SemaType.cpp revision 35366a67baa970c287c714c957cf78a4131cf60d
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/Expr.h"
20#include "clang/Parse/DeclSpec.h"
21#include "llvm/ADT/SmallPtrSet.h"
22using namespace clang;
23
24/// \brief Perform adjustment on the parameter type of a function.
25///
26/// This routine adjusts the given parameter type @p T to the actual
27/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
28/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
29QualType Sema::adjustParameterType(QualType T) {
30  // C99 6.7.5.3p7:
31  if (T->isArrayType()) {
32    // C99 6.7.5.3p7:
33    //   A declaration of a parameter as "array of type" shall be
34    //   adjusted to "qualified pointer to type", where the type
35    //   qualifiers (if any) are those specified within the [ and ] of
36    //   the array type derivation.
37    return Context.getArrayDecayedType(T);
38  } else if (T->isFunctionType())
39    // C99 6.7.5.3p8:
40    //   A declaration of a parameter as "function returning type"
41    //   shall be adjusted to "pointer to function returning type", as
42    //   in 6.3.2.1.
43    return Context.getPointerType(T);
44
45  return T;
46}
47
48/// \brief Convert the specified declspec to the appropriate type
49/// object.
50/// \param DS  the declaration specifiers
51/// \param DeclLoc The location of the declarator identifier or invalid if none.
52/// \returns The type described by the declaration specifiers.  This function
53/// never returns null.
54QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS,
55                                     SourceLocation DeclLoc,
56                                     bool &isInvalid) {
57  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
58  // checking.
59  QualType Result;
60
61  switch (DS.getTypeSpecType()) {
62  case DeclSpec::TST_void:
63    Result = Context.VoidTy;
64    break;
65  case DeclSpec::TST_char:
66    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
67      Result = Context.CharTy;
68    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
69      Result = Context.SignedCharTy;
70    else {
71      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
72             "Unknown TSS value");
73      Result = Context.UnsignedCharTy;
74    }
75    break;
76  case DeclSpec::TST_wchar:
77    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
78      Result = Context.WCharTy;
79    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
80      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
81        << DS.getSpecifierName(DS.getTypeSpecType());
82      Result = Context.getSignedWCharType();
83    } else {
84      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
85        "Unknown TSS value");
86      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
87        << DS.getSpecifierName(DS.getTypeSpecType());
88      Result = Context.getUnsignedWCharType();
89    }
90    break;
91  case DeclSpec::TST_char16:
92      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
93        "Unknown TSS value");
94      Result = Context.Char16Ty;
95    break;
96  case DeclSpec::TST_char32:
97      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
98        "Unknown TSS value");
99      Result = Context.Char32Ty;
100    break;
101  case DeclSpec::TST_unspecified:
102    // "<proto1,proto2>" is an objc qualified ID with a missing id.
103    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
104      Result = Context.getObjCObjectPointerType(QualType(),
105                                                (ObjCProtocolDecl**)PQ,
106                                                DS.getNumProtocolQualifiers());
107      break;
108    }
109
110    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
111    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
112    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
113    // Note that the one exception to this is function definitions, which are
114    // allowed to be completely missing a declspec.  This is handled in the
115    // parser already though by it pretending to have seen an 'int' in this
116    // case.
117    if (getLangOptions().ImplicitInt) {
118      // In C89 mode, we only warn if there is a completely missing declspec
119      // when one is not allowed.
120      if (DS.isEmpty()) {
121        if (DeclLoc.isInvalid())
122          DeclLoc = DS.getSourceRange().getBegin();
123        Diag(DeclLoc, diag::ext_missing_declspec)
124          << DS.getSourceRange()
125        << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
126                                                 "int");
127      }
128    } else if (!DS.hasTypeSpecifier()) {
129      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
130      // "At least one type specifier shall be given in the declaration
131      // specifiers in each declaration, and in the specifier-qualifier list in
132      // each struct declaration and type name."
133      // FIXME: Does Microsoft really have the implicit int extension in C++?
134      if (DeclLoc.isInvalid())
135        DeclLoc = DS.getSourceRange().getBegin();
136
137      if (getLangOptions().CPlusPlus && !getLangOptions().Microsoft) {
138        Diag(DeclLoc, diag::err_missing_type_specifier)
139          << DS.getSourceRange();
140
141        // When this occurs in C++ code, often something is very broken with the
142        // value being declared, poison it as invalid so we don't get chains of
143        // errors.
144        isInvalid = true;
145      } else {
146        Diag(DeclLoc, diag::ext_missing_type_specifier)
147          << DS.getSourceRange();
148      }
149    }
150
151    // FALL THROUGH.
152  case DeclSpec::TST_int: {
153    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
154      switch (DS.getTypeSpecWidth()) {
155      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
156      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
157      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
158      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
159      }
160    } else {
161      switch (DS.getTypeSpecWidth()) {
162      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
163      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
164      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
165      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
166      }
167    }
168    break;
169  }
170  case DeclSpec::TST_float: Result = Context.FloatTy; break;
171  case DeclSpec::TST_double:
172    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
173      Result = Context.LongDoubleTy;
174    else
175      Result = Context.DoubleTy;
176    break;
177  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
178  case DeclSpec::TST_decimal32:    // _Decimal32
179  case DeclSpec::TST_decimal64:    // _Decimal64
180  case DeclSpec::TST_decimal128:   // _Decimal128
181    Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
182    Result = Context.IntTy;
183    isInvalid = true;
184    break;
185  case DeclSpec::TST_class:
186  case DeclSpec::TST_enum:
187  case DeclSpec::TST_union:
188  case DeclSpec::TST_struct: {
189    Decl *D = static_cast<Decl *>(DS.getTypeRep());
190    assert(D && "Didn't get a decl for a class/enum/union/struct?");
191    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
192           DS.getTypeSpecSign() == 0 &&
193           "Can't handle qualifiers on typedef names yet!");
194    // TypeQuals handled by caller.
195    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
196
197    if (D->isInvalidDecl())
198      isInvalid = true;
199    break;
200  }
201  case DeclSpec::TST_typename: {
202    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
203           DS.getTypeSpecSign() == 0 &&
204           "Can't handle qualifiers on typedef names yet!");
205    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
206
207    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
208      // FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so we have
209      // this "hack" for now...
210      if (const ObjCInterfaceType *Interface = Result->getAsObjCInterfaceType())
211        // FIXME: Remove ObjCQualifiedInterfaceType (by moving the list of
212        // protocols 'up' to ObjCInterfaceType).
213        Result = Context.getObjCQualifiedInterfaceType(Interface->getDecl(),
214                                                       (ObjCProtocolDecl**)PQ,
215                                               DS.getNumProtocolQualifiers());
216      else if (Result->isObjCIdType())
217        // id<protocol-list>
218        Result = Context.getObjCObjectPointerType(QualType(),
219                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
220      else if (Result->isObjCClassType()) {
221        if (DeclLoc.isInvalid())
222          DeclLoc = DS.getSourceRange().getBegin();
223        // Class<protocol-list>
224        Diag(DeclLoc, diag::err_qualified_class_unsupported)
225          << DS.getSourceRange();
226      } else {
227        if (DeclLoc.isInvalid())
228          DeclLoc = DS.getSourceRange().getBegin();
229        Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
230          << DS.getSourceRange();
231        isInvalid = true;
232      }
233    }
234
235    // If this is a reference to an invalid typedef, propagate the invalidity.
