SemaType.cpp revision 769e730a8333b9486e70c949873eb28af39f8fcb
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/Expr.h"
18#include "clang/Basic/Diagnostic.h"
19#include "clang/Parse/DeclSpec.h"
20using namespace clang;
21
22/// ConvertDeclSpecToType - Convert the specified declspec to the appropriate
23/// type object.  This returns null on error.
24QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS) {
25  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
26  // checking.
27  QualType Result;
28
29  switch (DS.getTypeSpecType()) {
30  default: assert(0 && "Unknown TypeSpecType!");
31  case DeclSpec::TST_void:
32    Result = Context.VoidTy;
33    break;
34  case DeclSpec::TST_char:
35    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
36      Result = Context.CharTy;
37    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
38      Result = Context.SignedCharTy;
39    else {
40      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
41             "Unknown TSS value");
42      Result = Context.UnsignedCharTy;
43    }
44    break;
45  case DeclSpec::TST_wchar:
46    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
47      Result = Context.WCharTy;
48    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
49      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec,
50           DS.getSpecifierName(DS.getTypeSpecType()));
51      Result = Context.getSignedWCharType();
52    } else {
53      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
54        "Unknown TSS value");
55      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec,
56           DS.getSpecifierName(DS.getTypeSpecType()));
57      Result = Context.getUnsignedWCharType();
58    }
59    break;
60  case DeclSpec::TST_unspecified:
61    // "<proto1,proto2>" is an objc qualified ID with a missing id.
62      if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
63      Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
64                                              DS.getNumProtocolQualifiers());
65      break;
66    }
67
68    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
69    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
70    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
71    // Note that the one exception to this is function definitions, which are
72    // allowed to be completely missing a declspec.  This is handled in the
73    // parser already though by it pretending to have seen an 'int' in this
74    // case.
75    if (getLangOptions().ImplicitInt) {
76      if ((DS.getParsedSpecifiers() & (DeclSpec::PQ_StorageClassSpecifier |
77                                       DeclSpec::PQ_TypeSpecifier |
78                                       DeclSpec::PQ_TypeQualifier)) == 0)
79        Diag(DS.getSourceRange().getBegin(), diag::ext_missing_declspec);
80    } else {
81      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
82      // "At least one type specifier shall be given in the declaration
83      // specifiers in each declaration, and in the specifier-qualifier list in
84      // each struct declaration and type name."
85      if (!DS.hasTypeSpecifier())
86        Diag(DS.getSourceRange().getBegin(), diag::ext_missing_type_specifier);
87    }
88
89    // FALL THROUGH.
90  case DeclSpec::TST_int: {
91    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
92      switch (DS.getTypeSpecWidth()) {
93      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
94      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
95      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
96      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
97      }
98    } else {
99      switch (DS.getTypeSpecWidth()) {
100      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
101      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
102      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
103      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
104      }
105    }
106    break;
107  }
108  case DeclSpec::TST_float: Result = Context.FloatTy; break;
109  case DeclSpec::TST_double:
110    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
111      Result = Context.LongDoubleTy;
112    else
113      Result = Context.DoubleTy;
114    break;
115  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
116  case DeclSpec::TST_decimal32:    // _Decimal32
117  case DeclSpec::TST_decimal64:    // _Decimal64
118  case DeclSpec::TST_decimal128:   // _Decimal128
119    assert(0 && "FIXME: GNU decimal extensions not supported yet!");
120  case DeclSpec::TST_class:
121  case DeclSpec::TST_enum:
122  case DeclSpec::TST_union:
123  case DeclSpec::TST_struct: {
124    Decl *D = static_cast<Decl *>(DS.getTypeRep());
125    assert(D && "Didn't get a decl for a class/enum/union/struct?");
126    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
127           DS.getTypeSpecSign() == 0 &&
128           "Can't handle qualifiers on typedef names yet!");
129    // TypeQuals handled by caller.
130    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
131    break;
132  }
133  case DeclSpec::TST_typedef: {
134    Decl *D = static_cast<Decl *>(DS.getTypeRep());
135    assert(D && "Didn't get a decl for a typedef?");
136    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
137           DS.getTypeSpecSign() == 0 &&
138           "Can't handle qualifiers on typedef names yet!");
139    DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers();
140
141    // FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so
142    // we have this "hack" for now...
