SemaType.cpp revision 50be5101831a8e3679e18775b41816c9ddfc39ca
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/TypeLocVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26using namespace clang;
27
28#include <iostream>
29
30/// \brief Perform adjustment on the parameter type of a function.
31///
32/// This routine adjusts the given parameter type @p T to the actual
33/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
34/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
35QualType Sema::adjustParameterType(QualType T) {
36  // C99 6.7.5.3p7:
37  //   A declaration of a parameter as "array of type" shall be
38  //   adjusted to "qualified pointer to type", where the type
39  //   qualifiers (if any) are those specified within the [ and ] of
40  //   the array type derivation.
41  if (T->isArrayType())
42    return Context.getArrayDecayedType(T);
43
44  // C99 6.7.5.3p8:
45  //   A declaration of a parameter as "function returning type"
46  //   shall be adjusted to "pointer to function returning type", as
47  //   in 6.3.2.1.
48  if (T->isFunctionType())
49    return Context.getPointerType(T);
50
51  return T;
52}
53
54
55
56/// isOmittedBlockReturnType - Return true if this declarator is missing a
57/// return type because this is a omitted return type on a block literal.
58static bool isOmittedBlockReturnType(const Declarator &D) {
59  if (D.getContext() != Declarator::BlockLiteralContext ||
60      D.getDeclSpec().hasTypeSpecifier())
61    return false;
62
63  if (D.getNumTypeObjects() == 0)
64    return true;   // ^{ ... }
65
66  if (D.getNumTypeObjects() == 1 &&
67      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
68    return true;   // ^(int X, float Y) { ... }
69
70  return false;
71}
72
73typedef std::pair<const AttributeList*,QualType> DelayedAttribute;
74typedef llvm::SmallVectorImpl<DelayedAttribute> DelayedAttributeSet;
75
76static void ProcessTypeAttributeList(Sema &S, QualType &Type,
77                                     bool IsDeclSpec,
78                                     const AttributeList *Attrs,
79                                     DelayedAttributeSet &DelayedFnAttrs);
80static bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr);
81
82static void ProcessDelayedFnAttrs(Sema &S, QualType &Type,
83                                  DelayedAttributeSet &Attrs) {
84  for (DelayedAttributeSet::iterator I = Attrs.begin(),
85         E = Attrs.end(); I != E; ++I)
86    if (ProcessFnAttr(S, Type, *I->first)) {
87      S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
88        << I->first->getName() << I->second;
89      // Avoid any further processing of this attribute.
90      I->first->setInvalid();
91    }
92  Attrs.clear();
93}
94
95static void DiagnoseDelayedFnAttrs(Sema &S, DelayedAttributeSet &Attrs) {
96  for (DelayedAttributeSet::iterator I = Attrs.begin(),
97         E = Attrs.end(); I != E; ++I) {
98    S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
99      << I->first->getName() << I->second;
100    // Avoid any further processing of this attribute.
101    I->first->setInvalid();
102  }
103  Attrs.clear();
104}
105
106/// \brief Convert the specified declspec to the appropriate type
107/// object.
108/// \param D  the declarator containing the declaration specifier.
109/// \returns The type described by the declaration specifiers.  This function
110/// never returns null.
111static QualType ConvertDeclSpecToType(Sema &TheSema,
112                                      Declarator &TheDeclarator,
113                                      DelayedAttributeSet &Delayed) {
114  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
115  // checking.
116  const DeclSpec &DS = TheDeclarator.getDeclSpec();
117  SourceLocation DeclLoc = TheDeclarator.getIdentifierLoc();
118  if (DeclLoc.isInvalid())
119    DeclLoc = DS.getSourceRange().getBegin();
120
121  ASTContext &Context = TheSema.Context;
122
123  QualType Result;
124  switch (DS.getTypeSpecType()) {
125  case DeclSpec::TST_void:
126    Result = Context.VoidTy;
127    break;
128  case DeclSpec::TST_char:
129    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
130      Result = Context.CharTy;
131    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
132      Result = Context.SignedCharTy;
133    else {
134      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
135             "Unknown TSS value");
136      Result = Context.UnsignedCharTy;
137    }
138    break;
139  case DeclSpec::TST_wchar:
140    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
141      Result = Context.WCharTy;
142    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
143      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
144        << DS.getSpecifierName(DS.getTypeSpecType());
145      Result = Context.getSignedWCharType();
146    } else {
147      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
148        "Unknown TSS value");
149      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
150        << DS.getSpecifierName(DS.getTypeSpecType());
151      Result = Context.getUnsignedWCharType();
152    }
153    break;
154  case DeclSpec::TST_char16:
155      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
156        "Unknown TSS value");
157      Result = Context.Char16Ty;
158    break;
159  case DeclSpec::TST_char32:
160      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
161        "Unknown TSS value");
162      Result = Context.Char32Ty;
163    break;
164  case DeclSpec::TST_unspecified:
165    // "<proto1,proto2>" is an objc qualified ID with a missing id.
166    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
167      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
168                                         (ObjCProtocolDecl**)PQ,
169                                         DS.getNumProtocolQualifiers());
170      Result = Context.getObjCObjectPointerType(Result);
171      break;
172    }
173
174    // If this is a missing declspec in a block literal return context, then it
175    // is inferred from the return statements inside the block.
176    if (isOmittedBlockReturnType(TheDeclarator)) {
177      Result = Context.DependentTy;
178      break;
179    }
180
181    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
182    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
183    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
184    // Note that the one exception to this is function definitions, which are
185    // allowed to be completely missing a declspec.  This is handled in the
186    // parser already though by it pretending to have seen an 'int' in this
187    // case.
188    if (TheSema.getLangOptions().ImplicitInt) {
189      // In C89 mode, we only warn if there is a completely missing declspec
190      // when one is not allowed.
191      if (DS.isEmpty()) {
192        TheSema.Diag(DeclLoc, diag::ext_missing_declspec)
193          << DS.getSourceRange()
194        << FixItHint::CreateInsertion(DS.getSourceRange().getBegin(), "int");
195      }
196    } else if (!DS.hasTypeSpecifier()) {
197      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
198      // "At least one type specifier shall be given in the declaration
199      // specifiers in each declaration, and in the specifier-qualifier list in
200      // each struct declaration and type name."
201      // FIXME: Does Microsoft really have the implicit int extension in C++?
202      if (TheSema.getLangOptions().CPlusPlus &&
203          !TheSema.getLangOptions().Microsoft) {
204        TheSema.Diag(DeclLoc, diag::err_missing_type_specifier)
205          << DS.getSourceRange();
206
207        // When this occurs in C++ code, often something is very broken with the
208        // value being declared, poison it as invalid so we don't get chains of
209        // errors.
210        TheDeclarator.setInvalidType(true);
211      } else {
212        TheSema.Diag(DeclLoc, diag::ext_missing_type_specifier)
213          << DS.getSourceRange();
214      }
215    }
216
217    // FALL THROUGH.
218  case DeclSpec::TST_int: {
219    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
220      switch (DS.getTypeSpecWidth()) {
221      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
222      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
223      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
224      case DeclSpec::TSW_longlong:
225        Result = Context.LongLongTy;
226
227        // long long is a C99 feature.
228        if (!TheSema.getLangOptions().C99 &&
229            !TheSema.getLangOptions().CPlusPlus0x)
230          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
231        break;
232      }
233    } else {
234      switch (DS.getTypeSpecWidth()) {
235      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
236      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
237      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
238      case DeclSpec::TSW_longlong:
239        Result = Context.UnsignedLongLongTy;
240
241        // long long is a C99 feature.
242        if (!TheSema.getLangOptions().C99 &&
243            !TheSema.getLangOptions().CPlusPlus0x)
244          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
245        break;
246      }
247    }
248    break;
249  }
250  case DeclSpec::TST_float: Result = Context.FloatTy; break;
251  case DeclSpec::TST_double:
252    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
253      Result = Context.LongDoubleTy;
254    else
255      Result = Context.DoubleTy;
256    break;
257  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
258  case DeclSpec::TST_decimal32:    // _Decimal32
259  case DeclSpec::TST_decimal64:    // _Decimal64
260  case DeclSpec::TST_decimal128:   // _Decimal128
261    TheSema.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
262    Result = Context.IntTy;
263    TheDeclarator.setInvalidType(true);
264    break;
265  case DeclSpec::TST_class:
266  case DeclSpec::TST_enum:
267  case DeclSpec::TST_union:
268  case DeclSpec::TST_struct: {
269    TypeDecl *D
270      = dyn_cast_or_null<TypeDecl>(static_cast<Decl *>(DS.getTypeRep()));
271    if (!D) {
272      // This can happen in C++ with ambiguous lookups.
273      Result = Context.IntTy;
274      TheDeclarator.setInvalidType(true);
275      break;
276    }
277
278    // If the type is deprecated or unavailable, diagnose it.
279    TheSema.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeLoc());
280
281    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
282           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
283
284    // TypeQuals handled by caller.
285    Result = Context.getTypeDeclType(D);
286
287    // In C++, make an ElaboratedType.