236    if (TypedefType *TDT = dyn_cast<TypedefType>(Result))
237      if (TDT->getDecl()->isInvalidDecl())
238        isInvalid = true;
239
240    // TypeQuals handled by caller.
241    break;
242  }
243  case DeclSpec::TST_typeofType:
244    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
245    assert(!Result.isNull() && "Didn't get a type for typeof?");
246    // TypeQuals handled by caller.
247    Result = Context.getTypeOfType(Result);
248    break;
249  case DeclSpec::TST_typeofExpr: {
250    Expr *E = static_cast<Expr *>(DS.getTypeRep());
251    assert(E && "Didn't get an expression for typeof?");
252    // TypeQuals handled by caller.
253    Result = Context.getTypeOfExprType(E);
254    break;
255  }
256  case DeclSpec::TST_decltype: {
257    Expr *E = static_cast<Expr *>(DS.getTypeRep());
258    assert(E && "Didn't get an expression for decltype?");
259    // TypeQuals handled by caller.
260    Result = BuildDecltypeType(E);
261    if (Result.isNull()) {
262      Result = Context.IntTy;
263      isInvalid = true;
264    }
265    break;
266  }
267  case DeclSpec::TST_auto: {
268    // TypeQuals handled by caller.
269    Result = Context.UndeducedAutoTy;
270    break;
271  }
272
273  case DeclSpec::TST_error:
274    Result = Context.IntTy;
275    isInvalid = true;
276    break;
277  }
278
279  // Handle complex types.
280  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
281    if (getLangOptions().Freestanding)
282      Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
283    Result = Context.getComplexType(Result);
284  }
285
286  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
287         "FIXME: imaginary types not supported yet!");
288
289  // See if there are any attributes on the declspec that apply to the type (as
290  // opposed to the decl).
291  if (const AttributeList *AL = DS.getAttributes())
292    ProcessTypeAttributeList(Result, AL);
293
294  // Apply const/volatile/restrict qualifiers to T.
295  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
296
297    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
298    // or incomplete types shall not be restrict-qualified."  C++ also allows
299    // restrict-qualified references.
300    if (TypeQuals & QualType::Restrict) {
301      if (Result->isPointerType() || Result->isReferenceType()) {
302        QualType EltTy = Result->isPointerType() ?
303          Result->getAsPointerType()->getPointeeType() :
304          Result->getAsReferenceType()->getPointeeType();
305
306        // If we have a pointer or reference, the pointee must have an object
307        // incomplete type.
308        if (!EltTy->isIncompleteOrObjectType()) {
309          Diag(DS.getRestrictSpecLoc(),
310               diag::err_typecheck_invalid_restrict_invalid_pointee)
311            << EltTy << DS.getSourceRange();
312          TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
313        }
314      } else {
315        Diag(DS.getRestrictSpecLoc(),
316             diag::err_typecheck_invalid_restrict_not_pointer)
317          << Result << DS.getSourceRange();
318        TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
319      }
320    }
321
322    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
323    // of a function type includes any type qualifiers, the behavior is
324    // undefined."
325    if (Result->isFunctionType() && TypeQuals) {
326      // Get some location to point at, either the C or V location.
327      SourceLocation Loc;
328      if (TypeQuals & QualType::Const)
329        Loc = DS.getConstSpecLoc();
330      else {
331        assert((TypeQuals & QualType::Volatile) &&
332               "Has CV quals but not C or V?");
333        Loc = DS.getVolatileSpecLoc();
334      }
335      Diag(Loc, diag::warn_typecheck_function_qualifiers)
336        << Result << DS.getSourceRange();
337    }
338
339    // C++ [dcl.ref]p1:
340    //   Cv-qualified references are ill-formed except when the
341    //   cv-qualifiers are introduced through the use of a typedef
342    //   (7.1.3) or of a template type argument (14.3), in which
343    //   case the cv-qualifiers are ignored.
344    // FIXME: Shouldn't we be checking SCS_typedef here?
345    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
346        TypeQuals && Result->isReferenceType()) {
347      TypeQuals &= ~QualType::Const;
348      TypeQuals &= ~QualType::Volatile;
349    }
350
351    Result = Result.getQualifiedType(TypeQuals);
352  }
353  return Result;
354}
355
356static std::string getPrintableNameForEntity(DeclarationName Entity) {
357  if (Entity)
358    return Entity.getAsString();
359
360  return "type name";
361}
362
363/// \brief Build a pointer type.
364///
365/// \param T The type to which we'll be building a pointer.
366///
367/// \param Quals The cvr-qualifiers to be applied to the pointer type.
368///
369/// \param Loc The location of the entity whose type involves this
370/// pointer type or, if there is no such entity, the location of the
371/// type that will have pointer type.
372///
373/// \param Entity The name of the entity that involves the pointer
374/// type, if known.
375///
376/// \returns A suitable pointer type, if there are no
377/// errors. Otherwise, returns a NULL type.
378QualType Sema::BuildPointerType(QualType T, unsigned Quals,
379                                SourceLocation Loc, DeclarationName Entity) {
380  if (T->isReferenceType()) {
381    // C++ 8.3.2p4: There shall be no ... pointers to references ...
382    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
383      << getPrintableNameForEntity(Entity);
384    return QualType();
385  }
386
387  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
388  // object or incomplete types shall not be restrict-qualified."
389  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
390    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
391      << T;
392    Quals &= ~QualType::Restrict;
393  }
394
395  // Build the pointer type.
396  return Context.getPointerType(T).getQualifiedType(Quals);
397}
398
399/// \brief Build a reference type.
400///
401/// \param T The type to which we'll be building a reference.
402///
403/// \param Quals The cvr-qualifiers to be applied to the reference type.
404///
405/// \param Loc The location of the entity whose type involves this
406/// reference type or, if there is no such entity, the location of the
407/// type that will have reference type.
408///
409/// \param Entity The name of the entity that involves the reference
410/// type, if known.
411///
412/// \returns A suitable reference type, if there are no
413/// errors. Otherwise, returns a NULL type.
414QualType Sema::BuildReferenceType(QualType T, bool LValueRef, unsigned Quals,
415                                  SourceLocation Loc, DeclarationName Entity) {
416  if (LValueRef) {
417    if (const RValueReferenceType *R = T->getAsRValueReferenceType()) {
418      // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
419      //   reference to a type T, and attempt to create the type "lvalue
420      //   reference to cv TD" creates the type "lvalue reference to T".
421      // We use the qualifiers (restrict or none) of the original reference,
422      // not the new ones. This is consistent with GCC.
423      return Context.getLValueReferenceType(R->getPointeeType()).
424               getQualifiedType(T.getCVRQualifiers());
425    }
426  }
427  if (T->isReferenceType()) {
428    // C++ [dcl.ref]p4: There shall be no references to references.
429    //
430    // According to C++ DR 106, references to references are only
431    // diagnosed when they are written directly (e.g., "int & &"),
432    // but not when they happen via a typedef:
433    //
434    //   typedef int& intref;
435    //   typedef intref& intref2;
436    //
437    // Parser::ParserDeclaratorInternal diagnoses the case where
438    // references are written directly; here, we handle the
439    // collapsing of references-to-references as described in C++
440    // DR 106 and amended by C++ DR 540.
