SemaType.cpp revision 579d45ff5f92c4f5e31213e31490acdc5bcc5567
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeLocVisitor.h"
24#include "clang/Basic/OpenCL.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Parse/ParseDiagnostic.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/DelayedDiagnostic.h"
31#include "clang/Sema/Lookup.h"
32#include "clang/Sema/ScopeInfo.h"
33#include "clang/Sema/Template.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SmallString.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "TypeLocBuilder.h"
38
39using namespace clang;
40
41enum TypeDiagSelector {
42  TDS_Function,
43  TDS_Pointer,
44  TDS_ObjCObjOrBlock
45};
46
47/// isOmittedBlockReturnType - Return true if this declarator is missing a
48/// return type because this is a omitted return type on a block literal.
49static bool isOmittedBlockReturnType(const Declarator &D) {
50  if (D.getContext() != Declarator::BlockLiteralContext ||
51      D.getDeclSpec().hasTypeSpecifier())
52    return false;
53
54  if (D.getNumTypeObjects() == 0)
55    return true;   // ^{ ... }
56
57  if (D.getNumTypeObjects() == 1 &&
58      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
59    return true;   // ^(int X, float Y) { ... }
60
61  return false;
62}
63
64/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
65/// doesn't apply to the given type.
66static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
67                                     QualType type) {
68  TypeDiagSelector WhichType;
69  bool useExpansionLoc = true;
70  switch (attr.getKind()) {
71  case AttributeList::AT_ObjCGC:        WhichType = TDS_Pointer; break;
72  case AttributeList::AT_ObjCOwnership: WhichType = TDS_ObjCObjOrBlock; break;
73  default:
74    // Assume everything else was a function attribute.
75    WhichType = TDS_Function;
76    useExpansionLoc = false;
77    break;
78  }
79
80  SourceLocation loc = attr.getLoc();
81  StringRef name = attr.getName()->getName();
82
83  // The GC attributes are usually written with macros;  special-case them.
84  IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident : 0;
85  if (useExpansionLoc && loc.isMacroID() && II) {
86    if (II->isStr("strong")) {
87      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
88    } else if (II->isStr("weak")) {
89      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
90    }
91  }
92
93  S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
94    << type;
95}
96
97// objc_gc applies to Objective-C pointers or, otherwise, to the
98// smallest available pointer type (i.e. 'void*' in 'void**').
99#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
100    case AttributeList::AT_ObjCGC: \
101    case AttributeList::AT_ObjCOwnership
102
103// Function type attributes.
104#define FUNCTION_TYPE_ATTRS_CASELIST \
105    case AttributeList::AT_NoReturn: \
106    case AttributeList::AT_CDecl: \
107    case AttributeList::AT_FastCall: \
108    case AttributeList::AT_StdCall: \
109    case AttributeList::AT_ThisCall: \
110    case AttributeList::AT_Pascal: \
111    case AttributeList::AT_MSABI: \
112    case AttributeList::AT_SysVABI: \
113    case AttributeList::AT_Regparm: \
114    case AttributeList::AT_Pcs: \
115    case AttributeList::AT_PnaclCall: \
116    case AttributeList::AT_IntelOclBicc
117
118// Microsoft-specific type qualifiers.
119#define MS_TYPE_ATTRS_CASELIST  \
120    case AttributeList::AT_Ptr32: \
121    case AttributeList::AT_Ptr64: \
122    case AttributeList::AT_SPtr: \
123    case AttributeList::AT_UPtr
124
125namespace {
126  /// An object which stores processing state for the entire
127  /// GetTypeForDeclarator process.
128  class TypeProcessingState {
129    Sema &sema;
130
131    /// The declarator being processed.
132    Declarator &declarator;
133
134    /// The index of the declarator chunk we're currently processing.
135    /// May be the total number of valid chunks, indicating the
136    /// DeclSpec.
137    unsigned chunkIndex;
138
139    /// Whether there are non-trivial modifications to the decl spec.
140    bool trivial;
141
142    /// Whether we saved the attributes in the decl spec.
143    bool hasSavedAttrs;
144
145    /// The original set of attributes on the DeclSpec.
146    SmallVector<AttributeList*, 2> savedAttrs;
147
148    /// A list of attributes to diagnose the uselessness of when the
149    /// processing is complete.
150    SmallVector<AttributeList*, 2> ignoredTypeAttrs;
151
152  public:
153    TypeProcessingState(Sema &sema, Declarator &declarator)
154      : sema(sema), declarator(declarator),
155        chunkIndex(declarator.getNumTypeObjects()),
156        trivial(true), hasSavedAttrs(false) {}
157
158    Sema &getSema() const {
159      return sema;
160    }
161
162    Declarator &getDeclarator() const {
163      return declarator;
164    }
165
166    bool isProcessingDeclSpec() const {
167      return chunkIndex == declarator.getNumTypeObjects();
168    }
169
170    unsigned getCurrentChunkIndex() const {
171      return chunkIndex;
172    }
173
174    void setCurrentChunkIndex(unsigned idx) {
175      assert(idx <= declarator.getNumTypeObjects());
176      chunkIndex = idx;
177    }
178
179    AttributeList *&getCurrentAttrListRef() const {
180      if (isProcessingDeclSpec())
181        return getMutableDeclSpec().getAttributes().getListRef();
182      return declarator.getTypeObject(chunkIndex).getAttrListRef();
183    }
184
185    /// Save the current set of attributes on the DeclSpec.
186    void saveDeclSpecAttrs() {
187      // Don't try to save them multiple times.
188      if (hasSavedAttrs) return;
189
190      DeclSpec &spec = getMutableDeclSpec();
191      for (AttributeList *attr = spec.getAttributes().getList(); attr;
192             attr = attr->getNext())
193        savedAttrs.push_back(attr);
194      trivial &= savedAttrs.empty();
195      hasSavedAttrs = true;
196    }
197
198    /// Record that we had nowhere to put the given type attribute.
199    /// We will diagnose such attributes later.
200    void addIgnoredTypeAttr(AttributeList &attr) {
201      ignoredTypeAttrs.push_back(&attr);
202    }
203
204    /// Diagnose all the ignored type attributes, given that the
205    /// declarator worked out to the given type.
206    void diagnoseIgnoredTypeAttrs(QualType type) const {
207      for (SmallVectorImpl<AttributeList*>::const_iterator
208             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
209           i != e; ++i)
210        diagnoseBadTypeAttribute(getSema(), **i, type);
211    }
212
213    ~TypeProcessingState() {
214      if (trivial) return;
215
216      restoreDeclSpecAttrs();
217    }
218
219  private:
220    DeclSpec &getMutableDeclSpec() const {
221      return const_cast<DeclSpec&>(declarator.getDeclSpec());
222    }
223
224    void restoreDeclSpecAttrs() {
225      assert(hasSavedAttrs);
226
227      if (savedAttrs.empty()) {
228        getMutableDeclSpec().getAttributes().set(0);
229        return;
230      }
231
232      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
233      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
234        savedAttrs[i]->setNext(savedAttrs[i+1]);
235      savedAttrs.back()->setNext(0);
236    }
237  };
238}
239
240static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
241  attr.setNext(head);
242  head = &attr;
243}
244
245static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
246  if (head == &attr) {
247    head = attr.getNext();
248    return;
249  }
250
251  AttributeList *cur = head;
252  while (true) {
253    assert(cur && cur->getNext() && "ran out of attrs?");
254    if (cur->getNext() == &attr) {
255      cur->setNext(attr.getNext());
256      return;
257    }
258    cur = cur->getNext();
259  }
260}
261
262static void moveAttrFromListToList(AttributeList &attr,
263                                   AttributeList *&fromList,
264                                   AttributeList *&toList) {
265  spliceAttrOutOfList(attr, fromList);
266  spliceAttrIntoList(attr, toList);
267}
268
269/// The location of a type attribute.
270enum TypeAttrLocation {
271  /// The attribute is in the decl-specifier-seq.
272  TAL_DeclSpec,
273  /// The attribute is part of a DeclaratorChunk.
274  TAL_DeclChunk,
275  /// The attribute is immediately after the declaration's name.
276  TAL_DeclName
277};
278
279static void processTypeAttrs(TypeProcessingState &state,
280                             QualType &type, TypeAttrLocation TAL,
281                             AttributeList *attrs);
282
283static bool handleFunctionTypeAttr(TypeProcessingState &state,
284                                   AttributeList &attr,
285                                   QualType &type);
286
287static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
288                                             AttributeList &attr,
289                                             QualType &type);
290
291static bool handleObjCGCTypeAttr(TypeProcessingState &state,
292                                 AttributeList &attr, QualType &type);
293
294static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
295                                       AttributeList &attr, QualType &type);
296
297static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
298                                      AttributeList &attr, QualType &type) {
299  if (attr.getKind() == AttributeList::AT_ObjCGC)
300    return handleObjCGCTypeAttr(state, attr, type);
301  assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
302  return handleObjCOwnershipTypeAttr(state, attr, type);
303}
304
305/// Given the index of a declarator chunk, check whether that chunk
306/// directly specifies the return type of a function and, if so, find
307/// an appropriate place for it.
308///
309/// \param i - a notional index which the search will start
310///   immediately inside
311static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
312                                                unsigned i) {
313  assert(i <= declarator.getNumTypeObjects());
314
315  DeclaratorChunk *result = 0;
316
317  // First, look inwards past parens for a function declarator.
318  for (; i != 0; --i) {
319    DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
320    switch (fnChunk.Kind) {
321    case DeclaratorChunk::Paren:
322      continue;
323
324    // If we find anything except a function, bail out.
325    case DeclaratorChunk::Pointer:
326    case DeclaratorChunk::BlockPointer:
327    case DeclaratorChunk::Array:
328    case DeclaratorChunk::Reference:
329    case DeclaratorChunk::MemberPointer:
330      return result;
331
332    // If we do find a function declarator, scan inwards from that,
333    // looking for a block-pointer declarator.
334    case DeclaratorChunk::Function:
335      for (--i; i != 0; --i) {
336        DeclaratorChunk &blockChunk = declarator.getTypeObject(i-1);
337        switch (blockChunk.Kind) {
338        case DeclaratorChunk::Paren:
339        case DeclaratorChunk::Pointer:
340        case DeclaratorChunk::Array:
341        case DeclaratorChunk::Function:
342        case DeclaratorChunk::Reference:
343        case DeclaratorChunk::MemberPointer:
344          continue;
345        case DeclaratorChunk::BlockPointer:
346          result = &blockChunk;
347          goto continue_outer;
348        }
349        llvm_unreachable("bad declarator chunk kind");
350      }
351
352      // If we run out of declarators doing that, we're done.
353      return result;
354    }
355    llvm_unreachable("bad declarator chunk kind");
356
357    // Okay, reconsider from our new point.
358  continue_outer: ;
359  }
360
361  // Ran out of chunks, bail out.
362  return result;
363}
364
365/// Given that an objc_gc attribute was written somewhere on a
366/// declaration *other* than on the declarator itself (for which, use
367/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
368/// didn't apply in whatever position it was written in, try to move
369/// it to a more appropriate position.
370static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
371                                          AttributeList &attr,
372                                          QualType type) {
373  Declarator &declarator = state.getDeclarator();
374
375  // Move it to the outermost normal or block pointer declarator.
376  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
377    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
378    switch (chunk.Kind) {
379    case DeclaratorChunk::Pointer:
380    case DeclaratorChunk::BlockPointer: {
381      // But don't move an ARC ownership attribute to the return type
382      // of a block.
383      DeclaratorChunk *destChunk = 0;
384      if (state.isProcessingDeclSpec() &&
385          attr.getKind() == AttributeList::AT_ObjCOwnership)
386        destChunk = maybeMovePastReturnType(declarator, i - 1);
387      if (!destChunk) destChunk = &chunk;
388
389      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
390                             destChunk->getAttrListRef());
391      return;
392    }
393
394    case DeclaratorChunk::Paren:
395    case DeclaratorChunk::Array:
396      continue;
397
398    // We may be starting at the return type of a block.
399    case DeclaratorChunk::Function:
400      if (state.isProcessingDeclSpec() &&
401          attr.getKind() == AttributeList::AT_ObjCOwnership) {
402        if (DeclaratorChunk *dest = maybeMovePastReturnType(declarator, i)) {
403          moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
404                                 dest->getAttrListRef());
405          return;
406        }
407      }
408      goto error;
409
410    // Don't walk through these.
411    case DeclaratorChunk::Reference:
412    case DeclaratorChunk::MemberPointer:
413      goto error;
414    }
415  }
416 error:
417
418  diagnoseBadTypeAttribute(state.getSema(), attr, type);
419}
420
421/// Distribute an objc_gc type attribute that was written on the
422/// declarator.
423static void
424distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
425                                            AttributeList &attr,
426                                            QualType &declSpecType) {
427  Declarator &declarator = state.getDeclarator();
428
429  // objc_gc goes on the innermost pointer to something that's not a
430  // pointer.
431  unsigned innermost = -1U;
432  bool considerDeclSpec = true;
433  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
434    DeclaratorChunk &chunk = declarator.getTypeObject(i);
435    switch (chunk.Kind) {
436    case DeclaratorChunk::Pointer:
437    case DeclaratorChunk::BlockPointer:
438      innermost = i;
439      continue;
440
441    case DeclaratorChunk::Reference:
442    case DeclaratorChunk::MemberPointer:
443    case DeclaratorChunk::Paren:
444    case DeclaratorChunk::Array:
445      continue;
446
447    case DeclaratorChunk::Function:
448      considerDeclSpec = false;
449      goto done;
450    }
451  }
452 done:
453
454  // That might actually be the decl spec if we weren't blocked by
455  // anything in the declarator.
456  if (considerDeclSpec) {
457    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
458      // Splice the attribute into the decl spec.  Prevents the
459      // attribute from being applied multiple times and gives
460      // the source-location-filler something to work with.
461      state.saveDeclSpecAttrs();
462      moveAttrFromListToList(attr, declarator.getAttrListRef(),
463               declarator.getMutableDeclSpec().getAttributes().getListRef());
464      return;
465    }
466  }
467
468  // Otherwise, if we found an appropriate chunk, splice the attribute
469  // into it.
470  if (innermost != -1U) {
471    moveAttrFromListToList(attr, declarator.getAttrListRef(),
472                       declarator.getTypeObject(innermost).getAttrListRef());
473    return;
474  }
475
476  // Otherwise, diagnose when we're done building the type.
477  spliceAttrOutOfList(attr, declarator.getAttrListRef());
478  state.addIgnoredTypeAttr(attr);
479}
480
481/// A function type attribute was written somewhere in a declaration
482/// *other* than on the declarator itself or in the decl spec.  Given
483/// that it didn't apply in whatever position it was written in, try
484/// to move it to a more appropriate position.
485static void distributeFunctionTypeAttr(TypeProcessingState &state,
486                                       AttributeList &attr,
487                                       QualType type) {
488  Declarator &declarator = state.getDeclarator();
489
490  // Try to push the attribute from the return type of a function to
491  // the function itself.
492  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
493    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
494    switch (chunk.Kind) {
495    case DeclaratorChunk::Function:
496      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
497                             chunk.getAttrListRef());
498      return;
499
500    case DeclaratorChunk::Paren:
501    case DeclaratorChunk::Pointer:
502    case DeclaratorChunk::BlockPointer:
503    case DeclaratorChunk::Array:
504    case DeclaratorChunk::Reference:
505    case DeclaratorChunk::MemberPointer:
506      continue;
507    }
508  }
509
510  diagnoseBadTypeAttribute(state.getSema(), attr, type);
511}
512
513/// Try to distribute a function type attribute to the innermost
514/// function chunk or type.  Returns true if the attribute was
515/// distributed, false if no location was found.
516static bool
517distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
518                                      AttributeList &attr,
519                                      AttributeList *&attrList,
520                                      QualType &declSpecType) {
521  Declarator &declarator = state.getDeclarator();
522
523  // Put it on the innermost function chunk, if there is one.
524  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
525    DeclaratorChunk &chunk = declarator.getTypeObject(i);
526    if (chunk.Kind != DeclaratorChunk::Function) continue;
527
528    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
529    return true;
530  }
531
532  return handleFunctionTypeAttr(state, attr, declSpecType);
533}
534
535/// A function type attribute was written in the decl spec.  Try to
536/// apply it somewhere.
537static void
538distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
539                                       AttributeList &attr,
540                                       QualType &declSpecType) {
541  state.saveDeclSpecAttrs();
542
543  // C++11 attributes before the decl specifiers actually appertain to
544  // the declarators. Move them straight there. We don't support the
545  // 'put them wherever you like' semantics we allow for GNU attributes.
546  if (attr.isCXX11Attribute()) {
547    moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
548                           state.getDeclarator().getAttrListRef());
549    return;
550  }
551
552  // Try to distribute to the innermost.
553  if (distributeFunctionTypeAttrToInnermost(state, attr,
554                                            state.getCurrentAttrListRef(),
555                                            declSpecType))
556    return;
557
558  // If that failed, diagnose the bad attribute when the declarator is
559  // fully built.
560  state.addIgnoredTypeAttr(attr);
561}
562
563/// A function type attribute was written on the declarator.  Try to
564/// apply it somewhere.
565static void
566distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
567                                         AttributeList &attr,
568                                         QualType &declSpecType) {
569  Declarator &declarator = state.getDeclarator();
570
571  // Try to distribute to the innermost.
572  if (distributeFunctionTypeAttrToInnermost(state, attr,
573                                            declarator.getAttrListRef(),
574                                            declSpecType))
575    return;
576
577  // If that failed, diagnose the bad attribute when the declarator is
578  // fully built.
579  spliceAttrOutOfList(attr, declarator.getAttrListRef());
580  state.addIgnoredTypeAttr(attr);
581}
582
583/// \brief Given that there are attributes written on the declarator
584/// itself, try to distribute any type attributes to the appropriate
585/// declarator chunk.
586///
587/// These are attributes like the following:
588///   int f ATTR;
589///   int (f ATTR)();
590/// but not necessarily this:
591///   int f() ATTR;
592static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
593                                              QualType &declSpecType) {
594  // Collect all the type attributes from the declarator itself.
595  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
596  AttributeList *attr = state.getDeclarator().getAttributes();
597  AttributeList *next;
598  do {
599    next = attr->getNext();
600
601    // Do not distribute C++11 attributes. They have strict rules for what
602    // they appertain to.
603    if (attr->isCXX11Attribute())
604      continue;
605
606    switch (attr->getKind()) {
607    OBJC_POINTER_TYPE_ATTRS_CASELIST:
608      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
609      break;
610
611    case AttributeList::AT_NSReturnsRetained:
612      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
613        break;
614      // fallthrough
615
616    FUNCTION_TYPE_ATTRS_CASELIST:
617      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
618      break;
619
620    MS_TYPE_ATTRS_CASELIST:
621      // Microsoft type attributes cannot go after the declarator-id.
622      continue;
623
624    default:
625      break;
626    }
627  } while ((attr = next));
628}
629
630/// Add a synthetic '()' to a block-literal declarator if it is
631/// required, given the return type.
632static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
633                                          QualType declSpecType) {
634  Declarator &declarator = state.getDeclarator();
635
636  // First, check whether the declarator would produce a function,
637  // i.e. whether the innermost semantic chunk is a function.
638  if (declarator.isFunctionDeclarator()) {
639    // If so, make that declarator a prototyped declarator.
640    declarator.getFunctionTypeInfo().hasPrototype = true;
641    return;
642  }
643
644  // If there are any type objects, the type as written won't name a
645  // function, regardless of the decl spec type.  This is because a
646  // block signature declarator is always an abstract-declarator, and
647  // abstract-declarators can't just be parentheses chunks.  Therefore
648  // we need to build a function chunk unless there are no type
649  // objects and the decl spec type is a function.
650  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
651    return;
652
653  // Note that there *are* cases with invalid declarators where
654  // declarators consist solely of parentheses.  In general, these
655  // occur only in failed efforts to make function declarators, so
656  // faking up the function chunk is still the right thing to do.
657
658  // Otherwise, we need to fake up a function declarator.
659  SourceLocation loc = declarator.getLocStart();
660
661  // ...and *prepend* it to the declarator.
662  SourceLocation NoLoc;
663  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
664                             /*HasProto=*/true,
665                             /*IsAmbiguous=*/false,
666                             /*LParenLoc=*/NoLoc,
667                             /*ArgInfo=*/0,
668                             /*NumArgs=*/0,
669                             /*EllipsisLoc=*/NoLoc,
670                             /*RParenLoc=*/NoLoc,
671                             /*TypeQuals=*/0,
672                             /*RefQualifierIsLvalueRef=*/true,
673                             /*RefQualifierLoc=*/NoLoc,
674                             /*ConstQualifierLoc=*/NoLoc,
675                             /*VolatileQualifierLoc=*/NoLoc,
676                             /*MutableLoc=*/NoLoc,
677                             EST_None,
678                             /*ESpecLoc=*/NoLoc,
679                             /*Exceptions=*/0,
680                             /*ExceptionRanges=*/0,
681                             /*NumExceptions=*/0,
682                             /*NoexceptExpr=*/0,
683                             loc, loc, declarator));
684
685  // For consistency, make sure the state still has us as processing
686  // the decl spec.
687  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
688  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
689}
690
691/// \brief Convert the specified declspec to the appropriate type
692/// object.
693/// \param state Specifies the declarator containing the declaration specifier
694/// to be converted, along with other associated processing state.
695/// \returns The type described by the declaration specifiers.  This function
696/// never returns null.
697static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
698  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
699  // checking.
700
701  Sema &S = state.getSema();
702  Declarator &declarator = state.getDeclarator();
703  const DeclSpec &DS = declarator.getDeclSpec();
704  SourceLocation DeclLoc = declarator.getIdentifierLoc();
705  if (DeclLoc.isInvalid())
706    DeclLoc = DS.getLocStart();
707
708  ASTContext &Context = S.Context;
709
710  QualType Result;
711  switch (DS.getTypeSpecType()) {
712  case DeclSpec::TST_void:
713    Result = Context.VoidTy;
714    break;
715  case DeclSpec::TST_char:
716    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
717      Result = Context.CharTy;
718    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
719      Result = Context.SignedCharTy;
720    else {
721      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
722             "Unknown TSS value");
723      Result = Context.UnsignedCharTy;
724    }
725    break;
726  case DeclSpec::TST_wchar:
727    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
728      Result = Context.WCharTy;
729    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
730      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
731        << DS.getSpecifierName(DS.getTypeSpecType());
732      Result = Context.getSignedWCharType();
733    } else {
734      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
735        "Unknown TSS value");
736      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
737        << DS.getSpecifierName(DS.getTypeSpecType());
738      Result = Context.getUnsignedWCharType();
739    }
740    break;
741  case DeclSpec::TST_char16:
742      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
743        "Unknown TSS value");
744      Result = Context.Char16Ty;
745    break;
746  case DeclSpec::TST_char32:
747      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
748        "Unknown TSS value");
749      Result = Context.Char32Ty;
750    break;
751  case DeclSpec::TST_unspecified:
752    // "<proto1,proto2>" is an objc qualified ID with a missing id.
753    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
754      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
755                                         (ObjCProtocolDecl*const*)PQ,
756                                         DS.getNumProtocolQualifiers());
757      Result = Context.getObjCObjectPointerType(Result);
758      break;
759    }
760
761    // If this is a missing declspec in a block literal return context, then it
762    // is inferred from the return statements inside the block.
763    // The declspec is always missing in a lambda expr context; it is either
764    // specified with a trailing return type or inferred.
765    if (S.getLangOpts().CPlusPlus1y &&
766        declarator.getContext() == Declarator::LambdaExprContext) {
767      // In C++1y, a lambda's implicit return type is 'auto'.
