SemaType.cpp revision 306d4df4d3795208470617291c8a83373268c6ed
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/Expr.h"
18#include "clang/Basic/Diagnostic.h"
19#include "clang/Parse/DeclSpec.h"
20using namespace clang;
21
22/// ConvertDeclSpecToType - Convert the specified declspec to the appropriate
23/// type object.  This returns null on error.
24QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS) {
25  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
26  // checking.
27  QualType Result;
28
29  switch (DS.getTypeSpecType()) {
30  default: assert(0 && "Unknown TypeSpecType!");
31  case DeclSpec::TST_void:
32    Result = Context.VoidTy;
33    break;
34  case DeclSpec::TST_char:
35    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
36      Result = Context.CharTy;
37    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
38      Result = Context.SignedCharTy;
39    else {
40      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
41             "Unknown TSS value");
42      Result = Context.UnsignedCharTy;
43    }
44    break;
45  case DeclSpec::TST_wchar:
46    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
47      Result = Context.WCharTy;
48    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
49      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
50        << DS.getSpecifierName(DS.getTypeSpecType());
51      Result = Context.getSignedWCharType();
52    } else {
53      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
54        "Unknown TSS value");
55      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
56        << DS.getSpecifierName(DS.getTypeSpecType());
57      Result = Context.getUnsignedWCharType();
58    }
59    break;
60  case DeclSpec::TST_unspecified:
61    // "<proto1,proto2>" is an objc qualified ID with a missing id.
62    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
63      Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
64                                              DS.getNumProtocolQualifiers());
65      break;
66    }
67
68    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
69    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
70    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
71    // Note that the one exception to this is function definitions, which are
72    // allowed to be completely missing a declspec.  This is handled in the
73    // parser already though by it pretending to have seen an 'int' in this
74    // case.
75    if (getLangOptions().ImplicitInt) {
76      if ((DS.getParsedSpecifiers() & (DeclSpec::PQ_StorageClassSpecifier |
77                                       DeclSpec::PQ_TypeSpecifier |
78                                       DeclSpec::PQ_TypeQualifier)) == 0)
79        Diag(DS.getSourceRange().getBegin(), diag::ext_missing_declspec);
80    } else {
81      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
82      // "At least one type specifier shall be given in the declaration
83      // specifiers in each declaration, and in the specifier-qualifier list in
84      // each struct declaration and type name."
85      if (!DS.hasTypeSpecifier())
86        Diag(DS.getSourceRange().getBegin(), diag::ext_missing_type_specifier);
87    }
88
89    // FALL THROUGH.
90  case DeclSpec::TST_int: {
91    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
92      switch (DS.getTypeSpecWidth()) {
93      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
94      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
95      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
96      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
97      }
98    } else {
99      switch (DS.getTypeSpecWidth()) {
100      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
101      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
102      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
103      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
104      }
105    }
106    break;
107  }
108  case DeclSpec::TST_float: Result = Context.FloatTy; break;
109  case DeclSpec::TST_double:
110    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
111      Result = Context.LongDoubleTy;
112    else
113      Result = Context.DoubleTy;
114    break;
115  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
116  case DeclSpec::TST_decimal32:    // _Decimal32
117  case DeclSpec::TST_decimal64:    // _Decimal64
118  case DeclSpec::TST_decimal128:   // _Decimal128
119    assert(0 && "FIXME: GNU decimal extensions not supported yet!");
120  case DeclSpec::TST_class:
121  case DeclSpec::TST_enum:
122  case DeclSpec::TST_union:
123  case DeclSpec::TST_struct: {
124    Decl *D = static_cast<Decl *>(DS.getTypeRep());
125    assert(D && "Didn't get a decl for a class/enum/union/struct?");
126    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
127           DS.getTypeSpecSign() == 0 &&
128           "Can't handle qualifiers on typedef names yet!");
129    // TypeQuals handled by caller.
130    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
131    break;
132  }
133  case DeclSpec::TST_typedef: {
134    Decl *D = static_cast<Decl *>(DS.getTypeRep());
135    assert(D && "Didn't get a decl for a typedef?");
136    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
137           DS.getTypeSpecSign() == 0 &&
138           "Can't handle qualifiers on typedef names yet!");
139    DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers();
140
141    // FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so
142    // we have this "hack" for now...
