SemaType.cpp revision 6d9ef30c5026e80fb398ed32bcdf69e4d714f033
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/ScopeInfo.h"
15#include "clang/Sema/SemaInternal.h"
16#include "clang/Sema/Template.h"
17#include "clang/Basic/OpenCL.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTMutationListener.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/TypeLoc.h"
24#include "clang/AST/TypeLocVisitor.h"
25#include "clang/AST/Expr.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/DelayedDiagnostic.h"
31#include "clang/Sema/Lookup.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/Support/ErrorHandling.h"
34using namespace clang;
35
36/// isOmittedBlockReturnType - Return true if this declarator is missing a
37/// return type because this is a omitted return type on a block literal.
38static bool isOmittedBlockReturnType(const Declarator &D) {
39  if (D.getContext() != Declarator::BlockLiteralContext ||
40      D.getDeclSpec().hasTypeSpecifier())
41    return false;
42
43  if (D.getNumTypeObjects() == 0)
44    return true;   // ^{ ... }
45
46  if (D.getNumTypeObjects() == 1 &&
47      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
48    return true;   // ^(int X, float Y) { ... }
49
50  return false;
51}
52
53/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
54/// doesn't apply to the given type.
55static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
56                                     QualType type) {
57  bool useExpansionLoc = false;
58
59  unsigned diagID = 0;
60  switch (attr.getKind()) {
61  case AttributeList::AT_objc_gc:
62    diagID = diag::warn_pointer_attribute_wrong_type;
63    useExpansionLoc = true;
64    break;
65
66  case AttributeList::AT_objc_ownership:
67    diagID = diag::warn_objc_object_attribute_wrong_type;
68    useExpansionLoc = true;
69    break;
70
71  default:
72    // Assume everything else was a function attribute.
73    diagID = diag::warn_function_attribute_wrong_type;
74    break;
75  }
76
77  SourceLocation loc = attr.getLoc();
78  StringRef name = attr.getName()->getName();
79
80  // The GC attributes are usually written with macros;  special-case them.
81  if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
82    if (attr.getParameterName()->isStr("strong")) {
83      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
84    } else if (attr.getParameterName()->isStr("weak")) {
85      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
86    }
87  }
88
89  S.Diag(loc, diagID) << name << type;
90}
91
92// objc_gc applies to Objective-C pointers or, otherwise, to the
93// smallest available pointer type (i.e. 'void*' in 'void**').
94#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
95    case AttributeList::AT_objc_gc: \
96    case AttributeList::AT_objc_ownership
97
98// Function type attributes.
99#define FUNCTION_TYPE_ATTRS_CASELIST \
100    case AttributeList::AT_noreturn: \
101    case AttributeList::AT_cdecl: \
102    case AttributeList::AT_fastcall: \
103    case AttributeList::AT_stdcall: \
104    case AttributeList::AT_thiscall: \
105    case AttributeList::AT_pascal: \
106    case AttributeList::AT_regparm: \
107    case AttributeList::AT_pcs \
108
109namespace {
110  /// An object which stores processing state for the entire
111  /// GetTypeForDeclarator process.
112  class TypeProcessingState {
113    Sema &sema;
114
115    /// The declarator being processed.
116    Declarator &declarator;
117
118    /// The index of the declarator chunk we're currently processing.
119    /// May be the total number of valid chunks, indicating the
120    /// DeclSpec.
121    unsigned chunkIndex;
122
123    /// Whether there are non-trivial modifications to the decl spec.
124    bool trivial;
125
126    /// Whether we saved the attributes in the decl spec.
127    bool hasSavedAttrs;
128
129    /// The original set of attributes on the DeclSpec.
130    SmallVector<AttributeList*, 2> savedAttrs;
131
132    /// A list of attributes to diagnose the uselessness of when the
133    /// processing is complete.
134    SmallVector<AttributeList*, 2> ignoredTypeAttrs;
135
136  public:
137    TypeProcessingState(Sema &sema, Declarator &declarator)
138      : sema(sema), declarator(declarator),
139        chunkIndex(declarator.getNumTypeObjects()),
140        trivial(true), hasSavedAttrs(false) {}
141
142    Sema &getSema() const {
143      return sema;
144    }
145
146    Declarator &getDeclarator() const {
147      return declarator;
148    }
149
150    unsigned getCurrentChunkIndex() const {
151      return chunkIndex;
152    }
153
154    void setCurrentChunkIndex(unsigned idx) {
155      assert(idx <= declarator.getNumTypeObjects());
156      chunkIndex = idx;
157    }
158
159    AttributeList *&getCurrentAttrListRef() const {
160      assert(chunkIndex <= declarator.getNumTypeObjects());
161      if (chunkIndex == declarator.getNumTypeObjects())
162        return getMutableDeclSpec().getAttributes().getListRef();
163      return declarator.getTypeObject(chunkIndex).getAttrListRef();
164    }
165
166    /// Save the current set of attributes on the DeclSpec.
167    void saveDeclSpecAttrs() {
168      // Don't try to save them multiple times.
169      if (hasSavedAttrs) return;
170
171      DeclSpec &spec = getMutableDeclSpec();
172      for (AttributeList *attr = spec.getAttributes().getList(); attr;
173             attr = attr->getNext())
174        savedAttrs.push_back(attr);
175      trivial &= savedAttrs.empty();
176      hasSavedAttrs = true;
177    }
178
179    /// Record that we had nowhere to put the given type attribute.
180    /// We will diagnose such attributes later.
181    void addIgnoredTypeAttr(AttributeList &attr) {
182      ignoredTypeAttrs.push_back(&attr);
183    }
184
185    /// Diagnose all the ignored type attributes, given that the
186    /// declarator worked out to the given type.
187    void diagnoseIgnoredTypeAttrs(QualType type) const {
188      for (SmallVectorImpl<AttributeList*>::const_iterator
189             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
190           i != e; ++i)
191        diagnoseBadTypeAttribute(getSema(), **i, type);
192    }
193
194    ~TypeProcessingState() {
195      if (trivial) return;
196
197      restoreDeclSpecAttrs();
198    }
199
200  private:
201    DeclSpec &getMutableDeclSpec() const {
202      return const_cast<DeclSpec&>(declarator.getDeclSpec());
203    }
204
205    void restoreDeclSpecAttrs() {
206      assert(hasSavedAttrs);
207
208      if (savedAttrs.empty()) {
209        getMutableDeclSpec().getAttributes().set(0);
210        return;
211      }
212
213      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
214      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
215        savedAttrs[i]->setNext(savedAttrs[i+1]);
216      savedAttrs.back()->setNext(0);
217    }
218  };
219
220  /// Basically std::pair except that we really want to avoid an
221  /// implicit operator= for safety concerns.  It's also a minor
222  /// link-time optimization for this to be a private type.
223  struct AttrAndList {
224    /// The attribute.
225    AttributeList &first;
226
227    /// The head of the list the attribute is currently in.
228    AttributeList *&second;
229
230    AttrAndList(AttributeList &attr, AttributeList *&head)
231      : first(attr), second(head) {}
232  };
233}
234
235namespace llvm {
236  template <> struct isPodLike<AttrAndList> {
237    static const bool value = true;
238  };
239}
240
241static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
242  attr.setNext(head);
243  head = &attr;
244}
245
246static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
247  if (head == &attr) {
248    head = attr.getNext();
249    return;
250  }
251
252  AttributeList *cur = head;
253  while (true) {
254    assert(cur && cur->getNext() && "ran out of attrs?");
255    if (cur->getNext() == &attr) {
256      cur->setNext(attr.getNext());
257      return;
258    }
259    cur = cur->getNext();
260  }
261}
262
263static void moveAttrFromListToList(AttributeList &attr,
264                                   AttributeList *&fromList,
265                                   AttributeList *&toList) {
266  spliceAttrOutOfList(attr, fromList);
267  spliceAttrIntoList(attr, toList);
268}
269
270static void processTypeAttrs(TypeProcessingState &state,
271                             QualType &type, bool isDeclSpec,
272                             AttributeList *attrs);
273
274static bool handleFunctionTypeAttr(TypeProcessingState &state,
275                                   AttributeList &attr,
276                                   QualType &type);
277
278static bool handleObjCGCTypeAttr(TypeProcessingState &state,
279                                 AttributeList &attr, QualType &type);
280
281static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
282                                       AttributeList &attr, QualType &type);
283
284static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
285                                      AttributeList &attr, QualType &type) {
286  if (attr.getKind() == AttributeList::AT_objc_gc)
287    return handleObjCGCTypeAttr(state, attr, type);
288  assert(attr.getKind() == AttributeList::AT_objc_ownership);
289  return handleObjCOwnershipTypeAttr(state, attr, type);
290}
291
292/// Given that an objc_gc attribute was written somewhere on a
293/// declaration *other* than on the declarator itself (for which, use
294/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
295/// didn't apply in whatever position it was written in, try to move
296/// it to a more appropriate position.
297static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
298                                          AttributeList &attr,
299                                          QualType type) {
300  Declarator &declarator = state.getDeclarator();
301  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
302    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
303    switch (chunk.Kind) {
304    case DeclaratorChunk::Pointer:
305    case DeclaratorChunk::BlockPointer:
306      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
307                             chunk.getAttrListRef());
308      return;
309
310    case DeclaratorChunk::Paren:
311    case DeclaratorChunk::Array:
312      continue;
313
314    // Don't walk through these.
315    case DeclaratorChunk::Reference:
316    case DeclaratorChunk::Function:
317    case DeclaratorChunk::MemberPointer:
318      goto error;
319    }
320  }
321 error:
322
323  diagnoseBadTypeAttribute(state.getSema(), attr, type);
324}
325
326/// Distribute an objc_gc type attribute that was written on the
327/// declarator.
328static void
329distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
330                                            AttributeList &attr,
331                                            QualType &declSpecType) {
332  Declarator &declarator = state.getDeclarator();
333
334  // objc_gc goes on the innermost pointer to something that's not a
335  // pointer.
336  unsigned innermost = -1U;
337  bool considerDeclSpec = true;
338  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
339    DeclaratorChunk &chunk = declarator.getTypeObject(i);
340    switch (chunk.Kind) {
341    case DeclaratorChunk::Pointer:
342    case DeclaratorChunk::BlockPointer:
343      innermost = i;
344      continue;
345
346    case DeclaratorChunk::Reference:
347    case DeclaratorChunk::MemberPointer:
348    case DeclaratorChunk::Paren:
349    case DeclaratorChunk::Array:
350      continue;
351
352    case DeclaratorChunk::Function:
353      considerDeclSpec = false;
354      goto done;
355    }
356  }
357 done:
358
359  // That might actually be the decl spec if we weren't blocked by
360  // anything in the declarator.
361  if (considerDeclSpec) {
362    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
363      // Splice the attribute into the decl spec.  Prevents the
364      // attribute from being applied multiple times and gives
365      // the source-location-filler something to work with.
366      state.saveDeclSpecAttrs();
367      moveAttrFromListToList(attr, declarator.getAttrListRef(),
368               declarator.getMutableDeclSpec().getAttributes().getListRef());
369      return;
370    }
371  }
372
373  // Otherwise, if we found an appropriate chunk, splice the attribute
374  // into it.
375  if (innermost != -1U) {
376    moveAttrFromListToList(attr, declarator.getAttrListRef(),
377                       declarator.getTypeObject(innermost).getAttrListRef());
378    return;
379  }
380
381  // Otherwise, diagnose when we're done building the type.
382  spliceAttrOutOfList(attr, declarator.getAttrListRef());
383  state.addIgnoredTypeAttr(attr);
384}
385
386/// A function type attribute was written somewhere in a declaration
387/// *other* than on the declarator itself or in the decl spec.  Given
388/// that it didn't apply in whatever position it was written in, try
389/// to move it to a more appropriate position.
390static void distributeFunctionTypeAttr(TypeProcessingState &state,
391                                       AttributeList &attr,
392                                       QualType type) {
393  Declarator &declarator = state.getDeclarator();
394
395  // Try to push the attribute from the return type of a function to
396  // the function itself.
397  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
398    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
399    switch (chunk.Kind) {
400    case DeclaratorChunk::Function:
401      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
402                             chunk.getAttrListRef());
403      return;
404
405    case DeclaratorChunk::Paren:
406    case DeclaratorChunk::Pointer:
407    case DeclaratorChunk::BlockPointer:
408    case DeclaratorChunk::Array:
409    case DeclaratorChunk::Reference:
410    case DeclaratorChunk::MemberPointer:
411      continue;
412    }
413  }
414
415  diagnoseBadTypeAttribute(state.getSema(), attr, type);
416}
417
418/// Try to distribute a function type attribute to the innermost
419/// function chunk or type.  Returns true if the attribute was
420/// distributed, false if no location was found.
421static bool
422distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
423                                      AttributeList &attr,
424                                      AttributeList *&attrList,
425                                      QualType &declSpecType) {
426  Declarator &declarator = state.getDeclarator();
427
428  // Put it on the innermost function chunk, if there is one.
429  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
430    DeclaratorChunk &chunk = declarator.getTypeObject(i);
431    if (chunk.Kind != DeclaratorChunk::Function) continue;
432
433    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
434    return true;
435  }
436
437  if (handleFunctionTypeAttr(state, attr, declSpecType)) {
438    spliceAttrOutOfList(attr, attrList);
439    return true;
440  }
441
442  return false;
443}
444
445/// A function type attribute was written in the decl spec.  Try to
446/// apply it somewhere.
447static void
448distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
449                                       AttributeList &attr,
450                                       QualType &declSpecType) {
451  state.saveDeclSpecAttrs();
452
453  // Try to distribute to the innermost.
454  if (distributeFunctionTypeAttrToInnermost(state, attr,
455                                            state.getCurrentAttrListRef(),
456                                            declSpecType))
457    return;
458
459  // If that failed, diagnose the bad attribute when the declarator is
460  // fully built.
461  state.addIgnoredTypeAttr(attr);
462}
463
464/// A function type attribute was written on the declarator.  Try to
465/// apply it somewhere.
466static void
467distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
468                                         AttributeList &attr,
469                                         QualType &declSpecType) {
470  Declarator &declarator = state.getDeclarator();
471
472  // Try to distribute to the innermost.
473  if (distributeFunctionTypeAttrToInnermost(state, attr,
474                                            declarator.getAttrListRef(),
475                                            declSpecType))
476    return;
477
478  // If that failed, diagnose the bad attribute when the declarator is
479  // fully built.
480  spliceAttrOutOfList(attr, declarator.getAttrListRef());
481  state.addIgnoredTypeAttr(attr);
482}
483
484/// \brief Given that there are attributes written on the declarator
485/// itself, try to distribute any type attributes to the appropriate
486/// declarator chunk.
487///
488/// These are attributes like the following:
489///   int f ATTR;
490///   int (f ATTR)();
491/// but not necessarily this:
492///   int f() ATTR;
493static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
494                                              QualType &declSpecType) {
495  // Collect all the type attributes from the declarator itself.
496  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
497  AttributeList *attr = state.getDeclarator().getAttributes();
498  AttributeList *next;
499  do {
500    next = attr->getNext();
501
502    switch (attr->getKind()) {
503    OBJC_POINTER_TYPE_ATTRS_CASELIST:
504      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
505      break;
506
507    case AttributeList::AT_ns_returns_retained:
508      if (!state.getSema().getLangOptions().ObjCAutoRefCount)
509        break;
510      // fallthrough
511
512    FUNCTION_TYPE_ATTRS_CASELIST:
513      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
514      break;
515
516    default:
517      break;
518    }
519  } while ((attr = next));
520}
521
522/// Add a synthetic '()' to a block-literal declarator if it is
523/// required, given the return type.
524static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
525                                          QualType declSpecType) {
526  Declarator &declarator = state.getDeclarator();
527
528  // First, check whether the declarator would produce a function,
529  // i.e. whether the innermost semantic chunk is a function.
530  if (declarator.isFunctionDeclarator()) {
531    // If so, make that declarator a prototyped declarator.
532    declarator.getFunctionTypeInfo().hasPrototype = true;
533    return;
534  }
535
536  // If there are any type objects, the type as written won't name a
537  // function, regardless of the decl spec type.  This is because a
538  // block signature declarator is always an abstract-declarator, and
539  // abstract-declarators can't just be parentheses chunks.  Therefore
540  // we need to build a function chunk unless there are no type
541  // objects and the decl spec type is a function.
542  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
543    return;
544
545  // Note that there *are* cases with invalid declarators where
546  // declarators consist solely of parentheses.  In general, these
547  // occur only in failed efforts to make function declarators, so
548  // faking up the function chunk is still the right thing to do.
549
550  // Otherwise, we need to fake up a function declarator.
551  SourceLocation loc = declarator.getSourceRange().getBegin();
552
553  // ...and *prepend* it to the declarator.
554  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
555                             /*proto*/ true,
556                             /*variadic*/ false, SourceLocation(),
557                             /*args*/ 0, 0,
558                             /*type quals*/ 0,
559                             /*ref-qualifier*/true, SourceLocation(),
560                             /*const qualifier*/SourceLocation(),
561                             /*volatile qualifier*/SourceLocation(),
562                             /*mutable qualifier*/SourceLocation(),
563                             /*EH*/ EST_None, SourceLocation(), 0, 0, 0, 0,
564                             /*parens*/ loc, loc,
565                             declarator));
566
567  // For consistency, make sure the state still has us as processing
568  // the decl spec.
569  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
570  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
571}
572
573/// \brief Convert the specified declspec to the appropriate type
574/// object.
575/// \param D  the declarator containing the declaration specifier.
576/// \returns The type described by the declaration specifiers.  This function
577/// never returns null.
578static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
579  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
580  // checking.
581
582  Sema &S = state.getSema();
583  Declarator &declarator = state.getDeclarator();
584  const DeclSpec &DS = declarator.getDeclSpec();
585  SourceLocation DeclLoc = declarator.getIdentifierLoc();
586  if (DeclLoc.isInvalid())
587    DeclLoc = DS.getSourceRange().getBegin();
588
589  ASTContext &Context = S.Context;
590
591  QualType Result;
592  switch (DS.getTypeSpecType()) {
593  case DeclSpec::TST_void:
594    Result = Context.VoidTy;
595    break;
596  case DeclSpec::TST_char:
597    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
598      Result = Context.CharTy;
599    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
600      Result = Context.SignedCharTy;
601    else {
602      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
603             "Unknown TSS value");
604      Result = Context.UnsignedCharTy;
605    }
606    break;
607  case DeclSpec::TST_wchar:
608    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
609      Result = Context.WCharTy;
610    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
611      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
612        << DS.getSpecifierName(DS.getTypeSpecType());
613      Result = Context.getSignedWCharType();
614    } else {
615      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
616        "Unknown TSS value");
617      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
618        << DS.getSpecifierName(DS.getTypeSpecType());
619      Result = Context.getUnsignedWCharType();
620    }
621    break;
622  case DeclSpec::TST_char16:
623      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
624        "Unknown TSS value");
625      Result = Context.Char16Ty;
626    break;
627  case DeclSpec::TST_char32:
628      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
629        "Unknown TSS value");
630      Result = Context.Char32Ty;
631    break;
632  case DeclSpec::TST_unspecified:
633    // "<proto1,proto2>" is an objc qualified ID with a missing id.