768      Result = Context.getAutoDeductType();
769      break;
770    } else if (declarator.getContext() == Declarator::LambdaExprContext ||
771               isOmittedBlockReturnType(declarator)) {
772      Result = Context.DependentTy;
773      break;
774    }
775
776    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
777    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
778    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
779    // Note that the one exception to this is function definitions, which are
780    // allowed to be completely missing a declspec.  This is handled in the
781    // parser already though by it pretending to have seen an 'int' in this
782    // case.
783    if (S.getLangOpts().ImplicitInt) {
784      // In C89 mode, we only warn if there is a completely missing declspec
785      // when one is not allowed.
786      if (DS.isEmpty()) {
787        S.Diag(DeclLoc, diag::ext_missing_declspec)
788          << DS.getSourceRange()
789        << FixItHint::CreateInsertion(DS.getLocStart(), "int");
790      }
791    } else if (!DS.hasTypeSpecifier()) {
792      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
793      // "At least one type specifier shall be given in the declaration
794      // specifiers in each declaration, and in the specifier-qualifier list in
795      // each struct declaration and type name."
796      if (S.getLangOpts().CPlusPlus) {
797        S.Diag(DeclLoc, diag::err_missing_type_specifier)
798          << DS.getSourceRange();
799
800        // When this occurs in C++ code, often something is very broken with the
801        // value being declared, poison it as invalid so we don't get chains of
802        // errors.
803        declarator.setInvalidType(true);
804      } else {
805        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
806          << DS.getSourceRange();
807      }
808    }
809
810    // FALL THROUGH.
811  case DeclSpec::TST_int: {
812    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
813      switch (DS.getTypeSpecWidth()) {
814      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
815      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
816      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
817      case DeclSpec::TSW_longlong:
818        Result = Context.LongLongTy;
819
820        // 'long long' is a C99 or C++11 feature.
821        if (!S.getLangOpts().C99) {
822          if (S.getLangOpts().CPlusPlus)
823            S.Diag(DS.getTypeSpecWidthLoc(),
824                   S.getLangOpts().CPlusPlus11 ?
825                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
826          else
827            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
828        }
829        break;
830      }
831    } else {
832      switch (DS.getTypeSpecWidth()) {
833      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
834      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
835      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
836      case DeclSpec::TSW_longlong:
837        Result = Context.UnsignedLongLongTy;
838
839        // 'long long' is a C99 or C++11 feature.
840        if (!S.getLangOpts().C99) {
841          if (S.getLangOpts().CPlusPlus)
842            S.Diag(DS.getTypeSpecWidthLoc(),
843                   S.getLangOpts().CPlusPlus11 ?
844                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
845          else
846            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
847        }
848        break;
849      }
850    }
851    break;
852  }
853  case DeclSpec::TST_int128:
854    if (!S.PP.getTargetInfo().hasInt128Type())
855      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_int128_unsupported);
856    if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
857      Result = Context.UnsignedInt128Ty;
858    else
859      Result = Context.Int128Ty;
860    break;
861  case DeclSpec::TST_half: Result = Context.HalfTy; break;
862  case DeclSpec::TST_float: Result = Context.FloatTy; break;
863  case DeclSpec::TST_double:
864    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
865      Result = Context.LongDoubleTy;
866    else
867      Result = Context.DoubleTy;
868
869    if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
870      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
871      declarator.setInvalidType(true);
872    }
873    break;
874  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
875  case DeclSpec::TST_decimal32:    // _Decimal32
876  case DeclSpec::TST_decimal64:    // _Decimal64
877  case DeclSpec::TST_decimal128:   // _Decimal128
878    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
879    Result = Context.IntTy;
880    declarator.setInvalidType(true);
881    break;
882  case DeclSpec::TST_class:
883  case DeclSpec::TST_enum:
884  case DeclSpec::TST_union:
885  case DeclSpec::TST_struct:
886  case DeclSpec::TST_interface: {
887    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
888    if (!D) {
889      // This can happen in C++ with ambiguous lookups.
890      Result = Context.IntTy;
891      declarator.setInvalidType(true);
892      break;
893    }
894
895    // If the type is deprecated or unavailable, diagnose it.
896    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
897
898    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
899           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
900
901    // TypeQuals handled by caller.
902    Result = Context.getTypeDeclType(D);
903
904    // In both C and C++, make an ElaboratedType.
905    ElaboratedTypeKeyword Keyword
906      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
907    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
908    break;
909  }
910  case DeclSpec::TST_typename: {
911    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
912           DS.getTypeSpecSign() == 0 &&
913           "Can't handle qualifiers on typedef names yet!");
914    Result = S.GetTypeFromParser(DS.getRepAsType());
915    if (Result.isNull())
916      declarator.setInvalidType(true);
917    else if (DeclSpec::ProtocolQualifierListTy PQ
918               = DS.getProtocolQualifiers()) {
919      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
920        // Silently drop any existing protocol qualifiers.
921        // TODO: determine whether that's the right thing to do.
922        if (ObjT->getNumProtocols())
923          Result = ObjT->getBaseType();
924
925        if (DS.getNumProtocolQualifiers())
926          Result = Context.getObjCObjectType(Result,
927                                             (ObjCProtocolDecl*const*) PQ,
928                                             DS.getNumProtocolQualifiers());
929      } else if (Result->isObjCIdType()) {
930        // id<protocol-list>
931        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
932                                           (ObjCProtocolDecl*const*) PQ,
933                                           DS.getNumProtocolQualifiers());
934        Result = Context.getObjCObjectPointerType(Result);
935      } else if (Result->isObjCClassType()) {
936        // Class<protocol-list>
937        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
938                                           (ObjCProtocolDecl*const*) PQ,
939                                           DS.getNumProtocolQualifiers());
940        Result = Context.getObjCObjectPointerType(Result);
941      } else {
942        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
943          << DS.getSourceRange();
944        declarator.setInvalidType(true);
945      }
946    }
947
948    // TypeQuals handled by caller.
949    break;
950  }
951  case DeclSpec::TST_typeofType:
952    // FIXME: Preserve type source info.
953    Result = S.GetTypeFromParser(DS.getRepAsType());
954    assert(!Result.isNull() && "Didn't get a type for typeof?");
955    if (!Result->isDependentType())
956      if (const TagType *TT = Result->getAs<TagType>())
957        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
958    // TypeQuals handled by caller.
959    Result = Context.getTypeOfType(Result);
960    break;
961  case DeclSpec::TST_typeofExpr: {
962    Expr *E = DS.getRepAsExpr();
963    assert(E && "Didn't get an expression for typeof?");
964    // TypeQuals handled by caller.
965    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
966    if (Result.isNull()) {
967      Result = Context.IntTy;
968      declarator.setInvalidType(true);
969    }
970    break;
971  }
972  case DeclSpec::TST_decltype: {
973    Expr *E = DS.getRepAsExpr();
974    assert(E && "Didn't get an expression for decltype?");
975    // TypeQuals handled by caller.
976    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
977    if (Result.isNull()) {
978      Result = Context.IntTy;
979      declarator.setInvalidType(true);
980    }
981    break;
982  }
983  case DeclSpec::TST_underlyingType:
984    Result = S.GetTypeFromParser(DS.getRepAsType());
985    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
986    Result = S.BuildUnaryTransformType(Result,
987                                       UnaryTransformType::EnumUnderlyingType,
988                                       DS.getTypeSpecTypeLoc());
989    if (Result.isNull()) {
990      Result = Context.IntTy;
991      declarator.setInvalidType(true);
992    }
993    break;
994
995  case DeclSpec::TST_auto:
996    // TypeQuals handled by caller.
997    // If auto is mentioned in a lambda parameter context, convert it to a
998    // template parameter type immediately, with the appropriate depth and
999    // index, and update sema's state (LambdaScopeInfo) for the current lambda
1000    // being analyzed (which tracks the invented type template parameter).
1001    if (declarator.getContext() == Declarator::LambdaExprParameterContext) {
1002      sema::LambdaScopeInfo *LSI = S.getCurLambda();
1003      assert(LSI && "No LambdaScopeInfo on the stack!");
1004      const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
1005      const unsigned AutoParameterPosition = LSI->AutoTemplateParams.size();
1006      const bool IsParameterPack = declarator.hasEllipsis();
1007
1008      // Create a name for the invented template parameter type.
1009      std::string InventedTemplateParamName = "$auto-";
1010      llvm::raw_string_ostream ss(InventedTemplateParamName);
1011      ss << TemplateParameterDepth;
1012      ss << "-" << AutoParameterPosition;
1013      ss.flush();
1014
1015      IdentifierInfo& TemplateParamII = Context.Idents.get(
1016                                        InventedTemplateParamName.c_str());
1017      // Turns out we must create the TemplateTypeParmDecl here to
1018      // retrieve the corresponding template parameter type.
1019      TemplateTypeParmDecl *CorrespondingTemplateParam =
1020        TemplateTypeParmDecl::Create(Context,
1021        // Temporarily add to the TranslationUnit DeclContext.  When the
1022        // associated TemplateParameterList is attached to a template
1023        // declaration (such as FunctionTemplateDecl), the DeclContext
1024        // for each template parameter gets updated appropriately via
1025        // a call to AdoptTemplateParameterList.
1026        Context.getTranslationUnitDecl(),
1027        /*KeyLoc*/ SourceLocation(),
1028        /*NameLoc*/ declarator.getLocStart(),
1029        TemplateParameterDepth,
1030        AutoParameterPosition,  // our template param index
1031        /* Identifier*/ &TemplateParamII, false, IsParameterPack);
1032      LSI->AutoTemplateParams.push_back(CorrespondingTemplateParam);
1033      // Replace the 'auto' in the function parameter with this invented
1034      // template type parameter.
1035      Result = QualType(CorrespondingTemplateParam->getTypeForDecl(), 0);
1036    } else {
1037      Result = Context.getAutoType(QualType(), /*decltype(auto)*/false, false);
1038    }
1039    break;
1040
1041  case DeclSpec::TST_decltype_auto:
1042    Result = Context.getAutoType(QualType(),
1043                                 /*decltype(auto)*/true,
1044                                 /*IsDependent*/   false);
1045    break;
1046
1047  case DeclSpec::TST_unknown_anytype:
1048    Result = Context.UnknownAnyTy;
1049    break;
1050
1051  case DeclSpec::TST_atomic:
1052    Result = S.GetTypeFromParser(DS.getRepAsType());
1053    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1054    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1055    if (Result.isNull()) {
1056      Result = Context.IntTy;
1057      declarator.setInvalidType(true);
1058    }
1059    break;
1060
1061  case DeclSpec::TST_image1d_t:
1062    Result = Context.OCLImage1dTy;
1063    break;
1064
1065  case DeclSpec::TST_image1d_array_t:
1066    Result = Context.OCLImage1dArrayTy;
1067    break;
1068
1069  case DeclSpec::TST_image1d_buffer_t:
1070    Result = Context.OCLImage1dBufferTy;
1071    break;
1072
1073  case DeclSpec::TST_image2d_t:
1074    Result = Context.OCLImage2dTy;
1075    break;
1076
1077  case DeclSpec::TST_image2d_array_t:
1078    Result = Context.OCLImage2dArrayTy;
1079    break;
1080
1081  case DeclSpec::TST_image3d_t:
1082    Result = Context.OCLImage3dTy;
1083    break;
1084
1085  case DeclSpec::TST_sampler_t:
1086    Result = Context.OCLSamplerTy;
1087    break;
1088
1089  case DeclSpec::TST_event_t:
1090    Result = Context.OCLEventTy;
1091    break;
1092
1093  case DeclSpec::TST_error:
1094    Result = Context.IntTy;
1095    declarator.setInvalidType(true);
1096    break;
1097  }
1098
1099  // Handle complex types.
1100  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1101    if (S.getLangOpts().Freestanding)
1102      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1103    Result = Context.getComplexType(Result);
1104  } else if (DS.isTypeAltiVecVector()) {
1105    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1106    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1107    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1108    if (DS.isTypeAltiVecPixel())
1109      VecKind = VectorType::AltiVecPixel;
1110    else if (DS.isTypeAltiVecBool())
1111      VecKind = VectorType::AltiVecBool;
1112    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1113  }
1114
1115  // FIXME: Imaginary.
1116  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1117    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1118
1119  // Before we process any type attributes, synthesize a block literal
1120  // function declarator if necessary.
1121  if (declarator.getContext() == Declarator::BlockLiteralContext)
1122    maybeSynthesizeBlockSignature(state, Result);
1123
1124  // Apply any type attributes from the decl spec.  This may cause the
1125  // list of type attributes to be temporarily saved while the type
1126  // attributes are pushed around.
1127  if (AttributeList *attrs = DS.getAttributes().getList())
1128    processTypeAttrs(state, Result, TAL_DeclSpec, attrs);
1129
1130  // Apply const/volatile/restrict qualifiers to T.
1131  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1132
1133    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
1134    // of a function type includes any type qualifiers, the behavior is
1135    // undefined."
1136    if (Result->isFunctionType() && TypeQuals) {
1137      if (TypeQuals & DeclSpec::TQ_const)
1138        S.Diag(DS.getConstSpecLoc(), diag::warn_typecheck_function_qualifiers)
1139          << Result << DS.getSourceRange();
1140      else if (TypeQuals & DeclSpec::TQ_volatile)
1141        S.Diag(DS.getVolatileSpecLoc(), diag::warn_typecheck_function_qualifiers)
1142          << Result << DS.getSourceRange();
1143      else {
1144        assert((TypeQuals & (DeclSpec::TQ_restrict | DeclSpec::TQ_atomic)) &&
1145               "Has CVRA quals but not C, V, R, or A?");
1146        // No diagnostic; we'll diagnose 'restrict' or '_Atomic' applied to a
1147        // function type later, in BuildQualifiedType.
1148      }
1149    }
1150
1151    // C++ [dcl.ref]p1:
1152    //   Cv-qualified references are ill-formed except when the
1153    //   cv-qualifiers are introduced through the use of a typedef
1154    //   (7.1.3) or of a template type argument (14.3), in which
1155    //   case the cv-qualifiers are ignored.
1156    // FIXME: Shouldn't we be checking SCS_typedef here?
1157    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1158        TypeQuals && Result->isReferenceType()) {
1159      TypeQuals &= ~DeclSpec::TQ_const;
1160      TypeQuals &= ~DeclSpec::TQ_volatile;
1161      TypeQuals &= ~DeclSpec::TQ_atomic;
1162    }
1163
1164    // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1165    // than once in the same specifier-list or qualifier-list, either directly
1166    // or via one or more typedefs."
1167    if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1168        && TypeQuals & Result.getCVRQualifiers()) {
1169      if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1170        S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1171          << "const";
1172      }
1173
1174      if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1175        S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1176          << "volatile";
1177      }
1178
1179      // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1180      // produce a warning in this case.
1181    }
1182
1183    QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1184
1185    // If adding qualifiers fails, just use the unqualified type.
1186    if (Qualified.isNull())
1187      declarator.setInvalidType(true);
1188    else
1189      Result = Qualified;
1190  }
1191
1192  return Result;
1193}
1194
1195static std::string getPrintableNameForEntity(DeclarationName Entity) {
1196  if (Entity)
1197    return Entity.getAsString();
1198
1199  return "type name";
1200}
1201
1202QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1203                                  Qualifiers Qs, const DeclSpec *DS) {
1204  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1205  // object or incomplete types shall not be restrict-qualified."
1206  if (Qs.hasRestrict()) {
1207    unsigned DiagID = 0;
1208    QualType ProblemTy;
1209
1210    if (T->isAnyPointerType() || T->isReferenceType() ||
1211        T->isMemberPointerType()) {
1212      QualType EltTy;
1213      if (T->isObjCObjectPointerType())
1214        EltTy = T;
1215      else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1216        EltTy = PTy->getPointeeType();
1217      else
1218        EltTy = T->getPointeeType();
1219
1220      // If we have a pointer or reference, the pointee must have an object
1221      // incomplete type.
1222      if (!EltTy->isIncompleteOrObjectType()) {
1223        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1224        ProblemTy = EltTy;
1225      }
1226    } else if (!T->isDependentType()) {
1227      DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1228      ProblemTy = T;
1229    }
1230
1231    if (DiagID) {
1232      Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1233      Qs.removeRestrict();
1234    }
1235  }
1236
1237  return Context.getQualifiedType(T, Qs);
1238}
1239
1240QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1241                                  unsigned CVRA, const DeclSpec *DS) {
1242  // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic.
1243  unsigned CVR = CVRA & ~DeclSpec::TQ_atomic;
1244
1245  // C11 6.7.3/5:
1246  //   If the same qualifier appears more than once in the same
1247  //   specifier-qualifier-list, either directly or via one or more typedefs,
1248  //   the behavior is the same as if it appeared only once.
1249  //
1250  // It's not specified what happens when the _Atomic qualifier is applied to
1251  // a type specified with the _Atomic specifier, but we assume that this
1252  // should be treated as if the _Atomic qualifier appeared multiple times.
1253  if (CVRA & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1254    // C11 6.7.3/5:
1255    //   If other qualifiers appear along with the _Atomic qualifier in a
1256    //   specifier-qualifier-list, the resulting type is the so-qualified
1257    //   atomic type.
1258    //
1259    // Don't need to worry about array types here, since _Atomic can't be
1260    // applied to such types.
1261    SplitQualType Split = T.getSplitUnqualifiedType();
1262    T = BuildAtomicType(QualType(Split.Ty, 0),
1263                        DS ? DS->getAtomicSpecLoc() : Loc);
1264    if (T.isNull())
1265      return T;
1266    Split.Quals.addCVRQualifiers(CVR);
1267    return BuildQualifiedType(T, Loc, Split.Quals);
1268  }
1269
1270  return BuildQualifiedType(T, Loc, Qualifiers::fromCVRMask(CVR), DS);
1271}
1272
1273/// \brief Build a paren type including \p T.
1274QualType Sema::BuildParenType(QualType T) {
1275  return Context.getParenType(T);
1276}
1277
1278/// Given that we're building a pointer or reference to the given
1279static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1280                                           SourceLocation loc,
1281                                           bool isReference) {
1282  // Bail out if retention is unrequired or already specified.
1283  if (!type->isObjCLifetimeType() ||
1284      type.getObjCLifetime() != Qualifiers::OCL_None)
1285    return type;
1286
1287  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1288
1289  // If the object type is const-qualified, we can safely use
1290  // __unsafe_unretained.  This is safe (because there are no read
1291  // barriers), and it'll be safe to coerce anything but __weak* to
1292  // the resulting type.
1293  if (type.isConstQualified()) {
1294    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1295
1296  // Otherwise, check whether the static type does not require
1297  // retaining.  This currently only triggers for Class (possibly
1298  // protocol-qualifed, and arrays thereof).
1299  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1300    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1301
1302  // If we are in an unevaluated context, like sizeof, skip adding a
1303  // qualification.
1304  } else if (S.isUnevaluatedContext()) {
1305    return type;
1306
1307  // If that failed, give an error and recover using __strong.  __strong
1308  // is the option most likely to prevent spurious second-order diagnostics,
1309  // like when binding a reference to a field.
1310  } else {
1311    // These types can show up in private ivars in system headers, so
1312    // we need this to not be an error in those cases.  Instead we
1313    // want to delay.
1314    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1315      S.DelayedDiagnostics.add(
1316          sema::DelayedDiagnostic::makeForbiddenType(loc,
1317              diag::err_arc_indirect_no_ownership, type, isReference));
1318    } else {
1319      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1320    }
1321    implicitLifetime = Qualifiers::OCL_Strong;
1322  }
1323  assert(implicitLifetime && "didn't infer any lifetime!");
1324
1325  Qualifiers qs;
1326  qs.addObjCLifetime(implicitLifetime);
1327  return S.Context.getQualifiedType(type, qs);
1328}
1329
1330/// \brief Build a pointer type.
1331///
1332/// \param T The type to which we'll be building a pointer.
1333///
1334/// \param Loc The location of the entity whose type involves this
1335/// pointer type or, if there is no such entity, the location of the
1336/// type that will have pointer type.
1337///
1338/// \param Entity The name of the entity that involves the pointer
1339/// type, if known.
1340///
1341/// \returns A suitable pointer type, if there are no
1342/// errors. Otherwise, returns a NULL type.
1343QualType Sema::BuildPointerType(QualType T,
1344                                SourceLocation Loc, DeclarationName Entity) {
1345  if (T->isReferenceType()) {
1346    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1347    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1348      << getPrintableNameForEntity(Entity) << T;
1349    return QualType();
1350  }
1351
1352  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1353
1354  // In ARC, it is forbidden to build pointers to unqualified pointers.
1355  if (getLangOpts().ObjCAutoRefCount)
1356    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1357
1358  // Build the pointer type.
1359  return Context.getPointerType(T);
1360}
1361
1362/// \brief Build a reference type.
1363///
1364/// \param T The type to which we'll be building a reference.
1365///
1366/// \param Loc The location of the entity whose type involves this
1367/// reference type or, if there is no such entity, the location of the
1368/// type that will have reference type.
1369///
1370/// \param Entity The name of the entity that involves the reference
1371/// type, if known.
1372///
1373/// \returns A suitable reference type, if there are no
1374/// errors. Otherwise, returns a NULL type.
1375QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1376                                  SourceLocation Loc,
1377                                  DeclarationName Entity) {
1378  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1379         "Unresolved overloaded function type");
1380
1381  // C++0x [dcl.ref]p6:
1382  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1383  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1384  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1385  //   the type "lvalue reference to T", while an attempt to create the type
1386  //   "rvalue reference to cv TR" creates the type TR.
1387  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1388
1389  // C++ [dcl.ref]p4: There shall be no references to references.
1390  //
1391  // According to C++ DR 106, references to references are only
1392  // diagnosed when they are written directly (e.g., "int & &"),
1393  // but not when they happen via a typedef:
1394  //
1395  //   typedef int& intref;
1396  //   typedef intref& intref2;
1397  //
1398  // Parser::ParseDeclaratorInternal diagnoses the case where
1399  // references are written directly; here, we handle the
1400  // collapsing of references-to-references as described in C++0x.
1401  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1402
1403  // C++ [dcl.ref]p1:
1404  //   A declarator that specifies the type "reference to cv void"
1405  //   is ill-formed.
1406  if (T->isVoidType()) {
1407    Diag(Loc, diag::err_reference_to_void);
1408    return QualType();
1409  }
1410
1411  // In ARC, it is forbidden to build references to unqualified pointers.
1412  if (getLangOpts().ObjCAutoRefCount)
1413    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1414
1415  // Handle restrict on references.
1416  if (LValueRef)
1417    return Context.getLValueReferenceType(T, SpelledAsLValue);
1418  return Context.getRValueReferenceType(T);
1419}
1420
1421/// Check whether the specified array size makes the array type a VLA.  If so,
1422/// return true, if not, return the size of the array in SizeVal.
1423static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1424  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1425  // (like gnu99, but not c99) accept any evaluatable value as an extension.
1426  class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1427  public:
1428    VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
1429
1430    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1431    }
1432
1433    virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) {
1434      S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
1435    }
1436  } Diagnoser;
1437
1438  return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
1439                                           S.LangOpts.GNUMode).isInvalid();
1440}
1441
1442
1443/// \brief Build an array type.
1444///
1445/// \param T The type of each element in the array.
1446///
1447/// \param ASM C99 array size modifier (e.g., '*', 'static').
1448///
1449/// \param ArraySize Expression describing the size of the array.
1450///
1451/// \param Brackets The range from the opening '[' to the closing ']'.
1452///
1453/// \param Entity The name of the entity that involves the array
1454/// type, if known.
1455///
1456/// \returns A suitable array type, if there are no errors. Otherwise,
1457/// returns a NULL type.
