SemaType.cpp revision 5cd532ca0bc1cb8110e24586d064f72332d8b767
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/TypeLoc.h"
22#include "clang/AST/TypeLocVisitor.h"
23#include "clang/Basic/OpenCL.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Lex/Preprocessor.h"
27#include "clang/Parse/ParseDiagnostic.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/DelayedDiagnostic.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/ScopeInfo.h"
32#include "clang/Sema/Template.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/Support/ErrorHandling.h"
35using namespace clang;
36
37/// isOmittedBlockReturnType - Return true if this declarator is missing a
38/// return type because this is a omitted return type on a block literal.
39static bool isOmittedBlockReturnType(const Declarator &D) {
40  if (D.getContext() != Declarator::BlockLiteralContext ||
41      D.getDeclSpec().hasTypeSpecifier())
42    return false;
43
44  if (D.getNumTypeObjects() == 0)
45    return true;   // ^{ ... }
46
47  if (D.getNumTypeObjects() == 1 &&
48      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
49    return true;   // ^(int X, float Y) { ... }
50
51  return false;
52}
53
54/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
55/// doesn't apply to the given type.
56static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
57                                     QualType type) {
58  bool useExpansionLoc = false;
59
60  unsigned diagID = 0;
61  switch (attr.getKind()) {
62  case AttributeList::AT_ObjCGC:
63    diagID = diag::warn_pointer_attribute_wrong_type;
64    useExpansionLoc = true;
65    break;
66
67  case AttributeList::AT_ObjCOwnership:
68    diagID = diag::warn_objc_object_attribute_wrong_type;
69    useExpansionLoc = true;
70    break;
71
72  default:
73    // Assume everything else was a function attribute.
74    diagID = diag::warn_function_attribute_wrong_type;
75    break;
76  }
77
78  SourceLocation loc = attr.getLoc();
79  StringRef name = attr.getName()->getName();
80
81  // The GC attributes are usually written with macros;  special-case them.
82  if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
83    if (attr.getParameterName()->isStr("strong")) {
84      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
85    } else if (attr.getParameterName()->isStr("weak")) {
86      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
87    }
88  }
89
90  S.Diag(loc, diagID) << name << type;
91}
92
93// objc_gc applies to Objective-C pointers or, otherwise, to the
94// smallest available pointer type (i.e. 'void*' in 'void**').
95#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
96    case AttributeList::AT_ObjCGC: \
97    case AttributeList::AT_ObjCOwnership
98
99// Function type attributes.
100#define FUNCTION_TYPE_ATTRS_CASELIST \
101    case AttributeList::AT_NoReturn: \
102    case AttributeList::AT_CDecl: \
103    case AttributeList::AT_FastCall: \
104    case AttributeList::AT_StdCall: \
105    case AttributeList::AT_ThisCall: \
106    case AttributeList::AT_Pascal: \
107    case AttributeList::AT_Regparm: \
108    case AttributeList::AT_Pcs: \
109    case AttributeList::AT_PnaclCall: \
110    case AttributeList::AT_IntelOclBicc \
111
112namespace {
113  /// An object which stores processing state for the entire
114  /// GetTypeForDeclarator process.
115  class TypeProcessingState {
116    Sema &sema;
117
118    /// The declarator being processed.
119    Declarator &declarator;
120
121    /// The index of the declarator chunk we're currently processing.
122    /// May be the total number of valid chunks, indicating the
123    /// DeclSpec.
124    unsigned chunkIndex;
125
126    /// Whether there are non-trivial modifications to the decl spec.
127    bool trivial;
128
129    /// Whether we saved the attributes in the decl spec.
130    bool hasSavedAttrs;
131
132    /// The original set of attributes on the DeclSpec.
133    SmallVector<AttributeList*, 2> savedAttrs;
134
135    /// A list of attributes to diagnose the uselessness of when the
136    /// processing is complete.
137    SmallVector<AttributeList*, 2> ignoredTypeAttrs;
138
139  public:
140    TypeProcessingState(Sema &sema, Declarator &declarator)
141      : sema(sema), declarator(declarator),
142        chunkIndex(declarator.getNumTypeObjects()),
143        trivial(true), hasSavedAttrs(false) {}
144
145    Sema &getSema() const {
146      return sema;
147    }
148
149    Declarator &getDeclarator() const {
150      return declarator;
151    }
152
153    unsigned getCurrentChunkIndex() const {
154      return chunkIndex;
155    }
156
157    void setCurrentChunkIndex(unsigned idx) {
158      assert(idx <= declarator.getNumTypeObjects());
159      chunkIndex = idx;
160    }
161
162    AttributeList *&getCurrentAttrListRef() const {
163      assert(chunkIndex <= declarator.getNumTypeObjects());
164      if (chunkIndex == declarator.getNumTypeObjects())
165        return getMutableDeclSpec().getAttributes().getListRef();
166      return declarator.getTypeObject(chunkIndex).getAttrListRef();
167    }
168
169    /// Save the current set of attributes on the DeclSpec.
170    void saveDeclSpecAttrs() {
171      // Don't try to save them multiple times.
172      if (hasSavedAttrs) return;
173
174      DeclSpec &spec = getMutableDeclSpec();
175      for (AttributeList *attr = spec.getAttributes().getList(); attr;
176             attr = attr->getNext())
177        savedAttrs.push_back(attr);
178      trivial &= savedAttrs.empty();
179      hasSavedAttrs = true;
180    }
181
182    /// Record that we had nowhere to put the given type attribute.
183    /// We will diagnose such attributes later.
184    void addIgnoredTypeAttr(AttributeList &attr) {
185      ignoredTypeAttrs.push_back(&attr);
186    }
187
188    /// Diagnose all the ignored type attributes, given that the
189    /// declarator worked out to the given type.
190    void diagnoseIgnoredTypeAttrs(QualType type) const {
191      for (SmallVectorImpl<AttributeList*>::const_iterator
192             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
193           i != e; ++i)
194        diagnoseBadTypeAttribute(getSema(), **i, type);
195    }
196
197    ~TypeProcessingState() {
198      if (trivial) return;
199
200      restoreDeclSpecAttrs();
201    }
202
203  private:
204    DeclSpec &getMutableDeclSpec() const {
205      return const_cast<DeclSpec&>(declarator.getDeclSpec());
206    }
207
208    void restoreDeclSpecAttrs() {
209      assert(hasSavedAttrs);
210
211      if (savedAttrs.empty()) {
212        getMutableDeclSpec().getAttributes().set(0);
213        return;
214      }
215
216      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
217      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
218        savedAttrs[i]->setNext(savedAttrs[i+1]);
219      savedAttrs.back()->setNext(0);
220    }
221  };
222
223  /// Basically std::pair except that we really want to avoid an
224  /// implicit operator= for safety concerns.  It's also a minor
225  /// link-time optimization for this to be a private type.
226  struct AttrAndList {
227    /// The attribute.
228    AttributeList &first;
229
230    /// The head of the list the attribute is currently in.
231    AttributeList *&second;
232
233    AttrAndList(AttributeList &attr, AttributeList *&head)
234      : first(attr), second(head) {}
235  };
236}
237
238namespace llvm {
239  template <> struct isPodLike<AttrAndList> {
240    static const bool value = true;
241  };
242}
243
244static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
245  attr.setNext(head);
246  head = &attr;
247}
248
249static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
250  if (head == &attr) {
251    head = attr.getNext();
252    return;
253  }
254
255  AttributeList *cur = head;
256  while (true) {
257    assert(cur && cur->getNext() && "ran out of attrs?");
258    if (cur->getNext() == &attr) {
259      cur->setNext(attr.getNext());
260      return;
261    }
262    cur = cur->getNext();
263  }
264}
265
266static void moveAttrFromListToList(AttributeList &attr,
267                                   AttributeList *&fromList,
268                                   AttributeList *&toList) {
269  spliceAttrOutOfList(attr, fromList);
270  spliceAttrIntoList(attr, toList);
271}
272
273/// The location of a type attribute.
274enum TypeAttrLocation {
275  /// The attribute is in the decl-specifier-seq.
276  TAL_DeclSpec,
277  /// The attribute is part of a DeclaratorChunk.
278  TAL_DeclChunk,
279  /// The attribute is immediately after the declaration's name.
280  TAL_DeclName
281};
282
283static void processTypeAttrs(TypeProcessingState &state,
284                             QualType &type, TypeAttrLocation TAL,
285                             AttributeList *attrs);
286
287static bool handleFunctionTypeAttr(TypeProcessingState &state,
288                                   AttributeList &attr,
289                                   QualType &type);
290
291static bool handleObjCGCTypeAttr(TypeProcessingState &state,
292                                 AttributeList &attr, QualType &type);
293
294static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
295                                       AttributeList &attr, QualType &type);
296
297static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
298                                      AttributeList &attr, QualType &type) {
299  if (attr.getKind() == AttributeList::AT_ObjCGC)
300    return handleObjCGCTypeAttr(state, attr, type);
301  assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
302  return handleObjCOwnershipTypeAttr(state, attr, type);
303}
304
305/// Given that an objc_gc attribute was written somewhere on a
306/// declaration *other* than on the declarator itself (for which, use
307/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
308/// didn't apply in whatever position it was written in, try to move
309/// it to a more appropriate position.
310static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
311                                          AttributeList &attr,
312                                          QualType type) {
313  Declarator &declarator = state.getDeclarator();
314  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
315    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
316    switch (chunk.Kind) {
317    case DeclaratorChunk::Pointer:
318    case DeclaratorChunk::BlockPointer:
319      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
320                             chunk.getAttrListRef());
321      return;
322
323    case DeclaratorChunk::Paren:
324    case DeclaratorChunk::Array:
325      continue;
326
327    // Don't walk through these.
328    case DeclaratorChunk::Reference:
329    case DeclaratorChunk::Function:
330    case DeclaratorChunk::MemberPointer:
331      goto error;
332    }
333  }
334 error:
335
336  diagnoseBadTypeAttribute(state.getSema(), attr, type);
337}
338
339/// Distribute an objc_gc type attribute that was written on the
340/// declarator.
341static void
342distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
343                                            AttributeList &attr,
344                                            QualType &declSpecType) {
345  Declarator &declarator = state.getDeclarator();
346
347  // objc_gc goes on the innermost pointer to something that's not a
348  // pointer.
349  unsigned innermost = -1U;
350  bool considerDeclSpec = true;
351  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
352    DeclaratorChunk &chunk = declarator.getTypeObject(i);
353    switch (chunk.Kind) {
354    case DeclaratorChunk::Pointer:
355    case DeclaratorChunk::BlockPointer:
356      innermost = i;
357      continue;
358
359    case DeclaratorChunk::Reference:
360    case DeclaratorChunk::MemberPointer:
361    case DeclaratorChunk::Paren:
362    case DeclaratorChunk::Array:
363      continue;
364
365    case DeclaratorChunk::Function:
366      considerDeclSpec = false;
367      goto done;
368    }
369  }
370 done:
371
372  // That might actually be the decl spec if we weren't blocked by
373  // anything in the declarator.
374  if (considerDeclSpec) {
375    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
376      // Splice the attribute into the decl spec.  Prevents the
377      // attribute from being applied multiple times and gives
378      // the source-location-filler something to work with.
379      state.saveDeclSpecAttrs();
380      moveAttrFromListToList(attr, declarator.getAttrListRef(),
381               declarator.getMutableDeclSpec().getAttributes().getListRef());
382      return;
383    }
384  }
385
386  // Otherwise, if we found an appropriate chunk, splice the attribute
387  // into it.
388  if (innermost != -1U) {
389    moveAttrFromListToList(attr, declarator.getAttrListRef(),
390                       declarator.getTypeObject(innermost).getAttrListRef());
391    return;
392  }
393
394  // Otherwise, diagnose when we're done building the type.
395  spliceAttrOutOfList(attr, declarator.getAttrListRef());
396  state.addIgnoredTypeAttr(attr);
397}
398
399/// A function type attribute was written somewhere in a declaration
400/// *other* than on the declarator itself or in the decl spec.  Given
401/// that it didn't apply in whatever position it was written in, try
402/// to move it to a more appropriate position.
403static void distributeFunctionTypeAttr(TypeProcessingState &state,
404                                       AttributeList &attr,
405                                       QualType type) {
406  Declarator &declarator = state.getDeclarator();
407
408  // Try to push the attribute from the return type of a function to
409  // the function itself.
410  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
411    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
412    switch (chunk.Kind) {
413    case DeclaratorChunk::Function:
414      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
415                             chunk.getAttrListRef());
416      return;
417
418    case DeclaratorChunk::Paren:
419    case DeclaratorChunk::Pointer:
420    case DeclaratorChunk::BlockPointer:
421    case DeclaratorChunk::Array:
422    case DeclaratorChunk::Reference:
423    case DeclaratorChunk::MemberPointer:
424      continue;
425    }
426  }
427
428  diagnoseBadTypeAttribute(state.getSema(), attr, type);
429}
430
431/// Try to distribute a function type attribute to the innermost
432/// function chunk or type.  Returns true if the attribute was
433/// distributed, false if no location was found.
434static bool
435distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
436                                      AttributeList &attr,
437                                      AttributeList *&attrList,
438                                      QualType &declSpecType) {
439  Declarator &declarator = state.getDeclarator();
440
441  // Put it on the innermost function chunk, if there is one.
442  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
443    DeclaratorChunk &chunk = declarator.getTypeObject(i);
444    if (chunk.Kind != DeclaratorChunk::Function) continue;
445
446    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
447    return true;
448  }
449
450  if (handleFunctionTypeAttr(state, attr, declSpecType)) {
451    spliceAttrOutOfList(attr, attrList);
452    return true;
453  }
454
455  return false;
456}
457
458/// A function type attribute was written in the decl spec.  Try to
459/// apply it somewhere.
460static void
461distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
462                                       AttributeList &attr,
463                                       QualType &declSpecType) {
464  state.saveDeclSpecAttrs();
465
466  // C++11 attributes before the decl specifiers actually appertain to
467  // the declarators. Move them straight there. We don't support the
468  // 'put them wherever you like' semantics we allow for GNU attributes.
469  if (attr.isCXX11Attribute()) {
470    moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
471                           state.getDeclarator().getAttrListRef());
472    return;
473  }
474
475  // Try to distribute to the innermost.
476  if (distributeFunctionTypeAttrToInnermost(state, attr,
477                                            state.getCurrentAttrListRef(),
478                                            declSpecType))
479    return;
480
481  // If that failed, diagnose the bad attribute when the declarator is
482  // fully built.
483  state.addIgnoredTypeAttr(attr);
484}
485
486/// A function type attribute was written on the declarator.  Try to
487/// apply it somewhere.
488static void
489distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
490                                         AttributeList &attr,
491                                         QualType &declSpecType) {
492  Declarator &declarator = state.getDeclarator();
493
494  // Try to distribute to the innermost.
495  if (distributeFunctionTypeAttrToInnermost(state, attr,
496                                            declarator.getAttrListRef(),
497                                            declSpecType))
498    return;
499
500  // If that failed, diagnose the bad attribute when the declarator is
501  // fully built.
502  spliceAttrOutOfList(attr, declarator.getAttrListRef());
503  state.addIgnoredTypeAttr(attr);
504}
505
506/// \brief Given that there are attributes written on the declarator
507/// itself, try to distribute any type attributes to the appropriate
508/// declarator chunk.
509///
510/// These are attributes like the following:
511///   int f ATTR;
512///   int (f ATTR)();
513/// but not necessarily this:
514///   int f() ATTR;
515static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
516                                              QualType &declSpecType) {
517  // Collect all the type attributes from the declarator itself.
518  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
519  AttributeList *attr = state.getDeclarator().getAttributes();
520  AttributeList *next;
521  do {
522    next = attr->getNext();
523
524    // Do not distribute C++11 attributes. They have strict rules for what
525    // they appertain to.
526    if (attr->isCXX11Attribute())
527      continue;
528
529    switch (attr->getKind()) {
530    OBJC_POINTER_TYPE_ATTRS_CASELIST:
531      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
532      break;
533
534    case AttributeList::AT_NSReturnsRetained:
535      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
536        break;
537      // fallthrough
538
539    FUNCTION_TYPE_ATTRS_CASELIST:
540      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
541      break;
542
543    default:
544      break;
545    }
546  } while ((attr = next));
547}
548
549/// Add a synthetic '()' to a block-literal declarator if it is
550/// required, given the return type.
551static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
552                                          QualType declSpecType) {
553  Declarator &declarator = state.getDeclarator();
554
555  // First, check whether the declarator would produce a function,
556  // i.e. whether the innermost semantic chunk is a function.
557  if (declarator.isFunctionDeclarator()) {
558    // If so, make that declarator a prototyped declarator.
559    declarator.getFunctionTypeInfo().hasPrototype = true;
560    return;
561  }
562
563  // If there are any type objects, the type as written won't name a
564  // function, regardless of the decl spec type.  This is because a
565  // block signature declarator is always an abstract-declarator, and
566  // abstract-declarators can't just be parentheses chunks.  Therefore
567  // we need to build a function chunk unless there are no type
568  // objects and the decl spec type is a function.
569  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
570    return;
571
572  // Note that there *are* cases with invalid declarators where
573  // declarators consist solely of parentheses.  In general, these
574  // occur only in failed efforts to make function declarators, so
575  // faking up the function chunk is still the right thing to do.
576
577  // Otherwise, we need to fake up a function declarator.
578  SourceLocation loc = declarator.getLocStart();
579
580  // ...and *prepend* it to the declarator.
581  SourceLocation NoLoc;
582  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
583                             /*HasProto=*/true,
584                             /*IsAmbiguous=*/false,
585                             /*LParenLoc=*/NoLoc,
586                             /*ArgInfo=*/0,
587                             /*NumArgs=*/0,
588                             /*EllipsisLoc=*/NoLoc,
589                             /*RParenLoc=*/NoLoc,
590                             /*TypeQuals=*/0,
591                             /*RefQualifierIsLvalueRef=*/true,
592                             /*RefQualifierLoc=*/NoLoc,
593                             /*ConstQualifierLoc=*/NoLoc,
594                             /*VolatileQualifierLoc=*/NoLoc,
595                             /*MutableLoc=*/NoLoc,
596                             EST_None,
597                             /*ESpecLoc=*/NoLoc,
598                             /*Exceptions=*/0,
599                             /*ExceptionRanges=*/0,
600                             /*NumExceptions=*/0,
601                             /*NoexceptExpr=*/0,
602                             loc, loc, declarator));
603
604  // For consistency, make sure the state still has us as processing
605  // the decl spec.
606  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
607  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
608}
609
610/// \brief Convert the specified declspec to the appropriate type
611/// object.
612/// \param state Specifies the declarator containing the declaration specifier
613/// to be converted, along with other associated processing state.
614/// \returns The type described by the declaration specifiers.  This function
615/// never returns null.
616static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
617  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
618  // checking.
619
620  Sema &S = state.getSema();
621  Declarator &declarator = state.getDeclarator();
622  const DeclSpec &DS = declarator.getDeclSpec();
623  SourceLocation DeclLoc = declarator.getIdentifierLoc();
624  if (DeclLoc.isInvalid())
625    DeclLoc = DS.getLocStart();
626
627  ASTContext &Context = S.Context;
628
629  QualType Result;
630  switch (DS.getTypeSpecType()) {
631  case DeclSpec::TST_void:
632    Result = Context.VoidTy;
633    break;
634  case DeclSpec::TST_char:
635    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
636      Result = Context.CharTy;
637    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
638      Result = Context.SignedCharTy;
639    else {
640      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
641             "Unknown TSS value");
642      Result = Context.UnsignedCharTy;
643    }
644    break;
645  case DeclSpec::TST_wchar:
646    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
647      Result = Context.WCharTy;
648    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
649      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
650        << DS.getSpecifierName(DS.getTypeSpecType());
651      Result = Context.getSignedWCharType();
652    } else {
653      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
654        "Unknown TSS value");
655      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
656        << DS.getSpecifierName(DS.getTypeSpecType());
657      Result = Context.getUnsignedWCharType();
658    }
659    break;
660  case DeclSpec::TST_char16:
661      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
662        "Unknown TSS value");
663      Result = Context.Char16Ty;
664    break;
665  case DeclSpec::TST_char32:
666      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
667        "Unknown TSS value");
668      Result = Context.Char32Ty;
669    break;
670  case DeclSpec::TST_unspecified:
671    // "<proto1,proto2>" is an objc qualified ID with a missing id.
