SemaType.cpp revision 5e3c67b4bd894a926282d24b4d0cbc0e123c9f4a
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Template.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/TypeLoc.h"
21#include "clang/AST/TypeLocVisitor.h"
22#include "clang/AST/Expr.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/DeclSpec.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/Support/ErrorHandling.h"
28using namespace clang;
29
30/// \brief Perform adjustment on the parameter type of a function.
31///
32/// This routine adjusts the given parameter type @p T to the actual
33/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
34/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
35QualType Sema::adjustParameterType(QualType T) {
36  // C99 6.7.5.3p7:
37  //   A declaration of a parameter as "array of type" shall be
38  //   adjusted to "qualified pointer to type", where the type
39  //   qualifiers (if any) are those specified within the [ and ] of
40  //   the array type derivation.
41  if (T->isArrayType())
42    return Context.getArrayDecayedType(T);
43
44  // C99 6.7.5.3p8:
45  //   A declaration of a parameter as "function returning type"
46  //   shall be adjusted to "pointer to function returning type", as
47  //   in 6.3.2.1.
48  if (T->isFunctionType())
49    return Context.getPointerType(T);
50
51  return T;
52}
53
54
55
56/// isOmittedBlockReturnType - Return true if this declarator is missing a
57/// return type because this is a omitted return type on a block literal.
58static bool isOmittedBlockReturnType(const Declarator &D) {
59  if (D.getContext() != Declarator::BlockLiteralContext ||
60      D.getDeclSpec().hasTypeSpecifier())
61    return false;
62
63  if (D.getNumTypeObjects() == 0)
64    return true;   // ^{ ... }
65
66  if (D.getNumTypeObjects() == 1 &&
67      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
68    return true;   // ^(int X, float Y) { ... }
69
70  return false;
71}
72
73typedef std::pair<const AttributeList*,QualType> DelayedAttribute;
74typedef llvm::SmallVectorImpl<DelayedAttribute> DelayedAttributeSet;
75
76static void ProcessTypeAttributeList(Sema &S, QualType &Type,
77                                     bool IsDeclSpec,
78                                     const AttributeList *Attrs,
79                                     DelayedAttributeSet &DelayedFnAttrs);
80static bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr);
81
82static void ProcessDelayedFnAttrs(Sema &S, QualType &Type,
83                                  DelayedAttributeSet &Attrs) {
84  for (DelayedAttributeSet::iterator I = Attrs.begin(),
85         E = Attrs.end(); I != E; ++I)
86    if (ProcessFnAttr(S, Type, *I->first)) {
87      S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
88        << I->first->getName() << I->second;
89      // Avoid any further processing of this attribute.
90      I->first->setInvalid();
91    }
92  Attrs.clear();
93}
94
95static void DiagnoseDelayedFnAttrs(Sema &S, DelayedAttributeSet &Attrs) {
96  for (DelayedAttributeSet::iterator I = Attrs.begin(),
97         E = Attrs.end(); I != E; ++I) {
98    S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
99      << I->first->getName() << I->second;
100    // Avoid any further processing of this attribute.
101    I->first->setInvalid();
102  }
103  Attrs.clear();
104}
105
106/// \brief Convert the specified declspec to the appropriate type
107/// object.
108/// \param D  the declarator containing the declaration specifier.
109/// \returns The type described by the declaration specifiers.  This function
110/// never returns null.
111static QualType ConvertDeclSpecToType(Sema &TheSema,
112                                      Declarator &TheDeclarator,
113                                      DelayedAttributeSet &Delayed) {
114  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
115  // checking.
116  const DeclSpec &DS = TheDeclarator.getDeclSpec();
117  SourceLocation DeclLoc = TheDeclarator.getIdentifierLoc();
118  if (DeclLoc.isInvalid())
119    DeclLoc = DS.getSourceRange().getBegin();
120
121  ASTContext &Context = TheSema.Context;
122
123  QualType Result;
124  switch (DS.getTypeSpecType()) {
125  case DeclSpec::TST_void:
126    Result = Context.VoidTy;
127    break;
128  case DeclSpec::TST_char:
129    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
130      Result = Context.CharTy;
131    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
132      Result = Context.SignedCharTy;
133    else {
134      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
135             "Unknown TSS value");
136      Result = Context.UnsignedCharTy;
137    }
138    break;
139  case DeclSpec::TST_wchar:
140    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
141      Result = Context.WCharTy;
142    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
143      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
144        << DS.getSpecifierName(DS.getTypeSpecType());
145      Result = Context.getSignedWCharType();
146    } else {
147      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
148        "Unknown TSS value");
149      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
150        << DS.getSpecifierName(DS.getTypeSpecType());
151      Result = Context.getUnsignedWCharType();
152    }
153    break;
154  case DeclSpec::TST_char16:
155      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
156        "Unknown TSS value");
157      Result = Context.Char16Ty;
158    break;
159  case DeclSpec::TST_char32:
160      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
161        "Unknown TSS value");
162      Result = Context.Char32Ty;
163    break;
164  case DeclSpec::TST_unspecified:
165    // "<proto1,proto2>" is an objc qualified ID with a missing id.
166    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
167      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
168                                         (ObjCProtocolDecl**)PQ,
169                                         DS.getNumProtocolQualifiers());
170      Result = Context.getObjCObjectPointerType(Result);
171      break;
172    }
173
174    // If this is a missing declspec in a block literal return context, then it
175    // is inferred from the return statements inside the block.
176    if (isOmittedBlockReturnType(TheDeclarator)) {
177      Result = Context.DependentTy;
178      break;
179    }
180
181    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
182    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
183    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
184    // Note that the one exception to this is function definitions, which are
185    // allowed to be completely missing a declspec.  This is handled in the
186    // parser already though by it pretending to have seen an 'int' in this
187    // case.
188    if (TheSema.getLangOptions().ImplicitInt) {
189      // In C89 mode, we only warn if there is a completely missing declspec
190      // when one is not allowed.
191      if (DS.isEmpty()) {
192        TheSema.Diag(DeclLoc, diag::ext_missing_declspec)
193          << DS.getSourceRange()
194        << FixItHint::CreateInsertion(DS.getSourceRange().getBegin(), "int");
195      }
196    } else if (!DS.hasTypeSpecifier()) {
197      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
198      // "At least one type specifier shall be given in the declaration
199      // specifiers in each declaration, and in the specifier-qualifier list in
200      // each struct declaration and type name."
201      // FIXME: Does Microsoft really have the implicit int extension in C++?
202      if (TheSema.getLangOptions().CPlusPlus &&
203          !TheSema.getLangOptions().Microsoft) {
204        TheSema.Diag(DeclLoc, diag::err_missing_type_specifier)
205          << DS.getSourceRange();
206
207        // When this occurs in C++ code, often something is very broken with the
208        // value being declared, poison it as invalid so we don't get chains of
209        // errors.
210        TheDeclarator.setInvalidType(true);
211      } else {
212        TheSema.Diag(DeclLoc, diag::ext_missing_type_specifier)
213          << DS.getSourceRange();
214      }
215    }
216
217    // FALL THROUGH.
218  case DeclSpec::TST_int: {
219    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
220      switch (DS.getTypeSpecWidth()) {
221      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
222      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
223      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
224      case DeclSpec::TSW_longlong:
225        Result = Context.LongLongTy;
226
227        // long long is a C99 feature.
228        if (!TheSema.getLangOptions().C99 &&
229            !TheSema.getLangOptions().CPlusPlus0x)
230          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
231        break;
232      }
233    } else {
234      switch (DS.getTypeSpecWidth()) {
235      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
236      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
237      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
238      case DeclSpec::TSW_longlong:
239        Result = Context.UnsignedLongLongTy;
240
241        // long long is a C99 feature.
242        if (!TheSema.getLangOptions().C99 &&
243            !TheSema.getLangOptions().CPlusPlus0x)
244          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
245        break;
246      }
247    }
248    break;
249  }
250  case DeclSpec::TST_float: Result = Context.FloatTy; break;
251  case DeclSpec::TST_double:
252    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
253      Result = Context.LongDoubleTy;
254    else
255      Result = Context.DoubleTy;
256    break;
257  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
258  case DeclSpec::TST_decimal32:    // _Decimal32
259  case DeclSpec::TST_decimal64:    // _Decimal64
260  case DeclSpec::TST_decimal128:   // _Decimal128
261    TheSema.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
262    Result = Context.IntTy;
263    TheDeclarator.setInvalidType(true);
264    break;
265  case DeclSpec::TST_class:
266  case DeclSpec::TST_enum:
267  case DeclSpec::TST_union:
268  case DeclSpec::TST_struct: {
269    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
270    if (!D) {
271      // This can happen in C++ with ambiguous lookups.
272      Result = Context.IntTy;
273      TheDeclarator.setInvalidType(true);
274      break;
275    }
276
277    // If the type is deprecated or unavailable, diagnose it.
278    TheSema.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeLoc());
279
280    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
281           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
282
283    // TypeQuals handled by caller.
284    Result = Context.getTypeDeclType(D);
285
286    // In C++, make an ElaboratedType.
287    if (TheSema.getLangOptions().CPlusPlus) {
288      ElaboratedTypeKeyword Keyword
289        = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
290      Result = TheSema.getElaboratedType(Keyword, DS.getTypeSpecScope(),
291                                         Result);
292    }
293    if (D->isInvalidDecl())
294      TheDeclarator.setInvalidType(true);
295    break;
296  }
297  case DeclSpec::TST_typename: {
298    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
299           DS.getTypeSpecSign() == 0 &&
300           "Can't handle qualifiers on typedef names yet!");
301    Result = TheSema.GetTypeFromParser(DS.getRepAsType());
302    if (Result.isNull())
303      TheDeclarator.setInvalidType(true);
304    else if (DeclSpec::ProtocolQualifierListTy PQ
305               = DS.getProtocolQualifiers()) {
306      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
307        // Silently drop any existing protocol qualifiers.
308        // TODO: determine whether that's the right thing to do.