288    if (TheSema.getLangOptions().CPlusPlus) {
289      ElaboratedTypeKeyword Keyword
290        = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
291      Result = TheSema.getElaboratedType(Keyword, DS.getTypeSpecScope(),
292                                         Result);
293    }
294    if (D->isInvalidDecl())
295      TheDeclarator.setInvalidType(true);
296    break;
297  }
298  case DeclSpec::TST_typename: {
299    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
300           DS.getTypeSpecSign() == 0 &&
301           "Can't handle qualifiers on typedef names yet!");
302    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
303
304    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
305      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
306        // Silently drop any existing protocol qualifiers.
307        // TODO: determine whether that's the right thing to do.
308        if (ObjT->getNumProtocols())
309          Result = ObjT->getBaseType();
310
311        if (DS.getNumProtocolQualifiers())
312          Result = Context.getObjCObjectType(Result,
313                                             (ObjCProtocolDecl**) PQ,
314                                             DS.getNumProtocolQualifiers());
315      } else if (Result->isObjCIdType()) {
316        // id<protocol-list>
317        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
318                                           (ObjCProtocolDecl**) PQ,
319                                           DS.getNumProtocolQualifiers());
320        Result = Context.getObjCObjectPointerType(Result);
321      } else if (Result->isObjCClassType()) {
322        // Class<protocol-list>
323        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
324                                           (ObjCProtocolDecl**) PQ,
325                                           DS.getNumProtocolQualifiers());
326        Result = Context.getObjCObjectPointerType(Result);
327      } else {
328        TheSema.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
329          << DS.getSourceRange();
330        TheDeclarator.setInvalidType(true);
331      }
332    }
333
334    // TypeQuals handled by caller.
335    break;
336  }
337  case DeclSpec::TST_typeofType:
338    // FIXME: Preserve type source info.
339    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
340    assert(!Result.isNull() && "Didn't get a type for typeof?");
341    // TypeQuals handled by caller.
342    Result = Context.getTypeOfType(Result);
343    break;
344  case DeclSpec::TST_typeofExpr: {
345    Expr *E = static_cast<Expr *>(DS.getTypeRep());
346    assert(E && "Didn't get an expression for typeof?");
347    // TypeQuals handled by caller.
348    Result = TheSema.BuildTypeofExprType(E);
349    if (Result.isNull()) {
350      Result = Context.IntTy;
351      TheDeclarator.setInvalidType(true);
352    }
353    break;
354  }
355  case DeclSpec::TST_decltype: {
356    Expr *E = static_cast<Expr *>(DS.getTypeRep());
357    assert(E && "Didn't get an expression for decltype?");
358    // TypeQuals handled by caller.
359    Result = TheSema.BuildDecltypeType(E);
360    if (Result.isNull()) {
361      Result = Context.IntTy;
362      TheDeclarator.setInvalidType(true);
363    }
364    break;
365  }
366  case DeclSpec::TST_auto: {
367    // TypeQuals handled by caller.
368    Result = Context.UndeducedAutoTy;
369    break;
370  }
371
372  case DeclSpec::TST_error:
373    Result = Context.IntTy;
374    TheDeclarator.setInvalidType(true);
375    break;
376  }
377
378  // Handle complex types.
379  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
380    if (TheSema.getLangOptions().Freestanding)
381      TheSema.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
382    Result = Context.getComplexType(Result);
383  } else if (DS.isTypeAltiVecVector()) {
384    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
385    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
386    Result = Context.getVectorType(Result, 128/typeSize, true,
387      DS.isTypeAltiVecPixel());
388  }
389
390  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
391         "FIXME: imaginary types not supported yet!");
392
393  // See if there are any attributes on the declspec that apply to the type (as
394  // opposed to the decl).
395  if (const AttributeList *AL = DS.getAttributes())
396    ProcessTypeAttributeList(TheSema, Result, true, AL, Delayed);
397
398  // Apply const/volatile/restrict qualifiers to T.
399  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
400
401    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
402    // or incomplete types shall not be restrict-qualified."  C++ also allows
403    // restrict-qualified references.
404    if (TypeQuals & DeclSpec::TQ_restrict) {
405      if (Result->isAnyPointerType() || Result->isReferenceType()) {
406        QualType EltTy;
407        if (Result->isObjCObjectPointerType())
408          EltTy = Result;
409        else
410          EltTy = Result->isPointerType() ?
411                    Result->getAs<PointerType>()->getPointeeType() :
412                    Result->getAs<ReferenceType>()->getPointeeType();
413
414        // If we have a pointer or reference, the pointee must have an object
415        // incomplete type.
416        if (!EltTy->isIncompleteOrObjectType()) {
417          TheSema.Diag(DS.getRestrictSpecLoc(),
418               diag::err_typecheck_invalid_restrict_invalid_pointee)
419            << EltTy << DS.getSourceRange();
420          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
421        }
422      } else {
423        TheSema.Diag(DS.getRestrictSpecLoc(),
424             diag::err_typecheck_invalid_restrict_not_pointer)
425          << Result << DS.getSourceRange();
426        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
427      }
428    }
429
430    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
431    // of a function type includes any type qualifiers, the behavior is
432    // undefined."
433    if (Result->isFunctionType() && TypeQuals) {
434      // Get some location to point at, either the C or V location.
435      SourceLocation Loc;
436      if (TypeQuals & DeclSpec::TQ_const)
437        Loc = DS.getConstSpecLoc();
438      else if (TypeQuals & DeclSpec::TQ_volatile)
439        Loc = DS.getVolatileSpecLoc();
440      else {
441        assert((TypeQuals & DeclSpec::TQ_restrict) &&
442               "Has CVR quals but not C, V, or R?");
443        Loc = DS.getRestrictSpecLoc();
444      }
445      TheSema.Diag(Loc, diag::warn_typecheck_function_qualifiers)
446        << Result << DS.getSourceRange();
447    }
448
449    // C++ [dcl.ref]p1:
450    //   Cv-qualified references are ill-formed except when the
451    //   cv-qualifiers are introduced through the use of a typedef
452    //   (7.1.3) or of a template type argument (14.3), in which
453    //   case the cv-qualifiers are ignored.
454    // FIXME: Shouldn't we be checking SCS_typedef here?
455    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
456        TypeQuals && Result->isReferenceType()) {
457      TypeQuals &= ~DeclSpec::TQ_const;
458      TypeQuals &= ~DeclSpec::TQ_volatile;
459    }
460
461    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
462    Result = Context.getQualifiedType(Result, Quals);
463  }
464
465  return Result;
466}
467
468static std::string getPrintableNameForEntity(DeclarationName Entity) {
469  if (Entity)
470    return Entity.getAsString();
471
472  return "type name";
473}
474
475/// \brief Build a pointer type.
476///
477/// \param T The type to which we'll be building a pointer.
478///
479/// \param Quals The cvr-qualifiers to be applied to the pointer type.
480///
481/// \param Loc The location of the entity whose type involves this
482/// pointer type or, if there is no such entity, the location of the
483/// type that will have pointer type.
484///
485/// \param Entity The name of the entity that involves the pointer
486/// type, if known.
487///
488/// \returns A suitable pointer type, if there are no
489/// errors. Otherwise, returns a NULL type.
490QualType Sema::BuildPointerType(QualType T, unsigned Quals,
491                                SourceLocation Loc, DeclarationName Entity) {
492  if (T->isReferenceType()) {
493    // C++ 8.3.2p4: There shall be no ... pointers to references ...
494    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
495      << getPrintableNameForEntity(Entity) << T;
496    return QualType();
497  }
498
499  Qualifiers Qs = Qualifiers::fromCVRMask(Quals);
500
501  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
502  // object or incomplete types shall not be restrict-qualified."
503  if (Qs.hasRestrict() && !T->isIncompleteOrObjectType()) {
504    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
505      << T;
506    Qs.removeRestrict();
507  }
508
509  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
510
511  // Build the pointer type.
512  return Context.getQualifiedType(Context.getPointerType(T), Qs);
513}
514
515/// \brief Build a reference type.
516///
517/// \param T The type to which we'll be building a reference.
518///
519/// \param CVR The cvr-qualifiers to be applied to the reference type.
520///
521/// \param Loc The location of the entity whose type involves this
522/// reference type or, if there is no such entity, the location of the
523/// type that will have reference type.
524///
525/// \param Entity The name of the entity that involves the reference
526/// type, if known.
527///
528/// \returns A suitable reference type, if there are no
529/// errors. Otherwise, returns a NULL type.
530QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
531                                  unsigned CVR, SourceLocation Loc,
532                                  DeclarationName Entity) {
533  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
534
535  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
536
537  // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
538  //   reference to a type T, and attempt to create the type "lvalue
539  //   reference to cv TD" creates the type "lvalue reference to T".
540  // We use the qualifiers (restrict or none) of the original reference,
541  // not the new ones. This is consistent with GCC.
542
543  // C++ [dcl.ref]p4: There shall be no references to references.
544  //
545  // According to C++ DR 106, references to references are only
546  // diagnosed when they are written directly (e.g., "int & &"),
547  // but not when they happen via a typedef:
548  //
549  //   typedef int& intref;
550  //   typedef intref& intref2;
551  //
552  // Parser::ParseDeclaratorInternal diagnoses the case where
553  // references are written directly; here, we handle the
554  // collapsing of references-to-references as described in C++
555  // DR 106 and amended by C++ DR 540.