634    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
635      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
636                                         (ObjCProtocolDecl**)PQ,
637                                         DS.getNumProtocolQualifiers());
638      Result = Context.getObjCObjectPointerType(Result);
639      break;
640    }
641
642    // If this is a missing declspec in a block literal return context, then it
643    // is inferred from the return statements inside the block.
644    // The declspec is always missing in a lambda expr context; it is either
645    // specified with a trailing return type or inferred.
646    if (declarator.getContext() == Declarator::LambdaExprContext ||
647        isOmittedBlockReturnType(declarator)) {
648      Result = Context.DependentTy;
649      break;
650    }
651
652    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
653    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
654    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
655    // Note that the one exception to this is function definitions, which are
656    // allowed to be completely missing a declspec.  This is handled in the
657    // parser already though by it pretending to have seen an 'int' in this
658    // case.
659    if (S.getLangOptions().ImplicitInt) {
660      // In C89 mode, we only warn if there is a completely missing declspec
661      // when one is not allowed.
662      if (DS.isEmpty()) {
663        S.Diag(DeclLoc, diag::ext_missing_declspec)
664          << DS.getSourceRange()
665        << FixItHint::CreateInsertion(DS.getSourceRange().getBegin(), "int");
666      }
667    } else if (!DS.hasTypeSpecifier()) {
668      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
669      // "At least one type specifier shall be given in the declaration
670      // specifiers in each declaration, and in the specifier-qualifier list in
671      // each struct declaration and type name."
672      // FIXME: Does Microsoft really have the implicit int extension in C++?
673      if (S.getLangOptions().CPlusPlus &&
674          !S.getLangOptions().MicrosoftExt) {
675        S.Diag(DeclLoc, diag::err_missing_type_specifier)
676          << DS.getSourceRange();
677
678        // When this occurs in C++ code, often something is very broken with the
679        // value being declared, poison it as invalid so we don't get chains of
680        // errors.
681        declarator.setInvalidType(true);
682      } else {
683        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
684          << DS.getSourceRange();
685      }
686    }
687
688    // FALL THROUGH.
689  case DeclSpec::TST_int: {
690    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
691      switch (DS.getTypeSpecWidth()) {
692      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
693      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
694      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
695      case DeclSpec::TSW_longlong:
696        Result = Context.LongLongTy;
697
698        // long long is a C99 feature.
699        if (!S.getLangOptions().C99)
700          S.Diag(DS.getTypeSpecWidthLoc(),
701                 S.getLangOptions().CPlusPlus0x ?
702                   diag::warn_cxx98_compat_longlong : diag::ext_longlong);
703        break;
704      }
705    } else {
706      switch (DS.getTypeSpecWidth()) {
707      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
708      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
709      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
710      case DeclSpec::TSW_longlong:
711        Result = Context.UnsignedLongLongTy;
712
713        // long long is a C99 feature.
714        if (!S.getLangOptions().C99)
715          S.Diag(DS.getTypeSpecWidthLoc(),
716                 S.getLangOptions().CPlusPlus0x ?
717                   diag::warn_cxx98_compat_longlong : diag::ext_longlong);
718        break;
719      }
720    }
721    break;
722  }
723  case DeclSpec::TST_half: Result = Context.HalfTy; break;
724  case DeclSpec::TST_float: Result = Context.FloatTy; break;
725  case DeclSpec::TST_double:
726    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
727      Result = Context.LongDoubleTy;
728    else
729      Result = Context.DoubleTy;
730
731    if (S.getLangOptions().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
732      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
733      declarator.setInvalidType(true);
734    }
735    break;
736  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
737  case DeclSpec::TST_decimal32:    // _Decimal32
738  case DeclSpec::TST_decimal64:    // _Decimal64
739  case DeclSpec::TST_decimal128:   // _Decimal128
740    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
741    Result = Context.IntTy;
742    declarator.setInvalidType(true);
743    break;
744  case DeclSpec::TST_class:
745  case DeclSpec::TST_enum:
746  case DeclSpec::TST_union:
747  case DeclSpec::TST_struct: {
748    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
749    if (!D) {
750      // This can happen in C++ with ambiguous lookups.
751      Result = Context.IntTy;
752      declarator.setInvalidType(true);
753      break;
754    }
755
756    // If the type is deprecated or unavailable, diagnose it.
757    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
758
759    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
760           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
761
762    // TypeQuals handled by caller.
763    Result = Context.getTypeDeclType(D);
764
765    // In both C and C++, make an ElaboratedType.
766    ElaboratedTypeKeyword Keyword
767      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
768    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
769
770    if (D->isInvalidDecl())
771      declarator.setInvalidType(true);
772    break;
773  }
774  case DeclSpec::TST_typename: {
775    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
776           DS.getTypeSpecSign() == 0 &&
777           "Can't handle qualifiers on typedef names yet!");
778    Result = S.GetTypeFromParser(DS.getRepAsType());
779    if (Result.isNull())
780      declarator.setInvalidType(true);
781    else if (DeclSpec::ProtocolQualifierListTy PQ
782               = DS.getProtocolQualifiers()) {
783      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
784        // Silently drop any existing protocol qualifiers.
785        // TODO: determine whether that's the right thing to do.
786        if (ObjT->getNumProtocols())
787          Result = ObjT->getBaseType();
788
789        if (DS.getNumProtocolQualifiers())
790          Result = Context.getObjCObjectType(Result,
791                                             (ObjCProtocolDecl**) PQ,
792                                             DS.getNumProtocolQualifiers());
793      } else if (Result->isObjCIdType()) {
794        // id<protocol-list>
795        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
796                                           (ObjCProtocolDecl**) PQ,
797                                           DS.getNumProtocolQualifiers());
798        Result = Context.getObjCObjectPointerType(Result);
799      } else if (Result->isObjCClassType()) {
800        // Class<protocol-list>
801        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
802                                           (ObjCProtocolDecl**) PQ,
803                                           DS.getNumProtocolQualifiers());
804        Result = Context.getObjCObjectPointerType(Result);
805      } else {
806        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
807          << DS.getSourceRange();
808        declarator.setInvalidType(true);
809      }
810    }
811
812    // TypeQuals handled by caller.
813    break;
814  }
815  case DeclSpec::TST_typeofType:
816    // FIXME: Preserve type source info.
817    Result = S.GetTypeFromParser(DS.getRepAsType());
818    assert(!Result.isNull() && "Didn't get a type for typeof?");
819    if (!Result->isDependentType())
820      if (const TagType *TT = Result->getAs<TagType>())
821        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
822    // TypeQuals handled by caller.
823    Result = Context.getTypeOfType(Result);
824    break;
825  case DeclSpec::TST_typeofExpr: {
826    Expr *E = DS.getRepAsExpr();
827    assert(E && "Didn't get an expression for typeof?");
828    // TypeQuals handled by caller.
829    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
830    if (Result.isNull()) {
831      Result = Context.IntTy;
832      declarator.setInvalidType(true);
833    }
834    break;
835  }
836  case DeclSpec::TST_decltype: {
837    Expr *E = DS.getRepAsExpr();
838    assert(E && "Didn't get an expression for decltype?");
839    // TypeQuals handled by caller.
840    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
841    if (Result.isNull()) {
842      Result = Context.IntTy;
843      declarator.setInvalidType(true);
844    }
845    break;
846  }
847  case DeclSpec::TST_underlyingType:
848    Result = S.GetTypeFromParser(DS.getRepAsType());
849    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
850    Result = S.BuildUnaryTransformType(Result,
851                                       UnaryTransformType::EnumUnderlyingType,
852                                       DS.getTypeSpecTypeLoc());
853    if (Result.isNull()) {
854      Result = Context.IntTy;
855      declarator.setInvalidType(true);
856    }
857    break;
858
859  case DeclSpec::TST_auto: {
860    // TypeQuals handled by caller.
861    Result = Context.getAutoType(QualType());
862    break;
863  }
864
865  case DeclSpec::TST_unknown_anytype:
866    Result = Context.UnknownAnyTy;
867    break;
868
869  case DeclSpec::TST_atomic:
870    Result = S.GetTypeFromParser(DS.getRepAsType());
871    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
872    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
873    if (Result.isNull()) {
874      Result = Context.IntTy;
875      declarator.setInvalidType(true);
876    }
877    break;
878
879  case DeclSpec::TST_error:
880    Result = Context.IntTy;
881    declarator.setInvalidType(true);
882    break;
883  }
884
885  // Handle complex types.
886  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
887    if (S.getLangOptions().Freestanding)
888      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
889    Result = Context.getComplexType(Result);
890  } else if (DS.isTypeAltiVecVector()) {
891    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
892    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
893    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
894    if (DS.isTypeAltiVecPixel())
895      VecKind = VectorType::AltiVecPixel;
896    else if (DS.isTypeAltiVecBool())
897      VecKind = VectorType::AltiVecBool;
898    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
899  }
900
901  // FIXME: Imaginary.
902  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
903    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
904
905  // Before we process any type attributes, synthesize a block literal
906  // function declarator if necessary.
907  if (declarator.getContext() == Declarator::BlockLiteralContext)
908    maybeSynthesizeBlockSignature(state, Result);
909
910  // Apply any type attributes from the decl spec.  This may cause the
911  // list of type attributes to be temporarily saved while the type
912  // attributes are pushed around.
913  if (AttributeList *attrs = DS.getAttributes().getList())
914    processTypeAttrs(state, Result, true, attrs);
915
916  // Apply const/volatile/restrict qualifiers to T.
917  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
918
919    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
920    // or incomplete types shall not be restrict-qualified."  C++ also allows
921    // restrict-qualified references.
922    if (TypeQuals & DeclSpec::TQ_restrict) {
923      if (Result->isAnyPointerType() || Result->isReferenceType()) {
924        QualType EltTy;
925        if (Result->isObjCObjectPointerType())
926          EltTy = Result;
927        else
928          EltTy = Result->isPointerType() ?
929                    Result->getAs<PointerType>()->getPointeeType() :
930                    Result->getAs<ReferenceType>()->getPointeeType();
931
932        // If we have a pointer or reference, the pointee must have an object
933        // incomplete type.
934        if (!EltTy->isIncompleteOrObjectType()) {
935          S.Diag(DS.getRestrictSpecLoc(),
936               diag::err_typecheck_invalid_restrict_invalid_pointee)
937            << EltTy << DS.getSourceRange();
938          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
939        }
940      } else {
941        S.Diag(DS.getRestrictSpecLoc(),
942               diag::err_typecheck_invalid_restrict_not_pointer)
943          << Result << DS.getSourceRange();
944        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
945      }
946    }
947
948    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
949    // of a function type includes any type qualifiers, the behavior is
950    // undefined."
951    if (Result->isFunctionType() && TypeQuals) {
952      // Get some location to point at, either the C or V location.
953      SourceLocation Loc;
954      if (TypeQuals & DeclSpec::TQ_const)
955        Loc = DS.getConstSpecLoc();
956      else if (TypeQuals & DeclSpec::TQ_volatile)
957        Loc = DS.getVolatileSpecLoc();
958      else {
959        assert((TypeQuals & DeclSpec::TQ_restrict) &&
960               "Has CVR quals but not C, V, or R?");
961        Loc = DS.getRestrictSpecLoc();
962      }
963      S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
964        << Result << DS.getSourceRange();
965    }
966
967    // C++ [dcl.ref]p1:
968    //   Cv-qualified references are ill-formed except when the
969    //   cv-qualifiers are introduced through the use of a typedef
970    //   (7.1.3) or of a template type argument (14.3), in which
971    //   case the cv-qualifiers are ignored.
972    // FIXME: Shouldn't we be checking SCS_typedef here?
973    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
974        TypeQuals && Result->isReferenceType()) {
975      TypeQuals &= ~DeclSpec::TQ_const;
976      TypeQuals &= ~DeclSpec::TQ_volatile;
977    }
978
979    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
980    Result = Context.getQualifiedType(Result, Quals);
981  }
982
983  return Result;
984}
985
986static std::string getPrintableNameForEntity(DeclarationName Entity) {
987  if (Entity)
988    return Entity.getAsString();
989
990  return "type name";
991}
992
993QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
994                                  Qualifiers Qs) {
995  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
996  // object or incomplete types shall not be restrict-qualified."
997  if (Qs.hasRestrict()) {
998    unsigned DiagID = 0;
999    QualType ProblemTy;
1000
1001    const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
1002    if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
1003      if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
1004        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1005        ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
1006      }
1007    } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1008      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1009        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1010        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1011      }
1012    } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
1013      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1014        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1015        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1016      }
1017    } else if (!Ty->isDependentType()) {
1018      // FIXME: this deserves a proper diagnostic
1019      DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1020      ProblemTy = T;
1021    }
1022
1023    if (DiagID) {
1024      Diag(Loc, DiagID) << ProblemTy;
1025      Qs.removeRestrict();
1026    }
1027  }
1028
1029  return Context.getQualifiedType(T, Qs);
1030}
1031
1032/// \brief Build a paren type including \p T.
1033QualType Sema::BuildParenType(QualType T) {
1034  return Context.getParenType(T);
1035}
1036
1037/// Given that we're building a pointer or reference to the given
1038static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1039                                           SourceLocation loc,
1040                                           bool isReference) {
1041  // Bail out if retention is unrequired or already specified.
1042  if (!type->isObjCLifetimeType() ||
1043      type.getObjCLifetime() != Qualifiers::OCL_None)
1044    return type;
1045
1046  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1047
1048  // If the object type is const-qualified, we can safely use
1049  // __unsafe_unretained.  This is safe (because there are no read
1050  // barriers), and it'll be safe to coerce anything but __weak* to
1051  // the resulting type.
1052  if (type.isConstQualified()) {
1053    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1054
1055  // Otherwise, check whether the static type does not require
1056  // retaining.  This currently only triggers for Class (possibly
1057  // protocol-qualifed, and arrays thereof).
1058  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1059    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1060
1061  // If we are in an unevaluated context, like sizeof, skip adding a
1062  // qualification.
1063  } else if (S.ExprEvalContexts.back().Context == Sema::Unevaluated) {
1064    return type;
1065
1066  // If that failed, give an error and recover using __strong.  __strong
1067  // is the option most likely to prevent spurious second-order diagnostics,
1068  // like when binding a reference to a field.
1069  } else {
1070    // These types can show up in private ivars in system headers, so
1071    // we need this to not be an error in those cases.  Instead we
1072    // want to delay.
1073    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1074      S.DelayedDiagnostics.add(
1075          sema::DelayedDiagnostic::makeForbiddenType(loc,
1076              diag::err_arc_indirect_no_ownership, type, isReference));
1077    } else {
1078      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1079    }
1080    implicitLifetime = Qualifiers::OCL_Strong;
1081  }
1082  assert(implicitLifetime && "didn't infer any lifetime!");
1083
1084  Qualifiers qs;
1085  qs.addObjCLifetime(implicitLifetime);
1086  return S.Context.getQualifiedType(type, qs);
1087}
1088
1089/// \brief Build a pointer type.
1090///
1091/// \param T The type to which we'll be building a pointer.
1092///
1093/// \param Loc The location of the entity whose type involves this
1094/// pointer type or, if there is no such entity, the location of the
1095/// type that will have pointer type.
1096///
1097/// \param Entity The name of the entity that involves the pointer
1098/// type, if known.
1099///
1100/// \returns A suitable pointer type, if there are no
1101/// errors. Otherwise, returns a NULL type.
1102QualType Sema::BuildPointerType(QualType T,
1103                                SourceLocation Loc, DeclarationName Entity) {
1104  if (T->isReferenceType()) {
1105    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1106    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1107      << getPrintableNameForEntity(Entity) << T;
1108    return QualType();
1109  }
1110
1111  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1112
1113  // In ARC, it is forbidden to build pointers to unqualified pointers.
1114  if (getLangOptions().ObjCAutoRefCount)
1115    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1116
1117  // Build the pointer type.
1118  return Context.getPointerType(T);
1119}
1120
1121/// \brief Build a reference type.
1122///
1123/// \param T The type to which we'll be building a reference.
1124///
1125/// \param Loc The location of the entity whose type involves this
1126/// reference type or, if there is no such entity, the location of the
1127/// type that will have reference type.
1128///
1129/// \param Entity The name of the entity that involves the reference
1130/// type, if known.
1131///
1132/// \returns A suitable reference type, if there are no
1133/// errors. Otherwise, returns a NULL type.
1134QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1135                                  SourceLocation Loc,
1136                                  DeclarationName Entity) {
1137  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1138         "Unresolved overloaded function type");
1139
1140  // C++0x [dcl.ref]p6:
1141  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1142  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1143  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1144  //   the type "lvalue reference to T", while an attempt to create the type
1145  //   "rvalue reference to cv TR" creates the type TR.
1146  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1147
1148  // C++ [dcl.ref]p4: There shall be no references to references.
1149  //
1150  // According to C++ DR 106, references to references are only
1151  // diagnosed when they are written directly (e.g., "int & &"),
1152  // but not when they happen via a typedef:
1153  //
1154  //   typedef int& intref;
1155  //   typedef intref& intref2;
1156  //
1157  // Parser::ParseDeclaratorInternal diagnoses the case where
1158  // references are written directly; here, we handle the
1159  // collapsing of references-to-references as described in C++0x.
1160  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1161
1162  // C++ [dcl.ref]p1:
1163  //   A declarator that specifies the type "reference to cv void"
1164  //   is ill-formed.
1165  if (T->isVoidType()) {
1166    Diag(Loc, diag::err_reference_to_void);
1167    return QualType();
1168  }
1169
1170  // In ARC, it is forbidden to build references to unqualified pointers.
1171  if (getLangOptions().ObjCAutoRefCount)
1172    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1173
1174  // Handle restrict on references.
1175  if (LValueRef)
1176    return Context.getLValueReferenceType(T, SpelledAsLValue);
1177  return Context.getRValueReferenceType(T);
1178}
1179
1180/// Check whether the specified array size makes the array type a VLA.  If so,
1181/// return true, if not, return the size of the array in SizeVal.
1182static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1183  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1184  // (like gnu99, but not c99) accept any evaluatable value as an extension.
1185  return S.VerifyIntegerConstantExpression(
1186      ArraySize, &SizeVal, S.PDiag(), S.LangOpts.GNUMode,
1187      S.PDiag(diag::ext_vla_folded_to_constant)).isInvalid();
1188}
1189
1190
1191/// \brief Build an array type.
1192///
1193/// \param T The type of each element in the array.
1194///
1195/// \param ASM C99 array size modifier (e.g., '*', 'static').
1196///
1197/// \param ArraySize Expression describing the size of the array.
1198///
1199/// \param Loc The location of the entity whose type involves this
1200/// array type or, if there is no such entity, the location of the
1201/// type that will have array type.
1202///
1203/// \param Entity The name of the entity that involves the array
1204/// type, if known.
1205///
1206/// \returns A suitable array type, if there are no errors. Otherwise,
1207/// returns a NULL type.
