SemaType.cpp revision 09785aafaaefe605e2c4a5e57643df1394d2e526
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/TypeLocVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/SmallPtrSet.h"
25using namespace clang;
26
27/// \brief Perform adjustment on the parameter type of a function.
28///
29/// This routine adjusts the given parameter type @p T to the actual
30/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
31/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
32QualType Sema::adjustParameterType(QualType T) {
33  // C99 6.7.5.3p7:
34  //   A declaration of a parameter as "array of type" shall be
35  //   adjusted to "qualified pointer to type", where the type
36  //   qualifiers (if any) are those specified within the [ and ] of
37  //   the array type derivation.
38  if (T->isArrayType())
39    return Context.getArrayDecayedType(T);
40
41  // C99 6.7.5.3p8:
42  //   A declaration of a parameter as "function returning type"
43  //   shall be adjusted to "pointer to function returning type", as
44  //   in 6.3.2.1.
45  if (T->isFunctionType())
46    return Context.getPointerType(T);
47
48  return T;
49}
50
51/// \brief Convert the specified declspec to the appropriate type
52/// object.
53/// \param DS  the declaration specifiers
54/// \param DeclLoc The location of the declarator identifier or invalid if none.
55/// \returns The type described by the declaration specifiers.  This function
56/// never returns null.
57static QualType ConvertDeclSpecToType(const DeclSpec &DS,
58                                      SourceLocation DeclLoc,
59                                      bool &isInvalid, Sema &TheSema) {
60  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
61  // checking.
62  QualType Result;
63
64  ASTContext &Context = TheSema.Context;
65
66  switch (DS.getTypeSpecType()) {
67  case DeclSpec::TST_void:
68    Result = Context.VoidTy;
69    break;
70  case DeclSpec::TST_char:
71    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
72      Result = Context.CharTy;
73    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
74      Result = Context.SignedCharTy;
75    else {
76      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
77             "Unknown TSS value");
78      Result = Context.UnsignedCharTy;
79    }
80    break;
81  case DeclSpec::TST_wchar:
82    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
83      Result = Context.WCharTy;
84    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
85      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
86        << DS.getSpecifierName(DS.getTypeSpecType());
87      Result = Context.getSignedWCharType();
88    } else {
89      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
90        "Unknown TSS value");
91      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
92        << DS.getSpecifierName(DS.getTypeSpecType());
93      Result = Context.getUnsignedWCharType();
94    }
95    break;
96  case DeclSpec::TST_char16:
97      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
98        "Unknown TSS value");
99      Result = Context.Char16Ty;
100    break;
101  case DeclSpec::TST_char32:
102      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
103        "Unknown TSS value");
104      Result = Context.Char32Ty;
105    break;
106  case DeclSpec::TST_unspecified:
107    // "<proto1,proto2>" is an objc qualified ID with a missing id.
108    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
109      Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
110                                                (ObjCProtocolDecl**)PQ,
111                                                DS.getNumProtocolQualifiers());
112      break;
113    }
114
115    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
116    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
117    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
118    // Note that the one exception to this is function definitions, which are
119    // allowed to be completely missing a declspec.  This is handled in the
120    // parser already though by it pretending to have seen an 'int' in this
121    // case.
122    if (TheSema.getLangOptions().ImplicitInt) {
123      // In C89 mode, we only warn if there is a completely missing declspec
124      // when one is not allowed.
125      if (DS.isEmpty()) {
126        if (DeclLoc.isInvalid())
127          DeclLoc = DS.getSourceRange().getBegin();
128        TheSema.Diag(DeclLoc, diag::ext_missing_declspec)
129          << DS.getSourceRange()
130        << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
131                                                 "int");
132      }
133    } else if (!DS.hasTypeSpecifier()) {
134      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
135      // "At least one type specifier shall be given in the declaration
136      // specifiers in each declaration, and in the specifier-qualifier list in
137      // each struct declaration and type name."
138      // FIXME: Does Microsoft really have the implicit int extension in C++?
139      if (DeclLoc.isInvalid())
140        DeclLoc = DS.getSourceRange().getBegin();
141
142      if (TheSema.getLangOptions().CPlusPlus &&
143          !TheSema.getLangOptions().Microsoft) {
144        TheSema.Diag(DeclLoc, diag::err_missing_type_specifier)
145          << DS.getSourceRange();
146
147        // When this occurs in C++ code, often something is very broken with the
148        // value being declared, poison it as invalid so we don't get chains of
149        // errors.
150        isInvalid = true;
151      } else {
152        TheSema.Diag(DeclLoc, diag::ext_missing_type_specifier)
153          << DS.getSourceRange();
154      }
155    }
156
157    // FALL THROUGH.
158  case DeclSpec::TST_int: {
159    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
160      switch (DS.getTypeSpecWidth()) {
161      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
162      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
163      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
164      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
165      }
166    } else {
167      switch (DS.getTypeSpecWidth()) {
168      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
169      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
170      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
171      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
172      }
173    }
174    break;
175  }
176  case DeclSpec::TST_float: Result = Context.FloatTy; break;
177  case DeclSpec::TST_double:
178    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
179      Result = Context.LongDoubleTy;
180    else
181      Result = Context.DoubleTy;
182    break;
183  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
184  case DeclSpec::TST_decimal32:    // _Decimal32
185  case DeclSpec::TST_decimal64:    // _Decimal64
186  case DeclSpec::TST_decimal128:   // _Decimal128
187    TheSema.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
188    Result = Context.IntTy;
189    isInvalid = true;
190    break;
191  case DeclSpec::TST_class:
192  case DeclSpec::TST_enum:
193  case DeclSpec::TST_union:
194  case DeclSpec::TST_struct: {
195    Decl *D = static_cast<Decl *>(DS.getTypeRep());
196    if (!D) {
197      // This can happen in C++ with ambiguous lookups.
198      Result = Context.IntTy;
199      isInvalid = true;
200      break;
201    }
202
203    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
204           DS.getTypeSpecSign() == 0 &&
205           "Can't handle qualifiers on typedef names yet!");
206    // TypeQuals handled by caller.
207    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
208
209    // In C++, make an ElaboratedType.
210    if (TheSema.getLangOptions().CPlusPlus) {
211      TagDecl::TagKind Tag
212        = TagDecl::getTagKindForTypeSpec(DS.getTypeSpecType());
213      Result = Context.getElaboratedType(Result, Tag);
214    }
215
216    if (D->isInvalidDecl())
217      isInvalid = true;
218    break;
219  }
220  case DeclSpec::TST_typename: {
221    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
222           DS.getTypeSpecSign() == 0 &&
223           "Can't handle qualifiers on typedef names yet!");
224    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
225
226    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
227      if (const ObjCInterfaceType *
228            Interface = Result->getAs<ObjCInterfaceType>()) {
229        // It would be nice if protocol qualifiers were only stored with the
230        // ObjCObjectPointerType. Unfortunately, this isn't possible due
231        // to the following typedef idiom (which is uncommon, but allowed):
232        //
233        // typedef Foo<P> T;
234        // static void func() {
235        //   Foo<P> *yy;
236        //   T *zz;
237        // }
238        Result = Context.getObjCInterfaceType(Interface->getDecl(),
239                                              (ObjCProtocolDecl**)PQ,
240                                              DS.getNumProtocolQualifiers());
241      } else if (Result->isObjCIdType())
242        // id<protocol-list>
243        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
244                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
245      else if (Result->isObjCClassType()) {
246        if (DeclLoc.isInvalid())
247          DeclLoc = DS.getSourceRange().getBegin();
248        // Class<protocol-list>
249        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinClassTy,
250                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
251      } else {
252        if (DeclLoc.isInvalid())
253          DeclLoc = DS.getSourceRange().getBegin();
254        TheSema.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
255          << DS.getSourceRange();
256        isInvalid = true;
257      }
258    }
259
260    // If this is a reference to an invalid typedef, propagate the invalidity.