672    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
673      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
674                                         (ObjCProtocolDecl*const*)PQ,
675                                         DS.getNumProtocolQualifiers());
676      Result = Context.getObjCObjectPointerType(Result);
677      break;
678    }
679
680    // If this is a missing declspec in a block literal return context, then it
681    // is inferred from the return statements inside the block.
682    // The declspec is always missing in a lambda expr context; it is either
683    // specified with a trailing return type or inferred.
684    if (declarator.getContext() == Declarator::LambdaExprContext ||
685        isOmittedBlockReturnType(declarator)) {
686      Result = Context.DependentTy;
687      break;
688    }
689
690    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
691    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
692    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
693    // Note that the one exception to this is function definitions, which are
694    // allowed to be completely missing a declspec.  This is handled in the
695    // parser already though by it pretending to have seen an 'int' in this
696    // case.
697    if (S.getLangOpts().ImplicitInt) {
698      // In C89 mode, we only warn if there is a completely missing declspec
699      // when one is not allowed.
700      if (DS.isEmpty()) {
701        S.Diag(DeclLoc, diag::ext_missing_declspec)
702          << DS.getSourceRange()
703        << FixItHint::CreateInsertion(DS.getLocStart(), "int");
704      }
705    } else if (!DS.hasTypeSpecifier()) {
706      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
707      // "At least one type specifier shall be given in the declaration
708      // specifiers in each declaration, and in the specifier-qualifier list in
709      // each struct declaration and type name."
710      // FIXME: Does Microsoft really have the implicit int extension in C++?
711      if (S.getLangOpts().CPlusPlus &&
712          !S.getLangOpts().MicrosoftExt) {
713        S.Diag(DeclLoc, diag::err_missing_type_specifier)
714          << DS.getSourceRange();
715
716        // When this occurs in C++ code, often something is very broken with the
717        // value being declared, poison it as invalid so we don't get chains of
718        // errors.
719        declarator.setInvalidType(true);
720      } else {
721        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
722          << DS.getSourceRange();
723      }
724    }
725
726    // FALL THROUGH.
727  case DeclSpec::TST_int: {
728    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
729      switch (DS.getTypeSpecWidth()) {
730      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
731      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
732      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
733      case DeclSpec::TSW_longlong:
734        Result = Context.LongLongTy;
735
736        // 'long long' is a C99 or C++11 feature.
737        if (!S.getLangOpts().C99) {
738          if (S.getLangOpts().CPlusPlus)
739            S.Diag(DS.getTypeSpecWidthLoc(),
740                   S.getLangOpts().CPlusPlus11 ?
741                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
742          else
743            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
744        }
745        break;
746      }
747    } else {
748      switch (DS.getTypeSpecWidth()) {
749      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
750      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
751      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
752      case DeclSpec::TSW_longlong:
753        Result = Context.UnsignedLongLongTy;
754
755        // 'long long' is a C99 or C++11 feature.
756        if (!S.getLangOpts().C99) {
757          if (S.getLangOpts().CPlusPlus)
758            S.Diag(DS.getTypeSpecWidthLoc(),
759                   S.getLangOpts().CPlusPlus11 ?
760                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
761          else
762            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
763        }
764        break;
765      }
766    }
767    break;
768  }
769  case DeclSpec::TST_int128:
770    if (!S.PP.getTargetInfo().hasInt128Type())
771      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_int128_unsupported);
772    if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
773      Result = Context.UnsignedInt128Ty;
774    else
775      Result = Context.Int128Ty;
776    break;
777  case DeclSpec::TST_half: Result = Context.HalfTy; break;
778  case DeclSpec::TST_float: Result = Context.FloatTy; break;
779  case DeclSpec::TST_double:
780    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
781      Result = Context.LongDoubleTy;
782    else
783      Result = Context.DoubleTy;
784
785    if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
786      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
787      declarator.setInvalidType(true);
788    }
789    break;
790  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
791  case DeclSpec::TST_decimal32:    // _Decimal32
792  case DeclSpec::TST_decimal64:    // _Decimal64
793  case DeclSpec::TST_decimal128:   // _Decimal128
794    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
795    Result = Context.IntTy;
796    declarator.setInvalidType(true);
797    break;
798  case DeclSpec::TST_class:
799  case DeclSpec::TST_enum:
800  case DeclSpec::TST_union:
801  case DeclSpec::TST_struct:
802  case DeclSpec::TST_interface: {
803    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
804    if (!D) {
805      // This can happen in C++ with ambiguous lookups.
806      Result = Context.IntTy;
807      declarator.setInvalidType(true);
808      break;
809    }
810
811    // If the type is deprecated or unavailable, diagnose it.
812    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
813
814    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
815           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
816
817    // TypeQuals handled by caller.
818    Result = Context.getTypeDeclType(D);
819
820    // In both C and C++, make an ElaboratedType.
821    ElaboratedTypeKeyword Keyword
822      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
823    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
824    break;
825  }
826  case DeclSpec::TST_typename: {
827    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
828           DS.getTypeSpecSign() == 0 &&
829           "Can't handle qualifiers on typedef names yet!");
830    Result = S.GetTypeFromParser(DS.getRepAsType());
831    if (Result.isNull())
832      declarator.setInvalidType(true);
833    else if (DeclSpec::ProtocolQualifierListTy PQ
834               = DS.getProtocolQualifiers()) {
835      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
836        // Silently drop any existing protocol qualifiers.
837        // TODO: determine whether that's the right thing to do.
838        if (ObjT->getNumProtocols())
839          Result = ObjT->getBaseType();
840
841        if (DS.getNumProtocolQualifiers())
842          Result = Context.getObjCObjectType(Result,
843                                             (ObjCProtocolDecl*const*) PQ,
844                                             DS.getNumProtocolQualifiers());
845      } else if (Result->isObjCIdType()) {
846        // id<protocol-list>
847        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
848                                           (ObjCProtocolDecl*const*) PQ,
849                                           DS.getNumProtocolQualifiers());
850        Result = Context.getObjCObjectPointerType(Result);
851      } else if (Result->isObjCClassType()) {
852        // Class<protocol-list>
853        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
854                                           (ObjCProtocolDecl*const*) PQ,
855                                           DS.getNumProtocolQualifiers());
856        Result = Context.getObjCObjectPointerType(Result);
857      } else {
858        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
859          << DS.getSourceRange();
860        declarator.setInvalidType(true);
861      }
862    }
863
864    // TypeQuals handled by caller.
865    break;
866  }
867  case DeclSpec::TST_typeofType:
868    // FIXME: Preserve type source info.
869    Result = S.GetTypeFromParser(DS.getRepAsType());
870    assert(!Result.isNull() && "Didn't get a type for typeof?");
871    if (!Result->isDependentType())
872      if (const TagType *TT = Result->getAs<TagType>())
873        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
874    // TypeQuals handled by caller.
875    Result = Context.getTypeOfType(Result);
876    break;
877  case DeclSpec::TST_typeofExpr: {
878    Expr *E = DS.getRepAsExpr();
879    assert(E && "Didn't get an expression for typeof?");
880    // TypeQuals handled by caller.
881    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
882    if (Result.isNull()) {
883      Result = Context.IntTy;
884      declarator.setInvalidType(true);
885    }
886    break;
887  }
888  case DeclSpec::TST_decltype: {
889    Expr *E = DS.getRepAsExpr();
890    assert(E && "Didn't get an expression for decltype?");
891    // TypeQuals handled by caller.
892    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
893    if (Result.isNull()) {
894      Result = Context.IntTy;
895      declarator.setInvalidType(true);
896    }
897    break;
898  }
899  case DeclSpec::TST_underlyingType:
900    Result = S.GetTypeFromParser(DS.getRepAsType());
901    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
902    Result = S.BuildUnaryTransformType(Result,
903                                       UnaryTransformType::EnumUnderlyingType,
904                                       DS.getTypeSpecTypeLoc());
905    if (Result.isNull()) {
906      Result = Context.IntTy;
907      declarator.setInvalidType(true);
908    }
909    break;
910
911  case DeclSpec::TST_auto: {
912    // TypeQuals handled by caller.
913    Result = Context.getAutoType(QualType());
914    break;
915  }
916
917  case DeclSpec::TST_unknown_anytype:
918    Result = Context.UnknownAnyTy;
919    break;
920
921  case DeclSpec::TST_atomic:
922    Result = S.GetTypeFromParser(DS.getRepAsType());
923    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
924    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
925    if (Result.isNull()) {
926      Result = Context.IntTy;
927      declarator.setInvalidType(true);
928    }
929    break;
930
931  case DeclSpec::TST_image1d_t:
932    Result = Context.OCLImage1dTy;
933    break;
934
935  case DeclSpec::TST_image1d_array_t:
936    Result = Context.OCLImage1dArrayTy;
937    break;
938
939  case DeclSpec::TST_image1d_buffer_t:
940    Result = Context.OCLImage1dBufferTy;
941    break;
942
943  case DeclSpec::TST_image2d_t:
944    Result = Context.OCLImage2dTy;
945    break;
946
947  case DeclSpec::TST_image2d_array_t:
948    Result = Context.OCLImage2dArrayTy;
949    break;
950
951  case DeclSpec::TST_image3d_t:
952    Result = Context.OCLImage3dTy;
953    break;
954
955  case DeclSpec::TST_event_t:
956    Result = Context.OCLEventTy;
957    break;
958
959  case DeclSpec::TST_error:
960    Result = Context.IntTy;
961    declarator.setInvalidType(true);
962    break;
963  }
964
965  // Handle complex types.
966  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
967    if (S.getLangOpts().Freestanding)
968      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
969    Result = Context.getComplexType(Result);
970  } else if (DS.isTypeAltiVecVector()) {
971    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
972    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
973    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
974    if (DS.isTypeAltiVecPixel())
975      VecKind = VectorType::AltiVecPixel;
976    else if (DS.isTypeAltiVecBool())
977      VecKind = VectorType::AltiVecBool;
978    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
979  }
980
981  // FIXME: Imaginary.
982  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
983    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
984
985  // Before we process any type attributes, synthesize a block literal
986  // function declarator if necessary.
987  if (declarator.getContext() == Declarator::BlockLiteralContext)
988    maybeSynthesizeBlockSignature(state, Result);
989
990  // Apply any type attributes from the decl spec.  This may cause the
991  // list of type attributes to be temporarily saved while the type
992  // attributes are pushed around.
993  if (AttributeList *attrs = DS.getAttributes().getList())
994    processTypeAttrs(state, Result, TAL_DeclSpec, attrs);
995
996  // Apply const/volatile/restrict qualifiers to T.
997  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
998
999    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1000    // or incomplete types shall not be restrict-qualified."  C++ also allows
1001    // restrict-qualified references.
1002    if (TypeQuals & DeclSpec::TQ_restrict) {
1003      if (Result->isAnyPointerType() || Result->isReferenceType()) {
1004        QualType EltTy;
1005        if (Result->isObjCObjectPointerType())
1006          EltTy = Result;
1007        else
1008          EltTy = Result->isPointerType() ?
1009                    Result->getAs<PointerType>()->getPointeeType() :
1010                    Result->getAs<ReferenceType>()->getPointeeType();
1011
1012        // If we have a pointer or reference, the pointee must have an object
1013        // incomplete type.
1014        if (!EltTy->isIncompleteOrObjectType()) {
1015          S.Diag(DS.getRestrictSpecLoc(),
1016               diag::err_typecheck_invalid_restrict_invalid_pointee)
1017            << EltTy << DS.getSourceRange();
1018          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
1019        }
1020      } else {
1021        S.Diag(DS.getRestrictSpecLoc(),
1022               diag::err_typecheck_invalid_restrict_not_pointer)
1023          << Result << DS.getSourceRange();
1024        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
1025      }
1026    }
1027
1028    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
1029    // of a function type includes any type qualifiers, the behavior is
1030    // undefined."
1031    if (Result->isFunctionType() && TypeQuals) {
1032      // Get some location to point at, either the C or V location.
1033      SourceLocation Loc;
1034      if (TypeQuals & DeclSpec::TQ_const)
1035        Loc = DS.getConstSpecLoc();
1036      else if (TypeQuals & DeclSpec::TQ_volatile)
1037        Loc = DS.getVolatileSpecLoc();
1038      else {
1039        assert((TypeQuals & DeclSpec::TQ_restrict) &&
1040               "Has CVR quals but not C, V, or R?");
1041        Loc = DS.getRestrictSpecLoc();
1042      }
1043      S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
1044        << Result << DS.getSourceRange();
1045    }
1046
1047    // C++ [dcl.ref]p1:
1048    //   Cv-qualified references are ill-formed except when the
1049    //   cv-qualifiers are introduced through the use of a typedef
1050    //   (7.1.3) or of a template type argument (14.3), in which
1051    //   case the cv-qualifiers are ignored.
1052    // FIXME: Shouldn't we be checking SCS_typedef here?
1053    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1054        TypeQuals && Result->isReferenceType()) {
1055      TypeQuals &= ~DeclSpec::TQ_const;
1056      TypeQuals &= ~DeclSpec::TQ_volatile;
1057    }
1058
1059    // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1060    // than once in the same specifier-list or qualifier-list, either directly
1061    // or via one or more typedefs."
1062    if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1063        && TypeQuals & Result.getCVRQualifiers()) {
1064      if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1065        S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1066          << "const";
1067      }
1068
1069      if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1070        S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1071          << "volatile";
1072      }
1073
1074      // C90 doesn't have restrict, so it doesn't force us to produce a warning
1075      // in this case.
1076    }
1077
1078    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
1079    Result = Context.getQualifiedType(Result, Quals);
1080  }
1081
1082  return Result;
1083}
1084
1085static std::string getPrintableNameForEntity(DeclarationName Entity) {
1086  if (Entity)
1087    return Entity.getAsString();
1088
1089  return "type name";
1090}
1091
1092QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1093                                  Qualifiers Qs) {
1094  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1095  // object or incomplete types shall not be restrict-qualified."
1096  if (Qs.hasRestrict()) {
1097    unsigned DiagID = 0;
1098    QualType ProblemTy;
1099
1100    const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
1101    if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
1102      if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
1103        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1104        ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
1105      }
1106    } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1107      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1108        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1109        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1110      }
1111    } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
1112      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1113        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1114        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1115      }
1116    } else if (!Ty->isDependentType()) {
1117      // FIXME: this deserves a proper diagnostic
1118      DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1119      ProblemTy = T;
1120    }
1121
1122    if (DiagID) {
1123      Diag(Loc, DiagID) << ProblemTy;
1124      Qs.removeRestrict();
1125    }
1126  }
1127
1128  return Context.getQualifiedType(T, Qs);
1129}
1130
1131/// \brief Build a paren type including \p T.
1132QualType Sema::BuildParenType(QualType T) {
1133  return Context.getParenType(T);
1134}
1135
1136/// Given that we're building a pointer or reference to the given
1137static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1138                                           SourceLocation loc,
1139                                           bool isReference) {
1140  // Bail out if retention is unrequired or already specified.
1141  if (!type->isObjCLifetimeType() ||
1142      type.getObjCLifetime() != Qualifiers::OCL_None)
1143    return type;
1144
1145  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1146
1147  // If the object type is const-qualified, we can safely use
1148  // __unsafe_unretained.  This is safe (because there are no read
1149  // barriers), and it'll be safe to coerce anything but __weak* to
1150  // the resulting type.
1151  if (type.isConstQualified()) {
1152    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1153
1154  // Otherwise, check whether the static type does not require
1155  // retaining.  This currently only triggers for Class (possibly
1156  // protocol-qualifed, and arrays thereof).
1157  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1158    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1159
1160  // If we are in an unevaluated context, like sizeof, skip adding a
1161  // qualification.
1162  } else if (S.isUnevaluatedContext()) {
1163    return type;
1164
1165  // If that failed, give an error and recover using __strong.  __strong
1166  // is the option most likely to prevent spurious second-order diagnostics,
1167  // like when binding a reference to a field.
1168  } else {
1169    // These types can show up in private ivars in system headers, so
1170    // we need this to not be an error in those cases.  Instead we
1171    // want to delay.
1172    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1173      S.DelayedDiagnostics.add(
1174          sema::DelayedDiagnostic::makeForbiddenType(loc,
1175              diag::err_arc_indirect_no_ownership, type, isReference));
1176    } else {
1177      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1178    }
1179    implicitLifetime = Qualifiers::OCL_Strong;
1180  }
1181  assert(implicitLifetime && "didn't infer any lifetime!");
1182
1183  Qualifiers qs;
1184  qs.addObjCLifetime(implicitLifetime);
1185  return S.Context.getQualifiedType(type, qs);
1186}
1187
1188/// \brief Build a pointer type.
1189///
1190/// \param T The type to which we'll be building a pointer.
1191///
1192/// \param Loc The location of the entity whose type involves this
1193/// pointer type or, if there is no such entity, the location of the
1194/// type that will have pointer type.
1195///
1196/// \param Entity The name of the entity that involves the pointer
1197/// type, if known.
1198///
1199/// \returns A suitable pointer type, if there are no
1200/// errors. Otherwise, returns a NULL type.
1201QualType Sema::BuildPointerType(QualType T,
1202                                SourceLocation Loc, DeclarationName Entity) {
1203  if (T->isReferenceType()) {
1204    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1205    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1206      << getPrintableNameForEntity(Entity) << T;
1207    return QualType();
1208  }
1209
1210  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1211
1212  // In ARC, it is forbidden to build pointers to unqualified pointers.
1213  if (getLangOpts().ObjCAutoRefCount)
1214    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1215
1216  // Build the pointer type.
1217  return Context.getPointerType(T);
1218}
1219
1220/// \brief Build a reference type.
1221///
1222/// \param T The type to which we'll be building a reference.
1223///
1224/// \param Loc The location of the entity whose type involves this
1225/// reference type or, if there is no such entity, the location of the
1226/// type that will have reference type.
1227///
1228/// \param Entity The name of the entity that involves the reference
1229/// type, if known.
1230///
1231/// \returns A suitable reference type, if there are no
1232/// errors. Otherwise, returns a NULL type.
1233QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1234                                  SourceLocation Loc,
1235                                  DeclarationName Entity) {
1236  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1237         "Unresolved overloaded function type");
1238
1239  // C++0x [dcl.ref]p6:
1240  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1241  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1242  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1243  //   the type "lvalue reference to T", while an attempt to create the type
1244  //   "rvalue reference to cv TR" creates the type TR.
1245  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1246
1247  // C++ [dcl.ref]p4: There shall be no references to references.
1248  //
1249  // According to C++ DR 106, references to references are only
1250  // diagnosed when they are written directly (e.g., "int & &"),
1251  // but not when they happen via a typedef:
1252  //
1253  //   typedef int& intref;
1254  //   typedef intref& intref2;
1255  //
1256  // Parser::ParseDeclaratorInternal diagnoses the case where
1257  // references are written directly; here, we handle the
1258  // collapsing of references-to-references as described in C++0x.
1259  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1260
1261  // C++ [dcl.ref]p1:
1262  //   A declarator that specifies the type "reference to cv void"
1263  //   is ill-formed.
1264  if (T->isVoidType()) {
1265    Diag(Loc, diag::err_reference_to_void);
1266    return QualType();
1267  }
1268
1269  // In ARC, it is forbidden to build references to unqualified pointers.
1270  if (getLangOpts().ObjCAutoRefCount)
1271    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1272
1273  // Handle restrict on references.
1274  if (LValueRef)
1275    return Context.getLValueReferenceType(T, SpelledAsLValue);
1276  return Context.getRValueReferenceType(T);
1277}
1278
1279/// Check whether the specified array size makes the array type a VLA.  If so,
1280/// return true, if not, return the size of the array in SizeVal.
1281static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1282  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1283  // (like gnu99, but not c99) accept any evaluatable value as an extension.
1284  class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1285  public:
1286    VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
1287
1288    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1289    }
1290
1291    virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) {
1292      S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
1293    }
1294  } Diagnoser;
1295
1296  return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
1297                                           S.LangOpts.GNUMode).isInvalid();
1298}
1299
1300
1301/// \brief Build an array type.
