SemaType.cpp revision 14c3221c184cd7305ee9c7d4514caa5c13265b78
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/TypeLocVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/SmallPtrSet.h"
25using namespace clang;
26
27/// \brief Perform adjustment on the parameter type of a function.
28///
29/// This routine adjusts the given parameter type @p T to the actual
30/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
31/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
32QualType Sema::adjustParameterType(QualType T) {
33  // C99 6.7.5.3p7:
34  if (T->isArrayType()) {
35    // C99 6.7.5.3p7:
36    //   A declaration of a parameter as "array of type" shall be
37    //   adjusted to "qualified pointer to type", where the type
38    //   qualifiers (if any) are those specified within the [ and ] of
39    //   the array type derivation.
40    return Context.getArrayDecayedType(T);
41  } else if (T->isFunctionType())
42    // C99 6.7.5.3p8:
43    //   A declaration of a parameter as "function returning type"
44    //   shall be adjusted to "pointer to function returning type", as
45    //   in 6.3.2.1.
46    return Context.getPointerType(T);
47
48  return T;
49}
50
51/// \brief Convert the specified declspec to the appropriate type
52/// object.
53/// \param DS  the declaration specifiers
54/// \param DeclLoc The location of the declarator identifier or invalid if none.
55/// \param SourceTy QualType representing the type as written in source form.
56/// \returns The type described by the declaration specifiers.  This function
57/// never returns null.
58QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS,
59                                     SourceLocation DeclLoc,
60                                     bool &isInvalid, QualType &SourceTy) {
61  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
62  // checking.
63  QualType Result;
64  SourceTy = Result;
65
66  switch (DS.getTypeSpecType()) {
67  case DeclSpec::TST_void:
68    Result = Context.VoidTy;
69    break;
70  case DeclSpec::TST_char:
71    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
72      Result = Context.CharTy;
73    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
74      Result = Context.SignedCharTy;
75    else {
76      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
77             "Unknown TSS value");
78      Result = Context.UnsignedCharTy;
79    }
80    break;
81  case DeclSpec::TST_wchar:
82    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
83      Result = Context.WCharTy;
84    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
85      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
86        << DS.getSpecifierName(DS.getTypeSpecType());
87      Result = Context.getSignedWCharType();
88    } else {
89      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
90        "Unknown TSS value");
91      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
92        << DS.getSpecifierName(DS.getTypeSpecType());
93      Result = Context.getUnsignedWCharType();
94    }
95    break;
96  case DeclSpec::TST_char16:
97      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
98        "Unknown TSS value");
99      Result = Context.Char16Ty;
100    break;
101  case DeclSpec::TST_char32:
102      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
103        "Unknown TSS value");
104      Result = Context.Char32Ty;
105    break;
106  case DeclSpec::TST_unspecified:
107    // "<proto1,proto2>" is an objc qualified ID with a missing id.
108    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
109      SourceTy = Context.getObjCProtocolListType(QualType(),
110                                                 (ObjCProtocolDecl**)PQ,
111                                                 DS.getNumProtocolQualifiers());
112      Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
113                                                (ObjCProtocolDecl**)PQ,
114                                                DS.getNumProtocolQualifiers());
115      break;
116    }
117
118    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
119    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
120    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
121    // Note that the one exception to this is function definitions, which are
122    // allowed to be completely missing a declspec.  This is handled in the
123    // parser already though by it pretending to have seen an 'int' in this
124    // case.
125    if (getLangOptions().ImplicitInt) {
126      // In C89 mode, we only warn if there is a completely missing declspec
127      // when one is not allowed.
128      if (DS.isEmpty()) {
129        if (DeclLoc.isInvalid())
130          DeclLoc = DS.getSourceRange().getBegin();
131        Diag(DeclLoc, diag::ext_missing_declspec)
132          << DS.getSourceRange()
133        << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
134                                                 "int");
135      }
136    } else if (!DS.hasTypeSpecifier()) {
137      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
138      // "At least one type specifier shall be given in the declaration
139      // specifiers in each declaration, and in the specifier-qualifier list in
140      // each struct declaration and type name."
141      // FIXME: Does Microsoft really have the implicit int extension in C++?
142      if (DeclLoc.isInvalid())
143        DeclLoc = DS.getSourceRange().getBegin();
144
145      if (getLangOptions().CPlusPlus && !getLangOptions().Microsoft) {
146        Diag(DeclLoc, diag::err_missing_type_specifier)
147          << DS.getSourceRange();
148
149        // When this occurs in C++ code, often something is very broken with the
150        // value being declared, poison it as invalid so we don't get chains of
151        // errors.
152        isInvalid = true;
153      } else {
154        Diag(DeclLoc, diag::ext_missing_type_specifier)
155          << DS.getSourceRange();
156      }
157    }
158
159    // FALL THROUGH.
160  case DeclSpec::TST_int: {
161    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
162      switch (DS.getTypeSpecWidth()) {
163      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
164      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
165      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
166      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
167      }
168    } else {
169      switch (DS.getTypeSpecWidth()) {
170      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
171      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
172      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
173      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
174      }
175    }
176    break;
177  }
178  case DeclSpec::TST_float: Result = Context.FloatTy; break;
179  case DeclSpec::TST_double:
180    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
181      Result = Context.LongDoubleTy;
182    else
183      Result = Context.DoubleTy;
184    break;
185  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
186  case DeclSpec::TST_decimal32:    // _Decimal32
187  case DeclSpec::TST_decimal64:    // _Decimal64
188  case DeclSpec::TST_decimal128:   // _Decimal128
189    Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
190    Result = Context.IntTy;
191    isInvalid = true;
192    break;
193  case DeclSpec::TST_class:
194  case DeclSpec::TST_enum:
195  case DeclSpec::TST_union:
196  case DeclSpec::TST_struct: {
197    Decl *D = static_cast<Decl *>(DS.getTypeRep());
198    if (!D) {
199      // This can happen in C++ with ambiguous lookups.
200      Result = Context.IntTy;
201      isInvalid = true;
202      break;
203    }
204
205    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
206           DS.getTypeSpecSign() == 0 &&
207           "Can't handle qualifiers on typedef names yet!");
208    // TypeQuals handled by caller.
209    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
210
211    // In C++, make an ElaboratedType.
212    if (getLangOptions().CPlusPlus) {
213      TagDecl::TagKind Tag
214        = TagDecl::getTagKindForTypeSpec(DS.getTypeSpecType());
215      Result = Context.getElaboratedType(Result, Tag);
216    }
217
218    if (D->isInvalidDecl())
219      isInvalid = true;
220    break;
221  }
222  case DeclSpec::TST_typename: {
223    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
224           DS.getTypeSpecSign() == 0 &&
225           "Can't handle qualifiers on typedef names yet!");
226    Result = GetTypeFromParser(DS.getTypeRep());
227
228    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
229      SourceTy = Context.getObjCProtocolListType(Result,
230                                                 (ObjCProtocolDecl**)PQ,
231                                                 DS.getNumProtocolQualifiers());
232      if (const ObjCInterfaceType *
233            Interface = Result->getAs<ObjCInterfaceType>()) {
234        // It would be nice if protocol qualifiers were only stored with the
235        // ObjCObjectPointerType. Unfortunately, this isn't possible due
236        // to the following typedef idiom (which is uncommon, but allowed):
237        //
238        // typedef Foo<P> T;
239        // static void func() {
240        //   Foo<P> *yy;
241        //   T *zz;
242        // }
243        Result = Context.getObjCInterfaceType(Interface->getDecl(),
244                                              (ObjCProtocolDecl**)PQ,
245                                              DS.getNumProtocolQualifiers());
246      } else if (Result->isObjCIdType())
247        // id<protocol-list>
248        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
249                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
250      else if (Result->isObjCClassType()) {
251        if (DeclLoc.isInvalid())
252          DeclLoc = DS.getSourceRange().getBegin();
253        // Class<protocol-list>
254        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinClassTy,
255                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
256      } else {
257        if (DeclLoc.isInvalid())
258          DeclLoc = DS.getSourceRange().getBegin();
259        Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
260          << DS.getSourceRange();
261        isInvalid = true;
262      }
263    }
264
265    // If this is a reference to an invalid typedef, propagate the invalidity.