1458QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1459                              Expr *ArraySize, unsigned Quals,
1460                              SourceRange Brackets, DeclarationName Entity) {
1461
1462  SourceLocation Loc = Brackets.getBegin();
1463  if (getLangOpts().CPlusPlus) {
1464    // C++ [dcl.array]p1:
1465    //   T is called the array element type; this type shall not be a reference
1466    //   type, the (possibly cv-qualified) type void, a function type or an
1467    //   abstract class type.
1468    //
1469    // C++ [dcl.array]p3:
1470    //   When several "array of" specifications are adjacent, [...] only the
1471    //   first of the constant expressions that specify the bounds of the arrays
1472    //   may be omitted.
1473    //
1474    // Note: function types are handled in the common path with C.
1475    if (T->isReferenceType()) {
1476      Diag(Loc, diag::err_illegal_decl_array_of_references)
1477      << getPrintableNameForEntity(Entity) << T;
1478      return QualType();
1479    }
1480
1481    if (T->isVoidType() || T->isIncompleteArrayType()) {
1482      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1483      return QualType();
1484    }
1485
1486    if (RequireNonAbstractType(Brackets.getBegin(), T,
1487                               diag::err_array_of_abstract_type))
1488      return QualType();
1489
1490  } else {
1491    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1492    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1493    if (RequireCompleteType(Loc, T,
1494                            diag::err_illegal_decl_array_incomplete_type))
1495      return QualType();
1496  }
1497
1498  if (T->isFunctionType()) {
1499    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1500      << getPrintableNameForEntity(Entity) << T;
1501    return QualType();
1502  }
1503
1504  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1505    // If the element type is a struct or union that contains a variadic
1506    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1507    if (EltTy->getDecl()->hasFlexibleArrayMember())
1508      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1509  } else if (T->isObjCObjectType()) {
1510    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1511    return QualType();
1512  }
1513
1514  // Do placeholder conversions on the array size expression.
1515  if (ArraySize && ArraySize->hasPlaceholderType()) {
1516    ExprResult Result = CheckPlaceholderExpr(ArraySize);
1517    if (Result.isInvalid()) return QualType();
1518    ArraySize = Result.take();
1519  }
1520
1521  // Do lvalue-to-rvalue conversions on the array size expression.
1522  if (ArraySize && !ArraySize->isRValue()) {
1523    ExprResult Result = DefaultLvalueConversion(ArraySize);
1524    if (Result.isInvalid())
1525      return QualType();
1526
1527    ArraySize = Result.take();
1528  }
1529
1530  // C99 6.7.5.2p1: The size expression shall have integer type.
1531  // C++11 allows contextual conversions to such types.
1532  if (!getLangOpts().CPlusPlus11 &&
1533      ArraySize && !ArraySize->isTypeDependent() &&
1534      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1535    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1536      << ArraySize->getType() << ArraySize->getSourceRange();
1537    return QualType();
1538  }
1539
1540  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1541  if (!ArraySize) {
1542    if (ASM == ArrayType::Star)
1543      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1544    else
1545      T = Context.getIncompleteArrayType(T, ASM, Quals);
1546  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1547    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1548  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
1549              !T->isConstantSizeType()) ||
1550             isArraySizeVLA(*this, ArraySize, ConstVal)) {
1551    // Even in C++11, don't allow contextual conversions in the array bound
1552    // of a VLA.
1553    if (getLangOpts().CPlusPlus11 &&
1554        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1555      Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1556        << ArraySize->getType() << ArraySize->getSourceRange();
1557      return QualType();
1558    }
1559
1560    // C99: an array with an element type that has a non-constant-size is a VLA.
1561    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1562    // that we can fold to a non-zero positive value as an extension.
1563    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1564  } else {
1565    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1566    // have a value greater than zero.
1567    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1568      if (Entity)
1569        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1570          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1571      else
1572        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1573          << ArraySize->getSourceRange();
1574      return QualType();
1575    }
1576    if (ConstVal == 0) {
1577      // GCC accepts zero sized static arrays. We allow them when
1578      // we're not in a SFINAE context.
1579      Diag(ArraySize->getLocStart(),
1580           isSFINAEContext()? diag::err_typecheck_zero_array_size
1581                            : diag::ext_typecheck_zero_array_size)
1582        << ArraySize->getSourceRange();
1583
1584      if (ASM == ArrayType::Static) {
1585        Diag(ArraySize->getLocStart(),
1586             diag::warn_typecheck_zero_static_array_size)
1587          << ArraySize->getSourceRange();
1588        ASM = ArrayType::Normal;
1589      }
1590    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1591               !T->isIncompleteType() && !T->isUndeducedType()) {
1592      // Is the array too large?
1593      unsigned ActiveSizeBits
1594        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1595      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1596        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1597          << ConstVal.toString(10)
1598          << ArraySize->getSourceRange();
1599        return QualType();
1600      }
1601    }
1602
1603    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1604  }
1605
1606  // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
1607  if (getLangOpts().OpenCL && T->isVariableArrayType()) {
1608    Diag(Loc, diag::err_opencl_vla);
1609    return QualType();
1610  }
1611  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1612  if (!getLangOpts().C99) {
1613    if (T->isVariableArrayType()) {
1614      // Prohibit the use of non-POD types in VLAs.
1615      QualType BaseT = Context.getBaseElementType(T);
1616      if (!T->isDependentType() &&
1617          !BaseT.isPODType(Context) &&
1618          !BaseT->isObjCLifetimeType()) {
1619        Diag(Loc, diag::err_vla_non_pod)
1620          << BaseT;
1621        return QualType();
1622      }
1623      // Prohibit the use of VLAs during template argument deduction.
1624      else if (isSFINAEContext()) {
1625        Diag(Loc, diag::err_vla_in_sfinae);
1626        return QualType();
1627      }
1628      // Just extwarn about VLAs.
1629      else
1630        Diag(Loc, diag::ext_vla);
1631    } else if (ASM != ArrayType::Normal || Quals != 0)
1632      Diag(Loc,
1633           getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
1634                                     : diag::ext_c99_array_usage) << ASM;
1635  }
1636
1637  if (T->isVariableArrayType()) {
1638    // Warn about VLAs for -Wvla.
1639    Diag(Loc, diag::warn_vla_used);
1640  }
1641
1642  return T;
1643}
1644
1645/// \brief Build an ext-vector type.
1646///
1647/// Run the required checks for the extended vector type.
1648QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1649                                  SourceLocation AttrLoc) {
1650  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1651  // in conjunction with complex types (pointers, arrays, functions, etc.).
1652  if (!T->isDependentType() &&
1653      !T->isIntegerType() && !T->isRealFloatingType()) {
1654    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1655    return QualType();
1656  }
1657
1658  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1659    llvm::APSInt vecSize(32);
1660    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1661      Diag(AttrLoc, diag::err_attribute_argument_type)
1662        << "ext_vector_type" << AANT_ArgumentIntegerConstant
1663        << ArraySize->getSourceRange();
1664      return QualType();
1665    }
1666
1667    // unlike gcc's vector_size attribute, the size is specified as the
1668    // number of elements, not the number of bytes.
1669    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1670
1671    if (vectorSize == 0) {
1672      Diag(AttrLoc, diag::err_attribute_zero_size)
1673      << ArraySize->getSourceRange();
1674      return QualType();
1675    }
1676
1677    if (VectorType::isVectorSizeTooLarge(vectorSize)) {
1678      Diag(AttrLoc, diag::err_attribute_size_too_large)
1679        << ArraySize->getSourceRange();
1680      return QualType();
1681    }
1682
1683    return Context.getExtVectorType(T, vectorSize);
1684  }
1685
1686  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1687}
1688
1689bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
1690  if (T->isArrayType() || T->isFunctionType()) {
1691    Diag(Loc, diag::err_func_returning_array_function)
1692      << T->isFunctionType() << T;
1693    return true;
1694  }
1695
1696  // Functions cannot return half FP.
1697  if (T->isHalfType()) {
1698    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1699      FixItHint::CreateInsertion(Loc, "*");
1700    return true;
1701  }
1702
1703  // Methods cannot return interface types. All ObjC objects are
1704  // passed by reference.
1705  if (T->isObjCObjectType()) {
1706    Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) << 0 << T;
1707    return 0;
1708  }
1709
1710  return false;
1711}
1712
1713QualType Sema::BuildFunctionType(QualType T,
1714                                 llvm::MutableArrayRef<QualType> ParamTypes,
1715                                 SourceLocation Loc, DeclarationName Entity,
1716                                 const FunctionProtoType::ExtProtoInfo &EPI) {
1717  bool Invalid = false;
1718
1719  Invalid |= CheckFunctionReturnType(T, Loc);
1720
1721  for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
1722    // FIXME: Loc is too inprecise here, should use proper locations for args.
1723    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1724    if (ParamType->isVoidType()) {
1725      Diag(Loc, diag::err_param_with_void_type);
1726      Invalid = true;
1727    } else if (ParamType->isHalfType()) {
1728      // Disallow half FP arguments.
1729      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1730        FixItHint::CreateInsertion(Loc, "*");
1731      Invalid = true;
1732    }
1733
1734    ParamTypes[Idx] = ParamType;
1735  }
1736
1737  if (Invalid)
1738    return QualType();
1739
1740  return Context.getFunctionType(T, ParamTypes, EPI);
1741}
1742
1743/// \brief Build a member pointer type \c T Class::*.
1744///
1745/// \param T the type to which the member pointer refers.
1746/// \param Class the class type into which the member pointer points.
1747/// \param Loc the location where this type begins
1748/// \param Entity the name of the entity that will have this member pointer type
1749///
1750/// \returns a member pointer type, if successful, or a NULL type if there was
1751/// an error.
1752QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1753                                      SourceLocation Loc,
1754                                      DeclarationName Entity) {
1755  // Verify that we're not building a pointer to pointer to function with
1756  // exception specification.
1757  if (CheckDistantExceptionSpec(T)) {
1758    Diag(Loc, diag::err_distant_exception_spec);
1759
1760    // FIXME: If we're doing this as part of template instantiation,
1761    // we should return immediately.
1762
1763    // Build the type anyway, but use the canonical type so that the
1764    // exception specifiers are stripped off.
1765    T = Context.getCanonicalType(T);
1766  }
1767
1768  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1769  //   with reference type, or "cv void."
1770  if (T->isReferenceType()) {
1771    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1772      << (Entity? Entity.getAsString() : "type name") << T;
1773    return QualType();
1774  }
1775
1776  if (T->isVoidType()) {
1777    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1778      << (Entity? Entity.getAsString() : "type name");
1779    return QualType();
1780  }
1781
1782  if (!Class->isDependentType() && !Class->isRecordType()) {
1783    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1784    return QualType();
1785  }
1786
1787  // C++ allows the class type in a member pointer to be an incomplete type.
1788  // In the Microsoft ABI, the size of the member pointer can vary
1789  // according to the class type, which means that we really need a
1790  // complete type if possible, which means we need to instantiate templates.
1791  //
1792  // If template instantiation fails or the type is just incomplete, we have to
1793  // add an extra slot to the member pointer.  Yes, this does cause problems
1794  // when passing pointers between TUs that disagree about the size.
1795  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1796    CXXRecordDecl *RD = Class->getAsCXXRecordDecl();
1797    if (RD && !RD->hasAttr<MSInheritanceAttr>()) {
1798      // Lock in the inheritance model on the first use of a member pointer.
1799      // Otherwise we may disagree about the size at different points in the TU.
1800      // FIXME: MSVC picks a model on the first use that needs to know the size,
1801      // rather than on the first mention of the type, e.g. typedefs.
1802      if (RequireCompleteType(Loc, Class, 0) && !RD->isBeingDefined()) {
1803        // We know it doesn't have an attribute and it's incomplete, so use the
1804        // unspecified inheritance model.  If we're in the record body, we can
1805        // figure out the inheritance model.
1806        for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
1807             E = RD->redecls_end(); I != E; ++I) {
1808          I->addAttr(::new (Context) UnspecifiedInheritanceAttr(
1809              RD->getSourceRange(), Context));
1810        }
1811      }
1812    }
1813  }
1814
1815  // FIXME: Adjust member function pointer calling conventions.
1816
1817  return Context.getMemberPointerType(T, Class.getTypePtr());
1818}
1819
1820/// \brief Build a block pointer type.
1821///
1822/// \param T The type to which we'll be building a block pointer.
1823///
1824/// \param Loc The source location, used for diagnostics.
1825///
1826/// \param Entity The name of the entity that involves the block pointer
1827/// type, if known.
1828///
1829/// \returns A suitable block pointer type, if there are no
1830/// errors. Otherwise, returns a NULL type.
1831QualType Sema::BuildBlockPointerType(QualType T,
1832                                     SourceLocation Loc,
1833                                     DeclarationName Entity) {
1834  if (!T->isFunctionType()) {
1835    Diag(Loc, diag::err_nonfunction_block_type);
1836    return QualType();
1837  }
1838
1839  return Context.getBlockPointerType(T);
1840}
1841
1842QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1843  QualType QT = Ty.get();
1844  if (QT.isNull()) {
1845    if (TInfo) *TInfo = 0;
1846    return QualType();
1847  }
1848
1849  TypeSourceInfo *DI = 0;
1850  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1851    QT = LIT->getType();
1852    DI = LIT->getTypeSourceInfo();
1853  }
1854
1855  if (TInfo) *TInfo = DI;
1856  return QT;
1857}
1858
1859static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1860                                            Qualifiers::ObjCLifetime ownership,
1861                                            unsigned chunkIndex);
1862
1863/// Given that this is the declaration of a parameter under ARC,
1864/// attempt to infer attributes and such for pointer-to-whatever
1865/// types.
1866static void inferARCWriteback(TypeProcessingState &state,
1867                              QualType &declSpecType) {
1868  Sema &S = state.getSema();
1869  Declarator &declarator = state.getDeclarator();
1870
1871  // TODO: should we care about decl qualifiers?
1872
1873  // Check whether the declarator has the expected form.  We walk
1874  // from the inside out in order to make the block logic work.
1875  unsigned outermostPointerIndex = 0;
1876  bool isBlockPointer = false;
1877  unsigned numPointers = 0;
1878  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1879    unsigned chunkIndex = i;
1880    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1881    switch (chunk.Kind) {
1882    case DeclaratorChunk::Paren:
1883      // Ignore parens.
1884      break;
1885
1886    case DeclaratorChunk::Reference:
1887    case DeclaratorChunk::Pointer:
1888      // Count the number of pointers.  Treat references
1889      // interchangeably as pointers; if they're mis-ordered, normal
1890      // type building will discover that.
1891      outermostPointerIndex = chunkIndex;
1892      numPointers++;
1893      break;
1894
1895    case DeclaratorChunk::BlockPointer:
1896      // If we have a pointer to block pointer, that's an acceptable
1897      // indirect reference; anything else is not an application of
1898      // the rules.
1899      if (numPointers != 1) return;
1900      numPointers++;
1901      outermostPointerIndex = chunkIndex;
1902      isBlockPointer = true;
1903
1904      // We don't care about pointer structure in return values here.
1905      goto done;
1906
1907    case DeclaratorChunk::Array: // suppress if written (id[])?
1908    case DeclaratorChunk::Function:
1909    case DeclaratorChunk::MemberPointer:
1910      return;
1911    }
1912  }
1913 done:
1914
1915  // If we have *one* pointer, then we want to throw the qualifier on
1916  // the declaration-specifiers, which means that it needs to be a
1917  // retainable object type.
1918  if (numPointers == 1) {
1919    // If it's not a retainable object type, the rule doesn't apply.
1920    if (!declSpecType->isObjCRetainableType()) return;
1921
1922    // If it already has lifetime, don't do anything.
1923    if (declSpecType.getObjCLifetime()) return;
1924
1925    // Otherwise, modify the type in-place.
1926    Qualifiers qs;
1927
1928    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1929      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1930    else
1931      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1932    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1933
1934  // If we have *two* pointers, then we want to throw the qualifier on
1935  // the outermost pointer.
1936  } else if (numPointers == 2) {
1937    // If we don't have a block pointer, we need to check whether the
1938    // declaration-specifiers gave us something that will turn into a
1939    // retainable object pointer after we slap the first pointer on it.
1940    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1941      return;
1942
1943    // Look for an explicit lifetime attribute there.
1944    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1945    if (chunk.Kind != DeclaratorChunk::Pointer &&
1946        chunk.Kind != DeclaratorChunk::BlockPointer)
1947      return;
1948    for (const AttributeList *attr = chunk.getAttrs(); attr;
1949           attr = attr->getNext())
1950      if (attr->getKind() == AttributeList::AT_ObjCOwnership)
1951        return;
1952
1953    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1954                                          outermostPointerIndex);
1955
1956  // Any other number of pointers/references does not trigger the rule.
1957  } else return;
1958
1959  // TODO: mark whether we did this inference?
1960}
1961
1962static void diagnoseIgnoredQualifiers(
1963    Sema &S, unsigned Quals,
1964    SourceLocation FallbackLoc,
1965    SourceLocation ConstQualLoc = SourceLocation(),
1966    SourceLocation VolatileQualLoc = SourceLocation(),
1967    SourceLocation RestrictQualLoc = SourceLocation(),
1968    SourceLocation AtomicQualLoc = SourceLocation()) {
1969  if (!Quals)
1970    return;
1971
1972  const SourceManager &SM = S.getSourceManager();
1973
1974  struct Qual {
1975    unsigned Mask;
1976    const char *Name;
1977    SourceLocation Loc;
1978  } const QualKinds[4] = {
1979    { DeclSpec::TQ_const, "const", ConstQualLoc },
1980    { DeclSpec::TQ_volatile, "volatile", VolatileQualLoc },
1981    { DeclSpec::TQ_restrict, "restrict", RestrictQualLoc },
1982    { DeclSpec::TQ_atomic, "_Atomic", AtomicQualLoc }
1983  };
1984
1985  SmallString<32> QualStr;
1986  unsigned NumQuals = 0;
1987  SourceLocation Loc;
1988  FixItHint FixIts[4];
1989
1990  // Build a string naming the redundant qualifiers.
1991  for (unsigned I = 0; I != 4; ++I) {
1992    if (Quals & QualKinds[I].Mask) {
1993      if (!QualStr.empty()) QualStr += ' ';
1994      QualStr += QualKinds[I].Name;
1995
1996      // If we have a location for the qualifier, offer a fixit.
1997      SourceLocation QualLoc = QualKinds[I].Loc;
1998      if (!QualLoc.isInvalid()) {
1999        FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2000        if (Loc.isInvalid() || SM.isBeforeInTranslationUnit(QualLoc, Loc))
2001          Loc = QualLoc;
2002      }
2003
2004      ++NumQuals;
2005    }
2006  }
2007
2008  S.Diag(Loc.isInvalid() ? FallbackLoc : Loc, diag::warn_qual_return_type)
2009    << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2010}
2011
2012// Diagnose pointless type qualifiers on the return type of a function.
2013static void diagnoseIgnoredFunctionQualifiers(Sema &S, QualType RetTy,
2014                                              Declarator &D,
2015                                              unsigned FunctionChunkIndex) {
2016  if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
2017    // FIXME: TypeSourceInfo doesn't preserve location information for
2018    // qualifiers.
2019    diagnoseIgnoredQualifiers(S, RetTy.getLocalCVRQualifiers(),
2020                              D.getIdentifierLoc());
2021    return;
2022  }
2023
2024  for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2025                End = D.getNumTypeObjects();
2026       OuterChunkIndex != End; ++OuterChunkIndex) {
2027    DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2028    switch (OuterChunk.Kind) {
2029    case DeclaratorChunk::Paren:
2030      continue;
2031
2032    case DeclaratorChunk::Pointer: {
2033      DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2034      diagnoseIgnoredQualifiers(
2035          S, PTI.TypeQuals,
2036          SourceLocation(),
2037          SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2038          SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2039          SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2040          SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc));
2041      return;
2042    }
2043
2044    case DeclaratorChunk::Function:
2045    case DeclaratorChunk::BlockPointer:
2046    case DeclaratorChunk::Reference:
2047    case DeclaratorChunk::Array:
2048    case DeclaratorChunk::MemberPointer:
2049      // FIXME: We can't currently provide an accurate source location and a
2050      // fix-it hint for these.
2051      unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2052      diagnoseIgnoredQualifiers(S, RetTy.getCVRQualifiers() | AtomicQual,
2053                                D.getIdentifierLoc());
2054      return;
2055    }
2056
2057    llvm_unreachable("unknown declarator chunk kind");
2058  }
2059
2060  // If the qualifiers come from a conversion function type, don't diagnose
2061  // them -- they're not necessarily redundant, since such a conversion
2062  // operator can be explicitly called as "x.operator const int()".
2063  if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
2064    return;
2065
2066  // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2067  // which are present there.
2068  diagnoseIgnoredQualifiers(S, D.getDeclSpec().getTypeQualifiers(),
2069                            D.getIdentifierLoc(),
2070                            D.getDeclSpec().getConstSpecLoc(),
2071                            D.getDeclSpec().getVolatileSpecLoc(),
2072                            D.getDeclSpec().getRestrictSpecLoc(),
2073                            D.getDeclSpec().getAtomicSpecLoc());
2074}
2075
2076static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
2077                                             TypeSourceInfo *&ReturnTypeInfo) {
2078  Sema &SemaRef = state.getSema();
2079  Declarator &D = state.getDeclarator();
2080  QualType T;
2081  ReturnTypeInfo = 0;
2082
2083  // The TagDecl owned by the DeclSpec.
2084  TagDecl *OwnedTagDecl = 0;
2085
2086  bool ContainsPlaceholderType = false;
2087
2088  switch (D.getName().getKind()) {
2089  case UnqualifiedId::IK_ImplicitSelfParam:
2090  case UnqualifiedId::IK_OperatorFunctionId:
2091  case UnqualifiedId::IK_Identifier:
2092  case UnqualifiedId::IK_LiteralOperatorId:
2093  case UnqualifiedId::IK_TemplateId:
2094    T = ConvertDeclSpecToType(state);
2095    ContainsPlaceholderType = D.getDeclSpec().containsPlaceholderType();
2096
2097    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
2098      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2099      // Owned declaration is embedded in declarator.
2100      OwnedTagDecl->setEmbeddedInDeclarator(true);
2101    }
2102    break;
2103
2104  case UnqualifiedId::IK_ConstructorName:
2105  case UnqualifiedId::IK_ConstructorTemplateId:
2106  case UnqualifiedId::IK_DestructorName:
2107    // Constructors and destructors don't have return types. Use
2108    // "void" instead.
2109    T = SemaRef.Context.VoidTy;
2110    if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
2111      processTypeAttrs(state, T, TAL_DeclSpec, attrs);
2112    break;
2113
2114  case UnqualifiedId::IK_ConversionFunctionId:
2115    // The result type of a conversion function is the type that it
2116    // converts to.
2117    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
2118                                  &ReturnTypeInfo);
2119    ContainsPlaceholderType = T->getContainedAutoType();
2120    break;
2121  }
2122
2123  if (D.getAttributes())
2124    distributeTypeAttrsFromDeclarator(state, T);
2125
2126  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
2127  // In C++11, a function declarator using 'auto' must have a trailing return
2128  // type (this is checked later) and we can skip this. In other languages
2129  // using auto, we need to check regardless.
2130  // C++14 In generic lambdas allow 'auto' in their parameters.