309        if (ObjT->getNumProtocols())
310          Result = ObjT->getBaseType();
311
312        if (DS.getNumProtocolQualifiers())
313          Result = Context.getObjCObjectType(Result,
314                                             (ObjCProtocolDecl**) PQ,
315                                             DS.getNumProtocolQualifiers());
316      } else if (Result->isObjCIdType()) {
317        // id<protocol-list>
318        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
319                                           (ObjCProtocolDecl**) PQ,
320                                           DS.getNumProtocolQualifiers());
321        Result = Context.getObjCObjectPointerType(Result);
322      } else if (Result->isObjCClassType()) {
323        // Class<protocol-list>
324        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
325                                           (ObjCProtocolDecl**) PQ,
326                                           DS.getNumProtocolQualifiers());
327        Result = Context.getObjCObjectPointerType(Result);
328      } else {
329        TheSema.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
330          << DS.getSourceRange();
331        TheDeclarator.setInvalidType(true);
332      }
333    }
334
335    // TypeQuals handled by caller.
336    break;
337  }
338  case DeclSpec::TST_typeofType:
339    // FIXME: Preserve type source info.
340    Result = TheSema.GetTypeFromParser(DS.getRepAsType());
341    assert(!Result.isNull() && "Didn't get a type for typeof?");
342    if (!Result->isDependentType())
343      if (const TagType *TT = Result->getAs<TagType>())
344        TheSema.DiagnoseUseOfDecl(TT->getDecl(),
345                                  DS.getTypeSpecTypeLoc());
346    // TypeQuals handled by caller.
347    Result = Context.getTypeOfType(Result);
348    break;
349  case DeclSpec::TST_typeofExpr: {
350    Expr *E = DS.getRepAsExpr();
351    assert(E && "Didn't get an expression for typeof?");
352    // TypeQuals handled by caller.
353    Result = TheSema.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
354    if (Result.isNull()) {
355      Result = Context.IntTy;
356      TheDeclarator.setInvalidType(true);
357    }
358    break;
359  }
360  case DeclSpec::TST_decltype: {
361    Expr *E = DS.getRepAsExpr();
362    assert(E && "Didn't get an expression for decltype?");
363    // TypeQuals handled by caller.
364    Result = TheSema.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
365    if (Result.isNull()) {
366      Result = Context.IntTy;
367      TheDeclarator.setInvalidType(true);
368    }
369    break;
370  }
371  case DeclSpec::TST_auto: {
372    // TypeQuals handled by caller.
373    Result = Context.UndeducedAutoTy;
374    break;
375  }
376
377  case DeclSpec::TST_error:
378    Result = Context.IntTy;
379    TheDeclarator.setInvalidType(true);
380    break;
381  }
382
383  // Handle complex types.
384  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
385    if (TheSema.getLangOptions().Freestanding)
386      TheSema.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
387    Result = Context.getComplexType(Result);
388  } else if (DS.isTypeAltiVecVector()) {
389    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
390    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
391    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
392    if (DS.isTypeAltiVecPixel())
393      VecKind = VectorType::AltiVecPixel;
394    else if (DS.isTypeAltiVecBool())
395      VecKind = VectorType::AltiVecBool;
396    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
397  }
398
399  // FIXME: Imaginary.
400  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
401    TheSema.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
402
403  // See if there are any attributes on the declspec that apply to the type (as
404  // opposed to the decl).
405  if (const AttributeList *AL = DS.getAttributes())
406    ProcessTypeAttributeList(TheSema, Result, true, AL, Delayed);
407
408  // Apply const/volatile/restrict qualifiers to T.
409  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
410
411    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
412    // or incomplete types shall not be restrict-qualified."  C++ also allows
413    // restrict-qualified references.
414    if (TypeQuals & DeclSpec::TQ_restrict) {
415      if (Result->isAnyPointerType() || Result->isReferenceType()) {
416        QualType EltTy;
417        if (Result->isObjCObjectPointerType())
418          EltTy = Result;
419        else
420          EltTy = Result->isPointerType() ?
421                    Result->getAs<PointerType>()->getPointeeType() :
422                    Result->getAs<ReferenceType>()->getPointeeType();
423
424        // If we have a pointer or reference, the pointee must have an object
425        // incomplete type.
426        if (!EltTy->isIncompleteOrObjectType()) {
427          TheSema.Diag(DS.getRestrictSpecLoc(),
428               diag::err_typecheck_invalid_restrict_invalid_pointee)
429            << EltTy << DS.getSourceRange();
430          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
431        }
432      } else {
433        TheSema.Diag(DS.getRestrictSpecLoc(),
434             diag::err_typecheck_invalid_restrict_not_pointer)
435          << Result << DS.getSourceRange();
436        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
437      }
438    }
439
440    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
441    // of a function type includes any type qualifiers, the behavior is
442    // undefined."
443    if (Result->isFunctionType() && TypeQuals) {
444      // Get some location to point at, either the C or V location.
445      SourceLocation Loc;
446      if (TypeQuals & DeclSpec::TQ_const)
447        Loc = DS.getConstSpecLoc();
448      else if (TypeQuals & DeclSpec::TQ_volatile)
449        Loc = DS.getVolatileSpecLoc();
450      else {
451        assert((TypeQuals & DeclSpec::TQ_restrict) &&
452               "Has CVR quals but not C, V, or R?");
453        Loc = DS.getRestrictSpecLoc();
454      }
455      TheSema.Diag(Loc, diag::warn_typecheck_function_qualifiers)
456        << Result << DS.getSourceRange();
457    }
458
459    // C++ [dcl.ref]p1:
460    //   Cv-qualified references are ill-formed except when the
461    //   cv-qualifiers are introduced through the use of a typedef
462    //   (7.1.3) or of a template type argument (14.3), in which
463    //   case the cv-qualifiers are ignored.
464    // FIXME: Shouldn't we be checking SCS_typedef here?
465    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
466        TypeQuals && Result->isReferenceType()) {
467      TypeQuals &= ~DeclSpec::TQ_const;
468      TypeQuals &= ~DeclSpec::TQ_volatile;
469    }
470
471    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
472    Result = Context.getQualifiedType(Result, Quals);
473  }
474
475  return Result;
476}
477
478static std::string getPrintableNameForEntity(DeclarationName Entity) {
479  if (Entity)
480    return Entity.getAsString();
481
482  return "type name";
483}
484
485QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
486                                  Qualifiers Qs) {
487  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
488  // object or incomplete types shall not be restrict-qualified."
489  if (Qs.hasRestrict()) {
490    unsigned DiagID = 0;
491    QualType ProblemTy;
492
493    const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
494    if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
495      if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
496        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
497        ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
498      }
499    } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
500      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
501        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
502        ProblemTy = T->getAs<PointerType>()->getPointeeType();
503      }
504    } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
505      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
506        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
507        ProblemTy = T->getAs<PointerType>()->getPointeeType();
508      }
509    } else if (!Ty->isDependentType()) {
510      // FIXME: this deserves a proper diagnostic
511      DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
512      ProblemTy = T;
513    }
514
515    if (DiagID) {
516      Diag(Loc, DiagID) << ProblemTy;
517      Qs.removeRestrict();
518    }
519  }
520
521  return Context.getQualifiedType(T, Qs);
522}
523
524/// \brief Build a paren type including \p T.
525QualType Sema::BuildParenType(QualType T) {
526  return Context.getParenType(T);
527}
528
529/// \brief Build a pointer type.
530///
531/// \param T The type to which we'll be building a pointer.
532///
533/// \param Loc The location of the entity whose type involves this
534/// pointer type or, if there is no such entity, the location of the
535/// type that will have pointer type.
536///
537/// \param Entity The name of the entity that involves the pointer
538/// type, if known.
539///
540/// \returns A suitable pointer type, if there are no
541/// errors. Otherwise, returns a NULL type.
542QualType Sema::BuildPointerType(QualType T,
543                                SourceLocation Loc, DeclarationName Entity) {
544  if (T->isReferenceType()) {
545    // C++ 8.3.2p4: There shall be no ... pointers to references ...
546    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
547      << getPrintableNameForEntity(Entity) << T;
548    return QualType();
549  }
550
551  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
552
553  // Build the pointer type.
554  return Context.getPointerType(T);
555}
556
557/// \brief Build a reference type.
558///
559/// \param T The type to which we'll be building a reference.
560///
561/// \param Loc The location of the entity whose type involves this
562/// reference type or, if there is no such entity, the location of the
563/// type that will have reference type.
564///
565/// \param Entity The name of the entity that involves the reference
566/// type, if known.
567///
568/// \returns A suitable reference type, if there are no
569/// errors. Otherwise, returns a NULL type.
570QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
571                                  SourceLocation Loc,
572                                  DeclarationName Entity) {
573  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
574
575  // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
576  //   reference to a type T, and attempt to create the type "lvalue
577  //   reference to cv TD" creates the type "lvalue reference to T".
578  // We use the qualifiers (restrict or none) of the original reference,
579  // not the new ones. This is consistent with GCC.
580
581  // C++ [dcl.ref]p4: There shall be no references to references.
582  //
583  // According to C++ DR 106, references to references are only
584  // diagnosed when they are written directly (e.g., "int & &"),
585  // but not when they happen via a typedef:
586  //
587  //   typedef int& intref;
588  //   typedef intref& intref2;
589  //
590  // Parser::ParseDeclaratorInternal diagnoses the case where
591  // references are written directly; here, we handle the
592  // collapsing of references-to-references as described in C++
593  // DR 106 and amended by C++ DR 540.
594
595  // C++ [dcl.ref]p1:
596  //   A declarator that specifies the type "reference to cv void"
597  //   is ill-formed.
598  if (T->isVoidType()) {
599    Diag(Loc, diag::err_reference_to_void);
600    return QualType();
601  }
602
603  // Handle restrict on references.
604  if (LValueRef)
605    return Context.getLValueReferenceType(T, SpelledAsLValue);
606  return Context.getRValueReferenceType(T);
607}
608
609/// \brief Build an array type.
610///
611/// \param T The type of each element in the array.
