SemaType.cpp revision 406b56a9a0ed38e9fbcea1f51ea28ee3719517d3
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/TypeLocVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26using namespace clang;
27
28/// \brief Perform adjustment on the parameter type of a function.
29///
30/// This routine adjusts the given parameter type @p T to the actual
31/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
32/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
33QualType Sema::adjustParameterType(QualType T) {
34  // C99 6.7.5.3p7:
35  //   A declaration of a parameter as "array of type" shall be
36  //   adjusted to "qualified pointer to type", where the type
37  //   qualifiers (if any) are those specified within the [ and ] of
38  //   the array type derivation.
39  if (T->isArrayType())
40    return Context.getArrayDecayedType(T);
41
42  // C99 6.7.5.3p8:
43  //   A declaration of a parameter as "function returning type"
44  //   shall be adjusted to "pointer to function returning type", as
45  //   in 6.3.2.1.
46  if (T->isFunctionType())
47    return Context.getPointerType(T);
48
49  return T;
50}
51
52
53
54/// isOmittedBlockReturnType - Return true if this declarator is missing a
55/// return type because this is a omitted return type on a block literal.
56static bool isOmittedBlockReturnType(const Declarator &D) {
57  if (D.getContext() != Declarator::BlockLiteralContext ||
58      D.getDeclSpec().hasTypeSpecifier())
59    return false;
60
61  if (D.getNumTypeObjects() == 0)
62    return true;   // ^{ ... }
63
64  if (D.getNumTypeObjects() == 1 &&
65      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
66    return true;   // ^(int X, float Y) { ... }
67
68  return false;
69}
70
71/// \brief Convert the specified declspec to the appropriate type
72/// object.
73/// \param D  the declarator containing the declaration specifier.
74/// \returns The type described by the declaration specifiers.  This function
75/// never returns null.
76static QualType ConvertDeclSpecToType(Declarator &TheDeclarator, Sema &TheSema){
77  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
78  // checking.
79  const DeclSpec &DS = TheDeclarator.getDeclSpec();
80  SourceLocation DeclLoc = TheDeclarator.getIdentifierLoc();
81  if (DeclLoc.isInvalid())
82    DeclLoc = DS.getSourceRange().getBegin();
83
84  ASTContext &Context = TheSema.Context;
85
86  QualType Result;
87  switch (DS.getTypeSpecType()) {
88  case DeclSpec::TST_void:
89    Result = Context.VoidTy;
90    break;
91  case DeclSpec::TST_char:
92    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
93      Result = Context.CharTy;
94    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
95      Result = Context.SignedCharTy;
96    else {
97      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
98             "Unknown TSS value");
99      Result = Context.UnsignedCharTy;
100    }
101    break;
102  case DeclSpec::TST_wchar:
103    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
104      Result = Context.WCharTy;
105    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
106      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
107        << DS.getSpecifierName(DS.getTypeSpecType());
108      Result = Context.getSignedWCharType();
109    } else {
110      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
111        "Unknown TSS value");
112      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
113        << DS.getSpecifierName(DS.getTypeSpecType());
114      Result = Context.getUnsignedWCharType();
115    }
116    break;
117  case DeclSpec::TST_char16:
118      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
119        "Unknown TSS value");
120      Result = Context.Char16Ty;
121    break;
122  case DeclSpec::TST_char32:
123      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
124        "Unknown TSS value");
125      Result = Context.Char32Ty;
126    break;
127  case DeclSpec::TST_unspecified:
128    // "<proto1,proto2>" is an objc qualified ID with a missing id.
129    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
130      Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
131                                                (ObjCProtocolDecl**)PQ,
132                                                DS.getNumProtocolQualifiers());
133      break;
134    }
135
136    // If this is a missing declspec in a block literal return context, then it
137    // is inferred from the return statements inside the block.
138    if (isOmittedBlockReturnType(TheDeclarator)) {
139      Result = Context.DependentTy;
140      break;
141    }
142
143    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
144    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
145    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
146    // Note that the one exception to this is function definitions, which are
147    // allowed to be completely missing a declspec.  This is handled in the
148    // parser already though by it pretending to have seen an 'int' in this
149    // case.
150    if (TheSema.getLangOptions().ImplicitInt) {
151      // In C89 mode, we only warn if there is a completely missing declspec
152      // when one is not allowed.
153      if (DS.isEmpty()) {
154        TheSema.Diag(DeclLoc, diag::ext_missing_declspec)
155          << DS.getSourceRange()
156        << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
157                                                 "int");
158      }
159    } else if (!DS.hasTypeSpecifier()) {
160      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
161      // "At least one type specifier shall be given in the declaration
162      // specifiers in each declaration, and in the specifier-qualifier list in
163      // each struct declaration and type name."
164      // FIXME: Does Microsoft really have the implicit int extension in C++?
165      if (TheSema.getLangOptions().CPlusPlus &&
166          !TheSema.getLangOptions().Microsoft) {
167        TheSema.Diag(DeclLoc, diag::err_missing_type_specifier)
168          << DS.getSourceRange();
169
170        // When this occurs in C++ code, often something is very broken with the
171        // value being declared, poison it as invalid so we don't get chains of
172        // errors.
173        TheDeclarator.setInvalidType(true);
174      } else {
175        TheSema.Diag(DeclLoc, diag::ext_missing_type_specifier)
176          << DS.getSourceRange();
177      }
178    }
179
180    // FALL THROUGH.
181  case DeclSpec::TST_int: {
182    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
183      switch (DS.getTypeSpecWidth()) {
184      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
185      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
186      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
187      case DeclSpec::TSW_longlong:
188        Result = Context.LongLongTy;
189
190        // long long is a C99 feature.
191        if (!TheSema.getLangOptions().C99 &&
192            !TheSema.getLangOptions().CPlusPlus0x)
193          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
194        break;
195      }
196    } else {
197      switch (DS.getTypeSpecWidth()) {
198      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
199      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
200      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
201      case DeclSpec::TSW_longlong:
202        Result = Context.UnsignedLongLongTy;
203
204        // long long is a C99 feature.
205        if (!TheSema.getLangOptions().C99 &&
206            !TheSema.getLangOptions().CPlusPlus0x)
207          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
208        break;
209      }
210    }
211    break;
212  }
213  case DeclSpec::TST_float: Result = Context.FloatTy; break;
214  case DeclSpec::TST_double:
215    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
216      Result = Context.LongDoubleTy;
217    else
218      Result = Context.DoubleTy;
219    break;
220  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
221  case DeclSpec::TST_decimal32:    // _Decimal32
222  case DeclSpec::TST_decimal64:    // _Decimal64
223  case DeclSpec::TST_decimal128:   // _Decimal128
224    TheSema.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
225    Result = Context.IntTy;
226    TheDeclarator.setInvalidType(true);
227    break;
228  case DeclSpec::TST_class:
229  case DeclSpec::TST_enum:
230  case DeclSpec::TST_union:
231  case DeclSpec::TST_struct: {
232    TypeDecl *D
233      = dyn_cast_or_null<TypeDecl>(static_cast<Decl *>(DS.getTypeRep()));
234    if (!D) {
235      // This can happen in C++ with ambiguous lookups.
236      Result = Context.IntTy;
237      TheDeclarator.setInvalidType(true);
238      break;
239    }
240
241    // If the type is deprecated or unavailable, diagnose it.
242    TheSema.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeLoc());
243
244    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
245           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
246
247    // TypeQuals handled by caller.
248    Result = Context.getTypeDeclType(D);
249
250    // In C++, make an ElaboratedType.