1208QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1209                              Expr *ArraySize, unsigned Quals,
1210                              SourceRange Brackets, DeclarationName Entity) {
1211
1212  SourceLocation Loc = Brackets.getBegin();
1213  if (getLangOptions().CPlusPlus) {
1214    // C++ [dcl.array]p1:
1215    //   T is called the array element type; this type shall not be a reference
1216    //   type, the (possibly cv-qualified) type void, a function type or an
1217    //   abstract class type.
1218    //
1219    // Note: function types are handled in the common path with C.
1220    if (T->isReferenceType()) {
1221      Diag(Loc, diag::err_illegal_decl_array_of_references)
1222      << getPrintableNameForEntity(Entity) << T;
1223      return QualType();
1224    }
1225
1226    if (T->isVoidType()) {
1227      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1228      return QualType();
1229    }
1230
1231    if (RequireNonAbstractType(Brackets.getBegin(), T,
1232                               diag::err_array_of_abstract_type))
1233      return QualType();
1234
1235  } else {
1236    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1237    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1238    if (RequireCompleteType(Loc, T,
1239                            diag::err_illegal_decl_array_incomplete_type))
1240      return QualType();
1241  }
1242
1243  if (T->isFunctionType()) {
1244    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1245      << getPrintableNameForEntity(Entity) << T;
1246    return QualType();
1247  }
1248
1249  if (T->getContainedAutoType()) {
1250    Diag(Loc, diag::err_illegal_decl_array_of_auto)
1251      << getPrintableNameForEntity(Entity) << T;
1252    return QualType();
1253  }
1254
1255  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1256    // If the element type is a struct or union that contains a variadic
1257    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1258    if (EltTy->getDecl()->hasFlexibleArrayMember())
1259      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1260  } else if (T->isObjCObjectType()) {
1261    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1262    return QualType();
1263  }
1264
1265  // Do placeholder conversions on the array size expression.
1266  if (ArraySize && ArraySize->hasPlaceholderType()) {
1267    ExprResult Result = CheckPlaceholderExpr(ArraySize);
1268    if (Result.isInvalid()) return QualType();
1269    ArraySize = Result.take();
1270  }
1271
1272  // Do lvalue-to-rvalue conversions on the array size expression.
1273  if (ArraySize && !ArraySize->isRValue()) {
1274    ExprResult Result = DefaultLvalueConversion(ArraySize);
1275    if (Result.isInvalid())
1276      return QualType();
1277
1278    ArraySize = Result.take();
1279  }
1280
1281  // C99 6.7.5.2p1: The size expression shall have integer type.
1282  // C++11 allows contextual conversions to such types.
1283  if (!getLangOptions().CPlusPlus0x &&
1284      ArraySize && !ArraySize->isTypeDependent() &&
1285      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1286    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1287      << ArraySize->getType() << ArraySize->getSourceRange();
1288    return QualType();
1289  }
1290
1291  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1292  if (!ArraySize) {
1293    if (ASM == ArrayType::Star)
1294      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1295    else
1296      T = Context.getIncompleteArrayType(T, ASM, Quals);
1297  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1298    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1299  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
1300              !T->isConstantSizeType()) ||
1301             isArraySizeVLA(*this, ArraySize, ConstVal)) {
1302    // Even in C++11, don't allow contextual conversions in the array bound
1303    // of a VLA.
1304    if (getLangOptions().CPlusPlus0x &&
1305        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1306      Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1307        << ArraySize->getType() << ArraySize->getSourceRange();
1308      return QualType();
1309    }
1310
1311    // C99: an array with an element type that has a non-constant-size is a VLA.
1312    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1313    // that we can fold to a non-zero positive value as an extension.
1314    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1315  } else {
1316    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1317    // have a value greater than zero.
1318    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1319      if (Entity)
1320        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1321          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1322      else
1323        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1324          << ArraySize->getSourceRange();
1325      return QualType();
1326    }
1327    if (ConstVal == 0) {
1328      // GCC accepts zero sized static arrays. We allow them when
1329      // we're not in a SFINAE context.
1330      Diag(ArraySize->getLocStart(),
1331           isSFINAEContext()? diag::err_typecheck_zero_array_size
1332                            : diag::ext_typecheck_zero_array_size)
1333        << ArraySize->getSourceRange();
1334
1335      if (ASM == ArrayType::Static) {
1336        Diag(ArraySize->getLocStart(),
1337             diag::warn_typecheck_zero_static_array_size)
1338          << ArraySize->getSourceRange();
1339        ASM = ArrayType::Normal;
1340      }
1341    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1342               !T->isIncompleteType()) {
1343      // Is the array too large?
1344      unsigned ActiveSizeBits
1345        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1346      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1347        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1348          << ConstVal.toString(10)
1349          << ArraySize->getSourceRange();
1350    }
1351
1352    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1353  }
1354  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1355  if (!getLangOptions().C99) {
1356    if (T->isVariableArrayType()) {
1357      // Prohibit the use of non-POD types in VLAs.
1358      QualType BaseT = Context.getBaseElementType(T);
1359      if (!T->isDependentType() &&
1360          !BaseT.isPODType(Context) &&
1361          !BaseT->isObjCLifetimeType()) {
1362        Diag(Loc, diag::err_vla_non_pod)
1363          << BaseT;
1364        return QualType();
1365      }
1366      // Prohibit the use of VLAs during template argument deduction.
1367      else if (isSFINAEContext()) {
1368        Diag(Loc, diag::err_vla_in_sfinae);
1369        return QualType();
1370      }
1371      // Just extwarn about VLAs.
1372      else
1373        Diag(Loc, diag::ext_vla);
1374    } else if (ASM != ArrayType::Normal || Quals != 0)
1375      Diag(Loc,
1376           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
1377                                     : diag::ext_c99_array_usage) << ASM;
1378  }
1379
1380  return T;
1381}
1382
1383/// \brief Build an ext-vector type.
1384///
1385/// Run the required checks for the extended vector type.
1386QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1387                                  SourceLocation AttrLoc) {
1388  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1389  // in conjunction with complex types (pointers, arrays, functions, etc.).
1390  if (!T->isDependentType() &&
1391      !T->isIntegerType() && !T->isRealFloatingType()) {
1392    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1393    return QualType();
1394  }
1395
1396  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1397    llvm::APSInt vecSize(32);
1398    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1399      Diag(AttrLoc, diag::err_attribute_argument_not_int)
1400        << "ext_vector_type" << ArraySize->getSourceRange();
1401      return QualType();
1402    }
1403
1404    // unlike gcc's vector_size attribute, the size is specified as the
1405    // number of elements, not the number of bytes.
1406    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1407
1408    if (vectorSize == 0) {
1409      Diag(AttrLoc, diag::err_attribute_zero_size)
1410      << ArraySize->getSourceRange();
1411      return QualType();
1412    }
1413
1414    return Context.getExtVectorType(T, vectorSize);
1415  }
1416
1417  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1418}
1419
1420/// \brief Build a function type.
1421///
1422/// This routine checks the function type according to C++ rules and
1423/// under the assumption that the result type and parameter types have
1424/// just been instantiated from a template. It therefore duplicates
1425/// some of the behavior of GetTypeForDeclarator, but in a much
1426/// simpler form that is only suitable for this narrow use case.
1427///
1428/// \param T The return type of the function.
1429///
1430/// \param ParamTypes The parameter types of the function. This array
1431/// will be modified to account for adjustments to the types of the
1432/// function parameters.
1433///
1434/// \param NumParamTypes The number of parameter types in ParamTypes.
1435///
1436/// \param Variadic Whether this is a variadic function type.
1437///
1438/// \param HasTrailingReturn Whether this function has a trailing return type.
1439///
1440/// \param Quals The cvr-qualifiers to be applied to the function type.
1441///
1442/// \param Loc The location of the entity whose type involves this
1443/// function type or, if there is no such entity, the location of the
1444/// type that will have function type.
1445///
1446/// \param Entity The name of the entity that involves the function
1447/// type, if known.
1448///
1449/// \returns A suitable function type, if there are no
1450/// errors. Otherwise, returns a NULL type.
1451QualType Sema::BuildFunctionType(QualType T,
1452                                 QualType *ParamTypes,
1453                                 unsigned NumParamTypes,
1454                                 bool Variadic, bool HasTrailingReturn,
1455                                 unsigned Quals,
1456                                 RefQualifierKind RefQualifier,
1457                                 SourceLocation Loc, DeclarationName Entity,
1458                                 FunctionType::ExtInfo Info) {
1459  if (T->isArrayType() || T->isFunctionType()) {
1460    Diag(Loc, diag::err_func_returning_array_function)
1461      << T->isFunctionType() << T;
1462    return QualType();
1463  }
1464
1465  // Functions cannot return half FP.
1466  if (T->isHalfType()) {
1467    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1468      FixItHint::CreateInsertion(Loc, "*");
1469    return QualType();
1470  }
1471
1472  bool Invalid = false;
1473  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
1474    // FIXME: Loc is too inprecise here, should use proper locations for args.
1475    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1476    if (ParamType->isVoidType()) {
1477      Diag(Loc, diag::err_param_with_void_type);
1478      Invalid = true;
1479    } else if (ParamType->isHalfType()) {
1480      // Disallow half FP arguments.
1481      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1482        FixItHint::CreateInsertion(Loc, "*");
1483      Invalid = true;
1484    }
1485
1486    ParamTypes[Idx] = ParamType;
1487  }
1488
1489  if (Invalid)
1490    return QualType();
1491
1492  FunctionProtoType::ExtProtoInfo EPI;
1493  EPI.Variadic = Variadic;
1494  EPI.HasTrailingReturn = HasTrailingReturn;
1495  EPI.TypeQuals = Quals;
1496  EPI.RefQualifier = RefQualifier;
1497  EPI.ExtInfo = Info;
1498
1499  return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
1500}
1501
1502/// \brief Build a member pointer type \c T Class::*.
1503///
1504/// \param T the type to which the member pointer refers.
1505/// \param Class the class type into which the member pointer points.
1506/// \param Loc the location where this type begins
1507/// \param Entity the name of the entity that will have this member pointer type
1508///
1509/// \returns a member pointer type, if successful, or a NULL type if there was
1510/// an error.
1511QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1512                                      SourceLocation Loc,
1513                                      DeclarationName Entity) {
1514  // Verify that we're not building a pointer to pointer to function with
1515  // exception specification.
1516  if (CheckDistantExceptionSpec(T)) {
1517    Diag(Loc, diag::err_distant_exception_spec);
1518
1519    // FIXME: If we're doing this as part of template instantiation,
1520    // we should return immediately.
1521
1522    // Build the type anyway, but use the canonical type so that the
1523    // exception specifiers are stripped off.
1524    T = Context.getCanonicalType(T);
1525  }
1526
1527  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1528  //   with reference type, or "cv void."
1529  if (T->isReferenceType()) {
1530    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1531      << (Entity? Entity.getAsString() : "type name") << T;
1532    return QualType();
1533  }
1534
1535  if (T->isVoidType()) {
1536    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1537      << (Entity? Entity.getAsString() : "type name");
1538    return QualType();
1539  }
1540
1541  if (!Class->isDependentType() && !Class->isRecordType()) {
1542    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1543    return QualType();
1544  }
1545
1546  // In the Microsoft ABI, the class is allowed to be an incomplete
1547  // type. In such cases, the compiler makes a worst-case assumption.
1548  // We make no such assumption right now, so emit an error if the
1549  // class isn't a complete type.
1550  if (Context.getTargetInfo().getCXXABI() == CXXABI_Microsoft &&
1551      RequireCompleteType(Loc, Class, diag::err_incomplete_type))
1552    return QualType();
1553
1554  return Context.getMemberPointerType(T, Class.getTypePtr());
1555}
1556
1557/// \brief Build a block pointer type.
1558///
1559/// \param T The type to which we'll be building a block pointer.
1560///
1561/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
1562///
1563/// \param Loc The location of the entity whose type involves this
1564/// block pointer type or, if there is no such entity, the location of the
1565/// type that will have block pointer type.
1566///
1567/// \param Entity The name of the entity that involves the block pointer
1568/// type, if known.
1569///
1570/// \returns A suitable block pointer type, if there are no
1571/// errors. Otherwise, returns a NULL type.
1572QualType Sema::BuildBlockPointerType(QualType T,
1573                                     SourceLocation Loc,
1574                                     DeclarationName Entity) {
1575  if (!T->isFunctionType()) {
1576    Diag(Loc, diag::err_nonfunction_block_type);
1577    return QualType();
1578  }
1579
1580  return Context.getBlockPointerType(T);
1581}
1582
1583QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1584  QualType QT = Ty.get();
1585  if (QT.isNull()) {
1586    if (TInfo) *TInfo = 0;
1587    return QualType();
1588  }
1589
1590  TypeSourceInfo *DI = 0;
1591  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1592    QT = LIT->getType();
1593    DI = LIT->getTypeSourceInfo();
1594  }
1595
1596  if (TInfo) *TInfo = DI;
1597  return QT;
1598}
1599
1600static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1601                                            Qualifiers::ObjCLifetime ownership,
1602                                            unsigned chunkIndex);
1603
1604/// Given that this is the declaration of a parameter under ARC,
1605/// attempt to infer attributes and such for pointer-to-whatever
1606/// types.
1607static void inferARCWriteback(TypeProcessingState &state,
1608                              QualType &declSpecType) {
1609  Sema &S = state.getSema();
1610  Declarator &declarator = state.getDeclarator();
1611
1612  // TODO: should we care about decl qualifiers?
1613
1614  // Check whether the declarator has the expected form.  We walk
1615  // from the inside out in order to make the block logic work.
1616  unsigned outermostPointerIndex = 0;
1617  bool isBlockPointer = false;
1618  unsigned numPointers = 0;
1619  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1620    unsigned chunkIndex = i;
1621    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1622    switch (chunk.Kind) {
1623    case DeclaratorChunk::Paren:
1624      // Ignore parens.
1625      break;
1626
1627    case DeclaratorChunk::Reference:
1628    case DeclaratorChunk::Pointer:
1629      // Count the number of pointers.  Treat references
1630      // interchangeably as pointers; if they're mis-ordered, normal
1631      // type building will discover that.
1632      outermostPointerIndex = chunkIndex;
1633      numPointers++;
1634      break;
1635
1636    case DeclaratorChunk::BlockPointer:
1637      // If we have a pointer to block pointer, that's an acceptable
1638      // indirect reference; anything else is not an application of
1639      // the rules.
1640      if (numPointers != 1) return;
1641      numPointers++;
1642      outermostPointerIndex = chunkIndex;
1643      isBlockPointer = true;
1644
1645      // We don't care about pointer structure in return values here.
1646      goto done;
1647
1648    case DeclaratorChunk::Array: // suppress if written (id[])?
1649    case DeclaratorChunk::Function:
1650    case DeclaratorChunk::MemberPointer:
1651      return;
1652    }
1653  }
1654 done:
1655
1656  // If we have *one* pointer, then we want to throw the qualifier on
1657  // the declaration-specifiers, which means that it needs to be a
1658  // retainable object type.
1659  if (numPointers == 1) {
1660    // If it's not a retainable object type, the rule doesn't apply.
1661    if (!declSpecType->isObjCRetainableType()) return;
1662
1663    // If it already has lifetime, don't do anything.
1664    if (declSpecType.getObjCLifetime()) return;
1665
1666    // Otherwise, modify the type in-place.
1667    Qualifiers qs;
1668
1669    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1670      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1671    else
1672      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1673    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1674
1675  // If we have *two* pointers, then we want to throw the qualifier on
1676  // the outermost pointer.
1677  } else if (numPointers == 2) {
1678    // If we don't have a block pointer, we need to check whether the
1679    // declaration-specifiers gave us something that will turn into a
1680    // retainable object pointer after we slap the first pointer on it.
1681    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1682      return;
1683
1684    // Look for an explicit lifetime attribute there.
1685    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1686    if (chunk.Kind != DeclaratorChunk::Pointer &&
1687        chunk.Kind != DeclaratorChunk::BlockPointer)
1688      return;
1689    for (const AttributeList *attr = chunk.getAttrs(); attr;
1690           attr = attr->getNext())
1691      if (attr->getKind() == AttributeList::AT_objc_ownership)
1692        return;
1693
1694    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1695                                          outermostPointerIndex);
1696
1697  // Any other number of pointers/references does not trigger the rule.
1698  } else return;
1699
1700  // TODO: mark whether we did this inference?
1701}
1702
1703static void DiagnoseIgnoredQualifiers(unsigned Quals,
1704                                      SourceLocation ConstQualLoc,
1705                                      SourceLocation VolatileQualLoc,
1706                                      SourceLocation RestrictQualLoc,
1707                                      Sema& S) {
1708  std::string QualStr;
1709  unsigned NumQuals = 0;
1710  SourceLocation Loc;
1711
1712  FixItHint ConstFixIt;
1713  FixItHint VolatileFixIt;
1714  FixItHint RestrictFixIt;
1715
1716  const SourceManager &SM = S.getSourceManager();
1717
1718  // FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
1719  // find a range and grow it to encompass all the qualifiers, regardless of
1720  // the order in which they textually appear.
1721  if (Quals & Qualifiers::Const) {
1722    ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
1723    QualStr = "const";
1724    ++NumQuals;
1725    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(ConstQualLoc, Loc))
1726      Loc = ConstQualLoc;
1727  }
1728  if (Quals & Qualifiers::Volatile) {
1729    VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
1730    QualStr += (NumQuals == 0 ? "volatile" : " volatile");
1731    ++NumQuals;
1732    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(VolatileQualLoc, Loc))
1733      Loc = VolatileQualLoc;
1734  }
1735  if (Quals & Qualifiers::Restrict) {
1736    RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
1737    QualStr += (NumQuals == 0 ? "restrict" : " restrict");
1738    ++NumQuals;
1739    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(RestrictQualLoc, Loc))
1740      Loc = RestrictQualLoc;
1741  }
1742
1743  assert(NumQuals > 0 && "No known qualifiers?");
1744
1745  S.Diag(Loc, diag::warn_qual_return_type)
1746    << QualStr << NumQuals << ConstFixIt << VolatileFixIt << RestrictFixIt;
1747}
1748
1749static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
1750                                             TypeSourceInfo *&ReturnTypeInfo) {
1751  Sema &SemaRef = state.getSema();
1752  Declarator &D = state.getDeclarator();
1753  QualType T;
1754  ReturnTypeInfo = 0;
1755
1756  // The TagDecl owned by the DeclSpec.
1757  TagDecl *OwnedTagDecl = 0;
1758
1759  switch (D.getName().getKind()) {
1760  case UnqualifiedId::IK_ImplicitSelfParam:
1761  case UnqualifiedId::IK_OperatorFunctionId:
1762  case UnqualifiedId::IK_Identifier:
1763  case UnqualifiedId::IK_LiteralOperatorId:
1764  case UnqualifiedId::IK_TemplateId:
1765    T = ConvertDeclSpecToType(state);
1766
1767    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
1768      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
1769      // Owned declaration is embedded in declarator.