612///
613/// \param ASM C99 array size modifier (e.g., '*', 'static').
614///
615/// \param ArraySize Expression describing the size of the array.
616///
617/// \param Loc The location of the entity whose type involves this
618/// array type or, if there is no such entity, the location of the
619/// type that will have array type.
620///
621/// \param Entity The name of the entity that involves the array
622/// type, if known.
623///
624/// \returns A suitable array type, if there are no errors. Otherwise,
625/// returns a NULL type.
626QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
627                              Expr *ArraySize, unsigned Quals,
628                              SourceRange Brackets, DeclarationName Entity) {
629
630  SourceLocation Loc = Brackets.getBegin();
631  if (getLangOptions().CPlusPlus) {
632    // C++ [dcl.array]p1:
633    //   T is called the array element type; this type shall not be a reference
634    //   type, the (possibly cv-qualified) type void, a function type or an
635    //   abstract class type.
636    //
637    // Note: function types are handled in the common path with C.
638    if (T->isReferenceType()) {
639      Diag(Loc, diag::err_illegal_decl_array_of_references)
640      << getPrintableNameForEntity(Entity) << T;
641      return QualType();
642    }
643
644    if (T->isVoidType()) {
645      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
646      return QualType();
647    }
648
649    if (RequireNonAbstractType(Brackets.getBegin(), T,
650                               diag::err_array_of_abstract_type))
651      return QualType();
652
653  } else {
654    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
655    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
656    if (RequireCompleteType(Loc, T,
657                            diag::err_illegal_decl_array_incomplete_type))
658      return QualType();
659  }
660
661  if (T->isFunctionType()) {
662    Diag(Loc, diag::err_illegal_decl_array_of_functions)
663      << getPrintableNameForEntity(Entity) << T;
664    return QualType();
665  }
666
667  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
668    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
669      << getPrintableNameForEntity(Entity);
670    return QualType();
671  }
672
673  if (const RecordType *EltTy = T->getAs<RecordType>()) {
674    // If the element type is a struct or union that contains a variadic
675    // array, accept it as a GNU extension: C99 6.7.2.1p2.
676    if (EltTy->getDecl()->hasFlexibleArrayMember())
677      Diag(Loc, diag::ext_flexible_array_in_array) << T;
678  } else if (T->isObjCObjectType()) {
679    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
680    return QualType();
681  }
682
683  // Do lvalue-to-rvalue conversions on the array size expression.
684  if (ArraySize && !ArraySize->isRValue())
685    DefaultLvalueConversion(ArraySize);
686
687  // C99 6.7.5.2p1: The size expression shall have integer type.
688  // TODO: in theory, if we were insane, we could allow contextual
689  // conversions to integer type here.
690  if (ArraySize && !ArraySize->isTypeDependent() &&
691      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
692    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
693      << ArraySize->getType() << ArraySize->getSourceRange();
694    return QualType();
695  }
696  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
697  if (!ArraySize) {
698    if (ASM == ArrayType::Star)
699      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
700    else
701      T = Context.getIncompleteArrayType(T, ASM, Quals);
702  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
703    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
704  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
705             (!T->isDependentType() && !T->isIncompleteType() &&
706              !T->isConstantSizeType())) {
707    // Per C99, a variable array is an array with either a non-constant
708    // size or an element type that has a non-constant-size
709    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
710  } else {
711    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
712    // have a value greater than zero.
713    if (ConstVal.isSigned() && ConstVal.isNegative()) {
714      Diag(ArraySize->getLocStart(),
715           diag::err_typecheck_negative_array_size)
716        << ArraySize->getSourceRange();
717      return QualType();
718    }
719    if (ConstVal == 0) {
720      // GCC accepts zero sized static arrays. We allow them when
721      // we're not in a SFINAE context.
722      Diag(ArraySize->getLocStart(),
723           isSFINAEContext()? diag::err_typecheck_zero_array_size
724                            : diag::ext_typecheck_zero_array_size)
725        << ArraySize->getSourceRange();
726    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
727               !T->isIncompleteType()) {
728      // Is the array too large?
729      unsigned ActiveSizeBits
730        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
731      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
732        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
733          << ConstVal.toString(10)
734          << ArraySize->getSourceRange();
735    }
736
737    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
738  }
739  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
740  if (!getLangOptions().C99) {
741    if (T->isVariableArrayType()) {
742      // Prohibit the use of non-POD types in VLAs.
743      if (!T->isDependentType() &&
744          !Context.getBaseElementType(T)->isPODType()) {
745        Diag(Loc, diag::err_vla_non_pod)
746          << Context.getBaseElementType(T);
747        return QualType();
748      }
749      // Prohibit the use of VLAs during template argument deduction.
750      else if (isSFINAEContext()) {
751        Diag(Loc, diag::err_vla_in_sfinae);
752        return QualType();
753      }
754      // Just extwarn about VLAs.
755      else
756        Diag(Loc, diag::ext_vla);
757    } else if (ASM != ArrayType::Normal || Quals != 0)
758      Diag(Loc,
759           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
760                                     : diag::ext_c99_array_usage);
761  }
762
763  return T;
764}
765
766/// \brief Build an ext-vector type.
767///
768/// Run the required checks for the extended vector type.
769QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
770                                  SourceLocation AttrLoc) {
771  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
772  // in conjunction with complex types (pointers, arrays, functions, etc.).
773  if (!T->isDependentType() &&
774      !T->isIntegerType() && !T->isRealFloatingType()) {
775    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
776    return QualType();
777  }
778
779  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
780    llvm::APSInt vecSize(32);
781    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
782      Diag(AttrLoc, diag::err_attribute_argument_not_int)
783        << "ext_vector_type" << ArraySize->getSourceRange();
784      return QualType();
785    }
786
787    // unlike gcc's vector_size attribute, the size is specified as the
788    // number of elements, not the number of bytes.
789    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
790
791    if (vectorSize == 0) {
792      Diag(AttrLoc, diag::err_attribute_zero_size)
793      << ArraySize->getSourceRange();
794      return QualType();
795    }
796
797    if (!T->isDependentType())
798      return Context.getExtVectorType(T, vectorSize);
799  }
800
801  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
802}
803
804/// \brief Build a function type.
805///
806/// This routine checks the function type according to C++ rules and
807/// under the assumption that the result type and parameter types have
808/// just been instantiated from a template. It therefore duplicates
809/// some of the behavior of GetTypeForDeclarator, but in a much
810/// simpler form that is only suitable for this narrow use case.
811///
812/// \param T The return type of the function.
813///
814/// \param ParamTypes The parameter types of the function. This array
815/// will be modified to account for adjustments to the types of the
816/// function parameters.
817///
818/// \param NumParamTypes The number of parameter types in ParamTypes.
819///
820/// \param Variadic Whether this is a variadic function type.
821///
822/// \param Quals The cvr-qualifiers to be applied to the function type.
823///
824/// \param Loc The location of the entity whose type involves this
825/// function type or, if there is no such entity, the location of the
826/// type that will have function type.
827///
828/// \param Entity The name of the entity that involves the function
829/// type, if known.
830///
831/// \returns A suitable function type, if there are no
832/// errors. Otherwise, returns a NULL type.
833QualType Sema::BuildFunctionType(QualType T,
834                                 QualType *ParamTypes,
835                                 unsigned NumParamTypes,
836                                 bool Variadic, unsigned Quals,
837                                 SourceLocation Loc, DeclarationName Entity,
838                                 FunctionType::ExtInfo Info) {
839  if (T->isArrayType() || T->isFunctionType()) {
840    Diag(Loc, diag::err_func_returning_array_function)
841      << T->isFunctionType() << T;
842    return QualType();
843  }
844
845  bool Invalid = false;
846  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
847    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
848    if (ParamType->isVoidType()) {
849      Diag(Loc, diag::err_param_with_void_type);
850      Invalid = true;
851    }
852
853    ParamTypes[Idx] = ParamType;
854  }
855
856  if (Invalid)
857    return QualType();
858
859  FunctionProtoType::ExtProtoInfo EPI;
860  EPI.Variadic = Variadic;
861  EPI.TypeQuals = Quals;
862  EPI.ExtInfo = Info;
863
864  return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
865}
866
867/// \brief Build a member pointer type \c T Class::*.
868///
869/// \param T the type to which the member pointer refers.
870/// \param Class the class type into which the member pointer points.
871/// \param CVR Qualifiers applied to the member pointer type
872/// \param Loc the location where this type begins
873/// \param Entity the name of the entity that will have this member pointer type
874///
875/// \returns a member pointer type, if successful, or a NULL type if there was
876/// an error.
877QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
878                                      SourceLocation Loc,
879                                      DeclarationName Entity) {
880  // Verify that we're not building a pointer to pointer to function with
881  // exception specification.
882  if (CheckDistantExceptionSpec(T)) {
883    Diag(Loc, diag::err_distant_exception_spec);
884
885    // FIXME: If we're doing this as part of template instantiation,
886    // we should return immediately.
887
888    // Build the type anyway, but use the canonical type so that the
889    // exception specifiers are stripped off.
890    T = Context.getCanonicalType(T);
891  }
892
893  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
894  //   with reference type, or "cv void."
895  if (T->isReferenceType()) {
896    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
897      << (Entity? Entity.getAsString() : "type name") << T;
898    return QualType();
899  }
900
901  if (T->isVoidType()) {
902    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
903      << (Entity? Entity.getAsString() : "type name");
904    return QualType();
905  }
906
907  if (!Class->isDependentType() && !Class->isRecordType()) {
908    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
909    return QualType();
910  }
911
912  // In the Microsoft ABI, the class is allowed to be an incomplete
913  // type. In such cases, the compiler makes a worst-case assumption.
914  // We make no such assumption right now, so emit an error if the
915  // class isn't a complete type.
916  if (Context.Target.getCXXABI() == CXXABI_Microsoft &&
917      RequireCompleteType(Loc, Class, diag::err_incomplete_type))
918    return QualType();
919
920  return Context.getMemberPointerType(T, Class.getTypePtr());
921}
922
923/// \brief Build a block pointer type.