441    return T;
442  }
443
444  // C++ [dcl.ref]p1:
445  //   A declarator that specifies the type “reference to cv void”
446  //   is ill-formed.
447  if (T->isVoidType()) {
448    Diag(Loc, diag::err_reference_to_void);
449    return QualType();
450  }
451
452  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
453  // object or incomplete types shall not be restrict-qualified."
454  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
455    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
456      << T;
457    Quals &= ~QualType::Restrict;
458  }
459
460  // C++ [dcl.ref]p1:
461  //   [...] Cv-qualified references are ill-formed except when the
462  //   cv-qualifiers are introduced through the use of a typedef
463  //   (7.1.3) or of a template type argument (14.3), in which case
464  //   the cv-qualifiers are ignored.
465  //
466  // We diagnose extraneous cv-qualifiers for the non-typedef,
467  // non-template type argument case within the parser. Here, we just
468  // ignore any extraneous cv-qualifiers.
469  Quals &= ~QualType::Const;
470  Quals &= ~QualType::Volatile;
471
472  // Handle restrict on references.
473  if (LValueRef)
474    return Context.getLValueReferenceType(T).getQualifiedType(Quals);
475  return Context.getRValueReferenceType(T).getQualifiedType(Quals);
476}
477
478/// \brief Build an array type.
479///
480/// \param T The type of each element in the array.
481///
482/// \param ASM C99 array size modifier (e.g., '*', 'static').
483///
484/// \param ArraySize Expression describing the size of the array.
485///
486/// \param Quals The cvr-qualifiers to be applied to the array's
487/// element type.
488///
489/// \param Loc The location of the entity whose type involves this
490/// array type or, if there is no such entity, the location of the
491/// type that will have array type.
492///
493/// \param Entity The name of the entity that involves the array
494/// type, if known.
495///
496/// \returns A suitable array type, if there are no errors. Otherwise,
497/// returns a NULL type.
498QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
499                              Expr *ArraySize, unsigned Quals,
500                              SourceRange Brackets, DeclarationName Entity) {
501  SourceLocation Loc = Brackets.getBegin();
502  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
503  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
504  if (RequireCompleteType(Loc, T,
505                             diag::err_illegal_decl_array_incomplete_type))
506    return QualType();
507
508  if (T->isFunctionType()) {
509    Diag(Loc, diag::err_illegal_decl_array_of_functions)
510      << getPrintableNameForEntity(Entity);
511    return QualType();
512  }
513
514  // C++ 8.3.2p4: There shall be no ... arrays of references ...
515  if (T->isReferenceType()) {
516    Diag(Loc, diag::err_illegal_decl_array_of_references)
517      << getPrintableNameForEntity(Entity);
518    return QualType();
519  }
520
521  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
522    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
523      << getPrintableNameForEntity(Entity);
524    return QualType();
525  }
526
527  if (const RecordType *EltTy = T->getAsRecordType()) {
528    // If the element type is a struct or union that contains a variadic
529    // array, accept it as a GNU extension: C99 6.7.2.1p2.
530    if (EltTy->getDecl()->hasFlexibleArrayMember())
531      Diag(Loc, diag::ext_flexible_array_in_array) << T;
532  } else if (T->isObjCInterfaceType()) {
533    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
534    return QualType();
535  }
536
537  // C99 6.7.5.2p1: The size expression shall have integer type.
538  if (ArraySize && !ArraySize->isTypeDependent() &&
539      !ArraySize->getType()->isIntegerType()) {
540    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
541      << ArraySize->getType() << ArraySize->getSourceRange();
542    ArraySize->Destroy(Context);
543    return QualType();
544  }
545  llvm::APSInt ConstVal(32);
546  if (!ArraySize) {
547    if (ASM == ArrayType::Star)
548      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
549    else
550      T = Context.getIncompleteArrayType(T, ASM, Quals);
551  } else if (ArraySize->isValueDependent()) {
552    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
553  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
554             (!T->isDependentType() && !T->isConstantSizeType())) {
555    // Per C99, a variable array is an array with either a non-constant
556    // size or an element type that has a non-constant-size
557    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
558  } else {
559    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
560    // have a value greater than zero.
561    if (ConstVal.isSigned()) {
562      if (ConstVal.isNegative()) {
563        Diag(ArraySize->getLocStart(),
564             diag::err_typecheck_negative_array_size)
565          << ArraySize->getSourceRange();
566        return QualType();
567      } else if (ConstVal == 0) {
568        // GCC accepts zero sized static arrays.
569        Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
570          << ArraySize->getSourceRange();
571      }
572    }
573    T = Context.getConstantArrayWithExprType(T, ConstVal, ArraySize,
574                                             ASM, Quals, Brackets);
575  }
576  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
577  if (!getLangOptions().C99) {
578    if (ArraySize && !ArraySize->isTypeDependent() &&
579        !ArraySize->isValueDependent() &&
580        !ArraySize->isIntegerConstantExpr(Context))
581      Diag(Loc, diag::ext_vla);
582    else if (ASM != ArrayType::Normal || Quals != 0)
583      Diag(Loc, diag::ext_c99_array_usage);
584  }
585
586  return T;
587}
588
589/// \brief Build an ext-vector type.
590///
591/// Run the required checks for the extended vector type.
592QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
593                                  SourceLocation AttrLoc) {
594
595  Expr *Arg = (Expr *)ArraySize.get();
596
597  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
598  // in conjunction with complex types (pointers, arrays, functions, etc.).
599  if (!T->isDependentType() &&
600      !T->isIntegerType() && !T->isRealFloatingType()) {
601    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
602    return QualType();
603  }
604
605  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
606    llvm::APSInt vecSize(32);
607    if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
608      Diag(AttrLoc, diag::err_attribute_argument_not_int)
609      << "ext_vector_type" << Arg->getSourceRange();
610      return QualType();
611    }
612
613    // unlike gcc's vector_size attribute, the size is specified as the
614    // number of elements, not the number of bytes.
615    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
616
617    if (vectorSize == 0) {
618      Diag(AttrLoc, diag::err_attribute_zero_size)
619      << Arg->getSourceRange();
620      return QualType();
621    }
622
623    if (!T->isDependentType())
624      return Context.getExtVectorType(T, vectorSize);
625  }
626
627  return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
628                                                AttrLoc);
629}
630
631/// \brief Build a function type.
632///
633/// This routine checks the function type according to C++ rules and
634/// under the assumption that the result type and parameter types have
635/// just been instantiated from a template. It therefore duplicates
636/// some of the behavior of GetTypeForDeclarator, but in a much
637/// simpler form that is only suitable for this narrow use case.
638///
639/// \param T The return type of the function.
640///
641/// \param ParamTypes The parameter types of the function. This array
642/// will be modified to account for adjustments to the types of the
643/// function parameters.
644///
645/// \param NumParamTypes The number of parameter types in ParamTypes.
646///
647/// \param Variadic Whether this is a variadic function type.
648///
649/// \param Quals The cvr-qualifiers to be applied to the function type.
650///
651/// \param Loc The location of the entity whose type involves this
652/// function type or, if there is no such entity, the location of the
653/// type that will have function type.