2131  if (ContainsPlaceholderType &&
2132      (!SemaRef.getLangOpts().CPlusPlus11 || !D.isFunctionDeclarator())) {
2133    int Error = -1;
2134
2135    switch (D.getContext()) {
2136    case Declarator::KNRTypeListContext:
2137      llvm_unreachable("K&R type lists aren't allowed in C++");
2138    case Declarator::LambdaExprContext:
2139      llvm_unreachable("Can't specify a type specifier in lambda grammar");
2140    case Declarator::ObjCParameterContext:
2141    case Declarator::ObjCResultContext:
2142    case Declarator::PrototypeContext:
2143      Error = 0;
2144      break;
2145    case Declarator::LambdaExprParameterContext:
2146      if (!(SemaRef.getLangOpts().CPlusPlus1y
2147              && D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto))
2148        Error = 14;
2149      break;
2150    case Declarator::MemberContext:
2151      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
2152        break;
2153      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
2154      case TTK_Enum: llvm_unreachable("unhandled tag kind");
2155      case TTK_Struct: Error = 1; /* Struct member */ break;
2156      case TTK_Union:  Error = 2; /* Union member */ break;
2157      case TTK_Class:  Error = 3; /* Class member */ break;
2158      case TTK_Interface: Error = 4; /* Interface member */ break;
2159      }
2160      break;
2161    case Declarator::CXXCatchContext:
2162    case Declarator::ObjCCatchContext:
2163      Error = 5; // Exception declaration
2164      break;
2165    case Declarator::TemplateParamContext:
2166      Error = 6; // Template parameter
2167      break;
2168    case Declarator::BlockLiteralContext:
2169      Error = 7; // Block literal
2170      break;
2171    case Declarator::TemplateTypeArgContext:
2172      Error = 8; // Template type argument
2173      break;
2174    case Declarator::AliasDeclContext:
2175    case Declarator::AliasTemplateContext:
2176      Error = 10; // Type alias
2177      break;
2178    case Declarator::TrailingReturnContext:
2179      if (!SemaRef.getLangOpts().CPlusPlus1y)
2180        Error = 11; // Function return type
2181      break;
2182    case Declarator::ConversionIdContext:
2183      if (!SemaRef.getLangOpts().CPlusPlus1y)
2184        Error = 12; // conversion-type-id
2185      break;
2186    case Declarator::TypeNameContext:
2187      Error = 13; // Generic
2188      break;
2189    case Declarator::FileContext:
2190    case Declarator::BlockContext:
2191    case Declarator::ForContext:
2192    case Declarator::ConditionContext:
2193    case Declarator::CXXNewContext:
2194      break;
2195    }
2196
2197    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2198      Error = 9;
2199
2200    // In Objective-C it is an error to use 'auto' on a function declarator.
2201    if (D.isFunctionDeclarator())
2202      Error = 11;
2203
2204    // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
2205    // contains a trailing return type. That is only legal at the outermost
2206    // level. Check all declarator chunks (outermost first) anyway, to give
2207    // better diagnostics.
2208    if (SemaRef.getLangOpts().CPlusPlus11 && Error != -1) {
2209      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2210        unsigned chunkIndex = e - i - 1;
2211        state.setCurrentChunkIndex(chunkIndex);
2212        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2213        if (DeclType.Kind == DeclaratorChunk::Function) {
2214          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2215          if (FTI.hasTrailingReturnType()) {
2216            Error = -1;
2217            break;
2218          }
2219        }
2220      }
2221    }
2222
2223    SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
2224    if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
2225      AutoRange = D.getName().getSourceRange();
2226
2227    if (Error != -1) {
2228      const bool IsDeclTypeAuto =
2229          D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_decltype_auto;
2230      SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
2231        << IsDeclTypeAuto << Error << AutoRange;
2232      T = SemaRef.Context.IntTy;
2233      D.setInvalidType(true);
2234    } else
2235      SemaRef.Diag(AutoRange.getBegin(),
2236                   diag::warn_cxx98_compat_auto_type_specifier)
2237        << AutoRange;
2238  }
2239
2240  if (SemaRef.getLangOpts().CPlusPlus &&
2241      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
2242    // Check the contexts where C++ forbids the declaration of a new class
2243    // or enumeration in a type-specifier-seq.
2244    switch (D.getContext()) {
2245    case Declarator::TrailingReturnContext:
2246      // Class and enumeration definitions are syntactically not allowed in
2247      // trailing return types.
2248      llvm_unreachable("parser should not have allowed this");
2249      break;
2250    case Declarator::FileContext:
2251    case Declarator::MemberContext:
2252    case Declarator::BlockContext:
2253    case Declarator::ForContext:
2254    case Declarator::BlockLiteralContext:
2255    case Declarator::LambdaExprContext:
2256      // C++11 [dcl.type]p3:
2257      //   A type-specifier-seq shall not define a class or enumeration unless
2258      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
2259      //   the declaration of a template-declaration.
2260    case Declarator::AliasDeclContext:
2261      break;
2262    case Declarator::AliasTemplateContext:
2263      SemaRef.Diag(OwnedTagDecl->getLocation(),
2264             diag::err_type_defined_in_alias_template)
2265        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2266      D.setInvalidType(true);
2267      break;
2268    case Declarator::TypeNameContext:
2269    case Declarator::ConversionIdContext:
2270    case Declarator::TemplateParamContext:
2271    case Declarator::CXXNewContext:
2272    case Declarator::CXXCatchContext:
2273    case Declarator::ObjCCatchContext:
2274    case Declarator::TemplateTypeArgContext:
2275      SemaRef.Diag(OwnedTagDecl->getLocation(),
2276             diag::err_type_defined_in_type_specifier)
2277        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2278      D.setInvalidType(true);
2279      break;
2280    case Declarator::PrototypeContext:
2281    case Declarator::LambdaExprParameterContext:
2282    case Declarator::ObjCParameterContext:
2283    case Declarator::ObjCResultContext:
2284    case Declarator::KNRTypeListContext:
2285      // C++ [dcl.fct]p6:
2286      //   Types shall not be defined in return or parameter types.
2287      SemaRef.Diag(OwnedTagDecl->getLocation(),
2288                   diag::err_type_defined_in_param_type)
2289        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2290      D.setInvalidType(true);
2291      break;
2292    case Declarator::ConditionContext:
2293      // C++ 6.4p2:
2294      // The type-specifier-seq shall not contain typedef and shall not declare
2295      // a new class or enumeration.
2296      SemaRef.Diag(OwnedTagDecl->getLocation(),
2297                   diag::err_type_defined_in_condition);
2298      D.setInvalidType(true);
2299      break;
2300    }
2301  }
2302
2303  return T;
2304}
2305
2306static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
2307  std::string Quals =
2308    Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
2309
2310  switch (FnTy->getRefQualifier()) {
2311  case RQ_None:
2312    break;
2313
2314  case RQ_LValue:
2315    if (!Quals.empty())
2316      Quals += ' ';
2317    Quals += '&';
2318    break;
2319
2320  case RQ_RValue:
2321    if (!Quals.empty())
2322      Quals += ' ';
2323    Quals += "&&";
2324    break;
2325  }
2326
2327  return Quals;
2328}
2329
2330/// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
2331/// can be contained within the declarator chunk DeclType, and produce an
2332/// appropriate diagnostic if not.
2333static void checkQualifiedFunction(Sema &S, QualType T,
2334                                   DeclaratorChunk &DeclType) {
2335  // C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
2336  // cv-qualifier or a ref-qualifier can only appear at the topmost level
2337  // of a type.
2338  int DiagKind = -1;
2339  switch (DeclType.Kind) {
2340  case DeclaratorChunk::Paren:
2341  case DeclaratorChunk::MemberPointer:
2342    // These cases are permitted.
2343    return;
2344  case DeclaratorChunk::Array:
2345  case DeclaratorChunk::Function:
2346    // These cases don't allow function types at all; no need to diagnose the
2347    // qualifiers separately.
2348    return;
2349  case DeclaratorChunk::BlockPointer:
2350    DiagKind = 0;
2351    break;
2352  case DeclaratorChunk::Pointer:
2353    DiagKind = 1;
2354    break;
2355  case DeclaratorChunk::Reference:
2356    DiagKind = 2;
2357    break;
2358  }
2359
2360  assert(DiagKind != -1);
2361  S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
2362    << DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
2363    << getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
2364}
2365
2366/// Produce an approprioate diagnostic for an ambiguity between a function
2367/// declarator and a C++ direct-initializer.
2368static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
2369                                       DeclaratorChunk &DeclType, QualType RT) {
2370  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2371  assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
2372
2373  // If the return type is void there is no ambiguity.
2374  if (RT->isVoidType())
2375    return;
2376
2377  // An initializer for a non-class type can have at most one argument.
2378  if (!RT->isRecordType() && FTI.NumArgs > 1)
2379    return;
2380
2381  // An initializer for a reference must have exactly one argument.
2382  if (RT->isReferenceType() && FTI.NumArgs != 1)
2383    return;
2384
2385  // Only warn if this declarator is declaring a function at block scope, and
2386  // doesn't have a storage class (such as 'extern') specified.
2387  if (!D.isFunctionDeclarator() ||
2388      D.getFunctionDefinitionKind() != FDK_Declaration ||
2389      !S.CurContext->isFunctionOrMethod() ||
2390      D.getDeclSpec().getStorageClassSpec()
2391        != DeclSpec::SCS_unspecified)
2392    return;
2393
2394  // Inside a condition, a direct initializer is not permitted. We allow one to
2395  // be parsed in order to give better diagnostics in condition parsing.
2396  if (D.getContext() == Declarator::ConditionContext)
2397    return;
2398
2399  SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
2400
2401  S.Diag(DeclType.Loc,
2402         FTI.NumArgs ? diag::warn_parens_disambiguated_as_function_declaration
2403                     : diag::warn_empty_parens_are_function_decl)
2404    << ParenRange;
2405
2406  // If the declaration looks like:
2407  //   T var1,
2408  //   f();
2409  // and name lookup finds a function named 'f', then the ',' was
2410  // probably intended to be a ';'.
2411  if (!D.isFirstDeclarator() && D.getIdentifier()) {
2412    FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
2413    FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
2414    if (Comma.getFileID() != Name.getFileID() ||
2415        Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
2416      LookupResult Result(S, D.getIdentifier(), SourceLocation(),
2417                          Sema::LookupOrdinaryName);
2418      if (S.LookupName(Result, S.getCurScope()))
2419        S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
2420          << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
2421          << D.getIdentifier();
2422    }
2423  }
2424
2425  if (FTI.NumArgs > 0) {
2426    // For a declaration with parameters, eg. "T var(T());", suggest adding parens
2427    // around the first parameter to turn the declaration into a variable
2428    // declaration.
2429    SourceRange Range = FTI.ArgInfo[0].Param->getSourceRange();
2430    SourceLocation B = Range.getBegin();
2431    SourceLocation E = S.PP.getLocForEndOfToken(Range.getEnd());
2432    // FIXME: Maybe we should suggest adding braces instead of parens
2433    // in C++11 for classes that don't have an initializer_list constructor.
2434    S.Diag(B, diag::note_additional_parens_for_variable_declaration)
2435      << FixItHint::CreateInsertion(B, "(")
2436      << FixItHint::CreateInsertion(E, ")");
2437  } else {
2438    // For a declaration without parameters, eg. "T var();", suggest replacing the
2439    // parens with an initializer to turn the declaration into a variable
2440    // declaration.
2441    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
2442
2443    // Empty parens mean value-initialization, and no parens mean
2444    // default initialization. These are equivalent if the default
2445    // constructor is user-provided or if zero-initialization is a
2446    // no-op.
2447    if (RD && RD->hasDefinition() &&
2448        (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
2449      S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
2450        << FixItHint::CreateRemoval(ParenRange);
2451    else {
2452      std::string Init =
2453          S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
2454      if (Init.empty() && S.LangOpts.CPlusPlus11)
2455        Init = "{}";
2456      if (!Init.empty())
2457        S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
2458          << FixItHint::CreateReplacement(ParenRange, Init);
2459    }
2460  }
2461}
2462
2463/// Helper for figuring out the default CC for a function declarator type.  If
2464/// this is the outermost chunk, then we can determine the CC from the
2465/// declarator context.  If not, then this could be either a member function
2466/// type or normal function type.
2467static CallingConv
2468getCCForDeclaratorChunk(Sema &S, Declarator &D,
2469                        const DeclaratorChunk::FunctionTypeInfo &FTI,
2470                        unsigned ChunkIndex) {
2471  assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
2472
2473  bool IsCXXInstanceMethod = false;
2474
2475  if (S.getLangOpts().CPlusPlus) {
2476    // Look inwards through parentheses to see if this chunk will form a
2477    // member pointer type or if we're the declarator.  Any type attributes
2478    // between here and there will override the CC we choose here.
2479    unsigned I = ChunkIndex;
2480    bool FoundNonParen = false;
2481    while (I && !FoundNonParen) {
2482      --I;
2483      if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
2484        FoundNonParen = true;
2485    }
2486
2487    if (FoundNonParen) {
2488      // If we're not the declarator, we're a regular function type unless we're
2489      // in a member pointer.
2490      IsCXXInstanceMethod =
2491          D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
2492    } else {
2493      // We're the innermost decl chunk, so must be a function declarator.
2494      assert(D.isFunctionDeclarator());
2495
2496      // If we're inside a record, we're declaring a method, but it could be
2497      // explicitly or implicitly static.
2498      IsCXXInstanceMethod =
2499          D.isFirstDeclarationOfMember() &&
2500          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
2501          !D.isStaticMember();
2502    }
2503  }
2504
2505  return S.Context.getDefaultCallingConvention(FTI.isVariadic,
2506                                               IsCXXInstanceMethod);
2507}
2508
2509static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
2510                                                QualType declSpecType,
2511                                                TypeSourceInfo *TInfo) {
2512
2513  QualType T = declSpecType;
2514  Declarator &D = state.getDeclarator();
2515  Sema &S = state.getSema();
2516  ASTContext &Context = S.Context;
2517  const LangOptions &LangOpts = S.getLangOpts();
2518
2519  // The name we're declaring, if any.
2520  DeclarationName Name;
2521  if (D.getIdentifier())
2522    Name = D.getIdentifier();
2523
2524  // Does this declaration declare a typedef-name?
2525  bool IsTypedefName =
2526    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2527    D.getContext() == Declarator::AliasDeclContext ||
2528    D.getContext() == Declarator::AliasTemplateContext;
2529
2530  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2531  bool IsQualifiedFunction = T->isFunctionProtoType() &&
2532      (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
2533       T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
2534
2535  // If T is 'decltype(auto)', the only declarators we can have are parens
2536  // and at most one function declarator if this is a function declaration.
2537  if (const AutoType *AT = T->getAs<AutoType>()) {
2538    if (AT->isDecltypeAuto()) {
2539      for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2540        unsigned Index = E - I - 1;
2541        DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
2542        unsigned DiagId = diag::err_decltype_auto_compound_type;
2543        unsigned DiagKind = 0;
2544        switch (DeclChunk.Kind) {
2545        case DeclaratorChunk::Paren:
2546          continue;
2547        case DeclaratorChunk::Function: {
2548          unsigned FnIndex;
2549          if (D.isFunctionDeclarationContext() &&
2550              D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
2551            continue;
2552          DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
2553          break;
2554        }
2555        case DeclaratorChunk::Pointer:
2556        case DeclaratorChunk::BlockPointer:
2557        case DeclaratorChunk::MemberPointer:
2558          DiagKind = 0;
2559          break;
2560        case DeclaratorChunk::Reference:
2561          DiagKind = 1;
2562          break;
2563        case DeclaratorChunk::Array:
2564          DiagKind = 2;
2565          break;
2566        }
2567
2568        S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
2569        D.setInvalidType(true);
2570        break;
2571      }
2572    }
2573  }
2574
2575  // Walk the DeclTypeInfo, building the recursive type as we go.
2576  // DeclTypeInfos are ordered from the identifier out, which is
2577  // opposite of what we want :).
2578  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2579    unsigned chunkIndex = e - i - 1;
2580    state.setCurrentChunkIndex(chunkIndex);
2581    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2582    if (IsQualifiedFunction) {
2583      checkQualifiedFunction(S, T, DeclType);
2584      IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
2585    }
2586    switch (DeclType.Kind) {
2587    case DeclaratorChunk::Paren:
2588      T = S.BuildParenType(T);
2589      break;
2590    case DeclaratorChunk::BlockPointer:
2591      // If blocks are disabled, emit an error.
2592      if (!LangOpts.Blocks)
2593        S.Diag(DeclType.Loc, diag::err_blocks_disable);
2594
2595      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
2596      if (DeclType.Cls.TypeQuals)
2597        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
2598      break;
2599    case DeclaratorChunk::Pointer:
2600      // Verify that we're not building a pointer to pointer to function with
2601      // exception specification.
2602      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2603        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2604        D.setInvalidType(true);
2605        // Build the type anyway.
2606      }
2607      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
2608        T = Context.getObjCObjectPointerType(T);
2609        if (DeclType.Ptr.TypeQuals)
2610          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2611        break;
2612      }
2613      T = S.BuildPointerType(T, DeclType.Loc, Name);
2614      if (DeclType.Ptr.TypeQuals)
2615        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2616
2617      break;
2618    case DeclaratorChunk::Reference: {
2619      // Verify that we're not building a reference to pointer to function with
2620      // exception specification.
2621      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2622        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2623        D.setInvalidType(true);
2624        // Build the type anyway.
2625      }
2626      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2627
2628      Qualifiers Quals;
2629      if (DeclType.Ref.HasRestrict)
2630        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2631      break;
2632    }
2633    case DeclaratorChunk::Array: {
2634      // Verify that we're not building an array of pointers to function with
2635      // exception specification.
2636      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2637        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2638        D.setInvalidType(true);
2639        // Build the type anyway.
2640      }
2641      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2642      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2643      ArrayType::ArraySizeModifier ASM;
2644      if (ATI.isStar)
2645        ASM = ArrayType::Star;
2646      else if (ATI.hasStatic)
2647        ASM = ArrayType::Static;
2648      else
2649        ASM = ArrayType::Normal;
2650      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2651        // FIXME: This check isn't quite right: it allows star in prototypes
2652        // for function definitions, and disallows some edge cases detailed
2653        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2654        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2655        ASM = ArrayType::Normal;
2656        D.setInvalidType(true);
2657      }
2658
2659      // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
2660      // shall appear only in a declaration of a function parameter with an
2661      // array type, ...
2662      if (ASM == ArrayType::Static || ATI.TypeQuals) {
2663        if (!(D.isPrototypeContext() ||
2664              D.getContext() == Declarator::KNRTypeListContext)) {
2665          S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
2666              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2667          // Remove the 'static' and the type qualifiers.
2668          if (ASM == ArrayType::Static)
2669            ASM = ArrayType::Normal;
2670          ATI.TypeQuals = 0;
2671          D.setInvalidType(true);
2672        }
2673
2674        // C99 6.7.5.2p1: ... and then only in the outermost array type
2675        // derivation.
2676        unsigned x = chunkIndex;
2677        while (x != 0) {
2678          // Walk outwards along the declarator chunks.
2679          x--;
2680          const DeclaratorChunk &DC = D.getTypeObject(x);
2681          switch (DC.Kind) {
2682          case DeclaratorChunk::Paren:
2683            continue;
2684          case DeclaratorChunk::Array:
2685          case DeclaratorChunk::Pointer:
2686          case DeclaratorChunk::Reference:
2687          case DeclaratorChunk::MemberPointer:
2688            S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
2689              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2690            if (ASM == ArrayType::Static)
2691              ASM = ArrayType::Normal;
2692            ATI.TypeQuals = 0;
2693            D.setInvalidType(true);
2694            break;
2695          case DeclaratorChunk::Function:
2696          case DeclaratorChunk::BlockPointer:
2697            // These are invalid anyway, so just ignore.
2698            break;
2699          }
2700        }
2701      }
2702      const AutoType *AT = T->getContainedAutoType();
2703      // Allow arrays of auto if we are a generic lambda parameter.
2704      // i.e. [](auto (&array)[5]) { return array[0]; }; OK
2705      if (AT && D.getContext() != Declarator::LambdaExprParameterContext) {
2706        // We've already diagnosed this for decltype(auto).
2707        if (!AT->isDecltypeAuto())
2708          S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
2709            << getPrintableNameForEntity(Name) << T;
2710        T = QualType();
2711        break;
2712      }
2713
2714      T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2715                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2716      break;
2717    }
2718    case DeclaratorChunk::Function: {
2719      // If the function declarator has a prototype (i.e. it is not () and
2720      // does not have a K&R-style identifier list), then the arguments are part
2721      // of the type, otherwise the argument list is ().
2722      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2723      IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
2724
2725      // Check for auto functions and trailing return type and adjust the
2726      // return type accordingly.
2727      if (!D.isInvalidType()) {
2728        // trailing-return-type is only required if we're declaring a function,
2729        // and not, for instance, a pointer to a function.
2730        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2731            !FTI.hasTrailingReturnType() && chunkIndex == 0 &&
2732            !S.getLangOpts().CPlusPlus1y) {
2733          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2734               diag::err_auto_missing_trailing_return);
2735          T = Context.IntTy;
2736          D.setInvalidType(true);
2737        } else if (FTI.hasTrailingReturnType()) {
2738          // T must be exactly 'auto' at this point. See CWG issue 681.
2739          if (isa<ParenType>(T)) {
2740            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2741                 diag::err_trailing_return_in_parens)
2742              << T << D.getDeclSpec().getSourceRange();
2743            D.setInvalidType(true);
2744          } else if (D.getContext() != Declarator::LambdaExprContext &&
2745                     (T.hasQualifiers() || !isa<AutoType>(T) ||
2746                      cast<AutoType>(T)->isDecltypeAuto())) {
2747            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2748                 diag::err_trailing_return_without_auto)
2749              << T << D.getDeclSpec().getSourceRange();
2750            D.setInvalidType(true);
2751          }
2752          T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
2753          if (T.isNull()) {
2754            // An error occurred parsing the trailing return type.
2755            T = Context.IntTy;
2756            D.setInvalidType(true);
2757          }
2758        }
2759      }
2760
2761      // C99 6.7.5.3p1: The return type may not be a function or array type.
2762      // For conversion functions, we'll diagnose this particular error later.
2763      if ((T->isArrayType() || T->isFunctionType()) &&
2764          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2765        unsigned diagID = diag::err_func_returning_array_function;
2766        // Last processing chunk in block context means this function chunk
2767        // represents the block.
2768        if (chunkIndex == 0 &&
2769            D.getContext() == Declarator::BlockLiteralContext)
2770          diagID = diag::err_block_returning_array_function;
2771        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2772        T = Context.IntTy;
2773        D.setInvalidType(true);
2774      }
2775
2776      // Do not allow returning half FP value.
2777      // FIXME: This really should be in BuildFunctionType.
2778      if (T->isHalfType()) {
2779        if (S.getLangOpts().OpenCL) {
2780          if (!S.getOpenCLOptions().cl_khr_fp16) {
2781            S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
2782            D.setInvalidType(true);
2783          }
2784        } else {
2785          S.Diag(D.getIdentifierLoc(),
2786            diag::err_parameters_retval_cannot_have_fp16_type) << 1;
2787          D.setInvalidType(true);
2788        }
2789      }
2790
2791      // Methods cannot return interface types. All ObjC objects are
2792      // passed by reference.
2793      if (T->isObjCObjectType()) {
2794        SourceLocation DiagLoc, FixitLoc;
2795        if (TInfo) {
2796          DiagLoc = TInfo->getTypeLoc().getLocStart();
2797          FixitLoc = S.PP.getLocForEndOfToken(TInfo->getTypeLoc().getLocEnd());
2798        } else {
2799          DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
2800          FixitLoc = S.PP.getLocForEndOfToken(D.getDeclSpec().getLocEnd());
2801        }
2802        S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
2803          << 0 << T
2804          << FixItHint::CreateInsertion(FixitLoc, "*");
2805
2806        T = Context.getObjCObjectPointerType(T);
2807        if (TInfo) {
2808          TypeLocBuilder TLB;
2809          TLB.pushFullCopy(TInfo->getTypeLoc());
2810          ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
2811          TLoc.setStarLoc(FixitLoc);
2812          TInfo = TLB.getTypeSourceInfo(Context, T);
2813        }
2814
2815        D.setInvalidType(true);
2816      }
2817
2818      // cv-qualifiers on return types are pointless except when the type is a
2819      // class type in C++.