1770      OwnedTagDecl->setEmbeddedInDeclarator(true);
1771    }
1772    break;
1773
1774  case UnqualifiedId::IK_ConstructorName:
1775  case UnqualifiedId::IK_ConstructorTemplateId:
1776  case UnqualifiedId::IK_DestructorName:
1777    // Constructors and destructors don't have return types. Use
1778    // "void" instead.
1779    T = SemaRef.Context.VoidTy;
1780    break;
1781
1782  case UnqualifiedId::IK_ConversionFunctionId:
1783    // The result type of a conversion function is the type that it
1784    // converts to.
1785    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
1786                                  &ReturnTypeInfo);
1787    break;
1788  }
1789
1790  if (D.getAttributes())
1791    distributeTypeAttrsFromDeclarator(state, T);
1792
1793  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
1794  // In C++11, a function declarator using 'auto' must have a trailing return
1795  // type (this is checked later) and we can skip this. In other languages
1796  // using auto, we need to check regardless.
1797  if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
1798      (!SemaRef.getLangOptions().CPlusPlus0x || !D.isFunctionDeclarator())) {
1799    int Error = -1;
1800
1801    switch (D.getContext()) {
1802    case Declarator::KNRTypeListContext:
1803      llvm_unreachable("K&R type lists aren't allowed in C++");
1804    case Declarator::LambdaExprContext:
1805      llvm_unreachable("Can't specify a type specifier in lambda grammar");
1806    case Declarator::ObjCParameterContext:
1807    case Declarator::ObjCResultContext:
1808    case Declarator::PrototypeContext:
1809      Error = 0; // Function prototype
1810      break;
1811    case Declarator::MemberContext:
1812      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
1813        break;
1814      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
1815      case TTK_Enum: llvm_unreachable("unhandled tag kind");
1816      case TTK_Struct: Error = 1; /* Struct member */ break;
1817      case TTK_Union:  Error = 2; /* Union member */ break;
1818      case TTK_Class:  Error = 3; /* Class member */ break;
1819      }
1820      break;
1821    case Declarator::CXXCatchContext:
1822    case Declarator::ObjCCatchContext:
1823      Error = 4; // Exception declaration
1824      break;
1825    case Declarator::TemplateParamContext:
1826      Error = 5; // Template parameter
1827      break;
1828    case Declarator::BlockLiteralContext:
1829      Error = 6; // Block literal
1830      break;
1831    case Declarator::TemplateTypeArgContext:
1832      Error = 7; // Template type argument
1833      break;
1834    case Declarator::AliasDeclContext:
1835    case Declarator::AliasTemplateContext:
1836      Error = 9; // Type alias
1837      break;
1838    case Declarator::TypeNameContext:
1839      Error = 11; // Generic
1840      break;
1841    case Declarator::FileContext:
1842    case Declarator::BlockContext:
1843    case Declarator::ForContext:
1844    case Declarator::ConditionContext:
1845    case Declarator::CXXNewContext:
1846      break;
1847    }
1848
1849    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1850      Error = 8;
1851
1852    // In Objective-C it is an error to use 'auto' on a function declarator.
1853    if (D.isFunctionDeclarator())
1854      Error = 10;
1855
1856    // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
1857    // contains a trailing return type. That is only legal at the outermost
1858    // level. Check all declarator chunks (outermost first) anyway, to give
1859    // better diagnostics.
1860    if (SemaRef.getLangOptions().CPlusPlus0x && Error != -1) {
1861      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1862        unsigned chunkIndex = e - i - 1;
1863        state.setCurrentChunkIndex(chunkIndex);
1864        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1865        if (DeclType.Kind == DeclaratorChunk::Function) {
1866          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1867          if (FTI.TrailingReturnType) {
1868            Error = -1;
1869            break;
1870          }
1871        }
1872      }
1873    }
1874
1875    if (Error != -1) {
1876      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1877                   diag::err_auto_not_allowed)
1878        << Error;
1879      T = SemaRef.Context.IntTy;
1880      D.setInvalidType(true);
1881    } else
1882      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1883                   diag::warn_cxx98_compat_auto_type_specifier);
1884  }
1885
1886  if (SemaRef.getLangOptions().CPlusPlus &&
1887      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
1888    // Check the contexts where C++ forbids the declaration of a new class
1889    // or enumeration in a type-specifier-seq.
1890    switch (D.getContext()) {
1891    case Declarator::FileContext:
1892    case Declarator::MemberContext:
1893    case Declarator::BlockContext:
1894    case Declarator::ForContext:
1895    case Declarator::BlockLiteralContext:
1896    case Declarator::LambdaExprContext:
1897      // C++11 [dcl.type]p3:
1898      //   A type-specifier-seq shall not define a class or enumeration unless
1899      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
1900      //   the declaration of a template-declaration.
1901    case Declarator::AliasDeclContext:
1902      break;
1903    case Declarator::AliasTemplateContext:
1904      SemaRef.Diag(OwnedTagDecl->getLocation(),
1905             diag::err_type_defined_in_alias_template)
1906        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1907      break;
1908    case Declarator::TypeNameContext:
1909    case Declarator::TemplateParamContext:
1910    case Declarator::CXXNewContext:
1911    case Declarator::CXXCatchContext:
1912    case Declarator::ObjCCatchContext:
1913    case Declarator::TemplateTypeArgContext:
1914      SemaRef.Diag(OwnedTagDecl->getLocation(),
1915             diag::err_type_defined_in_type_specifier)
1916        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1917      break;
1918    case Declarator::PrototypeContext:
1919    case Declarator::ObjCParameterContext:
1920    case Declarator::ObjCResultContext:
1921    case Declarator::KNRTypeListContext:
1922      // C++ [dcl.fct]p6:
1923      //   Types shall not be defined in return or parameter types.
1924      SemaRef.Diag(OwnedTagDecl->getLocation(),
1925                   diag::err_type_defined_in_param_type)
1926        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1927      break;
1928    case Declarator::ConditionContext:
1929      // C++ 6.4p2:
1930      // The type-specifier-seq shall not contain typedef and shall not declare
1931      // a new class or enumeration.
1932      SemaRef.Diag(OwnedTagDecl->getLocation(),
1933                   diag::err_type_defined_in_condition);
1934      break;
1935    }
1936  }
1937
1938  return T;
1939}
1940
1941std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy) {
1942  std::string Quals =
1943    Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
1944
1945  switch (FnTy->getRefQualifier()) {
1946  case RQ_None:
1947    break;
1948
1949  case RQ_LValue:
1950    if (!Quals.empty())
1951      Quals += ' ';
1952    Quals += '&';
1953    break;
1954
1955  case RQ_RValue:
1956    if (!Quals.empty())
1957      Quals += ' ';
1958    Quals += "&&";
1959    break;
1960  }
1961
1962  return Quals;
1963}
1964
1965/// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
1966/// can be contained within the declarator chunk DeclType, and produce an
1967/// appropriate diagnostic if not.
1968static void checkQualifiedFunction(Sema &S, QualType T,
1969                                   DeclaratorChunk &DeclType) {
1970  // C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
1971  // cv-qualifier or a ref-qualifier can only appear at the topmost level
1972  // of a type.
1973  int DiagKind = -1;
1974  switch (DeclType.Kind) {
1975  case DeclaratorChunk::Paren:
1976  case DeclaratorChunk::MemberPointer:
1977    // These cases are permitted.
1978    return;
1979  case DeclaratorChunk::Array:
1980  case DeclaratorChunk::Function:
1981    // These cases don't allow function types at all; no need to diagnose the
1982    // qualifiers separately.
1983    return;
1984  case DeclaratorChunk::BlockPointer:
1985    DiagKind = 0;
1986    break;
1987  case DeclaratorChunk::Pointer:
1988    DiagKind = 1;
1989    break;
1990  case DeclaratorChunk::Reference:
1991    DiagKind = 2;
1992    break;
1993  }
1994
1995  assert(DiagKind != -1);
1996  S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
1997    << DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
1998    << getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
1999}
2000
2001static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
2002                                                QualType declSpecType,
2003                                                TypeSourceInfo *TInfo) {
2004
2005  QualType T = declSpecType;
2006  Declarator &D = state.getDeclarator();
2007  Sema &S = state.getSema();
2008  ASTContext &Context = S.Context;
2009  const LangOptions &LangOpts = S.getLangOptions();
2010
2011  bool ImplicitlyNoexcept = false;
2012  if (D.getName().getKind() == UnqualifiedId::IK_OperatorFunctionId &&
2013      LangOpts.CPlusPlus0x) {
2014    OverloadedOperatorKind OO = D.getName().OperatorFunctionId.Operator;
2015    /// In C++0x, deallocation functions (normal and array operator delete)
2016    /// are implicitly noexcept.
2017    if (OO == OO_Delete || OO == OO_Array_Delete)
2018      ImplicitlyNoexcept = true;
2019  }
2020
2021  // The name we're declaring, if any.
2022  DeclarationName Name;
2023  if (D.getIdentifier())
2024    Name = D.getIdentifier();
2025
2026  // Does this declaration declare a typedef-name?
2027  bool IsTypedefName =
2028    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2029    D.getContext() == Declarator::AliasDeclContext ||
2030    D.getContext() == Declarator::AliasTemplateContext;
2031
2032  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2033  bool IsQualifiedFunction = T->isFunctionProtoType() &&
2034      (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
2035       T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
2036
2037  // Walk the DeclTypeInfo, building the recursive type as we go.
2038  // DeclTypeInfos are ordered from the identifier out, which is
2039  // opposite of what we want :).
2040  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2041    unsigned chunkIndex = e - i - 1;
2042    state.setCurrentChunkIndex(chunkIndex);
2043    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2044    if (IsQualifiedFunction) {
2045      checkQualifiedFunction(S, T, DeclType);
2046      IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
2047    }
2048    switch (DeclType.Kind) {
2049    case DeclaratorChunk::Paren:
2050      T = S.BuildParenType(T);
2051      break;
2052    case DeclaratorChunk::BlockPointer:
2053      // If blocks are disabled, emit an error.
2054      if (!LangOpts.Blocks)
2055        S.Diag(DeclType.Loc, diag::err_blocks_disable);
2056
2057      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
2058      if (DeclType.Cls.TypeQuals)
2059        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
2060      break;
2061    case DeclaratorChunk::Pointer:
2062      // Verify that we're not building a pointer to pointer to function with
2063      // exception specification.
2064      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2065        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2066        D.setInvalidType(true);
2067        // Build the type anyway.
2068      }
2069      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
2070        T = Context.getObjCObjectPointerType(T);
2071        if (DeclType.Ptr.TypeQuals)
2072          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2073        break;
2074      }
2075      T = S.BuildPointerType(T, DeclType.Loc, Name);
2076      if (DeclType.Ptr.TypeQuals)
2077        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2078
2079      break;
2080    case DeclaratorChunk::Reference: {
2081      // Verify that we're not building a reference to pointer to function with
2082      // exception specification.
2083      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2084        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2085        D.setInvalidType(true);
2086        // Build the type anyway.
2087      }
2088      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2089
2090      Qualifiers Quals;
2091      if (DeclType.Ref.HasRestrict)
2092        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2093      break;
2094    }
2095    case DeclaratorChunk::Array: {
2096      // Verify that we're not building an array of pointers to function with
2097      // exception specification.
2098      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2099        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2100        D.setInvalidType(true);
2101        // Build the type anyway.
2102      }
2103      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2104      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2105      ArrayType::ArraySizeModifier ASM;
2106      if (ATI.isStar)
2107        ASM = ArrayType::Star;
2108      else if (ATI.hasStatic)
2109        ASM = ArrayType::Static;
2110      else
2111        ASM = ArrayType::Normal;
2112      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2113        // FIXME: This check isn't quite right: it allows star in prototypes
2114        // for function definitions, and disallows some edge cases detailed
2115        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2116        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2117        ASM = ArrayType::Normal;
2118        D.setInvalidType(true);
2119      }
2120      T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2121                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2122      break;
2123    }
2124    case DeclaratorChunk::Function: {
2125      // If the function declarator has a prototype (i.e. it is not () and
2126      // does not have a K&R-style identifier list), then the arguments are part
2127      // of the type, otherwise the argument list is ().
2128      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2129      IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
2130
2131      // Check for auto functions and trailing return type and adjust the
2132      // return type accordingly.
2133      if (!D.isInvalidType()) {
2134        // trailing-return-type is only required if we're declaring a function,
2135        // and not, for instance, a pointer to a function.
2136        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2137            !FTI.TrailingReturnType && chunkIndex == 0) {
2138          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2139               diag::err_auto_missing_trailing_return);
2140          T = Context.IntTy;
2141          D.setInvalidType(true);
2142        } else if (FTI.TrailingReturnType) {
2143          // T must be exactly 'auto' at this point. See CWG issue 681.
2144          if (isa<ParenType>(T)) {
2145            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2146                 diag::err_trailing_return_in_parens)
2147              << T << D.getDeclSpec().getSourceRange();
2148            D.setInvalidType(true);
2149          } else if (D.getContext() != Declarator::LambdaExprContext &&
2150                     (T.hasQualifiers() || !isa<AutoType>(T))) {
2151            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2152                 diag::err_trailing_return_without_auto)
2153              << T << D.getDeclSpec().getSourceRange();
2154            D.setInvalidType(true);
2155          }
2156
2157          T = S.GetTypeFromParser(
2158            ParsedType::getFromOpaquePtr(FTI.TrailingReturnType),
2159            &TInfo);
2160        }
2161      }
2162
2163      // C99 6.7.5.3p1: The return type may not be a function or array type.
2164      // For conversion functions, we'll diagnose this particular error later.
2165      if ((T->isArrayType() || T->isFunctionType()) &&
2166          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2167        unsigned diagID = diag::err_func_returning_array_function;
2168        // Last processing chunk in block context means this function chunk
2169        // represents the block.
2170        if (chunkIndex == 0 &&
2171            D.getContext() == Declarator::BlockLiteralContext)
2172          diagID = diag::err_block_returning_array_function;
2173        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2174        T = Context.IntTy;
2175        D.setInvalidType(true);
2176      }
2177
2178      // Do not allow returning half FP value.
2179      // FIXME: This really should be in BuildFunctionType.
2180      if (T->isHalfType()) {
2181        S.Diag(D.getIdentifierLoc(),
2182             diag::err_parameters_retval_cannot_have_fp16_type) << 1
2183          << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
2184        D.setInvalidType(true);
2185      }
2186
2187      // cv-qualifiers on return types are pointless except when the type is a
2188      // class type in C++.
2189      if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
2190          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
2191          (!LangOpts.CPlusPlus || !T->isDependentType())) {
2192        assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
2193        DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2194        assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
2195
2196        DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
2197
2198        DiagnoseIgnoredQualifiers(PTI.TypeQuals,
2199            SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2200            SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2201            SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2202            S);
2203
2204      } else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
2205          (!LangOpts.CPlusPlus ||
2206           (!T->isDependentType() && !T->isRecordType()))) {
2207
2208        DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
2209                                  D.getDeclSpec().getConstSpecLoc(),
2210                                  D.getDeclSpec().getVolatileSpecLoc(),
2211                                  D.getDeclSpec().getRestrictSpecLoc(),
2212                                  S);
2213      }
2214
2215      if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2216        // C++ [dcl.fct]p6:
2217        //   Types shall not be defined in return or parameter types.
2218        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2219        if (Tag->isCompleteDefinition())
2220          S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2221            << Context.getTypeDeclType(Tag);
2222      }
2223
2224      // Exception specs are not allowed in typedefs. Complain, but add it
2225      // anyway.
2226      if (IsTypedefName && FTI.getExceptionSpecType())
2227        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2228          << (D.getContext() == Declarator::AliasDeclContext ||
2229              D.getContext() == Declarator::AliasTemplateContext);
2230
2231      if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2232        // Simple void foo(), where the incoming T is the result type.
2233        T = Context.getFunctionNoProtoType(T);
2234      } else {
2235        // We allow a zero-parameter variadic function in C if the
2236        // function is marked with the "overloadable" attribute. Scan
2237        // for this attribute now.
2238        if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2239          bool Overloadable = false;
2240          for (const AttributeList *Attrs = D.getAttributes();
2241               Attrs; Attrs = Attrs->getNext()) {
2242            if (Attrs->getKind() == AttributeList::AT_overloadable) {
2243              Overloadable = true;
2244              break;
2245            }
2246          }
2247
2248          if (!Overloadable)
2249            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2250        }
2251
2252        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2253          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2254          // definition.
2255          S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2256          D.setInvalidType(true);
2257          break;
2258        }
2259
2260        FunctionProtoType::ExtProtoInfo EPI;
2261        EPI.Variadic = FTI.isVariadic;
2262        EPI.HasTrailingReturn = FTI.TrailingReturnType;
2263        EPI.TypeQuals = FTI.TypeQuals;
2264        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2265                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2266                    : RQ_RValue;
2267
2268        // Otherwise, we have a function with an argument list that is
2269        // potentially variadic.
2270        SmallVector<QualType, 16> ArgTys;
2271        ArgTys.reserve(FTI.NumArgs);
2272
2273        SmallVector<bool, 16> ConsumedArguments;
2274        ConsumedArguments.reserve(FTI.NumArgs);
2275        bool HasAnyConsumedArguments = false;
2276
2277        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2278          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2279          QualType ArgTy = Param->getType();
2280          assert(!ArgTy.isNull() && "Couldn't parse type?");
2281
2282          // Adjust the parameter type.
2283          assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
2284                 "Unadjusted type?");
2285
2286          // Look for 'void'.  void is allowed only as a single argument to a
2287          // function with no other parameters (C99 6.7.5.3p10).  We record
2288          // int(void) as a FunctionProtoType with an empty argument list.
2289          if (ArgTy->isVoidType()) {
2290            // If this is something like 'float(int, void)', reject it.  'void'
2291            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2292            // have arguments of incomplete type.
2293            if (FTI.NumArgs != 1 || FTI.isVariadic) {
2294              S.Diag(DeclType.Loc, diag::err_void_only_param);
2295              ArgTy = Context.IntTy;
2296              Param->setType(ArgTy);
2297            } else if (FTI.ArgInfo[i].Ident) {
2298              // Reject, but continue to parse 'int(void abc)'.
2299              S.Diag(FTI.ArgInfo[i].IdentLoc,
2300                   diag::err_param_with_void_type);
2301              ArgTy = Context.IntTy;
2302              Param->setType(ArgTy);
2303            } else {
2304              // Reject, but continue to parse 'float(const void)'.
2305              if (ArgTy.hasQualifiers())
2306                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2307
2308              // Do not add 'void' to the ArgTys list.
2309              break;
2310            }
2311          } else if (ArgTy->isHalfType()) {
2312            // Disallow half FP arguments.
2313            // FIXME: This really should be in BuildFunctionType.
