SemaType.cpp revision 0bfe54fdc83b7b4e37c40e652d86d15aa89885b2
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/Expr.h"
18#include "clang/Parse/DeclSpec.h"
19using namespace clang;
20
21/// \brief Convert the specified declspec to the appropriate type
22/// object.
23/// \param DS  the declaration specifiers
24/// \returns The type described by the declaration specifiers, or NULL
25/// if there was an error.
26QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS) {
27  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
28  // checking.
29  QualType Result;
30
31  switch (DS.getTypeSpecType()) {
32  default: assert(0 && "Unknown TypeSpecType!");
33  case DeclSpec::TST_void:
34    Result = Context.VoidTy;
35    break;
36  case DeclSpec::TST_char:
37    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
38      Result = Context.CharTy;
39    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
40      Result = Context.SignedCharTy;
41    else {
42      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
43             "Unknown TSS value");
44      Result = Context.UnsignedCharTy;
45    }
46    break;
47  case DeclSpec::TST_wchar:
48    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
49      Result = Context.WCharTy;
50    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
51      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
52        << DS.getSpecifierName(DS.getTypeSpecType());
53      Result = Context.getSignedWCharType();
54    } else {
55      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
56        "Unknown TSS value");
57      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
58        << DS.getSpecifierName(DS.getTypeSpecType());
59      Result = Context.getUnsignedWCharType();
60    }
61    break;
62  case DeclSpec::TST_unspecified:
63    // "<proto1,proto2>" is an objc qualified ID with a missing id.
64    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
65      Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
66                                              DS.getNumProtocolQualifiers());
67      break;
68    }
69
70    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
71    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
72    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
73    // Note that the one exception to this is function definitions, which are
74    // allowed to be completely missing a declspec.  This is handled in the
75    // parser already though by it pretending to have seen an 'int' in this
76    // case.
77    if (getLangOptions().ImplicitInt) {
78      if ((DS.getParsedSpecifiers() & (DeclSpec::PQ_StorageClassSpecifier |
79                                       DeclSpec::PQ_TypeSpecifier |
80                                       DeclSpec::PQ_TypeQualifier)) == 0)
81        Diag(DS.getSourceRange().getBegin(), diag::ext_missing_declspec);
82    } else {
83      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
84      // "At least one type specifier shall be given in the declaration
85      // specifiers in each declaration, and in the specifier-qualifier list in
86      // each struct declaration and type name."
87      // FIXME: this should be a hard error in C++
88      if (!DS.hasTypeSpecifier())
89        Diag(DS.getSourceRange().getBegin(), diag::ext_missing_type_specifier);
90    }
91
92    // FALL THROUGH.
93  case DeclSpec::TST_int: {
94    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
95      switch (DS.getTypeSpecWidth()) {
96      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
97      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
98      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
99      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
100      }
101    } else {
102      switch (DS.getTypeSpecWidth()) {
103      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
104      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
105      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
106      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
107      }
108    }
109    break;
110  }
111  case DeclSpec::TST_float: Result = Context.FloatTy; break;
112  case DeclSpec::TST_double:
113    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
114      Result = Context.LongDoubleTy;
115    else
116      Result = Context.DoubleTy;
117    break;
118  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
119  case DeclSpec::TST_decimal32:    // _Decimal32
120  case DeclSpec::TST_decimal64:    // _Decimal64
121  case DeclSpec::TST_decimal128:   // _Decimal128
122    assert(0 && "FIXME: GNU decimal extensions not supported yet!");
123  case DeclSpec::TST_class:
124  case DeclSpec::TST_enum:
125  case DeclSpec::TST_union:
126  case DeclSpec::TST_struct: {
127    Decl *D = static_cast<Decl *>(DS.getTypeRep());
128    assert(D && "Didn't get a decl for a class/enum/union/struct?");
129    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
130           DS.getTypeSpecSign() == 0 &&
131           "Can't handle qualifiers on typedef names yet!");
132    // TypeQuals handled by caller.
133    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
134    break;
135  }
136  case DeclSpec::TST_typename: {
137    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
138           DS.getTypeSpecSign() == 0 &&
139           "Can't handle qualifiers on typedef names yet!");
140    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
141
142    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
143      // FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so
144      // we have this "hack" for now...