654///
655/// \param Entity The name of the entity that involves the function
656/// type, if known.
657///
658/// \returns A suitable function type, if there are no
659/// errors. Otherwise, returns a NULL type.
660QualType Sema::BuildFunctionType(QualType T,
661                                 QualType *ParamTypes,
662                                 unsigned NumParamTypes,
663                                 bool Variadic, unsigned Quals,
664                                 SourceLocation Loc, DeclarationName Entity) {
665  if (T->isArrayType() || T->isFunctionType()) {
666    Diag(Loc, diag::err_func_returning_array_function) << T;
667    return QualType();
668  }
669
670  bool Invalid = false;
671  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
672    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
673    if (ParamType->isVoidType()) {
674      Diag(Loc, diag::err_param_with_void_type);
675      Invalid = true;
676    }
677
678    ParamTypes[Idx] = ParamType;
679  }
680
681  if (Invalid)
682    return QualType();
683
684  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
685                                 Quals);
686}
687
688/// \brief Build a member pointer type \c T Class::*.
689///
690/// \param T the type to which the member pointer refers.
691/// \param Class the class type into which the member pointer points.
692/// \param Quals Qualifiers applied to the member pointer type
693/// \param Loc the location where this type begins
694/// \param Entity the name of the entity that will have this member pointer type
695///
696/// \returns a member pointer type, if successful, or a NULL type if there was
697/// an error.
698QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
699                                      unsigned Quals, SourceLocation Loc,
700                                      DeclarationName Entity) {
701  // Verify that we're not building a pointer to pointer to function with
702  // exception specification.
703  if (CheckDistantExceptionSpec(T)) {
704    Diag(Loc, diag::err_distant_exception_spec);
705
706    // FIXME: If we're doing this as part of template instantiation,
707    // we should return immediately.
708
709    // Build the type anyway, but use the canonical type so that the
710    // exception specifiers are stripped off.
711    T = Context.getCanonicalType(T);
712  }
713
714  // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
715  //   with reference type, or "cv void."
716  if (T->isReferenceType()) {
717    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
718      << (Entity? Entity.getAsString() : "type name");
719    return QualType();
720  }
721
722  if (T->isVoidType()) {
723    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
724      << (Entity? Entity.getAsString() : "type name");
725    return QualType();
726  }
727
728  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
729  // object or incomplete types shall not be restrict-qualified."
730  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
731    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
732      << T;
733
734    // FIXME: If we're doing this as part of template instantiation,
735    // we should return immediately.
736    Quals &= ~QualType::Restrict;
737  }
738
739  if (!Class->isDependentType() && !Class->isRecordType()) {
740    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
741    return QualType();
742  }
743
744  return Context.getMemberPointerType(T, Class.getTypePtr())
745           .getQualifiedType(Quals);
746}
747
748/// \brief Build a block pointer type.
749///
750/// \param T The type to which we'll be building a block pointer.
751///
752/// \param Quals The cvr-qualifiers to be applied to the block pointer type.
753///
754/// \param Loc The location of the entity whose type involves this
755/// block pointer type or, if there is no such entity, the location of the
756/// type that will have block pointer type.
757///
758/// \param Entity The name of the entity that involves the block pointer
759/// type, if known.
760///
761/// \returns A suitable block pointer type, if there are no
762/// errors. Otherwise, returns a NULL type.
763QualType Sema::BuildBlockPointerType(QualType T, unsigned Quals,
764                                     SourceLocation Loc,
765                                     DeclarationName Entity) {
766  if (!T.getTypePtr()->isFunctionType()) {
767    Diag(Loc, diag::err_nonfunction_block_type);
768    return QualType();
769  }
770
771  return Context.getBlockPointerType(T).getQualifiedType(Quals);
772}
773
774/// GetTypeForDeclarator - Convert the type for the specified
775/// declarator to Type instances. Skip the outermost Skip type
776/// objects.
777///
778/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
779/// owns the declaration of a type (e.g., the definition of a struct
780/// type), then *OwnedDecl will receive the owned declaration.
781QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S, unsigned Skip,
782                                    TagDecl **OwnedDecl) {
783  bool OmittedReturnType = false;
784
785  if (D.getContext() == Declarator::BlockLiteralContext
786      && Skip == 0
787      && !D.getDeclSpec().hasTypeSpecifier()
788      && (D.getNumTypeObjects() == 0
789          || (D.getNumTypeObjects() == 1
790              && D.getTypeObject(0).Kind == DeclaratorChunk::Function)))
791    OmittedReturnType = true;
792
793  // long long is a C99 feature.
794  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
795      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
796    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
797
798  // Determine the type of the declarator. Not all forms of declarator
799  // have a type.
800  QualType T;
801  switch (D.getKind()) {
802  case Declarator::DK_Abstract:
803  case Declarator::DK_Normal:
804  case Declarator::DK_Operator: {
805    const DeclSpec &DS = D.getDeclSpec();
806    if (OmittedReturnType) {
807      // We default to a dependent type initially.  Can be modified by
808      // the first return statement.
809      T = Context.DependentTy;
810    } else {
811      bool isInvalid = false;
812      T = ConvertDeclSpecToType(DS, D.getIdentifierLoc(), isInvalid);
813      if (isInvalid)
814        D.setInvalidType(true);
815      else if (OwnedDecl && DS.isTypeSpecOwned())
816        *OwnedDecl = cast<TagDecl>((Decl *)DS.getTypeRep());
817    }
818    break;
819  }
820
821  case Declarator::DK_Constructor:
822  case Declarator::DK_Destructor:
823  case Declarator::DK_Conversion:
824    // Constructors and destructors don't have return types. Use
825    // "void" instead. Conversion operators will check their return
826    // types separately.
827    T = Context.VoidTy;
828    break;
829  }
830
831  if (T == Context.UndeducedAutoTy) {
832    int Error = -1;
833
834    switch (D.getContext()) {
835    case Declarator::KNRTypeListContext:
836      assert(0 && "K&R type lists aren't allowed in C++");
837      break;
838    case Declarator::PrototypeContext:
839      Error = 0; // Function prototype
840      break;
841    case Declarator::MemberContext:
842      switch (cast<TagDecl>(CurContext)->getTagKind()) {
843      case TagDecl::TK_enum: assert(0 && "unhandled tag kind"); break;
844      case TagDecl::TK_struct: Error = 1; /* Struct member */ break;
845      case TagDecl::TK_union:  Error = 2; /* Union member */ break;
846      case TagDecl::TK_class:  Error = 3; /* Class member */ break;
847      }
848      break;
849    case Declarator::CXXCatchContext:
850      Error = 4; // Exception declaration
851      break;
852    case Declarator::TemplateParamContext:
853      Error = 5; // Template parameter
854      break;
855    case Declarator::BlockLiteralContext:
856      Error = 6;  // Block literal
857      break;
858    case Declarator::FileContext:
859    case Declarator::BlockContext:
860    case Declarator::ForContext:
861    case Declarator::ConditionContext:
862    case Declarator::TypeNameContext:
863      break;
864    }
865
866    if (Error != -1) {
867      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
868        << Error;
869      T = Context.IntTy;
870      D.setInvalidType(true);
871    }
872  }
873
874  // The name we're declaring, if any.