143    if (ObjCInterfaceDecl *ObjCIntDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
144      if (PQ == 0) {
145        Result = Context.getObjCInterfaceType(ObjCIntDecl);
146        break;
147      }
148
149      Result = Context.getObjCQualifiedInterfaceType(ObjCIntDecl,
150                                                     (ObjCProtocolDecl**)PQ,
151                                                 DS.getNumProtocolQualifiers());
152      break;
153    } else if (TypedefDecl *typeDecl = dyn_cast<TypedefDecl>(D)) {
154      if (Context.getObjCIdType() == Context.getTypedefType(typeDecl) && PQ) {
155        // id<protocol-list>
156        Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
157                                                DS.getNumProtocolQualifiers());
158        break;
159      }
160    }
161    // TypeQuals handled by caller.
162    Result = Context.getTypeDeclType(dyn_cast<TypeDecl>(D));
163    break;
164  }
165  case DeclSpec::TST_typeofType:
166    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
167    assert(!Result.isNull() && "Didn't get a type for typeof?");
168    // TypeQuals handled by caller.
169    Result = Context.getTypeOfType(Result);
170    break;
171  case DeclSpec::TST_typeofExpr: {
172    Expr *E = static_cast<Expr *>(DS.getTypeRep());
173    assert(E && "Didn't get an expression for typeof?");
174    // TypeQuals handled by caller.
175    Result = Context.getTypeOfExpr(E);
176    break;
177  }
178  }
179
180  // Handle complex types.
181  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex)
182    Result = Context.getComplexType(Result);
183
184  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
185         "FIXME: imaginary types not supported yet!");
186
187  // See if there are any attributes on the declspec that apply to the type (as
188  // opposed to the decl).
189  if (const AttributeList *AL = DS.getAttributes())
190    ProcessTypeAttributeList(Result, AL);
191
192  // Apply const/volatile/restrict qualifiers to T.
193  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
194
195    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
196    // or incomplete types shall not be restrict-qualified."  C++ also allows
197    // restrict-qualified references.
198    if (TypeQuals & QualType::Restrict) {
199      if (const PointerLikeType *PT = Result->getAsPointerLikeType()) {
200        QualType EltTy = PT->getPointeeType();
201
202        // If we have a pointer or reference, the pointee must have an object or
203        // incomplete type.
204        if (!EltTy->isIncompleteOrObjectType()) {
205          Diag(DS.getRestrictSpecLoc(),
206               diag::err_typecheck_invalid_restrict_invalid_pointee,
207               EltTy.getAsString(), DS.getSourceRange());
208          TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
209        }
210      } else {
211        Diag(DS.getRestrictSpecLoc(),
212             diag::err_typecheck_invalid_restrict_not_pointer,
213             Result.getAsString(), DS.getSourceRange());
214        TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
215      }
216    }
217
218    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
219    // of a function type includes any type qualifiers, the behavior is
220    // undefined."
221    if (Result->isFunctionType() && TypeQuals) {
222      // Get some location to point at, either the C or V location.
223      SourceLocation Loc;
224      if (TypeQuals & QualType::Const)
225        Loc = DS.getConstSpecLoc();
226      else {
227        assert((TypeQuals & QualType::Volatile) &&
228               "Has CV quals but not C or V?");
229        Loc = DS.getVolatileSpecLoc();
230      }
231      Diag(Loc, diag::warn_typecheck_function_qualifiers,
232           Result.getAsString(), DS.getSourceRange());
233    }
234
235    Result = Result.getQualifiedType(TypeQuals);
236  }
237  return Result;
238}
239
240/// GetTypeForDeclarator - Convert the type for the specified declarator to Type
241/// instances.
242QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
243  // long long is a C99 feature.
244  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
245      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
246    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
247
248  QualType T = ConvertDeclSpecToType(D.getDeclSpec());
249
250  // Walk the DeclTypeInfo, building the recursive type as we go.  DeclTypeInfos
251  // are ordered from the identifier out, which is opposite of what we want :).
252  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
253    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
254    switch (DeclType.Kind) {
255    default: assert(0 && "Unknown decltype!");
256    case DeclaratorChunk::Pointer:
257      if (T->isReferenceType()) {
258        // C++ 8.3.2p4: There shall be no ... pointers to references ...