145      if (const ObjCInterfaceType *Interface = Result->getAsObjCInterfaceType())
146        Result = Context.getObjCQualifiedInterfaceType(Interface->getDecl(),
147                                                       (ObjCProtocolDecl**)PQ,
148                                               DS.getNumProtocolQualifiers());
149      else if (Result == Context.getObjCIdType())
150        // id<protocol-list>
151        Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
152                                                DS.getNumProtocolQualifiers());
153    }
154    // TypeQuals handled by caller.
155    break;
156  }
157  case DeclSpec::TST_typeofType:
158    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
159    assert(!Result.isNull() && "Didn't get a type for typeof?");
160    // TypeQuals handled by caller.
161    Result = Context.getTypeOfType(Result);
162    break;
163  case DeclSpec::TST_typeofExpr: {
164    Expr *E = static_cast<Expr *>(DS.getTypeRep());
165    assert(E && "Didn't get an expression for typeof?");
166    // TypeQuals handled by caller.
167    Result = Context.getTypeOfExpr(E);
168    break;
169  }
170  }
171
172  // Handle complex types.
173  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex)
174    Result = Context.getComplexType(Result);
175
176  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
177         "FIXME: imaginary types not supported yet!");
178
179  // See if there are any attributes on the declspec that apply to the type (as
180  // opposed to the decl).
181  if (const AttributeList *AL = DS.getAttributes())
182    ProcessTypeAttributeList(Result, AL);
183
184  // Apply const/volatile/restrict qualifiers to T.
185  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
186
187    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
188    // or incomplete types shall not be restrict-qualified."  C++ also allows
189    // restrict-qualified references.
190    if (TypeQuals & QualType::Restrict) {
191      if (const PointerLikeType *PT = Result->getAsPointerLikeType()) {
192        QualType EltTy = PT->getPointeeType();
193
194        // If we have a pointer or reference, the pointee must have an object or
195        // incomplete type.
196        if (!EltTy->isIncompleteOrObjectType()) {
197          Diag(DS.getRestrictSpecLoc(),
198               diag::err_typecheck_invalid_restrict_invalid_pointee)
199            << EltTy << DS.getSourceRange();
200          TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
201        }
202      } else {
203        Diag(DS.getRestrictSpecLoc(),
204             diag::err_typecheck_invalid_restrict_not_pointer)
205          << Result << DS.getSourceRange();
206        TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
207      }
208    }
209
210    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
211    // of a function type includes any type qualifiers, the behavior is
212    // undefined."
213    if (Result->isFunctionType() && TypeQuals) {
214      // Get some location to point at, either the C or V location.
215      SourceLocation Loc;
216      if (TypeQuals & QualType::Const)
217        Loc = DS.getConstSpecLoc();
218      else {
219        assert((TypeQuals & QualType::Volatile) &&
220               "Has CV quals but not C or V?");
221        Loc = DS.getVolatileSpecLoc();
222      }
223      Diag(Loc, diag::warn_typecheck_function_qualifiers)
224        << Result << DS.getSourceRange();
225    }
226
227    // C++ [dcl.ref]p1:
228    //   Cv-qualified references are ill-formed except when the
229    //   cv-qualifiers are introduced through the use of a typedef
230    //   (7.1.3) or of a template type argument (14.3), in which
231    //   case the cv-qualifiers are ignored.
232    // FIXME: Shouldn't we be checking SCS_typedef here?
233    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
234        TypeQuals && Result->isReferenceType()) {
235      TypeQuals &= ~QualType::Const;
236      TypeQuals &= ~QualType::Volatile;
237    }
238
239    Result = Result.getQualifiedType(TypeQuals);
240  }
241  return Result;
242}
243
244/// GetTypeForDeclarator - Convert the type for the specified
245/// declarator to Type instances. Skip the outermost Skip type
246/// objects.
247QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S, unsigned Skip) {
248  bool OmittedReturnType = false;
249
250  if (D.getContext() == Declarator::BlockLiteralContext
251      && Skip == 0
252      && !D.getDeclSpec().hasTypeSpecifier()
253      && (D.getNumTypeObjects() == 0
254          || (D.getNumTypeObjects() == 1
255              && D.getTypeObject(0).Kind == DeclaratorChunk::Function)))
256    OmittedReturnType = true;
257
258  // long long is a C99 feature.
259  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
260      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
261    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
262
263  // Determine the type of the declarator. Not all forms of declarator
264  // have a type.