875  DeclarationName Name;
876  if (D.getIdentifier())
877    Name = D.getIdentifier();
878
879  // Walk the DeclTypeInfo, building the recursive type as we go.
880  // DeclTypeInfos are ordered from the identifier out, which is
881  // opposite of what we want :).
882  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
883    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1+Skip);
884    switch (DeclType.Kind) {
885    default: assert(0 && "Unknown decltype!");
886    case DeclaratorChunk::BlockPointer:
887      // If blocks are disabled, emit an error.
888      if (!LangOpts.Blocks)
889        Diag(DeclType.Loc, diag::err_blocks_disable);
890
891      T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(),
892                                Name);
893      break;
894    case DeclaratorChunk::Pointer:
895      // Verify that we're not building a pointer to pointer to function with
896      // exception specification.
897      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
898        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
899        D.setInvalidType(true);
900        // Build the type anyway.
901      }
902      if (getLangOptions().ObjC1 && T->isObjCInterfaceType()) {
903        const ObjCInterfaceType *OIT = T->getAsObjCInterfaceType();
904        T = Context.getObjCObjectPointerType(T,
905                                       (ObjCProtocolDecl **)OIT->qual_begin(),
906                                       OIT->getNumProtocols());
907        break;
908      }
909      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
910      break;
911    case DeclaratorChunk::Reference:
912      // Verify that we're not building a reference to pointer to function with
913      // exception specification.
914      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
915        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
916        D.setInvalidType(true);
917        // Build the type anyway.
918      }
919      T = BuildReferenceType(T, DeclType.Ref.LValueRef,
920                             DeclType.Ref.HasRestrict ? QualType::Restrict : 0,
921                             DeclType.Loc, Name);
922      break;
923    case DeclaratorChunk::Array: {
924      // Verify that we're not building an array of pointers to function with
925      // exception specification.
926      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
927        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
928        D.setInvalidType(true);
929        // Build the type anyway.
930      }
931      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
932      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
933      ArrayType::ArraySizeModifier ASM;
934      if (ATI.isStar)
935        ASM = ArrayType::Star;
936      else if (ATI.hasStatic)
937        ASM = ArrayType::Static;
938      else
939        ASM = ArrayType::Normal;
940      if (ASM == ArrayType::Star &&
941          D.getContext() != Declarator::PrototypeContext) {
942        // FIXME: This check isn't quite right: it allows star in prototypes
943        // for function definitions, and disallows some edge cases detailed
944        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
945        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
946        ASM = ArrayType::Normal;
947        D.setInvalidType(true);
948      }
949      T = BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
950                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
951      break;
952    }
953    case DeclaratorChunk::Function: {
954      // If the function declarator has a prototype (i.e. it is not () and
955      // does not have a K&R-style identifier list), then the arguments are part
956      // of the type, otherwise the argument list is ().
957      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
958
959      // C99 6.7.5.3p1: The return type may not be a function or array type.
960      if (T->isArrayType() || T->isFunctionType()) {
961        Diag(DeclType.Loc, diag::err_func_returning_array_function) << T;
962        T = Context.IntTy;
963        D.setInvalidType(true);
964      }
965
966      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
967        // C++ [dcl.fct]p6:
968        //   Types shall not be defined in return or parameter types.
969        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
970        if (Tag->isDefinition())
971          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
972            << Context.getTypeDeclType(Tag);
973      }
974
975      // Exception specs are not allowed in typedefs. Complain, but add it
976      // anyway.
977      if (FTI.hasExceptionSpec &&
978          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
979        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
980
981      if (FTI.NumArgs == 0) {
982        if (getLangOptions().CPlusPlus) {
983          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
984          // function takes no arguments.
985          llvm::SmallVector<QualType, 4> Exceptions;
986          Exceptions.reserve(FTI.NumExceptions);
987          for(unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
988            QualType ET = QualType::getFromOpaquePtr(FTI.Exceptions[ei].Ty);
989            // Check that the type is valid for an exception spec, and drop it
990            // if not.
991            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
992              Exceptions.push_back(ET);
993          }
994          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
995                                      FTI.hasExceptionSpec,
996                                      FTI.hasAnyExceptionSpec,
997                                      Exceptions.size(), Exceptions.data());
998        } else if (FTI.isVariadic) {
999          // We allow a zero-parameter variadic function in C if the
1000          // function is marked with the "overloadable"
1001          // attribute. Scan for this attribute now.
1002          bool Overloadable = false;
1003          for (const AttributeList *Attrs = D.getAttributes();
1004               Attrs; Attrs = Attrs->getNext()) {
1005            if (Attrs->getKind() == AttributeList::AT_overloadable) {
1006              Overloadable = true;
1007              break;
1008            }
1009          }
1010
1011          if (!Overloadable)
1012            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
1013          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0);
1014        } else {
1015          // Simple void foo(), where the incoming T is the result type.
1016          T = Context.getFunctionNoProtoType(T);
1017        }
1018      } else if (FTI.ArgInfo[0].Param == 0) {
1019        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
1020        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
1021      } else {
1022        // Otherwise, we have a function with an argument list that is
1023        // potentially variadic.
1024        llvm::SmallVector<QualType, 16> ArgTys;
1025
1026        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1027          ParmVarDecl *Param =
1028            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
1029          QualType ArgTy = Param->getType();
1030          assert(!ArgTy.isNull() && "Couldn't parse type?");
1031
1032          // Adjust the parameter type.
1033          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1034
1035          // Look for 'void'.  void is allowed only as a single argument to a
1036          // function with no other parameters (C99 6.7.5.3p10).  We record
1037          // int(void) as a FunctionProtoType with an empty argument list.
1038          if (ArgTy->isVoidType()) {
1039            // If this is something like 'float(int, void)', reject it.  'void'
1040            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1041            // have arguments of incomplete type.
1042            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1043              Diag(DeclType.Loc, diag::err_void_only_param);
1044              ArgTy = Context.IntTy;
1045              Param->setType(ArgTy);
1046            } else if (FTI.ArgInfo[i].Ident) {
1047              // Reject, but continue to parse 'int(void abc)'.
1048              Diag(FTI.ArgInfo[i].IdentLoc,
1049                   diag::err_param_with_void_type);
1050              ArgTy = Context.IntTy;
1051              Param->setType(ArgTy);
1052            } else {
1053              // Reject, but continue to parse 'float(const void)'.
1054              if (ArgTy.getCVRQualifiers())
1055                Diag(DeclType.Loc, diag::err_void_param_qualified);
1056
1057              // Do not add 'void' to the ArgTys list.
1058              break;
1059            }
1060          } else if (!FTI.hasPrototype) {
1061            if (ArgTy->isPromotableIntegerType()) {
1062              ArgTy = Context.IntTy;
1063            } else if (const BuiltinType* BTy = ArgTy->getAsBuiltinType()) {
1064              if (BTy->getKind() == BuiltinType::Float)
1065                ArgTy = Context.DoubleTy;
1066            }
1067          }
1068
1069          ArgTys.push_back(ArgTy);
1070        }
1071
1072        llvm::SmallVector<QualType, 4> Exceptions;
1073        Exceptions.reserve(FTI.NumExceptions);
1074        for(unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1075          QualType ET = QualType::getFromOpaquePtr(FTI.Exceptions[ei].Ty);
1076          // Check that the type is valid for an exception spec, and drop it if
1077          // not.
