // As a special case, tail-recurse if there are no qualifiers.
4307      if (SplitOld.Quals.empty())
4308        return wrap(C, SplitOld.Ty, I);
4309      return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
4310    }
4311
4312    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
4313      if (I == Stack.size()) return QualType(Fn, 0);
4314
4315      switch (static_cast<WrapKind>(Stack[I++])) {
4316      case Desugar:
4317        // This is the point at which we potentially lose source
4318        // information.
4319        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
4320
4321      case Parens: {
4322        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
4323        return C.getParenType(New);
4324      }
4325
4326      case Pointer: {
4327        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
4328        return C.getPointerType(New);
4329      }
4330
4331      case BlockPointer: {
4332        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
4333        return C.getBlockPointerType(New);
4334      }
4335
4336      case MemberPointer: {
4337        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
4338        QualType New = wrap(C, OldMPT->getPointeeType(), I);
4339        return C.getMemberPointerType(New, OldMPT->getClass());
4340      }
4341
4342      case Reference: {
4343        const ReferenceType *OldRef = cast<ReferenceType>(Old);
4344        QualType New = wrap(C, OldRef->getPointeeType(), I);
4345        if (isa<LValueReferenceType>(OldRef))
4346          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
4347        else
4348          return C.getRValueReferenceType(New);
4349      }
4350      }
4351
4352      llvm_unreachable("unknown wrapping kind");
4353    }
4354  };
4355}
4356
4357static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
4358                                             AttributeList &Attr,
4359                                             QualType &Type) {
4360  Sema &S = State.getSema();
4361
4362  AttributeList::Kind Kind = Attr.getKind();
4363  QualType Desugared = Type;
4364  const AttributedType *AT = dyn_cast<AttributedType>(Type);
4365  while (AT) {
4366    AttributedType::Kind CurAttrKind = AT->getAttrKind();
4367
4368    // You cannot specify duplicate type attributes, so if the attribute has
4369    // already been applied, flag it.
4370    if (getAttrListKind(CurAttrKind) == Kind) {
4371      S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute_exact)
4372        << Attr.getName();
4373      return true;
4374    }
4375
4376    // You cannot have both __sptr and __uptr on the same type, nor can you
4377    // have __ptr32 and __ptr64.
4378    if ((CurAttrKind == AttributedType::attr_ptr32 &&
4379         Kind == AttributeList::AT_Ptr64) ||
4380        (CurAttrKind == AttributedType::attr_ptr64 &&
4381         Kind == AttributeList::AT_Ptr32)) {
4382      S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
4383        << "'__ptr32'" << "'__ptr64'";
4384      return true;
4385    } else if ((CurAttrKind == AttributedType::attr_sptr &&
4386                Kind == AttributeList::AT_UPtr) ||
4387               (CurAttrKind == AttributedType::attr_uptr &&
4388                Kind == AttributeList::AT_SPtr)) {
4389      S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
4390        << "'__sptr'" << "'__uptr'";
4391      return true;
4392    }
4393
4394    Desugared = AT->getEquivalentType();
4395    AT = dyn_cast<AttributedType>(Desugared);
4396  }
4397
4398  // Pointer type qualifiers can only operate on pointer types, but not
4399  // pointer-to-member types.
4400  if (!isa<PointerType>(Desugared)) {
4401    S.Diag(Attr.getLoc(), Type->isMemberPointerType() ?
4402                          diag::err_attribute_no_member_pointers :
4403                          diag::err_attribute_pointers_only) << Attr.getName();
4404    return true;
4405  }
4406
4407  AttributedType::Kind TAK;
4408  switch (Kind) {
4409  default: llvm_unreachable("Unknown attribute kind");
4410  case AttributeList::AT_Ptr32: TAK = AttributedType::attr_ptr32; break;
4411  case AttributeList::AT_Ptr64: TAK = AttributedType::attr_ptr64; break;
4412  case AttributeList::AT_SPtr: TAK = AttributedType::attr_sptr; break;
4413  case AttributeList::AT_UPtr: TAK = AttributedType::attr_uptr; break;
4414  }
4415
4416  Type = S.Context.getAttributedType(TAK, Type, Type);
4417  return false;
4418}
4419
4420static AttributedType::Kind getCCTypeAttrKind(AttributeList &Attr) {
4421  assert(!Attr.isInvalid());
4422  switch (Attr.getKind()) {
4423  default:
4424    llvm_unreachable("not a calling convention attribute");
4425  case AttributeList::AT_CDecl:
4426    return AttributedType::attr_cdecl;
4427  case AttributeList::AT_FastCall:
4428    return AttributedType::attr_fastcall;
4429  case AttributeList::AT_StdCall:
4430    return AttributedType::attr_stdcall;
4431  case AttributeList::AT_ThisCall:
4432    return AttributedType::attr_thiscall;
4433  case AttributeList::AT_Pascal:
4434    return AttributedType::attr_pascal;
4435  case AttributeList::AT_Pcs: {
4436    // The attribute may have had a fixit applied where we treated an
4437    // identifier as a string literal.  The contents of the string are valid,
4438    // but the form may not be.
4439    StringRef Str;
4440    if (Attr.isArgExpr(0))
4441      Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
4442    else
4443      Str = Attr.getArgAsIdent(0)->Ident->getName();
4444    return llvm::StringSwitch<AttributedType::Kind>(Str)
4445        .Case("aapcs", AttributedType::attr_pcs)
4446        .Case("aapcs-vfp", AttributedType::attr_pcs_vfp);
4447  }
4448  case AttributeList::AT_PnaclCall:
4449    return AttributedType::attr_pnaclcall;
4450  case AttributeList::AT_IntelOclBicc:
4451    return AttributedType::attr_inteloclbicc;
4452  case AttributeList::AT_MSABI:
4453    return AttributedType::attr_ms_abi;
4454  case AttributeList::AT_SysVABI:
4455    return AttributedType::attr_sysv_abi;
4456  }
4457  llvm_unreachable("unexpected attribute kind!");
4458}
4459
4460/// Process an individual function attribute.  Returns true to
4461/// indicate that the attribute was handled, false if it wasn't.