265  QualType T;
266  switch (D.getKind()) {
267  case Declarator::DK_Abstract:
268  case Declarator::DK_Normal:
269  case Declarator::DK_Operator: {
270    const DeclSpec& DS = D.getDeclSpec();
271    if (OmittedReturnType)
272      // We default to a dependent type initially.  Can be modified by
273      // the first return statement.
274      T = Context.DependentTy;
275    else
276      T = ConvertDeclSpecToType(DS);
277    break;
278  }
279
280  case Declarator::DK_Constructor:
281  case Declarator::DK_Destructor:
282  case Declarator::DK_Conversion:
283    // Constructors and destructors don't have return types. Use
284    // "void" instead. Conversion operators will check their return
285    // types separately.
286    T = Context.VoidTy;
287    break;
288  }
289
290  // Walk the DeclTypeInfo, building the recursive type as we go.
291  // DeclTypeInfos are ordered from the identifier out, which is
292  // opposite of what we want :).
293  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
294    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1+Skip);
295    switch (DeclType.Kind) {
296    default: assert(0 && "Unknown decltype!");
297    case DeclaratorChunk::BlockPointer:
298      if (DeclType.Cls.TypeQuals)
299        Diag(D.getIdentifierLoc(), diag::err_qualified_block_pointer_type);
300      if (!T.getTypePtr()->isFunctionType())
301        Diag(D.getIdentifierLoc(), diag::err_nonfunction_block_type);
302      else
303        T = Context.getBlockPointerType(T);
304      break;
305    case DeclaratorChunk::Pointer:
306      if (T->isReferenceType()) {
307        // C++ 8.3.2p4: There shall be no ... pointers to references ...
308        Diag(DeclType.Loc, diag::err_illegal_decl_pointer_to_reference)
309         << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
310        D.setInvalidType(true);
311        T = Context.IntTy;
312      }
313
314      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
315      // object or incomplete types shall not be restrict-qualified."
316      if ((DeclType.Ptr.TypeQuals & QualType::Restrict) &&
317          !T->isIncompleteOrObjectType()) {
318        Diag(DeclType.Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
319          << T;
320        DeclType.Ptr.TypeQuals &= ~QualType::Restrict;
321      }
322
323      // Apply the pointer typequals to the pointer object.
324      T = Context.getPointerType(T).getQualifiedType(DeclType.Ptr.TypeQuals);
325      break;
326    case DeclaratorChunk::Reference: {
327      // Whether we should suppress the creation of the reference.
328      bool SuppressReference = false;
329      if (T->isReferenceType()) {
330        // C++ [dcl.ref]p4: There shall be no references to references.
331        //
332        // According to C++ DR 106, references to references are only
333        // diagnosed when they are written directly (e.g., "int & &"),
334        // but not when they happen via a typedef:
335        //
336        //   typedef int& intref;
337        //   typedef intref& intref2;
338        //
339        // Parser::ParserDeclaratorInternal diagnoses the case where
340        // references are written directly; here, we handle the
341        // collapsing of references-to-references as described in C++
342        // DR 106 and amended by C++ DR 540.
343        SuppressReference = true;
344      }
345
346      // C++ [dcl.ref]p1:
347      //   A declarator that specifies the type “reference to cv void”
348      //   is ill-formed.
349      if (T->isVoidType()) {
350        Diag(DeclType.Loc, diag::err_reference_to_void);
351        D.setInvalidType(true);
352        T = Context.IntTy;
353      }
354
355      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
356      // object or incomplete types shall not be restrict-qualified."
357      if (DeclType.Ref.HasRestrict &&
358          !T->isIncompleteOrObjectType()) {
359        Diag(DeclType.Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
360          << T;
361        DeclType.Ref.HasRestrict = false;
362      }
363
364      if (!SuppressReference)
365        T = Context.getReferenceType(T);
366
367      // Handle restrict on references.
368      if (DeclType.Ref.HasRestrict)
369        T.addRestrict();
370      break;
371    }
372    case DeclaratorChunk::Array: {
373      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
374      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
375      ArrayType::ArraySizeModifier ASM;
376      if (ATI.isStar)
377        ASM = ArrayType::Star;
378      else if (ATI.hasStatic)
379        ASM = ArrayType::Static;
380      else
381        ASM = ArrayType::Normal;
382
383      // C99 6.7.5.2p1: If the element type is an incomplete or function type,
384      // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
385      if (DiagnoseIncompleteType(D.getIdentifierLoc(), T,
386                                 diag::err_illegal_decl_array_incomplete_type)) {
387        T = Context.IntTy;
388        D.setInvalidType(true);
389      } else if (T->isFunctionType()) {
390        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_functions)
391          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
392        T = Context.getPointerType(T);
393        D.setInvalidType(true);
394      } else if (const ReferenceType *RT = T->getAsReferenceType()) {
395        // C++ 8.3.2p4: There shall be no ... arrays of references ...