261    if (TypedefType *TDT = dyn_cast<TypedefType>(Result))
262      if (TDT->getDecl()->isInvalidDecl())
263        isInvalid = true;
264
265    // TypeQuals handled by caller.
266    break;
267  }
268  case DeclSpec::TST_typeofType:
269    // FIXME: Preserve type source info.
270    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
271    assert(!Result.isNull() && "Didn't get a type for typeof?");
272    // TypeQuals handled by caller.
273    Result = Context.getTypeOfType(Result);
274    break;
275  case DeclSpec::TST_typeofExpr: {
276    Expr *E = static_cast<Expr *>(DS.getTypeRep());
277    assert(E && "Didn't get an expression for typeof?");
278    // TypeQuals handled by caller.
279    Result = Context.getTypeOfExprType(E);
280    break;
281  }
282  case DeclSpec::TST_decltype: {
283    Expr *E = static_cast<Expr *>(DS.getTypeRep());
284    assert(E && "Didn't get an expression for decltype?");
285    // TypeQuals handled by caller.
286    Result = TheSema.BuildDecltypeType(E);
287    if (Result.isNull()) {
288      Result = Context.IntTy;
289      isInvalid = true;
290    }
291    break;
292  }
293  case DeclSpec::TST_auto: {
294    // TypeQuals handled by caller.
295    Result = Context.UndeducedAutoTy;
296    break;
297  }
298
299  case DeclSpec::TST_error:
300    Result = Context.IntTy;
301    isInvalid = true;
302    break;
303  }
304
305  // Handle complex types.
306  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
307    if (TheSema.getLangOptions().Freestanding)
308      TheSema.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
309    Result = Context.getComplexType(Result);
310  }
311
312  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
313         "FIXME: imaginary types not supported yet!");
314
315  // See if there are any attributes on the declspec that apply to the type (as
316  // opposed to the decl).
317  if (const AttributeList *AL = DS.getAttributes())
318    TheSema.ProcessTypeAttributeList(Result, AL);
319
320  // Apply const/volatile/restrict qualifiers to T.
321  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
322
323    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
324    // or incomplete types shall not be restrict-qualified."  C++ also allows
325    // restrict-qualified references.
326    if (TypeQuals & DeclSpec::TQ_restrict) {
327      if (Result->isPointerType() || Result->isReferenceType()) {
328        QualType EltTy = Result->isPointerType() ?
329          Result->getAs<PointerType>()->getPointeeType() :
330          Result->getAs<ReferenceType>()->getPointeeType();
331
332        // If we have a pointer or reference, the pointee must have an object
333        // incomplete type.
334        if (!EltTy->isIncompleteOrObjectType()) {
335          TheSema.Diag(DS.getRestrictSpecLoc(),
336               diag::err_typecheck_invalid_restrict_invalid_pointee)
337            << EltTy << DS.getSourceRange();
338          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
339        }
340      } else {
341        TheSema.Diag(DS.getRestrictSpecLoc(),
342             diag::err_typecheck_invalid_restrict_not_pointer)
343          << Result << DS.getSourceRange();
344        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
345      }
346    }
347
348    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
349    // of a function type includes any type qualifiers, the behavior is
350    // undefined."
351    if (Result->isFunctionType() && TypeQuals) {
352      // Get some location to point at, either the C or V location.
353      SourceLocation Loc;
354      if (TypeQuals & DeclSpec::TQ_const)
355        Loc = DS.getConstSpecLoc();
356      else if (TypeQuals & DeclSpec::TQ_volatile)
357        Loc = DS.getVolatileSpecLoc();
358      else {
359        assert((TypeQuals & DeclSpec::TQ_restrict) &&
360               "Has CVR quals but not C, V, or R?");
361        Loc = DS.getRestrictSpecLoc();
362      }
363      TheSema.Diag(Loc, diag::warn_typecheck_function_qualifiers)
364        << Result << DS.getSourceRange();
365    }
366
367    // C++ [dcl.ref]p1:
368    //   Cv-qualified references are ill-formed except when the
369    //   cv-qualifiers are introduced through the use of a typedef
370    //   (7.1.3) or of a template type argument (14.3), in which
371    //   case the cv-qualifiers are ignored.
372    // FIXME: Shouldn't we be checking SCS_typedef here?
373    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
374        TypeQuals && Result->isReferenceType()) {
375      TypeQuals &= ~DeclSpec::TQ_const;
376      TypeQuals &= ~DeclSpec::TQ_volatile;
377    }
378
379    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
380    Result = Context.getQualifiedType(Result, Quals);
381  }
382
383  return Result;
384}
385
386static std::string getPrintableNameForEntity(DeclarationName Entity) {
387  if (Entity)
388    return Entity.getAsString();
389
390  return "type name";
391}
392
393/// \brief Build a pointer type.
394///
395/// \param T The type to which we'll be building a pointer.
396///
397/// \param Quals The cvr-qualifiers to be applied to the pointer type.
398///
399/// \param Loc The location of the entity whose type involves this
400/// pointer type or, if there is no such entity, the location of the
401/// type that will have pointer type.
402///
403/// \param Entity The name of the entity that involves the pointer
404/// type, if known.
405///
406/// \returns A suitable pointer type, if there are no
407/// errors. Otherwise, returns a NULL type.
408QualType Sema::BuildPointerType(QualType T, unsigned Quals,
409                                SourceLocation Loc, DeclarationName Entity) {
410  if (T->isReferenceType()) {
411    // C++ 8.3.2p4: There shall be no ... pointers to references ...
412    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
413      << getPrintableNameForEntity(Entity);
414    return QualType();
415  }
416
417  Qualifiers Qs = Qualifiers::fromCVRMask(Quals);
418
419  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
420  // object or incomplete types shall not be restrict-qualified."
421  if (Qs.hasRestrict() && !T->isIncompleteOrObjectType()) {
422    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
423      << T;
424    Qs.removeRestrict();
425  }
426
427  // Build the pointer type.
428  return Context.getQualifiedType(Context.getPointerType(T), Qs);
429}
430
431/// \brief Build a reference type.
432///
433/// \param T The type to which we'll be building a reference.
434///
435/// \param CVR The cvr-qualifiers to be applied to the reference type.
436///
437/// \param Loc The location of the entity whose type involves this
438/// reference type or, if there is no such entity, the location of the
439/// type that will have reference type.
440///
441/// \param Entity The name of the entity that involves the reference
442/// type, if known.
443///
444/// \returns A suitable reference type, if there are no
445/// errors. Otherwise, returns a NULL type.
446QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
447                                  unsigned CVR, SourceLocation Loc,
448                                  DeclarationName Entity) {
449  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
450
451  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
452
453  // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
454  //   reference to a type T, and attempt to create the type "lvalue
455  //   reference to cv TD" creates the type "lvalue reference to T".