4462static bool handleFunctionTypeAttr(TypeProcessingState &state,
4463                                   AttributeList &attr,
4464                                   QualType &type) {
4465  Sema &S = state.getSema();
4466
4467  FunctionTypeUnwrapper unwrapped(S, type);
4468
4469  if (attr.getKind() == AttributeList::AT_NoReturn) {
4470    if (S.CheckNoReturnAttr(attr))
4471      return true;
4472
4473    // Delay if this is not a function type.
4474    if (!unwrapped.isFunctionType())
4475      return false;
4476
4477    // Otherwise we can process right away.
4478    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
4479    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4480    return true;
4481  }
4482
4483  // ns_returns_retained is not always a type attribute, but if we got
4484  // here, we're treating it as one right now.
4485  if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
4486    assert(S.getLangOpts().ObjCAutoRefCount &&
4487           "ns_returns_retained treated as type attribute in non-ARC");
4488    if (attr.getNumArgs()) return true;
4489
4490    // Delay if this is not a function type.
4491    if (!unwrapped.isFunctionType())
4492      return false;
4493
4494    FunctionType::ExtInfo EI
4495      = unwrapped.get()->getExtInfo().withProducesResult(true);
4496    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4497    return true;
4498  }
4499
4500  if (attr.getKind() == AttributeList::AT_Regparm) {
4501    unsigned value;
4502    if (S.CheckRegparmAttr(attr, value))
4503      return true;
4504
4505    // Delay if this is not a function type.
4506    if (!unwrapped.isFunctionType())
4507      return false;
4508
4509    // Diagnose regparm with fastcall.
4510    const FunctionType *fn = unwrapped.get();
4511    CallingConv CC = fn->getCallConv();
4512    if (CC == CC_X86FastCall) {
4513      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4514        << FunctionType::getNameForCallConv(CC)
4515        << "regparm";
4516      attr.setInvalid();
4517      return true;
4518    }
4519
4520    FunctionType::ExtInfo EI =
4521      unwrapped.get()->getExtInfo().withRegParm(value);
4522    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4523    return true;
4524  }
4525
4526  // Delay if the type didn't work out to a function.
4527  if (!unwrapped.isFunctionType()) return false;
4528
4529  // Otherwise, a calling convention.
4530  CallingConv CC;
4531  if (S.CheckCallingConvAttr(attr, CC))
4532    return true;
4533
4534  const FunctionType *fn = unwrapped.get();
4535  CallingConv CCOld = fn->getCallConv();
4536  AttributedType::Kind CCAttrKind = getCCTypeAttrKind(attr);
4537
4538  if (CCOld != CC) {
4539    // Error out on when there's already an attribute on the type
4540    // and the CCs don't match.
4541    const AttributedType *AT = S.getCallingConvAttributedType(type);
4542    if (AT && AT->getAttrKind() != CCAttrKind) {
4543      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4544        << FunctionType::getNameForCallConv(CC)
4545        << FunctionType::getNameForCallConv(CCOld);
4546      attr.setInvalid();
4547      return true;
4548    }
4549  }
4550
4551  // Diagnose use of callee-cleanup calling convention on variadic functions.
4552  if (isCalleeCleanup(CC)) {
4553    const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
4554    if (FnP && FnP->isVariadic()) {
4555      unsigned DiagID = diag::err_cconv_varargs;
4556      // stdcall and fastcall are ignored with a warning for GCC and MS
4557      // compatibility.
4558      if (CC == CC_X86StdCall || CC == CC_X86FastCall)
4559        DiagID = diag::warn_cconv_varargs;
4560
4561      S.Diag(attr.getLoc(), DiagID) << FunctionType::getNameForCallConv(CC);
4562      attr.setInvalid();
4563      return true;
4564    }
4565  }
4566
4567  // Diagnose the use of X86 fastcall on unprototyped functions.
4568  if (CC == CC_X86FastCall) {
4569    if (isa<FunctionNoProtoType>(fn)) {
4570      S.Diag(attr.getLoc(), diag::err_cconv_knr)
4571        << FunctionType::getNameForCallConv(CC);
4572      attr.setInvalid();
4573      return true;
4574    }
4575
4576    // Also diagnose fastcall with regparm.
4577    if (fn->getHasRegParm()) {
4578      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4579        << "regparm"
4580        << FunctionType::getNameForCallConv(CC);
4581      attr.setInvalid();
4582      return true;
4583    }
4584  }
4585
4586  // Modify the CC from the wrapped function type, wrap it all back, and then
4587  // wrap the whole thing in an AttributedType as written.  The modified type
4588  // might have a different CC if we ignored the attribute.
4589  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
4590  QualType Equivalent =
4591      unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4592  type = S.Context.getAttributedType(CCAttrKind, type, Equivalent);
4593  return true;
4594}
4595
4596bool Sema::hasExplicitCallingConv(QualType &T) {
4597  QualType R = T.IgnoreParens();
4598  while (const AttributedType *AT = dyn_cast<AttributedType>(R)) {
4599    if (AT->isCallingConv())
4600      return true;
4601    R = AT->getModifiedType().IgnoreParens();
4602  }
4603  return false;
4604}
4605
4606void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic) {
4607  FunctionTypeUnwrapper Unwrapped(*this, T);
4608  const FunctionType *FT = Unwrapped.get();
4609  bool IsVariadic = (isa<FunctionProtoType>(FT) &&
4610                     cast<FunctionProtoType>(FT)->isVariadic());
4611
4612  // Only adjust types with the default convention.  For example, on Windows we
4613  // should adjust a __cdecl type to __thiscall for instance methods, and a
4614  // __thiscall type to __cdecl for static methods.
4615  CallingConv CurCC = FT->getCallConv();
4616  CallingConv FromCC =
4617      Context.getDefaultCallingConvention(IsVariadic, IsStatic);
4618  CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
4619  if (CurCC != FromCC || FromCC == ToCC)
4620    return;
4621
4622  if (hasExplicitCallingConv(T))
4623    return;
4624
4625  FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
4626  QualType Wrapped = Unwrapped.wrap(*this, FT);
4627  T = Context.getAdjustedType(T, Wrapped);
4628}
4629
4630/// HandleVectorSizeAttribute - this attribute is only applicable to integral
4631/// and float scalars, although arrays, pointers, and function return values are
4632/// allowed in conjunction with this construct. Aggregates with this attribute
4633/// are invalid, even if they are of the same size as a corresponding scalar.