1078          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1079            Exceptions.push_back(ET);
1080        }
1081
1082        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
1083                                    FTI.isVariadic, FTI.TypeQuals,
1084                                    FTI.hasExceptionSpec,
1085                                    FTI.hasAnyExceptionSpec,
1086                                    Exceptions.size(), Exceptions.data());
1087      }
1088      break;
1089    }
1090    case DeclaratorChunk::MemberPointer:
1091      // Verify that we're not building a pointer to pointer to function with
1092      // exception specification.
1093      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1094        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1095        D.setInvalidType(true);
1096        // Build the type anyway.
1097      }
1098      // The scope spec must refer to a class, or be dependent.
1099      QualType ClsType;
1100      if (isDependentScopeSpecifier(DeclType.Mem.Scope())) {
1101        NestedNameSpecifier *NNS
1102          = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
1103        assert(NNS->getAsType() && "Nested-name-specifier must name a type");
1104        ClsType = QualType(NNS->getAsType(), 0);
1105      } else if (CXXRecordDecl *RD
1106                   = dyn_cast_or_null<CXXRecordDecl>(
1107                                    computeDeclContext(DeclType.Mem.Scope()))) {
1108        ClsType = Context.getTagDeclType(RD);
1109      } else {
1110        Diag(DeclType.Mem.Scope().getBeginLoc(),
1111             diag::err_illegal_decl_mempointer_in_nonclass)
1112          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1113          << DeclType.Mem.Scope().getRange();
1114        D.setInvalidType(true);
1115      }
1116
1117      if (!ClsType.isNull())
1118        T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals,
1119                                   DeclType.Loc, D.getIdentifier());
1120      if (T.isNull()) {
1121        T = Context.IntTy;
1122        D.setInvalidType(true);
1123      }
1124      break;
1125    }
1126
1127    if (T.isNull()) {
1128      D.setInvalidType(true);
1129      T = Context.IntTy;
1130    }
1131
1132    // See if there are any attributes on this declarator chunk.
1133    if (const AttributeList *AL = DeclType.getAttrs())
1134      ProcessTypeAttributeList(T, AL);
1135  }
1136
1137  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1138    const FunctionProtoType *FnTy = T->getAsFunctionProtoType();
1139    assert(FnTy && "Why oh why is there not a FunctionProtoType here ?");
1140
1141    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1142    // for a nonstatic member function, the function type to which a pointer
1143    // to member refers, or the top-level function type of a function typedef
1144    // declaration.
1145    if (FnTy->getTypeQuals() != 0 &&
1146        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1147        ((D.getContext() != Declarator::MemberContext &&
1148          (!D.getCXXScopeSpec().isSet() ||
1149           !computeDeclContext(D.getCXXScopeSpec())->isRecord())) ||
1150         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1151      if (D.isFunctionDeclarator())
1152        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1153      else
1154        Diag(D.getIdentifierLoc(),
1155             diag::err_invalid_qualified_typedef_function_type_use);
1156
1157      // Strip the cv-quals from the type.
1158      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1159                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
1160    }
1161  }
1162
1163  // If there were any type attributes applied to the decl itself (not the
1164  // type, apply the type attribute to the type!)
1165  if (const AttributeList *Attrs = D.getAttributes())
1166    ProcessTypeAttributeList(T, Attrs);
1167
1168  return T;
1169}
1170
1171/// CheckSpecifiedExceptionType - Check if the given type is valid in an
1172/// exception specification. Incomplete types, or pointers to incomplete types
1173/// other than void are not allowed.
1174bool Sema::CheckSpecifiedExceptionType(QualType T, const SourceRange &Range) {
1175  // FIXME: This may not correctly work with the fix for core issue 437,
1176  // where a class's own type is considered complete within its body.
1177
1178  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
1179  //   an incomplete type.
1180  if (T->isIncompleteType())
1181    return Diag(Range.getBegin(), diag::err_incomplete_in_exception_spec)
1182      << Range << T << /*direct*/0;
1183
1184  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
1185  //   an incomplete type a pointer or reference to an incomplete type, other
1186  //   than (cv) void*.
1187  int kind;
1188  if (const PointerType* IT = T->getAsPointerType()) {
1189    T = IT->getPointeeType();
1190    kind = 1;
1191  } else if (const ReferenceType* IT = T->getAsReferenceType()) {
1192    T = IT->getPointeeType();
1193    kind = 2;
1194  } else
1195    return false;
1196
1197  if (T->isIncompleteType() && !T->isVoidType())
1198    return Diag(Range.getBegin(), diag::err_incomplete_in_exception_spec)
1199      << Range << T << /*indirect*/kind;
1200
1201  return false;
1202}
1203
1204/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
1205/// to member to a function with an exception specification. This means that
1206/// it is invalid to add another level of indirection.
1207bool Sema::CheckDistantExceptionSpec(QualType T) {
1208  if (const PointerType *PT = T->getAsPointerType())
1209    T = PT->getPointeeType();
1210  else if (const MemberPointerType *PT = T->getAsMemberPointerType())
1211    T = PT->getPointeeType();
1212  else
1213    return false;
1214
1215  const FunctionProtoType *FnT = T->getAsFunctionProtoType();
1216  if (!FnT)
1217    return false;
1218
1219  return FnT->hasExceptionSpec();
1220}
1221
1222/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
1223/// exception specifications. Exception specifications are equivalent if
1224/// they allow exactly the same set of exception types. It does not matter how
1225/// that is achieved. See C++ [except.spec]p2.
1226bool Sema::CheckEquivalentExceptionSpec(
1227    const FunctionProtoType *Old, SourceLocation OldLoc,
1228    const FunctionProtoType *New, SourceLocation NewLoc) {
1229  bool OldAny = !Old->hasExceptionSpec() || Old->hasAnyExceptionSpec();
1230  bool NewAny = !New->hasExceptionSpec() || New->hasAnyExceptionSpec();
1231  if (OldAny && NewAny)
1232    return false;
1233  if (OldAny || NewAny) {
1234    Diag(NewLoc, diag::err_mismatched_exception_spec);
1235    Diag(OldLoc, diag::note_previous_declaration);
1236    return true;
1237  }
1238
1239  bool Success = true;
1240  // Both have a definite exception spec. Collect the first set, then compare
1241  // to the second.
1242  llvm::SmallPtrSet<const Type*, 8> Types;
1243  for (FunctionProtoType::exception_iterator I = Old->exception_begin(),
1244       E = Old->exception_end(); I != E; ++I)
1245    Types.insert(Context.getCanonicalType(*I).getTypePtr());
1246
1247  for (FunctionProtoType::exception_iterator I = New->exception_begin(),
1248       E = New->exception_end(); I != E && Success; ++I)
1249    Success = Types.erase(Context.getCanonicalType(*I).getTypePtr());
1250
1251  Success = Success && Types.empty();
1252
1253  if (Success) {
1254    return false;
1255  }
1256  Diag(NewLoc, diag::err_mismatched_exception_spec);
1257  Diag(OldLoc, diag::note_previous_declaration);
1258  return true;
1259}
1260
1261/// CheckExceptionSpecSubset - Check whether the second function type's
1262/// exception specification is a subset (or equivalent) of the first function
1263/// type. This is used by override and pointer assignment checks.