456  // We use the qualifiers (restrict or none) of the original reference,
457  // not the new ones. This is consistent with GCC.
458
459  // C++ [dcl.ref]p4: There shall be no references to references.
460  //
461  // According to C++ DR 106, references to references are only
462  // diagnosed when they are written directly (e.g., "int & &"),
463  // but not when they happen via a typedef:
464  //
465  //   typedef int& intref;
466  //   typedef intref& intref2;
467  //
468  // Parser::ParseDeclaratorInternal diagnoses the case where
469  // references are written directly; here, we handle the
470  // collapsing of references-to-references as described in C++
471  // DR 106 and amended by C++ DR 540.
472
473  // C++ [dcl.ref]p1:
474  //   A declarator that specifies the type "reference to cv void"
475  //   is ill-formed.
476  if (T->isVoidType()) {
477    Diag(Loc, diag::err_reference_to_void);
478    return QualType();
479  }
480
481  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
482  // object or incomplete types shall not be restrict-qualified."
483  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
484    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
485      << T;
486    Quals.removeRestrict();
487  }
488
489  // C++ [dcl.ref]p1:
490  //   [...] Cv-qualified references are ill-formed except when the
491  //   cv-qualifiers are introduced through the use of a typedef
492  //   (7.1.3) or of a template type argument (14.3), in which case
493  //   the cv-qualifiers are ignored.
494  //
495  // We diagnose extraneous cv-qualifiers for the non-typedef,
496  // non-template type argument case within the parser. Here, we just
497  // ignore any extraneous cv-qualifiers.
498  Quals.removeConst();
499  Quals.removeVolatile();
500
501  // Handle restrict on references.
502  if (LValueRef)
503    return Context.getQualifiedType(
504               Context.getLValueReferenceType(T, SpelledAsLValue), Quals);
505  return Context.getQualifiedType(Context.getRValueReferenceType(T), Quals);
506}
507
508/// \brief Build an array type.
509///
510/// \param T The type of each element in the array.
511///
512/// \param ASM C99 array size modifier (e.g., '*', 'static').
513///
514/// \param ArraySize Expression describing the size of the array.
515///
516/// \param Quals The cvr-qualifiers to be applied to the array's
517/// element type.
518///
519/// \param Loc The location of the entity whose type involves this
520/// array type or, if there is no such entity, the location of the
521/// type that will have array type.
522///
523/// \param Entity The name of the entity that involves the array
524/// type, if known.
525///
526/// \returns A suitable array type, if there are no errors. Otherwise,
527/// returns a NULL type.
528QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
529                              Expr *ArraySize, unsigned Quals,
530                              SourceRange Brackets, DeclarationName Entity) {
531
532  SourceLocation Loc = Brackets.getBegin();
533  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
534  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
535  if (RequireCompleteType(Loc, T,
536                             diag::err_illegal_decl_array_incomplete_type))
537    return QualType();
538
539  if (T->isFunctionType()) {
540    Diag(Loc, diag::err_illegal_decl_array_of_functions)
541      << getPrintableNameForEntity(Entity);
542    return QualType();
543  }
544
545  // C++ 8.3.2p4: There shall be no ... arrays of references ...
546  if (T->isReferenceType()) {
547    Diag(Loc, diag::err_illegal_decl_array_of_references)
548      << getPrintableNameForEntity(Entity);
549    return QualType();
550  }
551
552  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
553    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
554      << getPrintableNameForEntity(Entity);
555    return QualType();
556  }
557
558  if (const RecordType *EltTy = T->getAs<RecordType>()) {
559    // If the element type is a struct or union that contains a variadic
560    // array, accept it as a GNU extension: C99 6.7.2.1p2.
561    if (EltTy->getDecl()->hasFlexibleArrayMember())
562      Diag(Loc, diag::ext_flexible_array_in_array) << T;
563  } else if (T->isObjCInterfaceType()) {
564    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
565    return QualType();
566  }
567
568  // C99 6.7.5.2p1: The size expression shall have integer type.
569  if (ArraySize && !ArraySize->isTypeDependent() &&
570      !ArraySize->getType()->isIntegerType()) {
571    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
572      << ArraySize->getType() << ArraySize->getSourceRange();
573    ArraySize->Destroy(Context);
574    return QualType();
575  }
576  llvm::APSInt ConstVal(32);
577  if (!ArraySize) {
578    if (ASM == ArrayType::Star)
579      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
580    else
581      T = Context.getIncompleteArrayType(T, ASM, Quals);
582  } else if (ArraySize->isValueDependent()) {
583    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
584  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
585             (!T->isDependentType() && !T->isConstantSizeType())) {
586    // Per C99, a variable array is an array with either a non-constant
587    // size or an element type that has a non-constant-size
588    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
589  } else {
590    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
591    // have a value greater than zero.
592    if (ConstVal.isSigned()) {
593      if (ConstVal.isNegative()) {
594        Diag(ArraySize->getLocStart(),
595             diag::err_typecheck_negative_array_size)
596          << ArraySize->getSourceRange();
597        return QualType();
598      } else if (ConstVal == 0) {
599        // GCC accepts zero sized static arrays.
600        Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
601          << ArraySize->getSourceRange();
602      }
603    }
604    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
605  }
606  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
607  if (!getLangOptions().C99) {
608    if (ArraySize && !ArraySize->isTypeDependent() &&
609        !ArraySize->isValueDependent() &&
610        !ArraySize->isIntegerConstantExpr(Context))
611      Diag(Loc, getLangOptions().CPlusPlus? diag::err_vla_cxx : diag::ext_vla);
612    else if (ASM != ArrayType::Normal || Quals != 0)
613      Diag(Loc,
614           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
615                                     : diag::ext_c99_array_usage);
616  }
617
618  return T;
619}
620
621/// \brief Build an ext-vector type.
622///
623/// Run the required checks for the extended vector type.
624QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
625                                  SourceLocation AttrLoc) {
626
627  Expr *Arg = (Expr *)ArraySize.get();
628
629  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
630  // in conjunction with complex types (pointers, arrays, functions, etc.).
631  if (!T->isDependentType() &&
632      !T->isIntegerType() && !T->isRealFloatingType()) {
633    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
634    return QualType();
635  }
636
637  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
638    llvm::APSInt vecSize(32);
639    if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
640      Diag(AttrLoc, diag::err_attribute_argument_not_int)
641      << "ext_vector_type" << Arg->getSourceRange();
642      return QualType();
643    }
644
645    // unlike gcc's vector_size attribute, the size is specified as the
646    // number of elements, not the number of bytes.
647    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
648
649    if (vectorSize == 0) {
650      Diag(AttrLoc, diag::err_attribute_zero_size)
651      << Arg->getSourceRange();
652      return QualType();
653    }
654
655    if (!T->isDependentType())
656      return Context.getExtVectorType(T, vectorSize);
657  }
658
659  return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
660                                                AttrLoc);
661}
662
663/// \brief Build a function type.
664///
665/// This routine checks the function type according to C++ rules and
666/// under the assumption that the result type and parameter types have
667/// just been instantiated from a template. It therefore duplicates
668/// some of the behavior of GetTypeForDeclarator, but in a much
669/// simpler form that is only suitable for this narrow use case.
670///
671/// \param T The return type of the function.
672///
673/// \param ParamTypes The parameter types of the function. This array
674/// will be modified to account for adjustments to the types of the
675/// function parameters.