259        Diag(DeclType.Loc, diag::err_illegal_decl_pointer_to_reference,
260             D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
261        D.setInvalidType(true);
262        T = Context.IntTy;
263      }
264
265      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
266      // object or incomplete types shall not be restrict-qualified."
267      if ((DeclType.Ptr.TypeQuals & QualType::Restrict) &&
268          !T->isIncompleteOrObjectType()) {
269        Diag(DeclType.Loc,
270             diag::err_typecheck_invalid_restrict_invalid_pointee,
271             T.getAsString());
272        DeclType.Ptr.TypeQuals &= QualType::Restrict;
273      }
274
275      // Apply the pointer typequals to the pointer object.
276      T = Context.getPointerType(T).getQualifiedType(DeclType.Ptr.TypeQuals);
277      break;
278    case DeclaratorChunk::Reference:
279      if (const ReferenceType *RT = T->getAsReferenceType()) {
280        // C++ 8.3.2p4: There shall be no references to references.
281        Diag(DeclType.Loc, diag::err_illegal_decl_reference_to_reference,
282             D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
283        D.setInvalidType(true);
284        T = RT->getPointeeType();
285      }
286
287      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
288      // object or incomplete types shall not be restrict-qualified."
289      if (DeclType.Ref.HasRestrict &&
290          !T->isIncompleteOrObjectType()) {
291        Diag(DeclType.Loc,
292             diag::err_typecheck_invalid_restrict_invalid_pointee,
293             T.getAsString());
294        DeclType.Ref.HasRestrict = false;
295      }
296
297      T = Context.getReferenceType(T);
298
299      // Handle restrict on references.
300      if (DeclType.Ref.HasRestrict)
301        T.addRestrict();
302      break;
303    case DeclaratorChunk::Array: {
304      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
305      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
306      ArrayType::ArraySizeModifier ASM;
307      if (ATI.isStar)
308        ASM = ArrayType::Star;
309      else if (ATI.hasStatic)
310        ASM = ArrayType::Static;
311      else
312        ASM = ArrayType::Normal;
313
314      // C99 6.7.5.2p1: If the element type is an incomplete or function type,
315      // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
316      if (T->isIncompleteType()) {
317        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_incomplete_type,
318             T.getAsString());
319        T = Context.IntTy;
320        D.setInvalidType(true);
321      } else if (T->isFunctionType()) {
322        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_functions,
323             D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
324        T = Context.getPointerType(T);
325        D.setInvalidType(true);
326      } else if (const ReferenceType *RT = T->getAsReferenceType()) {
327        // C++ 8.3.2p4: There shall be no ... arrays of references ...
328        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_references,
329             D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
330        T = RT->getPointeeType();
331        D.setInvalidType(true);
332      } else if (const RecordType *EltTy = T->getAsRecordType()) {
333        // If the element type is a struct or union that contains a variadic
334        // array, reject it: C99 6.7.2.1p2.
335        if (EltTy->getDecl()->hasFlexibleArrayMember()) {
336          Diag(DeclType.Loc, diag::err_flexible_array_in_array,
337               T.getAsString());
338          T = Context.IntTy;
339          D.setInvalidType(true);
340        }
341      } else if (T->isObjCInterfaceType()) {
342        Diag(DeclType.Loc, diag::warn_objc_array_of_interfaces,
343             T.getAsString());
344      }
345
346      // C99 6.7.5.2p1: The size expression shall have integer type.
347      if (ArraySize && !ArraySize->getType()->isIntegerType()) {
348        Diag(ArraySize->getLocStart(), diag::err_array_size_non_int,
349             ArraySize->getType().getAsString(), ArraySize->getSourceRange());
350        D.setInvalidType(true);
351        delete ArraySize;
352        ATI.NumElts = ArraySize = 0;
353      }
354      llvm::APSInt ConstVal(32);
355      if (!ArraySize) {
356        T = Context.getIncompleteArrayType(T, ASM, ATI.TypeQuals);
357      } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
358                 !T->isConstantSizeType()) {
359        // Per C99, a variable array is an array with either a non-constant
360        // size or an element type that has a non-constant-size
361        T = Context.getVariableArrayType(T, ArraySize, ASM, ATI.TypeQuals);
362      } else {
363        // C99 6.7.5.2p1: If the expression is a constant expression, it shall
364        // have a value greater than zero.