4634/// The raw attribute should contain precisely 1 argument, the vector size for
4635/// the variable, measured in bytes. If curType and rawAttr are well formed,
4636/// this routine will return a new vector type.
4637static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
4638                                 Sema &S) {
4639  // Check the attribute arguments.
4640  if (Attr.getNumArgs() != 1) {
4641    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4642      << Attr.getName() << 1;
4643    Attr.setInvalid();
4644    return;
4645  }
4646  Expr *sizeExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4647  llvm::APSInt vecSize(32);
4648  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
4649      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
4650    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
4651      << Attr.getName() << AANT_ArgumentIntegerConstant
4652      << sizeExpr->getSourceRange();
4653    Attr.setInvalid();
4654    return;
4655  }
4656  // The base type must be integer (not Boolean or enumeration) or float, and
4657  // can't already be a vector.
4658  if (!CurType->isBuiltinType() || CurType->isBooleanType() ||
4659      (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
4660    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
4661    Attr.setInvalid();
4662    return;
4663  }
4664  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4665  // vecSize is specified in bytes - convert to bits.
4666  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
4667
4668  // the vector size needs to be an integral multiple of the type size.
4669  if (vectorSize % typeSize) {
4670    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4671      << sizeExpr->getSourceRange();
4672    Attr.setInvalid();
4673    return;
4674  }
4675  if (VectorType::isVectorSizeTooLarge(vectorSize / typeSize)) {
4676    S.Diag(Attr.getLoc(), diag::err_attribute_size_too_large)
4677      << sizeExpr->getSourceRange();
4678    Attr.setInvalid();
4679    return;
4680  }
4681  if (vectorSize == 0) {
4682    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
4683      << sizeExpr->getSourceRange();
4684    Attr.setInvalid();
4685    return;
4686  }
4687
4688  // Success! Instantiate the vector type, the number of elements is > 0, and
4689  // not required to be a power of 2, unlike GCC.
4690  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
4691                                    VectorType::GenericVector);
4692}
4693
4694/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
4695/// a type.
4696static void HandleExtVectorTypeAttr(QualType &CurType,
4697                                    const AttributeList &Attr,
4698                                    Sema &S) {
4699  // check the attribute arguments.
4700  if (Attr.getNumArgs() != 1) {
4701    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4702      << Attr.getName() << 1;
4703    return;
4704  }
4705
4706  Expr *sizeExpr;
4707
4708  // Special case where the argument is a template id.
4709  if (Attr.isArgIdent(0)) {
4710    CXXScopeSpec SS;
4711    SourceLocation TemplateKWLoc;
4712    UnqualifiedId id;
4713    id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
4714
4715    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
4716                                          id, false, false);
4717    if (Size.isInvalid())
4718      return;
4719
4720    sizeExpr = Size.get();
4721  } else {
4722    sizeExpr = Attr.getArgAsExpr(0);
4723  }
4724
4725  // Create the vector type.
4726  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
4727  if (!T.isNull())
4728    CurType = T;
4729}
4730
4731static bool isPermittedNeonBaseType(QualType &Ty,
4732                                    VectorType::VectorKind VecKind, Sema &S) {
4733  const BuiltinType *BTy = Ty->getAs<BuiltinType>();
4734  if (!BTy)
4735    return false;
4736
4737  llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
4738
4739  // Signed poly is mathematically wrong, but has been baked into some ABIs by
4740  // now.
4741  bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
4742                        Triple.getArch() == llvm::Triple::aarch64_be ||
4743                        Triple.getArch() == llvm::Triple::arm64 ||
4744                        Triple.getArch() == llvm::Triple::arm64_be;
4745  if (VecKind == VectorType::NeonPolyVector) {
4746    if (IsPolyUnsigned) {
4747      // AArch64 polynomial vectors are unsigned and support poly64.
4748      return BTy->getKind() == BuiltinType::UChar ||
4749             BTy->getKind() == BuiltinType::UShort ||
4750             BTy->getKind() == BuiltinType::ULong ||
4751             BTy->getKind() == BuiltinType::ULongLong;
4752    } else {
4753      // AArch32 polynomial vector are signed.
4754      return BTy->getKind() == BuiltinType::SChar ||
4755             BTy->getKind() == BuiltinType::Short;
4756    }
4757  }
4758
4759  // Non-polynomial vector types: the usual suspects are allowed, as well as
4760  // float64_t on AArch64.
4761  bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
4762                 Triple.getArch() == llvm::Triple::aarch64_be ||
4763                 Triple.getArch() == llvm::Triple::arm64 ||
4764                 Triple.getArch() == llvm::Triple::arm64_be;
4765
4766  if (Is64Bit && BTy->getKind() == BuiltinType::Double)
4767    return true;
4768
4769  return BTy->getKind() == BuiltinType::SChar ||
4770         BTy->getKind() == BuiltinType::UChar ||
4771         BTy->getKind() == BuiltinType::Short ||
4772         BTy->getKind() == BuiltinType::UShort ||
4773         BTy->getKind() == BuiltinType::Int ||
4774         BTy->getKind() == BuiltinType::UInt ||
4775         BTy->getKind() == BuiltinType::Long ||
4776         BTy->getKind() == BuiltinType::ULong ||
4777         BTy->getKind() == BuiltinType::LongLong ||
4778         BTy->getKind() == BuiltinType::ULongLong ||
4779         BTy->getKind() == BuiltinType::Float ||
4780         BTy->getKind() == BuiltinType::Half;
4781}
4782
4783/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
4784/// "neon_polyvector_type" attributes are used to create vector types that
4785/// are mangled according to ARM's ABI.  Otherwise, these types are identical
4786/// to those created with the "vector_size" attribute.  Unlike "vector_size"
4787/// the argument to these Neon attributes is the number of vector elements,
4788/// not the vector size in bytes.  The vector width and element type must
4789/// match one of the standard Neon vector types.