251    if (TheSema.getLangOptions().CPlusPlus) {
252      TagDecl::TagKind Tag
253        = TagDecl::getTagKindForTypeSpec(DS.getTypeSpecType());
254      Result = Context.getElaboratedType(Result, Tag);
255    }
256
257    if (D->isInvalidDecl())
258      TheDeclarator.setInvalidType(true);
259    break;
260  }
261  case DeclSpec::TST_typename: {
262    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
263           DS.getTypeSpecSign() == 0 &&
264           "Can't handle qualifiers on typedef names yet!");
265    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
266
267    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
268      if (const ObjCInterfaceType *
269            Interface = Result->getAs<ObjCInterfaceType>()) {
270        // It would be nice if protocol qualifiers were only stored with the
271        // ObjCObjectPointerType. Unfortunately, this isn't possible due
272        // to the following typedef idiom (which is uncommon, but allowed):
273        //
274        // typedef Foo<P> T;
275        // static void func() {
276        //   Foo<P> *yy;
277        //   T *zz;
278        // }
279        Result = Context.getObjCInterfaceType(Interface->getDecl(),
280                                              (ObjCProtocolDecl**)PQ,
281                                              DS.getNumProtocolQualifiers());
282      } else if (Result->isObjCIdType())
283        // id<protocol-list>
284        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
285                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
286      else if (Result->isObjCClassType()) {
287        // Class<protocol-list>
288        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinClassTy,
289                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
290      } else {
291        TheSema.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
292          << DS.getSourceRange();
293        TheDeclarator.setInvalidType(true);
294      }
295    }
296
297    // TypeQuals handled by caller.
298    break;
299  }
300  case DeclSpec::TST_typeofType:
301    // FIXME: Preserve type source info.
302    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
303    assert(!Result.isNull() && "Didn't get a type for typeof?");
304    // TypeQuals handled by caller.
305    Result = Context.getTypeOfType(Result);
306    break;
307  case DeclSpec::TST_typeofExpr: {
308    Expr *E = static_cast<Expr *>(DS.getTypeRep());
309    assert(E && "Didn't get an expression for typeof?");
310    // TypeQuals handled by caller.
311    Result = Context.getTypeOfExprType(E);
312    break;
313  }
314  case DeclSpec::TST_decltype: {
315    Expr *E = static_cast<Expr *>(DS.getTypeRep());
316    assert(E && "Didn't get an expression for decltype?");
317    // TypeQuals handled by caller.
318    Result = TheSema.BuildDecltypeType(E);
319    if (Result.isNull()) {
320      Result = Context.IntTy;
321      TheDeclarator.setInvalidType(true);
322    }
323    break;
324  }
325  case DeclSpec::TST_auto: {
326    // TypeQuals handled by caller.
327    Result = Context.UndeducedAutoTy;
328    break;
329  }
330
331  case DeclSpec::TST_error:
332    Result = Context.IntTy;
333    TheDeclarator.setInvalidType(true);
334    break;
335  }
336
337  // Handle complex types.
338  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
339    if (TheSema.getLangOptions().Freestanding)
340      TheSema.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
341    Result = Context.getComplexType(Result);
342  }
343
344  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
345         "FIXME: imaginary types not supported yet!");
346
347  // See if there are any attributes on the declspec that apply to the type (as
348  // opposed to the decl).
349  if (const AttributeList *AL = DS.getAttributes())
350    TheSema.ProcessTypeAttributeList(Result, AL);
351
352  // Apply const/volatile/restrict qualifiers to T.
353  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
354
355    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
356    // or incomplete types shall not be restrict-qualified."  C++ also allows
357    // restrict-qualified references.
358    if (TypeQuals & DeclSpec::TQ_restrict) {
359      if (Result->isPointerType() || Result->isReferenceType()) {
360        QualType EltTy = Result->isPointerType() ?
361          Result->getAs<PointerType>()->getPointeeType() :
362          Result->getAs<ReferenceType>()->getPointeeType();
363
364        // If we have a pointer or reference, the pointee must have an object
365        // incomplete type.
366        if (!EltTy->isIncompleteOrObjectType()) {
367          TheSema.Diag(DS.getRestrictSpecLoc(),
368               diag::err_typecheck_invalid_restrict_invalid_pointee)
369            << EltTy << DS.getSourceRange();
370          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
371        }
372      } else {
373        TheSema.Diag(DS.getRestrictSpecLoc(),
374             diag::err_typecheck_invalid_restrict_not_pointer)
375          << Result << DS.getSourceRange();
376        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
377      }
378    }
379
380    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
381    // of a function type includes any type qualifiers, the behavior is
382    // undefined."
383    if (Result->isFunctionType() && TypeQuals) {
384      // Get some location to point at, either the C or V location.
385      SourceLocation Loc;
386      if (TypeQuals & DeclSpec::TQ_const)
387        Loc = DS.getConstSpecLoc();
388      else if (TypeQuals & DeclSpec::TQ_volatile)
389        Loc = DS.getVolatileSpecLoc();
390      else {
391        assert((TypeQuals & DeclSpec::TQ_restrict) &&
392               "Has CVR quals but not C, V, or R?");
393        Loc = DS.getRestrictSpecLoc();
394      }
395      TheSema.Diag(Loc, diag::warn_typecheck_function_qualifiers)
396        << Result << DS.getSourceRange();
397    }
398
399    // C++ [dcl.ref]p1:
400    //   Cv-qualified references are ill-formed except when the
401    //   cv-qualifiers are introduced through the use of a typedef
402    //   (7.1.3) or of a template type argument (14.3), in which
403    //   case the cv-qualifiers are ignored.
404    // FIXME: Shouldn't we be checking SCS_typedef here?
405    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
406        TypeQuals && Result->isReferenceType()) {
407      TypeQuals &= ~DeclSpec::TQ_const;
408      TypeQuals &= ~DeclSpec::TQ_volatile;
409    }
410
411    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
412    Result = Context.getQualifiedType(Result, Quals);
413  }
414
415  return Result;
416}
417
418static std::string getPrintableNameForEntity(DeclarationName Entity) {
419  if (Entity)
420    return Entity.getAsString();
421
422  return "type name";
423}
424
425/// \brief Build a pointer type.
426///
427/// \param T The type to which we'll be building a pointer.
428///
429/// \param Quals The cvr-qualifiers to be applied to the pointer type.
430///
431/// \param Loc The location of the entity whose type involves this
432/// pointer type or, if there is no such entity, the location of the
433/// type that will have pointer type.
434///
435/// \param Entity The name of the entity that involves the pointer
436/// type, if known.
437///
438/// \returns A suitable pointer type, if there are no
439/// errors. Otherwise, returns a NULL type.
440QualType Sema::BuildPointerType(QualType T, unsigned Quals,
441                                SourceLocation Loc, DeclarationName Entity) {
442  if (T->isReferenceType()) {
443    // C++ 8.3.2p4: There shall be no ... pointers to references ...
444    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
445      << getPrintableNameForEntity(Entity) << T;
446    return QualType();
447  }
448
449  Qualifiers Qs = Qualifiers::fromCVRMask(Quals);
450
451  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
452  // object or incomplete types shall not be restrict-qualified."
453  if (Qs.hasRestrict() && !T->isIncompleteOrObjectType()) {
454    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
455      << T;
456    Qs.removeRestrict();
457  }
458
459  // Build the pointer type.
460  return Context.getQualifiedType(Context.getPointerType(T), Qs);
461}
462
463/// \brief Build a reference type.