676///
677/// \param NumParamTypes The number of parameter types in ParamTypes.
678///
679/// \param Variadic Whether this is a variadic function type.
680///
681/// \param Quals The cvr-qualifiers to be applied to the function type.
682///
683/// \param Loc The location of the entity whose type involves this
684/// function type or, if there is no such entity, the location of the
685/// type that will have function type.
686///
687/// \param Entity The name of the entity that involves the function
688/// type, if known.
689///
690/// \returns A suitable function type, if there are no
691/// errors. Otherwise, returns a NULL type.
692QualType Sema::BuildFunctionType(QualType T,
693                                 QualType *ParamTypes,
694                                 unsigned NumParamTypes,
695                                 bool Variadic, unsigned Quals,
696                                 SourceLocation Loc, DeclarationName Entity) {
697  if (T->isArrayType() || T->isFunctionType()) {
698    Diag(Loc, diag::err_func_returning_array_function) << T;
699    return QualType();
700  }
701
702  bool Invalid = false;
703  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
704    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
705    if (ParamType->isVoidType()) {
706      Diag(Loc, diag::err_param_with_void_type);
707      Invalid = true;
708    }
709
710    ParamTypes[Idx] = ParamType;
711  }
712
713  if (Invalid)
714    return QualType();
715
716  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
717                                 Quals);
718}
719
720/// \brief Build a member pointer type \c T Class::*.
721///
722/// \param T the type to which the member pointer refers.
723/// \param Class the class type into which the member pointer points.
724/// \param CVR Qualifiers applied to the member pointer type
725/// \param Loc the location where this type begins
726/// \param Entity the name of the entity that will have this member pointer type
727///
728/// \returns a member pointer type, if successful, or a NULL type if there was
729/// an error.
730QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
731                                      unsigned CVR, SourceLocation Loc,
732                                      DeclarationName Entity) {
733  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
734
735  // Verify that we're not building a pointer to pointer to function with
736  // exception specification.
737  if (CheckDistantExceptionSpec(T)) {
738    Diag(Loc, diag::err_distant_exception_spec);
739
740    // FIXME: If we're doing this as part of template instantiation,
741    // we should return immediately.
742
743    // Build the type anyway, but use the canonical type so that the
744    // exception specifiers are stripped off.
745    T = Context.getCanonicalType(T);
746  }
747
748  // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
749  //   with reference type, or "cv void."
750  if (T->isReferenceType()) {
751    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
752      << (Entity? Entity.getAsString() : "type name");
753    return QualType();
754  }
755
756  if (T->isVoidType()) {
757    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
758      << (Entity? Entity.getAsString() : "type name");
759    return QualType();
760  }
761
762  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
763  // object or incomplete types shall not be restrict-qualified."
764  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
765    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
766      << T;
767
768    // FIXME: If we're doing this as part of template instantiation,
769    // we should return immediately.
770    Quals.removeRestrict();
771  }
772
773  if (!Class->isDependentType() && !Class->isRecordType()) {
774    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
775    return QualType();
776  }
777
778  return Context.getQualifiedType(
779           Context.getMemberPointerType(T, Class.getTypePtr()), Quals);
780}
781
782/// \brief Build a block pointer type.
783///
784/// \param T The type to which we'll be building a block pointer.
785///
786/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
787///
788/// \param Loc The location of the entity whose type involves this
789/// block pointer type or, if there is no such entity, the location of the
790/// type that will have block pointer type.
791///
792/// \param Entity The name of the entity that involves the block pointer
793/// type, if known.
794///
795/// \returns A suitable block pointer type, if there are no
796/// errors. Otherwise, returns a NULL type.
797QualType Sema::BuildBlockPointerType(QualType T, unsigned CVR,
798                                     SourceLocation Loc,
799                                     DeclarationName Entity) {
800  if (!T->isFunctionType()) {
801    Diag(Loc, diag::err_nonfunction_block_type);
802    return QualType();
803  }
804
805  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
806  return Context.getQualifiedType(Context.getBlockPointerType(T), Quals);
807}
808
809QualType Sema::GetTypeFromParser(TypeTy *Ty, DeclaratorInfo **DInfo) {
810  QualType QT = QualType::getFromOpaquePtr(Ty);
811  DeclaratorInfo *DI = 0;
812  if (LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
813    QT = LIT->getType();
814    DI = LIT->getDeclaratorInfo();
815  }
816
817  if (DInfo) *DInfo = DI;
818  return QT;
819}
820
821
822/// isOmittedBlockReturnType - Return true if this declarator is missing a
823/// return type because this is a omitted return type on a block literal.
824static bool isOmittedBlockReturnType(const Declarator &D, unsigned Skip) {
825  if (D.getContext() != Declarator::BlockLiteralContext ||
826      Skip != 0 || D.getDeclSpec().hasTypeSpecifier())
827    return false;
828
829  if (D.getNumTypeObjects() == 0)
830    return true;
831
832  if (D.getNumTypeObjects() == 1 &&
833      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
834    return true;
835
836  return false;
837}
838
839/// GetTypeForDeclarator - Convert the type for the specified
840/// declarator to Type instances. Skip the outermost Skip type
841/// objects.
842///
843/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
844/// owns the declaration of a type (e.g., the definition of a struct
845/// type), then *OwnedDecl will receive the owned declaration.
846QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
847                                    DeclaratorInfo **DInfo, unsigned Skip,
848                                    TagDecl **OwnedDecl) {
849  // long long is a C99 feature.
850  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
851      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
852    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
853
854  // Determine the type of the declarator. Not all forms of declarator
855  // have a type.
856  QualType T;
857
858  switch (D.getKind()) {
859  case Declarator::DK_Abstract:
860  case Declarator::DK_Normal:
861  case Declarator::DK_Operator:
862  case Declarator::DK_TemplateId: {
863    const DeclSpec &DS = D.getDeclSpec();
864    if (isOmittedBlockReturnType(D, Skip)) {
865      // We default to a dependent type initially.  Can be modified by
866      // the first return statement.
867      T = Context.DependentTy;
868    } else {
869      bool isInvalid = false;
870      T = ConvertDeclSpecToType(DS, D.getIdentifierLoc(), isInvalid, *this);
871      if (isInvalid)
872        D.setInvalidType(true);
873      else if (OwnedDecl && DS.isTypeSpecOwned())
874        *OwnedDecl = cast<TagDecl>((Decl *)DS.getTypeRep());
875    }
876    break;
877  }
878
879  case Declarator::DK_Constructor:
880  case Declarator::DK_Destructor:
881  case Declarator::DK_Conversion:
882    // Constructors and destructors don't have return types. Use
883    // "void" instead. Conversion operators will check their return
884    // types separately.