4790static void HandleNeonVectorTypeAttr(QualType& CurType,
4791                                     const AttributeList &Attr, Sema &S,
4792                                     VectorType::VectorKind VecKind) {
4793  // Target must have NEON
4794  if (!S.Context.getTargetInfo().hasFeature("neon")) {
4795    S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr.getName();
4796    Attr.setInvalid();
4797    return;
4798  }
4799  // Check the attribute arguments.
4800  if (Attr.getNumArgs() != 1) {
4801    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4802      << Attr.getName() << 1;
4803    Attr.setInvalid();
4804    return;
4805  }
4806  // The number of elements must be an ICE.
4807  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4808  llvm::APSInt numEltsInt(32);
4809  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
4810      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
4811    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
4812      << Attr.getName() << AANT_ArgumentIntegerConstant
4813      << numEltsExpr->getSourceRange();
4814    Attr.setInvalid();
4815    return;
4816  }
4817  // Only certain element types are supported for Neon vectors.
4818  if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
4819    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
4820    Attr.setInvalid();
4821    return;
4822  }
4823
4824  // The total size of the vector must be 64 or 128 bits.
4825  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4826  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
4827  unsigned vecSize = typeSize * numElts;
4828  if (vecSize != 64 && vecSize != 128) {
4829    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
4830    Attr.setInvalid();
4831    return;
4832  }
4833
4834  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
4835}
4836
4837static void processTypeAttrs(TypeProcessingState &state, QualType &type,
4838                             TypeAttrLocation TAL, AttributeList *attrs) {
4839  // Scan through and apply attributes to this type where it makes sense.  Some
4840  // attributes (such as __address_space__, __vector_size__, etc) apply to the
4841  // type, but others can be present in the type specifiers even though they
4842  // apply to the decl.  Here we apply type attributes and ignore the rest.
4843
4844  AttributeList *next;
4845  do {
4846    AttributeList &attr = *attrs;
4847    next = attr.getNext();
4848
4849    // Skip attributes that were marked to be invalid.
4850    if (attr.isInvalid())
4851      continue;
4852
4853    if (attr.isCXX11Attribute()) {
4854      // [[gnu::...]] attributes are treated as declaration attributes, so may
4855      // not appertain to a DeclaratorChunk, even if we handle them as type
4856      // attributes.
4857      if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
4858        if (TAL == TAL_DeclChunk) {
4859          state.getSema().Diag(attr.getLoc(),
4860                               diag::warn_cxx11_gnu_attribute_on_type)
4861              << attr.getName();
4862          continue;
4863        }
4864      } else if (TAL != TAL_DeclChunk) {
4865        // Otherwise, only consider type processing for a C++11 attribute if
4866        // it's actually been applied to a type.
4867        continue;
4868      }
4869    }
4870
4871    // If this is an attribute we can handle, do so now,
4872    // otherwise, add it to the FnAttrs list for rechaining.
4873    switch (attr.getKind()) {
4874    default:
4875      // A C++11 attribute on a declarator chunk must appertain to a type.
4876      if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
4877        state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
4878          << attr.getName();
4879        attr.setUsedAsTypeAttr();
4880      }
4881      break;
4882
4883    case AttributeList::UnknownAttribute:
4884      if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
4885        state.getSema().Diag(attr.getLoc(),
4886                             diag::warn_unknown_attribute_ignored)
4887          << attr.getName();
4888      break;
4889
4890    case AttributeList::IgnoredAttribute:
4891      break;
4892
4893    case AttributeList::AT_MayAlias:
4894      // FIXME: This attribute needs to actually be handled, but if we ignore
4895      // it it breaks large amounts of Linux software.
4896      attr.setUsedAsTypeAttr();
4897      break;
4898    case AttributeList::AT_OpenCLPrivateAddressSpace:
4899    case AttributeList::AT_OpenCLGlobalAddressSpace:
4900    case AttributeList::AT_OpenCLLocalAddressSpace:
4901    case AttributeList::AT_OpenCLConstantAddressSpace:
4902    case AttributeList::AT_AddressSpace:
4903      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
4904      attr.setUsedAsTypeAttr();
4905      break;
4906    OBJC_POINTER_TYPE_ATTRS_CASELIST:
4907      if (!handleObjCPointerTypeAttr(state, attr, type))
4908        distributeObjCPointerTypeAttr(state, attr, type);
4909      attr.setUsedAsTypeAttr();
4910      break;
4911    case AttributeList::AT_VectorSize:
4912      HandleVectorSizeAttr(type, attr, state.getSema());
4913      attr.setUsedAsTypeAttr();
4914      break;
4915    case AttributeList::AT_ExtVectorType:
4916      HandleExtVectorTypeAttr(type, attr, state.getSema());
4917      attr.setUsedAsTypeAttr();
4918      break;
4919    case AttributeList::AT_NeonVectorType:
4920      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4921                               VectorType::NeonVector);
4922      attr.setUsedAsTypeAttr();
4923      break;
4924    case AttributeList::AT_NeonPolyVectorType:
4925      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4926                               VectorType::NeonPolyVector);
4927      attr.setUsedAsTypeAttr();
4928      break;
4929    case AttributeList::AT_OpenCLImageAccess:
4930      // FIXME: there should be some type checking happening here, I would
4931      // imagine, but the original handler's checking was entirely superfluous.
4932      attr.setUsedAsTypeAttr();
4933      break;
4934
4935    MS_TYPE_ATTRS_CASELIST:
4936      if (!handleMSPointerTypeQualifierAttr(state, attr, type))
4937        attr.setUsedAsTypeAttr();
4938      break;
4939
4940    case AttributeList::AT_NSReturnsRetained:
4941      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
4942        break;
4943      // fallthrough into the function attrs
4944
4945    FUNCTION_TYPE_ATTRS_CASELIST:
4946      attr.setUsedAsTypeAttr();
4947
4948      // Never process function type attributes as part of the
4949      // declaration-specifiers.