2314            S.Diag(Param->getLocation(),
2315               diag::err_parameters_retval_cannot_have_fp16_type) << 0
2316            << FixItHint::CreateInsertion(Param->getLocation(), "*");
2317            D.setInvalidType();
2318          } else if (!FTI.hasPrototype) {
2319            if (ArgTy->isPromotableIntegerType()) {
2320              ArgTy = Context.getPromotedIntegerType(ArgTy);
2321              Param->setKNRPromoted(true);
2322            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2323              if (BTy->getKind() == BuiltinType::Float) {
2324                ArgTy = Context.DoubleTy;
2325                Param->setKNRPromoted(true);
2326              }
2327            }
2328          }
2329
2330          if (LangOpts.ObjCAutoRefCount) {
2331            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2332            ConsumedArguments.push_back(Consumed);
2333            HasAnyConsumedArguments |= Consumed;
2334          }
2335
2336          ArgTys.push_back(ArgTy);
2337        }
2338
2339        if (HasAnyConsumedArguments)
2340          EPI.ConsumedArguments = ConsumedArguments.data();
2341
2342        SmallVector<QualType, 4> Exceptions;
2343        EPI.ExceptionSpecType = FTI.getExceptionSpecType();
2344        if (FTI.getExceptionSpecType() == EST_Dynamic) {
2345          Exceptions.reserve(FTI.NumExceptions);
2346          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
2347            // FIXME: Preserve type source info.
2348            QualType ET = S.GetTypeFromParser(FTI.Exceptions[ei].Ty);
2349            // Check that the type is valid for an exception spec, and
2350            // drop it if not.
2351            if (!S.CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
2352              Exceptions.push_back(ET);
2353          }
2354          EPI.NumExceptions = Exceptions.size();
2355          EPI.Exceptions = Exceptions.data();
2356        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2357          // If an error occurred, there's no expression here.
2358          if (Expr *NoexceptExpr = FTI.NoexceptExpr) {
2359            assert((NoexceptExpr->isTypeDependent() ||
2360                    NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
2361                        Context.BoolTy) &&
2362                 "Parser should have made sure that the expression is boolean");
2363            if (!NoexceptExpr->isValueDependent())
2364              NoexceptExpr = S.VerifyIntegerConstantExpression(NoexceptExpr, 0,
2365                S.PDiag(diag::err_noexcept_needs_constant_expression),
2366                /*AllowFold*/ false).take();
2367            EPI.NoexceptExpr = NoexceptExpr;
2368          }
2369        } else if (FTI.getExceptionSpecType() == EST_None &&
2370                   ImplicitlyNoexcept && chunkIndex == 0) {
2371          // Only the outermost chunk is marked noexcept, of course.
2372          EPI.ExceptionSpecType = EST_BasicNoexcept;
2373        }
2374
2375        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
2376      }
2377
2378      break;
2379    }
2380    case DeclaratorChunk::MemberPointer:
2381      // The scope spec must refer to a class, or be dependent.
2382      CXXScopeSpec &SS = DeclType.Mem.Scope();
2383      QualType ClsType;
2384      if (SS.isInvalid()) {
2385        // Avoid emitting extra errors if we already errored on the scope.
2386        D.setInvalidType(true);
2387      } else if (S.isDependentScopeSpecifier(SS) ||
2388                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
2389        NestedNameSpecifier *NNS
2390          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2391        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
2392        switch (NNS->getKind()) {
2393        case NestedNameSpecifier::Identifier:
2394          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
2395                                                 NNS->getAsIdentifier());
2396          break;
2397
2398        case NestedNameSpecifier::Namespace:
2399        case NestedNameSpecifier::NamespaceAlias:
2400        case NestedNameSpecifier::Global:
2401          llvm_unreachable("Nested-name-specifier must name a type");
2402
2403        case NestedNameSpecifier::TypeSpec:
2404        case NestedNameSpecifier::TypeSpecWithTemplate:
2405          ClsType = QualType(NNS->getAsType(), 0);
2406          // Note: if the NNS has a prefix and ClsType is a nondependent
2407          // TemplateSpecializationType, then the NNS prefix is NOT included
2408          // in ClsType; hence we wrap ClsType into an ElaboratedType.
2409          // NOTE: in particular, no wrap occurs if ClsType already is an
2410          // Elaborated, DependentName, or DependentTemplateSpecialization.
2411          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
2412            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
2413          break;
2414        }
2415      } else {
2416        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
2417             diag::err_illegal_decl_mempointer_in_nonclass)
2418          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
2419          << DeclType.Mem.Scope().getRange();
2420        D.setInvalidType(true);
2421      }
2422
2423      if (!ClsType.isNull())
2424        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
2425      if (T.isNull()) {
2426        T = Context.IntTy;
2427        D.setInvalidType(true);
2428      } else if (DeclType.Mem.TypeQuals) {
2429        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
2430      }
2431      break;
2432    }
2433
2434    if (T.isNull()) {
2435      D.setInvalidType(true);
2436      T = Context.IntTy;
2437    }
2438
2439    // See if there are any attributes on this declarator chunk.
2440    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
2441      processTypeAttrs(state, T, false, attrs);
2442  }
2443
2444  if (LangOpts.CPlusPlus && T->isFunctionType()) {
2445    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
2446    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
2447
2448    // C++ 8.3.5p4:
2449    //   A cv-qualifier-seq shall only be part of the function type
2450    //   for a nonstatic member function, the function type to which a pointer
2451    //   to member refers, or the top-level function type of a function typedef
2452    //   declaration.
2453    //
2454    // Core issue 547 also allows cv-qualifiers on function types that are
2455    // top-level template type arguments.
2456    bool FreeFunction;
2457    if (!D.getCXXScopeSpec().isSet()) {
2458      FreeFunction = ((D.getContext() != Declarator::MemberContext &&
2459                       D.getContext() != Declarator::LambdaExprContext) ||
2460                      D.getDeclSpec().isFriendSpecified());
2461    } else {
2462      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
2463      FreeFunction = (DC && !DC->isRecord());
2464    }
2465
2466    // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
2467    // function that is not a constructor declares that function to be const.
2468    if (D.getDeclSpec().isConstexprSpecified() && !FreeFunction &&
2469        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static &&
2470        D.getName().getKind() != UnqualifiedId::IK_ConstructorName &&
2471        D.getName().getKind() != UnqualifiedId::IK_ConstructorTemplateId &&
2472        !(FnTy->getTypeQuals() & DeclSpec::TQ_const)) {
2473      // Rebuild function type adding a 'const' qualifier.
2474      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2475      EPI.TypeQuals |= DeclSpec::TQ_const;
2476      T = Context.getFunctionType(FnTy->getResultType(),
2477                                  FnTy->arg_type_begin(),
2478                                  FnTy->getNumArgs(), EPI);
2479    }
2480
2481    // C++11 [dcl.fct]p6 (w/DR1417):
2482    // An attempt to specify a function type with a cv-qualifier-seq or a
2483    // ref-qualifier (including by typedef-name) is ill-formed unless it is:
2484    //  - the function type for a non-static member function,
2485    //  - the function type to which a pointer to member refers,
2486    //  - the top-level function type of a function typedef declaration or
2487    //    alias-declaration,
2488    //  - the type-id in the default argument of a type-parameter, or
2489    //  - the type-id of a template-argument for a type-parameter
2490    if (IsQualifiedFunction &&
2491        !(!FreeFunction &&
2492          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
2493        !IsTypedefName &&
2494        D.getContext() != Declarator::TemplateTypeArgContext) {
2495      SourceLocation Loc = D.getSourceRange().getBegin();
2496      SourceRange RemovalRange;
2497      unsigned I;
2498      if (D.isFunctionDeclarator(I)) {
2499        SmallVector<SourceLocation, 4> RemovalLocs;
2500        const DeclaratorChunk &Chunk = D.getTypeObject(I);
2501        assert(Chunk.Kind == DeclaratorChunk::Function);
2502        if (Chunk.Fun.hasRefQualifier())
2503          RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
2504        if (Chunk.Fun.TypeQuals & Qualifiers::Const)
2505          RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
2506        if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
2507          RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
2508        // FIXME: We do not track the location of the __restrict qualifier.
2509        //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
2510        //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
2511        if (!RemovalLocs.empty()) {
2512          std::sort(RemovalLocs.begin(), RemovalLocs.end(),
2513                    SourceManager::LocBeforeThanCompare(S.getSourceManager()));
2514          RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
2515          Loc = RemovalLocs.front();
2516        }
2517      }
2518
2519      S.Diag(Loc, diag::err_invalid_qualified_function_type)
2520        << FreeFunction << D.isFunctionDeclarator() << T
2521        << getFunctionQualifiersAsString(FnTy)
2522        << FixItHint::CreateRemoval(RemovalRange);
2523
2524      // Strip the cv-qualifiers and ref-qualifiers from the type.
2525      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2526      EPI.TypeQuals = 0;
2527      EPI.RefQualifier = RQ_None;
2528
2529      T = Context.getFunctionType(FnTy->getResultType(),
2530                                  FnTy->arg_type_begin(),
2531                                  FnTy->getNumArgs(), EPI);
2532    }
2533  }
2534
2535  // Apply any undistributed attributes from the declarator.
2536  if (!T.isNull())
2537    if (AttributeList *attrs = D.getAttributes())
2538      processTypeAttrs(state, T, false, attrs);
2539
2540  // Diagnose any ignored type attributes.
2541  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
2542
2543  // C++0x [dcl.constexpr]p9:
2544  //  A constexpr specifier used in an object declaration declares the object
2545  //  as const.
2546  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
2547    T.addConst();
2548  }
2549
2550  // If there was an ellipsis in the declarator, the declaration declares a
2551  // parameter pack whose type may be a pack expansion type.
2552  if (D.hasEllipsis() && !T.isNull()) {
2553    // C++0x [dcl.fct]p13:
2554    //   A declarator-id or abstract-declarator containing an ellipsis shall
2555    //   only be used in a parameter-declaration. Such a parameter-declaration
2556    //   is a parameter pack (14.5.3). [...]
2557    switch (D.getContext()) {
2558    case Declarator::PrototypeContext:
2559      // C++0x [dcl.fct]p13:
2560      //   [...] When it is part of a parameter-declaration-clause, the
2561      //   parameter pack is a function parameter pack (14.5.3). The type T
2562      //   of the declarator-id of the function parameter pack shall contain
2563      //   a template parameter pack; each template parameter pack in T is
2564      //   expanded by the function parameter pack.
2565      //
2566      // We represent function parameter packs as function parameters whose
2567      // type is a pack expansion.
2568      if (!T->containsUnexpandedParameterPack()) {
2569        S.Diag(D.getEllipsisLoc(),
2570             diag::err_function_parameter_pack_without_parameter_packs)
2571          << T <<  D.getSourceRange();
2572        D.setEllipsisLoc(SourceLocation());
2573      } else {
2574        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2575      }
2576      break;
2577
2578    case Declarator::TemplateParamContext:
2579      // C++0x [temp.param]p15:
2580      //   If a template-parameter is a [...] is a parameter-declaration that
2581      //   declares a parameter pack (8.3.5), then the template-parameter is a
2582      //   template parameter pack (14.5.3).
2583      //
2584      // Note: core issue 778 clarifies that, if there are any unexpanded
2585      // parameter packs in the type of the non-type template parameter, then
2586      // it expands those parameter packs.
2587      if (T->containsUnexpandedParameterPack())
2588        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2589      else
2590        S.Diag(D.getEllipsisLoc(),
2591               LangOpts.CPlusPlus0x
2592                 ? diag::warn_cxx98_compat_variadic_templates
2593                 : diag::ext_variadic_templates);
2594      break;
2595
2596    case Declarator::FileContext:
2597    case Declarator::KNRTypeListContext:
2598    case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
2599    case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
2600    case Declarator::TypeNameContext:
2601    case Declarator::CXXNewContext:
2602    case Declarator::AliasDeclContext:
2603    case Declarator::AliasTemplateContext:
2604    case Declarator::MemberContext:
2605    case Declarator::BlockContext:
2606    case Declarator::ForContext:
2607    case Declarator::ConditionContext:
2608    case Declarator::CXXCatchContext:
2609    case Declarator::ObjCCatchContext:
2610    case Declarator::BlockLiteralContext:
2611    case Declarator::LambdaExprContext:
2612    case Declarator::TemplateTypeArgContext:
2613      // FIXME: We may want to allow parameter packs in block-literal contexts
2614      // in the future.
2615      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
2616      D.setEllipsisLoc(SourceLocation());
2617      break;
2618    }
2619  }
2620
2621  if (T.isNull())
2622    return Context.getNullTypeSourceInfo();
2623  else if (D.isInvalidType())
2624    return Context.getTrivialTypeSourceInfo(T);
2625
2626  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
2627}
2628
2629/// GetTypeForDeclarator - Convert the type for the specified
2630/// declarator to Type instances.
2631///
2632/// The result of this call will never be null, but the associated
2633/// type may be a null type if there's an unrecoverable error.
2634TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
2635  // Determine the type of the declarator. Not all forms of declarator
2636  // have a type.
2637
2638  TypeProcessingState state(*this, D);
2639
2640  TypeSourceInfo *ReturnTypeInfo = 0;
2641  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2642  if (T.isNull())
2643    return Context.getNullTypeSourceInfo();
2644
2645  if (D.isPrototypeContext() && getLangOptions().ObjCAutoRefCount)
2646    inferARCWriteback(state, T);
2647
2648  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
2649}
2650
2651static void transferARCOwnershipToDeclSpec(Sema &S,
2652                                           QualType &declSpecTy,
2653                                           Qualifiers::ObjCLifetime ownership) {
2654  if (declSpecTy->isObjCRetainableType() &&
2655      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
2656    Qualifiers qs;
2657    qs.addObjCLifetime(ownership);
2658    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
2659  }
2660}
2661
2662static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2663                                            Qualifiers::ObjCLifetime ownership,
2664                                            unsigned chunkIndex) {
2665  Sema &S = state.getSema();
2666  Declarator &D = state.getDeclarator();
2667
2668  // Look for an explicit lifetime attribute.
2669  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
2670  for (const AttributeList *attr = chunk.getAttrs(); attr;
2671         attr = attr->getNext())
2672    if (attr->getKind() == AttributeList::AT_objc_ownership)
2673      return;
2674
2675  const char *attrStr = 0;
2676  switch (ownership) {
2677  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
2678  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
2679  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
2680  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
2681  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
2682  }
2683
2684  // If there wasn't one, add one (with an invalid source location
2685  // so that we don't make an AttributedType for it).
2686  AttributeList *attr = D.getAttributePool()
2687    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
2688            /*scope*/ 0, SourceLocation(),
2689            &S.Context.Idents.get(attrStr), SourceLocation(),
2690            /*args*/ 0, 0,
2691            /*declspec*/ false, /*C++0x*/ false);
2692  spliceAttrIntoList(*attr, chunk.getAttrListRef());
2693
2694  // TODO: mark whether we did this inference?
2695}
2696
2697/// \brief Used for transfering ownership in casts resulting in l-values.
2698static void transferARCOwnership(TypeProcessingState &state,
2699                                 QualType &declSpecTy,
2700                                 Qualifiers::ObjCLifetime ownership) {
2701  Sema &S = state.getSema();
2702  Declarator &D = state.getDeclarator();
2703
2704  int inner = -1;
2705  bool hasIndirection = false;
2706  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2707    DeclaratorChunk &chunk = D.getTypeObject(i);
2708    switch (chunk.Kind) {
2709    case DeclaratorChunk::Paren:
2710      // Ignore parens.
2711      break;
2712
2713    case DeclaratorChunk::Array:
2714    case DeclaratorChunk::Reference:
2715    case DeclaratorChunk::Pointer:
2716      if (inner != -1)
2717        hasIndirection = true;
2718      inner = i;
2719      break;
2720
2721    case DeclaratorChunk::BlockPointer:
2722      if (inner != -1)
2723        transferARCOwnershipToDeclaratorChunk(state, ownership, i);
2724      return;
2725
2726    case DeclaratorChunk::Function:
2727    case DeclaratorChunk::MemberPointer:
2728      return;
2729    }
2730  }
2731
2732  if (inner == -1)
2733    return;
2734
2735  DeclaratorChunk &chunk = D.getTypeObject(inner);
2736  if (chunk.Kind == DeclaratorChunk::Pointer) {
2737    if (declSpecTy->isObjCRetainableType())
2738      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2739    if (declSpecTy->isObjCObjectType() && hasIndirection)
2740      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
2741  } else {
2742    assert(chunk.Kind == DeclaratorChunk::Array ||
2743           chunk.Kind == DeclaratorChunk::Reference);
2744    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2745  }
2746}
2747
2748TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
2749  TypeProcessingState state(*this, D);
2750
2751  TypeSourceInfo *ReturnTypeInfo = 0;
2752  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2753  if (declSpecTy.isNull())
2754    return Context.getNullTypeSourceInfo();
2755
2756  if (getLangOptions().ObjCAutoRefCount) {
2757    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
2758    if (ownership != Qualifiers::OCL_None)
2759      transferARCOwnership(state, declSpecTy, ownership);
2760  }
2761
2762  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
2763}
2764
2765/// Map an AttributedType::Kind to an AttributeList::Kind.
2766static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
2767  switch (kind) {
2768  case AttributedType::attr_address_space:
2769    return AttributeList::AT_address_space;
2770  case AttributedType::attr_regparm:
2771    return AttributeList::AT_regparm;
2772  case AttributedType::attr_vector_size:
2773    return AttributeList::AT_vector_size;
2774  case AttributedType::attr_neon_vector_type:
2775    return AttributeList::AT_neon_vector_type;
2776  case AttributedType::attr_neon_polyvector_type:
2777    return AttributeList::AT_neon_polyvector_type;
2778  case AttributedType::attr_objc_gc:
2779    return AttributeList::AT_objc_gc;
2780  case AttributedType::attr_objc_ownership:
2781    return AttributeList::AT_objc_ownership;
2782  case AttributedType::attr_noreturn:
2783    return AttributeList::AT_noreturn;
2784  case AttributedType::attr_cdecl:
2785    return AttributeList::AT_cdecl;
2786  case AttributedType::attr_fastcall:
2787    return AttributeList::AT_fastcall;
2788  case AttributedType::attr_stdcall:
2789    return AttributeList::AT_stdcall;
2790  case AttributedType::attr_thiscall:
2791    return AttributeList::AT_thiscall;
2792  case AttributedType::attr_pascal:
2793    return AttributeList::AT_pascal;
2794  case AttributedType::attr_pcs:
2795    return AttributeList::AT_pcs;
2796  }
2797  llvm_unreachable("unexpected attribute kind!");
2798}
2799
2800static void fillAttributedTypeLoc(AttributedTypeLoc TL,
2801                                  const AttributeList *attrs) {
2802  AttributedType::Kind kind = TL.getAttrKind();
2803
2804  assert(attrs && "no type attributes in the expected location!");
2805  AttributeList::Kind parsedKind = getAttrListKind(kind);
2806  while (attrs->getKind() != parsedKind) {
2807    attrs = attrs->getNext();
2808    assert(attrs && "no matching attribute in expected location!");
2809  }
2810
2811  TL.setAttrNameLoc(attrs->getLoc());
2812  if (TL.hasAttrExprOperand())
2813    TL.setAttrExprOperand(attrs->getArg(0));
2814  else if (TL.hasAttrEnumOperand())
2815    TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
2816
2817  // FIXME: preserve this information to here.