396        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_references)
397          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
398        T = RT->getPointeeType();
399        D.setInvalidType(true);
400      } else if (const RecordType *EltTy = T->getAsRecordType()) {
401        // If the element type is a struct or union that contains a variadic
402        // array, accept it as a GNU extension: C99 6.7.2.1p2.
403        if (EltTy->getDecl()->hasFlexibleArrayMember())
404          Diag(DeclType.Loc, diag::ext_flexible_array_in_array) << T;
405      } else if (T->isObjCInterfaceType()) {
406        Diag(DeclType.Loc, diag::warn_objc_array_of_interfaces) << T;
407      }
408
409      // C99 6.7.5.2p1: The size expression shall have integer type.
410      if (ArraySize && !ArraySize->getType()->isIntegerType()) {
411        Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
412          << ArraySize->getType() << ArraySize->getSourceRange();
413        D.setInvalidType(true);
414        ArraySize->Destroy(Context);
415        ATI.NumElts = ArraySize = 0;
416      }
417      llvm::APSInt ConstVal(32);
418      if (!ArraySize) {
419        T = Context.getIncompleteArrayType(T, ASM, ATI.TypeQuals);
420      } else if (ArraySize->isValueDependent()) {
421        T = Context.getDependentSizedArrayType(T, ArraySize, ASM, ATI.TypeQuals);
422      } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
423                 !T->isConstantSizeType()) {
424        // Per C99, a variable array is an array with either a non-constant
425        // size or an element type that has a non-constant-size
426        T = Context.getVariableArrayType(T, ArraySize, ASM, ATI.TypeQuals);
427      } else {
428        // C99 6.7.5.2p1: If the expression is a constant expression, it shall
429        // have a value greater than zero.
430        if (ConstVal.isSigned()) {
431          if (ConstVal.isNegative()) {
432            Diag(ArraySize->getLocStart(),
433                 diag::err_typecheck_negative_array_size)
434              << ArraySize->getSourceRange();
435            D.setInvalidType(true);
436          } else if (ConstVal == 0) {
437            // GCC accepts zero sized static arrays.
438            Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
439              << ArraySize->getSourceRange();
440          }
441        }
442        T = Context.getConstantArrayType(T, ConstVal, ASM, ATI.TypeQuals);
443      }
444      // If this is not C99, extwarn about VLA's and C99 array size modifiers.
445      if (!getLangOptions().C99) {
446        if (ArraySize && !ArraySize->isValueDependent() &&
447            !ArraySize->isIntegerConstantExpr(Context))
448          Diag(D.getIdentifierLoc(), diag::ext_vla);
449        else if (ASM != ArrayType::Normal || ATI.TypeQuals != 0)
450          Diag(D.getIdentifierLoc(), diag::ext_c99_array_usage);
451      }
452      break;
453    }
454    case DeclaratorChunk::Function: {
455      // If the function declarator has a prototype (i.e. it is not () and
456      // does not have a K&R-style identifier list), then the arguments are part
457      // of the type, otherwise the argument list is ().
458      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
459
460      // C99 6.7.5.3p1: The return type may not be a function or array type.
461      if (T->isArrayType() || T->isFunctionType()) {
462        Diag(DeclType.Loc, diag::err_func_returning_array_function) << T;
463        T = Context.IntTy;
464        D.setInvalidType(true);
465      }
466
467      if (FTI.NumArgs == 0) {
468        if (getLangOptions().CPlusPlus) {
469          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
470          // function takes no arguments.
471          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic,FTI.TypeQuals);
472        } else {
473          // Simple void foo(), where the incoming T is the result type.
474          T = Context.getFunctionTypeNoProto(T);
475        }
476      } else if (FTI.ArgInfo[0].Param == 0) {
477        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
478        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
479      } else {
480        // Otherwise, we have a function with an argument list that is
481        // potentially variadic.