365        if (ConstVal.isSigned()) {
366          if (ConstVal.isNegative()) {
367            Diag(ArraySize->getLocStart(),
368                 diag::err_typecheck_negative_array_size,
369                 ArraySize->getSourceRange());
370            D.setInvalidType(true);
371          } else if (ConstVal == 0) {
372            // GCC accepts zero sized static arrays.
373            Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size,
374                 ArraySize->getSourceRange());
375          }
376        }
377        T = Context.getConstantArrayType(T, ConstVal, ASM, ATI.TypeQuals);
378      }
379      // If this is not C99, extwarn about VLA's and C99 array size modifiers.
380      if (!getLangOptions().C99 &&
381          (ASM != ArrayType::Normal ||
382           (ArraySize && !ArraySize->isIntegerConstantExpr(Context))))
383        Diag(D.getIdentifierLoc(), diag::ext_vla);
384      break;
385    }
386    case DeclaratorChunk::Function:
387      // If the function declarator has a prototype (i.e. it is not () and
388      // does not have a K&R-style identifier list), then the arguments are part
389      // of the type, otherwise the argument list is ().
390      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
391
392      // C99 6.7.5.3p1: The return type may not be a function or array type.
393      if (T->isArrayType() || T->isFunctionType()) {
394        Diag(DeclType.Loc, diag::err_func_returning_array_function,
395             T.getAsString());
396        T = Context.IntTy;
397        D.setInvalidType(true);
398      }
399
400      if (FTI.NumArgs == 0) {
401        // Simple void foo(), where the incoming T is the result type.
402        T = Context.getFunctionTypeNoProto(T);
403      } else if (FTI.ArgInfo[0].Param == 0) {
404        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
405        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
406      } else {
407        // Otherwise, we have a function with an argument list that is
408        // potentially variadic.
409        llvm::SmallVector<QualType, 16> ArgTys;
410
411        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
412          ParmVarDecl *Param = (ParmVarDecl *)FTI.ArgInfo[i].Param;
413          QualType ArgTy = Param->getType();
414          assert(!ArgTy.isNull() && "Couldn't parse type?");
415          //
416          // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
417          // This matches the conversion that is done in
418          // Sema::ActOnParamDeclarator(). Without this conversion, the
419          // argument type in the function prototype *will not* match the
420          // type in ParmVarDecl (which makes the code generator unhappy).
421          //
422          // FIXME: We still apparently need the conversion in
423          // Sema::ActOnParamDeclarator(). This doesn't make any sense, since
424          // it should be driving off the type being created here.
425          //
426          // FIXME: If a source translation tool needs to see the original type,
427          // then we need to consider storing both types somewhere...
428          //
429          if (ArgTy->isArrayType()) {
430            ArgTy = Context.getArrayDecayedType(ArgTy);
431          } else if (ArgTy->isFunctionType())
432            ArgTy = Context.getPointerType(ArgTy);
433
434          // Look for 'void'.  void is allowed only as a single argument to a
435          // function with no other parameters (C99 6.7.5.3p10).  We record
436          // int(void) as a FunctionTypeProto with an empty argument list.
437          else if (ArgTy->isVoidType()) {
438            // If this is something like 'float(int, void)', reject it.  'void'
439            // is an incomplete type (C99 6.2.5p19) and function decls cannot
440            // have arguments of incomplete type.
441            if (FTI.NumArgs != 1 || FTI.isVariadic) {
442              Diag(DeclType.Loc, diag::err_void_only_param);
443              ArgTy = Context.IntTy;
444              Param->setType(ArgTy);
445            } else if (FTI.ArgInfo[i].Ident) {
446              // Reject, but continue to parse 'int(void abc)'.
447              Diag(FTI.ArgInfo[i].IdentLoc,
448                   diag::err_param_with_void_type);
449              ArgTy = Context.IntTy;
450              Param->setType(ArgTy);
451            } else {
452              // Reject, but continue to parse 'float(const void)'.
453              if (ArgTy.getCVRQualifiers())
454                Diag(DeclType.Loc, diag::err_void_param_qualified);
455
456              // Do not add 'void' to the ArgTys list.