2820      if ((T.getCVRQualifiers() || T->isAtomicType()) &&
2821          !(S.getLangOpts().CPlusPlus &&
2822            (T->isDependentType() || T->isRecordType())))
2823        diagnoseIgnoredFunctionQualifiers(S, T, D, chunkIndex);
2824
2825      // Objective-C ARC ownership qualifiers are ignored on the function
2826      // return type (by type canonicalization). Complain if this attribute
2827      // was written here.
2828      if (T.getQualifiers().hasObjCLifetime()) {
2829        SourceLocation AttrLoc;
2830        if (chunkIndex + 1 < D.getNumTypeObjects()) {
2831          DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2832          for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
2833               Attr; Attr = Attr->getNext()) {
2834            if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
2835              AttrLoc = Attr->getLoc();
2836              break;
2837            }
2838          }
2839        }
2840        if (AttrLoc.isInvalid()) {
2841          for (const AttributeList *Attr
2842                 = D.getDeclSpec().getAttributes().getList();
2843               Attr; Attr = Attr->getNext()) {
2844            if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
2845              AttrLoc = Attr->getLoc();
2846              break;
2847            }
2848          }
2849        }
2850
2851        if (AttrLoc.isValid()) {
2852          // The ownership attributes are almost always written via
2853          // the predefined
2854          // __strong/__weak/__autoreleasing/__unsafe_unretained.
2855          if (AttrLoc.isMacroID())
2856            AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
2857
2858          S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
2859            << T.getQualifiers().getObjCLifetime();
2860        }
2861      }
2862
2863      if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
2864        // C++ [dcl.fct]p6:
2865        //   Types shall not be defined in return or parameter types.
2866        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2867        S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2868          << Context.getTypeDeclType(Tag);
2869      }
2870
2871      // Exception specs are not allowed in typedefs. Complain, but add it
2872      // anyway.
2873      if (IsTypedefName && FTI.getExceptionSpecType())
2874        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2875          << (D.getContext() == Declarator::AliasDeclContext ||
2876              D.getContext() == Declarator::AliasTemplateContext);
2877
2878      // If we see "T var();" or "T var(T());" at block scope, it is probably
2879      // an attempt to initialize a variable, not a function declaration.
2880      if (FTI.isAmbiguous)
2881        warnAboutAmbiguousFunction(S, D, DeclType, T);
2882
2883      FunctionType::ExtInfo EI(getCCForDeclaratorChunk(S, D, FTI, chunkIndex));
2884
2885      if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2886        // Simple void foo(), where the incoming T is the result type.
2887        T = Context.getFunctionNoProtoType(T, EI);
2888      } else {
2889        // We allow a zero-parameter variadic function in C if the
2890        // function is marked with the "overloadable" attribute. Scan
2891        // for this attribute now.
2892        if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2893          bool Overloadable = false;
2894          for (const AttributeList *Attrs = D.getAttributes();
2895               Attrs; Attrs = Attrs->getNext()) {
2896            if (Attrs->getKind() == AttributeList::AT_Overloadable) {
2897              Overloadable = true;
2898              break;
2899            }
2900          }
2901
2902          if (!Overloadable)
2903            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2904        }
2905
2906        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2907          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2908          // definition.
2909          S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2910          D.setInvalidType(true);
2911          // Recover by creating a K&R-style function type.
2912          T = Context.getFunctionNoProtoType(T, EI);
2913          break;
2914        }
2915
2916        FunctionProtoType::ExtProtoInfo EPI;
2917        EPI.ExtInfo = EI;
2918        EPI.Variadic = FTI.isVariadic;
2919        EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
2920        EPI.TypeQuals = FTI.TypeQuals;
2921        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2922                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2923                    : RQ_RValue;
2924
2925        // Otherwise, we have a function with an argument list that is
2926        // potentially variadic.
2927        SmallVector<QualType, 16> ArgTys;
2928        ArgTys.reserve(FTI.NumArgs);
2929
2930        SmallVector<bool, 16> ConsumedArguments;
2931        ConsumedArguments.reserve(FTI.NumArgs);
2932        bool HasAnyConsumedArguments = false;
2933
2934        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2935          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2936          QualType ArgTy = Param->getType();
2937          assert(!ArgTy.isNull() && "Couldn't parse type?");
2938
2939          // Look for 'void'.  void is allowed only as a single argument to a
2940          // function with no other parameters (C99 6.7.5.3p10).  We record
2941          // int(void) as a FunctionProtoType with an empty argument list.
2942          if (ArgTy->isVoidType()) {
2943            // If this is something like 'float(int, void)', reject it.  'void'
2944            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2945            // have arguments of incomplete type.
2946            if (FTI.NumArgs != 1 || FTI.isVariadic) {
2947              S.Diag(DeclType.Loc, diag::err_void_only_param);
2948              ArgTy = Context.IntTy;
2949              Param->setType(ArgTy);
2950            } else if (FTI.ArgInfo[i].Ident) {
2951              // Reject, but continue to parse 'int(void abc)'.
2952              S.Diag(FTI.ArgInfo[i].IdentLoc,
2953                   diag::err_param_with_void_type);
2954              ArgTy = Context.IntTy;
2955              Param->setType(ArgTy);
2956            } else {
2957              // Reject, but continue to parse 'float(const void)'.
2958              if (ArgTy.hasQualifiers())
2959                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2960
2961              // Do not add 'void' to the ArgTys list.
2962              break;
2963            }
2964          } else if (ArgTy->isHalfType()) {
2965            // Disallow half FP arguments.
2966            // FIXME: This really should be in BuildFunctionType.
2967            if (S.getLangOpts().OpenCL) {
2968              if (!S.getOpenCLOptions().cl_khr_fp16) {
2969                S.Diag(Param->getLocation(),
2970                  diag::err_opencl_half_argument) << ArgTy;
2971                D.setInvalidType();
2972                Param->setInvalidDecl();
2973              }
2974            } else {
2975              S.Diag(Param->getLocation(),
2976                diag::err_parameters_retval_cannot_have_fp16_type) << 0;
2977              D.setInvalidType();
2978            }
2979          } else if (!FTI.hasPrototype) {
2980            if (ArgTy->isPromotableIntegerType()) {
2981              ArgTy = Context.getPromotedIntegerType(ArgTy);
2982              Param->setKNRPromoted(true);
2983            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2984              if (BTy->getKind() == BuiltinType::Float) {
2985                ArgTy = Context.DoubleTy;
2986                Param->setKNRPromoted(true);
2987              }
2988            }
2989          }
2990
2991          if (LangOpts.ObjCAutoRefCount) {
2992            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2993            ConsumedArguments.push_back(Consumed);
2994            HasAnyConsumedArguments |= Consumed;
2995          }
2996
2997          ArgTys.push_back(ArgTy);
2998        }
2999
3000        if (HasAnyConsumedArguments)
3001          EPI.ConsumedArguments = ConsumedArguments.data();
3002
3003        SmallVector<QualType, 4> Exceptions;
3004        SmallVector<ParsedType, 2> DynamicExceptions;
3005        SmallVector<SourceRange, 2> DynamicExceptionRanges;
3006        Expr *NoexceptExpr = 0;
3007
3008        if (FTI.getExceptionSpecType() == EST_Dynamic) {
3009          // FIXME: It's rather inefficient to have to split into two vectors
3010          // here.
3011          unsigned N = FTI.NumExceptions;
3012          DynamicExceptions.reserve(N);
3013          DynamicExceptionRanges.reserve(N);
3014          for (unsigned I = 0; I != N; ++I) {
3015            DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
3016            DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
3017          }
3018        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
3019          NoexceptExpr = FTI.NoexceptExpr;
3020        }
3021
3022        S.checkExceptionSpecification(FTI.getExceptionSpecType(),
3023                                      DynamicExceptions,
3024                                      DynamicExceptionRanges,
3025                                      NoexceptExpr,
3026                                      Exceptions,
3027                                      EPI);
3028
3029        T = Context.getFunctionType(T, ArgTys, EPI);
3030      }
3031
3032      break;
3033    }
3034    case DeclaratorChunk::MemberPointer:
3035      // The scope spec must refer to a class, or be dependent.
3036      CXXScopeSpec &SS = DeclType.Mem.Scope();
3037      QualType ClsType;
3038      if (SS.isInvalid()) {
3039        // Avoid emitting extra errors if we already errored on the scope.
3040        D.setInvalidType(true);
3041      } else if (S.isDependentScopeSpecifier(SS) ||
3042                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
3043        NestedNameSpecifier *NNS
3044          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3045        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
3046        switch (NNS->getKind()) {
3047        case NestedNameSpecifier::Identifier:
3048          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
3049                                                 NNS->getAsIdentifier());
3050          break;
3051
3052        case NestedNameSpecifier::Namespace:
3053        case NestedNameSpecifier::NamespaceAlias:
3054        case NestedNameSpecifier::Global:
3055          llvm_unreachable("Nested-name-specifier must name a type");
3056
3057        case NestedNameSpecifier::TypeSpec:
3058        case NestedNameSpecifier::TypeSpecWithTemplate:
3059          ClsType = QualType(NNS->getAsType(), 0);
3060          // Note: if the NNS has a prefix and ClsType is a nondependent
3061          // TemplateSpecializationType, then the NNS prefix is NOT included
3062          // in ClsType; hence we wrap ClsType into an ElaboratedType.
3063          // NOTE: in particular, no wrap occurs if ClsType already is an
3064          // Elaborated, DependentName, or DependentTemplateSpecialization.
3065          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
3066            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
3067          break;
3068        }
3069      } else {
3070        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
3071             diag::err_illegal_decl_mempointer_in_nonclass)
3072          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
3073          << DeclType.Mem.Scope().getRange();
3074        D.setInvalidType(true);
3075      }
3076
3077      if (!ClsType.isNull())
3078        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
3079      if (T.isNull()) {
3080        T = Context.IntTy;
3081        D.setInvalidType(true);
3082      } else if (DeclType.Mem.TypeQuals) {
3083        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
3084      }
3085      break;
3086    }
3087
3088    if (T.isNull()) {
3089      D.setInvalidType(true);
3090      T = Context.IntTy;
3091    }
3092
3093    // See if there are any attributes on this declarator chunk.
3094    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
3095      processTypeAttrs(state, T, TAL_DeclChunk, attrs);
3096  }
3097
3098  if (LangOpts.CPlusPlus && T->isFunctionType()) {
3099    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
3100    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
3101
3102    // C++ 8.3.5p4:
3103    //   A cv-qualifier-seq shall only be part of the function type
3104    //   for a nonstatic member function, the function type to which a pointer
3105    //   to member refers, or the top-level function type of a function typedef
3106    //   declaration.
3107    //
3108    // Core issue 547 also allows cv-qualifiers on function types that are
3109    // top-level template type arguments.
3110    bool FreeFunction;
3111    if (!D.getCXXScopeSpec().isSet()) {
3112      FreeFunction = ((D.getContext() != Declarator::MemberContext &&
3113                       D.getContext() != Declarator::LambdaExprContext) ||
3114                      D.getDeclSpec().isFriendSpecified());
3115    } else {
3116      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
3117      FreeFunction = (DC && !DC->isRecord());
3118    }
3119
3120    // C++11 [dcl.fct]p6 (w/DR1417):
3121    // An attempt to specify a function type with a cv-qualifier-seq or a
3122    // ref-qualifier (including by typedef-name) is ill-formed unless it is:
3123    //  - the function type for a non-static member function,
3124    //  - the function type to which a pointer to member refers,
3125    //  - the top-level function type of a function typedef declaration or
3126    //    alias-declaration,
3127    //  - the type-id in the default argument of a type-parameter, or
3128    //  - the type-id of a template-argument for a type-parameter
3129    if (IsQualifiedFunction &&
3130        !(!FreeFunction &&
3131          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
3132        !IsTypedefName &&
3133        D.getContext() != Declarator::TemplateTypeArgContext) {
3134      SourceLocation Loc = D.getLocStart();
3135      SourceRange RemovalRange;
3136      unsigned I;
3137      if (D.isFunctionDeclarator(I)) {
3138        SmallVector<SourceLocation, 4> RemovalLocs;
3139        const DeclaratorChunk &Chunk = D.getTypeObject(I);
3140        assert(Chunk.Kind == DeclaratorChunk::Function);
3141        if (Chunk.Fun.hasRefQualifier())
3142          RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
3143        if (Chunk.Fun.TypeQuals & Qualifiers::Const)
3144          RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
3145        if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
3146          RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
3147        // FIXME: We do not track the location of the __restrict qualifier.
3148        //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
3149        //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
3150        if (!RemovalLocs.empty()) {
3151          std::sort(RemovalLocs.begin(), RemovalLocs.end(),
3152                    BeforeThanCompare<SourceLocation>(S.getSourceManager()));
3153          RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
3154          Loc = RemovalLocs.front();
3155        }
3156      }
3157
3158      S.Diag(Loc, diag::err_invalid_qualified_function_type)
3159        << FreeFunction << D.isFunctionDeclarator() << T
3160        << getFunctionQualifiersAsString(FnTy)
3161        << FixItHint::CreateRemoval(RemovalRange);
3162
3163      // Strip the cv-qualifiers and ref-qualifiers from the type.
3164      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
3165      EPI.TypeQuals = 0;
3166      EPI.RefQualifier = RQ_None;
3167
3168      T = Context.getFunctionType(FnTy->getResultType(), FnTy->getArgTypes(),
3169                                  EPI);
3170      // Rebuild any parens around the identifier in the function type.
3171      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3172        if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
3173          break;
3174        T = S.BuildParenType(T);
3175      }
3176    }
3177  }
3178
3179  // Apply any undistributed attributes from the declarator.
3180  if (!T.isNull())
3181    if (AttributeList *attrs = D.getAttributes())
3182      processTypeAttrs(state, T, TAL_DeclName, attrs);
3183
3184  // Diagnose any ignored type attributes.
3185  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
3186
3187  // C++0x [dcl.constexpr]p9:
3188  //  A constexpr specifier used in an object declaration declares the object
3189  //  as const.
3190  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
3191    T.addConst();
3192  }
3193
3194  // If there was an ellipsis in the declarator, the declaration declares a
3195  // parameter pack whose type may be a pack expansion type.
3196  if (D.hasEllipsis() && !T.isNull()) {
3197    // C++0x [dcl.fct]p13:
3198    //   A declarator-id or abstract-declarator containing an ellipsis shall
3199    //   only be used in a parameter-declaration. Such a parameter-declaration
3200    //   is a parameter pack (14.5.3). [...]
3201    switch (D.getContext()) {
3202    case Declarator::PrototypeContext:
3203    case Declarator::LambdaExprParameterContext:
3204      // C++0x [dcl.fct]p13:
3205      //   [...] When it is part of a parameter-declaration-clause, the
3206      //   parameter pack is a function parameter pack (14.5.3). The type T
3207      //   of the declarator-id of the function parameter pack shall contain
3208      //   a template parameter pack; each template parameter pack in T is
3209      //   expanded by the function parameter pack.
3210      //
3211      // We represent function parameter packs as function parameters whose
3212      // type is a pack expansion.
3213      if (!T->containsUnexpandedParameterPack()) {
3214        S.Diag(D.getEllipsisLoc(),
3215             diag::err_function_parameter_pack_without_parameter_packs)
3216          << T <<  D.getSourceRange();
3217        D.setEllipsisLoc(SourceLocation());
3218      } else {
3219        T = Context.getPackExpansionType(T, None);
3220      }
3221      break;
3222    case Declarator::TemplateParamContext:
3223      // C++0x [temp.param]p15:
3224      //   If a template-parameter is a [...] is a parameter-declaration that
3225      //   declares a parameter pack (8.3.5), then the template-parameter is a
3226      //   template parameter pack (14.5.3).
3227      //
3228      // Note: core issue 778 clarifies that, if there are any unexpanded
3229      // parameter packs in the type of the non-type template parameter, then
3230      // it expands those parameter packs.
3231      if (T->containsUnexpandedParameterPack())
3232        T = Context.getPackExpansionType(T, None);
3233      else
3234        S.Diag(D.getEllipsisLoc(),
3235               LangOpts.CPlusPlus11
3236                 ? diag::warn_cxx98_compat_variadic_templates
3237                 : diag::ext_variadic_templates);
3238      break;
3239
3240    case Declarator::FileContext:
3241    case Declarator::KNRTypeListContext:
3242    case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
3243    case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
3244    case Declarator::TypeNameContext:
3245    case Declarator::CXXNewContext:
3246    case Declarator::AliasDeclContext:
3247    case Declarator::AliasTemplateContext:
3248    case Declarator::MemberContext:
3249    case Declarator::BlockContext:
3250    case Declarator::ForContext:
3251    case Declarator::ConditionContext:
3252    case Declarator::CXXCatchContext:
3253    case Declarator::ObjCCatchContext:
3254    case Declarator::BlockLiteralContext:
3255    case Declarator::LambdaExprContext:
3256    case Declarator::ConversionIdContext:
3257    case Declarator::TrailingReturnContext:
3258    case Declarator::TemplateTypeArgContext:
3259      // FIXME: We may want to allow parameter packs in block-literal contexts
3260      // in the future.
3261      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
3262      D.setEllipsisLoc(SourceLocation());
3263      break;
3264    }
3265  }
3266
3267  if (T.isNull())
3268    return Context.getNullTypeSourceInfo();
3269  else if (D.isInvalidType())
3270    return Context.getTrivialTypeSourceInfo(T);
3271
3272  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
3273}
3274
3275/// GetTypeForDeclarator - Convert the type for the specified
3276/// declarator to Type instances.
3277///
3278/// The result of this call will never be null, but the associated
3279/// type may be a null type if there's an unrecoverable error.
3280TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
3281  // Determine the type of the declarator. Not all forms of declarator
3282  // have a type.
3283
3284  TypeProcessingState state(*this, D);
3285
3286  TypeSourceInfo *ReturnTypeInfo = 0;
3287  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
3288  if (T.isNull())
3289    return Context.getNullTypeSourceInfo();
3290
3291  if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
3292    inferARCWriteback(state, T);
3293
3294  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
3295}
3296
3297static void transferARCOwnershipToDeclSpec(Sema &S,
3298                                           QualType &declSpecTy,
3299                                           Qualifiers::ObjCLifetime ownership) {
3300  if (declSpecTy->isObjCRetainableType() &&
3301      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
3302    Qualifiers qs;
3303    qs.addObjCLifetime(ownership);
3304    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
3305  }
3306}
3307
3308static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
3309                                            Qualifiers::ObjCLifetime ownership,
3310                                            unsigned chunkIndex) {
3311  Sema &S = state.getSema();
3312  Declarator &D = state.getDeclarator();
3313
3314  // Look for an explicit lifetime attribute.
3315  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
3316  for (const AttributeList *attr = chunk.getAttrs(); attr;
3317         attr = attr->getNext())
3318    if (attr->getKind() == AttributeList::AT_ObjCOwnership)
3319      return;
3320
3321  const char *attrStr = 0;
3322  switch (ownership) {
3323  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
3324  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
3325  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
3326  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
3327  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
3328  }
3329
3330  IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
3331  Arg->Ident = &S.Context.Idents.get(attrStr);
3332  Arg->Loc = SourceLocation();
3333
3334  ArgsUnion Args(Arg);
3335
3336  // If there wasn't one, add one (with an invalid source location
3337  // so that we don't make an AttributedType for it).
3338  AttributeList *attr = D.getAttributePool()
3339    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
3340            /*scope*/ 0, SourceLocation(),
3341            /*args*/ &Args, 1, AttributeList::AS_GNU);
3342  spliceAttrIntoList(*attr, chunk.getAttrListRef());
3343
3344  // TODO: mark whether we did this inference?
3345}
3346
3347/// \brief Used for transferring ownership in casts resulting in l-values.
3348static void transferARCOwnership(TypeProcessingState &state,
3349                                 QualType &declSpecTy,
3350                                 Qualifiers::ObjCLifetime ownership) {
3351  Sema &S = state.getSema();
3352  Declarator &D = state.getDeclarator();
3353
3354  int inner = -1;
3355  bool hasIndirection = false;
3356  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3357    DeclaratorChunk &chunk = D.getTypeObject(i);
3358    switch (chunk.Kind) {
3359    case DeclaratorChunk::Paren:
3360      // Ignore parens.
3361      break;
3362
3363    case DeclaratorChunk::Array:
3364    case DeclaratorChunk::Reference:
3365    case DeclaratorChunk::Pointer:
3366      if (inner != -1)
3367        hasIndirection = true;
3368      inner = i;
3369      break;
3370
3371    case DeclaratorChunk::BlockPointer:
3372      if (inner != -1)
3373        transferARCOwnershipToDeclaratorChunk(state, ownership, i);
3374      return;
3375
3376    case DeclaratorChunk::Function:
3377    case DeclaratorChunk::MemberPointer:
3378      return;
3379    }
3380  }
3381
3382  if (inner == -1)
3383    return;
3384
3385  DeclaratorChunk &chunk = D.getTypeObject(inner);
3386  if (chunk.Kind == DeclaratorChunk::Pointer) {
3387    if (declSpecTy->isObjCRetainableType())
3388      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
3389    if (declSpecTy->isObjCObjectType() && hasIndirection)
3390      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
3391  } else {
3392    assert(chunk.Kind == DeclaratorChunk::Array ||
3393           chunk.Kind == DeclaratorChunk::Reference);
3394    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
3395  }
3396}
3397
3398TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
3399  TypeProcessingState state(*this, D);
3400
3401  TypeSourceInfo *ReturnTypeInfo = 0;
3402  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
3403  if (declSpecTy.isNull())
3404    return Context.getNullTypeSourceInfo();
3405
3406  if (getLangOpts().ObjCAutoRefCount) {
3407    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
3408    if (ownership != Qualifiers::OCL_None)
3409      transferARCOwnership(state, declSpecTy, ownership);
3410  }
3411
3412  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
3413}
3414
3415/// Map an AttributedType::Kind to an AttributeList::Kind.