1302///
1303/// \param T The type of each element in the array.
1304///
1305/// \param ASM C99 array size modifier (e.g., '*', 'static').
1306///
1307/// \param ArraySize Expression describing the size of the array.
1308///
1309/// \param Brackets The range from the opening '[' to the closing ']'.
1310///
1311/// \param Entity The name of the entity that involves the array
1312/// type, if known.
1313///
1314/// \returns A suitable array type, if there are no errors. Otherwise,
1315/// returns a NULL type.
1316QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1317                              Expr *ArraySize, unsigned Quals,
1318                              SourceRange Brackets, DeclarationName Entity) {
1319
1320  SourceLocation Loc = Brackets.getBegin();
1321  if (getLangOpts().CPlusPlus) {
1322    // C++ [dcl.array]p1:
1323    //   T is called the array element type; this type shall not be a reference
1324    //   type, the (possibly cv-qualified) type void, a function type or an
1325    //   abstract class type.
1326    //
1327    // C++ [dcl.array]p3:
1328    //   When several "array of" specifications are adjacent, [...] only the
1329    //   first of the constant expressions that specify the bounds of the arrays
1330    //   may be omitted.
1331    //
1332    // Note: function types are handled in the common path with C.
1333    if (T->isReferenceType()) {
1334      Diag(Loc, diag::err_illegal_decl_array_of_references)
1335      << getPrintableNameForEntity(Entity) << T;
1336      return QualType();
1337    }
1338
1339    if (T->isVoidType() || T->isIncompleteArrayType()) {
1340      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1341      return QualType();
1342    }
1343
1344    if (RequireNonAbstractType(Brackets.getBegin(), T,
1345                               diag::err_array_of_abstract_type))
1346      return QualType();
1347
1348  } else {
1349    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1350    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1351    if (RequireCompleteType(Loc, T,
1352                            diag::err_illegal_decl_array_incomplete_type))
1353      return QualType();
1354  }
1355
1356  if (T->isFunctionType()) {
1357    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1358      << getPrintableNameForEntity(Entity) << T;
1359    return QualType();
1360  }
1361
1362  if (T->getContainedAutoType()) {
1363    Diag(Loc, diag::err_illegal_decl_array_of_auto)
1364      << getPrintableNameForEntity(Entity) << T;
1365    return QualType();
1366  }
1367
1368  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1369    // If the element type is a struct or union that contains a variadic
1370    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1371    if (EltTy->getDecl()->hasFlexibleArrayMember())
1372      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1373  } else if (T->isObjCObjectType()) {
1374    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1375    return QualType();
1376  }
1377
1378  // Do placeholder conversions on the array size expression.
1379  if (ArraySize && ArraySize->hasPlaceholderType()) {
1380    ExprResult Result = CheckPlaceholderExpr(ArraySize);
1381    if (Result.isInvalid()) return QualType();
1382    ArraySize = Result.take();
1383  }
1384
1385  // Do lvalue-to-rvalue conversions on the array size expression.
1386  if (ArraySize && !ArraySize->isRValue()) {
1387    ExprResult Result = DefaultLvalueConversion(ArraySize);
1388    if (Result.isInvalid())
1389      return QualType();
1390
1391    ArraySize = Result.take();
1392  }
1393
1394  // C99 6.7.5.2p1: The size expression shall have integer type.
1395  // C++11 allows contextual conversions to such types.
1396  if (!getLangOpts().CPlusPlus11 &&
1397      ArraySize && !ArraySize->isTypeDependent() &&
1398      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1399    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1400      << ArraySize->getType() << ArraySize->getSourceRange();
1401    return QualType();
1402  }
1403
1404  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1405  if (!ArraySize) {
1406    if (ASM == ArrayType::Star)
1407      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1408    else
1409      T = Context.getIncompleteArrayType(T, ASM, Quals);
1410  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1411    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1412  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
1413              !T->isConstantSizeType()) ||
1414             isArraySizeVLA(*this, ArraySize, ConstVal)) {
1415    // Even in C++11, don't allow contextual conversions in the array bound
1416    // of a VLA.
1417    if (getLangOpts().CPlusPlus11 &&
1418        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1419      Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1420        << ArraySize->getType() << ArraySize->getSourceRange();
1421      return QualType();
1422    }
1423
1424    // C99: an array with an element type that has a non-constant-size is a VLA.
1425    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1426    // that we can fold to a non-zero positive value as an extension.
1427    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1428  } else {
1429    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1430    // have a value greater than zero.
1431    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1432      if (Entity)
1433        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1434          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1435      else
1436        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1437          << ArraySize->getSourceRange();
1438      return QualType();
1439    }
1440    if (ConstVal == 0) {
1441      // GCC accepts zero sized static arrays. We allow them when
1442      // we're not in a SFINAE context.
1443      Diag(ArraySize->getLocStart(),
1444           isSFINAEContext()? diag::err_typecheck_zero_array_size
1445                            : diag::ext_typecheck_zero_array_size)
1446        << ArraySize->getSourceRange();
1447
1448      if (ASM == ArrayType::Static) {
1449        Diag(ArraySize->getLocStart(),
1450             diag::warn_typecheck_zero_static_array_size)
1451          << ArraySize->getSourceRange();
1452        ASM = ArrayType::Normal;
1453      }
1454    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1455               !T->isIncompleteType()) {
1456      // Is the array too large?
1457      unsigned ActiveSizeBits
1458        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1459      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1460        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1461          << ConstVal.toString(10)
1462          << ArraySize->getSourceRange();
1463    }
1464
1465    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1466  }
1467
1468  // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
1469  if (getLangOpts().OpenCL && T->isVariableArrayType()) {
1470    Diag(Loc, diag::err_opencl_vla);
1471    return QualType();
1472  }
1473  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1474  if (!getLangOpts().C99) {
1475    if (T->isVariableArrayType()) {
1476      // Prohibit the use of non-POD types in VLAs.
1477      QualType BaseT = Context.getBaseElementType(T);
1478      if (!T->isDependentType() &&
1479          !BaseT.isPODType(Context) &&
1480          !BaseT->isObjCLifetimeType()) {
1481        Diag(Loc, diag::err_vla_non_pod)
1482          << BaseT;
1483        return QualType();
1484      }
1485      // Prohibit the use of VLAs during template argument deduction.
1486      else if (isSFINAEContext()) {
1487        Diag(Loc, diag::err_vla_in_sfinae);
1488        return QualType();
1489      }
1490      // Just extwarn about VLAs.
1491      else
1492        Diag(Loc, diag::ext_vla);
1493    } else if (ASM != ArrayType::Normal || Quals != 0)
1494      Diag(Loc,
1495           getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
1496                                     : diag::ext_c99_array_usage) << ASM;
1497  }
1498
1499  if (T->isVariableArrayType()) {
1500    // Warn about VLAs for -Wvla.
1501    Diag(Loc, diag::warn_vla_used);
1502  }
1503
1504  return T;
1505}
1506
1507/// \brief Build an ext-vector type.
1508///
1509/// Run the required checks for the extended vector type.
1510QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1511                                  SourceLocation AttrLoc) {
1512  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1513  // in conjunction with complex types (pointers, arrays, functions, etc.).
1514  if (!T->isDependentType() &&
1515      !T->isIntegerType() && !T->isRealFloatingType()) {
1516    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1517    return QualType();
1518  }
1519
1520  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1521    llvm::APSInt vecSize(32);
1522    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1523      Diag(AttrLoc, diag::err_attribute_argument_not_int)
1524        << "ext_vector_type" << ArraySize->getSourceRange();
1525      return QualType();
1526    }
1527
1528    // unlike gcc's vector_size attribute, the size is specified as the
1529    // number of elements, not the number of bytes.
1530    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1531
1532    if (vectorSize == 0) {
1533      Diag(AttrLoc, diag::err_attribute_zero_size)
1534      << ArraySize->getSourceRange();
1535      return QualType();
1536    }
1537
1538    return Context.getExtVectorType(T, vectorSize);
1539  }
1540
1541  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1542}
1543
1544/// \brief Build a function type.
1545///
1546/// This routine checks the function type according to C++ rules and
1547/// under the assumption that the result type and parameter types have
1548/// just been instantiated from a template. It therefore duplicates
1549/// some of the behavior of GetTypeForDeclarator, but in a much
1550/// simpler form that is only suitable for this narrow use case.
1551///
1552/// \param T The return type of the function.
1553///
1554/// \param ParamTypes The parameter types of the function. This array
1555/// will be modified to account for adjustments to the types of the
1556/// function parameters.
1557///
1558/// \param NumParamTypes The number of parameter types in ParamTypes.
1559///
1560/// \param Variadic Whether this is a variadic function type.
1561///
1562/// \param HasTrailingReturn Whether this function has a trailing return type.
1563///
1564/// \param Quals The cvr-qualifiers to be applied to the function type.
1565///
1566/// \param Loc The location of the entity whose type involves this
1567/// function type or, if there is no such entity, the location of the
1568/// type that will have function type.
1569///
1570/// \param Entity The name of the entity that involves the function
1571/// type, if known.
1572///
1573/// \returns A suitable function type, if there are no
1574/// errors. Otherwise, returns a NULL type.
1575QualType Sema::BuildFunctionType(QualType T,
1576                                 QualType *ParamTypes,
1577                                 unsigned NumParamTypes,
1578                                 bool Variadic, bool HasTrailingReturn,
1579                                 unsigned Quals,
1580                                 RefQualifierKind RefQualifier,
1581                                 SourceLocation Loc, DeclarationName Entity,
1582                                 FunctionType::ExtInfo Info) {
1583  if (T->isArrayType() || T->isFunctionType()) {
1584    Diag(Loc, diag::err_func_returning_array_function)
1585      << T->isFunctionType() << T;
1586    return QualType();
1587  }
1588
1589  // Functions cannot return half FP.
1590  if (T->isHalfType()) {
1591    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1592      FixItHint::CreateInsertion(Loc, "*");
1593    return QualType();
1594  }
1595
1596  bool Invalid = false;
1597  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
1598    // FIXME: Loc is too inprecise here, should use proper locations for args.
1599    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1600    if (ParamType->isVoidType()) {
1601      Diag(Loc, diag::err_param_with_void_type);
1602      Invalid = true;
1603    } else if (ParamType->isHalfType()) {
1604      // Disallow half FP arguments.
1605      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1606        FixItHint::CreateInsertion(Loc, "*");
1607      Invalid = true;
1608    }
1609
1610    ParamTypes[Idx] = ParamType;
1611  }
1612
1613  if (Invalid)
1614    return QualType();
1615
1616  FunctionProtoType::ExtProtoInfo EPI;
1617  EPI.Variadic = Variadic;
1618  EPI.HasTrailingReturn = HasTrailingReturn;
1619  EPI.TypeQuals = Quals;
1620  EPI.RefQualifier = RefQualifier;
1621  EPI.ExtInfo = Info;
1622
1623  return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
1624}
1625
1626/// \brief Build a member pointer type \c T Class::*.
1627///
1628/// \param T the type to which the member pointer refers.
1629/// \param Class the class type into which the member pointer points.
1630/// \param Loc the location where this type begins
1631/// \param Entity the name of the entity that will have this member pointer type
1632///
1633/// \returns a member pointer type, if successful, or a NULL type if there was
1634/// an error.
1635QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1636                                      SourceLocation Loc,
1637                                      DeclarationName Entity) {
1638  // Verify that we're not building a pointer to pointer to function with
1639  // exception specification.
1640  if (CheckDistantExceptionSpec(T)) {
1641    Diag(Loc, diag::err_distant_exception_spec);
1642
1643    // FIXME: If we're doing this as part of template instantiation,
1644    // we should return immediately.
1645
1646    // Build the type anyway, but use the canonical type so that the
1647    // exception specifiers are stripped off.
1648    T = Context.getCanonicalType(T);
1649  }
1650
1651  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1652  //   with reference type, or "cv void."
1653  if (T->isReferenceType()) {
1654    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1655      << (Entity? Entity.getAsString() : "type name") << T;
1656    return QualType();
1657  }
1658
1659  if (T->isVoidType()) {
1660    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1661      << (Entity? Entity.getAsString() : "type name");
1662    return QualType();
1663  }
1664
1665  if (!Class->isDependentType() && !Class->isRecordType()) {
1666    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1667    return QualType();
1668  }
1669
1670  // C++ allows the class type in a member pointer to be an incomplete type.
1671  // In the Microsoft ABI, the size of the member pointer can vary
1672  // according to the class type, which means that we really need a
1673  // complete type if possible, which means we need to instantiate templates.
1674  //
1675  // For now, just require a complete type, which will instantiate
1676  // templates.  This will also error if the type is just forward-declared,
1677  // which is a bug, but it's a bug that saves us from dealing with some
1678  // complexities at the moment.
1679  if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
1680      RequireCompleteType(Loc, Class, diag::err_incomplete_type))
1681    return QualType();
1682
1683  return Context.getMemberPointerType(T, Class.getTypePtr());
1684}
1685
1686/// \brief Build a block pointer type.
1687///
1688/// \param T The type to which we'll be building a block pointer.
1689///
1690/// \param Loc The source location, used for diagnostics.
1691///
1692/// \param Entity The name of the entity that involves the block pointer
1693/// type, if known.
1694///
1695/// \returns A suitable block pointer type, if there are no
1696/// errors. Otherwise, returns a NULL type.
1697QualType Sema::BuildBlockPointerType(QualType T,
1698                                     SourceLocation Loc,
1699                                     DeclarationName Entity) {
1700  if (!T->isFunctionType()) {
1701    Diag(Loc, diag::err_nonfunction_block_type);
1702    return QualType();
1703  }
1704
1705  return Context.getBlockPointerType(T);
1706}
1707
1708QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1709  QualType QT = Ty.get();
1710  if (QT.isNull()) {
1711    if (TInfo) *TInfo = 0;
1712    return QualType();
1713  }
1714
1715  TypeSourceInfo *DI = 0;
1716  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1717    QT = LIT->getType();
1718    DI = LIT->getTypeSourceInfo();
1719  }
1720
1721  if (TInfo) *TInfo = DI;
1722  return QT;
1723}
1724
1725static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1726                                            Qualifiers::ObjCLifetime ownership,
1727                                            unsigned chunkIndex);
1728
1729/// Given that this is the declaration of a parameter under ARC,
1730/// attempt to infer attributes and such for pointer-to-whatever
1731/// types.
1732static void inferARCWriteback(TypeProcessingState &state,
1733                              QualType &declSpecType) {
1734  Sema &S = state.getSema();
1735  Declarator &declarator = state.getDeclarator();
1736
1737  // TODO: should we care about decl qualifiers?
1738
1739  // Check whether the declarator has the expected form.  We walk
1740  // from the inside out in order to make the block logic work.
1741  unsigned outermostPointerIndex = 0;
1742  bool isBlockPointer = false;
1743  unsigned numPointers = 0;
1744  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1745    unsigned chunkIndex = i;
1746    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1747    switch (chunk.Kind) {
1748    case DeclaratorChunk::Paren:
1749      // Ignore parens.
1750      break;
1751
1752    case DeclaratorChunk::Reference:
1753    case DeclaratorChunk::Pointer:
1754      // Count the number of pointers.  Treat references
1755      // interchangeably as pointers; if they're mis-ordered, normal
1756      // type building will discover that.
1757      outermostPointerIndex = chunkIndex;
1758      numPointers++;
1759      break;
1760
1761    case DeclaratorChunk::BlockPointer:
1762      // If we have a pointer to block pointer, that's an acceptable
1763      // indirect reference; anything else is not an application of
1764      // the rules.
1765      if (numPointers != 1) return;
1766      numPointers++;
1767      outermostPointerIndex = chunkIndex;
1768      isBlockPointer = true;
1769
1770      // We don't care about pointer structure in return values here.
1771      goto done;
1772
1773    case DeclaratorChunk::Array: // suppress if written (id[])?
1774    case DeclaratorChunk::Function:
1775    case DeclaratorChunk::MemberPointer:
1776      return;
1777    }
1778  }
1779 done:
1780
1781  // If we have *one* pointer, then we want to throw the qualifier on
1782  // the declaration-specifiers, which means that it needs to be a
1783  // retainable object type.
1784  if (numPointers == 1) {
1785    // If it's not a retainable object type, the rule doesn't apply.
1786    if (!declSpecType->isObjCRetainableType()) return;
1787
1788    // If it already has lifetime, don't do anything.
1789    if (declSpecType.getObjCLifetime()) return;
1790
1791    // Otherwise, modify the type in-place.
1792    Qualifiers qs;
1793
1794    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1795      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1796    else
1797      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1798    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1799
1800  // If we have *two* pointers, then we want to throw the qualifier on
1801  // the outermost pointer.
1802  } else if (numPointers == 2) {
1803    // If we don't have a block pointer, we need to check whether the
1804    // declaration-specifiers gave us something that will turn into a
1805    // retainable object pointer after we slap the first pointer on it.
1806    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1807      return;
1808
1809    // Look for an explicit lifetime attribute there.
1810    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1811    if (chunk.Kind != DeclaratorChunk::Pointer &&
1812        chunk.Kind != DeclaratorChunk::BlockPointer)
1813      return;
1814    for (const AttributeList *attr = chunk.getAttrs(); attr;
1815           attr = attr->getNext())
1816      if (attr->getKind() == AttributeList::AT_ObjCOwnership)
1817        return;
1818
1819    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1820                                          outermostPointerIndex);
1821
1822  // Any other number of pointers/references does not trigger the rule.
1823  } else return;
1824
1825  // TODO: mark whether we did this inference?
1826}
1827
1828static void DiagnoseIgnoredQualifiers(unsigned Quals,
1829                                      SourceLocation ConstQualLoc,
1830                                      SourceLocation VolatileQualLoc,
1831                                      SourceLocation RestrictQualLoc,
1832                                      Sema& S) {
1833  std::string QualStr;
1834  unsigned NumQuals = 0;
1835  SourceLocation Loc;
1836
1837  FixItHint ConstFixIt;
1838  FixItHint VolatileFixIt;
1839  FixItHint RestrictFixIt;
1840
1841  const SourceManager &SM = S.getSourceManager();
1842
1843  // FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
1844  // find a range and grow it to encompass all the qualifiers, regardless of
1845  // the order in which they textually appear.
1846  if (Quals & Qualifiers::Const) {
1847    ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
1848    QualStr = "const";
1849    ++NumQuals;
1850    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(ConstQualLoc, Loc))
1851      Loc = ConstQualLoc;
1852  }
1853  if (Quals & Qualifiers::Volatile) {
1854    VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
1855    QualStr += (NumQuals == 0 ? "volatile" : " volatile");
1856    ++NumQuals;
1857    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(VolatileQualLoc, Loc))
1858      Loc = VolatileQualLoc;
1859  }
1860  if (Quals & Qualifiers::Restrict) {
1861    RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
1862    QualStr += (NumQuals == 0 ? "restrict" : " restrict");
1863    ++NumQuals;
1864    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(RestrictQualLoc, Loc))
1865      Loc = RestrictQualLoc;
1866  }
1867
1868  assert(NumQuals > 0 && "No known qualifiers?");
1869
1870  S.Diag(Loc, diag::warn_qual_return_type)
1871    << QualStr << NumQuals << ConstFixIt << VolatileFixIt << RestrictFixIt;
1872}
1873
1874static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
1875                                             TypeSourceInfo *&ReturnTypeInfo) {
1876  Sema &SemaRef = state.getSema();
1877  Declarator &D = state.getDeclarator();
1878  QualType T;
1879  ReturnTypeInfo = 0;
1880
1881  // The TagDecl owned by the DeclSpec.
1882  TagDecl *OwnedTagDecl = 0;
1883
1884  switch (D.getName().getKind()) {
1885  case UnqualifiedId::IK_ImplicitSelfParam:
1886  case UnqualifiedId::IK_OperatorFunctionId:
1887  case UnqualifiedId::IK_Identifier:
1888  case UnqualifiedId::IK_LiteralOperatorId:
1889  case UnqualifiedId::IK_TemplateId:
1890    T = ConvertDeclSpecToType(state);
1891
1892    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
1893      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
1894      // Owned declaration is embedded in declarator.