464///
465/// \param T The type to which we'll be building a reference.
466///
467/// \param CVR The cvr-qualifiers to be applied to the reference type.
468///
469/// \param Loc The location of the entity whose type involves this
470/// reference type or, if there is no such entity, the location of the
471/// type that will have reference type.
472///
473/// \param Entity The name of the entity that involves the reference
474/// type, if known.
475///
476/// \returns A suitable reference type, if there are no
477/// errors. Otherwise, returns a NULL type.
478QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
479                                  unsigned CVR, SourceLocation Loc,
480                                  DeclarationName Entity) {
481  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
482
483  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
484
485  // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
486  //   reference to a type T, and attempt to create the type "lvalue
487  //   reference to cv TD" creates the type "lvalue reference to T".
488  // We use the qualifiers (restrict or none) of the original reference,
489  // not the new ones. This is consistent with GCC.
490
491  // C++ [dcl.ref]p4: There shall be no references to references.
492  //
493  // According to C++ DR 106, references to references are only
494  // diagnosed when they are written directly (e.g., "int & &"),
495  // but not when they happen via a typedef:
496  //
497  //   typedef int& intref;
498  //   typedef intref& intref2;
499  //
500  // Parser::ParseDeclaratorInternal diagnoses the case where
501  // references are written directly; here, we handle the
502  // collapsing of references-to-references as described in C++
503  // DR 106 and amended by C++ DR 540.
504
505  // C++ [dcl.ref]p1:
506  //   A declarator that specifies the type "reference to cv void"
507  //   is ill-formed.
508  if (T->isVoidType()) {
509    Diag(Loc, diag::err_reference_to_void);
510    return QualType();
511  }
512
513  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
514  // object or incomplete types shall not be restrict-qualified."
515  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
516    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
517      << T;
518    Quals.removeRestrict();
519  }
520
521  // C++ [dcl.ref]p1:
522  //   [...] Cv-qualified references are ill-formed except when the
523  //   cv-qualifiers are introduced through the use of a typedef
524  //   (7.1.3) or of a template type argument (14.3), in which case
525  //   the cv-qualifiers are ignored.
526  //
527  // We diagnose extraneous cv-qualifiers for the non-typedef,
528  // non-template type argument case within the parser. Here, we just
529  // ignore any extraneous cv-qualifiers.
530  Quals.removeConst();
531  Quals.removeVolatile();
532
533  // Handle restrict on references.
534  if (LValueRef)
535    return Context.getQualifiedType(
536               Context.getLValueReferenceType(T, SpelledAsLValue), Quals);
537  return Context.getQualifiedType(Context.getRValueReferenceType(T), Quals);
538}
539
540/// \brief Build an array type.
541///
542/// \param T The type of each element in the array.
543///
544/// \param ASM C99 array size modifier (e.g., '*', 'static').
545///
546/// \param ArraySize Expression describing the size of the array.
547///
548/// \param Quals The cvr-qualifiers to be applied to the array's
549/// element type.
550///
551/// \param Loc The location of the entity whose type involves this
552/// array type or, if there is no such entity, the location of the
553/// type that will have array type.
554///
555/// \param Entity The name of the entity that involves the array
556/// type, if known.
557///
558/// \returns A suitable array type, if there are no errors. Otherwise,
559/// returns a NULL type.
560QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
561                              Expr *ArraySize, unsigned Quals,
562                              SourceRange Brackets, DeclarationName Entity) {
563
564  SourceLocation Loc = Brackets.getBegin();
565  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
566  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
567  // Not in C++, though. There we only dislike void.
568  if (getLangOptions().CPlusPlus) {
569    if (T->isVoidType()) {
570      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
571      return QualType();
572    }
573  } else {
574    if (RequireCompleteType(Loc, T,
575                            diag::err_illegal_decl_array_incomplete_type))
576      return QualType();
577  }
578
579  if (T->isFunctionType()) {
580    Diag(Loc, diag::err_illegal_decl_array_of_functions)
581      << getPrintableNameForEntity(Entity) << T;
582    return QualType();
583  }
584
585  // C++ 8.3.2p4: There shall be no ... arrays of references ...
586  if (T->isReferenceType()) {
587    Diag(Loc, diag::err_illegal_decl_array_of_references)
588      << getPrintableNameForEntity(Entity) << T;
589    return QualType();
590  }
591
592  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
593    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
594      << getPrintableNameForEntity(Entity);
595    return QualType();
596  }
597
598  if (const RecordType *EltTy = T->getAs<RecordType>()) {
599    // If the element type is a struct or union that contains a variadic
600    // array, accept it as a GNU extension: C99 6.7.2.1p2.
601    if (EltTy->getDecl()->hasFlexibleArrayMember())
602      Diag(Loc, diag::ext_flexible_array_in_array) << T;
603  } else if (T->isObjCInterfaceType()) {
604    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
605    return QualType();
606  }
607
608  // C99 6.7.5.2p1: The size expression shall have integer type.
609  if (ArraySize && !ArraySize->isTypeDependent() &&
610      !ArraySize->getType()->isIntegerType()) {
611    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
612      << ArraySize->getType() << ArraySize->getSourceRange();
613    ArraySize->Destroy(Context);
614    return QualType();
615  }
616  llvm::APSInt ConstVal(32);
617  if (!ArraySize) {
618    if (ASM == ArrayType::Star)
619      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
620    else
621      T = Context.getIncompleteArrayType(T, ASM, Quals);
622  } else if (ArraySize->isValueDependent()) {
623    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
624  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
625             (!T->isDependentType() && !T->isIncompleteType() &&
626              !T->isConstantSizeType())) {
627    // Per C99, a variable array is an array with either a non-constant
628    // size or an element type that has a non-constant-size
629    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
630  } else {
631    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
632    // have a value greater than zero.
633    if (ConstVal.isSigned() && ConstVal.isNegative()) {
634      Diag(ArraySize->getLocStart(),
635           diag::err_typecheck_negative_array_size)
636        << ArraySize->getSourceRange();
637      return QualType();
638    }
639    if (ConstVal == 0) {
640      // GCC accepts zero sized static arrays.
641      Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
642        << ArraySize->getSourceRange();
643    }
644    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
645  }
646  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
647  if (!getLangOptions().C99) {
648    if (ArraySize && !ArraySize->isTypeDependent() &&
649        !ArraySize->isValueDependent() &&
650        !ArraySize->isIntegerConstantExpr(Context))
651      Diag(Loc, getLangOptions().CPlusPlus? diag::err_vla_cxx : diag::ext_vla);
652    else if (ASM != ArrayType::Normal || Quals != 0)
653      Diag(Loc,
654           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
655                                     : diag::ext_c99_array_usage);
656  }
657
658  return T;
659}
660
661/// \brief Build an ext-vector type.
662///
663/// Run the required checks for the extended vector type.
664QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
665                                  SourceLocation AttrLoc) {
666
667  Expr *Arg = (Expr *)ArraySize.get();
668
669  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
670  // in conjunction with complex types (pointers, arrays, functions, etc.).
671  if (!T->isDependentType() &&
672      !T->isIntegerType() && !T->isRealFloatingType()) {
673    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
674    return QualType();
675  }
676
677  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
678    llvm::APSInt vecSize(32);
679    if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
680      Diag(AttrLoc, diag::err_attribute_argument_not_int)
681      << "ext_vector_type" << Arg->getSourceRange();
682      return QualType();
683    }
684
685    // unlike gcc's vector_size attribute, the size is specified as the
686    // number of elements, not the number of bytes.