924///
925/// \param T The type to which we'll be building a block pointer.
926///
927/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
928///
929/// \param Loc The location of the entity whose type involves this
930/// block pointer type or, if there is no such entity, the location of the
931/// type that will have block pointer type.
932///
933/// \param Entity The name of the entity that involves the block pointer
934/// type, if known.
935///
936/// \returns A suitable block pointer type, if there are no
937/// errors. Otherwise, returns a NULL type.
938QualType Sema::BuildBlockPointerType(QualType T,
939                                     SourceLocation Loc,
940                                     DeclarationName Entity) {
941  if (!T->isFunctionType()) {
942    Diag(Loc, diag::err_nonfunction_block_type);
943    return QualType();
944  }
945
946  return Context.getBlockPointerType(T);
947}
948
949QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
950  QualType QT = Ty.get();
951  if (QT.isNull()) {
952    if (TInfo) *TInfo = 0;
953    return QualType();
954  }
955
956  TypeSourceInfo *DI = 0;
957  if (LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
958    QT = LIT->getType();
959    DI = LIT->getTypeSourceInfo();
960  }
961
962  if (TInfo) *TInfo = DI;
963  return QT;
964}
965
966/// GetTypeForDeclarator - Convert the type for the specified
967/// declarator to Type instances.
968///
969/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
970/// owns the declaration of a type (e.g., the definition of a struct
971/// type), then *OwnedDecl will receive the owned declaration.
972///
973/// The result of this call will never be null, but the associated
974/// type may be a null type if there's an unrecoverable error.
975TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
976                                           TagDecl **OwnedDecl) {
977  // Determine the type of the declarator. Not all forms of declarator
978  // have a type.
979  QualType T;
980  TypeSourceInfo *ReturnTypeInfo = 0;
981
982  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromDeclSpec;
983
984  switch (D.getName().getKind()) {
985  case UnqualifiedId::IK_Identifier:
986  case UnqualifiedId::IK_OperatorFunctionId:
987  case UnqualifiedId::IK_LiteralOperatorId:
988  case UnqualifiedId::IK_TemplateId:
989    T = ConvertDeclSpecToType(*this, D, FnAttrsFromDeclSpec);
990
991    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
992      TagDecl* Owned = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
993      // Owned is embedded if it was defined here, or if it is the
994      // very first (i.e., canonical) declaration of this tag type.
995      Owned->setEmbeddedInDeclarator(Owned->isDefinition() ||
996                                     Owned->isCanonicalDecl());
997      if (OwnedDecl) *OwnedDecl = Owned;
998    }
999    break;
1000
1001  case UnqualifiedId::IK_ConstructorName:
1002  case UnqualifiedId::IK_ConstructorTemplateId:
1003  case UnqualifiedId::IK_DestructorName:
1004    // Constructors and destructors don't have return types. Use
1005    // "void" instead.
1006    T = Context.VoidTy;
1007    break;
1008
1009  case UnqualifiedId::IK_ConversionFunctionId:
1010    // The result type of a conversion function is the type that it
1011    // converts to.
1012    T = GetTypeFromParser(D.getName().ConversionFunctionId,
1013                          &ReturnTypeInfo);
1014    break;
1015  }
1016
1017  // Check for auto functions and trailing return type and adjust the
1018  // return type accordingly.
1019  if (getLangOptions().CPlusPlus0x && D.isFunctionDeclarator()) {
1020    const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
1021    if (T == Context.UndeducedAutoTy) {
1022      if (FTI.TrailingReturnType) {
1023          T = GetTypeFromParser(ParsedType::getFromOpaquePtr(FTI.TrailingReturnType),
1024                                &ReturnTypeInfo);
1025      }
1026      else {
1027          Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1028               diag::err_auto_missing_trailing_return);
1029          T = Context.IntTy;
1030          D.setInvalidType(true);
1031      }
1032    }
1033    else if (FTI.TrailingReturnType) {
1034      Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1035           diag::err_trailing_return_without_auto);
1036      D.setInvalidType(true);
1037    }
1038  }
1039
1040  if (T.isNull())
1041    return Context.getNullTypeSourceInfo();
1042
1043  if (T == Context.UndeducedAutoTy) {
1044    int Error = -1;
1045
1046    switch (D.getContext()) {
1047    case Declarator::KNRTypeListContext:
1048      assert(0 && "K&R type lists aren't allowed in C++");
1049      break;
1050    case Declarator::PrototypeContext:
1051      Error = 0; // Function prototype
1052      break;
1053    case Declarator::MemberContext:
1054      switch (cast<TagDecl>(CurContext)->getTagKind()) {
1055      case TTK_Enum: assert(0 && "unhandled tag kind"); break;
1056      case TTK_Struct: Error = 1; /* Struct member */ break;
1057      case TTK_Union:  Error = 2; /* Union member */ break;
1058      case TTK_Class:  Error = 3; /* Class member */ break;
1059      }
1060      break;
1061    case Declarator::CXXCatchContext:
1062      Error = 4; // Exception declaration
1063      break;
1064    case Declarator::TemplateParamContext:
1065      Error = 5; // Template parameter
1066      break;
1067    case Declarator::BlockLiteralContext:
1068      Error = 6;  // Block literal
1069      break;
1070    case Declarator::FileContext:
1071    case Declarator::BlockContext:
1072    case Declarator::ForContext:
1073    case Declarator::ConditionContext:
1074    case Declarator::TypeNameContext:
1075      break;
1076    }
1077
1078    if (Error != -1) {
1079      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
1080        << Error;
1081      T = Context.IntTy;
1082      D.setInvalidType(true);
1083    }
1084  }
1085
1086  // The name we're declaring, if any.
1087  DeclarationName Name;
1088  if (D.getIdentifier())
1089    Name = D.getIdentifier();
1090
1091  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromPreviousChunk;
1092
1093  // Walk the DeclTypeInfo, building the recursive type as we go.
1094  // DeclTypeInfos are ordered from the identifier out, which is
1095  // opposite of what we want :).
1096  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1097    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
1098    switch (DeclType.Kind) {
1099    default: assert(0 && "Unknown decltype!");
1100    case DeclaratorChunk::Paren:
1101      T = BuildParenType(T);
1102      break;
1103    case DeclaratorChunk::BlockPointer:
1104      // If blocks are disabled, emit an error.
1105      if (!LangOpts.Blocks)
1106        Diag(DeclType.Loc, diag::err_blocks_disable);
1107
1108      T = BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
1109      if (DeclType.Cls.TypeQuals)
1110        T = BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
1111      break;
1112    case DeclaratorChunk::Pointer:
1113      // Verify that we're not building a pointer to pointer to function with
1114      // exception specification.
1115      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1116        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1117        D.setInvalidType(true);
1118        // Build the type anyway.
1119      }
1120      if (getLangOptions().ObjC1 && T->getAs<ObjCObjectType>()) {
1121        T = Context.getObjCObjectPointerType(T);
1122        if (DeclType.Ptr.TypeQuals)
1123          T = BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
1124        break;
1125      }
1126      T = BuildPointerType(T, DeclType.Loc, Name);
1127      if (DeclType.Ptr.TypeQuals)
1128        T = BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
1129      break;
1130    case DeclaratorChunk::Reference: {
1131      // Verify that we're not building a reference to pointer to function with
1132      // exception specification.
1133      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1134        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1135        D.setInvalidType(true);
1136        // Build the type anyway.
1137      }
1138      T = BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
1139
1140      Qualifiers Quals;
1141      if (DeclType.Ref.HasRestrict)
1142        T = BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
1143      break;
1144    }
1145    case DeclaratorChunk::Array: {
1146      // Verify that we're not building an array of pointers to function with
1147      // exception specification.
1148      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1149        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1150        D.setInvalidType(true);
1151        // Build the type anyway.
1152      }
1153      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1154      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
1155      ArrayType::ArraySizeModifier ASM;
1156      if (ATI.isStar)
1157        ASM = ArrayType::Star;
1158      else if (ATI.hasStatic)
1159        ASM = ArrayType::Static;
1160      else
1161        ASM = ArrayType::Normal;
1162      if (ASM == ArrayType::Star &&
1163          D.getContext() != Declarator::PrototypeContext) {
1164        // FIXME: This check isn't quite right: it allows star in prototypes
1165        // for function definitions, and disallows some edge cases detailed
1166        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
1167        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
1168        ASM = ArrayType::Normal;
1169        D.setInvalidType(true);
1170      }
1171      T = BuildArrayType(T, ASM, ArraySize,
1172                         Qualifiers::fromCVRMask(ATI.TypeQuals),
1173                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
1174      break;
1175    }
1176    case DeclaratorChunk::Function: {
1177      // If the function declarator has a prototype (i.e. it is not () and
1178      // does not have a K&R-style identifier list), then the arguments are part
1179      // of the type, otherwise the argument list is ().
1180      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1181
1182      // C99 6.7.5.3p1: The return type may not be a function or array type.
1183      // For conversion functions, we'll diagnose this particular error later.
1184      if ((T->isArrayType() || T->isFunctionType()) &&
1185          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
1186        Diag(DeclType.Loc, diag::err_func_returning_array_function)
1187          << T->isFunctionType() << T;
1188        T = Context.IntTy;
1189        D.setInvalidType(true);
1190      }
1191
1192      // cv-qualifiers on return types are pointless except when the type is a
1193      // class type in C++.