457              break;
458            }
459          } else if (!FTI.hasPrototype) {
460            if (ArgTy->isPromotableIntegerType()) {
461              ArgTy = Context.IntTy;
462            } else if (const BuiltinType* BTy = ArgTy->getAsBuiltinType()) {
463              if (BTy->getKind() == BuiltinType::Float)
464                ArgTy = Context.DoubleTy;
465            }
466          }
467
468          ArgTys.push_back(ArgTy);
469        }
470        T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
471                                    FTI.isVariadic);
472      }
473      break;
474    }
475
476    // See if there are any attributes on this declarator chunk.
477    if (const AttributeList *AL = DeclType.getAttrs())
478      ProcessTypeAttributeList(T, AL);
479  }
480
481  // If there were any type attributes applied to the decl itself (not the
482  // type, apply the type attribute to the type!)
483  if (const AttributeList *Attrs = D.getAttributes())
484    ProcessTypeAttributeList(T, Attrs);
485
486  return T;
487}
488
489/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
490/// declarator
491QualType Sema::ObjCGetTypeForMethodDefinition(DeclTy *D) {
492  ObjCMethodDecl *MDecl = dyn_cast<ObjCMethodDecl>(static_cast<Decl *>(D));
493  QualType T = MDecl->getResultType();
494  llvm::SmallVector<QualType, 16> ArgTys;
495
496  // Add the first two invisible argument types for self and _cmd.
497  if (MDecl->isInstance()) {
498    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
499    selfTy = Context.getPointerType(selfTy);
500    ArgTys.push_back(selfTy);
501  }
502  else
503    ArgTys.push_back(Context.getObjCIdType());
504  ArgTys.push_back(Context.getObjCSelType());
505
506  for (int i = 0, e = MDecl->getNumParams(); i != e; ++i) {
507    ParmVarDecl *PDecl = MDecl->getParamDecl(i);
508    QualType ArgTy = PDecl->getType();
509    assert(!ArgTy.isNull() && "Couldn't parse type?");
510    // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
511    // This matches the conversion that is done in
512    // Sema::ActOnParamDeclarator().
513    if (ArgTy->isArrayType())
514      ArgTy = Context.getArrayDecayedType(ArgTy);
515    else if (ArgTy->isFunctionType())
516      ArgTy = Context.getPointerType(ArgTy);
517    ArgTys.push_back(ArgTy);
518  }
519  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
520                              MDecl->isVariadic());
521  return T;
522}
523
524Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
525  // C99 6.7.6: Type names have no identifier.  This is already validated by
526  // the parser.
527  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
528
529  QualType T = GetTypeForDeclarator(D, S);
530
531  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
532
533  // Check that there are no default arguments (C++ only).
534  if (getLangOptions().CPlusPlus)
535    CheckExtraCXXDefaultArguments(D);
536
537  // In this context, we *do not* check D.getInvalidType(). If the declarator
538  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
539  // though it will not reflect the user specified type.
540  return T.getAsOpaquePtr();
541}
542
543
544
545//===----------------------------------------------------------------------===//
546// Type Attribute Processing
547//===----------------------------------------------------------------------===//
548
549/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
550/// specified type.  The attribute contains 1 argument, the id of the address
551/// space for the type.
552static void HandleAddressSpaceTypeAttribute(QualType &Type,
553                                            const AttributeList &Attr, Sema &S){
554  // If this type is already address space qualified, reject it.
555  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
556  // for two or more different address spaces."
557  if (Type.getAddressSpace()) {
558    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
559    return;
560  }
561
562  // Check the attribute arguments.
563  if (Attr.getNumArgs() != 1) {
564    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
565           std::string("1"));
566    return;
567  }
568  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
569  llvm::APSInt addrSpace(32);
570  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
571    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int,
572           ASArgExpr->getSourceRange());
573    return;
574  }
575
576  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
577  Type = S.Context.getASQualType(Type, ASIdx);
578}
579
580void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
581  // Scan through and apply attributes to this type where it makes sense.  Some
582  // attributes (such as __address_space__, __vector_size__, etc) apply to the
583  // type, but others can be present in the type specifiers even though they
584  // apply to the decl.  Here we apply type attributes and ignore the rest.
585  for (; AL; AL = AL->getNext()) {
586    // If this is an attribute we can handle, do so now, otherwise, add it to
587    // the LeftOverAttrs list for rechaining.
588    switch (AL->getKind()) {
589    default: break;
590    case AttributeList::AT_address_space:
591      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
592      break;
593    }
594  }
595}
596
597
598