885    T = Context.VoidTy;
886    break;
887  }
888
889  if (T == Context.UndeducedAutoTy) {
890    int Error = -1;
891
892    switch (D.getContext()) {
893    case Declarator::KNRTypeListContext:
894      assert(0 && "K&R type lists aren't allowed in C++");
895      break;
896    case Declarator::PrototypeContext:
897      Error = 0; // Function prototype
898      break;
899    case Declarator::MemberContext:
900      switch (cast<TagDecl>(CurContext)->getTagKind()) {
901      case TagDecl::TK_enum: assert(0 && "unhandled tag kind"); break;
902      case TagDecl::TK_struct: Error = 1; /* Struct member */ break;
903      case TagDecl::TK_union:  Error = 2; /* Union member */ break;
904      case TagDecl::TK_class:  Error = 3; /* Class member */ break;
905      }
906      break;
907    case Declarator::CXXCatchContext:
908      Error = 4; // Exception declaration
909      break;
910    case Declarator::TemplateParamContext:
911      Error = 5; // Template parameter
912      break;
913    case Declarator::BlockLiteralContext:
914      Error = 6;  // Block literal
915      break;
916    case Declarator::FileContext:
917    case Declarator::BlockContext:
918    case Declarator::ForContext:
919    case Declarator::ConditionContext:
920    case Declarator::TypeNameContext:
921      break;
922    }
923
924    if (Error != -1) {
925      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
926        << Error;
927      T = Context.IntTy;
928      D.setInvalidType(true);
929    }
930  }
931
932  // The name we're declaring, if any.
933  DeclarationName Name;
934  if (D.getIdentifier())
935    Name = D.getIdentifier();
936
937  // Walk the DeclTypeInfo, building the recursive type as we go.
938  // DeclTypeInfos are ordered from the identifier out, which is
939  // opposite of what we want :).
940  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
941    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1+Skip);
942    switch (DeclType.Kind) {
943    default: assert(0 && "Unknown decltype!");
944    case DeclaratorChunk::BlockPointer:
945      // If blocks are disabled, emit an error.
946      if (!LangOpts.Blocks)
947        Diag(DeclType.Loc, diag::err_blocks_disable);
948
949      T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(),
950                                Name);
951      break;
952    case DeclaratorChunk::Pointer:
953      // Verify that we're not building a pointer to pointer to function with
954      // exception specification.
955      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
956        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
957        D.setInvalidType(true);
958        // Build the type anyway.
959      }
960      if (getLangOptions().ObjC1 && T->isObjCInterfaceType()) {
961        const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>();
962        T = Context.getObjCObjectPointerType(T,
963                                         (ObjCProtocolDecl **)OIT->qual_begin(),
964                                         OIT->getNumProtocols());
965        break;
966      }
967      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
968      break;
969    case DeclaratorChunk::Reference: {
970      Qualifiers Quals;
971      if (DeclType.Ref.HasRestrict) Quals.addRestrict();
972
973      // Verify that we're not building a reference to pointer to function with
974      // exception specification.
975      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
976        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
977        D.setInvalidType(true);
978        // Build the type anyway.
979      }
980      T = BuildReferenceType(T, DeclType.Ref.LValueRef, Quals,
981                             DeclType.Loc, Name);
982      break;
983    }
984    case DeclaratorChunk::Array: {
985      // Verify that we're not building an array of pointers to function with
986      // exception specification.
987      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
988        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
989        D.setInvalidType(true);
990        // Build the type anyway.
991      }
992      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
993      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
994      ArrayType::ArraySizeModifier ASM;
995      if (ATI.isStar)
996        ASM = ArrayType::Star;
997      else if (ATI.hasStatic)
998        ASM = ArrayType::Static;
999      else
1000        ASM = ArrayType::Normal;
1001      if (ASM == ArrayType::Star &&
1002          D.getContext() != Declarator::PrototypeContext) {
1003        // FIXME: This check isn't quite right: it allows star in prototypes
1004        // for function definitions, and disallows some edge cases detailed
1005        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
1006        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
1007        ASM = ArrayType::Normal;
1008        D.setInvalidType(true);
1009      }
1010      T = BuildArrayType(T, ASM, ArraySize,
1011                         Qualifiers::fromCVRMask(ATI.TypeQuals),
1012                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
1013      break;
1014    }
1015    case DeclaratorChunk::Function: {
1016      // If the function declarator has a prototype (i.e. it is not () and
1017      // does not have a K&R-style identifier list), then the arguments are part
1018      // of the type, otherwise the argument list is ().
1019      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1020
1021      // C99 6.7.5.3p1: The return type may not be a function or array type.
1022      if (T->isArrayType() || T->isFunctionType()) {
1023        Diag(DeclType.Loc, diag::err_func_returning_array_function) << T;
1024        T = Context.IntTy;
1025        D.setInvalidType(true);
1026      }
1027
1028      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
1029        // C++ [dcl.fct]p6:
1030        //   Types shall not be defined in return or parameter types.
1031        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
1032        if (Tag->isDefinition())
1033          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
1034            << Context.getTypeDeclType(Tag);
1035      }
1036
1037      // Exception specs are not allowed in typedefs. Complain, but add it
1038      // anyway.
1039      if (FTI.hasExceptionSpec &&
1040          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1041        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
1042
1043      if (FTI.NumArgs == 0) {
1044        if (getLangOptions().CPlusPlus) {
1045          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
1046          // function takes no arguments.
1047          llvm::SmallVector<QualType, 4> Exceptions;
1048          Exceptions.reserve(FTI.NumExceptions);
1049          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1050            // FIXME: Preserve type source info.
1051            QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1052            // Check that the type is valid for an exception spec, and drop it
1053            // if not.
1054            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1055              Exceptions.push_back(ET);
1056          }
1057          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
1058                                      FTI.hasExceptionSpec,
1059                                      FTI.hasAnyExceptionSpec,
1060                                      Exceptions.size(), Exceptions.data());
1061        } else if (FTI.isVariadic) {
1062          // We allow a zero-parameter variadic function in C if the
1063          // function is marked with the "overloadable"
1064          // attribute. Scan for this attribute now.
1065          bool Overloadable = false;
1066          for (const AttributeList *Attrs = D.getAttributes();
1067               Attrs; Attrs = Attrs->getNext()) {
1068            if (Attrs->getKind() == AttributeList::AT_overloadable) {
1069              Overloadable = true;
1070              break;
1071            }
1072          }
1073
1074          if (!Overloadable)
1075            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
1076          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0);
1077        } else {
1078          // Simple void foo(), where the incoming T is the result type.
1079          T = Context.getFunctionNoProtoType(T);
1080        }
1081      } else if (FTI.ArgInfo[0].Param == 0) {
1082        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
1083        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
1084        D.setInvalidType(true);
1085      } else {
1086        // Otherwise, we have a function with an argument list that is
1087        // potentially variadic.
1088        llvm::SmallVector<QualType, 16> ArgTys;
1089
1090        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1091          ParmVarDecl *Param =
1092            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
1093          QualType ArgTy = Param->getType();
1094          assert(!ArgTy.isNull() && "Couldn't parse type?");
1095
1096          // Adjust the parameter type.
1097          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1098
1099          // Look for 'void'.  void is allowed only as a single argument to a
1100          // function with no other parameters (C99 6.7.5.3p10).  We record
1101          // int(void) as a FunctionProtoType with an empty argument list.
1102          if (ArgTy->isVoidType()) {
1103            // If this is something like 'float(int, void)', reject it.  'void'
1104            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1105            // have arguments of incomplete type.
1106            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1107              Diag(DeclType.Loc, diag::err_void_only_param);
1108              ArgTy = Context.IntTy;
1109              Param->setType(ArgTy);
1110            } else if (FTI.ArgInfo[i].Ident) {
1111              // Reject, but continue to parse 'int(void abc)'.