556
557  // C++ [dcl.ref]p1:
558  //   A declarator that specifies the type "reference to cv void"
559  //   is ill-formed.
560  if (T->isVoidType()) {
561    Diag(Loc, diag::err_reference_to_void);
562    return QualType();
563  }
564
565  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
566  // object or incomplete types shall not be restrict-qualified."
567  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
568    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
569      << T;
570    Quals.removeRestrict();
571  }
572
573  // C++ [dcl.ref]p1:
574  //   [...] Cv-qualified references are ill-formed except when the
575  //   cv-qualifiers are introduced through the use of a typedef
576  //   (7.1.3) or of a template type argument (14.3), in which case
577  //   the cv-qualifiers are ignored.
578  //
579  // We diagnose extraneous cv-qualifiers for the non-typedef,
580  // non-template type argument case within the parser. Here, we just
581  // ignore any extraneous cv-qualifiers.
582  Quals.removeConst();
583  Quals.removeVolatile();
584
585  // Handle restrict on references.
586  if (LValueRef)
587    return Context.getQualifiedType(
588               Context.getLValueReferenceType(T, SpelledAsLValue), Quals);
589  return Context.getQualifiedType(Context.getRValueReferenceType(T), Quals);
590}
591
592/// \brief Build an array type.
593///
594/// \param T The type of each element in the array.
595///
596/// \param ASM C99 array size modifier (e.g., '*', 'static').
597///
598/// \param ArraySize Expression describing the size of the array.
599///
600/// \param Quals The cvr-qualifiers to be applied to the array's
601/// element type.
602///
603/// \param Loc The location of the entity whose type involves this
604/// array type or, if there is no such entity, the location of the
605/// type that will have array type.
606///
607/// \param Entity The name of the entity that involves the array
608/// type, if known.
609///
610/// \returns A suitable array type, if there are no errors. Otherwise,
611/// returns a NULL type.
612QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
613                              Expr *ArraySize, unsigned Quals,
614                              SourceRange Brackets, DeclarationName Entity) {
615
616  SourceLocation Loc = Brackets.getBegin();
617  if (getLangOptions().CPlusPlus) {
618    // C++ [dcl.array]p1:
619    //   T is called the array element type; this type shall not be a reference
620    //   type, the (possibly cv-qualified) type void, a function type or an
621    //   abstract class type.
622    //
623    // Note: function types are handled in the common path with C.
624    if (T->isReferenceType()) {
625      Diag(Loc, diag::err_illegal_decl_array_of_references)
626      << getPrintableNameForEntity(Entity) << T;
627      return QualType();
628    }
629
630    if (T->isVoidType()) {
631      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
632      return QualType();
633    }
634
635    if (RequireNonAbstractType(Brackets.getBegin(), T,
636                               diag::err_array_of_abstract_type))
637      return QualType();
638
639  } else {
640    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
641    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
642    if (RequireCompleteType(Loc, T,
643                            diag::err_illegal_decl_array_incomplete_type))
644      return QualType();
645  }
646
647  if (T->isFunctionType()) {
648    Diag(Loc, diag::err_illegal_decl_array_of_functions)
649      << getPrintableNameForEntity(Entity) << T;
650    return QualType();
651  }
652
653  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
654    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
655      << getPrintableNameForEntity(Entity);
656    return QualType();
657  }
658
659  if (const RecordType *EltTy = T->getAs<RecordType>()) {
660    // If the element type is a struct or union that contains a variadic
661    // array, accept it as a GNU extension: C99 6.7.2.1p2.
662    if (EltTy->getDecl()->hasFlexibleArrayMember())
663      Diag(Loc, diag::ext_flexible_array_in_array) << T;
664  } else if (T->isObjCObjectType()) {
665    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
666    return QualType();
667  }
668
669  // C99 6.7.5.2p1: The size expression shall have integer type.
670  if (ArraySize && !ArraySize->isTypeDependent() &&
671      !ArraySize->getType()->isIntegerType()) {
672    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
673      << ArraySize->getType() << ArraySize->getSourceRange();
674    ArraySize->Destroy(Context);
675    return QualType();
676  }
677  llvm::APSInt ConstVal(32);
678  if (!ArraySize) {
679    if (ASM == ArrayType::Star)
680      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
681    else
682      T = Context.getIncompleteArrayType(T, ASM, Quals);
683  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
684    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
685  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
686             (!T->isDependentType() && !T->isIncompleteType() &&
687              !T->isConstantSizeType())) {
688    // Per C99, a variable array is an array with either a non-constant
689    // size or an element type that has a non-constant-size
690    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
691  } else {
692    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
693    // have a value greater than zero.
694    if (ConstVal.isSigned() && ConstVal.isNegative()) {
695      Diag(ArraySize->getLocStart(),
696           diag::err_typecheck_negative_array_size)
697        << ArraySize->getSourceRange();
698      return QualType();
699    }
700    if (ConstVal == 0) {
701      // GCC accepts zero sized static arrays. We allow them when
702      // we're not in a SFINAE context.
703      Diag(ArraySize->getLocStart(),
704           isSFINAEContext()? diag::err_typecheck_zero_array_size
705                            : diag::ext_typecheck_zero_array_size)
706        << ArraySize->getSourceRange();
707    }
708    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
709  }
710  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
711  if (!getLangOptions().C99) {
712    if (ArraySize && !ArraySize->isTypeDependent() &&
713        !ArraySize->isValueDependent() &&
714        !ArraySize->isIntegerConstantExpr(Context))
715      Diag(Loc, getLangOptions().CPlusPlus? diag::err_vla_cxx : diag::ext_vla);
716    else if (ASM != ArrayType::Normal || Quals != 0)
717      Diag(Loc,
718           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
719                                     : diag::ext_c99_array_usage);
720  }
721
722  return T;
723}
724
725/// \brief Build an ext-vector type.
726///
727/// Run the required checks for the extended vector type.
728QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
729                                  SourceLocation AttrLoc) {
730
731  Expr *Arg = (Expr *)ArraySize.get();
732
733  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
734  // in conjunction with complex types (pointers, arrays, functions, etc.).
735  if (!T->isDependentType() &&
736      !T->isIntegerType() && !T->isRealFloatingType()) {
737    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
738    return QualType();
739  }
740
741  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
742    llvm::APSInt vecSize(32);
743    if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
744      Diag(AttrLoc, diag::err_attribute_argument_not_int)
745      << "ext_vector_type" << Arg->getSourceRange();
746      return QualType();
747    }
748
749    // unlike gcc's vector_size attribute, the size is specified as the
750    // number of elements, not the number of bytes.
751    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
752
753    if (vectorSize == 0) {
754      Diag(AttrLoc, diag::err_attribute_zero_size)
755      << Arg->getSourceRange();
756      return QualType();
757    }
758
759    if (!T->isDependentType())
760      return Context.getExtVectorType(T, vectorSize);
761  }
762
763  return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
764                                                AttrLoc);
765}
766
767/// \brief Build a function type.
768///
769/// This routine checks the function type according to C++ rules and
770/// under the assumption that the result type and parameter types have
771/// just been instantiated from a template. It therefore duplicates
772/// some of the behavior of GetTypeForDeclarator, but in a much
773/// simpler form that is only suitable for this narrow use case.
774///
775/// \param T The return type of the function.
776///
777/// \param ParamTypes The parameter types of the function. This array
778/// will be modified to account for adjustments to the types of the
779/// function parameters.
780///
781/// \param NumParamTypes The number of parameter types in ParamTypes.
782///
783/// \param Variadic Whether this is a variadic function type.
784///
785/// \param Quals The cvr-qualifiers to be applied to the function type.
786///
787/// \param Loc The location of the entity whose type involves this
788/// function type or, if there is no such entity, the location of the
789/// type that will have function type.
790///
791/// \param Entity The name of the entity that involves the function
792/// type, if known.
793///
794/// \returns A suitable function type, if there are no
795/// errors. Otherwise, returns a NULL type.
796QualType Sema::BuildFunctionType(QualType T,
797                                 QualType *ParamTypes,
798                                 unsigned NumParamTypes,
799                                 bool Variadic, unsigned Quals,
800                                 SourceLocation Loc, DeclarationName Entity) {
801  if (T->isArrayType() || T->isFunctionType()) {
802    Diag(Loc, diag::err_func_returning_array_function)
803      << T->isFunctionType() << T;
804    return QualType();
805  }
806
807  bool Invalid = false;
808  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
809    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
810    if (ParamType->isVoidType()) {
811      Diag(Loc, diag::err_param_with_void_type);
812      Invalid = true;
813    }
814
815    ParamTypes[Idx] = ParamType;
816  }
817
818  if (Invalid)
819    return QualType();
820
821  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
822                                 Quals, false, false, 0, 0,
823                                 FunctionType::ExtInfo());
824}
825
826/// \brief Build a member pointer type \c T Class::*.
827///
828/// \param T the type to which the member pointer refers.
829/// \param Class the class type into which the member pointer points.
830/// \param CVR Qualifiers applied to the member pointer type
831/// \param Loc the location where this type begins
832/// \param Entity the name of the entity that will have this member pointer type
833///
834/// \returns a member pointer type, if successful, or a NULL type if there was
835/// an error.
836QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
837                                      unsigned CVR, SourceLocation Loc,
838                                      DeclarationName Entity) {
839  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
840
841  // Verify that we're not building a pointer to pointer to function with
842  // exception specification.
843  if (CheckDistantExceptionSpec(T)) {
844    Diag(Loc, diag::err_distant_exception_spec);
845
846    // FIXME: If we're doing this as part of template instantiation,
847    // we should return immediately.
848
849    // Build the type anyway, but use the canonical type so that the
850    // exception specifiers are stripped off.
851    T = Context.getCanonicalType(T);
852  }
853
854  // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
855  //   with reference type, or "cv void."
856  if (T->isReferenceType()) {
857    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
858      << (Entity? Entity.getAsString() : "type name") << T;
859    return QualType();
860  }
861
862  if (T->isVoidType()) {
863    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
864      << (Entity? Entity.getAsString() : "type name");
865    return QualType();
866  }
867
868  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
869  // object or incomplete types shall not be restrict-qualified."
870  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
871    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
872      << T;
873
874    // FIXME: If we're doing this as part of template instantiation,
875    // we should return immediately.
876    Quals.removeRestrict();
877  }
878
879  if (!Class->isDependentType() && !Class->isRecordType()) {
880    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
881    return QualType();
882  }
883
884  return Context.getQualifiedType(
885           Context.getMemberPointerType(T, Class.getTypePtr()), Quals);
886}
887
888/// \brief Build a block pointer type.
889///
890/// \param T The type to which we'll be building a block pointer.
891///
892/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
893///
894/// \param Loc The location of the entity whose type involves this
895/// block pointer type or, if there is no such entity, the location of the
896/// type that will have block pointer type.
897///
898/// \param Entity The name of the entity that involves the block pointer
899/// type, if known.
900///
901/// \returns A suitable block pointer type, if there are no
902/// errors. Otherwise, returns a NULL type.
903QualType Sema::BuildBlockPointerType(QualType T, unsigned CVR,
904                                     SourceLocation Loc,
905                                     DeclarationName Entity) {
906  if (!T->isFunctionType()) {
907    Diag(Loc, diag::err_nonfunction_block_type);
908    return QualType();
909  }
910
911  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
912  return Context.getQualifiedType(Context.getBlockPointerType(T), Quals);
913}
914
915QualType Sema::GetTypeFromParser(TypeTy *Ty, TypeSourceInfo **TInfo) {
916  QualType QT = QualType::getFromOpaquePtr(Ty);
917  if (QT.isNull()) {
918    if (TInfo) *TInfo = 0;
919    return QualType();
920  }
921
922  TypeSourceInfo *DI = 0;
923  if (LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
924    QT = LIT->getType();
925    DI = LIT->getTypeSourceInfo();
926  }
927
928  if (TInfo) *TInfo = DI;
929  return QT;
930}
931
932/// GetTypeForDeclarator - Convert the type for the specified
933/// declarator to Type instances.
934///
935/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
936/// owns the declaration of a type (e.g., the definition of a struct
937/// type), then *OwnedDecl will receive the owned declaration.
938QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
939                                    TypeSourceInfo **TInfo,
940                                    TagDecl **OwnedDecl) {
941  // Determine the type of the declarator. Not all forms of declarator
942  // have a type.
943  QualType T;
944  TypeSourceInfo *ReturnTypeInfo = 0;
945
946  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromDeclSpec;
947
948  switch (D.getName().getKind()) {
949  case UnqualifiedId::IK_Identifier:
950  case UnqualifiedId::IK_OperatorFunctionId:
951  case UnqualifiedId::IK_LiteralOperatorId:
952  case UnqualifiedId::IK_TemplateId:
953    T = ConvertDeclSpecToType(*this, D, FnAttrsFromDeclSpec);
954
955    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
956      TagDecl* Owned = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
957      // Owned is embedded if it was defined here, or if it is the
958      // very first (i.e., canonical) declaration of this tag type.
959      Owned->setEmbeddedInDeclarator(Owned->isDefinition() ||
960                                     Owned->isCanonicalDecl());
961      if (OwnedDecl) *OwnedDecl = Owned;
962    }
963    break;
964
965  case UnqualifiedId::IK_ConstructorName:
966  case UnqualifiedId::IK_ConstructorTemplateId:
967  case UnqualifiedId::IK_DestructorName:
968    // Constructors and destructors don't have return types. Use
969    // "void" instead.
970    T = Context.VoidTy;
971
972    if (TInfo)
973      ReturnTypeInfo = Context.getTrivialTypeSourceInfo(T,
974                                                    D.getName().StartLocation);
975    break;
976
977  case UnqualifiedId::IK_ConversionFunctionId:
978    // The result type of a conversion function is the type that it
979    // converts to.
980    T = GetTypeFromParser(D.getName().ConversionFunctionId,
981                          TInfo? &ReturnTypeInfo : 0);
982    break;
983  }
984
985  if (T.isNull())
986    return T;
987
988  if (T == Context.UndeducedAutoTy) {
989    int Error = -1;
990
991    switch (D.getContext()) {
992    case Declarator::KNRTypeListContext:
993      assert(0 && "K&R type lists aren't allowed in C++");
994      break;
995    case Declarator::PrototypeContext:
996      Error = 0; // Function prototype
997      break;
998    case Declarator::MemberContext:
999      switch (cast<TagDecl>(CurContext)->getTagKind()) {
1000      case TTK_Enum: assert(0 && "unhandled tag kind"); break;
1001      case TTK_Struct: Error = 1; /* Struct member */ break;
1002      case TTK_Union:  Error = 2; /* Union member */ break;
1003      case TTK_Class:  Error = 3; /* Class member */ break;
1004      }
1005      break;
1006    case Declarator::CXXCatchContext:
1007      Error = 4; // Exception declaration
1008      break;
1009    case Declarator::TemplateParamContext:
1010      Error = 5; // Template parameter
1011      break;
1012    case Declarator::BlockLiteralContext:
1013      Error = 6;  // Block literal
1014      break;
1015    case Declarator::FileContext:
1016    case Declarator::BlockContext:
1017    case Declarator::ForContext:
1018    case Declarator::ConditionContext:
1019    case Declarator::TypeNameContext:
1020      break;
1021    }
1022
1023    if (Error != -1) {
1024      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
1025        << Error;
1026      T = Context.IntTy;
1027      D.setInvalidType(true);
1028    }
1029  }
1030
1031  // The name we're declaring, if any.
1032  DeclarationName Name;
1033  if (D.getIdentifier())
1034    Name = D.getIdentifier();
1035
1036  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromPreviousChunk;
1037
1038  // Walk the DeclTypeInfo, building the recursive type as we go.
1039  // DeclTypeInfos are ordered from the identifier out, which is
1040  // opposite of what we want :).
1041  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1042    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
1043    switch (DeclType.Kind) {
1044    default: assert(0 && "Unknown decltype!");
1045    case DeclaratorChunk::BlockPointer:
1046      // If blocks are disabled, emit an error.
1047      if (!LangOpts.Blocks)
1048        Diag(DeclType.Loc, diag::err_blocks_disable);
1049
1050      T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(),
1051                                Name);
1052      break;
1053    case DeclaratorChunk::Pointer:
1054      // Verify that we're not building a pointer to pointer to function with
1055      // exception specification.
1056      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1057        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1058        D.setInvalidType(true);
1059        // Build the type anyway.
1060      }
1061      if (getLangOptions().ObjC1 && T->getAs<ObjCObjectType>()) {
1062        T = Context.getObjCObjectPointerType(T);
1063        T = Context.getCVRQualifiedType(T, DeclType.Ptr.TypeQuals);
1064        break;
1065      }
1066      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
1067      break;
1068    case DeclaratorChunk::Reference: {
1069      Qualifiers Quals;
1070      if (DeclType.Ref.HasRestrict) Quals.addRestrict();
1071
1072      // Verify that we're not building a reference to pointer to function with
1073      // exception specification.
1074      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1075        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1076        D.setInvalidType(true);
1077        // Build the type anyway.
1078      }
1079      T = BuildReferenceType(T, DeclType.Ref.LValueRef, Quals,
1080                             DeclType.Loc, Name);
1081      break;
1082    }
1083    case DeclaratorChunk::Array: {
1084      // Verify that we're not building an array of pointers to function with
1085      // exception specification.
1086      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1087        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1088        D.setInvalidType(true);
1089        // Build the type anyway.
1090      }
1091      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1092      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
1093      ArrayType::ArraySizeModifier ASM;
1094      if (ATI.isStar)
1095        ASM = ArrayType::Star;
1096      else if (ATI.hasStatic)
1097        ASM = ArrayType::Static;
1098      else
1099        ASM = ArrayType::Normal;
1100      if (ASM == ArrayType::Star &&
1101          D.getContext() != Declarator::PrototypeContext) {
1102        // FIXME: This check isn't quite right: it allows star in prototypes
1103        // for function definitions, and disallows some edge cases detailed
1104        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
1105        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
1106        ASM = ArrayType::Normal;
1107        D.setInvalidType(true);
1108      }
1109      T = BuildArrayType(T, ASM, ArraySize,
1110                         Qualifiers::fromCVRMask(ATI.TypeQuals),
1111                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
1112      break;
1113    }
1114    case DeclaratorChunk::Function: {
1115      // If the function declarator has a prototype (i.e. it is not () and
1116      // does not have a K&R-style identifier list), then the arguments are part
1117      // of the type, otherwise the argument list is ().