482        llvm::SmallVector<QualType, 16> ArgTys;
483
484        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
485          ParmVarDecl *Param = (ParmVarDecl *)FTI.ArgInfo[i].Param;
486          QualType ArgTy = Param->getType();
487          assert(!ArgTy.isNull() && "Couldn't parse type?");
488          //
489          // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
490          // This matches the conversion that is done in
491          // Sema::ActOnParamDeclarator(). Without this conversion, the
492          // argument type in the function prototype *will not* match the
493          // type in ParmVarDecl (which makes the code generator unhappy).
494          //
495          // FIXME: We still apparently need the conversion in
496          // Sema::ActOnParamDeclarator(). This doesn't make any sense, since
497          // it should be driving off the type being created here.
498          //
499          // FIXME: If a source translation tool needs to see the original type,
500          // then we need to consider storing both types somewhere...
501          //
502          if (ArgTy->isArrayType()) {
503            ArgTy = Context.getArrayDecayedType(ArgTy);
504          } else if (ArgTy->isFunctionType())
505            ArgTy = Context.getPointerType(ArgTy);
506
507          // Look for 'void'.  void is allowed only as a single argument to a
508          // function with no other parameters (C99 6.7.5.3p10).  We record
509          // int(void) as a FunctionTypeProto with an empty argument list.
510          else if (ArgTy->isVoidType()) {
511            // If this is something like 'float(int, void)', reject it.  'void'
512            // is an incomplete type (C99 6.2.5p19) and function decls cannot
513            // have arguments of incomplete type.
514            if (FTI.NumArgs != 1 || FTI.isVariadic) {
515              Diag(DeclType.Loc, diag::err_void_only_param);
516              ArgTy = Context.IntTy;
517              Param->setType(ArgTy);
518            } else if (FTI.ArgInfo[i].Ident) {
519              // Reject, but continue to parse 'int(void abc)'.
520              Diag(FTI.ArgInfo[i].IdentLoc,
521                   diag::err_param_with_void_type);
522              ArgTy = Context.IntTy;
523              Param->setType(ArgTy);
524            } else {
525              // Reject, but continue to parse 'float(const void)'.
526              if (ArgTy.getCVRQualifiers())
527                Diag(DeclType.Loc, diag::err_void_param_qualified);
528
529              // Do not add 'void' to the ArgTys list.
530              break;
531            }
532          } else if (!FTI.hasPrototype) {
533            if (ArgTy->isPromotableIntegerType()) {
534              ArgTy = Context.IntTy;
535            } else if (const BuiltinType* BTy = ArgTy->getAsBuiltinType()) {
536              if (BTy->getKind() == BuiltinType::Float)
537                ArgTy = Context.DoubleTy;
538            }
539          }
540
541          ArgTys.push_back(ArgTy);
542        }
543        T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
544                                    FTI.isVariadic, FTI.TypeQuals);
545      }
546      break;
547    }
548    case DeclaratorChunk::MemberPointer:
549      // The scope spec must refer to a class, or be dependent.
550      DeclContext *DC = static_cast<DeclContext*>(
551        DeclType.Mem.Scope().getScopeRep());
552      QualType ClsType;
553      // FIXME: Extend for dependent types when it's actually supported.
554      // See ActOnCXXNestedNameSpecifier.
555      if (CXXRecordDecl *RD = dyn_cast_or_null<CXXRecordDecl>(DC)) {
556        ClsType = Context.getTagDeclType(RD);
557      } else {
558        if (DC) {
559          Diag(DeclType.Mem.Scope().getBeginLoc(),
560               diag::err_illegal_decl_mempointer_in_nonclass)
561            << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
562            << DeclType.Mem.Scope().getRange();
563        }
564        D.setInvalidType(true);
565        ClsType = Context.IntTy;
566      }
567
568      // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
569      //   with reference type, or "cv void."
570      if (T->isReferenceType()) {
571        Diag(DeclType.Loc, diag::err_illegal_decl_pointer_to_reference)
572          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
573        D.setInvalidType(true);
574        T = Context.IntTy;
575      }
576      if (T->isVoidType()) {
577        Diag(DeclType.Loc, diag::err_illegal_decl_mempointer_to_void)
578          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
579        T = Context.IntTy;
580      }
581
582      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
583      // object or incomplete types shall not be restrict-qualified."