1264bool Sema::CheckExceptionSpecSubset(unsigned DiagID, unsigned NoteID,
1265    const FunctionProtoType *Superset, SourceLocation SuperLoc,
1266    const FunctionProtoType *Subset, SourceLocation SubLoc)
1267{
1268  // FIXME: As usual, we could be more specific in our error messages, but
1269  // that better waits until we've got types with source locations.
1270
1271  // If superset contains everything, we're done.
1272  if (!Superset->hasExceptionSpec() || Superset->hasAnyExceptionSpec())
1273    return false;
1274
1275  // It does not. If the subset contains everything, we've failed.
1276  if (!Subset->hasExceptionSpec() || Subset->hasAnyExceptionSpec()) {
1277    Diag(SubLoc, DiagID);
1278    Diag(SuperLoc, NoteID);
1279    return true;
1280  }
1281
1282  // Neither contains everything. Do a proper comparison.
1283  for (FunctionProtoType::exception_iterator SubI = Subset->exception_begin(),
1284       SubE = Subset->exception_end(); SubI != SubE; ++SubI) {
1285    // Take one type from the subset.
1286    QualType CanonicalSubT = Context.getCanonicalType(*SubI);
1287    bool SubIsPointer = false;
1288    if (const ReferenceType *RefTy = CanonicalSubT->getAsReferenceType())
1289      CanonicalSubT = RefTy->getPointeeType();
1290    if (const PointerType *PtrTy = CanonicalSubT->getAsPointerType()) {
1291      CanonicalSubT = PtrTy->getPointeeType();
1292      SubIsPointer = true;
1293    }
1294    bool SubIsClass = CanonicalSubT->isRecordType();
1295    CanonicalSubT.setCVRQualifiers(0);
1296
1297    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1298                    /*DetectVirtual=*/false);
1299
1300    bool Contained = false;
1301    // Make sure it's in the superset.
1302    for (FunctionProtoType::exception_iterator SuperI =
1303           Superset->exception_begin(), SuperE = Superset->exception_end();
1304         SuperI != SuperE; ++SuperI) {
1305      QualType CanonicalSuperT = Context.getCanonicalType(*SuperI);
1306      // SubT must be SuperT or derived from it, or pointer or reference to
1307      // such types.
1308      if (const ReferenceType *RefTy = CanonicalSuperT->getAsReferenceType())
1309        CanonicalSuperT = RefTy->getPointeeType();
1310      if (SubIsPointer) {
1311        if (const PointerType *PtrTy = CanonicalSuperT->getAsPointerType())
1312          CanonicalSuperT = PtrTy->getPointeeType();
1313        else {
1314          continue;
1315        }
1316      }
1317      CanonicalSuperT.setCVRQualifiers(0);
1318      // If the types are the same, move on to the next type in the subset.
1319      if (CanonicalSubT == CanonicalSuperT) {
1320        Contained = true;
1321        break;
1322      }
1323
1324      // Otherwise we need to check the inheritance.
1325      if (!SubIsClass || !CanonicalSuperT->isRecordType())
1326        continue;
1327
1328      Paths.clear();
1329      if (!IsDerivedFrom(CanonicalSubT, CanonicalSuperT, Paths))
1330        continue;
1331
1332      if (Paths.isAmbiguous(CanonicalSuperT))
1333        continue;
1334
1335      // FIXME: Check base access. Don't forget to enable path recording.
1336
1337      Contained = true;
1338      break;
1339    }
1340    if (!Contained) {
1341      Diag(SubLoc, DiagID);
1342      Diag(SuperLoc, NoteID);
1343      return true;
1344    }
1345  }
1346  // We've run the gauntlet.
1347  return false;
1348}
1349
1350/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
1351/// declarator
1352QualType Sema::ObjCGetTypeForMethodDefinition(DeclPtrTy D) {
1353  ObjCMethodDecl *MDecl = cast<ObjCMethodDecl>(D.getAs<Decl>());
1354  QualType T = MDecl->getResultType();
1355  llvm::SmallVector<QualType, 16> ArgTys;
1356
1357  // Add the first two invisible argument types for self and _cmd.
1358  if (MDecl->isInstanceMethod()) {
1359    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
1360    selfTy = Context.getPointerType(selfTy);
1361    ArgTys.push_back(selfTy);
1362  } else
1363    ArgTys.push_back(Context.getObjCIdType());
1364  ArgTys.push_back(Context.getObjCSelType());
1365
1366  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
1367       E = MDecl->param_end(); PI != E; ++PI) {
1368    QualType ArgTy = (*PI)->getType();
1369    assert(!ArgTy.isNull() && "Couldn't parse type?");
1370    ArgTy = adjustParameterType(ArgTy);
1371    ArgTys.push_back(ArgTy);
1372  }
1373  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
1374                              MDecl->isVariadic(), 0);
1375  return T;
1376}
1377
1378/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
1379/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
1380/// they point to and return true. If T1 and T2 aren't pointer types
1381/// or pointer-to-member types, or if they are not similar at this
1382/// level, returns false and leaves T1 and T2 unchanged. Top-level
1383/// qualifiers on T1 and T2 are ignored. This function will typically
1384/// be called in a loop that successively "unwraps" pointer and
1385/// pointer-to-member types to compare them at each level.
1386bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
1387  const PointerType *T1PtrType = T1->getAsPointerType(),
1388                    *T2PtrType = T2->getAsPointerType();
1389  if (T1PtrType && T2PtrType) {
1390    T1 = T1PtrType->getPointeeType();
1391    T2 = T2PtrType->getPointeeType();
1392    return true;
1393  }
1394
1395  const MemberPointerType *T1MPType = T1->getAsMemberPointerType(),
1396                          *T2MPType = T2->getAsMemberPointerType();
1397  if (T1MPType && T2MPType &&
1398      Context.getCanonicalType(T1MPType->getClass()) ==
1399      Context.getCanonicalType(T2MPType->getClass())) {
1400    T1 = T1MPType->getPointeeType();
1401    T2 = T2MPType->getPointeeType();
1402    return true;
1403  }
1404  return false;
1405}
1406
1407Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1408  // C99 6.7.6: Type names have no identifier.  This is already validated by
1409  // the parser.
1410  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1411
1412  TagDecl *OwnedTag = 0;
1413  QualType T = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedTag);
1414  if (D.isInvalidType())
1415    return true;
1416
1417  if (getLangOptions().CPlusPlus) {
1418    // Check that there are no default arguments (C++ only).
1419    CheckExtraCXXDefaultArguments(D);
1420
1421    // C++0x [dcl.type]p3:
1422    //   A type-specifier-seq shall not define a class or enumeration
1423    //   unless it appears in the type-id of an alias-declaration
1424    //   (7.1.3).
1425    if (OwnedTag && OwnedTag->isDefinition())
1426      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1427        << Context.getTypeDeclType(OwnedTag);
1428  }
1429
1430  return T.getAsOpaquePtr();
1431}
1432
1433
1434
1435//===----------------------------------------------------------------------===//
1436// Type Attribute Processing
1437//===----------------------------------------------------------------------===//
1438
1439/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1440/// specified type.  The attribute contains 1 argument, the id of the address
1441/// space for the type.