3416static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
3417  switch (kind) {
3418  case AttributedType::attr_address_space:
3419    return AttributeList::AT_AddressSpace;
3420  case AttributedType::attr_regparm:
3421    return AttributeList::AT_Regparm;
3422  case AttributedType::attr_vector_size:
3423    return AttributeList::AT_VectorSize;
3424  case AttributedType::attr_neon_vector_type:
3425    return AttributeList::AT_NeonVectorType;
3426  case AttributedType::attr_neon_polyvector_type:
3427    return AttributeList::AT_NeonPolyVectorType;
3428  case AttributedType::attr_objc_gc:
3429    return AttributeList::AT_ObjCGC;
3430  case AttributedType::attr_objc_ownership:
3431    return AttributeList::AT_ObjCOwnership;
3432  case AttributedType::attr_noreturn:
3433    return AttributeList::AT_NoReturn;
3434  case AttributedType::attr_cdecl:
3435    return AttributeList::AT_CDecl;
3436  case AttributedType::attr_fastcall:
3437    return AttributeList::AT_FastCall;
3438  case AttributedType::attr_stdcall:
3439    return AttributeList::AT_StdCall;
3440  case AttributedType::attr_thiscall:
3441    return AttributeList::AT_ThisCall;
3442  case AttributedType::attr_pascal:
3443    return AttributeList::AT_Pascal;
3444  case AttributedType::attr_pcs:
3445  case AttributedType::attr_pcs_vfp:
3446    return AttributeList::AT_Pcs;
3447  case AttributedType::attr_pnaclcall:
3448    return AttributeList::AT_PnaclCall;
3449  case AttributedType::attr_inteloclbicc:
3450    return AttributeList::AT_IntelOclBicc;
3451  case AttributedType::attr_ms_abi:
3452    return AttributeList::AT_MSABI;
3453  case AttributedType::attr_sysv_abi:
3454    return AttributeList::AT_SysVABI;
3455  case AttributedType::attr_ptr32:
3456    return AttributeList::AT_Ptr32;
3457  case AttributedType::attr_ptr64:
3458    return AttributeList::AT_Ptr64;
3459  case AttributedType::attr_sptr:
3460    return AttributeList::AT_SPtr;
3461  case AttributedType::attr_uptr:
3462    return AttributeList::AT_UPtr;
3463  }
3464  llvm_unreachable("unexpected attribute kind!");
3465}
3466
3467static void fillAttributedTypeLoc(AttributedTypeLoc TL,
3468                                  const AttributeList *attrs) {
3469  AttributedType::Kind kind = TL.getAttrKind();
3470
3471  assert(attrs && "no type attributes in the expected location!");
3472  AttributeList::Kind parsedKind = getAttrListKind(kind);
3473  while (attrs->getKind() != parsedKind) {
3474    attrs = attrs->getNext();
3475    assert(attrs && "no matching attribute in expected location!");
3476  }
3477
3478  TL.setAttrNameLoc(attrs->getLoc());
3479  if (TL.hasAttrExprOperand() && attrs->isArgExpr(0))
3480    TL.setAttrExprOperand(attrs->getArgAsExpr(0));
3481  else if (TL.hasAttrEnumOperand() && attrs->isArgIdent(0))
3482    TL.setAttrEnumOperandLoc(attrs->getArgAsIdent(0)->Loc);
3483
3484  // FIXME: preserve this information to here.
3485  if (TL.hasAttrOperand())
3486    TL.setAttrOperandParensRange(SourceRange());
3487}
3488
3489namespace {
3490  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
3491    ASTContext &Context;
3492    const DeclSpec &DS;
3493
3494  public:
3495    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
3496      : Context(Context), DS(DS) {}
3497
3498    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3499      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
3500      Visit(TL.getModifiedLoc());
3501    }
3502    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3503      Visit(TL.getUnqualifiedLoc());
3504    }
3505    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
3506      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3507    }
3508    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
3509      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3510      // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
3511      // addition field. What we have is good enough for dispay of location
3512      // of 'fixit' on interface name.
3513      TL.setNameEndLoc(DS.getLocEnd());
3514    }
3515    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
3516      // Handle the base type, which might not have been written explicitly.
3517      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
3518        TL.setHasBaseTypeAsWritten(false);
3519        TL.getBaseLoc().initialize(Context, SourceLocation());
3520      } else {
3521        TL.setHasBaseTypeAsWritten(true);
3522        Visit(TL.getBaseLoc());
3523      }
3524
3525      // Protocol qualifiers.
3526      if (DS.getProtocolQualifiers()) {
3527        assert(TL.getNumProtocols() > 0);
3528        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
3529        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
3530        TL.setRAngleLoc(DS.getSourceRange().getEnd());
3531        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
3532          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
3533      } else {
3534        assert(TL.getNumProtocols() == 0);
3535        TL.setLAngleLoc(SourceLocation());
3536        TL.setRAngleLoc(SourceLocation());
3537      }
3538    }
3539    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3540      TL.setStarLoc(SourceLocation());
3541      Visit(TL.getPointeeLoc());
3542    }
3543    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
3544      TypeSourceInfo *TInfo = 0;
3545      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3546
3547      // If we got no declarator info from previous Sema routines,
3548      // just fill with the typespec loc.
3549      if (!TInfo) {
3550        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
3551        return;
3552      }
3553
3554      TypeLoc OldTL = TInfo->getTypeLoc();
3555      if (TInfo->getType()->getAs<ElaboratedType>()) {
3556        ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
3557        TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
3558            .castAs<TemplateSpecializationTypeLoc>();
3559        TL.copy(NamedTL);
3560      } else {
3561        TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
3562        assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
3563      }
3564
3565    }
3566    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
3567      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
3568      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3569      TL.setParensRange(DS.getTypeofParensRange());
3570    }
3571    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
3572      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
3573      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3574      TL.setParensRange(DS.getTypeofParensRange());
3575      assert(DS.getRepAsType());
3576      TypeSourceInfo *TInfo = 0;
3577      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3578      TL.setUnderlyingTInfo(TInfo);
3579    }
3580    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
3581      // FIXME: This holds only because we only have one unary transform.
3582      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
3583      TL.setKWLoc(DS.getTypeSpecTypeLoc());
3584      TL.setParensRange(DS.getTypeofParensRange());
3585      assert(DS.getRepAsType());
3586      TypeSourceInfo *TInfo = 0;
3587      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3588      TL.setUnderlyingTInfo(TInfo);
3589    }
3590    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
3591      // By default, use the source location of the type specifier.
3592      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
3593      if (TL.needsExtraLocalData()) {
3594        // Set info for the written builtin specifiers.
3595        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
3596        // Try to have a meaningful source location.
3597        if (TL.getWrittenSignSpec() != TSS_unspecified)
3598          // Sign spec loc overrides the others (e.g., 'unsigned long').
3599          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
3600        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
3601          // Width spec loc overrides type spec loc (e.g., 'short int').
3602          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
3603      }
3604    }
3605    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
3606      ElaboratedTypeKeyword Keyword
3607        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
3608      if (DS.getTypeSpecType() == TST_typename) {
3609        TypeSourceInfo *TInfo = 0;
3610        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3611        if (TInfo) {
3612          TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
3613          return;
3614        }
3615      }
3616      TL.setElaboratedKeywordLoc(Keyword != ETK_None
3617                                 ? DS.getTypeSpecTypeLoc()
3618                                 : SourceLocation());
3619      const CXXScopeSpec& SS = DS.getTypeSpecScope();
3620      TL.setQualifierLoc(SS.getWithLocInContext(Context));
3621      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
3622    }
3623    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
3624      assert(DS.getTypeSpecType() == TST_typename);
3625      TypeSourceInfo *TInfo = 0;
3626      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3627      assert(TInfo);
3628      TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
3629    }
3630    void VisitDependentTemplateSpecializationTypeLoc(
3631                                 DependentTemplateSpecializationTypeLoc TL) {
3632      assert(DS.getTypeSpecType() == TST_typename);
3633      TypeSourceInfo *TInfo = 0;
3634      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3635      assert(TInfo);
3636      TL.copy(
3637          TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
3638    }
3639    void VisitTagTypeLoc(TagTypeLoc TL) {
3640      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
3641    }
3642    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
3643      // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
3644      // or an _Atomic qualifier.
3645      if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
3646        TL.setKWLoc(DS.getTypeSpecTypeLoc());
3647        TL.setParensRange(DS.getTypeofParensRange());
3648
3649        TypeSourceInfo *TInfo = 0;
3650        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3651        assert(TInfo);
3652        TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
3653      } else {
3654        TL.setKWLoc(DS.getAtomicSpecLoc());
3655        // No parens, to indicate this was spelled as an _Atomic qualifier.
3656        TL.setParensRange(SourceRange());
3657        Visit(TL.getValueLoc());
3658      }
3659    }
3660
3661    void VisitTypeLoc(TypeLoc TL) {
3662      // FIXME: add other typespec types and change this to an assert.
3663      TL.initialize(Context, DS.getTypeSpecTypeLoc());
3664    }
3665  };
3666
3667  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
3668    ASTContext &Context;
3669    const DeclaratorChunk &Chunk;
3670
3671  public:
3672    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
3673      : Context(Context), Chunk(Chunk) {}
3674
3675    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3676      llvm_unreachable("qualified type locs not expected here!");
3677    }
3678    void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
3679      llvm_unreachable("decayed type locs not expected here!");
3680    }
3681
3682    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3683      fillAttributedTypeLoc(TL, Chunk.getAttrs());
3684    }
3685    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
3686      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3687      TL.setCaretLoc(Chunk.Loc);
3688    }
3689    void VisitPointerTypeLoc(PointerTypeLoc TL) {
3690      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3691      TL.setStarLoc(Chunk.Loc);
3692    }
3693    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3694      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3695      TL.setStarLoc(Chunk.Loc);
3696    }
3697    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3698      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3699      const CXXScopeSpec& SS = Chunk.Mem.Scope();
3700      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3701
3702      const Type* ClsTy = TL.getClass();
3703      QualType ClsQT = QualType(ClsTy, 0);
3704      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3705      // Now copy source location info into the type loc component.
3706      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3707      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3708      case NestedNameSpecifier::Identifier:
3709        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3710        {
3711          DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
3712          DNTLoc.setElaboratedKeywordLoc(SourceLocation());
3713          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3714          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3715        }
3716        break;
3717
3718      case NestedNameSpecifier::TypeSpec:
3719      case NestedNameSpecifier::TypeSpecWithTemplate:
3720        if (isa<ElaboratedType>(ClsTy)) {
3721          ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
3722          ETLoc.setElaboratedKeywordLoc(SourceLocation());
3723          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3724          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3725          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3726        } else {
3727          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3728        }
3729        break;
3730
3731      case NestedNameSpecifier::Namespace:
3732      case NestedNameSpecifier::NamespaceAlias:
3733      case NestedNameSpecifier::Global:
3734        llvm_unreachable("Nested-name-specifier must name a type");
3735      }
3736
3737      // Finally fill in MemberPointerLocInfo fields.
3738      TL.setStarLoc(Chunk.Loc);
3739      TL.setClassTInfo(ClsTInfo);
3740    }
3741    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3742      assert(Chunk.Kind == DeclaratorChunk::Reference);
3743      // 'Amp' is misleading: this might have been originally
3744      /// spelled with AmpAmp.
3745      TL.setAmpLoc(Chunk.Loc);
3746    }
3747    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3748      assert(Chunk.Kind == DeclaratorChunk::Reference);
3749      assert(!Chunk.Ref.LValueRef);
3750      TL.setAmpAmpLoc(Chunk.Loc);
3751    }
3752    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3753      assert(Chunk.Kind == DeclaratorChunk::Array);
3754      TL.setLBracketLoc(Chunk.Loc);
3755      TL.setRBracketLoc(Chunk.EndLoc);
3756      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3757    }
3758    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3759      assert(Chunk.Kind == DeclaratorChunk::Function);
3760      TL.setLocalRangeBegin(Chunk.Loc);
3761      TL.setLocalRangeEnd(Chunk.EndLoc);
3762
3763      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3764      TL.setLParenLoc(FTI.getLParenLoc());
3765      TL.setRParenLoc(FTI.getRParenLoc());
3766      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
3767        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3768        TL.setArg(tpi++, Param);
3769      }
3770      // FIXME: exception specs
3771    }
3772    void VisitParenTypeLoc(ParenTypeLoc TL) {
3773      assert(Chunk.Kind == DeclaratorChunk::Paren);
3774      TL.setLParenLoc(Chunk.Loc);
3775      TL.setRParenLoc(Chunk.EndLoc);
3776    }
3777
3778    void VisitTypeLoc(TypeLoc TL) {
3779      llvm_unreachable("unsupported TypeLoc kind in declarator!");
3780    }
3781  };
3782}
3783
3784static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
3785  SourceLocation Loc;
3786  switch (Chunk.Kind) {
3787  case DeclaratorChunk::Function:
3788  case DeclaratorChunk::Array:
3789  case DeclaratorChunk::Paren:
3790    llvm_unreachable("cannot be _Atomic qualified");
3791
3792  case DeclaratorChunk::Pointer:
3793    Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
3794    break;
3795
3796  case DeclaratorChunk::BlockPointer:
3797  case DeclaratorChunk::Reference:
3798  case DeclaratorChunk::MemberPointer:
3799    // FIXME: Provide a source location for the _Atomic keyword.
3800    break;
3801  }
3802
3803  ATL.setKWLoc(Loc);
3804  ATL.setParensRange(SourceRange());
3805}
3806
3807/// \brief Create and instantiate a TypeSourceInfo with type source information.
3808///
3809/// \param T QualType referring to the type as written in source code.
3810///
3811/// \param ReturnTypeInfo For declarators whose return type does not show
3812/// up in the normal place in the declaration specifiers (such as a C++
3813/// conversion function), this pointer will refer to a type source information
3814/// for that return type.
3815TypeSourceInfo *
3816Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3817                                     TypeSourceInfo *ReturnTypeInfo) {
3818  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3819  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3820
3821  // Handle parameter packs whose type is a pack expansion.
3822  if (isa<PackExpansionType>(T)) {
3823    CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
3824    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3825  }
3826
3827  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3828    // An AtomicTypeLoc might be produced by an atomic qualifier in this
3829    // declarator chunk.
3830    if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
3831      fillAtomicQualLoc(ATL, D.getTypeObject(i));
3832      CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
3833    }
3834
3835    while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
3836      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3837      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3838    }
3839
3840    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3841    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3842  }
3843
3844  // If we have different source information for the return type, use
3845  // that.  This really only applies to C++ conversion functions.
3846  if (ReturnTypeInfo) {
3847    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3848    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3849    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3850  } else {
3851    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3852  }
3853
3854  return TInfo;
3855}
3856
3857/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3858ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3859  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3860  // and Sema during declaration parsing. Try deallocating/caching them when
3861  // it's appropriate, instead of allocating them and keeping them around.
3862  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3863                                                       TypeAlignment);
3864  new (LocT) LocInfoType(T, TInfo);
3865  assert(LocT->getTypeClass() != T->getTypeClass() &&
3866         "LocInfoType's TypeClass conflicts with an existing Type class");
3867  return ParsedType::make(QualType(LocT, 0));
3868}
3869
3870void LocInfoType::getAsStringInternal(std::string &Str,
3871                                      const PrintingPolicy &Policy) const {
3872  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3873         " was used directly instead of getting the QualType through"
3874         " GetTypeFromParser");
3875}
3876
3877TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3878  // C99 6.7.6: Type names have no identifier.  This is already validated by
3879  // the parser.
3880  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3881
3882  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3883  QualType T = TInfo->getType();
3884  if (D.isInvalidType())
3885    return true;
3886
3887  // Make sure there are no unused decl attributes on the declarator.
3888  // We don't want to do this for ObjC parameters because we're going
3889  // to apply them to the actual parameter declaration.
3890  // Likewise, we don't want to do this for alias declarations, because
3891  // we are actually going to build a declaration from this eventually.
3892  if (D.getContext() != Declarator::ObjCParameterContext &&
3893      D.getContext() != Declarator::AliasDeclContext &&
3894      D.getContext() != Declarator::AliasTemplateContext)
3895    checkUnusedDeclAttributes(D);
3896
3897  if (getLangOpts().CPlusPlus) {
3898    // Check that there are no default arguments (C++ only).
3899    CheckExtraCXXDefaultArguments(D);
3900  }
3901
3902  return CreateParsedType(T, TInfo);
3903}
3904
3905ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3906  QualType T = Context.getObjCInstanceType();
3907  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3908  return CreateParsedType(T, TInfo);
3909}
3910
3911
3912//===----------------------------------------------------------------------===//
3913// Type Attribute Processing
3914//===----------------------------------------------------------------------===//
3915
3916/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3917/// specified type.  The attribute contains 1 argument, the id of the address
3918/// space for the type.
3919static void HandleAddressSpaceTypeAttribute(QualType &Type,
3920                                            const AttributeList &Attr, Sema &S){
3921
3922  // If this type is already address space qualified, reject it.
3923  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3924  // qualifiers for two or more different address spaces."
3925  if (Type.getAddressSpace()) {
3926    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3927    Attr.setInvalid();
3928    return;
3929  }
3930
3931  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3932  // qualified by an address-space qualifier."
3933  if (Type->isFunctionType()) {
3934    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3935    Attr.setInvalid();
3936    return;
3937  }
3938
3939  // Check the attribute arguments.
3940  if (Attr.getNumArgs() != 1) {
3941    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
3942      << Attr.getName() << 1;
3943    Attr.setInvalid();
3944    return;
3945  }
3946  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
3947  llvm::APSInt addrSpace(32);
3948  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3949      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3950    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
3951      << Attr.getName() << AANT_ArgumentIntegerConstant
3952      << ASArgExpr->getSourceRange();
3953    Attr.setInvalid();
3954    return;
3955  }
3956
3957  // Bounds checking.
3958  if (addrSpace.isSigned()) {
3959    if (addrSpace.isNegative()) {
3960      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3961        << ASArgExpr->getSourceRange();
3962      Attr.setInvalid();
3963      return;
3964    }
3965    addrSpace.setIsSigned(false);
3966  }
3967  llvm::APSInt max(addrSpace.getBitWidth());
3968  max = Qualifiers::MaxAddressSpace;
3969  if (addrSpace > max) {
3970    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3971      << int(Qualifiers::MaxAddressSpace) << ASArgExpr->getSourceRange();
3972    Attr.setInvalid();
3973    return;
3974  }
3975
3976  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3977  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3978}
3979
3980/// Does this type have a "direct" ownership qualifier?  That is,
3981/// is it written like "__strong id", as opposed to something like
3982/// "typeof(foo)", where that happens to be strong?
3983static bool hasDirectOwnershipQualifier(QualType type) {
3984  // Fast path: no qualifier at all.
3985  assert(type.getQualifiers().hasObjCLifetime());
3986
3987  while (true) {
3988    // __strong id
3989    if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
3990      if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
3991        return true;
3992
3993      type = attr->getModifiedType();
3994
3995    // X *__strong (...)
3996    } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
3997      type = paren->getInnerType();
3998
3999    // That's it for things we want to complain about.  In particular,
4000    // we do not want to look through typedefs, typeof(expr),
4001    // typeof(type), or any other way that the type is somehow
4002    // abstracted.
4003    } else {
4004
4005      return false;
4006    }
4007  }
4008}
4009
4010/// handleObjCOwnershipTypeAttr - Process an objc_ownership
4011/// attribute on the specified type.
4012///
4013/// Returns 'true' if the attribute was handled.
4014static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
4015                                       AttributeList &attr,
4016                                       QualType &type) {
4017  bool NonObjCPointer = false;
4018
4019  if (!type->isDependentType() && !type->isUndeducedType()) {
4020    if (const PointerType *ptr = type->getAs<PointerType>()) {
4021      QualType pointee = ptr->getPointeeType();
4022      if (pointee->isObjCRetainableType() || pointee->isPointerType())
4023        return false;
4024      // It is important not to lose the source info that there was an attribute
4025      // applied to non-objc pointer. We will create an attributed type but
4026      // its type will be the same as the original type.
4027      NonObjCPointer = true;
4028    } else if (!type->isObjCRetainableType()) {
4029      return false;
4030    }
4031
4032    // Don't accept an ownership attribute in the declspec if it would
4033    // just be the return type of a block pointer.
4034    if (state.isProcessingDeclSpec()) {
4035      Declarator &D = state.getDeclarator();
4036      if (maybeMovePastReturnType(D, D.getNumTypeObjects()))
4037        return false;
4038    }
4039  }
4040
4041  Sema &S = state.getSema();
4042  SourceLocation AttrLoc = attr.getLoc();
4043  if (AttrLoc.isMacroID())
4044    AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
4045
4046  if (!attr.isArgIdent(0)) {
4047    S.Diag(AttrLoc, diag::err_attribute_argument_type)
4048      << attr.getName() << AANT_ArgumentString;
4049    attr.setInvalid();
4050    return true;
4051  }
4052
4053  // Consume lifetime attributes without further comment outside of
4054  // ARC mode.
4055  if (!S.getLangOpts().ObjCAutoRefCount)
4056    return true;
4057
4058  IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
4059  Qualifiers::ObjCLifetime lifetime;
4060  if (II->isStr("none"))
4061    lifetime = Qualifiers::OCL_ExplicitNone;
4062  else if (II->isStr("strong"))
4063    lifetime = Qualifiers::OCL_Strong;
4064  else if (II->isStr("weak"))
4065    lifetime = Qualifiers::OCL_Weak;
4066  else if (II->isStr("autoreleasing"))
4067    lifetime = Qualifiers::OCL_Autoreleasing;
4068  else {
4069    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
4070      << attr.getName() << II;
4071    attr.setInvalid();
4072    return true;
4073  }
4074
4075  SplitQualType underlyingType = type.split();
4076
4077  // Check for redundant/conflicting ownership qualifiers.
4078  if (Qualifiers::ObjCLifetime previousLifetime
4079        = type.getQualifiers().getObjCLifetime()) {
4080    // If it's written directly, that's an error.
4081    if (hasDirectOwnershipQualifier(type)) {
4082      S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
4083        << type;
4084      return true;
4085    }
4086
4087    // Otherwise, if the qualifiers actually conflict, pull sugar off
4088    // until we reach a type that is directly qualified.
4089    if (previousLifetime != lifetime) {
4090      // This should always terminate: the canonical type is
4091      // qualified, so some bit of sugar must be hiding it.
4092      while (!underlyingType.Quals.hasObjCLifetime()) {
4093        underlyingType = underlyingType.getSingleStepDesugaredType();
4094      }
4095      underlyingType.Quals.removeObjCLifetime();
4096    }
4097  }
4098
4099  underlyingType.Quals.addObjCLifetime(lifetime);
4100
4101  if (NonObjCPointer) {
4102    StringRef name = attr.getName()->getName();
4103    switch (lifetime) {
4104    case Qualifiers::OCL_None:
4105    case Qualifiers::OCL_ExplicitNone:
4106      break;
4107    case Qualifiers::OCL_Strong: name = "__strong"; break;
4108    case Qualifiers::OCL_Weak: name = "__weak"; break;
4109    case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
4110    }
4111    S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
4112      << TDS_ObjCObjOrBlock << type;
4113  }
4114
4115  QualType origType = type;
4116  if (!NonObjCPointer)
4117    type = S.Context.getQualifiedType(underlyingType);
4118
4119  // If we have a valid source location for the attribute, use an
4120  // AttributedType instead.
4121  if (AttrLoc.isValid())
4122    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
4123                                       origType, type);
4124
4125  // Forbid __weak if the runtime doesn't support it.
4126  if (lifetime == Qualifiers::OCL_Weak &&
4127      !S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {
4128
4129    // Actually, delay this until we know what we're parsing.
4130    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
4131      S.DelayedDiagnostics.add(
4132          sema::DelayedDiagnostic::makeForbiddenType(
4133              S.getSourceManager().getExpansionLoc(AttrLoc),
4134              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
4135    } else {
4136      S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
4137    }
4138
4139    attr.setInvalid();
4140    return true;
4141  }
4142
4143  // Forbid __weak for class objects marked as
4144  // objc_arc_weak_reference_unavailable
4145  if (lifetime == Qualifiers::OCL_Weak) {
4146    if (const ObjCObjectPointerType *ObjT =
4147          type->getAs<ObjCObjectPointerType>()) {
4148      if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
4149        if (Class->isArcWeakrefUnavailable()) {
4150            S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
4151            S.Diag(ObjT->getInterfaceDecl()->getLocation(),
4152                   diag::note_class_declared);
4153        }
4154      }
4155    }
4156  }
4157
4158  return true;
4159}
4160
4161/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
4162/// attribute on the specified type.  Returns true to indicate that
4163/// the attribute was handled, false to indicate that the type does
4164/// not permit the attribute.
4165static bool handleObjCGCTypeAttr(TypeProcessingState &state,
4166                                 AttributeList &attr,
4167                                 QualType &type) {
4168  Sema &S = state.getSema();
4169
4170  // Delay if this isn't some kind of pointer.