687    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
688
689    if (vectorSize == 0) {
690      Diag(AttrLoc, diag::err_attribute_zero_size)
691      << Arg->getSourceRange();
692      return QualType();
693    }
694
695    if (!T->isDependentType())
696      return Context.getExtVectorType(T, vectorSize);
697  }
698
699  return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
700                                                AttrLoc);
701}
702
703/// \brief Build a function type.
704///
705/// This routine checks the function type according to C++ rules and
706/// under the assumption that the result type and parameter types have
707/// just been instantiated from a template. It therefore duplicates
708/// some of the behavior of GetTypeForDeclarator, but in a much
709/// simpler form that is only suitable for this narrow use case.
710///
711/// \param T The return type of the function.
712///
713/// \param ParamTypes The parameter types of the function. This array
714/// will be modified to account for adjustments to the types of the
715/// function parameters.
716///
717/// \param NumParamTypes The number of parameter types in ParamTypes.
718///
719/// \param Variadic Whether this is a variadic function type.
720///
721/// \param Quals The cvr-qualifiers to be applied to the function type.
722///
723/// \param Loc The location of the entity whose type involves this
724/// function type or, if there is no such entity, the location of the
725/// type that will have function type.
726///
727/// \param Entity The name of the entity that involves the function
728/// type, if known.
729///
730/// \returns A suitable function type, if there are no
731/// errors. Otherwise, returns a NULL type.
732QualType Sema::BuildFunctionType(QualType T,
733                                 QualType *ParamTypes,
734                                 unsigned NumParamTypes,
735                                 bool Variadic, unsigned Quals,
736                                 SourceLocation Loc, DeclarationName Entity) {
737  if (T->isArrayType() || T->isFunctionType()) {
738    Diag(Loc, diag::err_func_returning_array_function) << T;
739    return QualType();
740  }
741
742  bool Invalid = false;
743  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
744    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
745    if (ParamType->isVoidType()) {
746      Diag(Loc, diag::err_param_with_void_type);
747      Invalid = true;
748    }
749
750    ParamTypes[Idx] = ParamType;
751  }
752
753  if (Invalid)
754    return QualType();
755
756  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
757                                 Quals);
758}
759
760/// \brief Build a member pointer type \c T Class::*.
761///
762/// \param T the type to which the member pointer refers.
763/// \param Class the class type into which the member pointer points.
764/// \param CVR Qualifiers applied to the member pointer type
765/// \param Loc the location where this type begins
766/// \param Entity the name of the entity that will have this member pointer type
767///
768/// \returns a member pointer type, if successful, or a NULL type if there was
769/// an error.
770QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
771                                      unsigned CVR, SourceLocation Loc,
772                                      DeclarationName Entity) {
773  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
774
775  // Verify that we're not building a pointer to pointer to function with
776  // exception specification.
777  if (CheckDistantExceptionSpec(T)) {
778    Diag(Loc, diag::err_distant_exception_spec);
779
780    // FIXME: If we're doing this as part of template instantiation,
781    // we should return immediately.
782
783    // Build the type anyway, but use the canonical type so that the
784    // exception specifiers are stripped off.
785    T = Context.getCanonicalType(T);
786  }
787
788  // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
789  //   with reference type, or "cv void."
790  if (T->isReferenceType()) {
791    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
792      << (Entity? Entity.getAsString() : "type name") << T;
793    return QualType();
794  }
795
796  if (T->isVoidType()) {
797    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
798      << (Entity? Entity.getAsString() : "type name");
799    return QualType();
800  }
801
802  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
803  // object or incomplete types shall not be restrict-qualified."
804  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
805    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
806      << T;
807
808    // FIXME: If we're doing this as part of template instantiation,
809    // we should return immediately.
810    Quals.removeRestrict();
811  }
812
813  if (!Class->isDependentType() && !Class->isRecordType()) {
814    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
815    return QualType();
816  }
817
818  return Context.getQualifiedType(
819           Context.getMemberPointerType(T, Class.getTypePtr()), Quals);
820}
821
822/// \brief Build a block pointer type.
823///
824/// \param T The type to which we'll be building a block pointer.
825///
826/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
827///
828/// \param Loc The location of the entity whose type involves this
829/// block pointer type or, if there is no such entity, the location of the
830/// type that will have block pointer type.
831///
832/// \param Entity The name of the entity that involves the block pointer
833/// type, if known.
834///
835/// \returns A suitable block pointer type, if there are no
836/// errors. Otherwise, returns a NULL type.
837QualType Sema::BuildBlockPointerType(QualType T, unsigned CVR,
838                                     SourceLocation Loc,
839                                     DeclarationName Entity) {
840  if (!T->isFunctionType()) {
841    Diag(Loc, diag::err_nonfunction_block_type);
842    return QualType();
843  }
844
845  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
846  return Context.getQualifiedType(Context.getBlockPointerType(T), Quals);
847}
848
849QualType Sema::GetTypeFromParser(TypeTy *Ty, DeclaratorInfo **DInfo) {
850  QualType QT = QualType::getFromOpaquePtr(Ty);
851  if (QT.isNull()) {
852    if (DInfo) *DInfo = 0;
853    return QualType();
854  }
855
856  DeclaratorInfo *DI = 0;
857  if (LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
858    QT = LIT->getType();
859    DI = LIT->getDeclaratorInfo();
860  }
861
862  if (DInfo) *DInfo = DI;
863  return QT;
864}
865
866/// GetTypeForDeclarator - Convert the type for the specified
867/// declarator to Type instances.
868///
869/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
870/// owns the declaration of a type (e.g., the definition of a struct
871/// type), then *OwnedDecl will receive the owned declaration.
872QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
873                                    DeclaratorInfo **DInfo,
874                                    TagDecl **OwnedDecl) {
875  // Determine the type of the declarator. Not all forms of declarator
876  // have a type.
877  QualType T;
878
879  switch (D.getName().getKind()) {
880  case UnqualifiedId::IK_Identifier:
881  case UnqualifiedId::IK_OperatorFunctionId:
882  case UnqualifiedId::IK_TemplateId:
883    T = ConvertDeclSpecToType(D, *this);
884
885    if (!D.isInvalidType() && OwnedDecl && D.getDeclSpec().isTypeSpecOwned())
886      *OwnedDecl = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
887    break;
888
889  case UnqualifiedId::IK_ConstructorName:
890  case UnqualifiedId::IK_DestructorName:
891  case UnqualifiedId::IK_ConversionFunctionId:
892    // Constructors and destructors don't have return types. Use
893    // "void" instead. Conversion operators will check their return
894    // types separately.
895    T = Context.VoidTy;
896    break;
897  }
898
899  if (T == Context.UndeducedAutoTy) {
900    int Error = -1;
901
902    switch (D.getContext()) {
903    case Declarator::KNRTypeListContext:
904      assert(0 && "K&R type lists aren't allowed in C++");
905      break;
906    case Declarator::PrototypeContext:
907      Error = 0; // Function prototype
908      break;
909    case Declarator::MemberContext:
910      switch (cast<TagDecl>(CurContext)->getTagKind()) {
911      case TagDecl::TK_enum: assert(0 && "unhandled tag kind"); break;
912      case TagDecl::TK_struct: Error = 1; /* Struct member */ break;
913      case TagDecl::TK_union:  Error = 2; /* Union member */ break;
914      case TagDecl::TK_class:  Error = 3; /* Class member */ break;
915      }
916      break;
917    case Declarator::CXXCatchContext:
918      Error = 4; // Exception declaration
919      break;
920    case Declarator::TemplateParamContext:
921      Error = 5; // Template parameter
922      break;
923    case Declarator::BlockLiteralContext:
924      Error = 6;  // Block literal
925      break;
926    case Declarator::FileContext:
927    case Declarator::BlockContext:
928    case Declarator::ForContext:
929    case Declarator::ConditionContext:
930    case Declarator::TypeNameContext:
931      break;
932    }
933
934    if (Error != -1) {
935      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
936        << Error;
937      T = Context.IntTy;
938      D.setInvalidType(true);
939    }
940  }
941
942  // The name we're declaring, if any.