1194      if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
1195          (!getLangOptions().CPlusPlus ||
1196           (!T->isDependentType() && !T->isRecordType()))) {
1197        unsigned Quals = D.getDeclSpec().getTypeQualifiers();
1198        std::string QualStr;
1199        unsigned NumQuals = 0;
1200        SourceLocation Loc;
1201        if (Quals & Qualifiers::Const) {
1202          Loc = D.getDeclSpec().getConstSpecLoc();
1203          ++NumQuals;
1204          QualStr = "const";
1205        }
1206        if (Quals & Qualifiers::Volatile) {
1207          if (NumQuals == 0) {
1208            Loc = D.getDeclSpec().getVolatileSpecLoc();
1209            QualStr = "volatile";
1210          } else
1211            QualStr += " volatile";
1212          ++NumQuals;
1213        }
1214        if (Quals & Qualifiers::Restrict) {
1215          if (NumQuals == 0) {
1216            Loc = D.getDeclSpec().getRestrictSpecLoc();
1217            QualStr = "restrict";
1218          } else
1219            QualStr += " restrict";
1220          ++NumQuals;
1221        }
1222        assert(NumQuals > 0 && "No known qualifiers?");
1223
1224        SemaDiagnosticBuilder DB = Diag(Loc, diag::warn_qual_return_type);
1225        DB << QualStr << NumQuals;
1226        if (Quals & Qualifiers::Const)
1227          DB << FixItHint::CreateRemoval(D.getDeclSpec().getConstSpecLoc());
1228        if (Quals & Qualifiers::Volatile)
1229          DB << FixItHint::CreateRemoval(D.getDeclSpec().getVolatileSpecLoc());
1230        if (Quals & Qualifiers::Restrict)
1231          DB << FixItHint::CreateRemoval(D.getDeclSpec().getRestrictSpecLoc());
1232      }
1233
1234      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
1235        // C++ [dcl.fct]p6:
1236        //   Types shall not be defined in return or parameter types.
1237        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
1238        if (Tag->isDefinition())
1239          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
1240            << Context.getTypeDeclType(Tag);
1241      }
1242
1243      // Exception specs are not allowed in typedefs. Complain, but add it
1244      // anyway.
1245      if (FTI.hasExceptionSpec &&
1246          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1247        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
1248
1249      if (!FTI.NumArgs && !FTI.isVariadic && !getLangOptions().CPlusPlus) {
1250        // Simple void foo(), where the incoming T is the result type.
1251        T = Context.getFunctionNoProtoType(T);
1252      } else {
1253        // We allow a zero-parameter variadic function in C if the
1254        // function is marked with the "overloadable" attribute. Scan
1255        // for this attribute now.
1256        if (!FTI.NumArgs && FTI.isVariadic && !getLangOptions().CPlusPlus) {
1257          bool Overloadable = false;
1258          for (const AttributeList *Attrs = D.getAttributes();
1259               Attrs; Attrs = Attrs->getNext()) {
1260            if (Attrs->getKind() == AttributeList::AT_overloadable) {
1261              Overloadable = true;
1262              break;
1263            }
1264          }
1265
1266          if (!Overloadable)
1267            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
1268        }
1269
1270        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
1271          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
1272          // definition.
1273          Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
1274          D.setInvalidType(true);
1275          break;
1276        }
1277
1278        FunctionProtoType::ExtProtoInfo EPI;
1279        EPI.Variadic = FTI.isVariadic;
1280        EPI.TypeQuals = FTI.TypeQuals;
1281
1282        // Otherwise, we have a function with an argument list that is
1283        // potentially variadic.
1284        llvm::SmallVector<QualType, 16> ArgTys;
1285        ArgTys.reserve(FTI.NumArgs);
1286
1287        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1288          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
1289          QualType ArgTy = Param->getType();
1290          assert(!ArgTy.isNull() && "Couldn't parse type?");
1291
1292          // Adjust the parameter type.
1293          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1294
1295          // Look for 'void'.  void is allowed only as a single argument to a
1296          // function with no other parameters (C99 6.7.5.3p10).  We record
1297          // int(void) as a FunctionProtoType with an empty argument list.
1298          if (ArgTy->isVoidType()) {
1299            // If this is something like 'float(int, void)', reject it.  'void'
1300            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1301            // have arguments of incomplete type.
1302            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1303              Diag(DeclType.Loc, diag::err_void_only_param);
1304              ArgTy = Context.IntTy;
1305              Param->setType(ArgTy);
1306            } else if (FTI.ArgInfo[i].Ident) {
1307              // Reject, but continue to parse 'int(void abc)'.
1308              Diag(FTI.ArgInfo[i].IdentLoc,
1309                   diag::err_param_with_void_type);
1310              ArgTy = Context.IntTy;
1311              Param->setType(ArgTy);
1312            } else {
1313              // Reject, but continue to parse 'float(const void)'.
1314              if (ArgTy.hasQualifiers())
1315                Diag(DeclType.Loc, diag::err_void_param_qualified);
1316
1317              // Do not add 'void' to the ArgTys list.
1318              break;
1319            }
1320          } else if (!FTI.hasPrototype) {
1321            if (ArgTy->isPromotableIntegerType()) {
1322              ArgTy = Context.getPromotedIntegerType(ArgTy);
1323            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
1324              if (BTy->getKind() == BuiltinType::Float)
1325                ArgTy = Context.DoubleTy;
1326            }
1327          }
1328
1329          ArgTys.push_back(ArgTy);
1330        }
1331
1332        llvm::SmallVector<QualType, 4> Exceptions;
1333        if (FTI.hasExceptionSpec) {
1334          EPI.HasExceptionSpec = FTI.hasExceptionSpec;
1335          EPI.HasAnyExceptionSpec = FTI.hasAnyExceptionSpec;
1336          Exceptions.reserve(FTI.NumExceptions);
1337          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1338            // FIXME: Preserve type source info.
1339            QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1340            // Check that the type is valid for an exception spec, and
1341            // drop it if not.
1342            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1343              Exceptions.push_back(ET);
1344          }
1345          EPI.NumExceptions = Exceptions.size();
1346          EPI.Exceptions = Exceptions.data();
1347        }
1348
1349        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
1350      }
1351
1352      // For GCC compatibility, we allow attributes that apply only to
1353      // function types to be placed on a function's return type
1354      // instead (as long as that type doesn't happen to be function
1355      // or function-pointer itself).
1356      ProcessDelayedFnAttrs(*this, T, FnAttrsFromPreviousChunk);
1357
1358      break;
1359    }
1360    case DeclaratorChunk::MemberPointer:
1361      // The scope spec must refer to a class, or be dependent.
1362      CXXScopeSpec &SS = DeclType.Mem.Scope();
1363      QualType ClsType;
1364      if (SS.isInvalid()) {
1365        // Avoid emitting extra errors if we already errored on the scope.
1366        D.setInvalidType(true);
1367      } else if (isDependentScopeSpecifier(SS) ||
1368                 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS))) {
1369        NestedNameSpecifier *NNS
1370          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1371        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
1372        switch (NNS->getKind()) {
1373        case NestedNameSpecifier::Identifier:
1374          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
1375                                                 NNS->getAsIdentifier());
1376          break;
1377
1378        case NestedNameSpecifier::Namespace:
1379        case NestedNameSpecifier::Global:
1380          llvm_unreachable("Nested-name-specifier must name a type");
1381          break;
1382
1383        case NestedNameSpecifier::TypeSpec:
1384        case NestedNameSpecifier::TypeSpecWithTemplate:
1385          ClsType = QualType(NNS->getAsType(), 0);
1386          // Note: if NNS is dependent, then its prefix (if any) is already
1387          // included in ClsType; this does not hold if the NNS is
1388          // nondependent: in this case (if there is indeed a prefix)
1389          // ClsType needs to be wrapped into an elaborated type.
1390          if (NNSPrefix && !NNS->isDependent())
1391            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
1392          break;
1393        }
1394      } else {
1395        Diag(DeclType.Mem.Scope().getBeginLoc(),
1396             diag::err_illegal_decl_mempointer_in_nonclass)
1397          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1398          << DeclType.Mem.Scope().getRange();
1399        D.setInvalidType(true);
1400      }
1401
1402      if (!ClsType.isNull())
1403        T = BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
1404      if (T.isNull()) {
1405        T = Context.IntTy;
1406        D.setInvalidType(true);
1407      } else if (DeclType.Mem.TypeQuals) {
1408        T = BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
1409      }
1410      break;
1411    }
1412
1413    if (T.isNull()) {
1414      D.setInvalidType(true);
1415      T = Context.IntTy;
1416    }
1417
1418    DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);
1419
1420    // See if there are any attributes on this declarator chunk.
1421    if (const AttributeList *AL = DeclType.getAttrs())
1422      ProcessTypeAttributeList(*this, T, false, AL, FnAttrsFromPreviousChunk);
1423  }
1424
1425  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1426    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
1427    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
1428
1429    // C++ 8.3.5p4:
1430    //   A cv-qualifier-seq shall only be part of the function type
1431    //   for a nonstatic member function, the function type to which a pointer
1432    //   to member refers, or the top-level function type of a function typedef
1433    //   declaration.
1434    bool FreeFunction;
1435    if (!D.getCXXScopeSpec().isSet()) {
1436      FreeFunction = (D.getContext() != Declarator::MemberContext ||
1437                      D.getDeclSpec().isFriendSpecified());
1438    } else {
1439      DeclContext *DC = computeDeclContext(D.getCXXScopeSpec());
1440      FreeFunction = (DC && !DC->isRecord());
1441    }
1442
1443    if (FnTy->getTypeQuals() != 0 &&
1444        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1445        (FreeFunction ||
1446         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1447      if (D.isFunctionDeclarator())
1448        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1449      else
1450        Diag(D.getIdentifierLoc(),
1451             diag::err_invalid_qualified_typedef_function_type_use)
1452          << FreeFunction;
1453
1454      // Strip the cv-quals from the type.
1455      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
1456      EPI.TypeQuals = 0;
1457
1458      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1459                                  FnTy->getNumArgs(), EPI);
1460    }
1461  }
1462
1463  // If there's a constexpr specifier, treat it as a top-level const.
1464  if (D.getDeclSpec().isConstexprSpecified()) {
1465    T.addConst();
1466  }
1467
1468  // Process any function attributes we might have delayed from the
1469  // declaration-specifiers.
1470  ProcessDelayedFnAttrs(*this, T, FnAttrsFromDeclSpec);
1471
1472  // If there were any type attributes applied to the decl itself, not
1473  // the type, apply them to the result type.  But don't do this for
1474  // block-literal expressions, which are parsed wierdly.