1118      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1119
1120      // C99 6.7.5.3p1: The return type may not be a function or array type.
1121      // For conversion functions, we'll diagnose this particular error later.
1122      if ((T->isArrayType() || T->isFunctionType()) &&
1123          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
1124        Diag(DeclType.Loc, diag::err_func_returning_array_function)
1125          << T->isFunctionType() << T;
1126        T = Context.IntTy;
1127        D.setInvalidType(true);
1128      }
1129
1130      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
1131        // C++ [dcl.fct]p6:
1132        //   Types shall not be defined in return or parameter types.
1133        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
1134        if (Tag->isDefinition())
1135          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
1136            << Context.getTypeDeclType(Tag);
1137      }
1138
1139      // Exception specs are not allowed in typedefs. Complain, but add it
1140      // anyway.
1141      if (FTI.hasExceptionSpec &&
1142          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1143        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
1144
1145      if (FTI.NumArgs == 0) {
1146        if (getLangOptions().CPlusPlus) {
1147          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
1148          // function takes no arguments.
1149          llvm::SmallVector<QualType, 4> Exceptions;
1150          Exceptions.reserve(FTI.NumExceptions);
1151          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1152            // FIXME: Preserve type source info.
1153            QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1154            // Check that the type is valid for an exception spec, and drop it
1155            // if not.
1156            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1157              Exceptions.push_back(ET);
1158          }
1159          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
1160                                      FTI.hasExceptionSpec,
1161                                      FTI.hasAnyExceptionSpec,
1162                                      Exceptions.size(), Exceptions.data(),
1163                                      FunctionType::ExtInfo());
1164        } else if (FTI.isVariadic) {
1165          // We allow a zero-parameter variadic function in C if the
1166          // function is marked with the "overloadable"
1167          // attribute. Scan for this attribute now.
1168          bool Overloadable = false;
1169          for (const AttributeList *Attrs = D.getAttributes();
1170               Attrs; Attrs = Attrs->getNext()) {
1171            if (Attrs->getKind() == AttributeList::AT_overloadable) {
1172              Overloadable = true;
1173              break;
1174            }
1175          }
1176
1177          if (!Overloadable)
1178            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
1179          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0,
1180                                      false, false, 0, 0,
1181                                      FunctionType::ExtInfo());
1182        } else {
1183          // Simple void foo(), where the incoming T is the result type.
1184          T = Context.getFunctionNoProtoType(T);
1185        }
1186      } else if (FTI.ArgInfo[0].Param == 0) {
1187        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
1188        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
1189        D.setInvalidType(true);
1190      } else {
1191        // Otherwise, we have a function with an argument list that is
1192        // potentially variadic.
1193        llvm::SmallVector<QualType, 16> ArgTys;
1194
1195        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1196          ParmVarDecl *Param =
1197            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
1198          QualType ArgTy = Param->getType();
1199          assert(!ArgTy.isNull() && "Couldn't parse type?");
1200
1201          // Adjust the parameter type.
1202          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1203
1204          // Look for 'void'.  void is allowed only as a single argument to a
1205          // function with no other parameters (C99 6.7.5.3p10).  We record
1206          // int(void) as a FunctionProtoType with an empty argument list.
1207          if (ArgTy->isVoidType()) {
1208            // If this is something like 'float(int, void)', reject it.  'void'
1209            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1210            // have arguments of incomplete type.
1211            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1212              Diag(DeclType.Loc, diag::err_void_only_param);
1213              ArgTy = Context.IntTy;
1214              Param->setType(ArgTy);
1215            } else if (FTI.ArgInfo[i].Ident) {
1216              // Reject, but continue to parse 'int(void abc)'.
1217              Diag(FTI.ArgInfo[i].IdentLoc,
1218                   diag::err_param_with_void_type);
1219              ArgTy = Context.IntTy;
1220              Param->setType(ArgTy);
1221            } else {
1222              // Reject, but continue to parse 'float(const void)'.
1223              if (ArgTy.hasQualifiers())
1224                Diag(DeclType.Loc, diag::err_void_param_qualified);
1225
1226              // Do not add 'void' to the ArgTys list.
1227              break;
1228            }
1229          } else if (!FTI.hasPrototype) {
1230            if (ArgTy->isPromotableIntegerType()) {
1231              ArgTy = Context.getPromotedIntegerType(ArgTy);
1232            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
1233              if (BTy->getKind() == BuiltinType::Float)
1234                ArgTy = Context.DoubleTy;
1235            }
1236          }
1237
1238          ArgTys.push_back(ArgTy);
1239        }
1240
1241        llvm::SmallVector<QualType, 4> Exceptions;
1242        Exceptions.reserve(FTI.NumExceptions);
1243        for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1244          // FIXME: Preserve type source info.
1245          QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1246          // Check that the type is valid for an exception spec, and drop it if
1247          // not.
1248          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1249            Exceptions.push_back(ET);
1250        }
1251
1252        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
1253                                    FTI.isVariadic, FTI.TypeQuals,
1254                                    FTI.hasExceptionSpec,
1255                                    FTI.hasAnyExceptionSpec,
1256                                    Exceptions.size(), Exceptions.data(),
1257                                    FunctionType::ExtInfo());
1258      }
1259
1260      // For GCC compatibility, we allow attributes that apply only to
1261      // function types to be placed on a function's return type
1262      // instead (as long as that type doesn't happen to be function
1263      // or function-pointer itself).
1264      ProcessDelayedFnAttrs(*this, T, FnAttrsFromPreviousChunk);
1265
1266      break;
1267    }
1268    case DeclaratorChunk::MemberPointer:
1269      // Verify that we're not building a pointer to pointer to function with
1270      // exception specification.
1271      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1272        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1273        D.setInvalidType(true);
1274        // Build the type anyway.
1275      }
1276      // The scope spec must refer to a class, or be dependent.
1277      QualType ClsType;
1278      if (DeclType.Mem.Scope().isInvalid()) {
1279        // Avoid emitting extra errors if we already errored on the scope.
1280        D.setInvalidType(true);
1281      } else if (isDependentScopeSpecifier(DeclType.Mem.Scope())
1282                 || dyn_cast_or_null<CXXRecordDecl>(
1283                                   computeDeclContext(DeclType.Mem.Scope()))) {
1284        NestedNameSpecifier *NNS
1285          = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
1286        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
1287        switch (NNS->getKind()) {
1288        case NestedNameSpecifier::Identifier:
1289          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
1290                                                 NNS->getAsIdentifier());
1291          break;
1292
1293        case NestedNameSpecifier::Namespace:
1294        case NestedNameSpecifier::Global:
1295          llvm_unreachable("Nested-name-specifier must name a type");
1296          break;
1297
1298        case NestedNameSpecifier::TypeSpec:
1299        case NestedNameSpecifier::TypeSpecWithTemplate:
1300          ClsType = QualType(NNS->getAsType(), 0);
1301          if (NNSPrefix)
1302            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
1303          break;
1304        }
1305      } else {
1306        Diag(DeclType.Mem.Scope().getBeginLoc(),
1307             diag::err_illegal_decl_mempointer_in_nonclass)
1308          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1309          << DeclType.Mem.Scope().getRange();
1310        D.setInvalidType(true);
1311      }
1312
1313      if (!ClsType.isNull())
1314        T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals,
1315                                   DeclType.Loc, D.getIdentifier());
1316      if (T.isNull()) {
1317        T = Context.IntTy;
1318        D.setInvalidType(true);
1319      }
1320      break;
1321    }
1322
1323    if (T.isNull()) {
1324      D.setInvalidType(true);
1325      T = Context.IntTy;
1326    }
1327
1328    DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);
1329
1330    // See if there are any attributes on this declarator chunk.
1331    if (const AttributeList *AL = DeclType.getAttrs())
1332      ProcessTypeAttributeList(*this, T, false, AL, FnAttrsFromPreviousChunk);
1333  }
1334
1335  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1336    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
1337    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
1338
1339    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1340    // for a nonstatic member function, the function type to which a pointer
1341    // to member refers, or the top-level function type of a function typedef
1342    // declaration.
1343    if (FnTy->getTypeQuals() != 0 &&
1344        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1345        ((D.getContext() != Declarator::MemberContext &&
1346          (!D.getCXXScopeSpec().isSet() ||
1347           !computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)
1348              ->isRecord())) ||
1349         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1350      if (D.isFunctionDeclarator())
1351        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1352      else
1353        Diag(D.getIdentifierLoc(),
1354             diag::err_invalid_qualified_typedef_function_type_use);
1355
1356      // Strip the cv-quals from the type.
1357      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1358                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0,
1359                                  false, false, 0, 0, FunctionType::ExtInfo());
1360    }
1361  }
1362
1363  // Process any function attributes we might have delayed from the
1364  // declaration-specifiers.
1365  ProcessDelayedFnAttrs(*this, T, FnAttrsFromDeclSpec);
1366
1367  // If there were any type attributes applied to the decl itself, not
1368  // the type, apply them to the result type.  But don't do this for
1369  // block-literal expressions, which are parsed wierdly.