1895      OwnedTagDecl->setEmbeddedInDeclarator(true);
1896    }
1897    break;
1898
1899  case UnqualifiedId::IK_ConstructorName:
1900  case UnqualifiedId::IK_ConstructorTemplateId:
1901  case UnqualifiedId::IK_DestructorName:
1902    // Constructors and destructors don't have return types. Use
1903    // "void" instead.
1904    T = SemaRef.Context.VoidTy;
1905    if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
1906      processTypeAttrs(state, T, TAL_DeclSpec, attrs);
1907    break;
1908
1909  case UnqualifiedId::IK_ConversionFunctionId:
1910    // The result type of a conversion function is the type that it
1911    // converts to.
1912    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
1913                                  &ReturnTypeInfo);
1914    break;
1915  }
1916
1917  if (D.getAttributes())
1918    distributeTypeAttrsFromDeclarator(state, T);
1919
1920  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
1921  // In C++11, a function declarator using 'auto' must have a trailing return
1922  // type (this is checked later) and we can skip this. In other languages
1923  // using auto, we need to check regardless.
1924  if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
1925      (!SemaRef.getLangOpts().CPlusPlus11 || !D.isFunctionDeclarator())) {
1926    int Error = -1;
1927
1928    switch (D.getContext()) {
1929    case Declarator::KNRTypeListContext:
1930      llvm_unreachable("K&R type lists aren't allowed in C++");
1931    case Declarator::LambdaExprContext:
1932      llvm_unreachable("Can't specify a type specifier in lambda grammar");
1933    case Declarator::ObjCParameterContext:
1934    case Declarator::ObjCResultContext:
1935    case Declarator::PrototypeContext:
1936      Error = 0; // Function prototype
1937      break;
1938    case Declarator::MemberContext:
1939      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
1940        break;
1941      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
1942      case TTK_Enum: llvm_unreachable("unhandled tag kind");
1943      case TTK_Struct: Error = 1; /* Struct member */ break;
1944      case TTK_Union:  Error = 2; /* Union member */ break;
1945      case TTK_Class:  Error = 3; /* Class member */ break;
1946      case TTK_Interface: Error = 4; /* Interface member */ break;
1947      }
1948      break;
1949    case Declarator::CXXCatchContext:
1950    case Declarator::ObjCCatchContext:
1951      Error = 5; // Exception declaration
1952      break;
1953    case Declarator::TemplateParamContext:
1954      Error = 6; // Template parameter
1955      break;
1956    case Declarator::BlockLiteralContext:
1957      Error = 7; // Block literal
1958      break;
1959    case Declarator::TemplateTypeArgContext:
1960      Error = 8; // Template type argument
1961      break;
1962    case Declarator::AliasDeclContext:
1963    case Declarator::AliasTemplateContext:
1964      Error = 10; // Type alias
1965      break;
1966    case Declarator::TrailingReturnContext:
1967      Error = 11; // Function return type
1968      break;
1969    case Declarator::TypeNameContext:
1970      Error = 12; // Generic
1971      break;
1972    case Declarator::FileContext:
1973    case Declarator::BlockContext:
1974    case Declarator::ForContext:
1975    case Declarator::ConditionContext:
1976    case Declarator::CXXNewContext:
1977      break;
1978    }
1979
1980    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1981      Error = 9;
1982
1983    // In Objective-C it is an error to use 'auto' on a function declarator.
1984    if (D.isFunctionDeclarator())
1985      Error = 11;
1986
1987    // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
1988    // contains a trailing return type. That is only legal at the outermost
1989    // level. Check all declarator chunks (outermost first) anyway, to give
1990    // better diagnostics.
1991    if (SemaRef.getLangOpts().CPlusPlus11 && Error != -1) {
1992      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1993        unsigned chunkIndex = e - i - 1;
1994        state.setCurrentChunkIndex(chunkIndex);
1995        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1996        if (DeclType.Kind == DeclaratorChunk::Function) {
1997          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1998          if (FTI.hasTrailingReturnType()) {
1999            Error = -1;
2000            break;
2001          }
2002        }
2003      }
2004    }
2005
2006    if (Error != -1) {
2007      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2008                   diag::err_auto_not_allowed)
2009        << Error;
2010      T = SemaRef.Context.IntTy;
2011      D.setInvalidType(true);
2012    } else
2013      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2014                   diag::warn_cxx98_compat_auto_type_specifier);
2015  }
2016
2017  if (SemaRef.getLangOpts().CPlusPlus &&
2018      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
2019    // Check the contexts where C++ forbids the declaration of a new class
2020    // or enumeration in a type-specifier-seq.
2021    switch (D.getContext()) {
2022    case Declarator::TrailingReturnContext:
2023      // Class and enumeration definitions are syntactically not allowed in
2024      // trailing return types.
2025      llvm_unreachable("parser should not have allowed this");
2026      break;
2027    case Declarator::FileContext:
2028    case Declarator::MemberContext:
2029    case Declarator::BlockContext:
2030    case Declarator::ForContext:
2031    case Declarator::BlockLiteralContext:
2032    case Declarator::LambdaExprContext:
2033      // C++11 [dcl.type]p3:
2034      //   A type-specifier-seq shall not define a class or enumeration unless
2035      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
2036      //   the declaration of a template-declaration.
2037    case Declarator::AliasDeclContext:
2038      break;
2039    case Declarator::AliasTemplateContext:
2040      SemaRef.Diag(OwnedTagDecl->getLocation(),
2041             diag::err_type_defined_in_alias_template)
2042        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2043      D.setInvalidType(true);
2044      break;
2045    case Declarator::TypeNameContext:
2046    case Declarator::TemplateParamContext:
2047    case Declarator::CXXNewContext:
2048    case Declarator::CXXCatchContext:
2049    case Declarator::ObjCCatchContext:
2050    case Declarator::TemplateTypeArgContext:
2051      SemaRef.Diag(OwnedTagDecl->getLocation(),
2052             diag::err_type_defined_in_type_specifier)
2053        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2054      D.setInvalidType(true);
2055      break;
2056    case Declarator::PrototypeContext:
2057    case Declarator::ObjCParameterContext:
2058    case Declarator::ObjCResultContext:
2059    case Declarator::KNRTypeListContext:
2060      // C++ [dcl.fct]p6:
2061      //   Types shall not be defined in return or parameter types.
2062      SemaRef.Diag(OwnedTagDecl->getLocation(),
2063                   diag::err_type_defined_in_param_type)
2064        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2065      D.setInvalidType(true);
2066      break;
2067    case Declarator::ConditionContext:
2068      // C++ 6.4p2:
2069      // The type-specifier-seq shall not contain typedef and shall not declare
2070      // a new class or enumeration.
2071      SemaRef.Diag(OwnedTagDecl->getLocation(),
2072                   diag::err_type_defined_in_condition);
2073      D.setInvalidType(true);
2074      break;
2075    }
2076  }
2077
2078  return T;
2079}
2080
2081static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
2082  std::string Quals =
2083    Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
2084
2085  switch (FnTy->getRefQualifier()) {
2086  case RQ_None:
2087    break;
2088
2089  case RQ_LValue:
2090    if (!Quals.empty())
2091      Quals += ' ';
2092    Quals += '&';
2093    break;
2094
2095  case RQ_RValue:
2096    if (!Quals.empty())
2097      Quals += ' ';
2098    Quals += "&&";
2099    break;
2100  }
2101
2102  return Quals;
2103}
2104
2105/// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
2106/// can be contained within the declarator chunk DeclType, and produce an
2107/// appropriate diagnostic if not.
2108static void checkQualifiedFunction(Sema &S, QualType T,
2109                                   DeclaratorChunk &DeclType) {
2110  // C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
2111  // cv-qualifier or a ref-qualifier can only appear at the topmost level
2112  // of a type.
2113  int DiagKind = -1;
2114  switch (DeclType.Kind) {
2115  case DeclaratorChunk::Paren:
2116  case DeclaratorChunk::MemberPointer:
2117    // These cases are permitted.
2118    return;
2119  case DeclaratorChunk::Array:
2120  case DeclaratorChunk::Function:
2121    // These cases don't allow function types at all; no need to diagnose the
2122    // qualifiers separately.
2123    return;
2124  case DeclaratorChunk::BlockPointer:
2125    DiagKind = 0;
2126    break;
2127  case DeclaratorChunk::Pointer:
2128    DiagKind = 1;
2129    break;
2130  case DeclaratorChunk::Reference:
2131    DiagKind = 2;
2132    break;
2133  }
2134
2135  assert(DiagKind != -1);
2136  S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
2137    << DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
2138    << getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
2139}
2140
2141/// Produce an approprioate diagnostic for an ambiguity between a function
2142/// declarator and a C++ direct-initializer.
2143static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
2144                                       DeclaratorChunk &DeclType, QualType RT) {
2145  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2146  assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
2147
2148  // If the return type is void there is no ambiguity.
2149  if (RT->isVoidType())
2150    return;
2151
2152  // An initializer for a non-class type can have at most one argument.
2153  if (!RT->isRecordType() && FTI.NumArgs > 1)
2154    return;
2155
2156  // An initializer for a reference must have exactly one argument.
2157  if (RT->isReferenceType() && FTI.NumArgs != 1)
2158    return;
2159
2160  // Only warn if this declarator is declaring a function at block scope, and
2161  // doesn't have a storage class (such as 'extern') specified.
2162  if (!D.isFunctionDeclarator() ||
2163      D.getFunctionDefinitionKind() != FDK_Declaration ||
2164      !S.CurContext->isFunctionOrMethod() ||
2165      D.getDeclSpec().getStorageClassSpecAsWritten()
2166        != DeclSpec::SCS_unspecified)
2167    return;
2168
2169  // Inside a condition, a direct initializer is not permitted. We allow one to
2170  // be parsed in order to give better diagnostics in condition parsing.
2171  if (D.getContext() == Declarator::ConditionContext)
2172    return;
2173
2174  SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
2175
2176  S.Diag(DeclType.Loc,
2177         FTI.NumArgs ? diag::warn_parens_disambiguated_as_function_declaration
2178                     : diag::warn_empty_parens_are_function_decl)
2179    << ParenRange;
2180
2181  // If the declaration looks like:
2182  //   T var1,
2183  //   f();
2184  // and name lookup finds a function named 'f', then the ',' was
2185  // probably intended to be a ';'.
2186  if (!D.isFirstDeclarator() && D.getIdentifier()) {
2187    FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
2188    FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
2189    if (Comma.getFileID() != Name.getFileID() ||
2190        Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
2191      LookupResult Result(S, D.getIdentifier(), SourceLocation(),
2192                          Sema::LookupOrdinaryName);
2193      if (S.LookupName(Result, S.getCurScope()))
2194        S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
2195          << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
2196          << D.getIdentifier();
2197    }
2198  }
2199
2200  if (FTI.NumArgs > 0) {
2201    // For a declaration with parameters, eg. "T var(T());", suggest adding parens
2202    // around the first parameter to turn the declaration into a variable
2203    // declaration.
2204    SourceRange Range = FTI.ArgInfo[0].Param->getSourceRange();
2205    SourceLocation B = Range.getBegin();
2206    SourceLocation E = S.PP.getLocForEndOfToken(Range.getEnd());
2207    // FIXME: Maybe we should suggest adding braces instead of parens
2208    // in C++11 for classes that don't have an initializer_list constructor.
2209    S.Diag(B, diag::note_additional_parens_for_variable_declaration)
2210      << FixItHint::CreateInsertion(B, "(")
2211      << FixItHint::CreateInsertion(E, ")");
2212  } else {
2213    // For a declaration without parameters, eg. "T var();", suggest replacing the
2214    // parens with an initializer to turn the declaration into a variable
2215    // declaration.
2216    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
2217
2218    // Empty parens mean value-initialization, and no parens mean
2219    // default initialization. These are equivalent if the default
2220    // constructor is user-provided or if zero-initialization is a
2221    // no-op.
2222    if (RD && RD->hasDefinition() &&
2223        (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
2224      S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
2225        << FixItHint::CreateRemoval(ParenRange);
2226    else {
2227      std::string Init = S.getFixItZeroInitializerForType(RT);
2228      if (Init.empty() && S.LangOpts.CPlusPlus11)
2229        Init = "{}";
2230      if (!Init.empty())
2231        S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
2232          << FixItHint::CreateReplacement(ParenRange, Init);
2233    }
2234  }
2235}
2236
2237static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
2238                                                QualType declSpecType,
2239                                                TypeSourceInfo *TInfo) {
2240
2241  QualType T = declSpecType;
2242  Declarator &D = state.getDeclarator();
2243  Sema &S = state.getSema();
2244  ASTContext &Context = S.Context;
2245  const LangOptions &LangOpts = S.getLangOpts();
2246
2247  // The name we're declaring, if any.
2248  DeclarationName Name;
2249  if (D.getIdentifier())
2250    Name = D.getIdentifier();
2251
2252  // Does this declaration declare a typedef-name?
2253  bool IsTypedefName =
2254    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2255    D.getContext() == Declarator::AliasDeclContext ||
2256    D.getContext() == Declarator::AliasTemplateContext;
2257
2258  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2259  bool IsQualifiedFunction = T->isFunctionProtoType() &&
2260      (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
2261       T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
2262
2263  // Walk the DeclTypeInfo, building the recursive type as we go.
2264  // DeclTypeInfos are ordered from the identifier out, which is
2265  // opposite of what we want :).
2266  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2267    unsigned chunkIndex = e - i - 1;
2268    state.setCurrentChunkIndex(chunkIndex);
2269    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2270    if (IsQualifiedFunction) {
2271      checkQualifiedFunction(S, T, DeclType);
2272      IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
2273    }
2274    switch (DeclType.Kind) {
2275    case DeclaratorChunk::Paren:
2276      T = S.BuildParenType(T);
2277      break;
2278    case DeclaratorChunk::BlockPointer:
2279      // If blocks are disabled, emit an error.
2280      if (!LangOpts.Blocks)
2281        S.Diag(DeclType.Loc, diag::err_blocks_disable);
2282
2283      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
2284      if (DeclType.Cls.TypeQuals)
2285        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
2286      break;
2287    case DeclaratorChunk::Pointer:
2288      // Verify that we're not building a pointer to pointer to function with
2289      // exception specification.
2290      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2291        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2292        D.setInvalidType(true);
2293        // Build the type anyway.
2294      }
2295      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
2296        T = Context.getObjCObjectPointerType(T);
2297        if (DeclType.Ptr.TypeQuals)
2298          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2299        break;
2300      }
2301      T = S.BuildPointerType(T, DeclType.Loc, Name);
2302      if (DeclType.Ptr.TypeQuals)
2303        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2304
2305      break;
2306    case DeclaratorChunk::Reference: {
2307      // Verify that we're not building a reference to pointer to function with
2308      // exception specification.
2309      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2310        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2311        D.setInvalidType(true);
2312        // Build the type anyway.
2313      }
2314      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2315
2316      Qualifiers Quals;
2317      if (DeclType.Ref.HasRestrict)
2318        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2319      break;
2320    }
2321    case DeclaratorChunk::Array: {
2322      // Verify that we're not building an array of pointers to function with
2323      // exception specification.
2324      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2325        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2326        D.setInvalidType(true);
2327        // Build the type anyway.
2328      }
2329      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2330      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2331      ArrayType::ArraySizeModifier ASM;
2332      if (ATI.isStar)
2333        ASM = ArrayType::Star;
2334      else if (ATI.hasStatic)
2335        ASM = ArrayType::Static;
2336      else
2337        ASM = ArrayType::Normal;
2338      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2339        // FIXME: This check isn't quite right: it allows star in prototypes
2340        // for function definitions, and disallows some edge cases detailed
2341        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2342        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2343        ASM = ArrayType::Normal;
2344        D.setInvalidType(true);
2345      }
2346
2347      // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
2348      // shall appear only in a declaration of a function parameter with an
2349      // array type, ...
2350      if (ASM == ArrayType::Static || ATI.TypeQuals) {
2351        if (!(D.isPrototypeContext() ||
2352              D.getContext() == Declarator::KNRTypeListContext)) {
2353          S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
2354              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2355          // Remove the 'static' and the type qualifiers.
2356          if (ASM == ArrayType::Static)
2357            ASM = ArrayType::Normal;
2358          ATI.TypeQuals = 0;
2359          D.setInvalidType(true);
2360        }
2361
2362        // C99 6.7.5.2p1: ... and then only in the outermost array type
2363        // derivation.
2364        unsigned x = chunkIndex;
2365        while (x != 0) {
2366          // Walk outwards along the declarator chunks.
2367          x--;
2368          const DeclaratorChunk &DC = D.getTypeObject(x);
2369          switch (DC.Kind) {
2370          case DeclaratorChunk::Paren:
2371            continue;
2372          case DeclaratorChunk::Array:
2373          case DeclaratorChunk::Pointer:
2374          case DeclaratorChunk::Reference:
2375          case DeclaratorChunk::MemberPointer:
2376            S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
2377              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2378            if (ASM == ArrayType::Static)
2379              ASM = ArrayType::Normal;
2380            ATI.TypeQuals = 0;
2381            D.setInvalidType(true);
2382            break;
2383          case DeclaratorChunk::Function:
2384          case DeclaratorChunk::BlockPointer:
2385            // These are invalid anyway, so just ignore.
2386            break;
2387          }
2388        }
2389      }
2390
2391      T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2392                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2393      break;
2394    }
2395    case DeclaratorChunk::Function: {
2396      // If the function declarator has a prototype (i.e. it is not () and
2397      // does not have a K&R-style identifier list), then the arguments are part
2398      // of the type, otherwise the argument list is ().
2399      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2400      IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
2401
2402      // Check for auto functions and trailing return type and adjust the
2403      // return type accordingly.
2404      if (!D.isInvalidType()) {
2405        // trailing-return-type is only required if we're declaring a function,
2406        // and not, for instance, a pointer to a function.
2407        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2408            !FTI.hasTrailingReturnType() && chunkIndex == 0) {
2409          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2410               diag::err_auto_missing_trailing_return);
2411          T = Context.IntTy;
2412          D.setInvalidType(true);
2413        } else if (FTI.hasTrailingReturnType()) {
2414          // T must be exactly 'auto' at this point. See CWG issue 681.
2415          if (isa<ParenType>(T)) {
2416            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2417                 diag::err_trailing_return_in_parens)
2418              << T << D.getDeclSpec().getSourceRange();
2419            D.setInvalidType(true);
2420          } else if (D.getContext() != Declarator::LambdaExprContext &&
2421                     (T.hasQualifiers() || !isa<AutoType>(T))) {
2422            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2423                 diag::err_trailing_return_without_auto)
2424              << T << D.getDeclSpec().getSourceRange();
2425            D.setInvalidType(true);
2426          }
2427          T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
2428          if (T.isNull()) {
2429            // An error occurred parsing the trailing return type.
2430            T = Context.IntTy;
2431            D.setInvalidType(true);
2432          }
2433        }
2434      }
2435
2436      // C99 6.7.5.3p1: The return type may not be a function or array type.
2437      // For conversion functions, we'll diagnose this particular error later.
2438      if ((T->isArrayType() || T->isFunctionType()) &&
2439          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2440        unsigned diagID = diag::err_func_returning_array_function;
2441        // Last processing chunk in block context means this function chunk
2442        // represents the block.
2443        if (chunkIndex == 0 &&
2444            D.getContext() == Declarator::BlockLiteralContext)
2445          diagID = diag::err_block_returning_array_function;
2446        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2447        T = Context.IntTy;
2448        D.setInvalidType(true);
2449      }
2450
2451      // Do not allow returning half FP value.
2452      // FIXME: This really should be in BuildFunctionType.
2453      if (T->isHalfType()) {
2454        if (S.getLangOpts().OpenCL) {
2455          if (!S.getOpenCLOptions().cl_khr_fp16) {
2456            S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
2457            D.setInvalidType(true);
2458          }
2459        } else {
2460          S.Diag(D.getIdentifierLoc(),
2461            diag::err_parameters_retval_cannot_have_fp16_type) << 1;
2462          D.setInvalidType(true);
2463        }
2464      }
2465
2466      // cv-qualifiers on return types are pointless except when the type is a
2467      // class type in C++.