1112              Diag(FTI.ArgInfo[i].IdentLoc,
1113                   diag::err_param_with_void_type);
1114              ArgTy = Context.IntTy;
1115              Param->setType(ArgTy);
1116            } else {
1117              // Reject, but continue to parse 'float(const void)'.
1118              if (ArgTy.hasQualifiers())
1119                Diag(DeclType.Loc, diag::err_void_param_qualified);
1120
1121              // Do not add 'void' to the ArgTys list.
1122              break;
1123            }
1124          } else if (!FTI.hasPrototype) {
1125            if (ArgTy->isPromotableIntegerType()) {
1126              ArgTy = Context.getPromotedIntegerType(ArgTy);
1127            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
1128              if (BTy->getKind() == BuiltinType::Float)
1129                ArgTy = Context.DoubleTy;
1130            }
1131          }
1132
1133          ArgTys.push_back(ArgTy);
1134        }
1135
1136        llvm::SmallVector<QualType, 4> Exceptions;
1137        Exceptions.reserve(FTI.NumExceptions);
1138        for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1139          // FIXME: Preserve type source info.
1140          QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1141          // Check that the type is valid for an exception spec, and drop it if
1142          // not.
1143          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1144            Exceptions.push_back(ET);
1145        }
1146
1147        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
1148                                    FTI.isVariadic, FTI.TypeQuals,
1149                                    FTI.hasExceptionSpec,
1150                                    FTI.hasAnyExceptionSpec,
1151                                    Exceptions.size(), Exceptions.data());
1152      }
1153      break;
1154    }
1155    case DeclaratorChunk::MemberPointer:
1156      // Verify that we're not building a pointer to pointer to function with
1157      // exception specification.
1158      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1159        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1160        D.setInvalidType(true);
1161        // Build the type anyway.
1162      }
1163      // The scope spec must refer to a class, or be dependent.
1164      QualType ClsType;
1165      if (isDependentScopeSpecifier(DeclType.Mem.Scope())) {
1166        NestedNameSpecifier *NNS
1167          = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
1168        assert(NNS->getAsType() && "Nested-name-specifier must name a type");
1169        ClsType = QualType(NNS->getAsType(), 0);
1170      } else if (CXXRecordDecl *RD
1171                   = dyn_cast_or_null<CXXRecordDecl>(
1172                                    computeDeclContext(DeclType.Mem.Scope()))) {
1173        ClsType = Context.getTagDeclType(RD);
1174      } else {
1175        Diag(DeclType.Mem.Scope().getBeginLoc(),
1176             diag::err_illegal_decl_mempointer_in_nonclass)
1177          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1178          << DeclType.Mem.Scope().getRange();
1179        D.setInvalidType(true);
1180      }
1181
1182      if (!ClsType.isNull())
1183        T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals,
1184                                   DeclType.Loc, D.getIdentifier());
1185      if (T.isNull()) {
1186        T = Context.IntTy;
1187        D.setInvalidType(true);
1188      }
1189      break;
1190    }
1191
1192    if (T.isNull()) {
1193      D.setInvalidType(true);
1194      T = Context.IntTy;
1195    }
1196
1197    // See if there are any attributes on this declarator chunk.
1198    if (const AttributeList *AL = DeclType.getAttrs())
1199      ProcessTypeAttributeList(T, AL);
1200  }
1201
1202  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1203    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
1204    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
1205
1206    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1207    // for a nonstatic member function, the function type to which a pointer
1208    // to member refers, or the top-level function type of a function typedef
1209    // declaration.
1210    if (FnTy->getTypeQuals() != 0 &&
1211        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1212        ((D.getContext() != Declarator::MemberContext &&
1213          (!D.getCXXScopeSpec().isSet() ||
1214           !computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)
1215              ->isRecord())) ||
1216         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1217      if (D.isFunctionDeclarator())
1218        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1219      else
1220        Diag(D.getIdentifierLoc(),
1221             diag::err_invalid_qualified_typedef_function_type_use);
1222
1223      // Strip the cv-quals from the type.
1224      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1225                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
1226    }
1227  }
1228
1229  // If there were any type attributes applied to the decl itself (not the
1230  // type, apply the type attribute to the type!)
1231  if (const AttributeList *Attrs = D.getAttributes())
1232    ProcessTypeAttributeList(T, Attrs);
1233
1234  if (DInfo) {
1235    if (D.isInvalidType())
1236      *DInfo = 0;
1237    else
1238      *DInfo = GetDeclaratorInfoForDeclarator(D, T, Skip);
1239  }
1240
1241  return T;
1242}
1243
1244namespace {
1245  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
1246    const DeclSpec &DS;
1247
1248  public:
1249    TypeSpecLocFiller(const DeclSpec &DS) : DS(DS) {}
1250
1251    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1252      Visit(TL.getUnqualifiedLoc());
1253    }
1254    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
1255      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1256    }
1257    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
1258      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1259
1260      if (DS.getProtocolQualifiers()) {
1261        assert(TL.getNumProtocols() > 0);
1262        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1263        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1264        TL.setRAngleLoc(DS.getSourceRange().getEnd());
1265        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
1266          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1267      } else {
1268        assert(TL.getNumProtocols() == 0);
1269        TL.setLAngleLoc(SourceLocation());
1270        TL.setRAngleLoc(SourceLocation());
1271      }
1272    }
1273    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1274      assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1275
1276      TL.setStarLoc(SourceLocation());
1277
1278      if (DS.getProtocolQualifiers()) {
1279        assert(TL.getNumProtocols() > 0);
1280        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1281        TL.setHasProtocolsAsWritten(true);
1282        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1283        TL.setRAngleLoc(DS.getSourceRange().getEnd());
1284        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
1285          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1286
1287      } else {
1288        assert(TL.getNumProtocols() == 0);
1289        TL.setHasProtocolsAsWritten(false);
1290        TL.setLAngleLoc(SourceLocation());
1291        TL.setRAngleLoc(SourceLocation());
1292      }
1293
1294      // This might not have been written with an inner type.
1295      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
1296        TL.setHasBaseTypeAsWritten(false);
1297        TL.getBaseTypeLoc().initialize(SourceLocation());
1298      } else {
1299        TL.setHasBaseTypeAsWritten(true);
1300        Visit(TL.getBaseTypeLoc());
1301      }
1302    }
1303    void VisitTypeLoc(TypeLoc TL) {
1304      // FIXME: add other typespec types and change this to an assert.
1305      TL.initialize(DS.getTypeSpecTypeLoc());
1306    }
1307  };
1308
1309  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
1310    const DeclaratorChunk &Chunk;
1311
1312  public:
1313    DeclaratorLocFiller(const DeclaratorChunk &Chunk) : Chunk(Chunk) {}
1314
1315    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1316      llvm::llvm_unreachable("qualified type locs not expected here!");
1317    }
1318
1319    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
1320      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
1321      TL.setCaretLoc(Chunk.Loc);
1322    }
1323    void VisitPointerTypeLoc(PointerTypeLoc TL) {
1324      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1325      TL.setStarLoc(Chunk.Loc);
1326    }
1327    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1328      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1329      TL.setStarLoc(Chunk.Loc);
1330      TL.setHasBaseTypeAsWritten(true);
1331      TL.setHasProtocolsAsWritten(false);
1332      TL.setLAngleLoc(SourceLocation());
1333      TL.setRAngleLoc(SourceLocation());
1334    }
1335    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
1336      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
1337      TL.setStarLoc(Chunk.Loc);
1338      // FIXME: nested name specifier
1339    }
1340    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
1341      assert(Chunk.Kind == DeclaratorChunk::Reference);
1342      // 'Amp' is misleading: this might have been originally
1343      /// spelled with AmpAmp.