943  DeclarationName Name;
944  if (D.getIdentifier())
945    Name = D.getIdentifier();
946
947  // Walk the DeclTypeInfo, building the recursive type as we go.
948  // DeclTypeInfos are ordered from the identifier out, which is
949  // opposite of what we want :).
950  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
951    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
952    switch (DeclType.Kind) {
953    default: assert(0 && "Unknown decltype!");
954    case DeclaratorChunk::BlockPointer:
955      // If blocks are disabled, emit an error.
956      if (!LangOpts.Blocks)
957        Diag(DeclType.Loc, diag::err_blocks_disable);
958
959      T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(),
960                                Name);
961      break;
962    case DeclaratorChunk::Pointer:
963      // Verify that we're not building a pointer to pointer to function with
964      // exception specification.
965      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
966        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
967        D.setInvalidType(true);
968        // Build the type anyway.
969      }
970      if (getLangOptions().ObjC1 && T->isObjCInterfaceType()) {
971        const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>();
972        T = Context.getObjCObjectPointerType(T,
973                                         (ObjCProtocolDecl **)OIT->qual_begin(),
974                                         OIT->getNumProtocols());
975        break;
976      }
977      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
978      break;
979    case DeclaratorChunk::Reference: {
980      Qualifiers Quals;
981      if (DeclType.Ref.HasRestrict) Quals.addRestrict();
982
983      // Verify that we're not building a reference to pointer to function with
984      // exception specification.
985      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
986        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
987        D.setInvalidType(true);
988        // Build the type anyway.
989      }
990      T = BuildReferenceType(T, DeclType.Ref.LValueRef, Quals,
991                             DeclType.Loc, Name);
992      break;
993    }
994    case DeclaratorChunk::Array: {
995      // Verify that we're not building an array of pointers to function with
996      // exception specification.
997      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
998        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
999        D.setInvalidType(true);
1000        // Build the type anyway.
1001      }
1002      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1003      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
1004      ArrayType::ArraySizeModifier ASM;
1005      if (ATI.isStar)
1006        ASM = ArrayType::Star;
1007      else if (ATI.hasStatic)
1008        ASM = ArrayType::Static;
1009      else
1010        ASM = ArrayType::Normal;
1011      if (ASM == ArrayType::Star &&
1012          D.getContext() != Declarator::PrototypeContext) {
1013        // FIXME: This check isn't quite right: it allows star in prototypes
1014        // for function definitions, and disallows some edge cases detailed
1015        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
1016        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
1017        ASM = ArrayType::Normal;
1018        D.setInvalidType(true);
1019      }
1020      T = BuildArrayType(T, ASM, ArraySize,
1021                         Qualifiers::fromCVRMask(ATI.TypeQuals),
1022                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
1023      break;
1024    }
1025    case DeclaratorChunk::Function: {
1026      // If the function declarator has a prototype (i.e. it is not () and
1027      // does not have a K&R-style identifier list), then the arguments are part
1028      // of the type, otherwise the argument list is ().
1029      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1030
1031      // C99 6.7.5.3p1: The return type may not be a function or array type.
1032      if (T->isArrayType() || T->isFunctionType()) {
1033        Diag(DeclType.Loc, diag::err_func_returning_array_function) << T;
1034        T = Context.IntTy;
1035        D.setInvalidType(true);
1036      }
1037
1038      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
1039        // C++ [dcl.fct]p6:
1040        //   Types shall not be defined in return or parameter types.
1041        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
1042        if (Tag->isDefinition())
1043          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
1044            << Context.getTypeDeclType(Tag);
1045      }
1046
1047      // Exception specs are not allowed in typedefs. Complain, but add it
1048      // anyway.
1049      if (FTI.hasExceptionSpec &&
1050          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1051        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
1052
1053      if (FTI.NumArgs == 0) {
1054        if (getLangOptions().CPlusPlus) {
1055          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
1056          // function takes no arguments.
1057          llvm::SmallVector<QualType, 4> Exceptions;
1058          Exceptions.reserve(FTI.NumExceptions);
1059          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1060            // FIXME: Preserve type source info.
1061            QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1062            // Check that the type is valid for an exception spec, and drop it
1063            // if not.
1064            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1065              Exceptions.push_back(ET);
1066          }
1067          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
1068                                      FTI.hasExceptionSpec,
1069                                      FTI.hasAnyExceptionSpec,
1070                                      Exceptions.size(), Exceptions.data());
1071        } else if (FTI.isVariadic) {
1072          // We allow a zero-parameter variadic function in C if the
1073          // function is marked with the "overloadable"
1074          // attribute. Scan for this attribute now.
1075          bool Overloadable = false;
1076          for (const AttributeList *Attrs = D.getAttributes();
1077               Attrs; Attrs = Attrs->getNext()) {
1078            if (Attrs->getKind() == AttributeList::AT_overloadable) {
1079              Overloadable = true;
1080              break;
1081            }
1082          }
1083
1084          if (!Overloadable)
1085            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
1086          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0);
1087        } else {
1088          // Simple void foo(), where the incoming T is the result type.
1089          T = Context.getFunctionNoProtoType(T);
1090        }
1091      } else if (FTI.ArgInfo[0].Param == 0) {
1092        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
1093        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
1094        D.setInvalidType(true);
1095      } else {
1096        // Otherwise, we have a function with an argument list that is
1097        // potentially variadic.
1098        llvm::SmallVector<QualType, 16> ArgTys;
1099
1100        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1101          ParmVarDecl *Param =
1102            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
1103          QualType ArgTy = Param->getType();
1104          assert(!ArgTy.isNull() && "Couldn't parse type?");
1105
1106          // Adjust the parameter type.
1107          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1108
1109          // Look for 'void'.  void is allowed only as a single argument to a
1110          // function with no other parameters (C99 6.7.5.3p10).  We record
1111          // int(void) as a FunctionProtoType with an empty argument list.
1112          if (ArgTy->isVoidType()) {
1113            // If this is something like 'float(int, void)', reject it.  'void'
1114            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1115            // have arguments of incomplete type.
1116            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1117              Diag(DeclType.Loc, diag::err_void_only_param);
1118              ArgTy = Context.IntTy;
1119              Param->setType(ArgTy);
1120            } else if (FTI.ArgInfo[i].Ident) {
1121              // Reject, but continue to parse 'int(void abc)'.
1122              Diag(FTI.ArgInfo[i].IdentLoc,
1123                   diag::err_param_with_void_type);
1124              ArgTy = Context.IntTy;
1125              Param->setType(ArgTy);
1126            } else {
1127              // Reject, but continue to parse 'float(const void)'.
1128              if (ArgTy.hasQualifiers())
1129                Diag(DeclType.Loc, diag::err_void_param_qualified);
1130
1131              // Do not add 'void' to the ArgTys list.