2468      if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
2469          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
2470          (!LangOpts.CPlusPlus || !T->isDependentType())) {
2471        assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
2472        DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2473        assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
2474
2475        DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
2476
2477        DiagnoseIgnoredQualifiers(PTI.TypeQuals,
2478            SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2479            SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2480            SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2481            S);
2482
2483      } else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
2484          (!LangOpts.CPlusPlus ||
2485           (!T->isDependentType() && !T->isRecordType()))) {
2486
2487        DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
2488                                  D.getDeclSpec().getConstSpecLoc(),
2489                                  D.getDeclSpec().getVolatileSpecLoc(),
2490                                  D.getDeclSpec().getRestrictSpecLoc(),
2491                                  S);
2492      }
2493
2494      // Objective-C ARC ownership qualifiers are ignored on the function
2495      // return type (by type canonicalization). Complain if this attribute
2496      // was written here.
2497      if (T.getQualifiers().hasObjCLifetime()) {
2498        SourceLocation AttrLoc;
2499        if (chunkIndex + 1 < D.getNumTypeObjects()) {
2500          DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2501          for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
2502               Attr; Attr = Attr->getNext()) {
2503            if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
2504              AttrLoc = Attr->getLoc();
2505              break;
2506            }
2507          }
2508        }
2509        if (AttrLoc.isInvalid()) {
2510          for (const AttributeList *Attr
2511                 = D.getDeclSpec().getAttributes().getList();
2512               Attr; Attr = Attr->getNext()) {
2513            if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
2514              AttrLoc = Attr->getLoc();
2515              break;
2516            }
2517          }
2518        }
2519
2520        if (AttrLoc.isValid()) {
2521          // The ownership attributes are almost always written via
2522          // the predefined
2523          // __strong/__weak/__autoreleasing/__unsafe_unretained.
2524          if (AttrLoc.isMacroID())
2525            AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
2526
2527          S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
2528            << T.getQualifiers().getObjCLifetime();
2529        }
2530      }
2531
2532      if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2533        // C++ [dcl.fct]p6:
2534        //   Types shall not be defined in return or parameter types.
2535        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2536        if (Tag->isCompleteDefinition())
2537          S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2538            << Context.getTypeDeclType(Tag);
2539      }
2540
2541      // Exception specs are not allowed in typedefs. Complain, but add it
2542      // anyway.
2543      if (IsTypedefName && FTI.getExceptionSpecType())
2544        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2545          << (D.getContext() == Declarator::AliasDeclContext ||
2546              D.getContext() == Declarator::AliasTemplateContext);
2547
2548      // If we see "T var();" or "T var(T());" at block scope, it is probably
2549      // an attempt to initialize a variable, not a function declaration.
2550      if (FTI.isAmbiguous)
2551        warnAboutAmbiguousFunction(S, D, DeclType, T);
2552
2553      if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2554        // Simple void foo(), where the incoming T is the result type.
2555        T = Context.getFunctionNoProtoType(T);
2556      } else {
2557        // We allow a zero-parameter variadic function in C if the
2558        // function is marked with the "overloadable" attribute. Scan
2559        // for this attribute now.
2560        if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2561          bool Overloadable = false;
2562          for (const AttributeList *Attrs = D.getAttributes();
2563               Attrs; Attrs = Attrs->getNext()) {
2564            if (Attrs->getKind() == AttributeList::AT_Overloadable) {
2565              Overloadable = true;
2566              break;
2567            }
2568          }
2569
2570          if (!Overloadable)
2571            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2572        }
2573
2574        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2575          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2576          // definition.
2577          S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2578          D.setInvalidType(true);
2579          break;
2580        }
2581
2582        FunctionProtoType::ExtProtoInfo EPI;
2583        EPI.Variadic = FTI.isVariadic;
2584        EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
2585        EPI.TypeQuals = FTI.TypeQuals;
2586        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2587                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2588                    : RQ_RValue;
2589
2590        // Otherwise, we have a function with an argument list that is
2591        // potentially variadic.
2592        SmallVector<QualType, 16> ArgTys;
2593        ArgTys.reserve(FTI.NumArgs);
2594
2595        SmallVector<bool, 16> ConsumedArguments;
2596        ConsumedArguments.reserve(FTI.NumArgs);
2597        bool HasAnyConsumedArguments = false;
2598
2599        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2600          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2601          QualType ArgTy = Param->getType();
2602          assert(!ArgTy.isNull() && "Couldn't parse type?");
2603
2604          // Adjust the parameter type.
2605          assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
2606                 "Unadjusted type?");
2607
2608          // Look for 'void'.  void is allowed only as a single argument to a
2609          // function with no other parameters (C99 6.7.5.3p10).  We record
2610          // int(void) as a FunctionProtoType with an empty argument list.
2611          if (ArgTy->isVoidType()) {
2612            // If this is something like 'float(int, void)', reject it.  'void'
2613            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2614            // have arguments of incomplete type.
2615            if (FTI.NumArgs != 1 || FTI.isVariadic) {
2616              S.Diag(DeclType.Loc, diag::err_void_only_param);
2617              ArgTy = Context.IntTy;
2618              Param->setType(ArgTy);
2619            } else if (FTI.ArgInfo[i].Ident) {
2620              // Reject, but continue to parse 'int(void abc)'.
2621              S.Diag(FTI.ArgInfo[i].IdentLoc,
2622                   diag::err_param_with_void_type);
2623              ArgTy = Context.IntTy;
2624              Param->setType(ArgTy);
2625            } else {
2626              // Reject, but continue to parse 'float(const void)'.
2627              if (ArgTy.hasQualifiers())
2628                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2629
2630              // Do not add 'void' to the ArgTys list.
2631              break;
2632            }
2633          } else if (ArgTy->isHalfType()) {
2634            // Disallow half FP arguments.
2635            // FIXME: This really should be in BuildFunctionType.
2636            if (S.getLangOpts().OpenCL) {
2637              if (!S.getOpenCLOptions().cl_khr_fp16) {
2638                S.Diag(Param->getLocation(),
2639                  diag::err_opencl_half_argument) << ArgTy;
2640                D.setInvalidType();
2641              }
2642            } else {
2643              S.Diag(Param->getLocation(),
2644                diag::err_parameters_retval_cannot_have_fp16_type) << 0;
2645              D.setInvalidType();
2646            }
2647          } else if (!FTI.hasPrototype) {
2648            if (ArgTy->isPromotableIntegerType()) {
2649              ArgTy = Context.getPromotedIntegerType(ArgTy);
2650              Param->setKNRPromoted(true);
2651            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2652              if (BTy->getKind() == BuiltinType::Float) {
2653                ArgTy = Context.DoubleTy;
2654                Param->setKNRPromoted(true);
2655              }
2656            }
2657          }
2658
2659          if (LangOpts.ObjCAutoRefCount) {
2660            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2661            ConsumedArguments.push_back(Consumed);
2662            HasAnyConsumedArguments |= Consumed;
2663          }
2664
2665          ArgTys.push_back(ArgTy);
2666        }
2667
2668        if (HasAnyConsumedArguments)
2669          EPI.ConsumedArguments = ConsumedArguments.data();
2670
2671        SmallVector<QualType, 4> Exceptions;
2672        SmallVector<ParsedType, 2> DynamicExceptions;
2673        SmallVector<SourceRange, 2> DynamicExceptionRanges;
2674        Expr *NoexceptExpr = 0;
2675
2676        if (FTI.getExceptionSpecType() == EST_Dynamic) {
2677          // FIXME: It's rather inefficient to have to split into two vectors
2678          // here.
2679          unsigned N = FTI.NumExceptions;
2680          DynamicExceptions.reserve(N);
2681          DynamicExceptionRanges.reserve(N);
2682          for (unsigned I = 0; I != N; ++I) {
2683            DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
2684            DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
2685          }
2686        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2687          NoexceptExpr = FTI.NoexceptExpr;
2688        }
2689
2690        S.checkExceptionSpecification(FTI.getExceptionSpecType(),
2691                                      DynamicExceptions,
2692                                      DynamicExceptionRanges,
2693                                      NoexceptExpr,
2694                                      Exceptions,
2695                                      EPI);
2696
2697        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
2698      }
2699
2700      break;
2701    }
2702    case DeclaratorChunk::MemberPointer:
2703      // The scope spec must refer to a class, or be dependent.
2704      CXXScopeSpec &SS = DeclType.Mem.Scope();
2705      QualType ClsType;
2706      if (SS.isInvalid()) {
2707        // Avoid emitting extra errors if we already errored on the scope.
2708        D.setInvalidType(true);
2709      } else if (S.isDependentScopeSpecifier(SS) ||
2710                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
2711        NestedNameSpecifier *NNS
2712          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2713        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
2714        switch (NNS->getKind()) {
2715        case NestedNameSpecifier::Identifier:
2716          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
2717                                                 NNS->getAsIdentifier());
2718          break;
2719
2720        case NestedNameSpecifier::Namespace:
2721        case NestedNameSpecifier::NamespaceAlias:
2722        case NestedNameSpecifier::Global:
2723          llvm_unreachable("Nested-name-specifier must name a type");
2724
2725        case NestedNameSpecifier::TypeSpec:
2726        case NestedNameSpecifier::TypeSpecWithTemplate:
2727          ClsType = QualType(NNS->getAsType(), 0);
2728          // Note: if the NNS has a prefix and ClsType is a nondependent
2729          // TemplateSpecializationType, then the NNS prefix is NOT included
2730          // in ClsType; hence we wrap ClsType into an ElaboratedType.
2731          // NOTE: in particular, no wrap occurs if ClsType already is an
2732          // Elaborated, DependentName, or DependentTemplateSpecialization.
2733          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
2734            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
2735          break;
2736        }
2737      } else {
2738        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
2739             diag::err_illegal_decl_mempointer_in_nonclass)
2740          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
2741          << DeclType.Mem.Scope().getRange();
2742        D.setInvalidType(true);
2743      }
2744
2745      if (!ClsType.isNull())
2746        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
2747      if (T.isNull()) {
2748        T = Context.IntTy;
2749        D.setInvalidType(true);
2750      } else if (DeclType.Mem.TypeQuals) {
2751        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
2752      }
2753      break;
2754    }
2755
2756    if (T.isNull()) {
2757      D.setInvalidType(true);
2758      T = Context.IntTy;
2759    }
2760
2761    // See if there are any attributes on this declarator chunk.
2762    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
2763      processTypeAttrs(state, T, TAL_DeclChunk, attrs);
2764  }
2765
2766  if (LangOpts.CPlusPlus && T->isFunctionType()) {
2767    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
2768    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
2769
2770    // C++ 8.3.5p4:
2771    //   A cv-qualifier-seq shall only be part of the function type
2772    //   for a nonstatic member function, the function type to which a pointer
2773    //   to member refers, or the top-level function type of a function typedef
2774    //   declaration.
2775    //
2776    // Core issue 547 also allows cv-qualifiers on function types that are
2777    // top-level template type arguments.
2778    bool FreeFunction;
2779    if (!D.getCXXScopeSpec().isSet()) {
2780      FreeFunction = ((D.getContext() != Declarator::MemberContext &&
2781                       D.getContext() != Declarator::LambdaExprContext) ||
2782                      D.getDeclSpec().isFriendSpecified());
2783    } else {
2784      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
2785      FreeFunction = (DC && !DC->isRecord());
2786    }
2787
2788    // C++11 [dcl.fct]p6 (w/DR1417):
2789    // An attempt to specify a function type with a cv-qualifier-seq or a
2790    // ref-qualifier (including by typedef-name) is ill-formed unless it is:
2791    //  - the function type for a non-static member function,
2792    //  - the function type to which a pointer to member refers,
2793    //  - the top-level function type of a function typedef declaration or
2794    //    alias-declaration,
2795    //  - the type-id in the default argument of a type-parameter, or
2796    //  - the type-id of a template-argument for a type-parameter
2797    if (IsQualifiedFunction &&
2798        !(!FreeFunction &&
2799          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
2800        !IsTypedefName &&
2801        D.getContext() != Declarator::TemplateTypeArgContext) {
2802      SourceLocation Loc = D.getLocStart();
2803      SourceRange RemovalRange;
2804      unsigned I;
2805      if (D.isFunctionDeclarator(I)) {
2806        SmallVector<SourceLocation, 4> RemovalLocs;
2807        const DeclaratorChunk &Chunk = D.getTypeObject(I);
2808        assert(Chunk.Kind == DeclaratorChunk::Function);
2809        if (Chunk.Fun.hasRefQualifier())
2810          RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
2811        if (Chunk.Fun.TypeQuals & Qualifiers::Const)
2812          RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
2813        if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
2814          RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
2815        // FIXME: We do not track the location of the __restrict qualifier.
2816        //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
2817        //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
2818        if (!RemovalLocs.empty()) {
2819          std::sort(RemovalLocs.begin(), RemovalLocs.end(),
2820                    BeforeThanCompare<SourceLocation>(S.getSourceManager()));
2821          RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
2822          Loc = RemovalLocs.front();
2823        }
2824      }
2825
2826      S.Diag(Loc, diag::err_invalid_qualified_function_type)
2827        << FreeFunction << D.isFunctionDeclarator() << T
2828        << getFunctionQualifiersAsString(FnTy)
2829        << FixItHint::CreateRemoval(RemovalRange);
2830
2831      // Strip the cv-qualifiers and ref-qualifiers from the type.
2832      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2833      EPI.TypeQuals = 0;
2834      EPI.RefQualifier = RQ_None;
2835
2836      T = Context.getFunctionType(FnTy->getResultType(),
2837                                  FnTy->arg_type_begin(),
2838                                  FnTy->getNumArgs(), EPI);
2839      // Rebuild any parens around the identifier in the function type.
2840      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2841        if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
2842          break;
2843        T = S.BuildParenType(T);
2844      }
2845    }
2846  }
2847
2848  // Apply any undistributed attributes from the declarator.
2849  if (!T.isNull())
2850    if (AttributeList *attrs = D.getAttributes())
2851      processTypeAttrs(state, T, TAL_DeclName, attrs);
2852
2853  // Diagnose any ignored type attributes.
2854  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
2855
2856  // C++0x [dcl.constexpr]p9:
2857  //  A constexpr specifier used in an object declaration declares the object
2858  //  as const.
2859  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
2860    T.addConst();
2861  }
2862
2863  // If there was an ellipsis in the declarator, the declaration declares a
2864  // parameter pack whose type may be a pack expansion type.
2865  if (D.hasEllipsis() && !T.isNull()) {
2866    // C++0x [dcl.fct]p13:
2867    //   A declarator-id or abstract-declarator containing an ellipsis shall
2868    //   only be used in a parameter-declaration. Such a parameter-declaration
2869    //   is a parameter pack (14.5.3). [...]
2870    switch (D.getContext()) {
2871    case Declarator::PrototypeContext:
2872      // C++0x [dcl.fct]p13:
2873      //   [...] When it is part of a parameter-declaration-clause, the
2874      //   parameter pack is a function parameter pack (14.5.3). The type T
2875      //   of the declarator-id of the function parameter pack shall contain
2876      //   a template parameter pack; each template parameter pack in T is
2877      //   expanded by the function parameter pack.
2878      //
2879      // We represent function parameter packs as function parameters whose
2880      // type is a pack expansion.
2881      if (!T->containsUnexpandedParameterPack()) {
2882        S.Diag(D.getEllipsisLoc(),
2883             diag::err_function_parameter_pack_without_parameter_packs)
2884          << T <<  D.getSourceRange();
2885        D.setEllipsisLoc(SourceLocation());
2886      } else {
2887        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2888      }
2889      break;
2890
2891    case Declarator::TemplateParamContext:
2892      // C++0x [temp.param]p15:
2893      //   If a template-parameter is a [...] is a parameter-declaration that
2894      //   declares a parameter pack (8.3.5), then the template-parameter is a
2895      //   template parameter pack (14.5.3).
2896      //
2897      // Note: core issue 778 clarifies that, if there are any unexpanded
2898      // parameter packs in the type of the non-type template parameter, then
2899      // it expands those parameter packs.
2900      if (T->containsUnexpandedParameterPack())
2901        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2902      else
2903        S.Diag(D.getEllipsisLoc(),
2904               LangOpts.CPlusPlus11
2905                 ? diag::warn_cxx98_compat_variadic_templates
2906                 : diag::ext_variadic_templates);
2907      break;
2908
2909    case Declarator::FileContext:
2910    case Declarator::KNRTypeListContext:
2911    case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
2912    case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
2913    case Declarator::TypeNameContext:
2914    case Declarator::CXXNewContext:
2915    case Declarator::AliasDeclContext:
2916    case Declarator::AliasTemplateContext:
2917    case Declarator::MemberContext:
2918    case Declarator::BlockContext:
2919    case Declarator::ForContext:
2920    case Declarator::ConditionContext:
2921    case Declarator::CXXCatchContext:
2922    case Declarator::ObjCCatchContext:
2923    case Declarator::BlockLiteralContext:
2924    case Declarator::LambdaExprContext:
2925    case Declarator::TrailingReturnContext:
2926    case Declarator::TemplateTypeArgContext:
2927      // FIXME: We may want to allow parameter packs in block-literal contexts
2928      // in the future.
2929      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
2930      D.setEllipsisLoc(SourceLocation());
2931      break;
2932    }
2933  }
2934
2935  if (T.isNull())
2936    return Context.getNullTypeSourceInfo();
2937  else if (D.isInvalidType())
2938    return Context.getTrivialTypeSourceInfo(T);
2939
2940  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
2941}
2942
2943/// GetTypeForDeclarator - Convert the type for the specified
2944/// declarator to Type instances.
2945///
2946/// The result of this call will never be null, but the associated
2947/// type may be a null type if there's an unrecoverable error.
2948TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
2949  // Determine the type of the declarator. Not all forms of declarator
2950  // have a type.
2951
2952  TypeProcessingState state(*this, D);
2953
2954  TypeSourceInfo *ReturnTypeInfo = 0;
2955  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2956  if (T.isNull())
2957    return Context.getNullTypeSourceInfo();
2958
2959  if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
2960    inferARCWriteback(state, T);
2961
2962  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
2963}
2964
2965static void transferARCOwnershipToDeclSpec(Sema &S,
2966                                           QualType &declSpecTy,
2967                                           Qualifiers::ObjCLifetime ownership) {
2968  if (declSpecTy->isObjCRetainableType() &&
2969      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
2970    Qualifiers qs;
2971    qs.addObjCLifetime(ownership);
2972    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
2973  }
2974}
2975
2976static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2977                                            Qualifiers::ObjCLifetime ownership,
2978                                            unsigned chunkIndex) {
2979  Sema &S = state.getSema();
2980  Declarator &D = state.getDeclarator();
2981
2982  // Look for an explicit lifetime attribute.
2983  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
2984  for (const AttributeList *attr = chunk.getAttrs(); attr;
2985         attr = attr->getNext())
2986    if (attr->getKind() == AttributeList::AT_ObjCOwnership)
2987      return;
2988
2989  const char *attrStr = 0;
2990  switch (ownership) {
2991  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
2992  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
2993  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
2994  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
2995  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
2996  }
2997
2998  // If there wasn't one, add one (with an invalid source location
2999  // so that we don't make an AttributedType for it).
3000  AttributeList *attr = D.getAttributePool()
3001    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
3002            /*scope*/ 0, SourceLocation(),
3003            &S.Context.Idents.get(attrStr), SourceLocation(),
3004            /*args*/ 0, 0, AttributeList::AS_GNU);
3005  spliceAttrIntoList(*attr, chunk.getAttrListRef());
3006
3007  // TODO: mark whether we did this inference?
3008}
3009
3010/// \brief Used for transferring ownership in casts resulting in l-values.
3011static void transferARCOwnership(TypeProcessingState &state,
3012                                 QualType &declSpecTy,
3013                                 Qualifiers::ObjCLifetime ownership) {
3014  Sema &S = state.getSema();
3015  Declarator &D = state.getDeclarator();
3016
3017  int inner = -1;
3018  bool hasIndirection = false;
3019  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3020    DeclaratorChunk &chunk = D.getTypeObject(i);
3021    switch (chunk.Kind) {
3022    case DeclaratorChunk::Paren:
3023      // Ignore parens.