4950      if (TAL == TAL_DeclSpec)
4951        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
4952
4953      // Otherwise, handle the possible delays.
4954      else if (!handleFunctionTypeAttr(state, attr, type))
4955        distributeFunctionTypeAttr(state, attr, type);
4956      break;
4957    }
4958  } while ((attrs = next));
4959}
4960
4961/// \brief Ensure that the type of the given expression is complete.
4962///
4963/// This routine checks whether the expression \p E has a complete type. If the
4964/// expression refers to an instantiable construct, that instantiation is
4965/// performed as needed to complete its type. Furthermore
4966/// Sema::RequireCompleteType is called for the expression's type (or in the
4967/// case of a reference type, the referred-to type).
4968///
4969/// \param E The expression whose type is required to be complete.
4970/// \param Diagnoser The object that will emit a diagnostic if the type is
4971/// incomplete.
4972///
4973/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
4974/// otherwise.
4975bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
4976  QualType T = E->getType();
4977
4978  // Fast path the case where the type is already complete.
4979  if (!T->isIncompleteType())
4980    // FIXME: The definition might not be visible.
4981    return false;
4982
4983  // Incomplete array types may be completed by the initializer attached to
4984  // their definitions. For static data members of class templates and for
4985  // variable templates, we need to instantiate the definition to get this
4986  // initializer and complete the type.
4987  if (T->isIncompleteArrayType()) {
4988    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4989      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4990        if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
4991          SourceLocation PointOfInstantiation = E->getExprLoc();
4992
4993          if (MemberSpecializationInfo *MSInfo =
4994                  Var->getMemberSpecializationInfo()) {
4995            // If we don't already have a point of instantiation, this is it.
4996            if (MSInfo->getPointOfInstantiation().isInvalid()) {
4997              MSInfo->setPointOfInstantiation(PointOfInstantiation);
4998
4999              // This is a modification of an existing AST node. Notify
5000              // listeners.
5001              if (ASTMutationListener *L = getASTMutationListener())
5002                L->StaticDataMemberInstantiated(Var);
5003            }
5004          } else {
5005            VarTemplateSpecializationDecl *VarSpec =
5006                cast<VarTemplateSpecializationDecl>(Var);
5007            if (VarSpec->getPointOfInstantiation().isInvalid())
5008              VarSpec->setPointOfInstantiation(PointOfInstantiation);
5009          }
5010
5011          InstantiateVariableDefinition(PointOfInstantiation, Var);
5012
5013          // Update the type to the newly instantiated definition's type both
5014          // here and within the expression.
5015          if (VarDecl *Def = Var->getDefinition()) {
5016            DRE->setDecl(Def);
5017            T = Def->getType();
5018            DRE->setType(T);
5019            E->setType(T);
5020          }
5021
5022          // We still go on to try to complete the type independently, as it
5023          // may also require instantiations or diagnostics if it remains
5024          // incomplete.
5025        }
5026      }
5027    }
5028  }
5029
5030  // FIXME: Are there other cases which require instantiating something other
5031  // than the type to complete the type of an expression?
5032
5033  // Look through reference types and complete the referred type.
5034  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
5035    T = Ref->getPointeeType();
5036
5037  return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
5038}
5039
5040namespace {
5041  struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
5042    unsigned DiagID;
5043
5044    TypeDiagnoserDiag(unsigned DiagID)
5045      : Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
5046
5047    void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
5048      if (Suppressed) return;
5049      S.Diag(Loc, DiagID) << T;
5050    }
5051  };
5052}
5053
5054bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
5055  TypeDiagnoserDiag Diagnoser(DiagID);
5056  return RequireCompleteExprType(E, Diagnoser);
5057}
5058
5059/// @brief Ensure that the type T is a complete type.
5060///
5061/// This routine checks whether the type @p T is complete in any
5062/// context where a complete type is required. If @p T is a complete
5063/// type, returns false. If @p T is a class template specialization,
5064/// this routine then attempts to perform class template
5065/// instantiation. If instantiation fails, or if @p T is incomplete
5066/// and cannot be completed, issues the diagnostic @p diag (giving it
5067/// the type @p T) and returns true.
5068///
5069/// @param Loc  The location in the source that the incomplete type
5070/// diagnostic should refer to.
5071///
5072/// @param T  The type that this routine is examining for completeness.
5073///
5074/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
5075/// @c false otherwise.
5076bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
5077                               TypeDiagnoser &Diagnoser) {
5078  if (RequireCompleteTypeImpl(Loc, T, Diagnoser))
5079    return true;
5080  if (const TagType *Tag = T->getAs<TagType>()) {
5081    if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
5082      Tag->getDecl()->setCompleteDefinitionRequired();
5083      Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
5084    }
5085  }
5086  return false;
5087}
5088
5089/// \brief Determine whether there is any declaration of \p D that was ever a
5090///        definition (perhaps before module merging) and is currently visible.
5091/// \param D The definition of the entity.
5092/// \param Suggested Filled in with the declaration that should be made visible
5093///        in order to provide a definition of this entity.
5094static bool hasVisibleDefinition(Sema &S, NamedDecl *D, NamedDecl **Suggested) {
5095  // Easy case: if we don't have modules, all declarations are visible.
5096  if (!S.getLangOpts().Modules)
5097    return true;
5098
5099  // If this definition was instantiated from a template, map back to the
5100  // pattern from which it was instantiated.
5101  //
5102  // FIXME: There must be a better place for this to live.
5103  if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
5104    if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
5105      auto From = TD->getInstantiatedFrom();
5106      if (auto *CTD = From.dyn_cast<ClassTemplateDecl*>()) {
5107        while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
5108          if (NewCTD->isMemberSpecialization())
5109            break;
5110          CTD = NewCTD;
5111        }
5112        RD = CTD->getTemplatedDecl();
5113      } else if (auto *CTPSD = From.dyn_cast<
5114                     ClassTemplatePartialSpecializationDecl *>()) {
5115        while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
5116          if (NewCTPSD->isMemberSpecialization())
5117            break;
5118          CTPSD = NewCTPSD;
5119        }
5120        RD = CTPSD;
5121      }
5122    } else if (isTemplateInstantiation(RD->getTemplateSpecializationKind())) {
5123      while (auto *NewRD = RD->getInstantiatedFromMemberClass())
5124        RD = NewRD;
5125    }
5126    D = RD->getDefinition();
5127  } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
5128    while (auto *NewED = ED->getInstantiatedFromMemberEnum())
5129      ED = NewED;
5130    if (ED->isFixed()) {
5131      // If the enum has a fixed underlying type, any declaration of it will do.