143    if (ObjCInterfaceDecl *ObjCIntDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
144      if (PQ == 0) {
145        Result = Context.getObjCInterfaceType(ObjCIntDecl);
146        break;
147      }
148
149      Result = Context.getObjCQualifiedInterfaceType(ObjCIntDecl,
150                                                     (ObjCProtocolDecl**)PQ,
151                                                 DS.getNumProtocolQualifiers());
152      break;
153    } else if (TypedefDecl *typeDecl = dyn_cast<TypedefDecl>(D)) {
154      if (Context.getObjCIdType() == Context.getTypedefType(typeDecl) && PQ) {
155        // id<protocol-list>
156        Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
157                                                DS.getNumProtocolQualifiers());
158        break;
159      }
160    }
161    // TypeQuals handled by caller.
162    Result = Context.getTypeDeclType(dyn_cast<TypeDecl>(D));
163    break;
164  }
165  case DeclSpec::TST_typeofType:
166    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
167    assert(!Result.isNull() && "Didn't get a type for typeof?");
168    // TypeQuals handled by caller.
169    Result = Context.getTypeOfType(Result);
170    break;
171  case DeclSpec::TST_typeofExpr: {
172    Expr *E = static_cast<Expr *>(DS.getTypeRep());
173    assert(E && "Didn't get an expression for typeof?");
174    // TypeQuals handled by caller.
175    Result = Context.getTypeOfExpr(E);
176    break;
177  }
178  }
179
180  // Handle complex types.
181  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex)
182    Result = Context.getComplexType(Result);
183
184  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
185         "FIXME: imaginary types not supported yet!");
186
187  // See if there are any attributes on the declspec that apply to the type (as
188  // opposed to the decl).
189  if (const AttributeList *AL = DS.getAttributes())
190    ProcessTypeAttributeList(Result, AL);
191
192  // Apply const/volatile/restrict qualifiers to T.
193  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
194
195    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
196    // or incomplete types shall not be restrict-qualified."  C++ also allows
197    // restrict-qualified references.
198    if (TypeQuals & QualType::Restrict) {
199      if (const PointerLikeType *PT = Result->getAsPointerLikeType()) {
200        QualType EltTy = PT->getPointeeType();
201
202        // If we have a pointer or reference, the pointee must have an object or
203        // incomplete type.
204        if (!EltTy->isIncompleteOrObjectType()) {
205          Diag(DS.getRestrictSpecLoc(),
206               diag::err_typecheck_invalid_restrict_invalid_pointee)
207            << EltTy << DS.getSourceRange();
208          TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
209        }
210      } else {
211        Diag(DS.getRestrictSpecLoc(),
212             diag::err_typecheck_invalid_restrict_not_pointer)
213          << Result << DS.getSourceRange();
214        TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
215      }
216    }
217
218    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
219    // of a function type includes any type qualifiers, the behavior is
220    // undefined."
221    if (Result->isFunctionType() && TypeQuals) {
222      // Get some location to point at, either the C or V location.
223      SourceLocation Loc;
224      if (TypeQuals & QualType::Const)
225        Loc = DS.getConstSpecLoc();
226      else {
227        assert((TypeQuals & QualType::Volatile) &&
228               "Has CV quals but not C or V?");
229        Loc = DS.getVolatileSpecLoc();
230      }
231      Diag(Loc, diag::warn_typecheck_function_qualifiers)
232        << Result << DS.getSourceRange();
233    }
234
235    // C++ [dcl.ref]p1:
236    //   Cv-qualified references are ill-formed except when the
237    //   cv-qualifiers are introduced through the use of a typedef
238    //   (7.1.3) or of a template type argument (14.3), in which
239    //   case the cv-qualifiers are ignored.
240    if (DS.getTypeSpecType() == DeclSpec::TST_typedef &&
241        TypeQuals && Result->isReferenceType()) {
242      TypeQuals &= ~QualType::Const;
243      TypeQuals &= ~QualType::Volatile;
244    }
245
246    Result = Result.getQualifiedType(TypeQuals);
247  }
248  return Result;
249}
250
251/// GetTypeForDeclarator - Convert the type for the specified declarator to Type
252/// instances. Skip the outermost Skip type objects.
253QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S, unsigned Skip) {
254  // long long is a C99 feature.
255  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
256      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
257    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
258
259  QualType T = ConvertDeclSpecToType(D.getDeclSpec());
260
261  // Walk the DeclTypeInfo, building the recursive type as we go.  DeclTypeInfos
262  // are ordered from the identifier out, which is opposite of what we want :).
263  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
264    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1+Skip);
265    switch (DeclType.Kind) {
266    default: assert(0 && "Unknown decltype!");
267    case DeclaratorChunk::BlockPointer:
268      if (DeclType.Cls.TypeQuals)
269        Diag(D.getIdentifierLoc(), diag::err_qualified_block_pointer_type);
270      if (!T.getTypePtr()->isFunctionType())
271        Diag(D.getIdentifierLoc(), diag::err_nonfunction_block_type);
272      else
273        T = Context.getBlockPointerType(T);
274      break;
275    case DeclaratorChunk::Pointer:
276      if (T->isReferenceType()) {
277        // C++ 8.3.2p4: There shall be no ... pointers to references ...
278        Diag(DeclType.Loc, diag::err_illegal_decl_pointer_to_reference)
279         << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
280        D.setInvalidType(true);
281        T = Context.IntTy;
282      }
283
284      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
285      // object or incomplete types shall not be restrict-qualified."
286      if ((DeclType.Ptr.TypeQuals & QualType::Restrict) &&
287          !T->isIncompleteOrObjectType()) {
288        Diag(DeclType.Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
289          << T;
290        DeclType.Ptr.TypeQuals &= QualType::Restrict;
291      }
292
293      // Apply the pointer typequals to the pointer object.
294      T = Context.getPointerType(T).getQualifiedType(DeclType.Ptr.TypeQuals);
295      break;
296    case DeclaratorChunk::Reference: {
297      // Whether we should suppress the creation of the reference.
298      bool SuppressReference = false;
299      if (T->isReferenceType()) {
300        // C++ [dcl.ref]p4: There shall be no references to references.
301        //
302        // According to C++ DR 106, references to references are only
303        // diagnosed when they are written directly (e.g., "int & &"),
304        // but not when they happen via a typedef:
305        //
306        //   typedef int& intref;
307        //   typedef intref& intref2;
308        //
309        // Parser::ParserDeclaratorInternal diagnoses the case where
310        // references are written directly; here, we handle the
311        // collapsing of references-to-references as described in C++
312        // DR 106 and amended by C++ DR 540.
313        SuppressReference = true;
314      }
315
316      // C++ [dcl.ref]p1:
317      //   A declarator that specifies the type “reference to cv void”
318      //   is ill-formed.
319      if (T->isVoidType()) {
320        Diag(DeclType.Loc, diag::err_reference_to_void);
321        D.setInvalidType(true);
322        T = Context.IntTy;
323      }
324
325      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
326      // object or incomplete types shall not be restrict-qualified."
327      if (DeclType.Ref.HasRestrict &&
328          !T->isIncompleteOrObjectType()) {
329        Diag(DeclType.Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
330          << T;
331        DeclType.Ref.HasRestrict = false;
332      }
333
334      if (!SuppressReference)
335        T = Context.getReferenceType(T);
336
337      // Handle restrict on references.
338      if (DeclType.Ref.HasRestrict)
339        T.addRestrict();
340      break;
341    }
342    case DeclaratorChunk::Array: {
343      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
344      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
345      ArrayType::ArraySizeModifier ASM;
346      if (ATI.isStar)
347        ASM = ArrayType::Star;
348      else if (ATI.hasStatic)
349        ASM = ArrayType::Static;
350      else
351        ASM = ArrayType::Normal;
352
353      // C99 6.7.5.2p1: If the element type is an incomplete or function type,
354      // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
355      if (T->isIncompleteType()) {
356        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_incomplete_type)
357          << T;
358        T = Context.IntTy;
359        D.setInvalidType(true);
360      } else if (T->isFunctionType()) {
361        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_functions)
362          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
363        T = Context.getPointerType(T);
364        D.setInvalidType(true);
365      } else if (const ReferenceType *RT = T->getAsReferenceType()) {
366        // C++ 8.3.2p4: There shall be no ... arrays of references ...