3024      break;
3025
3026    case DeclaratorChunk::Array:
3027    case DeclaratorChunk::Reference:
3028    case DeclaratorChunk::Pointer:
3029      if (inner != -1)
3030        hasIndirection = true;
3031      inner = i;
3032      break;
3033
3034    case DeclaratorChunk::BlockPointer:
3035      if (inner != -1)
3036        transferARCOwnershipToDeclaratorChunk(state, ownership, i);
3037      return;
3038
3039    case DeclaratorChunk::Function:
3040    case DeclaratorChunk::MemberPointer:
3041      return;
3042    }
3043  }
3044
3045  if (inner == -1)
3046    return;
3047
3048  DeclaratorChunk &chunk = D.getTypeObject(inner);
3049  if (chunk.Kind == DeclaratorChunk::Pointer) {
3050    if (declSpecTy->isObjCRetainableType())
3051      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
3052    if (declSpecTy->isObjCObjectType() && hasIndirection)
3053      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
3054  } else {
3055    assert(chunk.Kind == DeclaratorChunk::Array ||
3056           chunk.Kind == DeclaratorChunk::Reference);
3057    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
3058  }
3059}
3060
3061TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
3062  TypeProcessingState state(*this, D);
3063
3064  TypeSourceInfo *ReturnTypeInfo = 0;
3065  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
3066  if (declSpecTy.isNull())
3067    return Context.getNullTypeSourceInfo();
3068
3069  if (getLangOpts().ObjCAutoRefCount) {
3070    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
3071    if (ownership != Qualifiers::OCL_None)
3072      transferARCOwnership(state, declSpecTy, ownership);
3073  }
3074
3075  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
3076}
3077
3078/// Map an AttributedType::Kind to an AttributeList::Kind.
3079static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
3080  switch (kind) {
3081  case AttributedType::attr_address_space:
3082    return AttributeList::AT_AddressSpace;
3083  case AttributedType::attr_regparm:
3084    return AttributeList::AT_Regparm;
3085  case AttributedType::attr_vector_size:
3086    return AttributeList::AT_VectorSize;
3087  case AttributedType::attr_neon_vector_type:
3088    return AttributeList::AT_NeonVectorType;
3089  case AttributedType::attr_neon_polyvector_type:
3090    return AttributeList::AT_NeonPolyVectorType;
3091  case AttributedType::attr_objc_gc:
3092    return AttributeList::AT_ObjCGC;
3093  case AttributedType::attr_objc_ownership:
3094    return AttributeList::AT_ObjCOwnership;
3095  case AttributedType::attr_noreturn:
3096    return AttributeList::AT_NoReturn;
3097  case AttributedType::attr_cdecl:
3098    return AttributeList::AT_CDecl;
3099  case AttributedType::attr_fastcall:
3100    return AttributeList::AT_FastCall;
3101  case AttributedType::attr_stdcall:
3102    return AttributeList::AT_StdCall;
3103  case AttributedType::attr_thiscall:
3104    return AttributeList::AT_ThisCall;
3105  case AttributedType::attr_pascal:
3106    return AttributeList::AT_Pascal;
3107  case AttributedType::attr_pcs:
3108    return AttributeList::AT_Pcs;
3109  case AttributedType::attr_pnaclcall:
3110    return AttributeList::AT_PnaclCall;
3111  case AttributedType::attr_inteloclbicc:
3112    return AttributeList::AT_IntelOclBicc;
3113  }
3114  llvm_unreachable("unexpected attribute kind!");
3115}
3116
3117static void fillAttributedTypeLoc(AttributedTypeLoc TL,
3118                                  const AttributeList *attrs) {
3119  AttributedType::Kind kind = TL.getAttrKind();
3120
3121  assert(attrs && "no type attributes in the expected location!");
3122  AttributeList::Kind parsedKind = getAttrListKind(kind);
3123  while (attrs->getKind() != parsedKind) {
3124    attrs = attrs->getNext();
3125    assert(attrs && "no matching attribute in expected location!");
3126  }
3127
3128  TL.setAttrNameLoc(attrs->getLoc());
3129  if (TL.hasAttrExprOperand())
3130    TL.setAttrExprOperand(attrs->getArg(0));
3131  else if (TL.hasAttrEnumOperand())
3132    TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
3133
3134  // FIXME: preserve this information to here.
3135  if (TL.hasAttrOperand())
3136    TL.setAttrOperandParensRange(SourceRange());
3137}
3138
3139namespace {
3140  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
3141    ASTContext &Context;
3142    const DeclSpec &DS;
3143
3144  public:
3145    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
3146      : Context(Context), DS(DS) {}
3147
3148    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3149      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
3150      Visit(TL.getModifiedLoc());
3151    }
3152    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3153      Visit(TL.getUnqualifiedLoc());
3154    }
3155    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
3156      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3157    }
3158    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
3159      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3160      // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
3161      // addition field. What we have is good enough for dispay of location
3162      // of 'fixit' on interface name.
3163      TL.setNameEndLoc(DS.getLocEnd());
3164    }
3165    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
3166      // Handle the base type, which might not have been written explicitly.
3167      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
3168        TL.setHasBaseTypeAsWritten(false);
3169        TL.getBaseLoc().initialize(Context, SourceLocation());
3170      } else {
3171        TL.setHasBaseTypeAsWritten(true);
3172        Visit(TL.getBaseLoc());
3173      }
3174
3175      // Protocol qualifiers.
3176      if (DS.getProtocolQualifiers()) {
3177        assert(TL.getNumProtocols() > 0);
3178        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
3179        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
3180        TL.setRAngleLoc(DS.getSourceRange().getEnd());
3181        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
3182          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
3183      } else {
3184        assert(TL.getNumProtocols() == 0);
3185        TL.setLAngleLoc(SourceLocation());
3186        TL.setRAngleLoc(SourceLocation());
3187      }
3188    }
3189    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3190      TL.setStarLoc(SourceLocation());
3191      Visit(TL.getPointeeLoc());
3192    }
3193    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
3194      TypeSourceInfo *TInfo = 0;
3195      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3196
3197      // If we got no declarator info from previous Sema routines,
3198      // just fill with the typespec loc.
3199      if (!TInfo) {
3200        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
3201        return;
3202      }
3203
3204      TypeLoc OldTL = TInfo->getTypeLoc();
3205      if (TInfo->getType()->getAs<ElaboratedType>()) {
3206        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
3207        TemplateSpecializationTypeLoc NamedTL =
3208          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
3209        TL.copy(NamedTL);
3210      }
3211      else
3212        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
3213    }
3214    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
3215      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
3216      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3217      TL.setParensRange(DS.getTypeofParensRange());
3218    }
3219    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
3220      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
3221      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3222      TL.setParensRange(DS.getTypeofParensRange());
3223      assert(DS.getRepAsType());
3224      TypeSourceInfo *TInfo = 0;
3225      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3226      TL.setUnderlyingTInfo(TInfo);
3227    }
3228    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
3229      // FIXME: This holds only because we only have one unary transform.
3230      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
3231      TL.setKWLoc(DS.getTypeSpecTypeLoc());
3232      TL.setParensRange(DS.getTypeofParensRange());
3233      assert(DS.getRepAsType());
3234      TypeSourceInfo *TInfo = 0;
3235      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3236      TL.setUnderlyingTInfo(TInfo);
3237    }
3238    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
3239      // By default, use the source location of the type specifier.
3240      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
3241      if (TL.needsExtraLocalData()) {
3242        // Set info for the written builtin specifiers.
3243        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
3244        // Try to have a meaningful source location.
3245        if (TL.getWrittenSignSpec() != TSS_unspecified)
3246          // Sign spec loc overrides the others (e.g., 'unsigned long').
3247          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
3248        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
3249          // Width spec loc overrides type spec loc (e.g., 'short int').
3250          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
3251      }
3252    }
3253    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
3254      ElaboratedTypeKeyword Keyword
3255        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
3256      if (DS.getTypeSpecType() == TST_typename) {
3257        TypeSourceInfo *TInfo = 0;
3258        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3259        if (TInfo) {
3260          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
3261          return;
3262        }
3263      }
3264      TL.setElaboratedKeywordLoc(Keyword != ETK_None
3265                                 ? DS.getTypeSpecTypeLoc()
3266                                 : SourceLocation());
3267      const CXXScopeSpec& SS = DS.getTypeSpecScope();
3268      TL.setQualifierLoc(SS.getWithLocInContext(Context));
3269      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
3270    }
3271    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
3272      assert(DS.getTypeSpecType() == TST_typename);
3273      TypeSourceInfo *TInfo = 0;
3274      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3275      assert(TInfo);
3276      TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
3277    }
3278    void VisitDependentTemplateSpecializationTypeLoc(
3279                                 DependentTemplateSpecializationTypeLoc TL) {
3280      assert(DS.getTypeSpecType() == TST_typename);
3281      TypeSourceInfo *TInfo = 0;
3282      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3283      assert(TInfo);
3284      TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
3285                TInfo->getTypeLoc()));
3286    }
3287    void VisitTagTypeLoc(TagTypeLoc TL) {
3288      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
3289    }
3290    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
3291      TL.setKWLoc(DS.getTypeSpecTypeLoc());
3292      TL.setParensRange(DS.getTypeofParensRange());
3293
3294      TypeSourceInfo *TInfo = 0;
3295      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3296      TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
3297    }
3298
3299    void VisitTypeLoc(TypeLoc TL) {
3300      // FIXME: add other typespec types and change this to an assert.
3301      TL.initialize(Context, DS.getTypeSpecTypeLoc());
3302    }
3303  };
3304
3305  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
3306    ASTContext &Context;
3307    const DeclaratorChunk &Chunk;
3308
3309  public:
3310    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
3311      : Context(Context), Chunk(Chunk) {}
3312
3313    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3314      llvm_unreachable("qualified type locs not expected here!");
3315    }
3316
3317    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3318      fillAttributedTypeLoc(TL, Chunk.getAttrs());
3319    }
3320    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
3321      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3322      TL.setCaretLoc(Chunk.Loc);
3323    }
3324    void VisitPointerTypeLoc(PointerTypeLoc TL) {
3325      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3326      TL.setStarLoc(Chunk.Loc);
3327    }
3328    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3329      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3330      TL.setStarLoc(Chunk.Loc);
3331    }
3332    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3333      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3334      const CXXScopeSpec& SS = Chunk.Mem.Scope();
3335      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3336
3337      const Type* ClsTy = TL.getClass();
3338      QualType ClsQT = QualType(ClsTy, 0);
3339      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3340      // Now copy source location info into the type loc component.
3341      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3342      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3343      case NestedNameSpecifier::Identifier:
3344        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3345        {
3346          DependentNameTypeLoc DNTLoc = cast<DependentNameTypeLoc>(ClsTL);
3347          DNTLoc.setElaboratedKeywordLoc(SourceLocation());
3348          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3349          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3350        }
3351        break;
3352
3353      case NestedNameSpecifier::TypeSpec:
3354      case NestedNameSpecifier::TypeSpecWithTemplate:
3355        if (isa<ElaboratedType>(ClsTy)) {
3356          ElaboratedTypeLoc ETLoc = *cast<ElaboratedTypeLoc>(&ClsTL);
3357          ETLoc.setElaboratedKeywordLoc(SourceLocation());
3358          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3359          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3360          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3361        } else {
3362          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3363        }
3364        break;
3365
3366      case NestedNameSpecifier::Namespace:
3367      case NestedNameSpecifier::NamespaceAlias:
3368      case NestedNameSpecifier::Global:
3369        llvm_unreachable("Nested-name-specifier must name a type");
3370      }
3371
3372      // Finally fill in MemberPointerLocInfo fields.
3373      TL.setStarLoc(Chunk.Loc);
3374      TL.setClassTInfo(ClsTInfo);
3375    }
3376    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3377      assert(Chunk.Kind == DeclaratorChunk::Reference);
3378      // 'Amp' is misleading: this might have been originally
3379      /// spelled with AmpAmp.
3380      TL.setAmpLoc(Chunk.Loc);
3381    }
3382    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3383      assert(Chunk.Kind == DeclaratorChunk::Reference);
3384      assert(!Chunk.Ref.LValueRef);
3385      TL.setAmpAmpLoc(Chunk.Loc);
3386    }
3387    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3388      assert(Chunk.Kind == DeclaratorChunk::Array);
3389      TL.setLBracketLoc(Chunk.Loc);
3390      TL.setRBracketLoc(Chunk.EndLoc);
3391      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3392    }
3393    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3394      assert(Chunk.Kind == DeclaratorChunk::Function);
3395      TL.setLocalRangeBegin(Chunk.Loc);
3396      TL.setLocalRangeEnd(Chunk.EndLoc);
3397
3398      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3399      TL.setLParenLoc(FTI.getLParenLoc());
3400      TL.setRParenLoc(FTI.getRParenLoc());
3401      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
3402        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3403        TL.setArg(tpi++, Param);
3404      }
3405      // FIXME: exception specs
3406    }
3407    void VisitParenTypeLoc(ParenTypeLoc TL) {
3408      assert(Chunk.Kind == DeclaratorChunk::Paren);
3409      TL.setLParenLoc(Chunk.Loc);
3410      TL.setRParenLoc(Chunk.EndLoc);
3411    }
3412
3413    void VisitTypeLoc(TypeLoc TL) {
3414      llvm_unreachable("unsupported TypeLoc kind in declarator!");
3415    }
3416  };
3417}
3418
3419/// \brief Create and instantiate a TypeSourceInfo with type source information.
3420///
3421/// \param T QualType referring to the type as written in source code.
3422///
3423/// \param ReturnTypeInfo For declarators whose return type does not show
3424/// up in the normal place in the declaration specifiers (such as a C++
3425/// conversion function), this pointer will refer to a type source information
3426/// for that return type.
3427TypeSourceInfo *
3428Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3429                                     TypeSourceInfo *ReturnTypeInfo) {
3430  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3431  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3432
3433  // Handle parameter packs whose type is a pack expansion.
3434  if (isa<PackExpansionType>(T)) {
3435    cast<PackExpansionTypeLoc>(CurrTL).setEllipsisLoc(D.getEllipsisLoc());
3436    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3437  }
3438
3439  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3440    while (isa<AttributedTypeLoc>(CurrTL)) {
3441      AttributedTypeLoc TL = cast<AttributedTypeLoc>(CurrTL);
3442      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3443      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3444    }
3445
3446    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3447    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3448  }
3449
3450  // If we have different source information for the return type, use
3451  // that.  This really only applies to C++ conversion functions.
3452  if (ReturnTypeInfo) {
3453    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3454    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3455    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3456  } else {
3457    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3458  }
3459
3460  return TInfo;
3461}
3462
3463/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3464ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3465  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3466  // and Sema during declaration parsing. Try deallocating/caching them when
3467  // it's appropriate, instead of allocating them and keeping them around.
3468  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3469                                                       TypeAlignment);
3470  new (LocT) LocInfoType(T, TInfo);
3471  assert(LocT->getTypeClass() != T->getTypeClass() &&
3472         "LocInfoType's TypeClass conflicts with an existing Type class");
3473  return ParsedType::make(QualType(LocT, 0));
3474}
3475
3476void LocInfoType::getAsStringInternal(std::string &Str,
3477                                      const PrintingPolicy &Policy) const {
3478  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3479         " was used directly instead of getting the QualType through"
3480         " GetTypeFromParser");
3481}
3482
3483TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3484  // C99 6.7.6: Type names have no identifier.  This is already validated by
3485  // the parser.
3486  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3487
3488  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3489  QualType T = TInfo->getType();
3490  if (D.isInvalidType())
3491    return true;
3492
3493  // Make sure there are no unused decl attributes on the declarator.
3494  // We don't want to do this for ObjC parameters because we're going
3495  // to apply them to the actual parameter declaration.
3496  if (D.getContext() != Declarator::ObjCParameterContext)
3497    checkUnusedDeclAttributes(D);
3498
3499  if (getLangOpts().CPlusPlus) {
3500    // Check that there are no default arguments (C++ only).
3501    CheckExtraCXXDefaultArguments(D);
3502  }
3503
3504  return CreateParsedType(T, TInfo);
3505}
3506
3507ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3508  QualType T = Context.getObjCInstanceType();
3509  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3510  return CreateParsedType(T, TInfo);
3511}
3512
3513
3514//===----------------------------------------------------------------------===//
3515// Type Attribute Processing
3516//===----------------------------------------------------------------------===//
3517
3518/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3519/// specified type.  The attribute contains 1 argument, the id of the address
3520/// space for the type.
3521static void HandleAddressSpaceTypeAttribute(QualType &Type,
3522                                            const AttributeList &Attr, Sema &S){
3523
3524  // If this type is already address space qualified, reject it.
3525  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3526  // qualifiers for two or more different address spaces."
3527  if (Type.getAddressSpace()) {
3528    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3529    Attr.setInvalid();
3530    return;
3531  }
3532
3533  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3534  // qualified by an address-space qualifier."
3535  if (Type->isFunctionType()) {
3536    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3537    Attr.setInvalid();
3538    return;
3539  }
3540
3541  // Check the attribute arguments.
3542  if (Attr.getNumArgs() != 1) {
3543    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3544    Attr.setInvalid();
3545    return;
3546  }
3547  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
3548  llvm::APSInt addrSpace(32);
3549  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3550      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3551    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
3552      << ASArgExpr->getSourceRange();
3553    Attr.setInvalid();
3554    return;
3555  }
3556
3557  // Bounds checking.
3558  if (addrSpace.isSigned()) {
3559    if (addrSpace.isNegative()) {
3560      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3561        << ASArgExpr->getSourceRange();
3562      Attr.setInvalid();
3563      return;
3564    }
3565    addrSpace.setIsSigned(false);
3566  }
3567  llvm::APSInt max(addrSpace.getBitWidth());
3568  max = Qualifiers::MaxAddressSpace;
3569  if (addrSpace > max) {
3570    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3571      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
3572    Attr.setInvalid();
3573    return;
3574  }
3575
3576  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3577  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3578}
3579
3580/// Does this type have a "direct" ownership qualifier?  That is,
3581/// is it written like "__strong id", as opposed to something like
3582/// "typeof(foo)", where that happens to be strong?
3583static bool hasDirectOwnershipQualifier(QualType type) {
3584  // Fast path: no qualifier at all.
3585  assert(type.getQualifiers().hasObjCLifetime());
3586
3587  while (true) {
3588    // __strong id
3589    if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
3590      if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
3591        return true;
3592
3593      type = attr->getModifiedType();
3594
3595    // X *__strong (...)
3596    } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
3597      type = paren->getInnerType();
3598
3599    // That's it for things we want to complain about.  In particular,
3600    // we do not want to look through typedefs, typeof(expr),
3601    // typeof(type), or any other way that the type is somehow
3602    // abstracted.
3603    } else {
3604
3605      return false;
3606    }
3607  }
3608}
3609
3610/// handleObjCOwnershipTypeAttr - Process an objc_ownership
3611/// attribute on the specified type.
3612///
3613/// Returns 'true' if the attribute was handled.
3614static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
3615                                       AttributeList &attr,
3616                                       QualType &type) {
3617  bool NonObjCPointer = false;
3618
3619  if (!type->isDependentType()) {
3620    if (const PointerType *ptr = type->getAs<PointerType>()) {
3621      QualType pointee = ptr->getPointeeType();
3622      if (pointee->isObjCRetainableType() || pointee->isPointerType())
3623        return false;
3624      // It is important not to lose the source info that there was an attribute
3625      // applied to non-objc pointer. We will create an attributed type but
3626      // its type will be the same as the original type.
3627      NonObjCPointer = true;
3628    } else if (!type->isObjCRetainableType()) {
3629      return false;
3630    }
3631  }
3632
3633  Sema &S = state.getSema();
3634  SourceLocation AttrLoc = attr.getLoc();
3635  if (AttrLoc.isMacroID())
3636    AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
3637
3638  if (!attr.getParameterName()) {
3639    S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
3640      << "objc_ownership" << 1;
3641    attr.setInvalid();
3642    return true;
3643  }
3644
3645  // Consume lifetime attributes without further comment outside of
3646  // ARC mode.