584      if ((DeclType.Mem.TypeQuals & QualType::Restrict) &&
585          !T->isIncompleteOrObjectType()) {
586        Diag(DeclType.Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
587          << T;
588        DeclType.Mem.TypeQuals &= ~QualType::Restrict;
589      }
590
591      T = Context.getMemberPointerType(T, ClsType.getTypePtr()).
592                    getQualifiedType(DeclType.Mem.TypeQuals);
593
594      break;
595    }
596
597    // See if there are any attributes on this declarator chunk.
598    if (const AttributeList *AL = DeclType.getAttrs())
599      ProcessTypeAttributeList(T, AL);
600  }
601
602  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
603    const FunctionTypeProto *FnTy = T->getAsFunctionTypeProto();
604    assert(FnTy && "Why oh why is there not a FunctionTypeProto here ?");
605
606    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
607    // for a nonstatic member function, the function type to which a pointer
608    // to member refers, or the top-level function type of a function typedef
609    // declaration.
610    if (FnTy->getTypeQuals() != 0 &&
611        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
612        ((D.getContext() != Declarator::MemberContext &&
613          (!D.getCXXScopeSpec().isSet() ||
614           !static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep())
615              ->isRecord())) ||
616         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
617      if (D.isFunctionDeclarator())
618        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
619      else
620        Diag(D.getIdentifierLoc(),
621             diag::err_invalid_qualified_typedef_function_type_use);
622
623      // Strip the cv-quals from the type.
624      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
625                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
626    }
627  }
628
629  // If there were any type attributes applied to the decl itself (not the
630  // type, apply the type attribute to the type!)
631  if (const AttributeList *Attrs = D.getAttributes())
632    ProcessTypeAttributeList(T, Attrs);
633
634  return T;
635}
636
637/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
638/// declarator
639QualType Sema::ObjCGetTypeForMethodDefinition(DeclTy *D) {
640  ObjCMethodDecl *MDecl = dyn_cast<ObjCMethodDecl>(static_cast<Decl *>(D));
641  QualType T = MDecl->getResultType();
642  llvm::SmallVector<QualType, 16> ArgTys;
643
644  // Add the first two invisible argument types for self and _cmd.
645  if (MDecl->isInstanceMethod()) {
646    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
647    selfTy = Context.getPointerType(selfTy);
648    ArgTys.push_back(selfTy);
649  }
650  else
651    ArgTys.push_back(Context.getObjCIdType());
652  ArgTys.push_back(Context.getObjCSelType());
653
654  for (int i = 0, e = MDecl->getNumParams(); i != e; ++i) {
655    ParmVarDecl *PDecl = MDecl->getParamDecl(i);
656    QualType ArgTy = PDecl->getType();
657    assert(!ArgTy.isNull() && "Couldn't parse type?");
658    // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
659    // This matches the conversion that is done in
660    // Sema::ActOnParamDeclarator().
661    if (ArgTy->isArrayType())
662      ArgTy = Context.getArrayDecayedType(ArgTy);
663    else if (ArgTy->isFunctionType())
664      ArgTy = Context.getPointerType(ArgTy);
665    ArgTys.push_back(ArgTy);
666  }
667  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
668                              MDecl->isVariadic(), 0);
669  return T;
670}
671
672/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
673/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
674/// they point to and return true. If T1 and T2 aren't pointer types
675/// or pointer-to-member types, or if they are not similar at this
676/// level, returns false and leaves T1 and T2 unchanged. Top-level
677/// qualifiers on T1 and T2 are ignored. This function will typically
678/// be called in a loop that successively "unwraps" pointer and
679/// pointer-to-member types to compare them at each level.
680bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2)
681{
682  const PointerType *T1PtrType = T1->getAsPointerType(),
683                    *T2PtrType = T2->getAsPointerType();
684  if (T1PtrType && T2PtrType) {
685    T1 = T1PtrType->getPointeeType();
686    T2 = T2PtrType->getPointeeType();
687    return true;
688  }
689
690  const MemberPointerType *T1MPType = T1->getAsMemberPointerType(),
691                          *T2MPType = T2->getAsMemberPointerType();
692  if (T1MPType && T2MPType &&
693      Context.getCanonicalType(T1MPType->getClass()) ==
694      Context.getCanonicalType(T2MPType->getClass())) {
695    T1 = T1MPType->getPointeeType();
696    T2 = T2MPType->getPointeeType();
697    return true;
698  }
699  return false;
700}
701
702Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
703  // C99 6.7.6: Type names have no identifier.  This is already validated by
704  // the parser.