1132              break;
1133            }
1134          } else if (!FTI.hasPrototype) {
1135            if (ArgTy->isPromotableIntegerType()) {
1136              ArgTy = Context.getPromotedIntegerType(ArgTy);
1137            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
1138              if (BTy->getKind() == BuiltinType::Float)
1139                ArgTy = Context.DoubleTy;
1140            }
1141          }
1142
1143          ArgTys.push_back(ArgTy);
1144        }
1145
1146        llvm::SmallVector<QualType, 4> Exceptions;
1147        Exceptions.reserve(FTI.NumExceptions);
1148        for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1149          // FIXME: Preserve type source info.
1150          QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1151          // Check that the type is valid for an exception spec, and drop it if
1152          // not.
1153          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1154            Exceptions.push_back(ET);
1155        }
1156
1157        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
1158                                    FTI.isVariadic, FTI.TypeQuals,
1159                                    FTI.hasExceptionSpec,
1160                                    FTI.hasAnyExceptionSpec,
1161                                    Exceptions.size(), Exceptions.data());
1162      }
1163      break;
1164    }
1165    case DeclaratorChunk::MemberPointer:
1166      // Verify that we're not building a pointer to pointer to function with
1167      // exception specification.
1168      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1169        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1170        D.setInvalidType(true);
1171        // Build the type anyway.
1172      }
1173      // The scope spec must refer to a class, or be dependent.
1174      QualType ClsType;
1175      if (isDependentScopeSpecifier(DeclType.Mem.Scope())
1176            || dyn_cast_or_null<CXXRecordDecl>(
1177                                   computeDeclContext(DeclType.Mem.Scope()))) {
1178        NestedNameSpecifier *NNS
1179          = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
1180        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
1181        switch (NNS->getKind()) {
1182        case NestedNameSpecifier::Identifier:
1183          ClsType = Context.getTypenameType(NNSPrefix, NNS->getAsIdentifier());
1184          break;
1185
1186        case NestedNameSpecifier::Namespace:
1187        case NestedNameSpecifier::Global:
1188          llvm::llvm_unreachable("Nested-name-specifier must name a type");
1189          break;
1190
1191        case NestedNameSpecifier::TypeSpec:
1192        case NestedNameSpecifier::TypeSpecWithTemplate:
1193          ClsType = QualType(NNS->getAsType(), 0);
1194          if (NNSPrefix)
1195            ClsType = Context.getQualifiedNameType(NNSPrefix, ClsType);
1196          break;
1197        }
1198      } else {
1199        Diag(DeclType.Mem.Scope().getBeginLoc(),
1200             diag::err_illegal_decl_mempointer_in_nonclass)
1201          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1202          << DeclType.Mem.Scope().getRange();
1203        D.setInvalidType(true);
1204      }
1205
1206      if (!ClsType.isNull())
1207        T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals,
1208                                   DeclType.Loc, D.getIdentifier());
1209      if (T.isNull()) {
1210        T = Context.IntTy;
1211        D.setInvalidType(true);
1212      }
1213      break;
1214    }
1215
1216    if (T.isNull()) {
1217      D.setInvalidType(true);
1218      T = Context.IntTy;
1219    }
1220
1221    // See if there are any attributes on this declarator chunk.
1222    if (const AttributeList *AL = DeclType.getAttrs())
1223      ProcessTypeAttributeList(T, AL);
1224  }
1225
1226  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1227    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
1228    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
1229
1230    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1231    // for a nonstatic member function, the function type to which a pointer
1232    // to member refers, or the top-level function type of a function typedef
1233    // declaration.
1234    if (FnTy->getTypeQuals() != 0 &&
1235        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1236        ((D.getContext() != Declarator::MemberContext &&
1237          (!D.getCXXScopeSpec().isSet() ||
1238           !computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)
1239              ->isRecord())) ||
1240         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1241      if (D.isFunctionDeclarator())
1242        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1243      else
1244        Diag(D.getIdentifierLoc(),
1245             diag::err_invalid_qualified_typedef_function_type_use);
1246
1247      // Strip the cv-quals from the type.
1248      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1249                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
1250    }
1251  }
1252
1253  // If there were any type attributes applied to the decl itself (not the
1254  // type, apply the type attribute to the type!)
1255  if (const AttributeList *Attrs = D.getAttributes())
1256    ProcessTypeAttributeList(T, Attrs);
1257
1258  if (DInfo) {
1259    if (D.isInvalidType())
1260      *DInfo = 0;
1261    else
1262      *DInfo = GetDeclaratorInfoForDeclarator(D, T);
1263  }
1264
1265  return T;
1266}
1267
1268namespace {
1269  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
1270    const DeclSpec &DS;
1271
1272  public:
1273    TypeSpecLocFiller(const DeclSpec &DS) : DS(DS) {}
1274
1275    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1276      Visit(TL.getUnqualifiedLoc());
1277    }
1278    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
1279      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1280    }
1281    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
1282      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1283
1284      if (DS.getProtocolQualifiers()) {
1285        assert(TL.getNumProtocols() > 0);
1286        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1287        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1288        TL.setRAngleLoc(DS.getSourceRange().getEnd());
1289        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
1290          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1291      } else {
1292        assert(TL.getNumProtocols() == 0);
1293        TL.setLAngleLoc(SourceLocation());
1294        TL.setRAngleLoc(SourceLocation());
1295      }
1296    }
1297    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1298      assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1299
1300      TL.setStarLoc(SourceLocation());
1301
1302      if (DS.getProtocolQualifiers()) {
1303        assert(TL.getNumProtocols() > 0);
1304        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1305        TL.setHasProtocolsAsWritten(true);
1306        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1307        TL.setRAngleLoc(DS.getSourceRange().getEnd());
1308        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
1309          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1310
1311      } else {
1312        assert(TL.getNumProtocols() == 0);
1313        TL.setHasProtocolsAsWritten(false);
1314        TL.setLAngleLoc(SourceLocation());
1315        TL.setRAngleLoc(SourceLocation());
1316      }
1317
1318      // This might not have been written with an inner type.
1319      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
1320        TL.setHasBaseTypeAsWritten(false);
1321        TL.getBaseTypeLoc().initialize(SourceLocation());
1322      } else {
1323        TL.setHasBaseTypeAsWritten(true);
1324        Visit(TL.getBaseTypeLoc());
1325      }
1326    }
1327    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
1328      DeclaratorInfo *DInfo = 0;
1329      Sema::GetTypeFromParser(DS.getTypeRep(), &DInfo);
1330
1331      // If we got no declarator info from previous Sema routines,
1332      // just fill with the typespec loc.
1333      if (!DInfo) {
1334        TL.initialize(DS.getTypeSpecTypeLoc());
1335        return;
1336      }
1337
1338      TemplateSpecializationTypeLoc OldTL =
1339        cast<TemplateSpecializationTypeLoc>(DInfo->getTypeLoc());
1340      TL.copy(OldTL);
1341    }
1342    void VisitTypeLoc(TypeLoc TL) {
1343      // FIXME: add other typespec types and change this to an assert.