5132      *Suggested = nullptr;
5133      for (auto *Redecl : ED->redecls()) {
5134        if (LookupResult::isVisible(S, Redecl))
5135          return true;
5136        if (Redecl->isThisDeclarationADefinition() ||
5137            (Redecl->isCanonicalDecl() && !*Suggested))
5138          *Suggested = Redecl;
5139      }
5140      return false;
5141    }
5142    D = ED->getDefinition();
5143  }
5144  assert(D && "missing definition for pattern of instantiated definition");
5145
5146  // FIXME: If we merged any other decl into D, and that declaration is visible,
5147  // then we should consider a definition to be visible.
5148  *Suggested = D;
5149  return LookupResult::isVisible(S, D);
5150}
5151
5152/// Locks in the inheritance model for the given class and all of its bases.
5153static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
5154  RD = RD->getMostRecentDecl();
5155  if (!RD->hasAttr<MSInheritanceAttr>()) {
5156    MSInheritanceAttr::Spelling IM;
5157
5158    switch (S.MSPointerToMemberRepresentationMethod) {
5159    case LangOptions::PPTMK_BestCase:
5160      IM = RD->calculateInheritanceModel();
5161      break;
5162    case LangOptions::PPTMK_FullGeneralitySingleInheritance:
5163      IM = MSInheritanceAttr::Keyword_single_inheritance;
5164      break;
5165    case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
5166      IM = MSInheritanceAttr::Keyword_multiple_inheritance;
5167      break;
5168    case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
5169      IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
5170      break;
5171    }
5172
5173    RD->addAttr(MSInheritanceAttr::CreateImplicit(
5174        S.getASTContext(), IM,
5175        /*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
5176            LangOptions::PPTMK_BestCase,
5177        S.ImplicitMSInheritanceAttrLoc.isValid()
5178            ? S.ImplicitMSInheritanceAttrLoc
5179            : RD->getSourceRange()));
5180  }
5181
5182  if (RD->hasDefinition()) {
5183    // Assign inheritance models to all of the base classes, because now we can
5184    // form pointers to members of base classes without calling
5185    // RequireCompleteType on the pointer to member of the base class type.
5186    for (const CXXBaseSpecifier &BS : RD->bases())
5187      assignInheritanceModel(S, BS.getType()->getAsCXXRecordDecl());
5188  }
5189}
5190
5191/// \brief The implementation of RequireCompleteType
5192bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
5193                                   TypeDiagnoser &Diagnoser) {
5194  // FIXME: Add this assertion to make sure we always get instantiation points.
5195  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
5196  // FIXME: Add this assertion to help us flush out problems with
5197  // checking for dependent types and type-dependent expressions.
5198  //
5199  //  assert(!T->isDependentType() &&
5200  //         "Can't ask whether a dependent type is complete");
5201
5202  // If we have a complete type, we're done.
5203  NamedDecl *Def = nullptr;
5204  if (!T->isIncompleteType(&Def)) {
5205    // If we know about the definition but it is not visible, complain.
5206    NamedDecl *SuggestedDef = nullptr;
5207    if (!Diagnoser.Suppressed && Def &&
5208        !hasVisibleDefinition(*this, Def, &SuggestedDef)) {
5209      // Suppress this error outside of a SFINAE context if we've already
5210      // emitted the error once for this type. There's no usefulness in
5211      // repeating the diagnostic.
5212      // FIXME: Add a Fix-It that imports the corresponding module or includes
5213      // the header.
5214      Module *Owner = SuggestedDef->getOwningModule();
5215      Diag(Loc, diag::err_module_private_definition)
5216        << T << Owner->getFullModuleName();
5217      Diag(SuggestedDef->getLocation(), diag::note_previous_definition);
5218
5219      // Try to recover by implicitly importing this module.
5220      createImplicitModuleImportForErrorRecovery(Loc, Owner);
5221    }
5222
5223    // We lock in the inheritance model once somebody has asked us to ensure
5224    // that a pointer-to-member type is complete.
5225    if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5226      if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
5227        if (!MPTy->getClass()->isDependentType()) {
5228          RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), 0);
5229          assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
5230        }
5231      }
5232    }
5233
5234    return false;
5235  }
5236
5237  const TagType *Tag = T->getAs<TagType>();
5238  const ObjCInterfaceType *IFace = T->getAs<ObjCInterfaceType>();
5239
5240  // If there's an unimported definition of this type in a module (for
5241  // instance, because we forward declared it, then imported the definition),
5242  // import that definition now.
5243  //
5244  // FIXME: What about other cases where an import extends a redeclaration
5245  // chain for a declaration that can be accessed through a mechanism other
5246  // than name lookup (eg, referenced in a template, or a variable whose type
5247  // could be completed by the module)?
5248  if (Tag || IFace) {
5249    NamedDecl *D =
5250        Tag ? static_cast<NamedDecl *>(Tag->getDecl()) : IFace->getDecl();
5251
5252    // Avoid diagnosing invalid decls as incomplete.
5253    if (D->isInvalidDecl())
5254      return true;
5255
5256    // Give the external AST source a chance to complete the type.
5257    if (auto *Source = Context.getExternalSource()) {
5258      if (Tag)
5259        Source->CompleteType(Tag->getDecl());
5260      else
5261        Source->CompleteType(IFace->getDecl());
5262
5263      // If the external source completed the type, go through the motions
5264      // again to ensure we're allowed to use the completed type.
5265      if (!T->isIncompleteType())
5266        return RequireCompleteTypeImpl(Loc, T, Diagnoser);
5267    }
5268  }
5269
5270  // If we have a class template specialization or a class member of a
5271  // class template specialization, or an array with known size of such,
5272  // try to instantiate it.