2818  if (TL.hasAttrOperand())
2819    TL.setAttrOperandParensRange(SourceRange());
2820}
2821
2822namespace {
2823  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
2824    ASTContext &Context;
2825    const DeclSpec &DS;
2826
2827  public:
2828    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
2829      : Context(Context), DS(DS) {}
2830
2831    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
2832      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
2833      Visit(TL.getModifiedLoc());
2834    }
2835    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
2836      Visit(TL.getUnqualifiedLoc());
2837    }
2838    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
2839      TL.setNameLoc(DS.getTypeSpecTypeLoc());
2840    }
2841    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
2842      TL.setNameLoc(DS.getTypeSpecTypeLoc());
2843    }
2844    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
2845      // Handle the base type, which might not have been written explicitly.
2846      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
2847        TL.setHasBaseTypeAsWritten(false);
2848        TL.getBaseLoc().initialize(Context, SourceLocation());
2849      } else {
2850        TL.setHasBaseTypeAsWritten(true);
2851        Visit(TL.getBaseLoc());
2852      }
2853
2854      // Protocol qualifiers.
2855      if (DS.getProtocolQualifiers()) {
2856        assert(TL.getNumProtocols() > 0);
2857        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
2858        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
2859        TL.setRAngleLoc(DS.getSourceRange().getEnd());
2860        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
2861          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
2862      } else {
2863        assert(TL.getNumProtocols() == 0);
2864        TL.setLAngleLoc(SourceLocation());
2865        TL.setRAngleLoc(SourceLocation());
2866      }
2867    }
2868    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
2869      TL.setStarLoc(SourceLocation());
2870      Visit(TL.getPointeeLoc());
2871    }
2872    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
2873      TypeSourceInfo *TInfo = 0;
2874      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2875
2876      // If we got no declarator info from previous Sema routines,
2877      // just fill with the typespec loc.
2878      if (!TInfo) {
2879        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
2880        return;
2881      }
2882
2883      TypeLoc OldTL = TInfo->getTypeLoc();
2884      if (TInfo->getType()->getAs<ElaboratedType>()) {
2885        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
2886        TemplateSpecializationTypeLoc NamedTL =
2887          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
2888        TL.copy(NamedTL);
2889      }
2890      else
2891        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
2892    }
2893    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
2894      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
2895      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2896      TL.setParensRange(DS.getTypeofParensRange());
2897    }
2898    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
2899      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
2900      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2901      TL.setParensRange(DS.getTypeofParensRange());
2902      assert(DS.getRepAsType());
2903      TypeSourceInfo *TInfo = 0;
2904      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2905      TL.setUnderlyingTInfo(TInfo);
2906    }
2907    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
2908      // FIXME: This holds only because we only have one unary transform.
2909      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
2910      TL.setKWLoc(DS.getTypeSpecTypeLoc());
2911      TL.setParensRange(DS.getTypeofParensRange());
2912      assert(DS.getRepAsType());
2913      TypeSourceInfo *TInfo = 0;
2914      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2915      TL.setUnderlyingTInfo(TInfo);
2916    }
2917    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
2918      // By default, use the source location of the type specifier.
2919      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
2920      if (TL.needsExtraLocalData()) {
2921        // Set info for the written builtin specifiers.
2922        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
2923        // Try to have a meaningful source location.
2924        if (TL.getWrittenSignSpec() != TSS_unspecified)
2925          // Sign spec loc overrides the others (e.g., 'unsigned long').
2926          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
2927        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
2928          // Width spec loc overrides type spec loc (e.g., 'short int').
2929          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
2930      }
2931    }
2932    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
2933      ElaboratedTypeKeyword Keyword
2934        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2935      if (DS.getTypeSpecType() == TST_typename) {
2936        TypeSourceInfo *TInfo = 0;
2937        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2938        if (TInfo) {
2939          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
2940          return;
2941        }
2942      }
2943      TL.setElaboratedKeywordLoc(Keyword != ETK_None
2944                                 ? DS.getTypeSpecTypeLoc()
2945                                 : SourceLocation());
2946      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2947      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2948      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
2949    }
2950    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
2951      assert(DS.getTypeSpecType() == TST_typename);
2952      TypeSourceInfo *TInfo = 0;
2953      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2954      assert(TInfo);
2955      TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
2956    }
2957    void VisitDependentTemplateSpecializationTypeLoc(
2958                                 DependentTemplateSpecializationTypeLoc TL) {
2959      assert(DS.getTypeSpecType() == TST_typename);
2960      TypeSourceInfo *TInfo = 0;
2961      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2962      assert(TInfo);
2963      TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
2964                TInfo->getTypeLoc()));
2965    }
2966    void VisitTagTypeLoc(TagTypeLoc TL) {
2967      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2968    }
2969    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
2970      TL.setKWLoc(DS.getTypeSpecTypeLoc());
2971      TL.setParensRange(DS.getTypeofParensRange());
2972
2973      TypeSourceInfo *TInfo = 0;
2974      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2975      TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
2976    }
2977
2978    void VisitTypeLoc(TypeLoc TL) {
2979      // FIXME: add other typespec types and change this to an assert.
2980      TL.initialize(Context, DS.getTypeSpecTypeLoc());
2981    }
2982  };
2983
2984  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
2985    ASTContext &Context;
2986    const DeclaratorChunk &Chunk;
2987
2988  public:
2989    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
2990      : Context(Context), Chunk(Chunk) {}
2991
2992    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
2993      llvm_unreachable("qualified type locs not expected here!");
2994    }
2995
2996    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
2997      fillAttributedTypeLoc(TL, Chunk.getAttrs());
2998    }
2999    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
3000      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3001      TL.setCaretLoc(Chunk.Loc);
3002    }
3003    void VisitPointerTypeLoc(PointerTypeLoc TL) {
3004      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3005      TL.setStarLoc(Chunk.Loc);
3006    }
3007    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3008      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3009      TL.setStarLoc(Chunk.Loc);
3010    }
3011    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3012      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3013      const CXXScopeSpec& SS = Chunk.Mem.Scope();
3014      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3015
3016      const Type* ClsTy = TL.getClass();
3017      QualType ClsQT = QualType(ClsTy, 0);
3018      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3019      // Now copy source location info into the type loc component.
3020      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3021      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3022      case NestedNameSpecifier::Identifier:
3023        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3024        {
3025          DependentNameTypeLoc DNTLoc = cast<DependentNameTypeLoc>(ClsTL);
3026          DNTLoc.setElaboratedKeywordLoc(SourceLocation());
3027          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3028          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3029        }
3030        break;
3031
3032      case NestedNameSpecifier::TypeSpec:
3033      case NestedNameSpecifier::TypeSpecWithTemplate:
3034        if (isa<ElaboratedType>(ClsTy)) {
3035          ElaboratedTypeLoc ETLoc = *cast<ElaboratedTypeLoc>(&ClsTL);
3036          ETLoc.setElaboratedKeywordLoc(SourceLocation());
3037          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3038          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3039          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3040        } else {
3041          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3042        }
3043        break;
3044
3045      case NestedNameSpecifier::Namespace:
3046      case NestedNameSpecifier::NamespaceAlias:
3047      case NestedNameSpecifier::Global:
3048        llvm_unreachable("Nested-name-specifier must name a type");
3049      }
3050
3051      // Finally fill in MemberPointerLocInfo fields.
3052      TL.setStarLoc(Chunk.Loc);
3053      TL.setClassTInfo(ClsTInfo);
3054    }
3055    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3056      assert(Chunk.Kind == DeclaratorChunk::Reference);
3057      // 'Amp' is misleading: this might have been originally
3058      /// spelled with AmpAmp.
3059      TL.setAmpLoc(Chunk.Loc);
3060    }
3061    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3062      assert(Chunk.Kind == DeclaratorChunk::Reference);
3063      assert(!Chunk.Ref.LValueRef);
3064      TL.setAmpAmpLoc(Chunk.Loc);
3065    }
3066    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3067      assert(Chunk.Kind == DeclaratorChunk::Array);
3068      TL.setLBracketLoc(Chunk.Loc);
3069      TL.setRBracketLoc(Chunk.EndLoc);
3070      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3071    }
3072    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3073      assert(Chunk.Kind == DeclaratorChunk::Function);
3074      TL.setLocalRangeBegin(Chunk.Loc);
3075      TL.setLocalRangeEnd(Chunk.EndLoc);
3076      TL.setTrailingReturn(!!Chunk.Fun.TrailingReturnType);
3077
3078      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3079      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
3080        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3081        TL.setArg(tpi++, Param);
3082      }
3083      // FIXME: exception specs
3084    }
3085    void VisitParenTypeLoc(ParenTypeLoc TL) {
3086      assert(Chunk.Kind == DeclaratorChunk::Paren);
3087      TL.setLParenLoc(Chunk.Loc);
3088      TL.setRParenLoc(Chunk.EndLoc);
3089    }
3090
3091    void VisitTypeLoc(TypeLoc TL) {
3092      llvm_unreachable("unsupported TypeLoc kind in declarator!");
3093    }
3094  };
3095}
3096
3097/// \brief Create and instantiate a TypeSourceInfo with type source information.
3098///
3099/// \param T QualType referring to the type as written in source code.
3100///
3101/// \param ReturnTypeInfo For declarators whose return type does not show
3102/// up in the normal place in the declaration specifiers (such as a C++
3103/// conversion function), this pointer will refer to a type source information
3104/// for that return type.
3105TypeSourceInfo *
3106Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3107                                     TypeSourceInfo *ReturnTypeInfo) {
3108  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3109  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3110
3111  // Handle parameter packs whose type is a pack expansion.
3112  if (isa<PackExpansionType>(T)) {
3113    cast<PackExpansionTypeLoc>(CurrTL).setEllipsisLoc(D.getEllipsisLoc());
3114    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3115  }
3116
3117  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3118    while (isa<AttributedTypeLoc>(CurrTL)) {
3119      AttributedTypeLoc TL = cast<AttributedTypeLoc>(CurrTL);
3120      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3121      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3122    }
3123
3124    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3125    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3126  }
3127
3128  // If we have different source information for the return type, use
3129  // that.  This really only applies to C++ conversion functions.
3130  if (ReturnTypeInfo) {
3131    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3132    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3133    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3134  } else {
3135    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3136  }
3137
3138  return TInfo;
3139}
3140
3141/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3142ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3143  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3144  // and Sema during declaration parsing. Try deallocating/caching them when
3145  // it's appropriate, instead of allocating them and keeping them around.
3146  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3147                                                       TypeAlignment);
3148  new (LocT) LocInfoType(T, TInfo);
3149  assert(LocT->getTypeClass() != T->getTypeClass() &&
3150         "LocInfoType's TypeClass conflicts with an existing Type class");
3151  return ParsedType::make(QualType(LocT, 0));
3152}
3153
3154void LocInfoType::getAsStringInternal(std::string &Str,
3155                                      const PrintingPolicy &Policy) const {
3156  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3157         " was used directly instead of getting the QualType through"
3158         " GetTypeFromParser");
3159}
3160
3161TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3162  // C99 6.7.6: Type names have no identifier.  This is already validated by
3163  // the parser.
3164  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3165
3166  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3167  QualType T = TInfo->getType();
3168  if (D.isInvalidType())
3169    return true;
3170
3171  // Make sure there are no unused decl attributes on the declarator.
3172  // We don't want to do this for ObjC parameters because we're going
3173  // to apply them to the actual parameter declaration.
3174  if (D.getContext() != Declarator::ObjCParameterContext)
3175    checkUnusedDeclAttributes(D);
3176
3177  if (getLangOptions().CPlusPlus) {
3178    // Check that there are no default arguments (C++ only).
3179    CheckExtraCXXDefaultArguments(D);
3180  }
3181
3182  return CreateParsedType(T, TInfo);
3183}
3184
3185ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3186  QualType T = Context.getObjCInstanceType();
3187  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3188  return CreateParsedType(T, TInfo);
3189}
3190
3191
3192//===----------------------------------------------------------------------===//
3193// Type Attribute Processing
3194//===----------------------------------------------------------------------===//
3195
3196/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3197/// specified type.  The attribute contains 1 argument, the id of the address
3198/// space for the type.
3199static void HandleAddressSpaceTypeAttribute(QualType &Type,
3200                                            const AttributeList &Attr, Sema &S){
3201
3202  // If this type is already address space qualified, reject it.
3203  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3204  // qualifiers for two or more different address spaces."
3205  if (Type.getAddressSpace()) {
3206    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3207    Attr.setInvalid();
3208    return;
3209  }
3210
3211  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3212  // qualified by an address-space qualifier."
3213  if (Type->isFunctionType()) {
3214    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3215    Attr.setInvalid();
3216    return;
3217  }
3218
3219  // Check the attribute arguments.
3220  if (Attr.getNumArgs() != 1) {
3221    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3222    Attr.setInvalid();
3223    return;
3224  }
3225  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
3226  llvm::APSInt addrSpace(32);
3227  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3228      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3229    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
3230      << ASArgExpr->getSourceRange();
3231    Attr.setInvalid();
3232    return;
3233  }
3234
3235  // Bounds checking.
3236  if (addrSpace.isSigned()) {
3237    if (addrSpace.isNegative()) {
3238      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3239        << ASArgExpr->getSourceRange();
3240      Attr.setInvalid();
3241      return;
3242    }
3243    addrSpace.setIsSigned(false);
3244  }
3245  llvm::APSInt max(addrSpace.getBitWidth());
3246  max = Qualifiers::MaxAddressSpace;
3247  if (addrSpace > max) {
3248    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3249      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
3250    Attr.setInvalid();
3251    return;
3252  }
3253
3254  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3255  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3256}
3257
3258/// Does this type have a "direct" ownership qualifier?  That is,
3259/// is it written like "__strong id", as opposed to something like
3260/// "typeof(foo)", where that happens to be strong?
3261static bool hasDirectOwnershipQualifier(QualType type) {
3262  // Fast path: no qualifier at all.
3263  assert(type.getQualifiers().hasObjCLifetime());
3264
3265  while (true) {
3266    // __strong id
3267    if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
3268      if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
3269        return true;
3270
3271      type = attr->getModifiedType();
3272
3273    // X *__strong (...)
3274    } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
3275      type = paren->getInnerType();
3276
3277    // That's it for things we want to complain about.  In particular,
3278    // we do not want to look through typedefs, typeof(expr),
3279    // typeof(type), or any other way that the type is somehow
3280    // abstracted.
3281    } else {
3282
3283      return false;
3284    }
3285  }
3286}
3287
3288/// handleObjCOwnershipTypeAttr - Process an objc_ownership
3289/// attribute on the specified type.
3290///
3291/// Returns 'true' if the attribute was handled.
3292static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
3293                                       AttributeList &attr,
3294                                       QualType &type) {
3295  bool NonObjCPointer = false;
3296
3297  if (!type->isDependentType()) {
3298    if (const PointerType *ptr = type->getAs<PointerType>()) {
3299      QualType pointee = ptr->getPointeeType();
3300      if (pointee->isObjCRetainableType() || pointee->isPointerType())
3301        return false;
3302      // It is important not to lose the source info that there was an attribute
3303      // applied to non-objc pointer. We will create an attributed type but
3304      // its type will be the same as the original type.
3305      NonObjCPointer = true;
3306    } else if (!type->isObjCRetainableType()) {
3307      return false;
3308    }
3309  }
3310
3311  Sema &S = state.getSema();
3312  SourceLocation AttrLoc = attr.getLoc();
3313  if (AttrLoc.isMacroID())
3314    AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
3315
3316  if (!attr.getParameterName()) {
3317    S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
3318      << "objc_ownership" << 1;
3319    attr.setInvalid();
3320    return true;
3321  }
3322
3323  // Consume lifetime attributes without further comment outside of
3324  // ARC mode.
3325  if (!S.getLangOptions().ObjCAutoRefCount)
3326    return true;
3327
3328  Qualifiers::ObjCLifetime lifetime;
3329  if (attr.getParameterName()->isStr("none"))
3330    lifetime = Qualifiers::OCL_ExplicitNone;
3331  else if (attr.getParameterName()->isStr("strong"))
3332    lifetime = Qualifiers::OCL_Strong;
3333  else if (attr.getParameterName()->isStr("weak"))
3334    lifetime = Qualifiers::OCL_Weak;
3335  else if (attr.getParameterName()->isStr("autoreleasing"))
3336    lifetime = Qualifiers::OCL_Autoreleasing;
3337  else {
3338    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
3339      << "objc_ownership" << attr.getParameterName();
3340    attr.setInvalid();
3341    return true;
3342  }
3343
3344  SplitQualType underlyingType = type.split();
3345
3346  // Check for redundant/conflicting ownership qualifiers.
3347  if (Qualifiers::ObjCLifetime previousLifetime
3348        = type.getQualifiers().getObjCLifetime()) {
3349    // If it's written directly, that's an error.
3350    if (hasDirectOwnershipQualifier(type)) {
3351      S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
3352        << type;
3353      return true;
3354    }
3355
3356    // Otherwise, if the qualifiers actually conflict, pull sugar off
3357    // until we reach a type that is directly qualified.
3358    if (previousLifetime != lifetime) {
3359      // This should always terminate: the canonical type is
3360      // qualified, so some bit of sugar must be hiding it.
3361      while (!underlyingType.Quals.hasObjCLifetime()) {
3362        underlyingType = underlyingType.getSingleStepDesugaredType();
3363      }
3364      underlyingType.Quals.removeObjCLifetime();
3365    }
3366  }
3367
3368  underlyingType.Quals.addObjCLifetime(lifetime);
3369
3370  if (NonObjCPointer) {
3371    StringRef name = attr.getName()->getName();
3372    switch (lifetime) {
3373    case Qualifiers::OCL_None:
3374    case Qualifiers::OCL_ExplicitNone:
3375      break;
3376    case Qualifiers::OCL_Strong: name = "__strong"; break;
3377    case Qualifiers::OCL_Weak: name = "__weak"; break;
3378    case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
3379    }
3380    S.Diag(AttrLoc, diag::warn_objc_object_attribute_wrong_type)
3381      << name << type;
3382  }
3383
3384  QualType origType = type;
3385  if (!NonObjCPointer)
3386    type = S.Context.getQualifiedType(underlyingType);
3387
3388  // If we have a valid source location for the attribute, use an
3389  // AttributedType instead.
3390  if (AttrLoc.isValid())
3391    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
3392                                       origType, type);
3393
3394  // Forbid __weak if the runtime doesn't support it.
3395  if (lifetime == Qualifiers::OCL_Weak &&
3396      !S.getLangOptions().ObjCRuntimeHasWeak && !NonObjCPointer) {
3397
3398    // Actually, delay this until we know what we're parsing.