1344      TL.initialize(DS.getTypeSpecTypeLoc());
1345    }
1346  };
1347
1348  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
1349    const DeclaratorChunk &Chunk;
1350
1351  public:
1352    DeclaratorLocFiller(const DeclaratorChunk &Chunk) : Chunk(Chunk) {}
1353
1354    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1355      llvm::llvm_unreachable("qualified type locs not expected here!");
1356    }
1357
1358    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
1359      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
1360      TL.setCaretLoc(Chunk.Loc);
1361    }
1362    void VisitPointerTypeLoc(PointerTypeLoc TL) {
1363      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1364      TL.setStarLoc(Chunk.Loc);
1365    }
1366    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1367      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1368      TL.setStarLoc(Chunk.Loc);
1369      TL.setHasBaseTypeAsWritten(true);
1370      TL.setHasProtocolsAsWritten(false);
1371      TL.setLAngleLoc(SourceLocation());
1372      TL.setRAngleLoc(SourceLocation());
1373    }
1374    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
1375      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
1376      TL.setStarLoc(Chunk.Loc);
1377      // FIXME: nested name specifier
1378    }
1379    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
1380      assert(Chunk.Kind == DeclaratorChunk::Reference);
1381      // 'Amp' is misleading: this might have been originally
1382      /// spelled with AmpAmp.
1383      TL.setAmpLoc(Chunk.Loc);
1384    }
1385    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
1386      assert(Chunk.Kind == DeclaratorChunk::Reference);
1387      assert(!Chunk.Ref.LValueRef);
1388      TL.setAmpAmpLoc(Chunk.Loc);
1389    }
1390    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
1391      assert(Chunk.Kind == DeclaratorChunk::Array);
1392      TL.setLBracketLoc(Chunk.Loc);
1393      TL.setRBracketLoc(Chunk.EndLoc);
1394      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
1395    }
1396    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
1397      assert(Chunk.Kind == DeclaratorChunk::Function);
1398      TL.setLParenLoc(Chunk.Loc);
1399      TL.setRParenLoc(Chunk.EndLoc);
1400
1401      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
1402      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
1403        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
1404        TL.setArg(tpi++, Param);
1405      }
1406      // FIXME: exception specs
1407    }
1408
1409    void VisitTypeLoc(TypeLoc TL) {
1410      llvm::llvm_unreachable("unsupported TypeLoc kind in declarator!");
1411    }
1412  };
1413}
1414
1415/// \brief Create and instantiate a DeclaratorInfo with type source information.
1416///
1417/// \param T QualType referring to the type as written in source code.
1418DeclaratorInfo *
1419Sema::GetDeclaratorInfoForDeclarator(Declarator &D, QualType T) {
1420  DeclaratorInfo *DInfo = Context.CreateDeclaratorInfo(T);
1421  UnqualTypeLoc CurrTL = DInfo->getTypeLoc().getUnqualifiedLoc();
1422
1423  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1424    DeclaratorLocFiller(D.getTypeObject(i)).Visit(CurrTL);
1425    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
1426  }
1427
1428  TypeSpecLocFiller(D.getDeclSpec()).Visit(CurrTL);
1429
1430  return DInfo;
1431}
1432
1433/// \brief Create a LocInfoType to hold the given QualType and DeclaratorInfo.
1434QualType Sema::CreateLocInfoType(QualType T, DeclaratorInfo *DInfo) {
1435  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
1436  // and Sema during declaration parsing. Try deallocating/caching them when
1437  // it's appropriate, instead of allocating them and keeping them around.
1438  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), 8);
1439  new (LocT) LocInfoType(T, DInfo);
1440  assert(LocT->getTypeClass() != T->getTypeClass() &&
1441         "LocInfoType's TypeClass conflicts with an existing Type class");
1442  return QualType(LocT, 0);
1443}
1444
1445void LocInfoType::getAsStringInternal(std::string &Str,
1446                                      const PrintingPolicy &Policy) const {
1447  assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
1448         " was used directly instead of getting the QualType through"
1449         " GetTypeFromParser");
1450}
1451
1452/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
1453/// declarator
1454QualType Sema::ObjCGetTypeForMethodDefinition(DeclPtrTy D) {
1455  ObjCMethodDecl *MDecl = cast<ObjCMethodDecl>(D.getAs<Decl>());
1456  QualType T = MDecl->getResultType();
1457  llvm::SmallVector<QualType, 16> ArgTys;
1458
1459  // Add the first two invisible argument types for self and _cmd.
1460  if (MDecl->isInstanceMethod()) {
1461    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
1462    selfTy = Context.getPointerType(selfTy);
1463    ArgTys.push_back(selfTy);
1464  } else
1465    ArgTys.push_back(Context.getObjCIdType());
1466  ArgTys.push_back(Context.getObjCSelType());
1467
1468  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
1469       E = MDecl->param_end(); PI != E; ++PI) {
1470    QualType ArgTy = (*PI)->getType();
1471    assert(!ArgTy.isNull() && "Couldn't parse type?");
1472    ArgTy = adjustParameterType(ArgTy);
1473    ArgTys.push_back(ArgTy);
1474  }
1475  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
1476                              MDecl->isVariadic(), 0);
1477  return T;
1478}
1479
1480/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
1481/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
1482/// they point to and return true. If T1 and T2 aren't pointer types
1483/// or pointer-to-member types, or if they are not similar at this
1484/// level, returns false and leaves T1 and T2 unchanged. Top-level
1485/// qualifiers on T1 and T2 are ignored. This function will typically
1486/// be called in a loop that successively "unwraps" pointer and
1487/// pointer-to-member types to compare them at each level.
1488bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
1489  const PointerType *T1PtrType = T1->getAs<PointerType>(),
1490                    *T2PtrType = T2->getAs<PointerType>();
1491  if (T1PtrType && T2PtrType) {
1492    T1 = T1PtrType->getPointeeType();
1493    T2 = T2PtrType->getPointeeType();
1494    return true;
1495  }
1496
1497  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
1498                          *T2MPType = T2->getAs<MemberPointerType>();
1499  if (T1MPType && T2MPType &&
1500      Context.getCanonicalType(T1MPType->getClass()) ==
1501      Context.getCanonicalType(T2MPType->getClass())) {
1502    T1 = T1MPType->getPointeeType();
1503    T2 = T2MPType->getPointeeType();
1504    return true;
1505  }
1506  return false;
1507}
1508
1509Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1510  // C99 6.7.6: Type names have no identifier.  This is already validated by
1511  // the parser.
1512  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1513
1514  DeclaratorInfo *DInfo = 0;
1515  TagDecl *OwnedTag = 0;
1516  QualType T = GetTypeForDeclarator(D, S, &DInfo, &OwnedTag);
1517  if (D.isInvalidType())
1518    return true;
1519
1520  if (getLangOptions().CPlusPlus) {
1521    // Check that there are no default arguments (C++ only).
1522    CheckExtraCXXDefaultArguments(D);
1523
1524    // C++0x [dcl.type]p3:
1525    //   A type-specifier-seq shall not define a class or enumeration
1526    //   unless it appears in the type-id of an alias-declaration
1527    //   (7.1.3).
1528    if (OwnedTag && OwnedTag->isDefinition())
1529      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1530        << Context.getTypeDeclType(OwnedTag);
1531  }
1532
1533  if (DInfo)
1534    T = CreateLocInfoType(T, DInfo);
1535
1536  return T.getAsOpaquePtr();
1537}
1538
1539
1540
1541//===----------------------------------------------------------------------===//
1542// Type Attribute Processing
1543//===----------------------------------------------------------------------===//
1544
1545/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1546/// specified type.  The attribute contains 1 argument, the id of the address
1547/// space for the type.
1548static void HandleAddressSpaceTypeAttribute(QualType &Type,
1549                                            const AttributeList &Attr, Sema &S){
1550
1551  // If this type is already address space qualified, reject it.
1552  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1553  // for two or more different address spaces."
1554  if (Type.getAddressSpace()) {
1555    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1556    return;
1557  }
1558
1559  // Check the attribute arguments.