266    if (TypedefType *TDT = dyn_cast<TypedefType>(Result))
267      if (TDT->getDecl()->isInvalidDecl())
268        isInvalid = true;
269
270    // TypeQuals handled by caller.
271    break;
272  }
273  case DeclSpec::TST_typeofType:
274    // FIXME: Preserve type source info.
275    Result = GetTypeFromParser(DS.getTypeRep());
276    assert(!Result.isNull() && "Didn't get a type for typeof?");
277    // TypeQuals handled by caller.
278    Result = Context.getTypeOfType(Result);
279    break;
280  case DeclSpec::TST_typeofExpr: {
281    Expr *E = static_cast<Expr *>(DS.getTypeRep());
282    assert(E && "Didn't get an expression for typeof?");
283    // TypeQuals handled by caller.
284    Result = Context.getTypeOfExprType(E);
285    break;
286  }
287  case DeclSpec::TST_decltype: {
288    Expr *E = static_cast<Expr *>(DS.getTypeRep());
289    assert(E && "Didn't get an expression for decltype?");
290    // TypeQuals handled by caller.
291    Result = BuildDecltypeType(E);
292    if (Result.isNull()) {
293      Result = Context.IntTy;
294      isInvalid = true;
295    }
296    break;
297  }
298  case DeclSpec::TST_auto: {
299    // TypeQuals handled by caller.
300    Result = Context.UndeducedAutoTy;
301    break;
302  }
303
304  case DeclSpec::TST_error:
305    Result = Context.IntTy;
306    isInvalid = true;
307    break;
308  }
309
310  // Handle complex types.
311  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
312    if (getLangOptions().Freestanding)
313      Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
314    Result = Context.getComplexType(Result);
315  }
316
317  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
318         "FIXME: imaginary types not supported yet!");
319
320  // See if there are any attributes on the declspec that apply to the type (as
321  // opposed to the decl).
322  if (const AttributeList *AL = DS.getAttributes())
323    ProcessTypeAttributeList(Result, AL);
324
325  // Apply const/volatile/restrict qualifiers to T.
326  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
327
328    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
329    // or incomplete types shall not be restrict-qualified."  C++ also allows
330    // restrict-qualified references.
331    if (TypeQuals & DeclSpec::TQ_restrict) {
332      if (Result->isPointerType() || Result->isReferenceType()) {
333        QualType EltTy = Result->isPointerType() ?
334          Result->getAs<PointerType>()->getPointeeType() :
335          Result->getAs<ReferenceType>()->getPointeeType();
336
337        // If we have a pointer or reference, the pointee must have an object
338        // incomplete type.
339        if (!EltTy->isIncompleteOrObjectType()) {
340          Diag(DS.getRestrictSpecLoc(),
341               diag::err_typecheck_invalid_restrict_invalid_pointee)
342            << EltTy << DS.getSourceRange();
343          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
344        }
345      } else {
346        Diag(DS.getRestrictSpecLoc(),
347             diag::err_typecheck_invalid_restrict_not_pointer)
348          << Result << DS.getSourceRange();
349        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
350      }
351    }
352
353    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
354    // of a function type includes any type qualifiers, the behavior is
355    // undefined."
356    if (Result->isFunctionType() && TypeQuals) {
357      // Get some location to point at, either the C or V location.
358      SourceLocation Loc;
359      if (TypeQuals & DeclSpec::TQ_const)
360        Loc = DS.getConstSpecLoc();
361      else if (TypeQuals & DeclSpec::TQ_volatile)
362        Loc = DS.getVolatileSpecLoc();
363      else {
364        assert((TypeQuals & DeclSpec::TQ_restrict) &&
365               "Has CVR quals but not C, V, or R?");
366        Loc = DS.getRestrictSpecLoc();
367      }
368      Diag(Loc, diag::warn_typecheck_function_qualifiers)
369        << Result << DS.getSourceRange();
370    }
371
372    // C++ [dcl.ref]p1:
373    //   Cv-qualified references are ill-formed except when the
374    //   cv-qualifiers are introduced through the use of a typedef
375    //   (7.1.3) or of a template type argument (14.3), in which
376    //   case the cv-qualifiers are ignored.
377    // FIXME: Shouldn't we be checking SCS_typedef here?
378    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
379        TypeQuals && Result->isReferenceType()) {
380      TypeQuals &= ~DeclSpec::TQ_const;
381      TypeQuals &= ~DeclSpec::TQ_volatile;
382    }
383
384    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
385    Result = Context.getQualifiedType(Result, Quals);
386  }
387
388  if (SourceTy.isNull())
389    SourceTy = Result;
390  return Result;
391}
392
393static std::string getPrintableNameForEntity(DeclarationName Entity) {
394  if (Entity)
395    return Entity.getAsString();
396
397  return "type name";
398}
399
400/// \brief Build a pointer type.
401///
402/// \param T The type to which we'll be building a pointer.
403///
404/// \param Quals The cvr-qualifiers to be applied to the pointer type.
405///
406/// \param Loc The location of the entity whose type involves this
407/// pointer type or, if there is no such entity, the location of the
408/// type that will have pointer type.
409///
410/// \param Entity The name of the entity that involves the pointer
411/// type, if known.
412///
413/// \returns A suitable pointer type, if there are no
414/// errors. Otherwise, returns a NULL type.
415QualType Sema::BuildPointerType(QualType T, unsigned Quals,
416                                SourceLocation Loc, DeclarationName Entity) {
417  if (T->isReferenceType()) {
418    // C++ 8.3.2p4: There shall be no ... pointers to references ...
419    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
420      << getPrintableNameForEntity(Entity);
421    return QualType();
422  }
423
424  Qualifiers Qs = Qualifiers::fromCVRMask(Quals);
425
426  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
427  // object or incomplete types shall not be restrict-qualified."
428  if (Qs.hasRestrict() && !T->isIncompleteOrObjectType()) {
429    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
430      << T;
431    Qs.removeRestrict();
432  }
433
434  // Build the pointer type.
435  return Context.getQualifiedType(Context.getPointerType(T), Qs);
436}
437
438/// \brief Build a reference type.
439///
440/// \param T The type to which we'll be building a reference.
441///
442/// \param CVR The cvr-qualifiers to be applied to the reference type.
443///
444/// \param Loc The location of the entity whose type involves this
445/// reference type or, if there is no such entity, the location of the
446/// type that will have reference type.
447///
448/// \param Entity The name of the entity that involves the reference
449/// type, if known.
450///
451/// \returns A suitable reference type, if there are no
452/// errors. Otherwise, returns a NULL type.
453QualType Sema::BuildReferenceType(QualType T, bool LValueRef, unsigned CVR,
454                                  SourceLocation Loc, DeclarationName Entity) {
455  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
456  if (LValueRef) {
457    if (const RValueReferenceType *R = T->getAs<RValueReferenceType>()) {
458      // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
459      //   reference to a type T, and attempt to create the type "lvalue
460      //   reference to cv TD" creates the type "lvalue reference to T".