4171  if (!type->isPointerType() &&
4172      !type->isObjCObjectPointerType() &&
4173      !type->isBlockPointerType())
4174    return false;
4175
4176  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
4177    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
4178    attr.setInvalid();
4179    return true;
4180  }
4181
4182  // Check the attribute arguments.
4183  if (!attr.isArgIdent(0)) {
4184    S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
4185      << attr.getName() << AANT_ArgumentString;
4186    attr.setInvalid();
4187    return true;
4188  }
4189  Qualifiers::GC GCAttr;
4190  if (attr.getNumArgs() > 1) {
4191    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4192      << attr.getName() << 1;
4193    attr.setInvalid();
4194    return true;
4195  }
4196
4197  IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
4198  if (II->isStr("weak"))
4199    GCAttr = Qualifiers::Weak;
4200  else if (II->isStr("strong"))
4201    GCAttr = Qualifiers::Strong;
4202  else {
4203    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
4204      << attr.getName() << II;
4205    attr.setInvalid();
4206    return true;
4207  }
4208
4209  QualType origType = type;
4210  type = S.Context.getObjCGCQualType(origType, GCAttr);
4211
4212  // Make an attributed type to preserve the source information.
4213  if (attr.getLoc().isValid())
4214    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
4215                                       origType, type);
4216
4217  return true;
4218}
4219
4220namespace {
4221  /// A helper class to unwrap a type down to a function for the
4222  /// purposes of applying attributes there.
4223  ///
4224  /// Use:
4225  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
4226  ///   if (unwrapped.isFunctionType()) {
4227  ///     const FunctionType *fn = unwrapped.get();
4228  ///     // change fn somehow
4229  ///     T = unwrapped.wrap(fn);
4230  ///   }
4231  struct FunctionTypeUnwrapper {
4232    enum WrapKind {
4233      Desugar,
4234      Parens,
4235      Pointer,
4236      BlockPointer,
4237      Reference,
4238      MemberPointer
4239    };
4240
4241    QualType Original;
4242    const FunctionType *Fn;
4243    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
4244
4245    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
4246      while (true) {
4247        const Type *Ty = T.getTypePtr();
4248        if (isa<FunctionType>(Ty)) {
4249          Fn = cast<FunctionType>(Ty);
4250          return;
4251        } else if (isa<ParenType>(Ty)) {
4252          T = cast<ParenType>(Ty)->getInnerType();
4253          Stack.push_back(Parens);
4254        } else if (isa<PointerType>(Ty)) {
4255          T = cast<PointerType>(Ty)->getPointeeType();
4256          Stack.push_back(Pointer);
4257        } else if (isa<BlockPointerType>(Ty)) {
4258          T = cast<BlockPointerType>(Ty)->getPointeeType();
4259          Stack.push_back(BlockPointer);
4260        } else if (isa<MemberPointerType>(Ty)) {
4261          T = cast<MemberPointerType>(Ty)->getPointeeType();
4262          Stack.push_back(MemberPointer);
4263        } else if (isa<ReferenceType>(Ty)) {
4264          T = cast<ReferenceType>(Ty)->getPointeeType();
4265          Stack.push_back(Reference);
4266        } else {
4267          const Type *DTy = Ty->getUnqualifiedDesugaredType();
4268          if (Ty == DTy) {
4269            Fn = 0;
4270            return;
4271          }
4272
4273          T = QualType(DTy, 0);
4274          Stack.push_back(Desugar);
4275        }
4276      }
4277    }
4278
4279    bool isFunctionType() const { return (Fn != 0); }
4280    const FunctionType *get() const { return Fn; }
4281
4282    QualType wrap(Sema &S, const FunctionType *New) {
4283      // If T wasn't modified from the unwrapped type, do nothing.
4284      if (New == get()) return Original;
4285
4286      Fn = New;
4287      return wrap(S.Context, Original, 0);
4288    }
4289
4290  private:
4291    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
4292      if (I == Stack.size())
4293        return C.getQualifiedType(Fn, Old.getQualifiers());
4294
4295      // Build up the inner type, applying the qualifiers from the old
4296      // type to the new type.
4297      SplitQualType SplitOld = Old.split();
4298
4299      // As a special case, tail-recurse if there are no qualifiers.
4300      if (SplitOld.Quals.empty())
4301        return wrap(C, SplitOld.Ty, I);
4302      return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
4303    }
4304
4305    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
4306      if (I == Stack.size()) return QualType(Fn, 0);
4307
4308      switch (static_cast<WrapKind>(Stack[I++])) {
4309      case Desugar:
4310        // This is the point at which we potentially lose source
4311        // information.
4312        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
4313
4314      case Parens: {
4315        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
4316        return C.getParenType(New);
4317      }
4318
4319      case Pointer: {
4320        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
4321        return C.getPointerType(New);
4322      }
4323
4324      case BlockPointer: {
4325        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
4326        return C.getBlockPointerType(New);
4327      }
4328
4329      case MemberPointer: {
4330        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
4331        QualType New = wrap(C, OldMPT->getPointeeType(), I);
4332        return C.getMemberPointerType(New, OldMPT->getClass());
4333      }
4334
4335      case Reference: {
4336        const ReferenceType *OldRef = cast<ReferenceType>(Old);
4337        QualType New = wrap(C, OldRef->getPointeeType(), I);
4338        if (isa<LValueReferenceType>(OldRef))
4339          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
4340        else
4341          return C.getRValueReferenceType(New);
4342      }
4343      }
4344
4345      llvm_unreachable("unknown wrapping kind");
4346    }
4347  };
4348}
4349
4350static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
4351                                             AttributeList &Attr,
4352                                             QualType &Type) {
4353  Sema &S = State.getSema();
4354
4355  AttributeList::Kind Kind = Attr.getKind();
4356  QualType Desugared = Type;
4357  const AttributedType *AT = dyn_cast<AttributedType>(Type);
4358  while (AT) {
4359    AttributedType::Kind CurAttrKind = AT->getAttrKind();
4360
4361    // You cannot specify duplicate type attributes, so if the attribute has
4362    // already been applied, flag it.
4363    if (getAttrListKind(CurAttrKind) == Kind) {
4364      S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute_exact)
4365        << Attr.getName();
4366      return true;
4367    }
4368
4369    // You cannot have both __sptr and __uptr on the same type, nor can you
4370    // have __ptr32 and __ptr64.
4371    if ((CurAttrKind == AttributedType::attr_ptr32 &&
4372         Kind == AttributeList::AT_Ptr64) ||
4373        (CurAttrKind == AttributedType::attr_ptr64 &&
4374         Kind == AttributeList::AT_Ptr32)) {
4375      S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
4376        << "'__ptr32'" << "'__ptr64'";
4377      return true;
4378    } else if ((CurAttrKind == AttributedType::attr_sptr &&
4379                Kind == AttributeList::AT_UPtr) ||
4380               (CurAttrKind == AttributedType::attr_uptr &&
4381                Kind == AttributeList::AT_SPtr)) {
4382      S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
4383        << "'__sptr'" << "'__uptr'";
4384      return true;
4385    }
4386
4387    Desugared = AT->getEquivalentType();
4388    AT = dyn_cast<AttributedType>(Desugared);
4389  }
4390
4391  // Pointer type qualifiers can only operate on pointer types, but not
4392  // pointer-to-member types.
4393  if (!isa<PointerType>(Desugared)) {
4394    S.Diag(Attr.getLoc(), Type->isMemberPointerType() ?
4395                          diag::err_attribute_no_member_pointers :
4396                          diag::err_attribute_pointers_only) << Attr.getName();
4397    return true;
4398  }
4399
4400  AttributedType::Kind TAK;
4401  switch (Kind) {
4402  default: llvm_unreachable("Unknown attribute kind");
4403  case AttributeList::AT_Ptr32: TAK = AttributedType::attr_ptr32; break;
4404  case AttributeList::AT_Ptr64: TAK = AttributedType::attr_ptr64; break;
4405  case AttributeList::AT_SPtr: TAK = AttributedType::attr_sptr; break;
4406  case AttributeList::AT_UPtr: TAK = AttributedType::attr_uptr; break;
4407  }
4408
4409  Type = S.Context.getAttributedType(TAK, Type, Type);
4410  return false;
4411}
4412
4413static AttributedType::Kind getCCTypeAttrKind(AttributeList &Attr) {
4414  assert(!Attr.isInvalid());
4415  switch (Attr.getKind()) {
4416  default:
4417    llvm_unreachable("not a calling convention attribute");
4418  case AttributeList::AT_CDecl:
4419    return AttributedType::attr_cdecl;
4420  case AttributeList::AT_FastCall:
4421    return AttributedType::attr_fastcall;
4422  case AttributeList::AT_StdCall:
4423    return AttributedType::attr_stdcall;
4424  case AttributeList::AT_ThisCall:
4425    return AttributedType::attr_thiscall;
4426  case AttributeList::AT_Pascal:
4427    return AttributedType::attr_pascal;
4428  case AttributeList::AT_Pcs: {
4429    // The attribute may have had a fixit applied where we treated an
4430    // identifier as a string literal.  The contents of the string are valid,
4431    // but the form may not be.
4432    StringRef Str;
4433    if (Attr.isArgExpr(0))
4434      Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
4435    else
4436      Str = Attr.getArgAsIdent(0)->Ident->getName();
4437    return llvm::StringSwitch<AttributedType::Kind>(Str)
4438        .Case("aapcs", AttributedType::attr_pcs)
4439        .Case("aapcs-vfp", AttributedType::attr_pcs_vfp);
4440  }
4441  case AttributeList::AT_PnaclCall:
4442    return AttributedType::attr_pnaclcall;
4443  case AttributeList::AT_IntelOclBicc:
4444    return AttributedType::attr_inteloclbicc;
4445  case AttributeList::AT_MSABI:
4446    return AttributedType::attr_ms_abi;
4447  case AttributeList::AT_SysVABI:
4448    return AttributedType::attr_sysv_abi;
4449  }
4450  llvm_unreachable("unexpected attribute kind!");
4451}
4452
4453/// Process an individual function attribute.  Returns true to
4454/// indicate that the attribute was handled, false if it wasn't.
4455static bool handleFunctionTypeAttr(TypeProcessingState &state,
4456                                   AttributeList &attr,
4457                                   QualType &type) {
4458  Sema &S = state.getSema();
4459
4460  FunctionTypeUnwrapper unwrapped(S, type);
4461
4462  if (attr.getKind() == AttributeList::AT_NoReturn) {
4463    if (S.CheckNoReturnAttr(attr))
4464      return true;
4465
4466    // Delay if this is not a function type.
4467    if (!unwrapped.isFunctionType())
4468      return false;
4469
4470    // Otherwise we can process right away.
4471    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
4472    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4473    return true;
4474  }
4475
4476  // ns_returns_retained is not always a type attribute, but if we got
4477  // here, we're treating it as one right now.
4478  if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
4479    assert(S.getLangOpts().ObjCAutoRefCount &&
4480           "ns_returns_retained treated as type attribute in non-ARC");
4481    if (attr.getNumArgs()) return true;
4482
4483    // Delay if this is not a function type.
4484    if (!unwrapped.isFunctionType())
4485      return false;
4486
4487    FunctionType::ExtInfo EI
4488      = unwrapped.get()->getExtInfo().withProducesResult(true);
4489    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4490    return true;
4491  }
4492
4493  if (attr.getKind() == AttributeList::AT_Regparm) {
4494    unsigned value;
4495    if (S.CheckRegparmAttr(attr, value))
4496      return true;
4497
4498    // Delay if this is not a function type.
4499    if (!unwrapped.isFunctionType())
4500      return false;
4501
4502    // Diagnose regparm with fastcall.
4503    const FunctionType *fn = unwrapped.get();
4504    CallingConv CC = fn->getCallConv();
4505    if (CC == CC_X86FastCall) {
4506      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4507        << FunctionType::getNameForCallConv(CC)
4508        << "regparm";
4509      attr.setInvalid();
4510      return true;
4511    }
4512
4513    FunctionType::ExtInfo EI =
4514      unwrapped.get()->getExtInfo().withRegParm(value);
4515    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4516    return true;
4517  }
4518
4519  // Delay if the type didn't work out to a function.
4520  if (!unwrapped.isFunctionType()) return false;
4521
4522  // Otherwise, a calling convention.
4523  CallingConv CC;
4524  if (S.CheckCallingConvAttr(attr, CC))
4525    return true;
4526
4527  const FunctionType *fn = unwrapped.get();
4528  CallingConv CCOld = fn->getCallConv();
4529  AttributedType::Kind CCAttrKind = getCCTypeAttrKind(attr);
4530
4531  if (CCOld != CC) {
4532    // Error out on when there's already an attribute on the type
4533    // and the CCs don't match.
4534    const AttributedType *AT = S.getCallingConvAttributedType(type);
4535    if (AT && AT->getAttrKind() != CCAttrKind) {
4536      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4537        << FunctionType::getNameForCallConv(CC)
4538        << FunctionType::getNameForCallConv(CCOld);
4539      attr.setInvalid();
4540      return true;
4541    }
4542  }
4543
4544  // Diagnose use of callee-cleanup calling convention on variadic functions.
4545  if (isCalleeCleanup(CC)) {
4546    const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
4547    if (FnP && FnP->isVariadic()) {
4548      unsigned DiagID = diag::err_cconv_varargs;
4549      // stdcall and fastcall are ignored with a warning for GCC and MS
4550      // compatibility.
4551      if (CC == CC_X86StdCall || CC == CC_X86FastCall)
4552        DiagID = diag::warn_cconv_varargs;
4553
4554      S.Diag(attr.getLoc(), DiagID) << FunctionType::getNameForCallConv(CC);
4555      attr.setInvalid();
4556      return true;
4557    }
4558  }
4559
4560  // Diagnose the use of X86 fastcall on unprototyped functions.
4561  if (CC == CC_X86FastCall) {
4562    if (isa<FunctionNoProtoType>(fn)) {
4563      S.Diag(attr.getLoc(), diag::err_cconv_knr)
4564        << FunctionType::getNameForCallConv(CC);
4565      attr.setInvalid();
4566      return true;
4567    }
4568
4569    // Also diagnose fastcall with regparm.
4570    if (fn->getHasRegParm()) {
4571      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4572        << "regparm"
4573        << FunctionType::getNameForCallConv(CC);
4574      attr.setInvalid();
4575      return true;
4576    }
4577  }
4578
4579  // Modify the CC from the wrapped function type, wrap it all back, and then
4580  // wrap the whole thing in an AttributedType as written.  The modified type
4581  // might have a different CC if we ignored the attribute.
4582  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
4583  QualType Equivalent =
4584      unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4585  type = S.Context.getAttributedType(CCAttrKind, type, Equivalent);
4586  return true;
4587}
4588
4589void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic) {
4590  const FunctionType *FT = T->castAs<FunctionType>();
4591  bool IsVariadic = (isa<FunctionProtoType>(FT) &&
4592                     cast<FunctionProtoType>(FT)->isVariadic());
4593  CallingConv CC = FT->getCallConv();
4594
4595  // Only adjust types with the default convention.  For example, on Windows we
4596  // should adjust a __cdecl type to __thiscall for instance methods, and a
4597  // __thiscall type to __cdecl for static methods.
4598  CallingConv DefaultCC =
4599      Context.getDefaultCallingConvention(IsVariadic, IsStatic);
4600  if (CC != DefaultCC)
4601    return;
4602
4603  // Check if there was an explicit attribute, but only look through parens.
4604  // The intent is to look for an attribute on the current declarator, but not
4605  // one that came from a typedef.
4606  QualType R = T.IgnoreParens();
4607  while (const AttributedType *AT = dyn_cast<AttributedType>(R)) {
4608    if (AT->isCallingConv())
4609      return;
4610    R = AT->getModifiedType().IgnoreParens();
4611  }
4612
4613  // FIXME: This loses sugar.  This should probably be fixed with an implicit
4614  // AttributedType node that adjusts the convention.
4615  CC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
4616  FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC));
4617  FunctionTypeUnwrapper Unwrapped(*this, T);
4618  T = Unwrapped.wrap(*this, FT);
4619}
4620
4621/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
4622static void HandleOpenCLImageAccessAttribute(QualType& CurType,
4623                                             const AttributeList &Attr,
4624                                             Sema &S) {
4625  // Check the attribute arguments.
4626  if (Attr.getNumArgs() != 1) {
4627    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4628      << Attr.getName() << 1;
4629    Attr.setInvalid();
4630    return;
4631  }
4632  Expr *sizeExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4633  llvm::APSInt arg(32);
4634  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
4635      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
4636    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
4637      << Attr.getName() << AANT_ArgumentIntegerConstant
4638      << sizeExpr->getSourceRange();
4639    Attr.setInvalid();
4640    return;
4641  }
4642  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
4643  switch (iarg) {
4644  case CLIA_read_only:
4645  case CLIA_write_only:
4646  case CLIA_read_write:
4647    // Implemented in a separate patch
4648    break;
4649  default:
4650    // Implemented in a separate patch
4651    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4652      << sizeExpr->getSourceRange();
4653    Attr.setInvalid();
4654    break;
4655  }
4656}
4657
4658/// HandleVectorSizeAttribute - this attribute is only applicable to integral
4659/// and float scalars, although arrays, pointers, and function return values are
4660/// allowed in conjunction with this construct. Aggregates with this attribute
4661/// are invalid, even if they are of the same size as a corresponding scalar.
4662/// The raw attribute should contain precisely 1 argument, the vector size for
4663/// the variable, measured in bytes. If curType and rawAttr are well formed,
4664/// this routine will return a new vector type.
4665static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
4666                                 Sema &S) {
4667  // Check the attribute arguments.
4668  if (Attr.getNumArgs() != 1) {
4669    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4670      << Attr.getName() << 1;
4671    Attr.setInvalid();
4672    return;
4673  }
4674  Expr *sizeExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4675  llvm::APSInt vecSize(32);
4676  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
4677      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
4678    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
4679      << Attr.getName() << AANT_ArgumentIntegerConstant
4680      << sizeExpr->getSourceRange();
4681    Attr.setInvalid();
4682    return;
4683  }
4684  // The base type must be integer (not Boolean or enumeration) or float, and
4685  // can't already be a vector.
4686  if (!CurType->isBuiltinType() || CurType->isBooleanType() ||
4687      (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
4688    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
4689    Attr.setInvalid();
4690    return;
4691  }
4692  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4693  // vecSize is specified in bytes - convert to bits.
4694  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
4695
4696  // the vector size needs to be an integral multiple of the type size.
4697  if (vectorSize % typeSize) {
4698    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4699      << sizeExpr->getSourceRange();
4700    Attr.setInvalid();
4701    return;
4702  }
4703  if (VectorType::isVectorSizeTooLarge(vectorSize / typeSize)) {
4704    S.Diag(Attr.getLoc(), diag::err_attribute_size_too_large)
4705      << sizeExpr->getSourceRange();
4706    Attr.setInvalid();
4707    return;
4708  }
4709  if (vectorSize == 0) {
4710    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
4711      << sizeExpr->getSourceRange();
4712    Attr.setInvalid();
4713    return;
4714  }
4715
4716  // Success! Instantiate the vector type, the number of elements is > 0, and
4717  // not required to be a power of 2, unlike GCC.
4718  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
4719                                    VectorType::GenericVector);
4720}
4721
4722/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
4723/// a type.
4724static void HandleExtVectorTypeAttr(QualType &CurType,
4725                                    const AttributeList &Attr,
4726                                    Sema &S) {
4727  // check the attribute arguments.
4728  if (Attr.getNumArgs() != 1) {
4729    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4730      << Attr.getName() << 1;
4731    return;
4732  }
4733
4734  Expr *sizeExpr;
4735
4736  // Special case where the argument is a template id.
4737  if (Attr.isArgIdent(0)) {
4738    CXXScopeSpec SS;
4739    SourceLocation TemplateKWLoc;
4740    UnqualifiedId id;
4741    id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
4742
4743    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
4744                                          id, false, false);
4745    if (Size.isInvalid())
4746      return;
4747
4748    sizeExpr = Size.get();
4749  } else {
4750    sizeExpr = Attr.getArgAsExpr(0);
4751  }
4752
4753  // Create the vector type.
4754  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
4755  if (!T.isNull())
4756    CurType = T;
4757}
4758
4759static bool isPermittedNeonBaseType(QualType &Ty,
4760                                    VectorType::VectorKind VecKind,
4761                                    bool IsAArch64) {
4762  const BuiltinType *BTy = Ty->getAs<BuiltinType>();
4763  if (!BTy)
4764    return false;
4765
4766  if (VecKind == VectorType::NeonPolyVector) {
4767    if (IsAArch64) {
4768      // AArch64 polynomial vectors are unsigned and support poly64.
4769      return BTy->getKind() == BuiltinType::UChar ||
4770             BTy->getKind() == BuiltinType::UShort ||
4771             BTy->getKind() == BuiltinType::ULongLong;
4772    } else {
4773      // AArch32 polynomial vector are signed.
4774      return BTy->getKind() == BuiltinType::SChar ||
4775             BTy->getKind() == BuiltinType::Short;
4776    }
4777  }
4778
4779  // Non-polynomial vector types: the usual suspects are allowed, as well as
4780  // float64_t on AArch64.
4781  if (IsAArch64 && BTy->getKind() == BuiltinType::Double)
4782    return true;
4783
4784  return BTy->getKind() == BuiltinType::SChar ||
4785         BTy->getKind() == BuiltinType::UChar ||
4786         BTy->getKind() == BuiltinType::Short ||
4787         BTy->getKind() == BuiltinType::UShort ||
4788         BTy->getKind() == BuiltinType::Int ||
4789         BTy->getKind() == BuiltinType::UInt ||
4790         BTy->getKind() == BuiltinType::LongLong ||
4791         BTy->getKind() == BuiltinType::ULongLong ||
4792         BTy->getKind() == BuiltinType::Float ||
4793         BTy->getKind() == BuiltinType::Half;
4794}
4795
4796/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
4797/// "neon_polyvector_type" attributes are used to create vector types that
4798/// are mangled according to ARM's ABI.  Otherwise, these types are identical
4799/// to those created with the "vector_size" attribute.  Unlike "vector_size"
4800/// the argument to these Neon attributes is the number of vector elements,
4801/// not the vector size in bytes.  The vector width and element type must
4802/// match one of the standard Neon vector types.
4803static void HandleNeonVectorTypeAttr(QualType& CurType,
4804                                     const AttributeList &Attr, Sema &S,
4805                                     VectorType::VectorKind VecKind) {
4806  // Target must have NEON
4807  if (!S.Context.getTargetInfo().hasFeature("neon")) {
4808    S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr.getName();
4809    Attr.setInvalid();
4810    return;
4811  }
4812  // Check the attribute arguments.
4813  if (Attr.getNumArgs() != 1) {
4814    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4815      << Attr.getName() << 1;
4816    Attr.setInvalid();
4817    return;
4818  }
4819  // The number of elements must be an ICE.
4820  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4821  llvm::APSInt numEltsInt(32);
4822  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
4823      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
4824    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
4825      << Attr.getName() << AANT_ArgumentIntegerConstant
4826      << numEltsExpr->getSourceRange();
4827    Attr.setInvalid();
4828    return;
4829  }
4830  // Only certain element types are supported for Neon vectors.
4831  llvm::Triple::ArchType Arch =
4832        S.Context.getTargetInfo().getTriple().getArch();
4833  if (!isPermittedNeonBaseType(CurType, VecKind,
4834                               Arch == llvm::Triple::aarch64)) {
4835    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
4836    Attr.setInvalid();
4837    return;
4838  }
4839
4840  // The total size of the vector must be 64 or 128 bits.