3647  if (!S.getLangOpts().ObjCAutoRefCount)
3648    return true;
3649
3650  Qualifiers::ObjCLifetime lifetime;
3651  if (attr.getParameterName()->isStr("none"))
3652    lifetime = Qualifiers::OCL_ExplicitNone;
3653  else if (attr.getParameterName()->isStr("strong"))
3654    lifetime = Qualifiers::OCL_Strong;
3655  else if (attr.getParameterName()->isStr("weak"))
3656    lifetime = Qualifiers::OCL_Weak;
3657  else if (attr.getParameterName()->isStr("autoreleasing"))
3658    lifetime = Qualifiers::OCL_Autoreleasing;
3659  else {
3660    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
3661      << "objc_ownership" << attr.getParameterName();
3662    attr.setInvalid();
3663    return true;
3664  }
3665
3666  SplitQualType underlyingType = type.split();
3667
3668  // Check for redundant/conflicting ownership qualifiers.
3669  if (Qualifiers::ObjCLifetime previousLifetime
3670        = type.getQualifiers().getObjCLifetime()) {
3671    // If it's written directly, that's an error.
3672    if (hasDirectOwnershipQualifier(type)) {
3673      S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
3674        << type;
3675      return true;
3676    }
3677
3678    // Otherwise, if the qualifiers actually conflict, pull sugar off
3679    // until we reach a type that is directly qualified.
3680    if (previousLifetime != lifetime) {
3681      // This should always terminate: the canonical type is
3682      // qualified, so some bit of sugar must be hiding it.
3683      while (!underlyingType.Quals.hasObjCLifetime()) {
3684        underlyingType = underlyingType.getSingleStepDesugaredType();
3685      }
3686      underlyingType.Quals.removeObjCLifetime();
3687    }
3688  }
3689
3690  underlyingType.Quals.addObjCLifetime(lifetime);
3691
3692  if (NonObjCPointer) {
3693    StringRef name = attr.getName()->getName();
3694    switch (lifetime) {
3695    case Qualifiers::OCL_None:
3696    case Qualifiers::OCL_ExplicitNone:
3697      break;
3698    case Qualifiers::OCL_Strong: name = "__strong"; break;
3699    case Qualifiers::OCL_Weak: name = "__weak"; break;
3700    case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
3701    }
3702    S.Diag(AttrLoc, diag::warn_objc_object_attribute_wrong_type)
3703      << name << type;
3704  }
3705
3706  QualType origType = type;
3707  if (!NonObjCPointer)
3708    type = S.Context.getQualifiedType(underlyingType);
3709
3710  // If we have a valid source location for the attribute, use an
3711  // AttributedType instead.
3712  if (AttrLoc.isValid())
3713    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
3714                                       origType, type);
3715
3716  // Forbid __weak if the runtime doesn't support it.
3717  if (lifetime == Qualifiers::OCL_Weak &&
3718      !S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {
3719
3720    // Actually, delay this until we know what we're parsing.
3721    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
3722      S.DelayedDiagnostics.add(
3723          sema::DelayedDiagnostic::makeForbiddenType(
3724              S.getSourceManager().getExpansionLoc(AttrLoc),
3725              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
3726    } else {
3727      S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
3728    }
3729
3730    attr.setInvalid();
3731    return true;
3732  }
3733
3734  // Forbid __weak for class objects marked as
3735  // objc_arc_weak_reference_unavailable
3736  if (lifetime == Qualifiers::OCL_Weak) {
3737    QualType T = type;
3738    while (const PointerType *ptr = T->getAs<PointerType>())
3739      T = ptr->getPointeeType();
3740    if (const ObjCObjectPointerType *ObjT = T->getAs<ObjCObjectPointerType>()) {
3741      if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
3742        if (Class->isArcWeakrefUnavailable()) {
3743            S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
3744            S.Diag(ObjT->getInterfaceDecl()->getLocation(),
3745                   diag::note_class_declared);
3746        }
3747      }
3748    }
3749  }
3750
3751  return true;
3752}
3753
3754/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
3755/// attribute on the specified type.  Returns true to indicate that
3756/// the attribute was handled, false to indicate that the type does
3757/// not permit the attribute.
3758static bool handleObjCGCTypeAttr(TypeProcessingState &state,
3759                                 AttributeList &attr,
3760                                 QualType &type) {
3761  Sema &S = state.getSema();
3762
3763  // Delay if this isn't some kind of pointer.
3764  if (!type->isPointerType() &&
3765      !type->isObjCObjectPointerType() &&
3766      !type->isBlockPointerType())
3767    return false;
3768
3769  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
3770    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
3771    attr.setInvalid();
3772    return true;
3773  }
3774
3775  // Check the attribute arguments.
3776  if (!attr.getParameterName()) {
3777    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3778      << "objc_gc" << 1;
3779    attr.setInvalid();
3780    return true;
3781  }
3782  Qualifiers::GC GCAttr;
3783  if (attr.getNumArgs() != 0) {
3784    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3785    attr.setInvalid();
3786    return true;
3787  }
3788  if (attr.getParameterName()->isStr("weak"))
3789    GCAttr = Qualifiers::Weak;
3790  else if (attr.getParameterName()->isStr("strong"))
3791    GCAttr = Qualifiers::Strong;
3792  else {
3793    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3794      << "objc_gc" << attr.getParameterName();
3795    attr.setInvalid();
3796    return true;
3797  }
3798
3799  QualType origType = type;
3800  type = S.Context.getObjCGCQualType(origType, GCAttr);
3801
3802  // Make an attributed type to preserve the source information.
3803  if (attr.getLoc().isValid())
3804    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
3805                                       origType, type);
3806
3807  return true;
3808}
3809
3810namespace {
3811  /// A helper class to unwrap a type down to a function for the
3812  /// purposes of applying attributes there.
3813  ///
3814  /// Use:
3815  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
3816  ///   if (unwrapped.isFunctionType()) {
3817  ///     const FunctionType *fn = unwrapped.get();
3818  ///     // change fn somehow
3819  ///     T = unwrapped.wrap(fn);
3820  ///   }
3821  struct FunctionTypeUnwrapper {
3822    enum WrapKind {
3823      Desugar,
3824      Parens,
3825      Pointer,
3826      BlockPointer,
3827      Reference,
3828      MemberPointer
3829    };
3830
3831    QualType Original;
3832    const FunctionType *Fn;
3833    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
3834
3835    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
3836      while (true) {
3837        const Type *Ty = T.getTypePtr();
3838        if (isa<FunctionType>(Ty)) {
3839          Fn = cast<FunctionType>(Ty);
3840          return;
3841        } else if (isa<ParenType>(Ty)) {
3842          T = cast<ParenType>(Ty)->getInnerType();
3843          Stack.push_back(Parens);
3844        } else if (isa<PointerType>(Ty)) {
3845          T = cast<PointerType>(Ty)->getPointeeType();
3846          Stack.push_back(Pointer);
3847        } else if (isa<BlockPointerType>(Ty)) {
3848          T = cast<BlockPointerType>(Ty)->getPointeeType();
3849          Stack.push_back(BlockPointer);
3850        } else if (isa<MemberPointerType>(Ty)) {
3851          T = cast<MemberPointerType>(Ty)->getPointeeType();
3852          Stack.push_back(MemberPointer);
3853        } else if (isa<ReferenceType>(Ty)) {
3854          T = cast<ReferenceType>(Ty)->getPointeeType();
3855          Stack.push_back(Reference);
3856        } else {
3857          const Type *DTy = Ty->getUnqualifiedDesugaredType();
3858          if (Ty == DTy) {
3859            Fn = 0;
3860            return;
3861          }
3862
3863          T = QualType(DTy, 0);
3864          Stack.push_back(Desugar);
3865        }
3866      }
3867    }
3868
3869    bool isFunctionType() const { return (Fn != 0); }
3870    const FunctionType *get() const { return Fn; }
3871
3872    QualType wrap(Sema &S, const FunctionType *New) {
3873      // If T wasn't modified from the unwrapped type, do nothing.
3874      if (New == get()) return Original;
3875
3876      Fn = New;
3877      return wrap(S.Context, Original, 0);
3878    }
3879
3880  private:
3881    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
3882      if (I == Stack.size())
3883        return C.getQualifiedType(Fn, Old.getQualifiers());
3884
3885      // Build up the inner type, applying the qualifiers from the old
3886      // type to the new type.
3887      SplitQualType SplitOld = Old.split();
3888
3889      // As a special case, tail-recurse if there are no qualifiers.
3890      if (SplitOld.Quals.empty())
3891        return wrap(C, SplitOld.Ty, I);
3892      return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
3893    }
3894
3895    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
3896      if (I == Stack.size()) return QualType(Fn, 0);
3897
3898      switch (static_cast<WrapKind>(Stack[I++])) {
3899      case Desugar:
3900        // This is the point at which we potentially lose source
3901        // information.
3902        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
3903
3904      case Parens: {
3905        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
3906        return C.getParenType(New);
3907      }
3908
3909      case Pointer: {
3910        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
3911        return C.getPointerType(New);
3912      }
3913
3914      case BlockPointer: {
3915        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
3916        return C.getBlockPointerType(New);
3917      }
3918
3919      case MemberPointer: {
3920        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
3921        QualType New = wrap(C, OldMPT->getPointeeType(), I);
3922        return C.getMemberPointerType(New, OldMPT->getClass());
3923      }
3924
3925      case Reference: {
3926        const ReferenceType *OldRef = cast<ReferenceType>(Old);
3927        QualType New = wrap(C, OldRef->getPointeeType(), I);
3928        if (isa<LValueReferenceType>(OldRef))
3929          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
3930        else
3931          return C.getRValueReferenceType(New);
3932      }
3933      }
3934
3935      llvm_unreachable("unknown wrapping kind");
3936    }
3937  };
3938}
3939
3940/// Process an individual function attribute.  Returns true to
3941/// indicate that the attribute was handled, false if it wasn't.
3942static bool handleFunctionTypeAttr(TypeProcessingState &state,
3943                                   AttributeList &attr,
3944                                   QualType &type) {
3945  Sema &S = state.getSema();
3946
3947  FunctionTypeUnwrapper unwrapped(S, type);
3948
3949  if (attr.getKind() == AttributeList::AT_NoReturn) {
3950    if (S.CheckNoReturnAttr(attr))
3951      return true;
3952
3953    // Delay if this is not a function type.
3954    if (!unwrapped.isFunctionType())
3955      return false;
3956
3957    // Otherwise we can process right away.
3958    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
3959    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3960    return true;
3961  }
3962
3963  // ns_returns_retained is not always a type attribute, but if we got
3964  // here, we're treating it as one right now.
3965  if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
3966    assert(S.getLangOpts().ObjCAutoRefCount &&
3967           "ns_returns_retained treated as type attribute in non-ARC");
3968    if (attr.getNumArgs()) return true;
3969
3970    // Delay if this is not a function type.
3971    if (!unwrapped.isFunctionType())
3972      return false;
3973
3974    FunctionType::ExtInfo EI
3975      = unwrapped.get()->getExtInfo().withProducesResult(true);
3976    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3977    return true;
3978  }
3979
3980  if (attr.getKind() == AttributeList::AT_Regparm) {
3981    unsigned value;
3982    if (S.CheckRegparmAttr(attr, value))
3983      return true;
3984
3985    // Delay if this is not a function type.
3986    if (!unwrapped.isFunctionType())
3987      return false;
3988
3989    // Diagnose regparm with fastcall.
3990    const FunctionType *fn = unwrapped.get();
3991    CallingConv CC = fn->getCallConv();
3992    if (CC == CC_X86FastCall) {
3993      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3994        << FunctionType::getNameForCallConv(CC)
3995        << "regparm";
3996      attr.setInvalid();
3997      return true;
3998    }
3999
4000    FunctionType::ExtInfo EI =
4001      unwrapped.get()->getExtInfo().withRegParm(value);
4002    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4003    return true;
4004  }
4005
4006  // Delay if the type didn't work out to a function.
4007  if (!unwrapped.isFunctionType()) return false;
4008
4009  // Otherwise, a calling convention.
4010  CallingConv CC;
4011  if (S.CheckCallingConvAttr(attr, CC))
4012    return true;
4013
4014  const FunctionType *fn = unwrapped.get();
4015  CallingConv CCOld = fn->getCallConv();
4016  if (S.Context.getCanonicalCallConv(CC) ==
4017      S.Context.getCanonicalCallConv(CCOld)) {
4018    FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
4019    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4020    return true;
4021  }
4022
4023  if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
4024    // Should we diagnose reapplications of the same convention?
4025    S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4026      << FunctionType::getNameForCallConv(CC)
4027      << FunctionType::getNameForCallConv(CCOld);
4028    attr.setInvalid();
4029    return true;
4030  }
4031
4032  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
4033  if (CC == CC_X86FastCall) {
4034    if (isa<FunctionNoProtoType>(fn)) {
4035      S.Diag(attr.getLoc(), diag::err_cconv_knr)
4036        << FunctionType::getNameForCallConv(CC);
4037      attr.setInvalid();
4038      return true;
4039    }
4040
4041    const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
4042    if (FnP->isVariadic()) {
4043      S.Diag(attr.getLoc(), diag::err_cconv_varargs)
4044        << FunctionType::getNameForCallConv(CC);
4045      attr.setInvalid();
4046      return true;
4047    }
4048
4049    // Also diagnose fastcall with regparm.
4050    if (fn->getHasRegParm()) {
4051      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4052        << "regparm"
4053        << FunctionType::getNameForCallConv(CC);
4054      attr.setInvalid();
4055      return true;
4056    }
4057  }
4058
4059  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
4060  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4061  return true;
4062}
4063
4064/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
4065static void HandleOpenCLImageAccessAttribute(QualType& CurType,
4066                                             const AttributeList &Attr,
4067                                             Sema &S) {
4068  // Check the attribute arguments.
4069  if (Attr.getNumArgs() != 1) {
4070    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4071    Attr.setInvalid();
4072    return;
4073  }
4074  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
4075  llvm::APSInt arg(32);
4076  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
4077      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
4078    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4079      << "opencl_image_access" << sizeExpr->getSourceRange();
4080    Attr.setInvalid();
4081    return;
4082  }
4083  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
4084  switch (iarg) {
4085  case CLIA_read_only:
4086  case CLIA_write_only:
4087  case CLIA_read_write:
4088    // Implemented in a separate patch
4089    break;
4090  default:
4091    // Implemented in a separate patch
4092    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4093      << sizeExpr->getSourceRange();
4094    Attr.setInvalid();
4095    break;
4096  }
4097}
4098
4099/// HandleVectorSizeAttribute - this attribute is only applicable to integral
4100/// and float scalars, although arrays, pointers, and function return values are
4101/// allowed in conjunction with this construct. Aggregates with this attribute
4102/// are invalid, even if they are of the same size as a corresponding scalar.
4103/// The raw attribute should contain precisely 1 argument, the vector size for
4104/// the variable, measured in bytes. If curType and rawAttr are well formed,
4105/// this routine will return a new vector type.
4106static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
4107                                 Sema &S) {
4108  // Check the attribute arguments.
4109  if (Attr.getNumArgs() != 1) {
4110    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4111    Attr.setInvalid();
4112    return;
4113  }
4114  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
4115  llvm::APSInt vecSize(32);
4116  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
4117      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
4118    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4119      << "vector_size" << sizeExpr->getSourceRange();
4120    Attr.setInvalid();
4121    return;
4122  }
4123  // the base type must be integer or float, and can't already be a vector.
4124  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
4125    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
4126    Attr.setInvalid();
4127    return;
4128  }
4129  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4130  // vecSize is specified in bytes - convert to bits.
4131  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
4132
4133  // the vector size needs to be an integral multiple of the type size.
4134  if (vectorSize % typeSize) {
4135    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4136      << sizeExpr->getSourceRange();
4137    Attr.setInvalid();
4138    return;
4139  }
4140  if (vectorSize == 0) {
4141    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
4142      << sizeExpr->getSourceRange();
4143    Attr.setInvalid();
4144    return;
4145  }
4146
4147  // Success! Instantiate the vector type, the number of elements is > 0, and
4148  // not required to be a power of 2, unlike GCC.
4149  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
4150                                    VectorType::GenericVector);
4151}
4152
4153/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
4154/// a type.
4155static void HandleExtVectorTypeAttr(QualType &CurType,
4156                                    const AttributeList &Attr,
4157                                    Sema &S) {
4158  Expr *sizeExpr;
4159
4160  // Special case where the argument is a template id.
4161  if (Attr.getParameterName()) {
4162    CXXScopeSpec SS;
4163    SourceLocation TemplateKWLoc;
4164    UnqualifiedId id;
4165    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
4166
4167    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
4168                                          id, false, false);
4169    if (Size.isInvalid())
4170      return;
4171
4172    sizeExpr = Size.get();
4173  } else {
4174    // check the attribute arguments.
4175    if (Attr.getNumArgs() != 1) {
4176      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4177      return;
4178    }
4179    sizeExpr = Attr.getArg(0);
4180  }
4181
4182  // Create the vector type.
4183  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
4184  if (!T.isNull())
4185    CurType = T;
4186}
4187
4188/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
4189/// "neon_polyvector_type" attributes are used to create vector types that
4190/// are mangled according to ARM's ABI.  Otherwise, these types are identical
4191/// to those created with the "vector_size" attribute.  Unlike "vector_size"
4192/// the argument to these Neon attributes is the number of vector elements,
4193/// not the vector size in bytes.  The vector width and element type must
4194/// match one of the standard Neon vector types.
4195static void HandleNeonVectorTypeAttr(QualType& CurType,
4196                                     const AttributeList &Attr, Sema &S,
4197                                     VectorType::VectorKind VecKind,
4198                                     const char *AttrName) {
4199  // Check the attribute arguments.
4200  if (Attr.getNumArgs() != 1) {
4201    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4202    Attr.setInvalid();
4203    return;
4204  }
4205  // The number of elements must be an ICE.
4206  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
4207  llvm::APSInt numEltsInt(32);
4208  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
4209      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
4210    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4211      << AttrName << numEltsExpr->getSourceRange();
4212    Attr.setInvalid();
4213    return;
4214  }
4215  // Only certain element types are supported for Neon vectors.
4216  const BuiltinType* BTy = CurType->getAs<BuiltinType>();
4217  if (!BTy ||
4218      (VecKind == VectorType::NeonPolyVector &&
4219       BTy->getKind() != BuiltinType::SChar &&
4220       BTy->getKind() != BuiltinType::Short) ||
4221      (BTy->getKind() != BuiltinType::SChar &&
4222       BTy->getKind() != BuiltinType::UChar &&
4223       BTy->getKind() != BuiltinType::Short &&
4224       BTy->getKind() != BuiltinType::UShort &&
4225       BTy->getKind() != BuiltinType::Int &&
4226       BTy->getKind() != BuiltinType::UInt &&
4227       BTy->getKind() != BuiltinType::LongLong &&
4228       BTy->getKind() != BuiltinType::ULongLong &&
4229       BTy->getKind() != BuiltinType::Float)) {
4230    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
4231    Attr.setInvalid();
4232    return;
4233  }
4234  // The total size of the vector must be 64 or 128 bits.
4235  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4236  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
4237  unsigned vecSize = typeSize * numElts;
4238  if (vecSize != 64 && vecSize != 128) {
4239    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
4240    Attr.setInvalid();
4241    return;
4242  }
4243
4244  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
4245}
4246
4247static void processTypeAttrs(TypeProcessingState &state, QualType &type,
4248                             TypeAttrLocation TAL, AttributeList *attrs) {
4249  // Scan through and apply attributes to this type where it makes sense.  Some
4250  // attributes (such as __address_space__, __vector_size__, etc) apply to the
4251  // type, but others can be present in the type specifiers even though they
4252  // apply to the decl.  Here we apply type attributes and ignore the rest.
4253
4254  AttributeList *next;
4255  do {
4256    AttributeList &attr = *attrs;
4257    next = attr.getNext();
4258
4259    // Skip attributes that were marked to be invalid.
4260    if (attr.isInvalid())
4261      continue;
4262
4263    if (attr.isCXX11Attribute()) {
4264      // [[gnu::...]] attributes are treated as declaration attributes, so may
4265      // not appertain to a DeclaratorChunk, even if we handle them as type
4266      // attributes.
4267      if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
4268        if (TAL == TAL_DeclChunk) {
4269          state.getSema().Diag(attr.getLoc(),
4270                               diag::warn_cxx11_gnu_attribute_on_type)
4271              << attr.getName();
4272          continue;
4273        }
4274      } else if (TAL != TAL_DeclChunk) {
4275        // Otherwise, only consider type processing for a C++11 attribute if
4276        // it's actually been applied to a type.