461      // We use the qualifiers (restrict or none) of the original reference,
462      // not the new ones. This is consistent with GCC.
463      QualType LVRT = Context.getLValueReferenceType(R->getPointeeType());
464      return Context.getQualifiedType(LVRT, T.getQualifiers());
465    }
466  }
467  if (T->isReferenceType()) {
468    // C++ [dcl.ref]p4: There shall be no references to references.
469    //
470    // According to C++ DR 106, references to references are only
471    // diagnosed when they are written directly (e.g., "int & &"),
472    // but not when they happen via a typedef:
473    //
474    //   typedef int& intref;
475    //   typedef intref& intref2;
476    //
477    // Parser::ParseDeclaratorInternal diagnoses the case where
478    // references are written directly; here, we handle the
479    // collapsing of references-to-references as described in C++
480    // DR 106 and amended by C++ DR 540.
481    return T;
482  }
483
484  // C++ [dcl.ref]p1:
485  //   A declarator that specifies the type "reference to cv void"
486  //   is ill-formed.
487  if (T->isVoidType()) {
488    Diag(Loc, diag::err_reference_to_void);
489    return QualType();
490  }
491
492  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
493  // object or incomplete types shall not be restrict-qualified."
494  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
495    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
496      << T;
497    Quals.removeRestrict();
498  }
499
500  // C++ [dcl.ref]p1:
501  //   [...] Cv-qualified references are ill-formed except when the
502  //   cv-qualifiers are introduced through the use of a typedef
503  //   (7.1.3) or of a template type argument (14.3), in which case
504  //   the cv-qualifiers are ignored.
505  //
506  // We diagnose extraneous cv-qualifiers for the non-typedef,
507  // non-template type argument case within the parser. Here, we just
508  // ignore any extraneous cv-qualifiers.
509  Quals.removeConst();
510  Quals.removeVolatile();
511
512  // Handle restrict on references.
513  if (LValueRef)
514    return Context.getQualifiedType(Context.getLValueReferenceType(T), Quals);
515  return Context.getQualifiedType(Context.getRValueReferenceType(T), Quals);
516}
517
518/// \brief Build an array type.
519///
520/// \param T The type of each element in the array.
521///
522/// \param ASM C99 array size modifier (e.g., '*', 'static').
523///
524/// \param ArraySize Expression describing the size of the array.
525///
526/// \param Quals The cvr-qualifiers to be applied to the array's
527/// element type.
528///
529/// \param Loc The location of the entity whose type involves this
530/// array type or, if there is no such entity, the location of the
531/// type that will have array type.
532///
533/// \param Entity The name of the entity that involves the array
534/// type, if known.
535///
536/// \returns A suitable array type, if there are no errors. Otherwise,
537/// returns a NULL type.
538QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
539                              Expr *ArraySize, unsigned Quals,
540                              SourceRange Brackets, DeclarationName Entity) {
541
542  SourceLocation Loc = Brackets.getBegin();
543  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
544  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
545  if (RequireCompleteType(Loc, T,
546                             diag::err_illegal_decl_array_incomplete_type))
547    return QualType();
548
549  if (T->isFunctionType()) {
550    Diag(Loc, diag::err_illegal_decl_array_of_functions)
551      << getPrintableNameForEntity(Entity);
552    return QualType();
553  }
554
555  // C++ 8.3.2p4: There shall be no ... arrays of references ...
556  if (T->isReferenceType()) {
557    Diag(Loc, diag::err_illegal_decl_array_of_references)
558      << getPrintableNameForEntity(Entity);
559    return QualType();
560  }
561
562  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
563    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
564      << getPrintableNameForEntity(Entity);
565    return QualType();
566  }
567
568  if (const RecordType *EltTy = T->getAs<RecordType>()) {
569    // If the element type is a struct or union that contains a variadic
570    // array, accept it as a GNU extension: C99 6.7.2.1p2.
571    if (EltTy->getDecl()->hasFlexibleArrayMember())
572      Diag(Loc, diag::ext_flexible_array_in_array) << T;
573  } else if (T->isObjCInterfaceType()) {
574    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
575    return QualType();
576  }
577
578  // C99 6.7.5.2p1: The size expression shall have integer type.
579  if (ArraySize && !ArraySize->isTypeDependent() &&
580      !ArraySize->getType()->isIntegerType()) {
581    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
582      << ArraySize->getType() << ArraySize->getSourceRange();
583    ArraySize->Destroy(Context);
584    return QualType();
585  }
586  llvm::APSInt ConstVal(32);
587  if (!ArraySize) {
588    if (ASM == ArrayType::Star)
589      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
590    else
591      T = Context.getIncompleteArrayType(T, ASM, Quals);
592  } else if (ArraySize->isValueDependent()) {
593    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
594  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
595             (!T->isDependentType() && !T->isConstantSizeType())) {
596    // Per C99, a variable array is an array with either a non-constant
597    // size or an element type that has a non-constant-size
598    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
599  } else {
600    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
601    // have a value greater than zero.
602    if (ConstVal.isSigned()) {
603      if (ConstVal.isNegative()) {
604        Diag(ArraySize->getLocStart(),
605             diag::err_typecheck_negative_array_size)
606          << ArraySize->getSourceRange();
607        return QualType();
608      } else if (ConstVal == 0) {
609        // GCC accepts zero sized static arrays.
610        Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
611          << ArraySize->getSourceRange();
612      }
613    }
614    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
615  }
616  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
617  if (!getLangOptions().C99) {
618    if (ArraySize && !ArraySize->isTypeDependent() &&
619        !ArraySize->isValueDependent() &&
620        !ArraySize->isIntegerConstantExpr(Context))
621      Diag(Loc, getLangOptions().CPlusPlus? diag::err_vla_cxx : diag::ext_vla);
622    else if (ASM != ArrayType::Normal || Quals != 0)
623      Diag(Loc,
624           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
625                                     : diag::ext_c99_array_usage);
626  }
627
628  return T;
629}
630
631/// \brief Build an ext-vector type.
632///
633/// Run the required checks for the extended vector type.
634QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
635                                  SourceLocation AttrLoc) {
636
637  Expr *Arg = (Expr *)ArraySize.get();
638
639  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
640  // in conjunction with complex types (pointers, arrays, functions, etc.).
641  if (!T->isDependentType() &&
642      !T->isIntegerType() && !T->isRealFloatingType()) {
643    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
644    return QualType();
645  }
646
647  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
648    llvm::APSInt vecSize(32);
649    if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
650      Diag(AttrLoc, diag::err_attribute_argument_not_int)
651      << "ext_vector_type" << Arg->getSourceRange();
652      return QualType();
653    }
654
655    // unlike gcc's vector_size attribute, the size is specified as the
656    // number of elements, not the number of bytes.
657    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
658
659    if (vectorSize == 0) {
660      Diag(AttrLoc, diag::err_attribute_zero_size)
661      << Arg->getSourceRange();
662      return QualType();
663    }
664
665    if (!T->isDependentType())
666      return Context.getExtVectorType(T, vectorSize);
667  }
668
669  return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
670                                                AttrLoc);
671}
672
673/// \brief Build a function type.
674///
675/// This routine checks the function type according to C++ rules and
676/// under the assumption that the result type and parameter types have
677/// just been instantiated from a template. It therefore duplicates
678/// some of the behavior of GetTypeForDeclarator, but in a much
679/// simpler form that is only suitable for this narrow use case.
680///
681/// \param T The return type of the function.
682///
683/// \param ParamTypes The parameter types of the function. This array
684/// will be modified to account for adjustments to the types of the
685/// function parameters.