1442static void HandleAddressSpaceTypeAttribute(QualType &Type,
1443                                            const AttributeList &Attr, Sema &S){
1444  // If this type is already address space qualified, reject it.
1445  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1446  // for two or more different address spaces."
1447  if (Type.getAddressSpace()) {
1448    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1449    return;
1450  }
1451
1452  // Check the attribute arguments.
1453  if (Attr.getNumArgs() != 1) {
1454    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1455    return;
1456  }
1457  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1458  llvm::APSInt addrSpace(32);
1459  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1460    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1461      << ASArgExpr->getSourceRange();
1462    return;
1463  }
1464
1465  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1466  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1467}
1468
1469/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1470/// specified type.  The attribute contains 1 argument, weak or strong.
1471static void HandleObjCGCTypeAttribute(QualType &Type,
1472                                      const AttributeList &Attr, Sema &S) {
1473  if (Type.getObjCGCAttr() != QualType::GCNone) {
1474    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1475    return;
1476  }
1477
1478  // Check the attribute arguments.
1479  if (!Attr.getParameterName()) {
1480    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1481      << "objc_gc" << 1;
1482    return;
1483  }
1484  QualType::GCAttrTypes GCAttr;
1485  if (Attr.getNumArgs() != 0) {
1486    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1487    return;
1488  }
1489  if (Attr.getParameterName()->isStr("weak"))
1490    GCAttr = QualType::Weak;
1491  else if (Attr.getParameterName()->isStr("strong"))
1492    GCAttr = QualType::Strong;
1493  else {
1494    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1495      << "objc_gc" << Attr.getParameterName();
1496    return;
1497  }
1498
1499  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1500}
1501
1502void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
1503  // Scan through and apply attributes to this type where it makes sense.  Some
1504  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1505  // type, but others can be present in the type specifiers even though they
1506  // apply to the decl.  Here we apply type attributes and ignore the rest.
1507  for (; AL; AL = AL->getNext()) {
1508    // If this is an attribute we can handle, do so now, otherwise, add it to
1509    // the LeftOverAttrs list for rechaining.
1510    switch (AL->getKind()) {
1511    default: break;
1512    case AttributeList::AT_address_space:
1513      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
1514      break;
1515    case AttributeList::AT_objc_gc:
1516      HandleObjCGCTypeAttribute(Result, *AL, *this);
1517      break;
1518    }
1519  }
1520}
1521
1522/// @brief Ensure that the type T is a complete type.
1523///
1524/// This routine checks whether the type @p T is complete in any
1525/// context where a complete type is required. If @p T is a complete
1526/// type, returns false. If @p T is a class template specialization,
1527/// this routine then attempts to perform class template
1528/// instantiation. If instantiation fails, or if @p T is incomplete
1529/// and cannot be completed, issues the diagnostic @p diag (giving it
1530/// the type @p T) and returns true.
1531///
1532/// @param Loc  The location in the source that the incomplete type
1533/// diagnostic should refer to.
1534///
1535/// @param T  The type that this routine is examining for completeness.
1536///
1537/// @param diag The diagnostic value (e.g.,
1538/// @c diag::err_typecheck_decl_incomplete_type) that will be used
1539/// for the error message if @p T is incomplete.
1540///
1541/// @param Range1  An optional range in the source code that will be a
1542/// part of the "incomplete type" error message.
1543///
1544/// @param Range2  An optional range in the source code that will be a
1545/// part of the "incomplete type" error message.
1546///
1547/// @param PrintType If non-NULL, the type that should be printed
1548/// instead of @p T. This parameter should be used when the type that
1549/// we're checking for incompleteness isn't the type that should be
1550/// displayed to the user, e.g., when T is a type and PrintType is a
1551/// pointer to T.
1552///
1553/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1554/// @c false otherwise.
1555bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, unsigned diag,
1556                               SourceRange Range1, SourceRange Range2,
1557                               QualType PrintType) {
1558  // FIXME: Add this assertion to help us flush out problems with
1559  // checking for dependent types and type-dependent expressions.
1560  //
1561  //  assert(!T->isDependentType() &&
1562  //         "Can't ask whether a dependent type is complete");
1563
1564  // If we have a complete type, we're done.
1565  if (!T->isIncompleteType())
1566    return false;
1567
1568  // If we have a class template specialization or a class member of a
1569  // class template specialization, try to instantiate it.
1570  if (const RecordType *Record = T->getAsRecordType()) {
1571    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
1572          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
1573      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
1574        // Update the class template specialization's location to
1575        // refer to the point of instantiation.
1576        if (Loc.isValid())
1577          ClassTemplateSpec->setLocation(Loc);
1578        return InstantiateClassTemplateSpecialization(ClassTemplateSpec,
1579                                             /*ExplicitInstantiation=*/false);
1580      }
1581    } else if (CXXRecordDecl *Rec
1582                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
1583      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
1584        // Find the class template specialization that surrounds this
1585        // member class.
1586        ClassTemplateSpecializationDecl *Spec = 0;
1587        for (DeclContext *Parent = Rec->getDeclContext();
1588             Parent && !Spec; Parent = Parent->getParent())
1589          Spec = dyn_cast<ClassTemplateSpecializationDecl>(Parent);
1590        assert(Spec && "Not a member of a class template specialization?");
1591        return InstantiateClass(Loc, Rec, Pattern, Spec->getTemplateArgs(),
1592                                /*ExplicitInstantiation=*/false);
1593      }
1594    }
1595  }
1596
1597  if (PrintType.isNull())
1598    PrintType = T;
1599
1600  // We have an incomplete type. Produce a diagnostic.
1601  Diag(Loc, diag) << PrintType << Range1 << Range2;
1602
1603  // If the type was a forward declaration of a class/struct/union
1604  // type, produce
1605  const TagType *Tag = 0;
1606  if (const RecordType *Record = T->getAsRecordType())
1607    Tag = Record;
1608  else if (const EnumType *Enum = T->getAsEnumType())
1609    Tag = Enum;
1610
1611  if (Tag && !Tag->getDecl()->isInvalidDecl())
1612    Diag(Tag->getDecl()->getLocation(),
1613         Tag->isBeingDefined() ? diag::note_type_being_defined
1614                               : diag::note_forward_declaration)
1615        << QualType(Tag, 0);
1616
1617  return true;
1618}
1619
1620/// \brief Retrieve a version of the type 'T' that is qualified by the
1621/// nested-name-specifier contained in SS.
1622QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
1623  if (!SS.isSet() || SS.isInvalid() || T.isNull())
1624    return T;
1625
1626  NestedNameSpecifier *NNS
1627    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1628  return Context.getQualifiedNameType(NNS, T);
1629}
1630
1631QualType Sema::BuildTypeofExprType(Expr *E) {
1632  return Context.getTypeOfExprType(E);
1633}
1634
1635QualType Sema::BuildDecltypeType(Expr *E) {
1636  if (E->getType() == Context.OverloadTy) {
1637    Diag(E->getLocStart(),
1638         diag::err_cannot_determine_declared_type_of_overloaded_function);
1639    return QualType();
1640  }
1641  return Context.getDecltypeType(E);
1642}
1643