1475  if (D.getContext() != Declarator::BlockLiteralContext)
1476    if (const AttributeList *Attrs = D.getAttributes())
1477      ProcessTypeAttributeList(*this, T, false, Attrs,
1478                               FnAttrsFromPreviousChunk);
1479
1480  DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);
1481
1482  if (T.isNull())
1483    return Context.getNullTypeSourceInfo();
1484  else if (D.isInvalidType())
1485    return Context.getTrivialTypeSourceInfo(T);
1486  return GetTypeSourceInfoForDeclarator(D, T, ReturnTypeInfo);
1487}
1488
1489namespace {
1490  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
1491    const DeclSpec &DS;
1492
1493  public:
1494    TypeSpecLocFiller(const DeclSpec &DS) : DS(DS) {}
1495
1496    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1497      Visit(TL.getUnqualifiedLoc());
1498    }
1499    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
1500      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1501    }
1502    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
1503      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1504    }
1505    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
1506      // Handle the base type, which might not have been written explicitly.
1507      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
1508        TL.setHasBaseTypeAsWritten(false);
1509        TL.getBaseLoc().initialize(SourceLocation());
1510      } else {
1511        TL.setHasBaseTypeAsWritten(true);
1512        Visit(TL.getBaseLoc());
1513      }
1514
1515      // Protocol qualifiers.
1516      if (DS.getProtocolQualifiers()) {
1517        assert(TL.getNumProtocols() > 0);
1518        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1519        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1520        TL.setRAngleLoc(DS.getSourceRange().getEnd());
1521        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
1522          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1523      } else {
1524        assert(TL.getNumProtocols() == 0);
1525        TL.setLAngleLoc(SourceLocation());
1526        TL.setRAngleLoc(SourceLocation());
1527      }
1528    }
1529    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1530      TL.setStarLoc(SourceLocation());
1531      Visit(TL.getPointeeLoc());
1532    }
1533    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
1534      TypeSourceInfo *TInfo = 0;
1535      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
1536
1537      // If we got no declarator info from previous Sema routines,
1538      // just fill with the typespec loc.
1539      if (!TInfo) {
1540        TL.initialize(DS.getTypeSpecTypeLoc());
1541        return;
1542      }
1543
1544      TypeLoc OldTL = TInfo->getTypeLoc();
1545      if (TInfo->getType()->getAs<ElaboratedType>()) {
1546        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
1547        TemplateSpecializationTypeLoc NamedTL =
1548          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
1549        TL.copy(NamedTL);
1550      }
1551      else
1552        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
1553    }
1554    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
1555      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
1556      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
1557      TL.setParensRange(DS.getTypeofParensRange());
1558    }
1559    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
1560      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
1561      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
1562      TL.setParensRange(DS.getTypeofParensRange());
1563      assert(DS.getRepAsType());
1564      TypeSourceInfo *TInfo = 0;
1565      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
1566      TL.setUnderlyingTInfo(TInfo);
1567    }
1568    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
1569      // By default, use the source location of the type specifier.
1570      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
1571      if (TL.needsExtraLocalData()) {
1572        // Set info for the written builtin specifiers.
1573        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
1574        // Try to have a meaningful source location.
1575        if (TL.getWrittenSignSpec() != TSS_unspecified)
1576          // Sign spec loc overrides the others (e.g., 'unsigned long').
1577          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
1578        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
1579          // Width spec loc overrides type spec loc (e.g., 'short int').
1580          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
1581      }
1582    }
1583    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
1584      ElaboratedTypeKeyword Keyword
1585        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
1586      if (DS.getTypeSpecType() == TST_typename) {
1587        TypeSourceInfo *TInfo = 0;
1588        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
1589        if (TInfo) {
1590          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
1591          return;
1592        }
1593      }
1594      TL.setKeywordLoc(Keyword != ETK_None
1595                       ? DS.getTypeSpecTypeLoc()
1596                       : SourceLocation());
1597      const CXXScopeSpec& SS = DS.getTypeSpecScope();
1598      TL.setQualifierRange(SS.isEmpty() ? SourceRange(): SS.getRange());
1599      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
1600    }
1601    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
1602      ElaboratedTypeKeyword Keyword
1603        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
1604      if (DS.getTypeSpecType() == TST_typename) {
1605        TypeSourceInfo *TInfo = 0;
1606        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
1607        if (TInfo) {
1608          TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
1609          return;
1610        }
1611      }
1612      TL.setKeywordLoc(Keyword != ETK_None
1613                       ? DS.getTypeSpecTypeLoc()
1614                       : SourceLocation());
1615      const CXXScopeSpec& SS = DS.getTypeSpecScope();
1616      TL.setQualifierRange(SS.isEmpty() ? SourceRange() : SS.getRange());
1617      // FIXME: load appropriate source location.
1618      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1619    }
1620    void VisitDependentTemplateSpecializationTypeLoc(
1621                                 DependentTemplateSpecializationTypeLoc TL) {
1622      ElaboratedTypeKeyword Keyword
1623        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
1624      if (Keyword == ETK_Typename) {
1625        TypeSourceInfo *TInfo = 0;
1626        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
1627        if (TInfo) {
1628          TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
1629                    TInfo->getTypeLoc()));
1630          return;
1631        }
1632      }
1633      TL.initializeLocal(SourceLocation());
1634      TL.setKeywordLoc(Keyword != ETK_None
1635                       ? DS.getTypeSpecTypeLoc()
1636                       : SourceLocation());
1637      const CXXScopeSpec& SS = DS.getTypeSpecScope();
1638      TL.setQualifierRange(SS.isEmpty() ? SourceRange() : SS.getRange());
1639      // FIXME: load appropriate source location.
1640      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1641    }
1642
1643    void VisitTypeLoc(TypeLoc TL) {
1644      // FIXME: add other typespec types and change this to an assert.
1645      TL.initialize(DS.getTypeSpecTypeLoc());
1646    }
1647  };
1648
1649  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
1650    const DeclaratorChunk &Chunk;
1651
1652  public:
1653    DeclaratorLocFiller(const DeclaratorChunk &Chunk) : Chunk(Chunk) {}
1654
1655    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1656      llvm_unreachable("qualified type locs not expected here!");
1657    }
1658
1659    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
1660      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
1661      TL.setCaretLoc(Chunk.Loc);
1662    }
1663    void VisitPointerTypeLoc(PointerTypeLoc TL) {
1664      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1665      TL.setStarLoc(Chunk.Loc);
1666    }
1667    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1668      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1669      TL.setStarLoc(Chunk.Loc);
1670    }
1671    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
1672      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
1673      TL.setStarLoc(Chunk.Loc);
1674      // FIXME: nested name specifier
1675    }
1676    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
1677      assert(Chunk.Kind == DeclaratorChunk::Reference);
1678      // 'Amp' is misleading: this might have been originally
1679      /// spelled with AmpAmp.
1680      TL.setAmpLoc(Chunk.Loc);
1681    }
1682    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
1683      assert(Chunk.Kind == DeclaratorChunk::Reference);
1684      assert(!Chunk.Ref.LValueRef);
1685      TL.setAmpAmpLoc(Chunk.Loc);
1686    }
1687    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
1688      assert(Chunk.Kind == DeclaratorChunk::Array);
1689      TL.setLBracketLoc(Chunk.Loc);
1690      TL.setRBracketLoc(Chunk.EndLoc);
1691      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
1692    }
1693    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
1694      assert(Chunk.Kind == DeclaratorChunk::Function);
1695      TL.setLParenLoc(Chunk.Loc);
1696      TL.setRParenLoc(Chunk.EndLoc);
1697      TL.setTrailingReturn(!!Chunk.Fun.TrailingReturnType);
1698
1699      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
1700      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
1701        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
1702        TL.setArg(tpi++, Param);
1703      }
1704      // FIXME: exception specs
1705    }
1706    void VisitParenTypeLoc(ParenTypeLoc TL) {
1707      assert(Chunk.Kind == DeclaratorChunk::Paren);
1708      TL.setLParenLoc(Chunk.Loc);
1709      TL.setRParenLoc(Chunk.EndLoc);
1710    }
1711
1712    void VisitTypeLoc(TypeLoc TL) {
1713      llvm_unreachable("unsupported TypeLoc kind in declarator!");
1714    }
1715  };
1716}
1717
1718/// \brief Create and instantiate a TypeSourceInfo with type source information.
1719///
1720/// \param T QualType referring to the type as written in source code.
1721///
1722/// \param ReturnTypeInfo For declarators whose return type does not show
1723/// up in the normal place in the declaration specifiers (such as a C++
1724/// conversion function), this pointer will refer to a type source information
1725/// for that return type.
1726TypeSourceInfo *
1727Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
1728                                     TypeSourceInfo *ReturnTypeInfo) {
1729  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
1730  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
1731
1732  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1733    DeclaratorLocFiller(D.getTypeObject(i)).Visit(CurrTL);
1734    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
1735  }
1736
1737  // If we have different source information for the return type, use
1738  // that.  This really only applies to C++ conversion functions.
1739  if (ReturnTypeInfo) {
1740    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
1741    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
1742    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
1743  } else {
1744    TypeSpecLocFiller(D.getDeclSpec()).Visit(CurrTL);
1745  }
1746
1747  return TInfo;
1748}
1749
1750/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
1751ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
1752  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
1753  // and Sema during declaration parsing. Try deallocating/caching them when
1754  // it's appropriate, instead of allocating them and keeping them around.
1755  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
1756                                                       TypeAlignment);
1757  new (LocT) LocInfoType(T, TInfo);
1758  assert(LocT->getTypeClass() != T->getTypeClass() &&
1759         "LocInfoType's TypeClass conflicts with an existing Type class");
1760  return ParsedType::make(QualType(LocT, 0));
1761}
1762
1763void LocInfoType::getAsStringInternal(std::string &Str,
1764                                      const PrintingPolicy &Policy) const {
1765  assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
1766         " was used directly instead of getting the QualType through"
1767         " GetTypeFromParser");
1768}
1769
1770TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1771  // C99 6.7.6: Type names have no identifier.  This is already validated by
1772  // the parser.