686///
687/// \param NumParamTypes The number of parameter types in ParamTypes.
688///
689/// \param Variadic Whether this is a variadic function type.
690///
691/// \param Quals The cvr-qualifiers to be applied to the function type.
692///
693/// \param Loc The location of the entity whose type involves this
694/// function type or, if there is no such entity, the location of the
695/// type that will have function type.
696///
697/// \param Entity The name of the entity that involves the function
698/// type, if known.
699///
700/// \returns A suitable function type, if there are no
701/// errors. Otherwise, returns a NULL type.
702QualType Sema::BuildFunctionType(QualType T,
703                                 QualType *ParamTypes,
704                                 unsigned NumParamTypes,
705                                 bool Variadic, unsigned Quals,
706                                 SourceLocation Loc, DeclarationName Entity) {
707  if (T->isArrayType() || T->isFunctionType()) {
708    Diag(Loc, diag::err_func_returning_array_function) << T;
709    return QualType();
710  }
711
712  bool Invalid = false;
713  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
714    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
715    if (ParamType->isVoidType()) {
716      Diag(Loc, diag::err_param_with_void_type);
717      Invalid = true;
718    }
719
720    ParamTypes[Idx] = adjustFunctionParamType(ParamType);
721  }
722
723  if (Invalid)
724    return QualType();
725
726  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
727                                 Quals);
728}
729
730/// \brief Build a member pointer type \c T Class::*.
731///
732/// \param T the type to which the member pointer refers.
733/// \param Class the class type into which the member pointer points.
734/// \param CVR Qualifiers applied to the member pointer type
735/// \param Loc the location where this type begins
736/// \param Entity the name of the entity that will have this member pointer type
737///
738/// \returns a member pointer type, if successful, or a NULL type if there was
739/// an error.
740QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
741                                      unsigned CVR, SourceLocation Loc,
742                                      DeclarationName Entity) {
743  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
744
745  // Verify that we're not building a pointer to pointer to function with
746  // exception specification.
747  if (CheckDistantExceptionSpec(T)) {
748    Diag(Loc, diag::err_distant_exception_spec);
749
750    // FIXME: If we're doing this as part of template instantiation,
751    // we should return immediately.
752
753    // Build the type anyway, but use the canonical type so that the
754    // exception specifiers are stripped off.
755    T = Context.getCanonicalType(T);
756  }
757
758  // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
759  //   with reference type, or "cv void."
760  if (T->isReferenceType()) {
761    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
762      << (Entity? Entity.getAsString() : "type name");
763    return QualType();
764  }
765
766  if (T->isVoidType()) {
767    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
768      << (Entity? Entity.getAsString() : "type name");
769    return QualType();
770  }
771
772  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
773  // object or incomplete types shall not be restrict-qualified."
774  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
775    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
776      << T;
777
778    // FIXME: If we're doing this as part of template instantiation,
779    // we should return immediately.
780    Quals.removeRestrict();
781  }
782
783  if (!Class->isDependentType() && !Class->isRecordType()) {
784    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
785    return QualType();
786  }
787
788  return Context.getQualifiedType(
789           Context.getMemberPointerType(T, Class.getTypePtr()), Quals);
790}
791
792/// \brief Build a block pointer type.
793///
794/// \param T The type to which we'll be building a block pointer.
795///
796/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
797///
798/// \param Loc The location of the entity whose type involves this
799/// block pointer type or, if there is no such entity, the location of the
800/// type that will have block pointer type.
801///
802/// \param Entity The name of the entity that involves the block pointer
803/// type, if known.
804///
805/// \returns A suitable block pointer type, if there are no
806/// errors. Otherwise, returns a NULL type.
807QualType Sema::BuildBlockPointerType(QualType T, unsigned CVR,
808                                     SourceLocation Loc,
809                                     DeclarationName Entity) {
810  if (!T->isFunctionType()) {
811    Diag(Loc, diag::err_nonfunction_block_type);
812    return QualType();
813  }
814
815  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
816  return Context.getQualifiedType(Context.getBlockPointerType(T), Quals);
817}
818
819QualType Sema::GetTypeFromParser(TypeTy *Ty, DeclaratorInfo **DInfo) {
820  QualType QT = QualType::getFromOpaquePtr(Ty);
821  DeclaratorInfo *DI = 0;
822  if (LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
823    QT = LIT->getType();
824    DI = LIT->getDeclaratorInfo();
825  }
826
827  if (DInfo) *DInfo = DI;
828  return QT;
829}
830
831/// GetTypeForDeclarator - Convert the type for the specified
832/// declarator to Type instances. Skip the outermost Skip type
833/// objects.
834///
835/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
836/// owns the declaration of a type (e.g., the definition of a struct
837/// type), then *OwnedDecl will receive the owned declaration.
838QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
839                                    DeclaratorInfo **DInfo, unsigned Skip,
840                                    TagDecl **OwnedDecl) {
841  bool OmittedReturnType = false;
842
843  if (D.getContext() == Declarator::BlockLiteralContext
844      && Skip == 0
845      && !D.getDeclSpec().hasTypeSpecifier()
846      && (D.getNumTypeObjects() == 0
847          || (D.getNumTypeObjects() == 1
848              && D.getTypeObject(0).Kind == DeclaratorChunk::Function)))
849    OmittedReturnType = true;
850
851  // long long is a C99 feature.
852  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
853      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
854    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
855
856  // Determine the type of the declarator. Not all forms of declarator
857  // have a type.
858  QualType T;
859  // The QualType referring to the type as written in source code. We can't use
860  // T because it can change due to semantic analysis.
861  QualType SourceTy;
862
863  switch (D.getKind()) {
864  case Declarator::DK_Abstract:
865  case Declarator::DK_Normal:
866  case Declarator::DK_Operator:
867  case Declarator::DK_TemplateId: {
868    const DeclSpec &DS = D.getDeclSpec();
869    if (OmittedReturnType) {
870      // We default to a dependent type initially.  Can be modified by
871      // the first return statement.
872      T = Context.DependentTy;
873    } else {
874      bool isInvalid = false;
875      T = ConvertDeclSpecToType(DS, D.getIdentifierLoc(), isInvalid, SourceTy);
876      if (isInvalid)
877        D.setInvalidType(true);
878      else if (OwnedDecl && DS.isTypeSpecOwned())
879        *OwnedDecl = cast<TagDecl>((Decl *)DS.getTypeRep());
880    }
881    break;
882  }
883
884  case Declarator::DK_Constructor:
885  case Declarator::DK_Destructor:
886  case Declarator::DK_Conversion:
887    // Constructors and destructors don't have return types. Use
888    // "void" instead. Conversion operators will check their return
889    // types separately.
890    T = Context.VoidTy;
891    break;
892  }
893
894  if (SourceTy.isNull())
895    SourceTy = T;
896
897  if (T == Context.UndeducedAutoTy) {
898    int Error = -1;
899
900    switch (D.getContext()) {
901    case Declarator::KNRTypeListContext:
902      assert(0 && "K&R type lists aren't allowed in C++");
903      break;
904    case Declarator::PrototypeContext:
905      Error = 0; // Function prototype
906      break;
907    case Declarator::MemberContext:
908      switch (cast<TagDecl>(CurContext)->getTagKind()) {
909      case TagDecl::TK_enum: assert(0 && "unhandled tag kind"); break;
910      case TagDecl::TK_struct: Error = 1; /* Struct member */ break;
911      case TagDecl::TK_union:  Error = 2; /* Union member */ break;
912      case TagDecl::TK_class:  Error = 3; /* Class member */ break;
913      }
914      break;
915    case Declarator::CXXCatchContext:
916      Error = 4; // Exception declaration
917      break;
918    case Declarator::TemplateParamContext:
919      Error = 5; // Template parameter
920      break;
921    case Declarator::BlockLiteralContext:
922      Error = 6;  // Block literal
923      break;
924    case Declarator::FileContext:
925    case Declarator::BlockContext:
926    case Declarator::ForContext:
927    case Declarator::ConditionContext:
928    case Declarator::TypeNameContext:
929      break;
930    }
931
932    if (Error != -1) {
933      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
934        << Error;
935      T = Context.IntTy;
936      D.setInvalidType(true);
937    }
938  }
939
940  // The name we're declaring, if any.