1370  if (D.getContext() != Declarator::BlockLiteralContext)
1371    if (const AttributeList *Attrs = D.getAttributes())
1372      ProcessTypeAttributeList(*this, T, false, Attrs,
1373                               FnAttrsFromPreviousChunk);
1374
1375  DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);
1376
1377  if (TInfo) {
1378    if (D.isInvalidType())
1379      *TInfo = 0;
1380    else
1381      *TInfo = GetTypeSourceInfoForDeclarator(D, T, ReturnTypeInfo);
1382  }
1383
1384  return T;
1385}
1386
1387namespace {
1388  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
1389    const DeclSpec &DS;
1390
1391  public:
1392    TypeSpecLocFiller(const DeclSpec &DS) : DS(DS) {}
1393
1394    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1395      Visit(TL.getUnqualifiedLoc());
1396    }
1397    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
1398      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1399    }
1400    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
1401      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1402    }
1403    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
1404      // Handle the base type, which might not have been written explicitly.
1405      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
1406        TL.setHasBaseTypeAsWritten(false);
1407        TL.getBaseLoc().initialize(SourceLocation());
1408      } else {
1409        TL.setHasBaseTypeAsWritten(true);
1410        Visit(TL.getBaseLoc());
1411      }
1412
1413      // Protocol qualifiers.
1414      if (DS.getProtocolQualifiers()) {
1415        assert(TL.getNumProtocols() > 0);
1416        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1417        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1418        TL.setRAngleLoc(DS.getSourceRange().getEnd());
1419        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
1420          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1421      } else {
1422        assert(TL.getNumProtocols() == 0);
1423        TL.setLAngleLoc(SourceLocation());
1424        TL.setRAngleLoc(SourceLocation());
1425      }
1426    }
1427    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1428      TL.setStarLoc(SourceLocation());
1429      Visit(TL.getPointeeLoc());
1430    }
1431    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
1432      TypeSourceInfo *TInfo = 0;
1433      Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1434
1435      // If we got no declarator info from previous Sema routines,
1436      // just fill with the typespec loc.
1437      if (!TInfo) {
1438        TL.initialize(DS.getTypeSpecTypeLoc());
1439        return;
1440      }
1441
1442      TypeLoc OldTL = TInfo->getTypeLoc();
1443      if (TInfo->getType()->getAs<ElaboratedType>()) {
1444        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
1445        TemplateSpecializationTypeLoc NamedTL =
1446          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
1447        TL.copy(NamedTL);
1448      }
1449      else
1450        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
1451    }
1452    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
1453      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
1454      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
1455      TL.setParensRange(DS.getTypeofParensRange());
1456    }
1457    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
1458      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
1459      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
1460      TL.setParensRange(DS.getTypeofParensRange());
1461      assert(DS.getTypeRep());
1462      TypeSourceInfo *TInfo = 0;
1463      Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1464      TL.setUnderlyingTInfo(TInfo);
1465    }
1466    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
1467      // By default, use the source location of the type specifier.
1468      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
1469      if (TL.needsExtraLocalData()) {
1470        // Set info for the written builtin specifiers.
1471        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
1472        // Try to have a meaningful source location.
1473        if (TL.getWrittenSignSpec() != TSS_unspecified)
1474          // Sign spec loc overrides the others (e.g., 'unsigned long').
1475          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
1476        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
1477          // Width spec loc overrides type spec loc (e.g., 'short int').
1478          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
1479      }
1480    }
1481    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
1482      ElaboratedTypeKeyword Keyword
1483        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
1484      if (Keyword == ETK_Typename) {
1485        TypeSourceInfo *TInfo = 0;
1486        Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1487        if (TInfo) {
1488          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
1489          return;
1490        }
1491      }
1492      TL.setKeywordLoc(Keyword != ETK_None
1493                       ? DS.getTypeSpecTypeLoc()
1494                       : SourceLocation());
1495      const CXXScopeSpec& SS = DS.getTypeSpecScope();
1496      TL.setQualifierRange(SS.isEmpty() ? SourceRange(): SS.getRange());
1497      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
1498    }
1499    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
1500      ElaboratedTypeKeyword Keyword
1501        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
1502      if (Keyword == ETK_Typename) {
1503        TypeSourceInfo *TInfo = 0;
1504        Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1505        if (TInfo) {
1506          TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
1507          return;
1508        }
1509      }
1510      TL.setKeywordLoc(Keyword != ETK_None
1511                       ? DS.getTypeSpecTypeLoc()
1512                       : SourceLocation());
1513      const CXXScopeSpec& SS = DS.getTypeSpecScope();
1514      TL.setQualifierRange(SS.isEmpty() ? SourceRange() : SS.getRange());
1515      // FIXME: load appropriate source location.
1516      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1517    }
1518
1519    void VisitTypeLoc(TypeLoc TL) {
1520      // FIXME: add other typespec types and change this to an assert.
1521      TL.initialize(DS.getTypeSpecTypeLoc());
1522    }
1523  };
1524
1525  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
1526    const DeclaratorChunk &Chunk;
1527
1528  public:
1529    DeclaratorLocFiller(const DeclaratorChunk &Chunk) : Chunk(Chunk) {}
1530
1531    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1532      llvm_unreachable("qualified type locs not expected here!");
1533    }
1534
1535    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
1536      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
1537      TL.setCaretLoc(Chunk.Loc);
1538    }
1539    void VisitPointerTypeLoc(PointerTypeLoc TL) {
1540      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1541      TL.setStarLoc(Chunk.Loc);
1542    }
1543    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1544      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1545      TL.setStarLoc(Chunk.Loc);
1546    }
1547    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
1548      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
1549      TL.setStarLoc(Chunk.Loc);
1550      // FIXME: nested name specifier
1551    }
1552    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
1553      assert(Chunk.Kind == DeclaratorChunk::Reference);
1554      // 'Amp' is misleading: this might have been originally
1555      /// spelled with AmpAmp.
1556      TL.setAmpLoc(Chunk.Loc);
1557    }
1558    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
1559      assert(Chunk.Kind == DeclaratorChunk::Reference);
1560      assert(!Chunk.Ref.LValueRef);
1561      TL.setAmpAmpLoc(Chunk.Loc);
1562    }
1563    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
1564      assert(Chunk.Kind == DeclaratorChunk::Array);
1565      TL.setLBracketLoc(Chunk.Loc);
1566      TL.setRBracketLoc(Chunk.EndLoc);
1567      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
1568    }
1569    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
1570      assert(Chunk.Kind == DeclaratorChunk::Function);
1571      TL.setLParenLoc(Chunk.Loc);
1572      TL.setRParenLoc(Chunk.EndLoc);
1573
1574      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
1575      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
1576        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
1577        TL.setArg(tpi++, Param);
1578      }
1579      // FIXME: exception specs
1580    }
1581
1582    void VisitTypeLoc(TypeLoc TL) {
1583      llvm_unreachable("unsupported TypeLoc kind in declarator!");
1584    }
1585  };
1586}
1587
1588/// \brief Create and instantiate a TypeSourceInfo with type source information.
1589///
1590/// \param T QualType referring to the type as written in source code.
1591///
1592/// \param ReturnTypeInfo For declarators whose return type does not show
1593/// up in the normal place in the declaration specifiers (such as a C++
1594/// conversion function), this pointer will refer to a type source information
1595/// for that return type.
1596TypeSourceInfo *
1597Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
1598                                     TypeSourceInfo *ReturnTypeInfo) {
1599  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
1600  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
1601
1602  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1603    DeclaratorLocFiller(D.getTypeObject(i)).Visit(CurrTL);
1604    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
1605  }
1606
1607  TypeSpecLocFiller(D.getDeclSpec()).Visit(CurrTL);
1608
1609  // We have source information for the return type that was not in the
1610  // declaration specifiers; copy that information into the current type
1611  // location so that it will be retained. This occurs, for example, with
1612  // a C++ conversion function, where the return type occurs within the
1613  // declarator-id rather than in the declaration specifiers.
1614  if (ReturnTypeInfo && D.getDeclSpec().getTypeSpecType() == TST_unspecified) {
1615    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
1616    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
1617    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
1618  }
1619
1620  return TInfo;
1621}
1622
1623/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
1624QualType Sema::CreateLocInfoType(QualType T, TypeSourceInfo *TInfo) {
1625  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
1626  // and Sema during declaration parsing. Try deallocating/caching them when
1627  // it's appropriate, instead of allocating them and keeping them around.
1628  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), 8);
1629  new (LocT) LocInfoType(T, TInfo);
1630  assert(LocT->getTypeClass() != T->getTypeClass() &&
1631         "LocInfoType's TypeClass conflicts with an existing Type class");
1632  return QualType(LocT, 0);
1633}
1634
1635void LocInfoType::getAsStringInternal(std::string &Str,
1636                                      const PrintingPolicy &Policy) const {
1637  assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
1638         " was used directly instead of getting the QualType through"
1639         " GetTypeFromParser");
1640}
1641
1642/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
1643/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
1644/// they point to and return true. If T1 and T2 aren't pointer types
1645/// or pointer-to-member types, or if they are not similar at this
1646/// level, returns false and leaves T1 and T2 unchanged. Top-level
1647/// qualifiers on T1 and T2 are ignored. This function will typically
1648/// be called in a loop that successively "unwraps" pointer and
1649/// pointer-to-member types to compare them at each level.