5273  QualType MaybeTemplate = T;
5274  while (const ConstantArrayType *Array
5275           = Context.getAsConstantArrayType(MaybeTemplate))
5276    MaybeTemplate = Array->getElementType();
5277  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
5278    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
5279          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
5280      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
5281        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
5282                                                      TSK_ImplicitInstantiation,
5283                                            /*Complain=*/!Diagnoser.Suppressed);
5284    } else if (CXXRecordDecl *Rec
5285                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
5286      CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
5287      if (!Rec->isBeingDefined() && Pattern) {
5288        MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
5289        assert(MSI && "Missing member specialization information?");
5290        // This record was instantiated from a class within a template.
5291        if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5292          return InstantiateClass(Loc, Rec, Pattern,
5293                                  getTemplateInstantiationArgs(Rec),
5294                                  TSK_ImplicitInstantiation,
5295                                  /*Complain=*/!Diagnoser.Suppressed);
5296      }
5297    }
5298  }
5299
5300  if (Diagnoser.Suppressed)
5301    return true;
5302
5303  // We have an incomplete type. Produce a diagnostic.
5304  if (Ident___float128 &&
5305      T == Context.getTypeDeclType(Context.getFloat128StubType())) {
5306    Diag(Loc, diag::err_typecheck_decl_incomplete_type___float128);
5307    return true;
5308  }
5309
5310  Diagnoser.diagnose(*this, Loc, T);
5311
5312  // If the type was a forward declaration of a class/struct/union
5313  // type, produce a note.
5314  if (Tag && !Tag->getDecl()->isInvalidDecl())
5315    Diag(Tag->getDecl()->getLocation(),
5316         Tag->isBeingDefined() ? diag::note_type_being_defined
5317                               : diag::note_forward_declaration)
5318      << QualType(Tag, 0);
5319
5320  // If the Objective-C class was a forward declaration, produce a note.
5321  if (IFace && !IFace->getDecl()->isInvalidDecl())
5322    Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
5323
5324  // If we have external information that we can use to suggest a fix,
5325  // produce a note.
5326  if (ExternalSource)
5327    ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
5328
5329  return true;
5330}
5331
5332bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
5333                               unsigned DiagID) {
5334  TypeDiagnoserDiag Diagnoser(DiagID);
5335  return RequireCompleteType(Loc, T, Diagnoser);
5336}
5337
5338/// \brief Get diagnostic %select index for tag kind for
5339/// literal type diagnostic message.
5340/// WARNING: Indexes apply to particular diagnostics only!
5341///
5342/// \returns diagnostic %select index.
5343static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
5344  switch (Tag) {
5345  case TTK_Struct: return 0;
5346  case TTK_Interface: return 1;
5347  case TTK_Class:  return 2;
5348  default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
5349  }
5350}
5351
5352/// @brief Ensure that the type T is a literal type.
5353///
5354/// This routine checks whether the type @p T is a literal type. If @p T is an
5355/// incomplete type, an attempt is made to complete it. If @p T is a literal
5356/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
5357/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
5358/// it the type @p T), along with notes explaining why the type is not a
5359/// literal type, and returns true.
5360///
5361/// @param Loc  The location in the source that the non-literal type
5362/// diagnostic should refer to.
5363///
5364/// @param T  The type that this routine is examining for literalness.
5365///
5366/// @param Diagnoser Emits a diagnostic if T is not a literal type.
5367///
5368/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
5369/// @c false otherwise.
5370bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
5371                              TypeDiagnoser &Diagnoser) {
5372  assert(!T->isDependentType() && "type should not be dependent");
5373
5374  QualType ElemType = Context.getBaseElementType(T);
5375  RequireCompleteType(Loc, ElemType, 0);
5376
5377  if (T->isLiteralType(Context))
5378    return false;
5379
5380  if (Diagnoser.Suppressed)
5381    return true;
5382
5383  Diagnoser.diagnose(*this, Loc, T);
5384
5385  if (T->isVariableArrayType())
5386    return true;
5387
5388  const RecordType *RT = ElemType->getAs<RecordType>();
5389  if (!RT)
5390    return true;
5391
5392  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5393
5394  // A partially-defined class type can't be a literal type, because a literal
5395  // class type must have a trivial destructor (which can't be checked until
5396  // the class definition is complete).
5397  if (!RD->isCompleteDefinition()) {
5398    RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
5399    return true;
5400  }
5401
5402  // If the class has virtual base classes, then it's not an aggregate, and
5403  // cannot have any constexpr constructors or a trivial default constructor,
5404  // so is non-literal. This is better to diagnose than the resulting absence
5405  // of constexpr constructors.
5406  if (RD->getNumVBases()) {
5407    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
5408      << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
5409    for (const auto &I : RD->vbases())
5410      Diag(I.getLocStart(), diag::note_constexpr_virtual_base_here)
5411          << I.getSourceRange();
5412  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
5413             !RD->hasTrivialDefaultConstructor()) {
5414    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
5415  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
5416    for (const auto &I : RD->bases()) {
5417      if (!I.getType()->isLiteralType(Context)) {
5418        Diag(I.getLocStart(),
5419             diag::note_non_literal_base_class)
5420          << RD << I.getType() << I.getSourceRange();
5421        return true;
5422      }
5423    }
5424    for (const auto *I : RD->fields()) {
5425      if (!I->getType()->isLiteralType(Context) ||
5426          I->getType().isVolatileQualified()) {
5427        Diag(I->getLocation(), diag::note_non_literal_field)
5428          << RD << I << I->getType()
5429          << I->getType().isVolatileQualified();
5430        return true;
5431      }
5432    }
5433  } else if (!RD->hasTrivialDestructor()) {
5434    // All fields and bases are of literal types, so have trivial destructors.
5435    // If this class's destructor is non-trivial it must be user-declared.