941  DeclarationName Name;
942  if (D.getIdentifier())
943    Name = D.getIdentifier();
944
945  bool ShouldBuildInfo = DInfo != 0;
946
947  // Walk the DeclTypeInfo, building the recursive type as we go.
948  // DeclTypeInfos are ordered from the identifier out, which is
949  // opposite of what we want :).
950  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
951    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1+Skip);
952    switch (DeclType.Kind) {
953    default: assert(0 && "Unknown decltype!");
954    case DeclaratorChunk::BlockPointer:
955      if (ShouldBuildInfo) {
956        if (SourceTy->isFunctionType())
957          SourceTy
958            = Context.getQualifiedType(Context.getBlockPointerType(SourceTy),
959                             Qualifiers::fromCVRMask(DeclType.Cls.TypeQuals));
960        else
961          // If not function type Context::getBlockPointerType asserts,
962          // so just give up.
963          ShouldBuildInfo = false;
964      }
965
966      // If blocks are disabled, emit an error.
967      if (!LangOpts.Blocks)
968        Diag(DeclType.Loc, diag::err_blocks_disable);
969
970      T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(),
971                                Name);
972      break;
973    case DeclaratorChunk::Pointer:
974      //FIXME: Use ObjCObjectPointer for info when appropriate.
975      if (ShouldBuildInfo)
976        SourceTy = Context.getQualifiedType(Context.getPointerType(SourceTy),
977                             Qualifiers::fromCVRMask(DeclType.Ptr.TypeQuals));
978      // Verify that we're not building a pointer to pointer to function with
979      // exception specification.
980      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
981        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
982        D.setInvalidType(true);
983        // Build the type anyway.
984      }
985      if (getLangOptions().ObjC1 && T->isObjCInterfaceType()) {
986        const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>();
987        T = Context.getObjCObjectPointerType(T,
988                                         (ObjCProtocolDecl **)OIT->qual_begin(),
989                                         OIT->getNumProtocols());
990        break;
991      }
992      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
993      break;
994    case DeclaratorChunk::Reference: {
995      Qualifiers Quals;
996      if (DeclType.Ref.HasRestrict) Quals.addRestrict();
997
998      if (ShouldBuildInfo) {
999        if (DeclType.Ref.LValueRef)
1000          SourceTy = Context.getLValueReferenceType(SourceTy);
1001        else
1002          SourceTy = Context.getRValueReferenceType(SourceTy);
1003        SourceTy = Context.getQualifiedType(SourceTy, Quals);
1004      }
1005
1006      // Verify that we're not building a reference to pointer to function with
1007      // exception specification.
1008      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1009        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1010        D.setInvalidType(true);
1011        // Build the type anyway.
1012      }
1013      T = BuildReferenceType(T, DeclType.Ref.LValueRef, Quals,
1014                             DeclType.Loc, Name);
1015      break;
1016    }
1017    case DeclaratorChunk::Array: {
1018      if (ShouldBuildInfo)
1019        // We just need to get an array type, the exact type doesn't matter.
1020        SourceTy = Context.getIncompleteArrayType(SourceTy, ArrayType::Normal,
1021                                                  DeclType.Arr.TypeQuals);
1022
1023      // Verify that we're not building an array of pointers to function with
1024      // exception specification.
1025      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1026        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1027        D.setInvalidType(true);
1028        // Build the type anyway.
1029      }
1030      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1031      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
1032      ArrayType::ArraySizeModifier ASM;
1033      if (ATI.isStar)
1034        ASM = ArrayType::Star;
1035      else if (ATI.hasStatic)
1036        ASM = ArrayType::Static;
1037      else
1038        ASM = ArrayType::Normal;
1039      if (ASM == ArrayType::Star &&
1040          D.getContext() != Declarator::PrototypeContext) {
1041        // FIXME: This check isn't quite right: it allows star in prototypes
1042        // for function definitions, and disallows some edge cases detailed
1043        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
1044        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
1045        ASM = ArrayType::Normal;
1046        D.setInvalidType(true);
1047      }
1048      T = BuildArrayType(T, ASM, ArraySize,
1049                         Qualifiers::fromCVRMask(ATI.TypeQuals),
1050                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
1051      break;
1052    }
1053    case DeclaratorChunk::Function: {
1054      if (ShouldBuildInfo) {
1055        const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1056        llvm::SmallVector<QualType, 16> ArgTys;
1057
1058        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1059          ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
1060          if (Param) {
1061            QualType ArgTy = adjustFunctionParamType(Param->getType());
1062
1063            ArgTys.push_back(ArgTy);
1064          }
1065        }
1066        SourceTy = Context.getFunctionType(SourceTy, ArgTys.data(),
1067                                           ArgTys.size(),
1068                                           FTI.isVariadic,
1069                                           FTI.TypeQuals);
1070      }
1071
1072      // If the function declarator has a prototype (i.e. it is not () and
1073      // does not have a K&R-style identifier list), then the arguments are part
1074      // of the type, otherwise the argument list is ().
1075      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1076
1077      // C99 6.7.5.3p1: The return type may not be a function or array type.
1078      if (T->isArrayType() || T->isFunctionType()) {
1079        Diag(DeclType.Loc, diag::err_func_returning_array_function) << T;
1080        T = Context.IntTy;
1081        D.setInvalidType(true);
1082      }
1083
1084      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
1085        // C++ [dcl.fct]p6:
1086        //   Types shall not be defined in return or parameter types.
1087        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
1088        if (Tag->isDefinition())
1089          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
1090            << Context.getTypeDeclType(Tag);
1091      }
1092
1093      // Exception specs are not allowed in typedefs. Complain, but add it
1094      // anyway.
1095      if (FTI.hasExceptionSpec &&
1096          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1097        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
1098
1099      if (FTI.NumArgs == 0) {
1100        if (getLangOptions().CPlusPlus) {
1101          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
1102          // function takes no arguments.
1103          llvm::SmallVector<QualType, 4> Exceptions;
1104          Exceptions.reserve(FTI.NumExceptions);
1105          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1106            // FIXME: Preserve type source info.
1107            QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1108            // Check that the type is valid for an exception spec, and drop it
1109            // if not.
1110            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1111              Exceptions.push_back(ET);
1112          }
1113          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
1114                                      FTI.hasExceptionSpec,
1115                                      FTI.hasAnyExceptionSpec,
1116                                      Exceptions.size(), Exceptions.data());
1117        } else if (FTI.isVariadic) {
1118          // We allow a zero-parameter variadic function in C if the
1119          // function is marked with the "overloadable"
1120          // attribute. Scan for this attribute now.
1121          bool Overloadable = false;
1122          for (const AttributeList *Attrs = D.getAttributes();
1123               Attrs; Attrs = Attrs->getNext()) {
1124            if (Attrs->getKind() == AttributeList::AT_overloadable) {
1125              Overloadable = true;
1126              break;
1127            }
1128          }
1129
1130          if (!Overloadable)
1131            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
1132          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0);
1133        } else {
1134          // Simple void foo(), where the incoming T is the result type.