1650bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
1651  const PointerType *T1PtrType = T1->getAs<PointerType>(),
1652                    *T2PtrType = T2->getAs<PointerType>();
1653  if (T1PtrType && T2PtrType) {
1654    T1 = T1PtrType->getPointeeType();
1655    T2 = T2PtrType->getPointeeType();
1656    return true;
1657  }
1658
1659  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
1660                          *T2MPType = T2->getAs<MemberPointerType>();
1661  if (T1MPType && T2MPType &&
1662      Context.getCanonicalType(T1MPType->getClass()) ==
1663      Context.getCanonicalType(T2MPType->getClass())) {
1664    T1 = T1MPType->getPointeeType();
1665    T2 = T2MPType->getPointeeType();
1666    return true;
1667  }
1668
1669  if (getLangOptions().ObjC1) {
1670    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
1671                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
1672    if (T1OPType && T2OPType) {
1673      T1 = T1OPType->getPointeeType();
1674      T2 = T2OPType->getPointeeType();
1675      return true;
1676    }
1677  }
1678  return false;
1679}
1680
1681Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1682  // C99 6.7.6: Type names have no identifier.  This is already validated by
1683  // the parser.
1684  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1685
1686  TypeSourceInfo *TInfo = 0;
1687  TagDecl *OwnedTag = 0;
1688  QualType T = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
1689  if (D.isInvalidType())
1690    return true;
1691
1692  if (getLangOptions().CPlusPlus) {
1693    // Check that there are no default arguments (C++ only).
1694    CheckExtraCXXDefaultArguments(D);
1695
1696    // C++0x [dcl.type]p3:
1697    //   A type-specifier-seq shall not define a class or enumeration
1698    //   unless it appears in the type-id of an alias-declaration
1699    //   (7.1.3).
1700    if (OwnedTag && OwnedTag->isDefinition())
1701      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1702        << Context.getTypeDeclType(OwnedTag);
1703  }
1704
1705  if (TInfo)
1706    T = CreateLocInfoType(T, TInfo);
1707
1708  return T.getAsOpaquePtr();
1709}
1710
1711
1712
1713//===----------------------------------------------------------------------===//
1714// Type Attribute Processing
1715//===----------------------------------------------------------------------===//
1716
1717/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1718/// specified type.  The attribute contains 1 argument, the id of the address
1719/// space for the type.
1720static void HandleAddressSpaceTypeAttribute(QualType &Type,
1721                                            const AttributeList &Attr, Sema &S){
1722
1723  // If this type is already address space qualified, reject it.
1724  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1725  // for two or more different address spaces."
1726  if (Type.getAddressSpace()) {
1727    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1728    Attr.setInvalid();
1729    return;
1730  }
1731
1732  // Check the attribute arguments.
1733  if (Attr.getNumArgs() != 1) {
1734    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1735    Attr.setInvalid();
1736    return;
1737  }
1738  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1739  llvm::APSInt addrSpace(32);
1740  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
1741      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1742    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1743      << ASArgExpr->getSourceRange();
1744    Attr.setInvalid();
1745    return;
1746  }
1747
1748  // Bounds checking.
1749  if (addrSpace.isSigned()) {
1750    if (addrSpace.isNegative()) {
1751      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
1752        << ASArgExpr->getSourceRange();
1753      Attr.setInvalid();
1754      return;
1755    }
1756    addrSpace.setIsSigned(false);
1757  }
1758  llvm::APSInt max(addrSpace.getBitWidth());
1759  max = Qualifiers::MaxAddressSpace;
1760  if (addrSpace > max) {
1761    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
1762      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
1763    Attr.setInvalid();
1764    return;
1765  }
1766
1767  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1768  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1769}
1770
1771/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1772/// specified type.  The attribute contains 1 argument, weak or strong.
1773static void HandleObjCGCTypeAttribute(QualType &Type,
1774                                      const AttributeList &Attr, Sema &S) {
1775  if (Type.getObjCGCAttr() != Qualifiers::GCNone) {
1776    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1777    Attr.setInvalid();
1778    return;
1779  }
1780
1781  // Check the attribute arguments.
1782  if (!Attr.getParameterName()) {
1783    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1784      << "objc_gc" << 1;
1785    Attr.setInvalid();
1786    return;
1787  }
1788  Qualifiers::GC GCAttr;
1789  if (Attr.getNumArgs() != 0) {
1790    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1791    Attr.setInvalid();
1792    return;
1793  }
1794  if (Attr.getParameterName()->isStr("weak"))
1795    GCAttr = Qualifiers::Weak;
1796  else if (Attr.getParameterName()->isStr("strong"))
1797    GCAttr = Qualifiers::Strong;
1798  else {
1799    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1800      << "objc_gc" << Attr.getParameterName();
1801    Attr.setInvalid();
1802    return;
1803  }
1804
1805  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1806}
1807
1808/// Process an individual function attribute.  Returns true if the
1809/// attribute does not make sense to apply to this type.
1810bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr) {
1811  if (Attr.getKind() == AttributeList::AT_noreturn) {
1812    // Complain immediately if the arg count is wrong.
1813    if (Attr.getNumArgs() != 0) {
1814      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1815      Attr.setInvalid();
1816      return false;
1817    }
1818
1819    // Delay if this is not a function or pointer to block.
1820    if (!Type->isFunctionPointerType()
1821        && !Type->isBlockPointerType()
1822        && !Type->isFunctionType())
1823      return true;
1824
1825    // Otherwise we can process right away.
1826    Type = S.Context.getNoReturnType(Type);
1827    return false;
1828  }
1829
1830  if (Attr.getKind() == AttributeList::AT_regparm) {
1831    // The warning is emitted elsewhere
1832    if (Attr.getNumArgs() != 1) {
1833      return false;
1834    }
1835
1836    // Delay if this is not a function or pointer to block.
1837    if (!Type->isFunctionPointerType()
1838        && !Type->isBlockPointerType()
1839        && !Type->isFunctionType())
1840      return true;
1841
1842    // Otherwise we can process right away.
1843    Expr *NumParamsExpr = static_cast<Expr *>(Attr.getArg(0));
1844    llvm::APSInt NumParams(32);
1845
1846    // The warning is emitted elsewhere
1847    if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() ||
1848        !NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context))
1849      return false;
1850
1851    Type = S.Context.getRegParmType(Type, NumParams.getZExtValue());
1852    return false;
1853  }
1854
1855  // Otherwise, a calling convention.
1856  if (Attr.getNumArgs() != 0) {
1857    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1858    Attr.setInvalid();
1859    return false;
1860  }
1861
1862  QualType T = Type;
1863  if (const PointerType *PT = Type->getAs<PointerType>())
1864    T = PT->getPointeeType();
1865  const FunctionType *Fn = T->getAs<FunctionType>();
1866
1867  // Delay if the type didn't work out to a function.
1868  if (!Fn) return true;
1869
1870  // TODO: diagnose uses of these conventions on the wrong target.
1871  CallingConv CC;
1872  switch (Attr.getKind()) {
1873  case AttributeList::AT_cdecl: CC = CC_C; break;
1874  case AttributeList::AT_fastcall: CC = CC_X86FastCall; break;
1875  case AttributeList::AT_stdcall: CC = CC_X86StdCall; break;
1876  case AttributeList::AT_thiscall: CC = CC_X86ThisCall; break;
1877  default: llvm_unreachable("unexpected attribute kind"); return false;
1878  }
1879
1880  CallingConv CCOld = Fn->getCallConv();
1881  if (S.Context.getCanonicalCallConv(CC) ==
1882      S.Context.getCanonicalCallConv(CCOld)) {
1883    Attr.setInvalid();
1884    return false;
1885  }
1886
1887  if (CCOld != CC_Default) {
1888    // Should we diagnose reapplications of the same convention?
1889    S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
1890      << FunctionType::getNameForCallConv(CC)
1891      << FunctionType::getNameForCallConv(CCOld);
1892    Attr.setInvalid();
1893    return false;
1894  }
1895
1896  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
1897  if (CC == CC_X86FastCall) {
1898    if (isa<FunctionNoProtoType>(Fn)) {
1899      S.Diag(Attr.getLoc(), diag::err_cconv_knr)
1900        << FunctionType::getNameForCallConv(CC);
1901      Attr.setInvalid();
1902      return false;
1903    }
1904
1905    const FunctionProtoType *FnP = cast<FunctionProtoType>(Fn);
1906    if (FnP->isVariadic()) {
1907      S.Diag(Attr.getLoc(), diag::err_cconv_varargs)
1908        << FunctionType::getNameForCallConv(CC);
1909      Attr.setInvalid();
1910      return false;
1911    }
1912  }
1913
1914  Type = S.Context.getCallConvType(Type, CC);
1915  return false;
1916}
1917
1918/// HandleVectorSizeAttribute - this attribute is only applicable to integral
1919/// and float scalars, although arrays, pointers, and function return values are
1920/// allowed in conjunction with this construct. Aggregates with this attribute
1921/// are invalid, even if they are of the same size as a corresponding scalar.
1922/// The raw attribute should contain precisely 1 argument, the vector size for
1923/// the variable, measured in bytes. If curType and rawAttr are well formed,
1924/// this routine will return a new vector type.