4841  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4842  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
4843  unsigned vecSize = typeSize * numElts;
4844  if (vecSize != 64 && vecSize != 128) {
4845    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
4846    Attr.setInvalid();
4847    return;
4848  }
4849
4850  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
4851}
4852
4853static void processTypeAttrs(TypeProcessingState &state, QualType &type,
4854                             TypeAttrLocation TAL, AttributeList *attrs) {
4855  // Scan through and apply attributes to this type where it makes sense.  Some
4856  // attributes (such as __address_space__, __vector_size__, etc) apply to the
4857  // type, but others can be present in the type specifiers even though they
4858  // apply to the decl.  Here we apply type attributes and ignore the rest.
4859
4860  AttributeList *next;
4861  do {
4862    AttributeList &attr = *attrs;
4863    next = attr.getNext();
4864
4865    // Skip attributes that were marked to be invalid.
4866    if (attr.isInvalid())
4867      continue;
4868
4869    if (attr.isCXX11Attribute()) {
4870      // [[gnu::...]] attributes are treated as declaration attributes, so may
4871      // not appertain to a DeclaratorChunk, even if we handle them as type
4872      // attributes.
4873      if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
4874        if (TAL == TAL_DeclChunk) {
4875          state.getSema().Diag(attr.getLoc(),
4876                               diag::warn_cxx11_gnu_attribute_on_type)
4877              << attr.getName();
4878          continue;
4879        }
4880      } else if (TAL != TAL_DeclChunk) {
4881        // Otherwise, only consider type processing for a C++11 attribute if
4882        // it's actually been applied to a type.
4883        continue;
4884      }
4885    }
4886
4887    // If this is an attribute we can handle, do so now,
4888    // otherwise, add it to the FnAttrs list for rechaining.
4889    switch (attr.getKind()) {
4890    default:
4891      // A C++11 attribute on a declarator chunk must appertain to a type.
4892      if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
4893        state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
4894          << attr.getName();
4895        attr.setUsedAsTypeAttr();
4896      }
4897      break;
4898
4899    case AttributeList::UnknownAttribute:
4900      if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
4901        state.getSema().Diag(attr.getLoc(),
4902                             diag::warn_unknown_attribute_ignored)
4903          << attr.getName();
4904      break;
4905
4906    case AttributeList::IgnoredAttribute:
4907      break;
4908
4909    case AttributeList::AT_MayAlias:
4910      // FIXME: This attribute needs to actually be handled, but if we ignore
4911      // it it breaks large amounts of Linux software.
4912      attr.setUsedAsTypeAttr();
4913      break;
4914    case AttributeList::AT_AddressSpace:
4915      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
4916      attr.setUsedAsTypeAttr();
4917      break;
4918    OBJC_POINTER_TYPE_ATTRS_CASELIST:
4919      if (!handleObjCPointerTypeAttr(state, attr, type))
4920        distributeObjCPointerTypeAttr(state, attr, type);
4921      attr.setUsedAsTypeAttr();
4922      break;
4923    case AttributeList::AT_VectorSize:
4924      HandleVectorSizeAttr(type, attr, state.getSema());
4925      attr.setUsedAsTypeAttr();
4926      break;
4927    case AttributeList::AT_ExtVectorType:
4928      HandleExtVectorTypeAttr(type, attr, state.getSema());
4929      attr.setUsedAsTypeAttr();
4930      break;
4931    case AttributeList::AT_NeonVectorType:
4932      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4933                               VectorType::NeonVector);
4934      attr.setUsedAsTypeAttr();
4935      break;
4936    case AttributeList::AT_NeonPolyVectorType:
4937      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4938                               VectorType::NeonPolyVector);
4939      attr.setUsedAsTypeAttr();
4940      break;
4941    case AttributeList::AT_OpenCLImageAccess:
4942      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
4943      attr.setUsedAsTypeAttr();
4944      break;
4945
4946    case AttributeList::AT_Win64:
4947      attr.setUsedAsTypeAttr();
4948      break;
4949    MS_TYPE_ATTRS_CASELIST:
4950      if (!handleMSPointerTypeQualifierAttr(state, attr, type))
4951        attr.setUsedAsTypeAttr();
4952      break;
4953
4954    case AttributeList::AT_NSReturnsRetained:
4955      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
4956        break;
4957      // fallthrough into the function attrs
4958
4959    FUNCTION_TYPE_ATTRS_CASELIST:
4960      attr.setUsedAsTypeAttr();
4961
4962      // Never process function type attributes as part of the
4963      // declaration-specifiers.
4964      if (TAL == TAL_DeclSpec)
4965        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
4966
4967      // Otherwise, handle the possible delays.
4968      else if (!handleFunctionTypeAttr(state, attr, type))
4969        distributeFunctionTypeAttr(state, attr, type);
4970      break;
4971    }
4972  } while ((attrs = next));
4973}
4974
4975/// \brief Ensure that the type of the given expression is complete.
4976///
4977/// This routine checks whether the expression \p E has a complete type. If the
4978/// expression refers to an instantiable construct, that instantiation is
4979/// performed as needed to complete its type. Furthermore
4980/// Sema::RequireCompleteType is called for the expression's type (or in the
4981/// case of a reference type, the referred-to type).
4982///
4983/// \param E The expression whose type is required to be complete.
4984/// \param Diagnoser The object that will emit a diagnostic if the type is
4985/// incomplete.
4986///
4987/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
4988/// otherwise.
4989bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
4990  QualType T = E->getType();
4991
4992  // Fast path the case where the type is already complete.
4993  if (!T->isIncompleteType())
4994    // FIXME: The definition might not be visible.
4995    return false;
4996
4997  // Incomplete array types may be completed by the initializer attached to
4998  // their definitions. For static data members of class templates and for
4999  // variable templates, we need to instantiate the definition to get this
5000  // initializer and complete the type.
5001  if (T->isIncompleteArrayType()) {
5002    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
5003      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
5004        if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
5005          SourceLocation PointOfInstantiation = E->getExprLoc();
5006
5007          if (MemberSpecializationInfo *MSInfo =
5008                  Var->getMemberSpecializationInfo()) {
5009            // If we don't already have a point of instantiation, this is it.
5010            if (MSInfo->getPointOfInstantiation().isInvalid()) {
5011              MSInfo->setPointOfInstantiation(PointOfInstantiation);
5012
5013              // This is a modification of an existing AST node. Notify
5014              // listeners.
5015              if (ASTMutationListener *L = getASTMutationListener())
5016                L->StaticDataMemberInstantiated(Var);
5017            }
5018          } else {
5019            VarTemplateSpecializationDecl *VarSpec =
5020                cast<VarTemplateSpecializationDecl>(Var);
5021            if (VarSpec->getPointOfInstantiation().isInvalid())
5022              VarSpec->setPointOfInstantiation(PointOfInstantiation);
5023          }
5024
5025          InstantiateVariableDefinition(PointOfInstantiation, Var);
5026
5027          // Update the type to the newly instantiated definition's type both
5028          // here and within the expression.
5029          if (VarDecl *Def = Var->getDefinition()) {
5030            DRE->setDecl(Def);
5031            T = Def->getType();
5032            DRE->setType(T);
5033            E->setType(T);
5034          }
5035
5036          // We still go on to try to complete the type independently, as it
5037          // may also require instantiations or diagnostics if it remains
5038          // incomplete.
5039        }
5040      }
5041    }
5042  }
5043
5044  // FIXME: Are there other cases which require instantiating something other
5045  // than the type to complete the type of an expression?
5046
5047  // Look through reference types and complete the referred type.
5048  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
5049    T = Ref->getPointeeType();
5050
5051  return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
5052}
5053
5054namespace {
5055  struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
5056    unsigned DiagID;
5057
5058    TypeDiagnoserDiag(unsigned DiagID)
5059      : Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
5060
5061    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
5062      if (Suppressed) return;
5063      S.Diag(Loc, DiagID) << T;
5064    }
5065  };
5066}
5067
5068bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
5069  TypeDiagnoserDiag Diagnoser(DiagID);
5070  return RequireCompleteExprType(E, Diagnoser);
5071}
5072
5073/// @brief Ensure that the type T is a complete type.
5074///
5075/// This routine checks whether the type @p T is complete in any
5076/// context where a complete type is required. If @p T is a complete
5077/// type, returns false. If @p T is a class template specialization,
5078/// this routine then attempts to perform class template
5079/// instantiation. If instantiation fails, or if @p T is incomplete
5080/// and cannot be completed, issues the diagnostic @p diag (giving it
5081/// the type @p T) and returns true.
5082///
5083/// @param Loc  The location in the source that the incomplete type
5084/// diagnostic should refer to.
5085///
5086/// @param T  The type that this routine is examining for completeness.
5087///
5088/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
5089/// @c false otherwise.
5090bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
5091                               TypeDiagnoser &Diagnoser) {
5092  if (RequireCompleteTypeImpl(Loc, T, Diagnoser))
5093    return true;
5094  if (const TagType *Tag = T->getAs<TagType>()) {
5095    if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
5096      Tag->getDecl()->setCompleteDefinitionRequired();
5097      Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
5098    }
5099  }
5100  return false;
5101}
5102
5103/// \brief The implementation of RequireCompleteType
5104bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
5105                                   TypeDiagnoser &Diagnoser) {
5106  // FIXME: Add this assertion to make sure we always get instantiation points.
5107  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
5108  // FIXME: Add this assertion to help us flush out problems with
5109  // checking for dependent types and type-dependent expressions.
5110  //
5111  //  assert(!T->isDependentType() &&
5112  //         "Can't ask whether a dependent type is complete");
5113
5114  // If we have a complete type, we're done.
5115  NamedDecl *Def = 0;
5116  if (!T->isIncompleteType(&Def)) {
5117    // If we know about the definition but it is not visible, complain.
5118    if (!Diagnoser.Suppressed && Def && !LookupResult::isVisible(*this, Def)) {
5119      // Suppress this error outside of a SFINAE context if we've already
5120      // emitted the error once for this type. There's no usefulness in
5121      // repeating the diagnostic.
5122      // FIXME: Add a Fix-It that imports the corresponding module or includes
5123      // the header.
5124      Module *Owner = Def->getOwningModule();
5125      Diag(Loc, diag::err_module_private_definition)
5126        << T << Owner->getFullModuleName();
5127      Diag(Def->getLocation(), diag::note_previous_definition);
5128
5129      if (!isSFINAEContext()) {
5130        // Recover by implicitly importing this module.
5131        createImplicitModuleImport(Loc, Owner);
5132      }
5133    }
5134
5135    return false;
5136  }
5137
5138  // FIXME: If there's an unimported definition of this type in a module (for
5139  // instance, because we forward declared it, then imported the definition),
5140  // import that definition now.
5141  // FIXME: What about other cases where an import extends a redeclaration
5142  // chain for a declaration that can be accessed through a mechanism other
5143  // than name lookup (eg, referenced in a template, or a variable whose type
5144  // could be completed by the module)?
5145
5146  const TagType *Tag = T->getAs<TagType>();
5147  const ObjCInterfaceType *IFace = 0;
5148
5149  if (Tag) {
5150    // Avoid diagnosing invalid decls as incomplete.
5151    if (Tag->getDecl()->isInvalidDecl())
5152      return true;
5153
5154    // Give the external AST source a chance to complete the type.
5155    if (Tag->getDecl()->hasExternalLexicalStorage()) {
5156      Context.getExternalSource()->CompleteType(Tag->getDecl());
5157      if (!Tag->isIncompleteType())
5158        return false;
5159    }
5160  }
5161  else if ((IFace = T->getAs<ObjCInterfaceType>())) {
5162    // Avoid diagnosing invalid decls as incomplete.
5163    if (IFace->getDecl()->isInvalidDecl())
5164      return true;
5165
5166    // Give the external AST source a chance to complete the type.
5167    if (IFace->getDecl()->hasExternalLexicalStorage()) {
5168      Context.getExternalSource()->CompleteType(IFace->getDecl());
5169      if (!IFace->isIncompleteType())
5170        return false;
5171    }
5172  }
5173
5174  // If we have a class template specialization or a class member of a
5175  // class template specialization, or an array with known size of such,
5176  // try to instantiate it.
5177  QualType MaybeTemplate = T;
5178  while (const ConstantArrayType *Array
5179           = Context.getAsConstantArrayType(MaybeTemplate))
5180    MaybeTemplate = Array->getElementType();
5181  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
5182    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
5183          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
5184      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
5185        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
5186                                                      TSK_ImplicitInstantiation,
5187                                            /*Complain=*/!Diagnoser.Suppressed);
5188    } else if (CXXRecordDecl *Rec
5189                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
5190      CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
5191      if (!Rec->isBeingDefined() && Pattern) {
5192        MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
5193        assert(MSI && "Missing member specialization information?");
5194        // This record was instantiated from a class within a template.
5195        if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5196          return InstantiateClass(Loc, Rec, Pattern,
5197                                  getTemplateInstantiationArgs(Rec),
5198                                  TSK_ImplicitInstantiation,
5199                                  /*Complain=*/!Diagnoser.Suppressed);
5200      }
5201    }
5202  }
5203
5204  if (Diagnoser.Suppressed)
5205    return true;
5206
5207  // We have an incomplete type. Produce a diagnostic.
5208  if (Ident___float128 &&
5209      T == Context.getTypeDeclType(Context.getFloat128StubType())) {
5210    Diag(Loc, diag::err_typecheck_decl_incomplete_type___float128);
5211    return true;
5212  }
5213
5214  Diagnoser.diagnose(*this, Loc, T);
5215
5216  // If the type was a forward declaration of a class/struct/union
5217  // type, produce a note.
5218  if (Tag && !Tag->getDecl()->isInvalidDecl())
5219    Diag(Tag->getDecl()->getLocation(),
5220         Tag->isBeingDefined() ? diag::note_type_being_defined
5221                               : diag::note_forward_declaration)
5222      << QualType(Tag, 0);
5223
5224  // If the Objective-C class was a forward declaration, produce a note.
5225  if (IFace && !IFace->getDecl()->isInvalidDecl())
5226    Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
5227
5228  // If we have external information that we can use to suggest a fix,
5229  // produce a note.
5230  if (ExternalSource)
5231    ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
5232
5233  return true;
5234}
5235
5236bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
5237                               unsigned DiagID) {
5238  TypeDiagnoserDiag Diagnoser(DiagID);
5239  return RequireCompleteType(Loc, T, Diagnoser);
5240}
5241
5242/// \brief Get diagnostic %select index for tag kind for
5243/// literal type diagnostic message.
5244/// WARNING: Indexes apply to particular diagnostics only!
5245///
5246/// \returns diagnostic %select index.
5247static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
5248  switch (Tag) {
5249  case TTK_Struct: return 0;
5250  case TTK_Interface: return 1;
5251  case TTK_Class:  return 2;
5252  default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
5253  }
5254}
5255
5256/// @brief Ensure that the type T is a literal type.
5257///
5258/// This routine checks whether the type @p T is a literal type. If @p T is an
5259/// incomplete type, an attempt is made to complete it. If @p T is a literal
5260/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
5261/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
5262/// it the type @p T), along with notes explaining why the type is not a
5263/// literal type, and returns true.
5264///
5265/// @param Loc  The location in the source that the non-literal type
5266/// diagnostic should refer to.
5267///
5268/// @param T  The type that this routine is examining for literalness.
5269///
5270/// @param Diagnoser Emits a diagnostic if T is not a literal type.
5271///
5272/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
5273/// @c false otherwise.
5274bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
5275                              TypeDiagnoser &Diagnoser) {
5276  assert(!T->isDependentType() && "type should not be dependent");
5277
5278  QualType ElemType = Context.getBaseElementType(T);
5279  RequireCompleteType(Loc, ElemType, 0);
5280
5281  if (T->isLiteralType(Context))
5282    return false;
5283
5284  if (Diagnoser.Suppressed)
5285    return true;
5286
5287  Diagnoser.diagnose(*this, Loc, T);
5288
5289  if (T->isVariableArrayType())
5290    return true;
5291
5292  const RecordType *RT = ElemType->getAs<RecordType>();
5293  if (!RT)
5294    return true;
5295
5296  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5297
5298  // A partially-defined class type can't be a literal type, because a literal
5299  // class type must have a trivial destructor (which can't be checked until
5300  // the class definition is complete).
5301  if (!RD->isCompleteDefinition()) {
5302    RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
5303    return true;
5304  }
5305
5306  // If the class has virtual base classes, then it's not an aggregate, and
5307  // cannot have any constexpr constructors or a trivial default constructor,
5308  // so is non-literal. This is better to diagnose than the resulting absence
5309  // of constexpr constructors.
5310  if (RD->getNumVBases()) {
5311    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
5312      << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
5313    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
5314           E = RD->vbases_end(); I != E; ++I)
5315      Diag(I->getLocStart(),
5316           diag::note_constexpr_virtual_base_here) << I->getSourceRange();
5317  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
5318             !RD->hasTrivialDefaultConstructor()) {
5319    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
5320  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
5321    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
5322         E = RD->bases_end(); I != E; ++I) {
5323      if (!I->getType()->isLiteralType(Context)) {
5324        Diag(I->getLocStart(),
5325             diag::note_non_literal_base_class)
5326          << RD << I->getType() << I->getSourceRange();
5327        return true;
5328      }
5329    }
5330    for (CXXRecordDecl::field_iterator I = RD->field_begin(),
5331         E = RD->field_end(); I != E; ++I) {
5332      if (!I->getType()->isLiteralType(Context) ||
5333          I->getType().isVolatileQualified()) {
5334        Diag(I->getLocation(), diag::note_non_literal_field)
5335          << RD << *I << I->getType()
5336          << I->getType().isVolatileQualified();
5337        return true;
5338      }
5339    }
5340  } else if (!RD->hasTrivialDestructor()) {
5341    // All fields and bases are of literal types, so have trivial destructors.
5342    // If this class's destructor is non-trivial it must be user-declared.
5343    CXXDestructorDecl *Dtor = RD->getDestructor();
5344    assert(Dtor && "class has literal fields and bases but no dtor?");
5345    if (!Dtor)
5346      return true;
5347
5348    Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
5349         diag::note_non_literal_user_provided_dtor :
5350         diag::note_non_literal_nontrivial_dtor) << RD;
5351    if (!Dtor->isUserProvided())
5352      SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
5353  }
5354
5355  return true;
5356}
5357
5358bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
5359  TypeDiagnoserDiag Diagnoser(DiagID);
5360  return RequireLiteralType(Loc, T, Diagnoser);
5361}
5362
5363/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
5364/// and qualified by the nested-name-specifier contained in SS.
5365QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
5366                                 const CXXScopeSpec &SS, QualType T) {
5367  if (T.isNull())
5368    return T;
5369  NestedNameSpecifier *NNS;
5370  if (SS.isValid())
5371    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5372  else {
5373    if (Keyword == ETK_None)
5374      return T;
5375    NNS = 0;
5376  }
5377  return Context.getElaboratedType(Keyword, NNS, T);
5378}
5379
5380QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
5381  ExprResult ER = CheckPlaceholderExpr(E);
5382  if (ER.isInvalid()) return QualType();
5383  E = ER.take();
5384
5385  if (!E->isTypeDependent()) {
5386    QualType T = E->getType();
5387    if (const TagType *TT = T->getAs<TagType>())
5388      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
5389  }
5390  return Context.getTypeOfExprType(E);
5391}
5392
5393/// getDecltypeForExpr - Given an expr, will return the decltype for
5394/// that expression, according to the rules in C++11
5395/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
5396static QualType getDecltypeForExpr(Sema &S, Expr *E) {
5397  if (E->isTypeDependent())
5398    return S.Context.DependentTy;
5399
5400  // C++11 [dcl.type.simple]p4:
5401  //   The type denoted by decltype(e) is defined as follows:
5402  //
5403  //     - if e is an unparenthesized id-expression or an unparenthesized class
5404  //       member access (5.2.5), decltype(e) is the type of the entity named
5405  //       by e. If there is no such entity, or if e names a set of overloaded
5406  //       functions, the program is ill-formed;
5407  //
5408  // We apply the same rules for Objective-C ivar and property references.
5409  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
5410    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
5411      return VD->getType();
5412  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5413    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
5414      return FD->getType();
5415  } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
5416    return IR->getDecl()->getType();
5417  } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
5418    if (PR->isExplicitProperty())
5419      return PR->getExplicitProperty()->getType();
5420  }
5421
5422  // C++11 [expr.lambda.prim]p18:
5423  //   Every occurrence of decltype((x)) where x is a possibly
5424  //   parenthesized id-expression that names an entity of automatic
5425  //   storage duration is treated as if x were transformed into an
5426  //   access to a corresponding data member of the closure type that
5427  //   would have been declared if x were an odr-use of the denoted
5428  //   entity.
5429  using namespace sema;
5430  if (S.getCurLambda()) {
5431    if (isa<ParenExpr>(E)) {
5432      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
5433        if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
5434          QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
5435          if (!T.isNull())
5436            return S.Context.getLValueReferenceType(T);
5437        }
5438      }
5439    }
5440  }
5441
5442
5443  // C++11 [dcl.type.simple]p4:
5444  //   [...]
5445  QualType T = E->getType();
5446  switch (E->getValueKind()) {
5447  //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
5448  //       type of e;
5449  case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
5450  //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
5451  //       type of e;
5452  case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
5453  //  - otherwise, decltype(e) is the type of e.
5454  case VK_RValue: break;
5455  }
5456
5457  return T;
5458}
5459
5460QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
5461  ExprResult ER = CheckPlaceholderExpr(E);
5462  if (ER.isInvalid()) return QualType();
5463  E = ER.take();
5464
5465  return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
5466}
5467
5468QualType Sema::BuildUnaryTransformType(QualType BaseType,
5469                                       UnaryTransformType::UTTKind UKind,
5470                                       SourceLocation Loc) {
5471  switch (UKind) {
5472  case UnaryTransformType::EnumUnderlyingType:
5473    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
5474      Diag(Loc, diag::err_only_enums_have_underlying_types);
5475      return QualType();
5476    } else {
5477      QualType Underlying = BaseType;
5478      if (!BaseType->isDependentType()) {
5479        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
5480        assert(ED && "EnumType has no EnumDecl");
5481        DiagnoseUseOfDecl(ED, Loc);
5482        Underlying = ED->getIntegerType();
5483      }
5484      assert(!Underlying.isNull());
5485      return Context.getUnaryTransformType(BaseType, Underlying,
5486                                        UnaryTransformType::EnumUnderlyingType);
5487    }
5488  }
5489  llvm_unreachable("unknown unary transform type");
5490}
5491
5492QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
5493  if (!T->isDependentType()) {
5494    // FIXME: It isn't entirely clear whether incomplete atomic types
5495    // are allowed or not; for simplicity, ban them for the moment.
5496    if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
5497      return QualType();
5498
5499    int DisallowedKind = -1;
5500    if (T->isArrayType())
5501      DisallowedKind = 1;
5502    else if (T->isFunctionType())
5503      DisallowedKind = 2;
5504    else if (T->isReferenceType())
5505      DisallowedKind = 3;
5506    else if (T->isAtomicType())
5507      DisallowedKind = 4;
5508    else if (T.hasQualifiers())
5509      DisallowedKind = 5;
5510    else if (!T.isTriviallyCopyableType(Context))
5511      // Some other non-trivially-copyable type (probably a C++ class)
5512      DisallowedKind = 6;
5513
5514    if (DisallowedKind != -1) {
5515      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
5516      return QualType();
5517    }
5518
5519    // FIXME: Do we need any handling for ARC here?
5520  }
5521
5522  // Build the pointer type.
5523  return Context.getAtomicType(T);
5524}
5525