4277        continue;
4278      }
4279    }
4280
4281    // If this is an attribute we can handle, do so now,
4282    // otherwise, add it to the FnAttrs list for rechaining.
4283    switch (attr.getKind()) {
4284    default:
4285      // A C++11 attribute on a declarator chunk must appertain to a type.
4286      if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
4287        state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
4288          << attr.getName()->getName();
4289      break;
4290
4291    case AttributeList::UnknownAttribute:
4292      if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
4293        state.getSema().Diag(attr.getLoc(),
4294                             diag::warn_unknown_attribute_ignored)
4295          << attr.getName();
4296      break;
4297
4298    case AttributeList::IgnoredAttribute:
4299      break;
4300
4301    case AttributeList::AT_MayAlias:
4302      // FIXME: This attribute needs to actually be handled, but if we ignore
4303      // it it breaks large amounts of Linux software.
4304      attr.setUsedAsTypeAttr();
4305      break;
4306    case AttributeList::AT_AddressSpace:
4307      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
4308      attr.setUsedAsTypeAttr();
4309      break;
4310    OBJC_POINTER_TYPE_ATTRS_CASELIST:
4311      if (!handleObjCPointerTypeAttr(state, attr, type))
4312        distributeObjCPointerTypeAttr(state, attr, type);
4313      attr.setUsedAsTypeAttr();
4314      break;
4315    case AttributeList::AT_VectorSize:
4316      HandleVectorSizeAttr(type, attr, state.getSema());
4317      attr.setUsedAsTypeAttr();
4318      break;
4319    case AttributeList::AT_ExtVectorType:
4320      HandleExtVectorTypeAttr(type, attr, state.getSema());
4321      attr.setUsedAsTypeAttr();
4322      break;
4323    case AttributeList::AT_NeonVectorType:
4324      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4325                               VectorType::NeonVector, "neon_vector_type");
4326      attr.setUsedAsTypeAttr();
4327      break;
4328    case AttributeList::AT_NeonPolyVectorType:
4329      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4330                               VectorType::NeonPolyVector,
4331                               "neon_polyvector_type");
4332      attr.setUsedAsTypeAttr();
4333      break;
4334    case AttributeList::AT_OpenCLImageAccess:
4335      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
4336      attr.setUsedAsTypeAttr();
4337      break;
4338
4339    case AttributeList::AT_NSReturnsRetained:
4340      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
4341        break;
4342      // fallthrough into the function attrs
4343
4344    FUNCTION_TYPE_ATTRS_CASELIST:
4345      attr.setUsedAsTypeAttr();
4346
4347      // Never process function type attributes as part of the
4348      // declaration-specifiers.
4349      if (TAL == TAL_DeclSpec)
4350        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
4351
4352      // Otherwise, handle the possible delays.
4353      else if (!handleFunctionTypeAttr(state, attr, type))
4354        distributeFunctionTypeAttr(state, attr, type);
4355      break;
4356    }
4357  } while ((attrs = next));
4358}
4359
4360/// \brief Ensure that the type of the given expression is complete.
4361///
4362/// This routine checks whether the expression \p E has a complete type. If the
4363/// expression refers to an instantiable construct, that instantiation is
4364/// performed as needed to complete its type. Furthermore
4365/// Sema::RequireCompleteType is called for the expression's type (or in the
4366/// case of a reference type, the referred-to type).
4367///
4368/// \param E The expression whose type is required to be complete.
4369/// \param Diagnoser The object that will emit a diagnostic if the type is
4370/// incomplete.
4371///
4372/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
4373/// otherwise.
4374bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
4375  QualType T = E->getType();
4376
4377  // Fast path the case where the type is already complete.
4378  if (!T->isIncompleteType())
4379    return false;
4380
4381  // Incomplete array types may be completed by the initializer attached to
4382  // their definitions. For static data members of class templates we need to
4383  // instantiate the definition to get this initializer and complete the type.
4384  if (T->isIncompleteArrayType()) {
4385    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4386      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4387        if (Var->isStaticDataMember() &&
4388            Var->getInstantiatedFromStaticDataMember()) {
4389
4390          MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
4391          assert(MSInfo && "Missing member specialization information?");
4392          if (MSInfo->getTemplateSpecializationKind()
4393                != TSK_ExplicitSpecialization) {
4394            // If we don't already have a point of instantiation, this is it.
4395            if (MSInfo->getPointOfInstantiation().isInvalid()) {
4396              MSInfo->setPointOfInstantiation(E->getLocStart());
4397
4398              // This is a modification of an existing AST node. Notify
4399              // listeners.
4400              if (ASTMutationListener *L = getASTMutationListener())
4401                L->StaticDataMemberInstantiated(Var);
4402            }
4403
4404            InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
4405
4406            // Update the type to the newly instantiated definition's type both
4407            // here and within the expression.
4408            if (VarDecl *Def = Var->getDefinition()) {
4409              DRE->setDecl(Def);
4410              T = Def->getType();
4411              DRE->setType(T);
4412              E->setType(T);
4413            }
4414          }
4415
4416          // We still go on to try to complete the type independently, as it
4417          // may also require instantiations or diagnostics if it remains
4418          // incomplete.
4419        }
4420      }
4421    }
4422  }
4423
4424  // FIXME: Are there other cases which require instantiating something other
4425  // than the type to complete the type of an expression?
4426
4427  // Look through reference types and complete the referred type.
4428  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
4429    T = Ref->getPointeeType();
4430
4431  return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
4432}
4433
4434namespace {
4435  struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
4436    unsigned DiagID;
4437
4438    TypeDiagnoserDiag(unsigned DiagID)
4439      : Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
4440
4441    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
4442      if (Suppressed) return;
4443      S.Diag(Loc, DiagID) << T;
4444    }
4445  };
4446}
4447
4448bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
4449  TypeDiagnoserDiag Diagnoser(DiagID);
4450  return RequireCompleteExprType(E, Diagnoser);
4451}
4452
4453/// @brief Ensure that the type T is a complete type.
4454///
4455/// This routine checks whether the type @p T is complete in any
4456/// context where a complete type is required. If @p T is a complete
4457/// type, returns false. If @p T is a class template specialization,
4458/// this routine then attempts to perform class template
4459/// instantiation. If instantiation fails, or if @p T is incomplete
4460/// and cannot be completed, issues the diagnostic @p diag (giving it
4461/// the type @p T) and returns true.
4462///
4463/// @param Loc  The location in the source that the incomplete type
4464/// diagnostic should refer to.
4465///
4466/// @param T  The type that this routine is examining for completeness.
4467///
4468/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
4469/// @c false otherwise.
4470bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4471                               TypeDiagnoser &Diagnoser) {
4472  // FIXME: Add this assertion to make sure we always get instantiation points.
4473  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
4474  // FIXME: Add this assertion to help us flush out problems with
4475  // checking for dependent types and type-dependent expressions.
4476  //
4477  //  assert(!T->isDependentType() &&
4478  //         "Can't ask whether a dependent type is complete");
4479
4480  // If we have a complete type, we're done.
4481  NamedDecl *Def = 0;
4482  if (!T->isIncompleteType(&Def)) {
4483    // If we know about the definition but it is not visible, complain.
4484    if (!Diagnoser.Suppressed && Def && !LookupResult::isVisible(Def)) {
4485      // Suppress this error outside of a SFINAE context if we've already
4486      // emitted the error once for this type. There's no usefulness in
4487      // repeating the diagnostic.
4488      // FIXME: Add a Fix-It that imports the corresponding module or includes
4489      // the header.
4490      Module *Owner = Def->getOwningModule();
4491      Diag(Loc, diag::err_module_private_definition)
4492        << T << Owner->getFullModuleName();
4493      Diag(Def->getLocation(), diag::note_previous_definition);
4494
4495      if (!isSFINAEContext()) {
4496        // Recover by implicitly importing this module.
4497        createImplicitModuleImport(Loc, Owner);
4498      }
4499    }
4500
4501    return false;
4502  }
4503
4504  const TagType *Tag = T->getAs<TagType>();
4505  const ObjCInterfaceType *IFace = 0;
4506
4507  if (Tag) {
4508    // Avoid diagnosing invalid decls as incomplete.
4509    if (Tag->getDecl()->isInvalidDecl())
4510      return true;
4511
4512    // Give the external AST source a chance to complete the type.
4513    if (Tag->getDecl()->hasExternalLexicalStorage()) {
4514      Context.getExternalSource()->CompleteType(Tag->getDecl());
4515      if (!Tag->isIncompleteType())
4516        return false;
4517    }
4518  }
4519  else if ((IFace = T->getAs<ObjCInterfaceType>())) {
4520    // Avoid diagnosing invalid decls as incomplete.
4521    if (IFace->getDecl()->isInvalidDecl())
4522      return true;
4523
4524    // Give the external AST source a chance to complete the type.
4525    if (IFace->getDecl()->hasExternalLexicalStorage()) {
4526      Context.getExternalSource()->CompleteType(IFace->getDecl());
4527      if (!IFace->isIncompleteType())
4528        return false;
4529    }
4530  }
4531
4532  // If we have a class template specialization or a class member of a
4533  // class template specialization, or an array with known size of such,
4534  // try to instantiate it.
4535  QualType MaybeTemplate = T;
4536  while (const ConstantArrayType *Array
4537           = Context.getAsConstantArrayType(MaybeTemplate))
4538    MaybeTemplate = Array->getElementType();
4539  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
4540    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
4541          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
4542      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
4543        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
4544                                                      TSK_ImplicitInstantiation,
4545                                            /*Complain=*/!Diagnoser.Suppressed);
4546    } else if (CXXRecordDecl *Rec
4547                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
4548      CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
4549      if (!Rec->isBeingDefined() && Pattern) {
4550        MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
4551        assert(MSI && "Missing member specialization information?");
4552        // This record was instantiated from a class within a template.
4553        if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4554          return InstantiateClass(Loc, Rec, Pattern,
4555                                  getTemplateInstantiationArgs(Rec),
4556                                  TSK_ImplicitInstantiation,
4557                                  /*Complain=*/!Diagnoser.Suppressed);
4558      }
4559    }
4560  }
4561
4562  if (Diagnoser.Suppressed)
4563    return true;
4564
4565  // We have an incomplete type. Produce a diagnostic.
4566  Diagnoser.diagnose(*this, Loc, T);
4567
4568  // If the type was a forward declaration of a class/struct/union
4569  // type, produce a note.
4570  if (Tag && !Tag->getDecl()->isInvalidDecl())
4571    Diag(Tag->getDecl()->getLocation(),
4572         Tag->isBeingDefined() ? diag::note_type_being_defined
4573                               : diag::note_forward_declaration)
4574      << QualType(Tag, 0);
4575
4576  // If the Objective-C class was a forward declaration, produce a note.
4577  if (IFace && !IFace->getDecl()->isInvalidDecl())
4578    Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
4579
4580  return true;
4581}
4582
4583bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4584                               unsigned DiagID) {
4585  TypeDiagnoserDiag Diagnoser(DiagID);
4586  return RequireCompleteType(Loc, T, Diagnoser);
4587}
4588
4589/// \brief Get diagnostic %select index for tag kind for
4590/// literal type diagnostic message.
4591/// WARNING: Indexes apply to particular diagnostics only!
4592///
4593/// \returns diagnostic %select index.
4594static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
4595  switch (Tag) {
4596  case TTK_Struct: return 0;
4597  case TTK_Interface: return 1;
4598  case TTK_Class:  return 2;
4599  default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
4600  }
4601}
4602
4603/// @brief Ensure that the type T is a literal type.
4604///
4605/// This routine checks whether the type @p T is a literal type. If @p T is an
4606/// incomplete type, an attempt is made to complete it. If @p T is a literal
4607/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
4608/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
4609/// it the type @p T), along with notes explaining why the type is not a
4610/// literal type, and returns true.
4611///
4612/// @param Loc  The location in the source that the non-literal type
4613/// diagnostic should refer to.
4614///
4615/// @param T  The type that this routine is examining for literalness.
4616///
4617/// @param Diagnoser Emits a diagnostic if T is not a literal type.
4618///
4619/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
4620/// @c false otherwise.
4621bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
4622                              TypeDiagnoser &Diagnoser) {
4623  assert(!T->isDependentType() && "type should not be dependent");
4624
4625  QualType ElemType = Context.getBaseElementType(T);
4626  RequireCompleteType(Loc, ElemType, 0);
4627
4628  if (T->isLiteralType())
4629    return false;
4630
4631  if (Diagnoser.Suppressed)
4632    return true;
4633
4634  Diagnoser.diagnose(*this, Loc, T);
4635
4636  if (T->isVariableArrayType())
4637    return true;
4638
4639  const RecordType *RT = ElemType->getAs<RecordType>();
4640  if (!RT)
4641    return true;
4642
4643  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4644
4645  // A partially-defined class type can't be a literal type, because a literal
4646  // class type must have a trivial destructor (which can't be checked until
4647  // the class definition is complete).
4648  if (!RD->isCompleteDefinition()) {
4649    RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
4650    return true;
4651  }
4652
4653  // If the class has virtual base classes, then it's not an aggregate, and
4654  // cannot have any constexpr constructors or a trivial default constructor,
4655  // so is non-literal. This is better to diagnose than the resulting absence
4656  // of constexpr constructors.
4657  if (RD->getNumVBases()) {
4658    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
4659      << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
4660    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
4661           E = RD->vbases_end(); I != E; ++I)
4662      Diag(I->getLocStart(),
4663           diag::note_constexpr_virtual_base_here) << I->getSourceRange();
4664  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
4665             !RD->hasTrivialDefaultConstructor()) {
4666    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
4667  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
4668    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4669         E = RD->bases_end(); I != E; ++I) {
4670      if (!I->getType()->isLiteralType()) {
4671        Diag(I->getLocStart(),
4672             diag::note_non_literal_base_class)
4673          << RD << I->getType() << I->getSourceRange();
4674        return true;
4675      }
4676    }
4677    for (CXXRecordDecl::field_iterator I = RD->field_begin(),
4678         E = RD->field_end(); I != E; ++I) {
4679      if (!I->getType()->isLiteralType() ||
4680          I->getType().isVolatileQualified()) {
4681        Diag(I->getLocation(), diag::note_non_literal_field)
4682          << RD << *I << I->getType()
4683          << I->getType().isVolatileQualified();
4684        return true;
4685      }
4686    }
4687  } else if (!RD->hasTrivialDestructor()) {
4688    // All fields and bases are of literal types, so have trivial destructors.
4689    // If this class's destructor is non-trivial it must be user-declared.
4690    CXXDestructorDecl *Dtor = RD->getDestructor();
4691    assert(Dtor && "class has literal fields and bases but no dtor?");
4692    if (!Dtor)
4693      return true;
4694
4695    Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
4696         diag::note_non_literal_user_provided_dtor :
4697         diag::note_non_literal_nontrivial_dtor) << RD;
4698    if (!Dtor->isUserProvided())
4699      SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
4700  }
4701
4702  return true;
4703}
4704
4705bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
4706  TypeDiagnoserDiag Diagnoser(DiagID);
4707  return RequireLiteralType(Loc, T, Diagnoser);
4708}
4709
4710/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
4711/// and qualified by the nested-name-specifier contained in SS.
4712QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
4713                                 const CXXScopeSpec &SS, QualType T) {
4714  if (T.isNull())
4715    return T;
4716  NestedNameSpecifier *NNS;
4717  if (SS.isValid())
4718    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4719  else {
4720    if (Keyword == ETK_None)
4721      return T;
4722    NNS = 0;
4723  }
4724  return Context.getElaboratedType(Keyword, NNS, T);
4725}
4726
4727QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
4728  ExprResult ER = CheckPlaceholderExpr(E);
4729  if (ER.isInvalid()) return QualType();
4730  E = ER.take();
4731
4732  if (!E->isTypeDependent()) {
4733    QualType T = E->getType();
4734    if (const TagType *TT = T->getAs<TagType>())
4735      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
4736  }
4737  return Context.getTypeOfExprType(E);
4738}
4739
4740/// getDecltypeForExpr - Given an expr, will return the decltype for
4741/// that expression, according to the rules in C++11
4742/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
4743static QualType getDecltypeForExpr(Sema &S, Expr *E) {
4744  if (E->isTypeDependent())
4745    return S.Context.DependentTy;
4746
4747  // C++11 [dcl.type.simple]p4:
4748  //   The type denoted by decltype(e) is defined as follows:
4749  //
4750  //     - if e is an unparenthesized id-expression or an unparenthesized class
4751  //       member access (5.2.5), decltype(e) is the type of the entity named
4752  //       by e. If there is no such entity, or if e names a set of overloaded
4753  //       functions, the program is ill-formed;
4754  //
4755  // We apply the same rules for Objective-C ivar and property references.
4756  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4757    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
4758      return VD->getType();
4759  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
4760    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
4761      return FD->getType();
4762  } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
4763    return IR->getDecl()->getType();
4764  } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
4765    if (PR->isExplicitProperty())
4766      return PR->getExplicitProperty()->getType();
4767  }
4768
4769  // C++11 [expr.lambda.prim]p18:
4770  //   Every occurrence of decltype((x)) where x is a possibly
4771  //   parenthesized id-expression that names an entity of automatic
4772  //   storage duration is treated as if x were transformed into an
4773  //   access to a corresponding data member of the closure type that
4774  //   would have been declared if x were an odr-use of the denoted
4775  //   entity.
4776  using namespace sema;
4777  if (S.getCurLambda()) {
4778    if (isa<ParenExpr>(E)) {
4779      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4780        if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4781          QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
4782          if (!T.isNull())
4783            return S.Context.getLValueReferenceType(T);
4784        }
4785      }
4786    }
4787  }
4788
4789
4790  // C++11 [dcl.type.simple]p4:
4791  //   [...]
4792  QualType T = E->getType();
4793  switch (E->getValueKind()) {
4794  //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
4795  //       type of e;
4796  case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
4797  //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
4798  //       type of e;
4799  case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
4800  //  - otherwise, decltype(e) is the type of e.
4801  case VK_RValue: break;
4802  }
4803
4804  return T;
4805}
4806
4807QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
4808  ExprResult ER = CheckPlaceholderExpr(E);
4809  if (ER.isInvalid()) return QualType();
4810  E = ER.take();
4811
4812  return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
4813}
4814
4815QualType Sema::BuildUnaryTransformType(QualType BaseType,
4816                                       UnaryTransformType::UTTKind UKind,
4817                                       SourceLocation Loc) {
4818  switch (UKind) {
4819  case UnaryTransformType::EnumUnderlyingType:
4820    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
4821      Diag(Loc, diag::err_only_enums_have_underlying_types);
4822      return QualType();
4823    } else {
4824      QualType Underlying = BaseType;
4825      if (!BaseType->isDependentType()) {
4826        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
4827        assert(ED && "EnumType has no EnumDecl");
4828        DiagnoseUseOfDecl(ED, Loc);
4829        Underlying = ED->getIntegerType();
4830      }
4831      assert(!Underlying.isNull());
4832      return Context.getUnaryTransformType(BaseType, Underlying,
4833                                        UnaryTransformType::EnumUnderlyingType);
4834    }
4835  }
4836  llvm_unreachable("unknown unary transform type");
4837}
4838
4839QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
4840  if (!T->isDependentType()) {
4841    // FIXME: It isn't entirely clear whether incomplete atomic types
4842    // are allowed or not; for simplicity, ban them for the moment.
4843    if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
4844      return QualType();
4845
4846    int DisallowedKind = -1;
4847    if (T->isArrayType())
4848      DisallowedKind = 1;
4849    else if (T->isFunctionType())
4850      DisallowedKind = 2;
4851    else if (T->isReferenceType())
4852      DisallowedKind = 3;
4853    else if (T->isAtomicType())
4854      DisallowedKind = 4;
4855    else if (T.hasQualifiers())
4856      DisallowedKind = 5;
4857    else if (!T.isTriviallyCopyableType(Context))
4858      // Some other non-trivially-copyable type (probably a C++ class)
4859      DisallowedKind = 6;
4860
4861    if (DisallowedKind != -1) {
4862      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
4863      return QualType();
4864    }
4865
4866    // FIXME: Do we need any handling for ARC here?
4867  }
4868
4869  // Build the pointer type.
4870  return Context.getAtomicType(T);
4871}
4872