1344      TL.setAmpLoc(Chunk.Loc);
1345    }
1346    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
1347      assert(Chunk.Kind == DeclaratorChunk::Reference);
1348      assert(!Chunk.Ref.LValueRef);
1349      TL.setAmpAmpLoc(Chunk.Loc);
1350    }
1351    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
1352      assert(Chunk.Kind == DeclaratorChunk::Array);
1353      TL.setLBracketLoc(Chunk.Loc);
1354      TL.setRBracketLoc(Chunk.EndLoc);
1355      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
1356    }
1357    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
1358      assert(Chunk.Kind == DeclaratorChunk::Function);
1359      TL.setLParenLoc(Chunk.Loc);
1360      TL.setRParenLoc(Chunk.EndLoc);
1361
1362      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
1363      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
1364        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
1365        TL.setArg(tpi++, Param);
1366      }
1367      // FIXME: exception specs
1368    }
1369
1370    void VisitTypeLoc(TypeLoc TL) {
1371      llvm::llvm_unreachable("unsupported TypeLoc kind in declarator!");
1372    }
1373  };
1374}
1375
1376/// \brief Create and instantiate a DeclaratorInfo with type source information.
1377///
1378/// \param T QualType referring to the type as written in source code.
1379DeclaratorInfo *
1380Sema::GetDeclaratorInfoForDeclarator(Declarator &D, QualType T, unsigned Skip) {
1381  DeclaratorInfo *DInfo = Context.CreateDeclaratorInfo(T);
1382  UnqualTypeLoc CurrTL = DInfo->getTypeLoc().getUnqualifiedLoc();
1383
1384  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
1385    DeclaratorLocFiller(D.getTypeObject(i)).Visit(CurrTL);
1386    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
1387  }
1388
1389  TypeSpecLocFiller(D.getDeclSpec()).Visit(CurrTL);
1390
1391  return DInfo;
1392}
1393
1394/// \brief Create a LocInfoType to hold the given QualType and DeclaratorInfo.
1395QualType Sema::CreateLocInfoType(QualType T, DeclaratorInfo *DInfo) {
1396  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
1397  // and Sema during declaration parsing. Try deallocating/caching them when
1398  // it's appropriate, instead of allocating them and keeping them around.
1399  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), 8);
1400  new (LocT) LocInfoType(T, DInfo);
1401  assert(LocT->getTypeClass() != T->getTypeClass() &&
1402         "LocInfoType's TypeClass conflicts with an existing Type class");
1403  return QualType(LocT, 0);
1404}
1405
1406void LocInfoType::getAsStringInternal(std::string &Str,
1407                                      const PrintingPolicy &Policy) const {
1408  assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
1409         " was used directly instead of getting the QualType through"
1410         " GetTypeFromParser");
1411}
1412
1413/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
1414/// declarator
1415QualType Sema::ObjCGetTypeForMethodDefinition(DeclPtrTy D) {
1416  ObjCMethodDecl *MDecl = cast<ObjCMethodDecl>(D.getAs<Decl>());
1417  QualType T = MDecl->getResultType();
1418  llvm::SmallVector<QualType, 16> ArgTys;
1419
1420  // Add the first two invisible argument types for self and _cmd.
1421  if (MDecl->isInstanceMethod()) {
1422    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
1423    selfTy = Context.getPointerType(selfTy);
1424    ArgTys.push_back(selfTy);
1425  } else
1426    ArgTys.push_back(Context.getObjCIdType());
1427  ArgTys.push_back(Context.getObjCSelType());
1428
1429  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
1430       E = MDecl->param_end(); PI != E; ++PI) {
1431    QualType ArgTy = (*PI)->getType();
1432    assert(!ArgTy.isNull() && "Couldn't parse type?");
1433    ArgTy = adjustParameterType(ArgTy);
1434    ArgTys.push_back(ArgTy);
1435  }
1436  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
1437                              MDecl->isVariadic(), 0);
1438  return T;
1439}
1440
1441/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
1442/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
1443/// they point to and return true. If T1 and T2 aren't pointer types
1444/// or pointer-to-member types, or if they are not similar at this
1445/// level, returns false and leaves T1 and T2 unchanged. Top-level
1446/// qualifiers on T1 and T2 are ignored. This function will typically
1447/// be called in a loop that successively "unwraps" pointer and
1448/// pointer-to-member types to compare them at each level.
1449bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
1450  const PointerType *T1PtrType = T1->getAs<PointerType>(),
1451                    *T2PtrType = T2->getAs<PointerType>();
1452  if (T1PtrType && T2PtrType) {
1453    T1 = T1PtrType->getPointeeType();
1454    T2 = T2PtrType->getPointeeType();
1455    return true;
1456  }
1457
1458  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
1459                          *T2MPType = T2->getAs<MemberPointerType>();
1460  if (T1MPType && T2MPType &&
1461      Context.getCanonicalType(T1MPType->getClass()) ==
1462      Context.getCanonicalType(T2MPType->getClass())) {
1463    T1 = T1MPType->getPointeeType();
1464    T2 = T2MPType->getPointeeType();
1465    return true;
1466  }
1467  return false;
1468}
1469
1470Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1471  // C99 6.7.6: Type names have no identifier.  This is already validated by
1472  // the parser.
1473  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1474
1475  DeclaratorInfo *DInfo = 0;
1476  TagDecl *OwnedTag = 0;
1477  QualType T = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0, &OwnedTag);
1478  if (D.isInvalidType())
1479    return true;
1480
1481  if (getLangOptions().CPlusPlus) {
1482    // Check that there are no default arguments (C++ only).
1483    CheckExtraCXXDefaultArguments(D);
1484
1485    // C++0x [dcl.type]p3:
1486    //   A type-specifier-seq shall not define a class or enumeration
1487    //   unless it appears in the type-id of an alias-declaration
1488    //   (7.1.3).
1489    if (OwnedTag && OwnedTag->isDefinition())
1490      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1491        << Context.getTypeDeclType(OwnedTag);
1492  }
1493
1494  if (DInfo)
1495    T = CreateLocInfoType(T, DInfo);
1496
1497  return T.getAsOpaquePtr();
1498}
1499
1500
1501
1502//===----------------------------------------------------------------------===//
1503// Type Attribute Processing
1504//===----------------------------------------------------------------------===//
1505
1506/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1507/// specified type.  The attribute contains 1 argument, the id of the address
1508/// space for the type.
1509static void HandleAddressSpaceTypeAttribute(QualType &Type,
1510                                            const AttributeList &Attr, Sema &S){
1511
1512  // If this type is already address space qualified, reject it.
1513  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1514  // for two or more different address spaces."
1515  if (Type.getAddressSpace()) {
1516    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1517    return;
1518  }
1519
1520  // Check the attribute arguments.
1521  if (Attr.getNumArgs() != 1) {
1522    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1523    return;
1524  }
1525  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1526  llvm::APSInt addrSpace(32);
1527  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1528    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1529      << ASArgExpr->getSourceRange();
1530    return;
1531  }
1532
1533  // Bounds checking.