705  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
706
707  QualType T = GetTypeForDeclarator(D, S);
708
709  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
710
711  // Check that there are no default arguments (C++ only).
712  if (getLangOptions().CPlusPlus)
713    CheckExtraCXXDefaultArguments(D);
714
715  // In this context, we *do not* check D.getInvalidType(). If the declarator
716  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
717  // though it will not reflect the user specified type.
718  return T.getAsOpaquePtr();
719}
720
721
722
723//===----------------------------------------------------------------------===//
724// Type Attribute Processing
725//===----------------------------------------------------------------------===//
726
727/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
728/// specified type.  The attribute contains 1 argument, the id of the address
729/// space for the type.
730static void HandleAddressSpaceTypeAttribute(QualType &Type,
731                                            const AttributeList &Attr, Sema &S){
732  // If this type is already address space qualified, reject it.
733  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
734  // for two or more different address spaces."
735  if (Type.getAddressSpace()) {
736    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
737    return;
738  }
739
740  // Check the attribute arguments.
741  if (Attr.getNumArgs() != 1) {
742    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
743    return;
744  }
745  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
746  llvm::APSInt addrSpace(32);
747  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
748    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
749      << ASArgExpr->getSourceRange();
750    return;
751  }
752
753  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
754  Type = S.Context.getASQualType(Type, ASIdx);
755}
756
757void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
758  // Scan through and apply attributes to this type where it makes sense.  Some
759  // attributes (such as __address_space__, __vector_size__, etc) apply to the
760  // type, but others can be present in the type specifiers even though they
761  // apply to the decl.  Here we apply type attributes and ignore the rest.
762  for (; AL; AL = AL->getNext()) {
763    // If this is an attribute we can handle, do so now, otherwise, add it to
764    // the LeftOverAttrs list for rechaining.
765    switch (AL->getKind()) {
766    default: break;
767    case AttributeList::AT_address_space:
768      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
769      break;
770    }
771  }
772}
773
774/// @brief If the type T is incomplete and cannot be completed,
775/// produce a suitable diagnostic.
776///
777/// This routine checks whether the type @p T is complete in any
778/// context where a complete type is required. If @p T is a complete
779/// type, returns false. If @p T is incomplete, issues the diagnostic
780/// @p diag (giving it the type @p T) and returns true.
781///
782/// @param Loc  The location in the source that the incomplete type
783/// diagnostic should refer to.
784///
785/// @param T  The type that this routine is examining for completeness.
786///
787/// @param diag The diagnostic value (e.g.,
788/// @c diag::err_typecheck_decl_incomplete_type) that will be used
789/// for the error message if @p T is incomplete.
790///
791/// @param Range1  An optional range in the source code that will be a
792/// part of the "incomplete type" error message.
793///
794/// @param Range2  An optional range in the source code that will be a
795/// part of the "incomplete type" error message.
796///
797/// @param PrintType If non-NULL, the type that should be printed
798/// instead of @p T. This parameter should be used when the type that
799/// we're checking for incompleteness isn't the type that should be
800/// displayed to the user, e.g., when T is a type and PrintType is a
801/// pointer to T.
802///
803/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
804/// @c false otherwise.
805///
806/// @todo When Clang gets proper support for C++ templates, this
807/// routine will also be able perform template instantiation when @p T
808/// is a class template specialization.
809bool Sema::DiagnoseIncompleteType(SourceLocation Loc, QualType T, unsigned diag,
810                                  SourceRange Range1, SourceRange Range2,
811                                  QualType PrintType) {
812  // If we have a complete type, we're done.
813  if (!T->isIncompleteType())
814    return false;
815
816  if (PrintType.isNull())
817    PrintType = T;
818
819  // We have an incomplete type. Produce a diagnostic.
820  Diag(Loc, diag) << PrintType << Range1 << Range2;
821
822  // If the type was a forward declaration of a class/struct/union
823  // type, produce
824  const TagType *Tag = 0;
825  if (const RecordType *Record = T->getAsRecordType())
826    Tag = Record;
827  else if (const EnumType *Enum = T->getAsEnumType())
828    Tag = Enum;
829
830  if (Tag && !Tag->getDecl()->isInvalidDecl())
831    Diag(Tag->getDecl()->getLocation(),
832         Tag->isBeingDefined() ? diag::note_type_being_defined
833                               : diag::note_forward_declaration)
834        << QualType(Tag, 0);
835
836  return true;
837}
838