1925static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr, Sema &S) {
1926  // Check the attribute arugments.
1927  if (Attr.getNumArgs() != 1) {
1928    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1929    Attr.setInvalid();
1930    return;
1931  }
1932  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
1933  llvm::APSInt vecSize(32);
1934  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
1935      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
1936    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
1937      << "vector_size" << sizeExpr->getSourceRange();
1938    Attr.setInvalid();
1939    return;
1940  }
1941  // the base type must be integer or float, and can't already be a vector.
1942  if (CurType->isVectorType() ||
1943      (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
1944    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
1945    Attr.setInvalid();
1946    return;
1947  }
1948  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
1949  // vecSize is specified in bytes - convert to bits.
1950  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
1951
1952  // the vector size needs to be an integral multiple of the type size.
1953  if (vectorSize % typeSize) {
1954    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
1955      << sizeExpr->getSourceRange();
1956    Attr.setInvalid();
1957    return;
1958  }
1959  if (vectorSize == 0) {
1960    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
1961      << sizeExpr->getSourceRange();
1962    Attr.setInvalid();
1963    return;
1964  }
1965
1966  // Success! Instantiate the vector type, the number of elements is > 0, and
1967  // not required to be a power of 2, unlike GCC.
1968  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize, false, false);
1969}
1970
1971void ProcessTypeAttributeList(Sema &S, QualType &Result,
1972                              bool IsDeclSpec, const AttributeList *AL,
1973                              DelayedAttributeSet &FnAttrs) {
1974  // Scan through and apply attributes to this type where it makes sense.  Some
1975  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1976  // type, but others can be present in the type specifiers even though they
1977  // apply to the decl.  Here we apply type attributes and ignore the rest.
1978  for (; AL; AL = AL->getNext()) {
1979    // Skip attributes that were marked to be invalid.
1980    if (AL->isInvalid())
1981      continue;
1982
1983    // If this is an attribute we can handle, do so now,
1984    // otherwise, add it to the FnAttrs list for rechaining.
1985    switch (AL->getKind()) {
1986    default: break;
1987
1988    case AttributeList::AT_address_space:
1989      HandleAddressSpaceTypeAttribute(Result, *AL, S);
1990      break;
1991    case AttributeList::AT_objc_gc:
1992      HandleObjCGCTypeAttribute(Result, *AL, S);
1993      break;
1994    case AttributeList::AT_vector_size:
1995      HandleVectorSizeAttr(Result, *AL, S);
1996      break;
1997
1998    case AttributeList::AT_noreturn:
1999    case AttributeList::AT_cdecl:
2000    case AttributeList::AT_fastcall:
2001    case AttributeList::AT_stdcall:
2002    case AttributeList::AT_thiscall:
2003    case AttributeList::AT_regparm:
2004      // Don't process these on the DeclSpec.
2005      if (IsDeclSpec ||
2006          ProcessFnAttr(S, Result, *AL))
2007        FnAttrs.push_back(DelayedAttribute(AL, Result));
2008      break;
2009    }
2010  }
2011}
2012
2013/// @brief Ensure that the type T is a complete type.
2014///
2015/// This routine checks whether the type @p T is complete in any
2016/// context where a complete type is required. If @p T is a complete
2017/// type, returns false. If @p T is a class template specialization,
2018/// this routine then attempts to perform class template
2019/// instantiation. If instantiation fails, or if @p T is incomplete
2020/// and cannot be completed, issues the diagnostic @p diag (giving it
2021/// the type @p T) and returns true.
2022///
2023/// @param Loc  The location in the source that the incomplete type
2024/// diagnostic should refer to.
2025///
2026/// @param T  The type that this routine is examining for completeness.
2027///
2028/// @param PD The partial diagnostic that will be printed out if T is not a
2029/// complete type.
2030///
2031/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
2032/// @c false otherwise.
2033bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2034                               const PartialDiagnostic &PD,
2035                               std::pair<SourceLocation,
2036                                         PartialDiagnostic> Note) {
2037  unsigned diag = PD.getDiagID();
2038
2039  // FIXME: Add this assertion to make sure we always get instantiation points.
2040  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
2041  // FIXME: Add this assertion to help us flush out problems with
2042  // checking for dependent types and type-dependent expressions.
2043  //
2044  //  assert(!T->isDependentType() &&
2045  //         "Can't ask whether a dependent type is complete");
2046
2047  // If we have a complete type, we're done.
2048  if (!T->isIncompleteType())
2049    return false;
2050
2051  // If we have a class template specialization or a class member of a
2052  // class template specialization, or an array with known size of such,
2053  // try to instantiate it.
2054  QualType MaybeTemplate = T;
2055  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
2056    MaybeTemplate = Array->getElementType();
2057  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
2058    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
2059          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
2060      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
2061        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
2062                                                      TSK_ImplicitInstantiation,
2063                                                      /*Complain=*/diag != 0);
2064    } else if (CXXRecordDecl *Rec
2065                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
2066      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
2067        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
2068        assert(MSInfo && "Missing member specialization information?");
2069        // This record was instantiated from a class within a template.
2070        if (MSInfo->getTemplateSpecializationKind()
2071                                               != TSK_ExplicitSpecialization)
2072          return InstantiateClass(Loc, Rec, Pattern,
2073                                  getTemplateInstantiationArgs(Rec),
2074                                  TSK_ImplicitInstantiation,
2075                                  /*Complain=*/diag != 0);
2076      }
2077    }
2078  }
2079
2080  if (diag == 0)
2081    return true;
2082
2083  const TagType *Tag = 0;
2084  if (const RecordType *Record = T->getAs<RecordType>())
2085    Tag = Record;
2086  else if (const EnumType *Enum = T->getAs<EnumType>())
2087    Tag = Enum;
2088
2089  // Avoid diagnosing invalid decls as incomplete.
2090  if (Tag && Tag->getDecl()->isInvalidDecl())
2091    return true;
2092
2093  // We have an incomplete type. Produce a diagnostic.
2094  Diag(Loc, PD) << T;
2095
2096  // If we have a note, produce it.
2097  if (!Note.first.isInvalid())
2098    Diag(Note.first, Note.second);
2099
2100  // If the type was a forward declaration of a class/struct/union
2101  // type, produce a note.
2102  if (Tag && !Tag->getDecl()->isInvalidDecl())
2103    Diag(Tag->getDecl()->getLocation(),
2104         Tag->isBeingDefined() ? diag::note_type_being_defined
2105                               : diag::note_forward_declaration)
2106        << QualType(Tag, 0);
2107
2108  return true;
2109}
2110
2111bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2112                               const PartialDiagnostic &PD) {
2113  return RequireCompleteType(Loc, T, PD,
2114                             std::make_pair(SourceLocation(), PDiag(0)));
2115}
2116
2117bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2118                               unsigned DiagID) {
2119  return RequireCompleteType(Loc, T, PDiag(DiagID),
2120                             std::make_pair(SourceLocation(), PDiag(0)));
2121}
2122
2123/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
2124/// and qualified by the nested-name-specifier contained in SS.
2125QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
2126                                 const CXXScopeSpec &SS, QualType T) {
2127  if (T.isNull())
2128    return T;
2129  NestedNameSpecifier *NNS;
2130  if (SS.isValid())
2131    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2132  else {
2133    if (Keyword == ETK_None)
2134      return T;
2135    NNS = 0;
2136  }
2137  return Context.getElaboratedType(Keyword, NNS, T);
2138}
2139
2140QualType Sema::BuildTypeofExprType(Expr *E) {
2141  if (E->getType() == Context.OverloadTy) {
2142    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a
2143    // function template specialization wherever deduction cannot occur.
2144    if (FunctionDecl *Specialization
2145        = ResolveSingleFunctionTemplateSpecialization(E)) {
2146      // The access doesn't really matter in this case.
2147      DeclAccessPair Found = DeclAccessPair::make(Specialization,
2148                                                  Specialization->getAccess());
2149      E = FixOverloadedFunctionReference(E, Found, Specialization);
2150      if (!E)
2151        return QualType();
2152    } else {
2153      Diag(E->getLocStart(),
2154           diag::err_cannot_determine_declared_type_of_overloaded_function)
2155        << false << E->getSourceRange();
2156      return QualType();
2157    }
2158  }
2159
2160  return Context.getTypeOfExprType(E);
2161}
2162
2163QualType Sema::BuildDecltypeType(Expr *E) {
2164  if (E->getType() == Context.OverloadTy) {
2165    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a
2166    // function template specialization wherever deduction cannot occur.
2167    if (FunctionDecl *Specialization
2168          = ResolveSingleFunctionTemplateSpecialization(E)) {
2169      // The access doesn't really matter in this case.
2170      DeclAccessPair Found = DeclAccessPair::make(Specialization,
2171                                                  Specialization->getAccess());
2172      E = FixOverloadedFunctionReference(E, Found, Specialization);
2173      if (!E)
2174        return QualType();
2175    } else {
2176      Diag(E->getLocStart(),
2177           diag::err_cannot_determine_declared_type_of_overloaded_function)
2178        << true << E->getSourceRange();
2179      return QualType();
2180    }
2181  }
2182
2183  return Context.getDecltypeType(E);
2184}
2185