3399    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
3400      S.DelayedDiagnostics.add(
3401          sema::DelayedDiagnostic::makeForbiddenType(
3402              S.getSourceManager().getExpansionLoc(AttrLoc),
3403              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
3404    } else {
3405      S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
3406    }
3407
3408    attr.setInvalid();
3409    return true;
3410  }
3411
3412  // Forbid __weak for class objects marked as
3413  // objc_arc_weak_reference_unavailable
3414  if (lifetime == Qualifiers::OCL_Weak) {
3415    QualType T = type;
3416    while (const PointerType *ptr = T->getAs<PointerType>())
3417      T = ptr->getPointeeType();
3418    if (const ObjCObjectPointerType *ObjT = T->getAs<ObjCObjectPointerType>()) {
3419      ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl();
3420      if (Class->isArcWeakrefUnavailable()) {
3421          S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
3422          S.Diag(ObjT->getInterfaceDecl()->getLocation(),
3423                 diag::note_class_declared);
3424      }
3425    }
3426  }
3427
3428  return true;
3429}
3430
3431/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
3432/// attribute on the specified type.  Returns true to indicate that
3433/// the attribute was handled, false to indicate that the type does
3434/// not permit the attribute.
3435static bool handleObjCGCTypeAttr(TypeProcessingState &state,
3436                                 AttributeList &attr,
3437                                 QualType &type) {
3438  Sema &S = state.getSema();
3439
3440  // Delay if this isn't some kind of pointer.
3441  if (!type->isPointerType() &&
3442      !type->isObjCObjectPointerType() &&
3443      !type->isBlockPointerType())
3444    return false;
3445
3446  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
3447    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
3448    attr.setInvalid();
3449    return true;
3450  }
3451
3452  // Check the attribute arguments.
3453  if (!attr.getParameterName()) {
3454    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3455      << "objc_gc" << 1;
3456    attr.setInvalid();
3457    return true;
3458  }
3459  Qualifiers::GC GCAttr;
3460  if (attr.getNumArgs() != 0) {
3461    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3462    attr.setInvalid();
3463    return true;
3464  }
3465  if (attr.getParameterName()->isStr("weak"))
3466    GCAttr = Qualifiers::Weak;
3467  else if (attr.getParameterName()->isStr("strong"))
3468    GCAttr = Qualifiers::Strong;
3469  else {
3470    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3471      << "objc_gc" << attr.getParameterName();
3472    attr.setInvalid();
3473    return true;
3474  }
3475
3476  QualType origType = type;
3477  type = S.Context.getObjCGCQualType(origType, GCAttr);
3478
3479  // Make an attributed type to preserve the source information.
3480  if (attr.getLoc().isValid())
3481    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
3482                                       origType, type);
3483
3484  return true;
3485}
3486
3487namespace {
3488  /// A helper class to unwrap a type down to a function for the
3489  /// purposes of applying attributes there.
3490  ///
3491  /// Use:
3492  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
3493  ///   if (unwrapped.isFunctionType()) {
3494  ///     const FunctionType *fn = unwrapped.get();
3495  ///     // change fn somehow
3496  ///     T = unwrapped.wrap(fn);
3497  ///   }
3498  struct FunctionTypeUnwrapper {
3499    enum WrapKind {
3500      Desugar,
3501      Parens,
3502      Pointer,
3503      BlockPointer,
3504      Reference,
3505      MemberPointer
3506    };
3507
3508    QualType Original;
3509    const FunctionType *Fn;
3510    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
3511
3512    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
3513      while (true) {
3514        const Type *Ty = T.getTypePtr();
3515        if (isa<FunctionType>(Ty)) {
3516          Fn = cast<FunctionType>(Ty);
3517          return;
3518        } else if (isa<ParenType>(Ty)) {
3519          T = cast<ParenType>(Ty)->getInnerType();
3520          Stack.push_back(Parens);
3521        } else if (isa<PointerType>(Ty)) {
3522          T = cast<PointerType>(Ty)->getPointeeType();
3523          Stack.push_back(Pointer);
3524        } else if (isa<BlockPointerType>(Ty)) {
3525          T = cast<BlockPointerType>(Ty)->getPointeeType();
3526          Stack.push_back(BlockPointer);
3527        } else if (isa<MemberPointerType>(Ty)) {
3528          T = cast<MemberPointerType>(Ty)->getPointeeType();
3529          Stack.push_back(MemberPointer);
3530        } else if (isa<ReferenceType>(Ty)) {
3531          T = cast<ReferenceType>(Ty)->getPointeeType();
3532          Stack.push_back(Reference);
3533        } else {
3534          const Type *DTy = Ty->getUnqualifiedDesugaredType();
3535          if (Ty == DTy) {
3536            Fn = 0;
3537            return;
3538          }
3539
3540          T = QualType(DTy, 0);
3541          Stack.push_back(Desugar);
3542        }
3543      }
3544    }
3545
3546    bool isFunctionType() const { return (Fn != 0); }
3547    const FunctionType *get() const { return Fn; }
3548
3549    QualType wrap(Sema &S, const FunctionType *New) {
3550      // If T wasn't modified from the unwrapped type, do nothing.
3551      if (New == get()) return Original;
3552
3553      Fn = New;
3554      return wrap(S.Context, Original, 0);
3555    }
3556
3557  private:
3558    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
3559      if (I == Stack.size())
3560        return C.getQualifiedType(Fn, Old.getQualifiers());
3561
3562      // Build up the inner type, applying the qualifiers from the old
3563      // type to the new type.
3564      SplitQualType SplitOld = Old.split();
3565
3566      // As a special case, tail-recurse if there are no qualifiers.
3567      if (SplitOld.Quals.empty())
3568        return wrap(C, SplitOld.Ty, I);
3569      return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
3570    }
3571
3572    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
3573      if (I == Stack.size()) return QualType(Fn, 0);
3574
3575      switch (static_cast<WrapKind>(Stack[I++])) {
3576      case Desugar:
3577        // This is the point at which we potentially lose source
3578        // information.
3579        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
3580
3581      case Parens: {
3582        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
3583        return C.getParenType(New);
3584      }
3585
3586      case Pointer: {
3587        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
3588        return C.getPointerType(New);
3589      }
3590
3591      case BlockPointer: {
3592        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
3593        return C.getBlockPointerType(New);
3594      }
3595
3596      case MemberPointer: {
3597        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
3598        QualType New = wrap(C, OldMPT->getPointeeType(), I);
3599        return C.getMemberPointerType(New, OldMPT->getClass());
3600      }
3601
3602      case Reference: {
3603        const ReferenceType *OldRef = cast<ReferenceType>(Old);
3604        QualType New = wrap(C, OldRef->getPointeeType(), I);
3605        if (isa<LValueReferenceType>(OldRef))
3606          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
3607        else
3608          return C.getRValueReferenceType(New);
3609      }
3610      }
3611
3612      llvm_unreachable("unknown wrapping kind");
3613    }
3614  };
3615}
3616
3617/// Process an individual function attribute.  Returns true to
3618/// indicate that the attribute was handled, false if it wasn't.
3619static bool handleFunctionTypeAttr(TypeProcessingState &state,
3620                                   AttributeList &attr,
3621                                   QualType &type) {
3622  Sema &S = state.getSema();
3623
3624  FunctionTypeUnwrapper unwrapped(S, type);
3625
3626  if (attr.getKind() == AttributeList::AT_noreturn) {
3627    if (S.CheckNoReturnAttr(attr))
3628      return true;
3629
3630    // Delay if this is not a function type.
3631    if (!unwrapped.isFunctionType())
3632      return false;
3633
3634    // Otherwise we can process right away.
3635    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
3636    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3637    return true;
3638  }
3639
3640  // ns_returns_retained is not always a type attribute, but if we got
3641  // here, we're treating it as one right now.
3642  if (attr.getKind() == AttributeList::AT_ns_returns_retained) {
3643    assert(S.getLangOptions().ObjCAutoRefCount &&
3644           "ns_returns_retained treated as type attribute in non-ARC");
3645    if (attr.getNumArgs()) return true;
3646
3647    // Delay if this is not a function type.
3648    if (!unwrapped.isFunctionType())
3649      return false;
3650
3651    FunctionType::ExtInfo EI
3652      = unwrapped.get()->getExtInfo().withProducesResult(true);
3653    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3654    return true;
3655  }
3656
3657  if (attr.getKind() == AttributeList::AT_regparm) {
3658    unsigned value;
3659    if (S.CheckRegparmAttr(attr, value))
3660      return true;
3661
3662    // Delay if this is not a function type.
3663    if (!unwrapped.isFunctionType())
3664      return false;
3665
3666    // Diagnose regparm with fastcall.
3667    const FunctionType *fn = unwrapped.get();
3668    CallingConv CC = fn->getCallConv();
3669    if (CC == CC_X86FastCall) {
3670      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3671        << FunctionType::getNameForCallConv(CC)
3672        << "regparm";
3673      attr.setInvalid();
3674      return true;
3675    }
3676
3677    FunctionType::ExtInfo EI =
3678      unwrapped.get()->getExtInfo().withRegParm(value);
3679    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3680    return true;
3681  }
3682
3683  // Otherwise, a calling convention.
3684  CallingConv CC;
3685  if (S.CheckCallingConvAttr(attr, CC))
3686    return true;
3687
3688  // Delay if the type didn't work out to a function.
3689  if (!unwrapped.isFunctionType()) return false;
3690
3691  const FunctionType *fn = unwrapped.get();
3692  CallingConv CCOld = fn->getCallConv();
3693  if (S.Context.getCanonicalCallConv(CC) ==
3694      S.Context.getCanonicalCallConv(CCOld)) {
3695    FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
3696    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3697    return true;
3698  }
3699
3700  if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
3701    // Should we diagnose reapplications of the same convention?
3702    S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3703      << FunctionType::getNameForCallConv(CC)
3704      << FunctionType::getNameForCallConv(CCOld);
3705    attr.setInvalid();
3706    return true;
3707  }
3708
3709  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
3710  if (CC == CC_X86FastCall) {
3711    if (isa<FunctionNoProtoType>(fn)) {
3712      S.Diag(attr.getLoc(), diag::err_cconv_knr)
3713        << FunctionType::getNameForCallConv(CC);
3714      attr.setInvalid();
3715      return true;
3716    }
3717
3718    const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
3719    if (FnP->isVariadic()) {
3720      S.Diag(attr.getLoc(), diag::err_cconv_varargs)
3721        << FunctionType::getNameForCallConv(CC);
3722      attr.setInvalid();
3723      return true;
3724    }
3725
3726    // Also diagnose fastcall with regparm.
3727    if (fn->getHasRegParm()) {
3728      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3729        << "regparm"
3730        << FunctionType::getNameForCallConv(CC);
3731      attr.setInvalid();
3732      return true;
3733    }
3734  }
3735
3736  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
3737  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3738  return true;
3739}
3740
3741/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
3742static void HandleOpenCLImageAccessAttribute(QualType& CurType,
3743                                             const AttributeList &Attr,
3744                                             Sema &S) {
3745  // Check the attribute arguments.
3746  if (Attr.getNumArgs() != 1) {
3747    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3748    Attr.setInvalid();
3749    return;
3750  }
3751  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3752  llvm::APSInt arg(32);
3753  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3754      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
3755    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3756      << "opencl_image_access" << sizeExpr->getSourceRange();
3757    Attr.setInvalid();
3758    return;
3759  }
3760  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
3761  switch (iarg) {
3762  case CLIA_read_only:
3763  case CLIA_write_only:
3764  case CLIA_read_write:
3765    // Implemented in a separate patch
3766    break;
3767  default:
3768    // Implemented in a separate patch
3769    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3770      << sizeExpr->getSourceRange();
3771    Attr.setInvalid();
3772    break;
3773  }
3774}
3775
3776/// HandleVectorSizeAttribute - this attribute is only applicable to integral
3777/// and float scalars, although arrays, pointers, and function return values are
3778/// allowed in conjunction with this construct. Aggregates with this attribute
3779/// are invalid, even if they are of the same size as a corresponding scalar.
3780/// The raw attribute should contain precisely 1 argument, the vector size for
3781/// the variable, measured in bytes. If curType and rawAttr are well formed,
3782/// this routine will return a new vector type.
3783static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
3784                                 Sema &S) {
3785  // Check the attribute arguments.
3786  if (Attr.getNumArgs() != 1) {
3787    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3788    Attr.setInvalid();
3789    return;
3790  }
3791  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3792  llvm::APSInt vecSize(32);
3793  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3794      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
3795    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3796      << "vector_size" << sizeExpr->getSourceRange();
3797    Attr.setInvalid();
3798    return;
3799  }
3800  // the base type must be integer or float, and can't already be a vector.
3801  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
3802    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
3803    Attr.setInvalid();
3804    return;
3805  }
3806  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3807  // vecSize is specified in bytes - convert to bits.
3808  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
3809
3810  // the vector size needs to be an integral multiple of the type size.
3811  if (vectorSize % typeSize) {
3812    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3813      << sizeExpr->getSourceRange();
3814    Attr.setInvalid();
3815    return;
3816  }
3817  if (vectorSize == 0) {
3818    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
3819      << sizeExpr->getSourceRange();
3820    Attr.setInvalid();
3821    return;
3822  }
3823
3824  // Success! Instantiate the vector type, the number of elements is > 0, and
3825  // not required to be a power of 2, unlike GCC.
3826  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
3827                                    VectorType::GenericVector);
3828}
3829
3830/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
3831/// a type.
3832static void HandleExtVectorTypeAttr(QualType &CurType,
3833                                    const AttributeList &Attr,
3834                                    Sema &S) {
3835  Expr *sizeExpr;
3836
3837  // Special case where the argument is a template id.
3838  if (Attr.getParameterName()) {
3839    CXXScopeSpec SS;
3840    SourceLocation TemplateKWLoc;
3841    UnqualifiedId id;
3842    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
3843
3844    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
3845                                          id, false, false);
3846    if (Size.isInvalid())
3847      return;
3848
3849    sizeExpr = Size.get();
3850  } else {
3851    // check the attribute arguments.
3852    if (Attr.getNumArgs() != 1) {
3853      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3854      return;
3855    }
3856    sizeExpr = Attr.getArg(0);
3857  }
3858
3859  // Create the vector type.
3860  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
3861  if (!T.isNull())
3862    CurType = T;
3863}
3864
3865/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
3866/// "neon_polyvector_type" attributes are used to create vector types that
3867/// are mangled according to ARM's ABI.  Otherwise, these types are identical
3868/// to those created with the "vector_size" attribute.  Unlike "vector_size"
3869/// the argument to these Neon attributes is the number of vector elements,
3870/// not the vector size in bytes.  The vector width and element type must
3871/// match one of the standard Neon vector types.
3872static void HandleNeonVectorTypeAttr(QualType& CurType,
3873                                     const AttributeList &Attr, Sema &S,
3874                                     VectorType::VectorKind VecKind,
3875                                     const char *AttrName) {
3876  // Check the attribute arguments.
3877  if (Attr.getNumArgs() != 1) {
3878    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3879    Attr.setInvalid();
3880    return;
3881  }
3882  // The number of elements must be an ICE.
3883  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
3884  llvm::APSInt numEltsInt(32);
3885  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
3886      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
3887    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3888      << AttrName << numEltsExpr->getSourceRange();
3889    Attr.setInvalid();
3890    return;
3891  }
3892  // Only certain element types are supported for Neon vectors.
3893  const BuiltinType* BTy = CurType->getAs<BuiltinType>();
3894  if (!BTy ||
3895      (VecKind == VectorType::NeonPolyVector &&
3896       BTy->getKind() != BuiltinType::SChar &&
3897       BTy->getKind() != BuiltinType::Short) ||
3898      (BTy->getKind() != BuiltinType::SChar &&
3899       BTy->getKind() != BuiltinType::UChar &&
3900       BTy->getKind() != BuiltinType::Short &&
3901       BTy->getKind() != BuiltinType::UShort &&
3902       BTy->getKind() != BuiltinType::Int &&
3903       BTy->getKind() != BuiltinType::UInt &&
3904       BTy->getKind() != BuiltinType::LongLong &&
3905       BTy->getKind() != BuiltinType::ULongLong &&
3906       BTy->getKind() != BuiltinType::Float)) {
3907    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
3908    Attr.setInvalid();
3909    return;
3910  }
3911  // The total size of the vector must be 64 or 128 bits.
3912  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3913  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
3914  unsigned vecSize = typeSize * numElts;
3915  if (vecSize != 64 && vecSize != 128) {
3916    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
3917    Attr.setInvalid();
3918    return;
3919  }
3920
3921  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
3922}
3923
3924static void processTypeAttrs(TypeProcessingState &state, QualType &type,
3925                             bool isDeclSpec, AttributeList *attrs) {
3926  // Scan through and apply attributes to this type where it makes sense.  Some
3927  // attributes (such as __address_space__, __vector_size__, etc) apply to the
3928  // type, but others can be present in the type specifiers even though they
3929  // apply to the decl.  Here we apply type attributes and ignore the rest.
3930
3931  AttributeList *next;
3932  do {
3933    AttributeList &attr = *attrs;
3934    next = attr.getNext();
3935
3936    // Skip attributes that were marked to be invalid.
3937    if (attr.isInvalid())
3938      continue;
3939
3940    // If this is an attribute we can handle, do so now,
3941    // otherwise, add it to the FnAttrs list for rechaining.
3942    switch (attr.getKind()) {
3943    default: break;
3944
3945    case AttributeList::AT_may_alias:
3946      // FIXME: This attribute needs to actually be handled, but if we ignore
3947      // it it breaks large amounts of Linux software.
3948      attr.setUsedAsTypeAttr();
3949      break;
3950    case AttributeList::AT_address_space:
3951      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
3952      attr.setUsedAsTypeAttr();
3953      break;
3954    OBJC_POINTER_TYPE_ATTRS_CASELIST:
3955      if (!handleObjCPointerTypeAttr(state, attr, type))
3956        distributeObjCPointerTypeAttr(state, attr, type);
3957      attr.setUsedAsTypeAttr();
3958      break;
3959    case AttributeList::AT_vector_size:
3960      HandleVectorSizeAttr(type, attr, state.getSema());
3961      attr.setUsedAsTypeAttr();
3962      break;
3963    case AttributeList::AT_ext_vector_type:
3964      if (state.getDeclarator().getDeclSpec().getStorageClassSpec()
3965            != DeclSpec::SCS_typedef)
3966        HandleExtVectorTypeAttr(type, attr, state.getSema());
3967      attr.setUsedAsTypeAttr();
3968      break;
3969    case AttributeList::AT_neon_vector_type:
3970      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
3971                               VectorType::NeonVector, "neon_vector_type");
3972      attr.setUsedAsTypeAttr();
3973      break;
3974    case AttributeList::AT_neon_polyvector_type:
3975      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
3976                               VectorType::NeonPolyVector,
3977                               "neon_polyvector_type");
3978      attr.setUsedAsTypeAttr();
3979      break;
3980    case AttributeList::AT_opencl_image_access:
3981      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
3982      attr.setUsedAsTypeAttr();
3983      break;
3984
3985    case AttributeList::AT_ns_returns_retained:
3986      if (!state.getSema().getLangOptions().ObjCAutoRefCount)
3987	break;
3988      // fallthrough into the function attrs
3989
3990    FUNCTION_TYPE_ATTRS_CASELIST:
3991      attr.setUsedAsTypeAttr();
3992
3993      // Never process function type attributes as part of the
3994      // declaration-specifiers.