1773  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1774
1775  TagDecl *OwnedTag = 0;
1776  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
1777  QualType T = TInfo->getType();
1778  if (D.isInvalidType())
1779    return true;
1780
1781  if (getLangOptions().CPlusPlus) {
1782    // Check that there are no default arguments (C++ only).
1783    CheckExtraCXXDefaultArguments(D);
1784
1785    // C++0x [dcl.type]p3:
1786    //   A type-specifier-seq shall not define a class or enumeration
1787    //   unless it appears in the type-id of an alias-declaration
1788    //   (7.1.3).
1789    if (OwnedTag && OwnedTag->isDefinition())
1790      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1791        << Context.getTypeDeclType(OwnedTag);
1792  }
1793
1794  return CreateParsedType(T, TInfo);
1795}
1796
1797
1798
1799//===----------------------------------------------------------------------===//
1800// Type Attribute Processing
1801//===----------------------------------------------------------------------===//
1802
1803/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1804/// specified type.  The attribute contains 1 argument, the id of the address
1805/// space for the type.
1806static void HandleAddressSpaceTypeAttribute(QualType &Type,
1807                                            const AttributeList &Attr, Sema &S){
1808
1809  // If this type is already address space qualified, reject it.
1810  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1811  // for two or more different address spaces."
1812  if (Type.getAddressSpace()) {
1813    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1814    Attr.setInvalid();
1815    return;
1816  }
1817
1818  // Check the attribute arguments.
1819  if (Attr.getNumArgs() != 1) {
1820    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1821    Attr.setInvalid();
1822    return;
1823  }
1824  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1825  llvm::APSInt addrSpace(32);
1826  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
1827      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1828    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1829      << ASArgExpr->getSourceRange();
1830    Attr.setInvalid();
1831    return;
1832  }
1833
1834  // Bounds checking.
1835  if (addrSpace.isSigned()) {
1836    if (addrSpace.isNegative()) {
1837      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
1838        << ASArgExpr->getSourceRange();
1839      Attr.setInvalid();
1840      return;
1841    }
1842    addrSpace.setIsSigned(false);
1843  }
1844  llvm::APSInt max(addrSpace.getBitWidth());
1845  max = Qualifiers::MaxAddressSpace;
1846  if (addrSpace > max) {
1847    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
1848      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
1849    Attr.setInvalid();
1850    return;
1851  }
1852
1853  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1854  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1855}
1856
1857/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1858/// specified type.  The attribute contains 1 argument, weak or strong.
1859static void HandleObjCGCTypeAttribute(QualType &Type,
1860                                      const AttributeList &Attr, Sema &S) {
1861  if (Type.getObjCGCAttr() != Qualifiers::GCNone) {
1862    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1863    Attr.setInvalid();
1864    return;
1865  }
1866
1867  // Check the attribute arguments.
1868  if (!Attr.getParameterName()) {
1869    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1870      << "objc_gc" << 1;
1871    Attr.setInvalid();
1872    return;
1873  }
1874  Qualifiers::GC GCAttr;
1875  if (Attr.getNumArgs() != 0) {
1876    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1877    Attr.setInvalid();
1878    return;
1879  }
1880  if (Attr.getParameterName()->isStr("weak"))
1881    GCAttr = Qualifiers::Weak;
1882  else if (Attr.getParameterName()->isStr("strong"))
1883    GCAttr = Qualifiers::Strong;
1884  else {
1885    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1886      << "objc_gc" << Attr.getParameterName();
1887    Attr.setInvalid();
1888    return;
1889  }
1890
1891  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1892}
1893
1894/// Process an individual function attribute.  Returns true if the
1895/// attribute does not make sense to apply to this type.
1896bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr) {
1897  if (Attr.getKind() == AttributeList::AT_noreturn) {
1898    // Complain immediately if the arg count is wrong.
1899    if (Attr.getNumArgs() != 0) {
1900      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1901      Attr.setInvalid();
1902      return false;
1903    }
1904
1905    // Delay if this is not a function or pointer to block.
1906    if (!Type->isFunctionPointerType()
1907        && !Type->isBlockPointerType()
1908        && !Type->isFunctionType()
1909        && !Type->isMemberFunctionPointerType())
1910      return true;
1911
1912    // Otherwise we can process right away.
1913    Type = S.Context.getNoReturnType(Type);
1914    return false;
1915  }
1916
1917  if (Attr.getKind() == AttributeList::AT_regparm) {
1918    // The warning is emitted elsewhere
1919    if (Attr.getNumArgs() != 1) {
1920      return false;
1921    }
1922
1923    // Delay if this is not a function or pointer to block.
1924    if (!Type->isFunctionPointerType()
1925        && !Type->isBlockPointerType()
1926        && !Type->isFunctionType()
1927        && !Type->isMemberFunctionPointerType())
1928      return true;
1929
1930    // Otherwise we can process right away.
1931    Expr *NumParamsExpr = static_cast<Expr *>(Attr.getArg(0));
1932    llvm::APSInt NumParams(32);
1933
1934    // The warning is emitted elsewhere
1935    if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() ||
1936        !NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context))
1937      return false;
1938
1939    if (S.Context.Target.getRegParmMax() == 0) {
1940      S.Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
1941        << NumParamsExpr->getSourceRange();
1942      Attr.setInvalid();
1943      return false;
1944    }
1945
1946    if (NumParams.getLimitedValue(255) > S.Context.Target.getRegParmMax()) {
1947      S.Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
1948        << S.Context.Target.getRegParmMax() << NumParamsExpr->getSourceRange();
1949      Attr.setInvalid();
1950      return false;
1951    }
1952
1953    Type = S.Context.getRegParmType(Type, NumParams.getZExtValue());
1954    return false;
1955  }
1956
1957  // Otherwise, a calling convention.
1958  if (Attr.getNumArgs() != 0) {
1959    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1960    Attr.setInvalid();
1961    return false;
1962  }
1963
1964  QualType T = Type;
1965  if (const PointerType *PT = Type->getAs<PointerType>())
1966    T = PT->getPointeeType();
1967  else if (const BlockPointerType *BPT = Type->getAs<BlockPointerType>())
1968    T = BPT->getPointeeType();
1969  else if (const MemberPointerType *MPT = Type->getAs<MemberPointerType>())
1970    T = MPT->getPointeeType();
1971  else if (const ReferenceType *RT = Type->getAs<ReferenceType>())
1972    T = RT->getPointeeType();
1973  const FunctionType *Fn = T->getAs<FunctionType>();
1974
1975  // Delay if the type didn't work out to a function.
1976  if (!Fn) return true;
1977
1978  // TODO: diagnose uses of these conventions on the wrong target.
1979  CallingConv CC;
1980  switch (Attr.getKind()) {
1981  case AttributeList::AT_cdecl: CC = CC_C; break;
1982  case AttributeList::AT_fastcall: CC = CC_X86FastCall; break;
1983  case AttributeList::AT_stdcall: CC = CC_X86StdCall; break;
1984  case AttributeList::AT_thiscall: CC = CC_X86ThisCall; break;
1985  case AttributeList::AT_pascal: CC = CC_X86Pascal; break;
1986  default: llvm_unreachable("unexpected attribute kind"); return false;
1987  }
1988
1989  CallingConv CCOld = Fn->getCallConv();
1990  if (S.Context.getCanonicalCallConv(CC) ==
1991      S.Context.getCanonicalCallConv(CCOld)) {
1992    Attr.setInvalid();
1993    return false;
1994  }
1995
1996  if (CCOld != CC_Default) {
1997    // Should we diagnose reapplications of the same convention?
1998    S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
1999      << FunctionType::getNameForCallConv(CC)
2000      << FunctionType::getNameForCallConv(CCOld);
2001    Attr.setInvalid();
2002    return false;
2003  }
2004
2005  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
2006  if (CC == CC_X86FastCall) {
2007    if (isa<FunctionNoProtoType>(Fn)) {
2008      S.Diag(Attr.getLoc(), diag::err_cconv_knr)
2009        << FunctionType::getNameForCallConv(CC);
2010      Attr.setInvalid();
2011      return false;
2012    }
2013
2014    const FunctionProtoType *FnP = cast<FunctionProtoType>(Fn);
2015    if (FnP->isVariadic()) {
2016      S.Diag(Attr.getLoc(), diag::err_cconv_varargs)
2017        << FunctionType::getNameForCallConv(CC);
2018      Attr.setInvalid();
2019      return false;
2020    }
2021  }
2022
2023  Type = S.Context.getCallConvType(Type, CC);
2024  return false;
2025}
2026
2027/// HandleVectorSizeAttribute - this attribute is only applicable to integral
2028/// and float scalars, although arrays, pointers, and function return values are
2029/// allowed in conjunction with this construct. Aggregates with this attribute
2030/// are invalid, even if they are of the same size as a corresponding scalar.
2031/// The raw attribute should contain precisely 1 argument, the vector size for
2032/// the variable, measured in bytes. If curType and rawAttr are well formed,
2033/// this routine will return a new vector type.
2034static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
2035                                 Sema &S) {
2036  // Check the attribute arguments.
2037  if (Attr.getNumArgs() != 1) {
2038    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2039    Attr.setInvalid();
2040    return;
2041  }
2042  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
2043  llvm::APSInt vecSize(32);
2044  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
2045      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
2046    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
2047      << "vector_size" << sizeExpr->getSourceRange();
2048    Attr.setInvalid();
2049    return;
2050  }
2051  // the base type must be integer or float, and can't already be a vector.
2052  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
2053    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
2054    Attr.setInvalid();
2055    return;
2056  }
2057  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
2058  // vecSize is specified in bytes - convert to bits.
2059  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
2060
2061  // the vector size needs to be an integral multiple of the type size.
2062  if (vectorSize % typeSize) {
2063    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
2064      << sizeExpr->getSourceRange();
2065    Attr.setInvalid();
2066    return;
2067  }
2068  if (vectorSize == 0) {
2069    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
2070      << sizeExpr->getSourceRange();
2071    Attr.setInvalid();
2072    return;
2073  }
2074
2075  // Success! Instantiate the vector type, the number of elements is > 0, and
2076  // not required to be a power of 2, unlike GCC.