367        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_references)
368          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
369        T = RT->getPointeeType();
370        D.setInvalidType(true);
371      } else if (const RecordType *EltTy = T->getAsRecordType()) {
372        // If the element type is a struct or union that contains a variadic
373        // array, reject it: C99 6.7.2.1p2.
374        if (EltTy->getDecl()->hasFlexibleArrayMember()) {
375          Diag(DeclType.Loc, diag::err_flexible_array_in_array) << T;
376          T = Context.IntTy;
377          D.setInvalidType(true);
378        }
379      } else if (T->isObjCInterfaceType()) {
380        Diag(DeclType.Loc, diag::warn_objc_array_of_interfaces) << T;
381      }
382
383      // C99 6.7.5.2p1: The size expression shall have integer type.
384      if (ArraySize && !ArraySize->getType()->isIntegerType()) {
385        Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
386          << ArraySize->getType() << ArraySize->getSourceRange();
387        D.setInvalidType(true);
388        delete ArraySize;
389        ATI.NumElts = ArraySize = 0;
390      }
391      llvm::APSInt ConstVal(32);
392      if (!ArraySize) {
393        T = Context.getIncompleteArrayType(T, ASM, ATI.TypeQuals);
394      } else if (ArraySize->isValueDependent()) {
395        T = Context.getDependentSizedArrayType(T, ArraySize, ASM, ATI.TypeQuals);
396      } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
397                 !T->isConstantSizeType()) {
398        // Per C99, a variable array is an array with either a non-constant
399        // size or an element type that has a non-constant-size
400        T = Context.getVariableArrayType(T, ArraySize, ASM, ATI.TypeQuals);
401      } else {
402        // C99 6.7.5.2p1: If the expression is a constant expression, it shall
403        // have a value greater than zero.
404        if (ConstVal.isSigned()) {
405          if (ConstVal.isNegative()) {
406            Diag(ArraySize->getLocStart(),
407                 diag::err_typecheck_negative_array_size)
408              << ArraySize->getSourceRange();
409            D.setInvalidType(true);
410          } else if (ConstVal == 0) {
411            // GCC accepts zero sized static arrays.
412            Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
413              << ArraySize->getSourceRange();
414          }
415        }
416        T = Context.getConstantArrayType(T, ConstVal, ASM, ATI.TypeQuals);
417      }
418      // If this is not C99, extwarn about VLA's and C99 array size modifiers.
419      if (!getLangOptions().C99) {
420        if (ArraySize && !ArraySize->isValueDependent() &&
421            !ArraySize->isIntegerConstantExpr(Context))
422          Diag(D.getIdentifierLoc(), diag::ext_vla);
423        else if (ASM != ArrayType::Normal || ATI.TypeQuals != 0)
424          Diag(D.getIdentifierLoc(), diag::ext_c99_array_usage);
425      }
426      break;
427    }
428    case DeclaratorChunk::Function:
429      // If the function declarator has a prototype (i.e. it is not () and
430      // does not have a K&R-style identifier list), then the arguments are part
431      // of the type, otherwise the argument list is ().
432      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
433
434      // C99 6.7.5.3p1: The return type may not be a function or array type.
435      if (T->isArrayType() || T->isFunctionType()) {
436        Diag(DeclType.Loc, diag::err_func_returning_array_function) << T;
437        T = Context.IntTy;
438        D.setInvalidType(true);
439      }
440
441      if (FTI.NumArgs == 0) {
442        if (getLangOptions().CPlusPlus) {
443          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
444          // function takes no arguments.
445          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic,FTI.TypeQuals);
446        } else {
447          // Simple void foo(), where the incoming T is the result type.
448          T = Context.getFunctionTypeNoProto(T);
449        }
450      } else if (FTI.ArgInfo[0].Param == 0) {
451        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
452        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
453      } else {
454        // Otherwise, we have a function with an argument list that is
455        // potentially variadic.