1135          T = Context.getFunctionNoProtoType(T);
1136        }
1137      } else if (FTI.ArgInfo[0].Param == 0) {
1138        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
1139        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
1140      } else {
1141        // Otherwise, we have a function with an argument list that is
1142        // potentially variadic.
1143        llvm::SmallVector<QualType, 16> ArgTys;
1144
1145        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1146          ParmVarDecl *Param =
1147            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
1148          QualType ArgTy = Param->getType();
1149          assert(!ArgTy.isNull() && "Couldn't parse type?");
1150
1151          // Adjust the parameter type.
1152          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1153
1154          // Look for 'void'.  void is allowed only as a single argument to a
1155          // function with no other parameters (C99 6.7.5.3p10).  We record
1156          // int(void) as a FunctionProtoType with an empty argument list.
1157          if (ArgTy->isVoidType()) {
1158            // If this is something like 'float(int, void)', reject it.  'void'
1159            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1160            // have arguments of incomplete type.
1161            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1162              Diag(DeclType.Loc, diag::err_void_only_param);
1163              ArgTy = Context.IntTy;
1164              Param->setType(ArgTy);
1165            } else if (FTI.ArgInfo[i].Ident) {
1166              // Reject, but continue to parse 'int(void abc)'.
1167              Diag(FTI.ArgInfo[i].IdentLoc,
1168                   diag::err_param_with_void_type);
1169              ArgTy = Context.IntTy;
1170              Param->setType(ArgTy);
1171            } else {
1172              // Reject, but continue to parse 'float(const void)'.
1173              if (ArgTy.hasQualifiers())
1174                Diag(DeclType.Loc, diag::err_void_param_qualified);
1175
1176              // Do not add 'void' to the ArgTys list.
1177              break;
1178            }
1179          } else if (!FTI.hasPrototype) {
1180            if (ArgTy->isPromotableIntegerType()) {
1181              ArgTy = Context.getPromotedIntegerType(ArgTy);
1182            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
1183              if (BTy->getKind() == BuiltinType::Float)
1184                ArgTy = Context.DoubleTy;
1185            }
1186          }
1187
1188          ArgTys.push_back(adjustFunctionParamType(ArgTy));
1189        }
1190
1191        llvm::SmallVector<QualType, 4> Exceptions;
1192        Exceptions.reserve(FTI.NumExceptions);
1193        for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1194          // FIXME: Preserve type source info.
1195          QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1196          // Check that the type is valid for an exception spec, and drop it if
1197          // not.
1198          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1199            Exceptions.push_back(ET);
1200        }
1201
1202        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
1203                                    FTI.isVariadic, FTI.TypeQuals,
1204                                    FTI.hasExceptionSpec,
1205                                    FTI.hasAnyExceptionSpec,
1206                                    Exceptions.size(), Exceptions.data());
1207      }
1208      break;
1209    }
1210    case DeclaratorChunk::MemberPointer:
1211      // Verify that we're not building a pointer to pointer to function with
1212      // exception specification.
1213      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1214        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1215        D.setInvalidType(true);
1216        // Build the type anyway.
1217      }
1218      // The scope spec must refer to a class, or be dependent.
1219      QualType ClsType;
1220      if (isDependentScopeSpecifier(DeclType.Mem.Scope())) {
1221        NestedNameSpecifier *NNS
1222          = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
1223        assert(NNS->getAsType() && "Nested-name-specifier must name a type");
1224        ClsType = QualType(NNS->getAsType(), 0);
1225      } else if (CXXRecordDecl *RD
1226                   = dyn_cast_or_null<CXXRecordDecl>(
1227                                    computeDeclContext(DeclType.Mem.Scope()))) {
1228        ClsType = Context.getTagDeclType(RD);
1229      } else {
1230        Diag(DeclType.Mem.Scope().getBeginLoc(),
1231             diag::err_illegal_decl_mempointer_in_nonclass)
1232          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1233          << DeclType.Mem.Scope().getRange();
1234        D.setInvalidType(true);
1235      }
1236
1237      if (ShouldBuildInfo) {
1238        QualType cls = !ClsType.isNull() ? ClsType : Context.IntTy;
1239        SourceTy = Context.getQualifiedType(
1240                      Context.getMemberPointerType(SourceTy, cls.getTypePtr()),
1241                      Qualifiers::fromCVRMask(DeclType.Mem.TypeQuals));
1242      }
1243
1244      if (!ClsType.isNull())
1245        T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals,
1246                                   DeclType.Loc, D.getIdentifier());
1247      if (T.isNull()) {
1248        T = Context.IntTy;
1249        D.setInvalidType(true);
1250      }
1251      break;
1252    }
1253
1254    if (T.isNull()) {
1255      D.setInvalidType(true);
1256      T = Context.IntTy;
1257    }
1258
1259    // See if there are any attributes on this declarator chunk.
1260    if (const AttributeList *AL = DeclType.getAttrs())
1261      ProcessTypeAttributeList(T, AL);
1262  }
1263
1264  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1265    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
1266    assert(FnTy && "Why oh why is there not a FunctionProtoType here ?");
1267
1268    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1269    // for a nonstatic member function, the function type to which a pointer
1270    // to member refers, or the top-level function type of a function typedef
1271    // declaration.
1272    if (FnTy->getTypeQuals() != 0 &&
1273        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1274        ((D.getContext() != Declarator::MemberContext &&
1275          (!D.getCXXScopeSpec().isSet() ||
1276           !computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)
1277              ->isRecord())) ||
1278         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1279      if (D.isFunctionDeclarator())
1280        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1281      else
1282        Diag(D.getIdentifierLoc(),
1283             diag::err_invalid_qualified_typedef_function_type_use);
1284
1285      // Strip the cv-quals from the type.
1286      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1287                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
1288    }
1289  }
1290
1291  // If there were any type attributes applied to the decl itself (not the
1292  // type, apply the type attribute to the type!)
1293  if (const AttributeList *Attrs = D.getAttributes())
1294    ProcessTypeAttributeList(T, Attrs);
1295
1296  if (ShouldBuildInfo)
1297    *DInfo = GetDeclaratorInfoForDeclarator(D, SourceTy, Skip);
1298
1299  return T;
1300}
1301
1302namespace {
1303  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
1304    const DeclSpec &DS;
1305
1306  public:
1307    TypeSpecLocFiller(const DeclSpec &DS) : DS(DS) {}
1308
1309    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1310      Visit(TL.getUnqualifiedLoc());
1311    }
1312    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
1313      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1314    }
1315    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
1316      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1317    }
1318    void VisitObjCProtocolListTypeLoc(ObjCProtocolListTypeLoc TL) {
1319      assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1320      TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1321      TL.setRAngleLoc(DS.getSourceRange().getEnd());
1322      for (unsigned i = 0; i != DS.getNumProtocolQualifiers(); ++i)
1323        TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1324
1325      TypeLoc BaseLoc = TL.getBaseTypeLoc();
1326      if (BaseLoc)
1327        Visit(TL.getBaseTypeLoc());
1328    }
1329    void VisitTypeLoc(TypeLoc TL) {
1330      // FIXME: add other typespec types and change this to an assert.