3995      if (isDeclSpec)
3996        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
3997
3998      // Otherwise, handle the possible delays.
3999      else if (!handleFunctionTypeAttr(state, attr, type))
4000        distributeFunctionTypeAttr(state, attr, type);
4001      break;
4002    }
4003  } while ((attrs = next));
4004}
4005
4006/// \brief Ensure that the type of the given expression is complete.
4007///
4008/// This routine checks whether the expression \p E has a complete type. If the
4009/// expression refers to an instantiable construct, that instantiation is
4010/// performed as needed to complete its type. Furthermore
4011/// Sema::RequireCompleteType is called for the expression's type (or in the
4012/// case of a reference type, the referred-to type).
4013///
4014/// \param E The expression whose type is required to be complete.
4015/// \param PD The partial diagnostic that will be printed out if the type cannot
4016/// be completed.
4017///
4018/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
4019/// otherwise.
4020bool Sema::RequireCompleteExprType(Expr *E, const PartialDiagnostic &PD,
4021                                   std::pair<SourceLocation,
4022                                             PartialDiagnostic> Note) {
4023  QualType T = E->getType();
4024
4025  // Fast path the case where the type is already complete.
4026  if (!T->isIncompleteType())
4027    return false;
4028
4029  // Incomplete array types may be completed by the initializer attached to
4030  // their definitions. For static data members of class templates we need to
4031  // instantiate the definition to get this initializer and complete the type.
4032  if (T->isIncompleteArrayType()) {
4033    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4034      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4035        if (Var->isStaticDataMember() &&
4036            Var->getInstantiatedFromStaticDataMember()) {
4037
4038          MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
4039          assert(MSInfo && "Missing member specialization information?");
4040          if (MSInfo->getTemplateSpecializationKind()
4041                != TSK_ExplicitSpecialization) {
4042            // If we don't already have a point of instantiation, this is it.
4043            if (MSInfo->getPointOfInstantiation().isInvalid()) {
4044              MSInfo->setPointOfInstantiation(E->getLocStart());
4045
4046              // This is a modification of an existing AST node. Notify
4047              // listeners.
4048              if (ASTMutationListener *L = getASTMutationListener())
4049                L->StaticDataMemberInstantiated(Var);
4050            }
4051
4052            InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
4053
4054            // Update the type to the newly instantiated definition's type both
4055            // here and within the expression.
4056            if (VarDecl *Def = Var->getDefinition()) {
4057              DRE->setDecl(Def);
4058              T = Def->getType();
4059              DRE->setType(T);
4060              E->setType(T);
4061            }
4062          }
4063
4064          // We still go on to try to complete the type independently, as it
4065          // may also require instantiations or diagnostics if it remains
4066          // incomplete.
4067        }
4068      }
4069    }
4070  }
4071
4072  // FIXME: Are there other cases which require instantiating something other
4073  // than the type to complete the type of an expression?
4074
4075  // Look through reference types and complete the referred type.
4076  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
4077    T = Ref->getPointeeType();
4078
4079  return RequireCompleteType(E->getExprLoc(), T, PD, Note);
4080}
4081
4082/// @brief Ensure that the type T is a complete type.
4083///
4084/// This routine checks whether the type @p T is complete in any
4085/// context where a complete type is required. If @p T is a complete
4086/// type, returns false. If @p T is a class template specialization,
4087/// this routine then attempts to perform class template
4088/// instantiation. If instantiation fails, or if @p T is incomplete
4089/// and cannot be completed, issues the diagnostic @p diag (giving it
4090/// the type @p T) and returns true.
4091///
4092/// @param Loc  The location in the source that the incomplete type
4093/// diagnostic should refer to.
4094///
4095/// @param T  The type that this routine is examining for completeness.
4096///
4097/// @param PD The partial diagnostic that will be printed out if T is not a
4098/// complete type.
4099///
4100/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
4101/// @c false otherwise.
4102bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4103                               const PartialDiagnostic &PD,
4104                               std::pair<SourceLocation,
4105                                         PartialDiagnostic> Note) {
4106  unsigned diag = PD.getDiagID();
4107
4108  // FIXME: Add this assertion to make sure we always get instantiation points.
4109  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
4110  // FIXME: Add this assertion to help us flush out problems with
4111  // checking for dependent types and type-dependent expressions.
4112  //
4113  //  assert(!T->isDependentType() &&
4114  //         "Can't ask whether a dependent type is complete");
4115
4116  // If we have a complete type, we're done.
4117  NamedDecl *Def = 0;
4118  if (!T->isIncompleteType(&Def)) {
4119    // If we know about the definition but it is not visible, complain.
4120    if (diag != 0 && Def && !LookupResult::isVisible(Def)) {
4121      // Suppress this error outside of a SFINAE context if we've already
4122      // emitted the error once for this type. There's no usefulness in
4123      // repeating the diagnostic.
4124      // FIXME: Add a Fix-It that imports the corresponding module or includes
4125      // the header.
4126      if (isSFINAEContext() || HiddenDefinitions.insert(Def)) {
4127        Diag(Loc, diag::err_module_private_definition) << T;
4128        Diag(Def->getLocation(), diag::note_previous_definition);
4129      }
4130    }
4131
4132    return false;
4133  }
4134
4135  const TagType *Tag = T->getAs<TagType>();
4136  const ObjCInterfaceType *IFace = 0;
4137
4138  if (Tag) {
4139    // Avoid diagnosing invalid decls as incomplete.
4140    if (Tag->getDecl()->isInvalidDecl())
4141      return true;
4142
4143    // Give the external AST source a chance to complete the type.
4144    if (Tag->getDecl()->hasExternalLexicalStorage()) {
4145      Context.getExternalSource()->CompleteType(Tag->getDecl());
4146      if (!Tag->isIncompleteType())
4147        return false;
4148    }
4149  }
4150  else if ((IFace = T->getAs<ObjCInterfaceType>())) {
4151    // Avoid diagnosing invalid decls as incomplete.
4152    if (IFace->getDecl()->isInvalidDecl())
4153      return true;
4154
4155    // Give the external AST source a chance to complete the type.
4156    if (IFace->getDecl()->hasExternalLexicalStorage()) {
4157      Context.getExternalSource()->CompleteType(IFace->getDecl());
4158      if (!IFace->isIncompleteType())
4159        return false;
4160    }
4161  }
4162
4163  // If we have a class template specialization or a class member of a
4164  // class template specialization, or an array with known size of such,
4165  // try to instantiate it.
4166  QualType MaybeTemplate = T;
4167  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
4168    MaybeTemplate = Array->getElementType();
4169  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
4170    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
4171          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
4172      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
4173        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
4174                                                      TSK_ImplicitInstantiation,
4175                                                      /*Complain=*/diag != 0);
4176    } else if (CXXRecordDecl *Rec
4177                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
4178      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
4179        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
4180        assert(MSInfo && "Missing member specialization information?");
4181        // This record was instantiated from a class within a template.
4182        if (MSInfo->getTemplateSpecializationKind()
4183                                               != TSK_ExplicitSpecialization)
4184          return InstantiateClass(Loc, Rec, Pattern,
4185                                  getTemplateInstantiationArgs(Rec),
4186                                  TSK_ImplicitInstantiation,
4187                                  /*Complain=*/diag != 0);
4188      }
4189    }
4190  }
4191
4192  if (diag == 0)
4193    return true;
4194
4195  // We have an incomplete type. Produce a diagnostic.
4196  Diag(Loc, PD) << T;
4197
4198  // If we have a note, produce it.
4199  if (!Note.first.isInvalid())
4200    Diag(Note.first, Note.second);
4201
4202  // If the type was a forward declaration of a class/struct/union
4203  // type, produce a note.
4204  if (Tag && !Tag->getDecl()->isInvalidDecl())
4205    Diag(Tag->getDecl()->getLocation(),
4206         Tag->isBeingDefined() ? diag::note_type_being_defined
4207                               : diag::note_forward_declaration)
4208      << QualType(Tag, 0);
4209
4210  // If the Objective-C class was a forward declaration, produce a note.
4211  if (IFace && !IFace->getDecl()->isInvalidDecl())
4212    Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
4213
4214  return true;
4215}
4216
4217bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4218                               const PartialDiagnostic &PD) {
4219  return RequireCompleteType(Loc, T, PD,
4220                             std::make_pair(SourceLocation(), PDiag(0)));
4221}
4222
4223bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4224                               unsigned DiagID) {
4225  return RequireCompleteType(Loc, T, PDiag(DiagID),
4226                             std::make_pair(SourceLocation(), PDiag(0)));
4227}
4228
4229/// @brief Ensure that the type T is a literal type.
4230///
4231/// This routine checks whether the type @p T is a literal type. If @p T is an
4232/// incomplete type, an attempt is made to complete it. If @p T is a literal
4233/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
4234/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
4235/// it the type @p T), along with notes explaining why the type is not a
4236/// literal type, and returns true.
4237///
4238/// @param Loc  The location in the source that the non-literal type
4239/// diagnostic should refer to.
4240///
4241/// @param T  The type that this routine is examining for literalness.
4242///
4243/// @param PD The partial diagnostic that will be printed out if T is not a
4244/// literal type.
4245///
4246/// @param AllowIncompleteType If true, an incomplete type will be considered
4247/// acceptable.
4248///
4249/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
4250/// @c false otherwise.
4251bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
4252                              const PartialDiagnostic &PD,
4253                              bool AllowIncompleteType) {
4254  assert(!T->isDependentType() && "type should not be dependent");
4255
4256  bool Incomplete = RequireCompleteType(Loc, T, 0);
4257  if (T->isLiteralType() ||
4258      (AllowIncompleteType && Incomplete && !T->isVoidType()))
4259    return false;
4260
4261  if (PD.getDiagID() == 0)
4262    return true;
4263
4264  Diag(Loc, PD) << T;
4265
4266  if (T->isVariableArrayType())
4267    return true;
4268
4269  const RecordType *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>();
4270  if (!RT)
4271    return true;
4272
4273  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4274
4275  // If the class has virtual base classes, then it's not an aggregate, and
4276  // cannot have any constexpr constructors, so is non-literal. This is better
4277  // to diagnose than the resulting absence of constexpr constructors.
4278  if (RD->getNumVBases()) {
4279    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
4280      << RD->isStruct() << RD->getNumVBases();
4281    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
4282           E = RD->vbases_end(); I != E; ++I)
4283      Diag(I->getSourceRange().getBegin(),
4284           diag::note_constexpr_virtual_base_here) << I->getSourceRange();
4285  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor()) {
4286    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
4287
4288    switch (RD->getTemplateSpecializationKind()) {
4289    case TSK_Undeclared:
4290    case TSK_ExplicitSpecialization:
4291      break;
4292
4293    case TSK_ImplicitInstantiation:
4294    case TSK_ExplicitInstantiationDeclaration:
4295    case TSK_ExplicitInstantiationDefinition:
4296      // If the base template had constexpr constructors which were
4297      // instantiated as non-constexpr constructors, explain why.
4298      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
4299           E = RD->ctor_end(); I != E; ++I) {
4300        if ((*I)->isCopyConstructor() || (*I)->isMoveConstructor())
4301          continue;
4302
4303        FunctionDecl *Base = (*I)->getInstantiatedFromMemberFunction();
4304        if (Base && Base->isConstexpr())
4305          CheckConstexprFunctionDecl(*I, CCK_NoteNonConstexprInstantiation);
4306      }
4307    }
4308  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
4309    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4310         E = RD->bases_end(); I != E; ++I) {
4311      if (!I->getType()->isLiteralType()) {
4312        Diag(I->getSourceRange().getBegin(),
4313             diag::note_non_literal_base_class)
4314          << RD << I->getType() << I->getSourceRange();
4315        return true;
4316      }
4317    }
4318    for (CXXRecordDecl::field_iterator I = RD->field_begin(),
4319         E = RD->field_end(); I != E; ++I) {
4320      if (!(*I)->getType()->isLiteralType()) {
4321        Diag((*I)->getLocation(), diag::note_non_literal_field)
4322          << RD << (*I) << (*I)->getType();
4323        return true;
4324      }
4325    }
4326  } else if (!RD->hasTrivialDestructor()) {
4327    // All fields and bases are of literal types, so have trivial destructors.
4328    // If this class's destructor is non-trivial it must be user-declared.
4329    CXXDestructorDecl *Dtor = RD->getDestructor();
4330    assert(Dtor && "class has literal fields and bases but no dtor?");
4331    if (!Dtor)
4332      return true;
4333
4334    Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
4335         diag::note_non_literal_user_provided_dtor :
4336         diag::note_non_literal_nontrivial_dtor) << RD;
4337  }
4338
4339  return true;
4340}
4341
4342/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
4343/// and qualified by the nested-name-specifier contained in SS.
4344QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
4345                                 const CXXScopeSpec &SS, QualType T) {
4346  if (T.isNull())
4347    return T;
4348  NestedNameSpecifier *NNS;
4349  if (SS.isValid())
4350    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4351  else {
4352    if (Keyword == ETK_None)
4353      return T;
4354    NNS = 0;
4355  }
4356  return Context.getElaboratedType(Keyword, NNS, T);
4357}
4358
4359QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
4360  ExprResult ER = CheckPlaceholderExpr(E);
4361  if (ER.isInvalid()) return QualType();
4362  E = ER.take();
4363
4364  if (!E->isTypeDependent()) {
4365    QualType T = E->getType();
4366    if (const TagType *TT = T->getAs<TagType>())
4367      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
4368  }
4369  return Context.getTypeOfExprType(E);
4370}
4371
4372/// getDecltypeForExpr - Given an expr, will return the decltype for
4373/// that expression, according to the rules in C++11
4374/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
4375static QualType getDecltypeForExpr(Sema &S, Expr *E) {
4376  if (E->isTypeDependent())
4377    return S.Context.DependentTy;
4378
4379  // C++11 [dcl.type.simple]p4:
4380  //   The type denoted by decltype(e) is defined as follows:
4381  //
4382  //     - if e is an unparenthesized id-expression or an unparenthesized class
4383  //       member access (5.2.5), decltype(e) is the type of the entity named
4384  //       by e. If there is no such entity, or if e names a set of overloaded
4385  //       functions, the program is ill-formed;
4386  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4387    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
4388      return VD->getType();
4389  }
4390  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
4391    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
4392      return FD->getType();
4393  }
4394
4395  // C++11 [expr.lambda.prim]p18:
4396  //   Every occurrence of decltype((x)) where x is a possibly
4397  //   parenthesized id-expression that names an entity of automatic
4398  //   storage duration is treated as if x were transformed into an
4399  //   access to a corresponding data member of the closure type that
4400  //   would have been declared if x were an odr-use of the denoted
4401  //   entity.
4402  using namespace sema;
4403  if (S.getCurLambda()) {
4404    if (isa<ParenExpr>(E)) {
4405      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4406        if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4407          QualType T = Var->getType();
4408          unsigned FunctionScopesIndex;
4409          bool Nested;
4410          // Determine whether we can capture this variable.
4411          if (S.canCaptureVariable(Var, DRE->getLocation(),
4412                                   /*Explicit=*/false, /*Diagnose=*/false,
4413                                   T, FunctionScopesIndex, Nested)) {
4414            // Outer lambda scopes may have an effect on the type of a
4415            // capture. Walk the captures outside-in to determine
4416            // whether they can add 'const' to a capture by copy.
4417            if (FunctionScopesIndex == S.FunctionScopes.size())
4418              --FunctionScopesIndex;
4419            for (unsigned I = FunctionScopesIndex,
4420                          E = S.FunctionScopes.size();
4421                 I != E; ++I) {
4422              LambdaScopeInfo *LSI
4423                = dyn_cast<LambdaScopeInfo>(S.FunctionScopes[I]);
4424              if (!LSI)
4425                continue;
4426
4427              bool ByRef = false;
4428              if (LSI->isCaptured(Var))
4429                ByRef = LSI->getCapture(Var).isReferenceCapture();
4430              else
4431                ByRef = (LSI->ImpCaptureStyle
4432                           == CapturingScopeInfo::ImpCap_LambdaByref);
4433
4434              T = S.getLambdaCaptureFieldType(T, ByRef);
4435              if (!ByRef && !LSI->Mutable)
4436                T.addConst();
4437            }
4438
4439            if (!T->isReferenceType())
4440              T = S.Context.getLValueReferenceType(T);
4441            return T;
4442          }
4443        }
4444      }
4445    }
4446  }
4447
4448
4449  // C++11 [dcl.type.simple]p4:
4450  //   [...]
4451  QualType T = E->getType();
4452  switch (E->getValueKind()) {
4453  //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
4454  //       type of e;
4455  case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
4456  //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
4457  //       type of e;
4458  case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
4459  //  - otherwise, decltype(e) is the type of e.
4460  case VK_RValue: break;
4461  }
4462
4463  return T;
4464}
4465
4466QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
4467  ExprResult ER = CheckPlaceholderExpr(E);
4468  if (ER.isInvalid()) return QualType();
4469  E = ER.take();
4470
4471  return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
4472}
4473
4474QualType Sema::BuildUnaryTransformType(QualType BaseType,
4475                                       UnaryTransformType::UTTKind UKind,
4476                                       SourceLocation Loc) {
4477  switch (UKind) {
4478  case UnaryTransformType::EnumUnderlyingType:
4479    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
4480      Diag(Loc, diag::err_only_enums_have_underlying_types);
4481      return QualType();
4482    } else {
4483      QualType Underlying = BaseType;
4484      if (!BaseType->isDependentType()) {
4485        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
4486        assert(ED && "EnumType has no EnumDecl");
4487        DiagnoseUseOfDecl(ED, Loc);
4488        Underlying = ED->getIntegerType();
4489      }
4490      assert(!Underlying.isNull());
4491      return Context.getUnaryTransformType(BaseType, Underlying,
4492                                        UnaryTransformType::EnumUnderlyingType);
4493    }
4494  }
4495  llvm_unreachable("unknown unary transform type");
4496}
4497
4498QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
4499  if (!T->isDependentType()) {
4500    // FIXME: It isn't entirely clear whether incomplete atomic types
4501    // are allowed or not; for simplicity, ban them for the moment.
4502    if (RequireCompleteType(Loc, T,
4503                            PDiag(diag::err_atomic_specifier_bad_type) << 0))
4504      return QualType();
4505
4506    int DisallowedKind = -1;
4507    if (T->isArrayType())
4508      DisallowedKind = 1;
4509    else if (T->isFunctionType())
4510      DisallowedKind = 2;
4511    else if (T->isReferenceType())
4512      DisallowedKind = 3;
4513    else if (T->isAtomicType())
4514      DisallowedKind = 4;
4515    else if (T.hasQualifiers())
4516      DisallowedKind = 5;
4517    else if (!T.isTriviallyCopyableType(Context))
4518      // Some other non-trivially-copyable type (probably a C++ class)
4519      DisallowedKind = 6;
4520
4521    if (DisallowedKind != -1) {
4522      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
4523      return QualType();
4524    }
4525
4526    // FIXME: Do we need any handling for ARC here?
4527  }
4528
4529  // Build the pointer type.
4530  return Context.getAtomicType(T);
4531}
4532