1534  if (addrSpace.isSigned()) {
1535    if (addrSpace.isNegative()) {
1536      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
1537        << ASArgExpr->getSourceRange();
1538      return;
1539    }
1540    addrSpace.setIsSigned(false);
1541  }
1542  llvm::APSInt max(addrSpace.getBitWidth());
1543  max = Qualifiers::MaxAddressSpace;
1544  if (addrSpace > max) {
1545    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
1546      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
1547    return;
1548  }
1549
1550  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1551  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1552}
1553
1554/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1555/// specified type.  The attribute contains 1 argument, weak or strong.
1556static void HandleObjCGCTypeAttribute(QualType &Type,
1557                                      const AttributeList &Attr, Sema &S) {
1558  if (Type.getObjCGCAttr() != Qualifiers::GCNone) {
1559    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1560    return;
1561  }
1562
1563  // Check the attribute arguments.
1564  if (!Attr.getParameterName()) {
1565    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1566      << "objc_gc" << 1;
1567    return;
1568  }
1569  Qualifiers::GC GCAttr;
1570  if (Attr.getNumArgs() != 0) {
1571    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1572    return;
1573  }
1574  if (Attr.getParameterName()->isStr("weak"))
1575    GCAttr = Qualifiers::Weak;
1576  else if (Attr.getParameterName()->isStr("strong"))
1577    GCAttr = Qualifiers::Strong;
1578  else {
1579    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1580      << "objc_gc" << Attr.getParameterName();
1581    return;
1582  }
1583
1584  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1585}
1586
1587/// HandleNoReturnTypeAttribute - Process the noreturn attribute on the
1588/// specified type.  The attribute contains 0 arguments.
1589static void HandleNoReturnTypeAttribute(QualType &Type,
1590                                        const AttributeList &Attr, Sema &S) {
1591  if (Attr.getNumArgs() != 0)
1592    return;
1593
1594  // We only apply this to a pointer to function or a pointer to block.
1595  if (!Type->isFunctionPointerType()
1596      && !Type->isBlockPointerType()
1597      && !Type->isFunctionType())
1598    return;
1599
1600  Type = S.Context.getNoReturnType(Type);
1601}
1602
1603void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
1604  // Scan through and apply attributes to this type where it makes sense.  Some
1605  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1606  // type, but others can be present in the type specifiers even though they
1607  // apply to the decl.  Here we apply type attributes and ignore the rest.
1608  for (; AL; AL = AL->getNext()) {
1609    // If this is an attribute we can handle, do so now, otherwise, add it to
1610    // the LeftOverAttrs list for rechaining.
1611    switch (AL->getKind()) {
1612    default: break;
1613    case AttributeList::AT_address_space:
1614      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
1615      break;
1616    case AttributeList::AT_objc_gc:
1617      HandleObjCGCTypeAttribute(Result, *AL, *this);
1618      break;
1619    case AttributeList::AT_noreturn:
1620      HandleNoReturnTypeAttribute(Result, *AL, *this);
1621      break;
1622    }
1623  }
1624}
1625
1626/// @brief Ensure that the type T is a complete type.
1627///
1628/// This routine checks whether the type @p T is complete in any
1629/// context where a complete type is required. If @p T is a complete
1630/// type, returns false. If @p T is a class template specialization,
1631/// this routine then attempts to perform class template
1632/// instantiation. If instantiation fails, or if @p T is incomplete
1633/// and cannot be completed, issues the diagnostic @p diag (giving it
1634/// the type @p T) and returns true.
1635///
1636/// @param Loc  The location in the source that the incomplete type
1637/// diagnostic should refer to.
1638///
1639/// @param T  The type that this routine is examining for completeness.
1640///
1641/// @param PD The partial diagnostic that will be printed out if T is not a
1642/// complete type.
1643///
1644/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1645/// @c false otherwise.
1646bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
1647                               const PartialDiagnostic &PD,
1648                               std::pair<SourceLocation,
1649                                         PartialDiagnostic> Note) {
1650  unsigned diag = PD.getDiagID();
1651
1652  // FIXME: Add this assertion to make sure we always get instantiation points.
1653  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
1654  // FIXME: Add this assertion to help us flush out problems with
1655  // checking for dependent types and type-dependent expressions.
1656  //
1657  //  assert(!T->isDependentType() &&
1658  //         "Can't ask whether a dependent type is complete");
1659
1660  // If we have a complete type, we're done.
1661  if (!T->isIncompleteType())
1662    return false;
1663
1664  // If we have a class template specialization or a class member of a
1665  // class template specialization, try to instantiate it.
1666  if (const RecordType *Record = T->getAs<RecordType>()) {
1667    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
1668          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
1669      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
1670        if (Loc.isValid())
1671          ClassTemplateSpec->setPointOfInstantiation(Loc);
1672        return InstantiateClassTemplateSpecialization(ClassTemplateSpec,
1673                                                      TSK_ImplicitInstantiation,
1674                                                      /*Complain=*/diag != 0);
1675      }
1676    } else if (CXXRecordDecl *Rec
1677                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
1678      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
1679        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
1680        assert(MSInfo && "Missing member specialization information?");
1681        // This record was instantiated from a class within a template.
1682        if (MSInfo->getTemplateSpecializationKind()
1683                                               != TSK_ExplicitSpecialization) {
1684          MSInfo->setPointOfInstantiation(Loc);
1685          return InstantiateClass(Loc, Rec, Pattern,
1686                                  getTemplateInstantiationArgs(Rec),
1687                                  TSK_ImplicitInstantiation,
1688                                  /*Complain=*/diag != 0);
1689        }
1690      }
1691    }
1692  }
1693
1694  if (diag == 0)
1695    return true;
1696
1697  // We have an incomplete type. Produce a diagnostic.
1698  Diag(Loc, PD) << T;
1699
1700  // If we have a note, produce it.
1701  if (!Note.first.isInvalid())
1702    Diag(Note.first, Note.second);
1703
1704  // If the type was a forward declaration of a class/struct/union
1705  // type, produce
1706  const TagType *Tag = 0;
1707  if (const RecordType *Record = T->getAs<RecordType>())
1708    Tag = Record;
1709  else if (const EnumType *Enum = T->getAs<EnumType>())
1710    Tag = Enum;
1711
1712  if (Tag && !Tag->getDecl()->isInvalidDecl())
1713    Diag(Tag->getDecl()->getLocation(),
1714         Tag->isBeingDefined() ? diag::note_type_being_defined
1715                               : diag::note_forward_declaration)
1716        << QualType(Tag, 0);
1717
1718  return true;
1719}
1720
1721/// \brief Retrieve a version of the type 'T' that is qualified by the
1722/// nested-name-specifier contained in SS.
1723QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
1724  if (!SS.isSet() || SS.isInvalid() || T.isNull())
1725    return T;
1726
1727  NestedNameSpecifier *NNS
1728    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1729  return Context.getQualifiedNameType(NNS, T);
1730}
1731
1732QualType Sema::BuildTypeofExprType(Expr *E) {
1733  return Context.getTypeOfExprType(E);
1734}
1735
1736QualType Sema::BuildDecltypeType(Expr *E) {
1737  if (E->getType() == Context.OverloadTy) {
1738    Diag(E->getLocStart(),
1739         diag::err_cannot_determine_declared_type_of_overloaded_function);
1740    return QualType();
1741  }
1742  return Context.getDecltypeType(E);
1743}
1744