1331      TL.initialize(DS.getTypeSpecTypeLoc());
1332    }
1333  };
1334
1335  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
1336    const DeclaratorChunk &Chunk;
1337
1338  public:
1339    DeclaratorLocFiller(const DeclaratorChunk &Chunk) : Chunk(Chunk) {}
1340
1341    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1342      llvm::llvm_unreachable("qualified type locs not expected here!");
1343    }
1344
1345    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
1346      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
1347      TL.setCaretLoc(Chunk.Loc);
1348    }
1349    void VisitPointerTypeLoc(PointerTypeLoc TL) {
1350      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1351      TL.setStarLoc(Chunk.Loc);
1352    }
1353    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1354      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1355      TL.setStarLoc(Chunk.Loc);
1356    }
1357    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
1358      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
1359      TL.setStarLoc(Chunk.Loc);
1360      // FIXME: nested name specifier
1361    }
1362    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
1363      assert(Chunk.Kind == DeclaratorChunk::Reference);
1364      assert(Chunk.Ref.LValueRef);
1365      TL.setAmpLoc(Chunk.Loc);
1366    }
1367    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
1368      assert(Chunk.Kind == DeclaratorChunk::Reference);
1369      assert(!Chunk.Ref.LValueRef);
1370      TL.setAmpAmpLoc(Chunk.Loc);
1371    }
1372    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
1373      assert(Chunk.Kind == DeclaratorChunk::Array);
1374      TL.setLBracketLoc(Chunk.Loc);
1375      TL.setRBracketLoc(Chunk.EndLoc);
1376      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
1377    }
1378    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
1379      assert(Chunk.Kind == DeclaratorChunk::Function);
1380      TL.setLParenLoc(Chunk.Loc);
1381      TL.setRParenLoc(Chunk.EndLoc);
1382
1383      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
1384      for (unsigned i = 0, e = FTI.NumArgs, tpi = 0; i != e; ++i) {
1385        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
1386        if (Param) {
1387          assert(tpi < TL.getNumArgs());
1388          TL.setArg(tpi++, Param);
1389        }
1390      }
1391      // FIXME: exception specs
1392    }
1393
1394    void VisitTypeLoc(TypeLoc TL) {
1395      llvm::llvm_unreachable("unsupported TypeLoc kind in declarator!");
1396    }
1397  };
1398}
1399
1400/// \brief Create and instantiate a DeclaratorInfo with type source information.
1401///
1402/// \param T QualType referring to the type as written in source code.
1403DeclaratorInfo *
1404Sema::GetDeclaratorInfoForDeclarator(Declarator &D, QualType T, unsigned Skip) {
1405  DeclaratorInfo *DInfo = Context.CreateDeclaratorInfo(T);
1406  UnqualTypeLoc CurrTL = DInfo->getTypeLoc().getUnqualifiedLoc();
1407
1408  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
1409    DeclaratorLocFiller(D.getTypeObject(i)).Visit(CurrTL);
1410    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
1411  }
1412
1413  TypeSpecLocFiller(D.getDeclSpec()).Visit(CurrTL);
1414
1415  return DInfo;
1416}
1417
1418/// \brief Create a LocInfoType to hold the given QualType and DeclaratorInfo.
1419QualType Sema::CreateLocInfoType(QualType T, DeclaratorInfo *DInfo) {
1420  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
1421  // and Sema during declaration parsing. Try deallocating/caching them when
1422  // it's appropriate, instead of allocating them and keeping them around.
1423  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), 8);
1424  new (LocT) LocInfoType(T, DInfo);
1425  assert(LocT->getTypeClass() != T->getTypeClass() &&
1426         "LocInfoType's TypeClass conflicts with an existing Type class");
1427  return QualType(LocT, 0);
1428}
1429
1430void LocInfoType::getAsStringInternal(std::string &Str,
1431                                      const PrintingPolicy &Policy) const {
1432  assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
1433         " was used directly instead of getting the QualType through"
1434         " GetTypeFromParser");
1435}
1436
1437/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
1438/// declarator
1439QualType Sema::ObjCGetTypeForMethodDefinition(DeclPtrTy D) {
1440  ObjCMethodDecl *MDecl = cast<ObjCMethodDecl>(D.getAs<Decl>());
1441  QualType T = MDecl->getResultType();
1442  llvm::SmallVector<QualType, 16> ArgTys;
1443
1444  // Add the first two invisible argument types for self and _cmd.
1445  if (MDecl->isInstanceMethod()) {
1446    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
1447    selfTy = Context.getPointerType(selfTy);
1448    ArgTys.push_back(selfTy);
1449  } else
1450    ArgTys.push_back(Context.getObjCIdType());
1451  ArgTys.push_back(Context.getObjCSelType());
1452
1453  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
1454       E = MDecl->param_end(); PI != E; ++PI) {
1455    QualType ArgTy = (*PI)->getType();
1456    assert(!ArgTy.isNull() && "Couldn't parse type?");
1457    ArgTy = adjustParameterType(ArgTy);
1458    ArgTys.push_back(ArgTy);
1459  }
1460  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
1461                              MDecl->isVariadic(), 0);
1462  return T;
1463}
1464
1465/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
1466/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
1467/// they point to and return true. If T1 and T2 aren't pointer types
1468/// or pointer-to-member types, or if they are not similar at this
1469/// level, returns false and leaves T1 and T2 unchanged. Top-level
1470/// qualifiers on T1 and T2 are ignored. This function will typically
1471/// be called in a loop that successively "unwraps" pointer and
1472/// pointer-to-member types to compare them at each level.
1473bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
1474  const PointerType *T1PtrType = T1->getAs<PointerType>(),
1475                    *T2PtrType = T2->getAs<PointerType>();
1476  if (T1PtrType && T2PtrType) {
1477    T1 = T1PtrType->getPointeeType();
1478    T2 = T2PtrType->getPointeeType();
1479    return true;
1480  }
1481
1482  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
1483                          *T2MPType = T2->getAs<MemberPointerType>();
1484  if (T1MPType && T2MPType &&
1485      Context.getCanonicalType(T1MPType->getClass()) ==
1486      Context.getCanonicalType(T2MPType->getClass())) {
1487    T1 = T1MPType->getPointeeType();
1488    T2 = T2MPType->getPointeeType();
1489    return true;
1490  }
1491  return false;
1492}
1493
1494Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1495  // C99 6.7.6: Type names have no identifier.  This is already validated by
1496  // the parser.
1497  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1498
1499  DeclaratorInfo *DInfo = 0;
1500  TagDecl *OwnedTag = 0;
1501  QualType T = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0, &OwnedTag);
1502  if (D.isInvalidType())
1503    return true;
1504
1505  if (getLangOptions().CPlusPlus) {
1506    // Check that there are no default arguments (C++ only).
1507    CheckExtraCXXDefaultArguments(D);
1508
1509    // C++0x [dcl.type]p3:
1510    //   A type-specifier-seq shall not define a class or enumeration
1511    //   unless it appears in the type-id of an alias-declaration
1512    //   (7.1.3).
1513    if (OwnedTag && OwnedTag->isDefinition())
1514      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1515        << Context.getTypeDeclType(OwnedTag);
1516  }
1517
1518  if (DInfo)
1519    T = CreateLocInfoType(T, DInfo);
1520
1521  return T.getAsOpaquePtr();
1522}
1523
1524
1525
1526//===----------------------------------------------------------------------===//
1527// Type Attribute Processing
1528//===----------------------------------------------------------------------===//
1529
1530/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1531/// specified type.  The attribute contains 1 argument, the id of the address
1532/// space for the type.
1533static void HandleAddressSpaceTypeAttribute(QualType &Type,
1534                                            const AttributeList &Attr, Sema &S){
1535
1536  // If this type is already address space qualified, reject it.
1537  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1538  // for two or more different address spaces."
1539  if (Type.getAddressSpace()) {
1540    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1541    return;
1542  }
1543
1544  // Check the attribute arguments.