2077  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
2078                                    VectorType::GenericVector);
2079}
2080
2081/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
2082/// "neon_polyvector_type" attributes are used to create vector types that
2083/// are mangled according to ARM's ABI.  Otherwise, these types are identical
2084/// to those created with the "vector_size" attribute.  Unlike "vector_size"
2085/// the argument to these Neon attributes is the number of vector elements,
2086/// not the vector size in bytes.  The vector width and element type must
2087/// match one of the standard Neon vector types.
2088static void HandleNeonVectorTypeAttr(QualType& CurType,
2089                                     const AttributeList &Attr, Sema &S,
2090                                     VectorType::VectorKind VecKind,
2091                                     const char *AttrName) {
2092  // Check the attribute arguments.
2093  if (Attr.getNumArgs() != 1) {
2094    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
2095    Attr.setInvalid();
2096    return;
2097  }
2098  // The number of elements must be an ICE.
2099  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
2100  llvm::APSInt numEltsInt(32);
2101  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
2102      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
2103    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
2104      << AttrName << numEltsExpr->getSourceRange();
2105    Attr.setInvalid();
2106    return;
2107  }
2108  // Only certain element types are supported for Neon vectors.
2109  const BuiltinType* BTy = CurType->getAs<BuiltinType>();
2110  if (!BTy ||
2111      (VecKind == VectorType::NeonPolyVector &&
2112       BTy->getKind() != BuiltinType::SChar &&
2113       BTy->getKind() != BuiltinType::Short) ||
2114      (BTy->getKind() != BuiltinType::SChar &&
2115       BTy->getKind() != BuiltinType::UChar &&
2116       BTy->getKind() != BuiltinType::Short &&
2117       BTy->getKind() != BuiltinType::UShort &&
2118       BTy->getKind() != BuiltinType::Int &&
2119       BTy->getKind() != BuiltinType::UInt &&
2120       BTy->getKind() != BuiltinType::LongLong &&
2121       BTy->getKind() != BuiltinType::ULongLong &&
2122       BTy->getKind() != BuiltinType::Float)) {
2123    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
2124    Attr.setInvalid();
2125    return;
2126  }
2127  // The total size of the vector must be 64 or 128 bits.
2128  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
2129  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
2130  unsigned vecSize = typeSize * numElts;
2131  if (vecSize != 64 && vecSize != 128) {
2132    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
2133    Attr.setInvalid();
2134    return;
2135  }
2136
2137  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
2138}
2139
2140void ProcessTypeAttributeList(Sema &S, QualType &Result,
2141                              bool IsDeclSpec, const AttributeList *AL,
2142                              DelayedAttributeSet &FnAttrs) {
2143  // Scan through and apply attributes to this type where it makes sense.  Some
2144  // attributes (such as __address_space__, __vector_size__, etc) apply to the
2145  // type, but others can be present in the type specifiers even though they
2146  // apply to the decl.  Here we apply type attributes and ignore the rest.
2147  for (; AL; AL = AL->getNext()) {
2148    // Skip attributes that were marked to be invalid.
2149    if (AL->isInvalid())
2150      continue;
2151
2152    // If this is an attribute we can handle, do so now,
2153    // otherwise, add it to the FnAttrs list for rechaining.
2154    switch (AL->getKind()) {
2155    default: break;
2156
2157    case AttributeList::AT_address_space:
2158      HandleAddressSpaceTypeAttribute(Result, *AL, S);
2159      break;
2160    case AttributeList::AT_objc_gc:
2161      HandleObjCGCTypeAttribute(Result, *AL, S);
2162      break;
2163    case AttributeList::AT_vector_size:
2164      HandleVectorSizeAttr(Result, *AL, S);
2165      break;
2166    case AttributeList::AT_neon_vector_type:
2167      HandleNeonVectorTypeAttr(Result, *AL, S, VectorType::NeonVector,
2168                               "neon_vector_type");
2169      break;
2170    case AttributeList::AT_neon_polyvector_type:
2171      HandleNeonVectorTypeAttr(Result, *AL, S, VectorType::NeonPolyVector,
2172                               "neon_polyvector_type");
2173      break;
2174
2175    case AttributeList::AT_noreturn:
2176    case AttributeList::AT_cdecl:
2177    case AttributeList::AT_fastcall:
2178    case AttributeList::AT_stdcall:
2179    case AttributeList::AT_thiscall:
2180    case AttributeList::AT_pascal:
2181    case AttributeList::AT_regparm:
2182      // Don't process these on the DeclSpec.
2183      if (IsDeclSpec ||
2184          ProcessFnAttr(S, Result, *AL))
2185        FnAttrs.push_back(DelayedAttribute(AL, Result));
2186      break;
2187    }
2188  }
2189}
2190
2191/// @brief Ensure that the type T is a complete type.
2192///
2193/// This routine checks whether the type @p T is complete in any
2194/// context where a complete type is required. If @p T is a complete
2195/// type, returns false. If @p T is a class template specialization,
2196/// this routine then attempts to perform class template
2197/// instantiation. If instantiation fails, or if @p T is incomplete
2198/// and cannot be completed, issues the diagnostic @p diag (giving it
2199/// the type @p T) and returns true.
2200///
2201/// @param Loc  The location in the source that the incomplete type
2202/// diagnostic should refer to.
2203///
2204/// @param T  The type that this routine is examining for completeness.
2205///
2206/// @param PD The partial diagnostic that will be printed out if T is not a
2207/// complete type.
2208///
2209/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
2210/// @c false otherwise.
2211bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2212                               const PartialDiagnostic &PD,
2213                               std::pair<SourceLocation,
2214                                         PartialDiagnostic> Note) {
2215  unsigned diag = PD.getDiagID();
2216
2217  // FIXME: Add this assertion to make sure we always get instantiation points.
2218  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
2219  // FIXME: Add this assertion to help us flush out problems with
2220  // checking for dependent types and type-dependent expressions.
2221  //
2222  //  assert(!T->isDependentType() &&
2223  //         "Can't ask whether a dependent type is complete");
2224
2225  // If we have a complete type, we're done.
2226  if (!T->isIncompleteType())
2227    return false;
2228
2229  // If we have a class template specialization or a class member of a
2230  // class template specialization, or an array with known size of such,
2231  // try to instantiate it.
2232  QualType MaybeTemplate = T;
2233  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
2234    MaybeTemplate = Array->getElementType();
2235  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
2236    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
2237          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
2238      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
2239        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
2240                                                      TSK_ImplicitInstantiation,
2241                                                      /*Complain=*/diag != 0);
2242    } else if (CXXRecordDecl *Rec
2243                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
2244      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
2245        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
2246        assert(MSInfo && "Missing member specialization information?");
2247        // This record was instantiated from a class within a template.
2248        if (MSInfo->getTemplateSpecializationKind()
2249                                               != TSK_ExplicitSpecialization)
2250          return InstantiateClass(Loc, Rec, Pattern,
2251                                  getTemplateInstantiationArgs(Rec),
2252                                  TSK_ImplicitInstantiation,
2253                                  /*Complain=*/diag != 0);
2254      }
2255    }
2256  }
2257
2258  if (diag == 0)
2259    return true;
2260
2261  const TagType *Tag = T->getAs<TagType>();
2262
2263  // Avoid diagnosing invalid decls as incomplete.
2264  if (Tag && Tag->getDecl()->isInvalidDecl())
2265    return true;
2266
2267  // Give the external AST source a chance to complete the type.
2268  if (Tag && Tag->getDecl()->hasExternalLexicalStorage()) {
2269    Context.getExternalSource()->CompleteType(Tag->getDecl());
2270    if (!Tag->isIncompleteType())
2271      return false;
2272  }
2273
2274  // We have an incomplete type. Produce a diagnostic.
2275  Diag(Loc, PD) << T;
2276
2277  // If we have a note, produce it.
2278  if (!Note.first.isInvalid())
2279    Diag(Note.first, Note.second);
2280
2281  // If the type was a forward declaration of a class/struct/union
2282  // type, produce a note.
2283  if (Tag && !Tag->getDecl()->isInvalidDecl())
2284    Diag(Tag->getDecl()->getLocation(),
2285         Tag->isBeingDefined() ? diag::note_type_being_defined
2286                               : diag::note_forward_declaration)
2287        << QualType(Tag, 0);
2288
2289  return true;
2290}
2291
2292bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2293                               const PartialDiagnostic &PD) {
2294  return RequireCompleteType(Loc, T, PD,
2295                             std::make_pair(SourceLocation(), PDiag(0)));
2296}
2297
2298bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2299                               unsigned DiagID) {
2300  return RequireCompleteType(Loc, T, PDiag(DiagID),
2301                             std::make_pair(SourceLocation(), PDiag(0)));
2302}
2303
2304/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
2305/// and qualified by the nested-name-specifier contained in SS.
2306QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
2307                                 const CXXScopeSpec &SS, QualType T) {
2308  if (T.isNull())
2309    return T;
2310  NestedNameSpecifier *NNS;
2311  if (SS.isValid())
2312    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2313  else {
2314    if (Keyword == ETK_None)
2315      return T;
2316    NNS = 0;
2317  }
2318  return Context.getElaboratedType(Keyword, NNS, T);
2319}
2320
2321QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
2322  ExprResult ER = CheckPlaceholderExpr(E, Loc);
2323  if (ER.isInvalid()) return QualType();
2324  E = ER.take();
2325
2326  if (!E->isTypeDependent()) {
2327    QualType T = E->getType();
2328    if (const TagType *TT = T->getAs<TagType>())
2329      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
2330  }
2331  return Context.getTypeOfExprType(E);
2332}
2333
2334QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
2335  ExprResult ER = CheckPlaceholderExpr(E, Loc);
2336  if (ER.isInvalid()) return QualType();
2337  E = ER.take();
2338
2339  return Context.getDecltypeType(E);
2340}
2341