1560  if (Attr.getNumArgs() != 1) {
1561    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1562    return;
1563  }
1564  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1565  llvm::APSInt addrSpace(32);
1566  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1567    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1568      << ASArgExpr->getSourceRange();
1569    return;
1570  }
1571
1572  // Bounds checking.
1573  if (addrSpace.isSigned()) {
1574    if (addrSpace.isNegative()) {
1575      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
1576        << ASArgExpr->getSourceRange();
1577      return;
1578    }
1579    addrSpace.setIsSigned(false);
1580  }
1581  llvm::APSInt max(addrSpace.getBitWidth());
1582  max = Qualifiers::MaxAddressSpace;
1583  if (addrSpace > max) {
1584    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
1585      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
1586    return;
1587  }
1588
1589  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1590  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1591}
1592
1593/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1594/// specified type.  The attribute contains 1 argument, weak or strong.
1595static void HandleObjCGCTypeAttribute(QualType &Type,
1596                                      const AttributeList &Attr, Sema &S) {
1597  if (Type.getObjCGCAttr() != Qualifiers::GCNone) {
1598    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1599    return;
1600  }
1601
1602  // Check the attribute arguments.
1603  if (!Attr.getParameterName()) {
1604    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1605      << "objc_gc" << 1;
1606    return;
1607  }
1608  Qualifiers::GC GCAttr;
1609  if (Attr.getNumArgs() != 0) {
1610    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1611    return;
1612  }
1613  if (Attr.getParameterName()->isStr("weak"))
1614    GCAttr = Qualifiers::Weak;
1615  else if (Attr.getParameterName()->isStr("strong"))
1616    GCAttr = Qualifiers::Strong;
1617  else {
1618    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1619      << "objc_gc" << Attr.getParameterName();
1620    return;
1621  }
1622
1623  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1624}
1625
1626/// HandleNoReturnTypeAttribute - Process the noreturn attribute on the
1627/// specified type.  The attribute contains 0 arguments.
1628static void HandleNoReturnTypeAttribute(QualType &Type,
1629                                        const AttributeList &Attr, Sema &S) {
1630  if (Attr.getNumArgs() != 0)
1631    return;
1632
1633  // We only apply this to a pointer to function or a pointer to block.
1634  if (!Type->isFunctionPointerType()
1635      && !Type->isBlockPointerType()
1636      && !Type->isFunctionType())
1637    return;
1638
1639  Type = S.Context.getNoReturnType(Type);
1640}
1641
1642void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
1643  // Scan through and apply attributes to this type where it makes sense.  Some
1644  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1645  // type, but others can be present in the type specifiers even though they
1646  // apply to the decl.  Here we apply type attributes and ignore the rest.
1647  for (; AL; AL = AL->getNext()) {
1648    // If this is an attribute we can handle, do so now, otherwise, add it to
1649    // the LeftOverAttrs list for rechaining.
1650    switch (AL->getKind()) {
1651    default: break;
1652    case AttributeList::AT_address_space:
1653      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
1654      break;
1655    case AttributeList::AT_objc_gc:
1656      HandleObjCGCTypeAttribute(Result, *AL, *this);
1657      break;
1658    case AttributeList::AT_noreturn:
1659      HandleNoReturnTypeAttribute(Result, *AL, *this);
1660      break;
1661    }
1662  }
1663}
1664
1665/// @brief Ensure that the type T is a complete type.
1666///
1667/// This routine checks whether the type @p T is complete in any
1668/// context where a complete type is required. If @p T is a complete
1669/// type, returns false. If @p T is a class template specialization,
1670/// this routine then attempts to perform class template
1671/// instantiation. If instantiation fails, or if @p T is incomplete
1672/// and cannot be completed, issues the diagnostic @p diag (giving it
1673/// the type @p T) and returns true.
1674///
1675/// @param Loc  The location in the source that the incomplete type
1676/// diagnostic should refer to.
1677///
1678/// @param T  The type that this routine is examining for completeness.
1679///
1680/// @param PD The partial diagnostic that will be printed out if T is not a
1681/// complete type.
1682///
1683/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1684/// @c false otherwise.
1685bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
1686                               const PartialDiagnostic &PD,
1687                               std::pair<SourceLocation,
1688                                         PartialDiagnostic> Note) {
1689  unsigned diag = PD.getDiagID();
1690
1691  // FIXME: Add this assertion to make sure we always get instantiation points.
1692  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
1693  // FIXME: Add this assertion to help us flush out problems with
1694  // checking for dependent types and type-dependent expressions.
1695  //
1696  //  assert(!T->isDependentType() &&
1697  //         "Can't ask whether a dependent type is complete");
1698
1699  // If we have a complete type, we're done.
1700  if (!T->isIncompleteType())
1701    return false;
1702
1703  // If we have a class template specialization or a class member of a
1704  // class template specialization, or an array with known size of such,
1705  // try to instantiate it.
1706  QualType MaybeTemplate = T;
1707  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
1708    MaybeTemplate = Array->getElementType();
1709  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
1710    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
1711          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
1712      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
1713        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
1714                                                      TSK_ImplicitInstantiation,
1715                                                      /*Complain=*/diag != 0);
1716    } else if (CXXRecordDecl *Rec
1717                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
1718      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
1719        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
1720        assert(MSInfo && "Missing member specialization information?");
1721        // This record was instantiated from a class within a template.
1722        if (MSInfo->getTemplateSpecializationKind()
1723                                               != TSK_ExplicitSpecialization)
1724          return InstantiateClass(Loc, Rec, Pattern,
1725                                  getTemplateInstantiationArgs(Rec),
1726                                  TSK_ImplicitInstantiation,
1727                                  /*Complain=*/diag != 0);
1728      }
1729    }
1730  }
1731
1732  if (diag == 0)
1733    return true;
1734
1735  // We have an incomplete type. Produce a diagnostic.
1736  Diag(Loc, PD) << T;
1737
1738  // If we have a note, produce it.
1739  if (!Note.first.isInvalid())
1740    Diag(Note.first, Note.second);
1741
1742  // If the type was a forward declaration of a class/struct/union
1743  // type, produce
1744  const TagType *Tag = 0;
1745  if (const RecordType *Record = T->getAs<RecordType>())
1746    Tag = Record;
1747  else if (const EnumType *Enum = T->getAs<EnumType>())
1748    Tag = Enum;
1749
1750  if (Tag && !Tag->getDecl()->isInvalidDecl())
1751    Diag(Tag->getDecl()->getLocation(),
1752         Tag->isBeingDefined() ? diag::note_type_being_defined
1753                               : diag::note_forward_declaration)
1754        << QualType(Tag, 0);
1755
1756  return true;
1757}
1758
1759/// \brief Retrieve a version of the type 'T' that is qualified by the
1760/// nested-name-specifier contained in SS.
1761QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
1762  if (!SS.isSet() || SS.isInvalid() || T.isNull())
1763    return T;
1764
1765  NestedNameSpecifier *NNS
1766    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1767  return Context.getQualifiedNameType(NNS, T);
1768}
1769
1770QualType Sema::BuildTypeofExprType(Expr *E) {
1771  return Context.getTypeOfExprType(E);
1772}
1773
1774QualType Sema::BuildDecltypeType(Expr *E) {
1775  if (E->getType() == Context.OverloadTy) {
1776    Diag(E->getLocStart(),
1777         diag::err_cannot_determine_declared_type_of_overloaded_function);
1778    return QualType();
1779  }
1780  return Context.getDecltypeType(E);
1781}
1782