5436    CXXDestructorDecl *Dtor = RD->getDestructor();
5437    assert(Dtor && "class has literal fields and bases but no dtor?");
5438    if (!Dtor)
5439      return true;
5440
5441    Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
5442         diag::note_non_literal_user_provided_dtor :
5443         diag::note_non_literal_nontrivial_dtor) << RD;
5444    if (!Dtor->isUserProvided())
5445      SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
5446  }
5447
5448  return true;
5449}
5450
5451bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
5452  TypeDiagnoserDiag Diagnoser(DiagID);
5453  return RequireLiteralType(Loc, T, Diagnoser);
5454}
5455
5456/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
5457/// and qualified by the nested-name-specifier contained in SS.
5458QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
5459                                 const CXXScopeSpec &SS, QualType T) {
5460  if (T.isNull())
5461    return T;
5462  NestedNameSpecifier *NNS;
5463  if (SS.isValid())
5464    NNS = SS.getScopeRep();
5465  else {
5466    if (Keyword == ETK_None)
5467      return T;
5468    NNS = nullptr;
5469  }
5470  return Context.getElaboratedType(Keyword, NNS, T);
5471}
5472
5473QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
5474  ExprResult ER = CheckPlaceholderExpr(E);
5475  if (ER.isInvalid()) return QualType();
5476  E = ER.get();
5477
5478  if (!E->isTypeDependent()) {
5479    QualType T = E->getType();
5480    if (const TagType *TT = T->getAs<TagType>())
5481      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
5482  }
5483  return Context.getTypeOfExprType(E);
5484}
5485
5486/// getDecltypeForExpr - Given an expr, will return the decltype for
5487/// that expression, according to the rules in C++11
5488/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
5489static QualType getDecltypeForExpr(Sema &S, Expr *E) {
5490  if (E->isTypeDependent())
5491    return S.Context.DependentTy;
5492
5493  // C++11 [dcl.type.simple]p4:
5494  //   The type denoted by decltype(e) is defined as follows:
5495  //
5496  //     - if e is an unparenthesized id-expression or an unparenthesized class
5497  //       member access (5.2.5), decltype(e) is the type of the entity named
5498  //       by e. If there is no such entity, or if e names a set of overloaded
5499  //       functions, the program is ill-formed;
5500  //
5501  // We apply the same rules for Objective-C ivar and property references.
5502  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
5503    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
5504      return VD->getType();
5505  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5506    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
5507      return FD->getType();
5508  } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
5509    return IR->getDecl()->getType();
5510  } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
5511    if (PR->isExplicitProperty())
5512      return PR->getExplicitProperty()->getType();
5513  }
5514
5515  // C++11 [expr.lambda.prim]p18:
5516  //   Every occurrence of decltype((x)) where x is a possibly
5517  //   parenthesized id-expression that names an entity of automatic
5518  //   storage duration is treated as if x were transformed into an
5519  //   access to a corresponding data member of the closure type that
5520  //   would have been declared if x were an odr-use of the denoted
5521  //   entity.
5522  using namespace sema;
5523  if (S.getCurLambda()) {
5524    if (isa<ParenExpr>(E)) {
5525      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
5526        if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
5527          QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
5528          if (!T.isNull())
5529            return S.Context.getLValueReferenceType(T);
5530        }
5531      }
5532    }
5533  }
5534
5535
5536  // C++11 [dcl.type.simple]p4:
5537  //   [...]
5538  QualType T = E->getType();
5539  switch (E->getValueKind()) {
5540  //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
5541  //       type of e;
5542  case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
5543  //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
5544  //       type of e;
5545  case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
5546  //  - otherwise, decltype(e) is the type of e.
5547  case VK_RValue: break;
5548  }
5549
5550  return T;
5551}
5552
5553QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
5554  ExprResult ER = CheckPlaceholderExpr(E);
5555  if (ER.isInvalid()) return QualType();
5556  E = ER.get();
5557
5558  return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
5559}
5560
5561QualType Sema::BuildUnaryTransformType(QualType BaseType,
5562                                       UnaryTransformType::UTTKind UKind,
5563                                       SourceLocation Loc) {
5564  switch (UKind) {
5565  case UnaryTransformType::EnumUnderlyingType:
5566    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
5567      Diag(Loc, diag::err_only_enums_have_underlying_types);
5568      return QualType();
5569    } else {
5570      QualType Underlying = BaseType;
5571      if (!BaseType->isDependentType()) {
5572        // The enum could be incomplete if we're parsing its definition or
5573        // recovering from an error.
5574        NamedDecl *FwdDecl = nullptr;
5575        if (BaseType->isIncompleteType(&FwdDecl)) {
5576          Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
5577          Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
5578          return QualType();
5579        }
5580
5581        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
5582        assert(ED && "EnumType has no EnumDecl");
5583
5584        DiagnoseUseOfDecl(ED, Loc);
5585
5586        Underlying = ED->getIntegerType();
5587        assert(!Underlying.isNull());
5588      }
5589      return Context.getUnaryTransformType(BaseType, Underlying,
5590                                        UnaryTransformType::EnumUnderlyingType);
5591    }
5592  }
5593  llvm_unreachable("unknown unary transform type");
5594}
5595
5596QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
5597  if (!T->isDependentType()) {
5598    // FIXME: It isn't entirely clear whether incomplete atomic types
5599    // are allowed or not; for simplicity, ban them for the moment.
5600    if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
5601      return QualType();
5602
5603    int DisallowedKind = -1;
5604    if (T->isArrayType())
5605      DisallowedKind = 1;
5606    else if (T->isFunctionType())
5607      DisallowedKind = 2;
5608    else if (T->isReferenceType())
5609      DisallowedKind = 3;
5610    else if (T->isAtomicType())
5611      DisallowedKind = 4;
5612    else if (T.hasQualifiers())
5613      DisallowedKind = 5;
5614    else if (!T.isTriviallyCopyableType(Context))
5615      // Some other non-trivially-copyable type (probably a C++ class)
5616      DisallowedKind = 6;
5617
5618    if (DisallowedKind != -1) {
5619      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
5620      return QualType();
5621    }
5622
5623    // FIXME: Do we need any handling for ARC here?
5624  }
5625
5626  // Build the pointer type.
5627  return Context.getAtomicType(T);
5628}
5629