1545  if (Attr.getNumArgs() != 1) {
1546    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1547    return;
1548  }
1549  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1550  llvm::APSInt addrSpace(32);
1551  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1552    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1553      << ASArgExpr->getSourceRange();
1554    return;
1555  }
1556
1557  // Bounds checking.
1558  if (addrSpace.isSigned()) {
1559    if (addrSpace.isNegative()) {
1560      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
1561        << ASArgExpr->getSourceRange();
1562      return;
1563    }
1564    addrSpace.setIsSigned(false);
1565  }
1566  llvm::APSInt max(addrSpace.getBitWidth());
1567  max = Qualifiers::MaxAddressSpace;
1568  if (addrSpace > max) {
1569    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
1570      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
1571    return;
1572  }
1573
1574  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1575  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1576}
1577
1578/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1579/// specified type.  The attribute contains 1 argument, weak or strong.
1580static void HandleObjCGCTypeAttribute(QualType &Type,
1581                                      const AttributeList &Attr, Sema &S) {
1582  if (Type.getObjCGCAttr() != Qualifiers::GCNone) {
1583    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1584    return;
1585  }
1586
1587  // Check the attribute arguments.
1588  if (!Attr.getParameterName()) {
1589    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1590      << "objc_gc" << 1;
1591    return;
1592  }
1593  Qualifiers::GC GCAttr;
1594  if (Attr.getNumArgs() != 0) {
1595    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1596    return;
1597  }
1598  if (Attr.getParameterName()->isStr("weak"))
1599    GCAttr = Qualifiers::Weak;
1600  else if (Attr.getParameterName()->isStr("strong"))
1601    GCAttr = Qualifiers::Strong;
1602  else {
1603    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1604      << "objc_gc" << Attr.getParameterName();
1605    return;
1606  }
1607
1608  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1609}
1610
1611/// HandleNoReturnTypeAttribute - Process the noreturn attribute on the
1612/// specified type.  The attribute contains 0 arguments.
1613static void HandleNoReturnTypeAttribute(QualType &Type,
1614                                        const AttributeList &Attr, Sema &S) {
1615  if (Attr.getNumArgs() != 0)
1616    return;
1617
1618  // We only apply this to a pointer to function or a pointer to block.
1619  if (!Type->isFunctionPointerType()
1620      && !Type->isBlockPointerType()
1621      && !Type->isFunctionType())
1622    return;
1623
1624  Type = S.Context.getNoReturnType(Type);
1625}
1626
1627void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
1628  // Scan through and apply attributes to this type where it makes sense.  Some
1629  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1630  // type, but others can be present in the type specifiers even though they
1631  // apply to the decl.  Here we apply type attributes and ignore the rest.
1632  for (; AL; AL = AL->getNext()) {
1633    // If this is an attribute we can handle, do so now, otherwise, add it to
1634    // the LeftOverAttrs list for rechaining.
1635    switch (AL->getKind()) {
1636    default: break;
1637    case AttributeList::AT_address_space:
1638      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
1639      break;
1640    case AttributeList::AT_objc_gc:
1641      HandleObjCGCTypeAttribute(Result, *AL, *this);
1642      break;
1643    case AttributeList::AT_noreturn:
1644      HandleNoReturnTypeAttribute(Result, *AL, *this);
1645      break;
1646    }
1647  }
1648}
1649
1650/// @brief Ensure that the type T is a complete type.
1651///
1652/// This routine checks whether the type @p T is complete in any
1653/// context where a complete type is required. If @p T is a complete
1654/// type, returns false. If @p T is a class template specialization,
1655/// this routine then attempts to perform class template
1656/// instantiation. If instantiation fails, or if @p T is incomplete
1657/// and cannot be completed, issues the diagnostic @p diag (giving it
1658/// the type @p T) and returns true.
1659///
1660/// @param Loc  The location in the source that the incomplete type
1661/// diagnostic should refer to.
1662///
1663/// @param T  The type that this routine is examining for completeness.
1664///
1665/// @param PD The partial diagnostic that will be printed out if T is not a
1666/// complete type.
1667///
1668/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1669/// @c false otherwise.
1670bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
1671                               const PartialDiagnostic &PD,
1672                               std::pair<SourceLocation,
1673                                         PartialDiagnostic> Note) {
1674  unsigned diag = PD.getDiagID();
1675
1676  // FIXME: Add this assertion to help us flush out problems with
1677  // checking for dependent types and type-dependent expressions.
1678  //
1679  //  assert(!T->isDependentType() &&
1680  //         "Can't ask whether a dependent type is complete");
1681
1682  // If we have a complete type, we're done.
1683  if (!T->isIncompleteType())
1684    return false;
1685
1686  // If we have a class template specialization or a class member of a
1687  // class template specialization, try to instantiate it.
1688  if (const RecordType *Record = T->getAs<RecordType>()) {
1689    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
1690          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
1691      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
1692        if (Loc.isValid())
1693          ClassTemplateSpec->setPointOfInstantiation(Loc);
1694        return InstantiateClassTemplateSpecialization(ClassTemplateSpec,
1695                                                      TSK_ImplicitInstantiation,
1696                                                      /*Complain=*/diag != 0);
1697      }
1698    } else if (CXXRecordDecl *Rec
1699                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
1700      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
1701        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
1702        assert(MSInfo && "Missing member specialization information?");
1703        // This record was instantiated from a class within a template.
1704        if (MSInfo->getTemplateSpecializationKind()
1705                                               != TSK_ExplicitSpecialization) {
1706          MSInfo->setPointOfInstantiation(Loc);
1707          return InstantiateClass(Loc, Rec, Pattern,
1708                                  getTemplateInstantiationArgs(Rec),
1709                                  TSK_ImplicitInstantiation,
1710                                  /*Complain=*/diag != 0);
1711        }
1712      }
1713    }
1714  }
1715
1716  if (diag == 0)
1717    return true;
1718
1719  // We have an incomplete type. Produce a diagnostic.
1720  Diag(Loc, PD) << T;
1721
1722  // If we have a note, produce it.
1723  if (!Note.first.isInvalid())
1724    Diag(Note.first, Note.second);
1725
1726  // If the type was a forward declaration of a class/struct/union
1727  // type, produce
1728  const TagType *Tag = 0;
1729  if (const RecordType *Record = T->getAs<RecordType>())
1730    Tag = Record;
1731  else if (const EnumType *Enum = T->getAs<EnumType>())
1732    Tag = Enum;
1733
1734  if (Tag && !Tag->getDecl()->isInvalidDecl())
1735    Diag(Tag->getDecl()->getLocation(),
1736         Tag->isBeingDefined() ? diag::note_type_being_defined
1737                               : diag::note_forward_declaration)
1738        << QualType(Tag, 0);
1739
1740  return true;
1741}
1742
1743/// \brief Retrieve a version of the type 'T' that is qualified by the
1744/// nested-name-specifier contained in SS.
1745QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
1746  if (!SS.isSet() || SS.isInvalid() || T.isNull())
1747    return T;
1748
1749  NestedNameSpecifier *NNS
1750    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1751  return Context.getQualifiedNameType(NNS, T);
1752}
1753
1754QualType Sema::BuildTypeofExprType(Expr *E) {
1755  return Context.getTypeOfExprType(E);
1756}
1757
1758QualType Sema::BuildDecltypeType(Expr *E) {
1759  if (E->getType() == Context.OverloadTy) {
1760    Diag(E->getLocStart(),
1761         diag::err_cannot_determine_declared_type_of_overloaded_function);
1762    return QualType();
1763  }
1764  return Context.getDecltypeType(E);
1765}
1766