456        llvm::SmallVector<QualType, 16> ArgTys;
457
458        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
459          ParmVarDecl *Param = (ParmVarDecl *)FTI.ArgInfo[i].Param;
460          QualType ArgTy = Param->getType();
461          assert(!ArgTy.isNull() && "Couldn't parse type?");
462          //
463          // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
464          // This matches the conversion that is done in
465          // Sema::ActOnParamDeclarator(). Without this conversion, the
466          // argument type in the function prototype *will not* match the
467          // type in ParmVarDecl (which makes the code generator unhappy).
468          //
469          // FIXME: We still apparently need the conversion in
470          // Sema::ActOnParamDeclarator(). This doesn't make any sense, since
471          // it should be driving off the type being created here.
472          //
473          // FIXME: If a source translation tool needs to see the original type,
474          // then we need to consider storing both types somewhere...
475          //
476          if (ArgTy->isArrayType()) {
477            ArgTy = Context.getArrayDecayedType(ArgTy);
478          } else if (ArgTy->isFunctionType())
479            ArgTy = Context.getPointerType(ArgTy);
480
481          // Look for 'void'.  void is allowed only as a single argument to a
482          // function with no other parameters (C99 6.7.5.3p10).  We record
483          // int(void) as a FunctionTypeProto with an empty argument list.
484          else if (ArgTy->isVoidType()) {
485            // If this is something like 'float(int, void)', reject it.  'void'
486            // is an incomplete type (C99 6.2.5p19) and function decls cannot
487            // have arguments of incomplete type.
488            if (FTI.NumArgs != 1 || FTI.isVariadic) {
489              Diag(DeclType.Loc, diag::err_void_only_param);
490              ArgTy = Context.IntTy;
491              Param->setType(ArgTy);
492            } else if (FTI.ArgInfo[i].Ident) {
493              // Reject, but continue to parse 'int(void abc)'.
494              Diag(FTI.ArgInfo[i].IdentLoc,
495                   diag::err_param_with_void_type);
496              ArgTy = Context.IntTy;
497              Param->setType(ArgTy);
498            } else {
499              // Reject, but continue to parse 'float(const void)'.
500              if (ArgTy.getCVRQualifiers())
501                Diag(DeclType.Loc, diag::err_void_param_qualified);
502
503              // Do not add 'void' to the ArgTys list.
504              break;
505            }
506          } else if (!FTI.hasPrototype) {
507            if (ArgTy->isPromotableIntegerType()) {
508              ArgTy = Context.IntTy;
509            } else if (const BuiltinType* BTy = ArgTy->getAsBuiltinType()) {
510              if (BTy->getKind() == BuiltinType::Float)
511                ArgTy = Context.DoubleTy;
512            }
513          }
514
515          ArgTys.push_back(ArgTy);
516        }
517        T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
518                                    FTI.isVariadic, FTI.TypeQuals);
519      }
520      break;
521    }
522
523    // See if there are any attributes on this declarator chunk.
524    if (const AttributeList *AL = DeclType.getAttrs())
525      ProcessTypeAttributeList(T, AL);
526  }
527
528  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
529    const FunctionTypeProto *FnTy = T->getAsFunctionTypeProto();
530    assert(FnTy && "Why oh why is there not a FunctionTypeProto here ?");
531
532    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
533    // for a nonstatic member function, the function type to which a pointer
534    // to member refers, or the top-level function type of a function typedef
535    // declaration.
536    if (FnTy->getTypeQuals() != 0 &&
537        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
538        ((D.getContext() != Declarator::MemberContext &&
539          (!D.getCXXScopeSpec().isSet() ||
540           !static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep())
541             ->isCXXRecord())) ||
542         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
543      if (D.isFunctionDeclarator())
544        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
545      else
546        Diag(D.getIdentifierLoc(),
547             diag::err_invalid_qualified_typedef_function_type_use);
548
549      // Strip the cv-quals from the type.
550      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
551                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
552    }
553  }
554
555  // If there were any type attributes applied to the decl itself (not the
556  // type, apply the type attribute to the type!)
557  if (const AttributeList *Attrs = D.getAttributes())
558    ProcessTypeAttributeList(T, Attrs);
559
560  return T;
561}
562
563/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
564/// declarator
565QualType Sema::ObjCGetTypeForMethodDefinition(DeclTy *D) {
566  ObjCMethodDecl *MDecl = dyn_cast<ObjCMethodDecl>(static_cast<Decl *>(D));
567  QualType T = MDecl->getResultType();
568  llvm::SmallVector<QualType, 16> ArgTys;
569
570  // Add the first two invisible argument types for self and _cmd.
571  if (MDecl->isInstance()) {
572    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
573    selfTy = Context.getPointerType(selfTy);
574    ArgTys.push_back(selfTy);
575  }
576  else
577    ArgTys.push_back(Context.getObjCIdType());
578  ArgTys.push_back(Context.getObjCSelType());
579
580  for (int i = 0, e = MDecl->getNumParams(); i != e; ++i) {
581    ParmVarDecl *PDecl = MDecl->getParamDecl(i);
582    QualType ArgTy = PDecl->getType();
583    assert(!ArgTy.isNull() && "Couldn't parse type?");
584    // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
585    // This matches the conversion that is done in
586    // Sema::ActOnParamDeclarator().
587    if (ArgTy->isArrayType())
588      ArgTy = Context.getArrayDecayedType(ArgTy);
589    else if (ArgTy->isFunctionType())
590      ArgTy = Context.getPointerType(ArgTy);
591    ArgTys.push_back(ArgTy);
592  }
593  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
594                              MDecl->isVariadic(), 0);
595  return T;
596}
597
598/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types (FIXME:
599/// or pointer-to-member types) that may be similar (C++ 4.4),
600/// replaces T1 and T2 with the type that they point to and return
601/// true. If T1 and T2 aren't pointer types or pointer-to-member
602/// types, or if they are not similar at this level, returns false and
603/// leaves T1 and T2 unchanged. Top-level qualifiers on T1 and T2 are
604/// ignored. This function will typically be called in a loop that
605/// successively "unwraps" pointer and pointer-to-member types to
606/// compare them at each level.
607bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2)
608{
609  const PointerType *T1PtrType = T1->getAsPointerType(),
610                    *T2PtrType = T2->getAsPointerType();
611  if (T1PtrType && T2PtrType) {
612    T1 = T1PtrType->getPointeeType();
613    T2 = T2PtrType->getPointeeType();
614    return true;
615  }
616
617  // FIXME: pointer-to-member types
618  return false;
619}
620
621Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
622  // C99 6.7.6: Type names have no identifier.  This is already validated by
623  // the parser.
624  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
625
626  QualType T = GetTypeForDeclarator(D, S);
627
628  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
629
630  // Check that there are no default arguments (C++ only).
631  if (getLangOptions().CPlusPlus)
632    CheckExtraCXXDefaultArguments(D);
633
634  // In this context, we *do not* check D.getInvalidType(). If the declarator
635  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
636  // though it will not reflect the user specified type.
637  return T.getAsOpaquePtr();
638}
639
640
641
642//===----------------------------------------------------------------------===//
643// Type Attribute Processing
644//===----------------------------------------------------------------------===//
645
646/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
647/// specified type.  The attribute contains 1 argument, the id of the address
648/// space for the type.
649static void HandleAddressSpaceTypeAttribute(QualType &Type,
650                                            const AttributeList &Attr, Sema &S){
651  // If this type is already address space qualified, reject it.
652  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
653  // for two or more different address spaces."
654  if (Type.getAddressSpace()) {
655    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
656    return;
657  }
658
659  // Check the attribute arguments.
660  if (Attr.getNumArgs() != 1) {
661    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
662    return;
663  }
664  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
665  llvm::APSInt addrSpace(32);
666  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
667    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
668      << ASArgExpr->getSourceRange();
669    return;
670  }
671
672  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
673  Type = S.Context.getASQualType(Type, ASIdx);
674}
675
676void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
677  // Scan through and apply attributes to this type where it makes sense.  Some
678  // attributes (such as __address_space__, __vector_size__, etc) apply to the
679  // type, but others can be present in the type specifiers even though they
680  // apply to the decl.  Here we apply type attributes and ignore the rest.
681  for (; AL; AL = AL->getNext()) {
682    // If this is an attribute we can handle, do so now, otherwise, add it to
683    // the LeftOverAttrs list for rechaining.
684    switch (AL->getKind()) {
685    default: break;
686    case AttributeList::AT_address_space:
687      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
688      break;
689    }
690  }
691}
692
693
694