SemaType.cpp revision 78a542478dd63c2789816dcc1cdab5c9a6eef99b
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Template.h"
16#include "clang/Basic/OpenCL.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeLocVisitor.h"
24#include "clang/AST/Expr.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/DelayedDiagnostic.h"
30#include "clang/Sema/Lookup.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/Support/ErrorHandling.h"
33using namespace clang;
34
35/// isOmittedBlockReturnType - Return true if this declarator is missing a
36/// return type because this is a omitted return type on a block literal.
37static bool isOmittedBlockReturnType(const Declarator &D) {
38  if (D.getContext() != Declarator::BlockLiteralContext ||
39      D.getDeclSpec().hasTypeSpecifier())
40    return false;
41
42  if (D.getNumTypeObjects() == 0)
43    return true;   // ^{ ... }
44
45  if (D.getNumTypeObjects() == 1 &&
46      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
47    return true;   // ^(int X, float Y) { ... }
48
49  return false;
50}
51
52/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
53/// doesn't apply to the given type.
54static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
55                                     QualType type) {
56  bool useExpansionLoc = false;
57
58  unsigned diagID = 0;
59  switch (attr.getKind()) {
60  case AttributeList::AT_objc_gc:
61    diagID = diag::warn_pointer_attribute_wrong_type;
62    useExpansionLoc = true;
63    break;
64
65  case AttributeList::AT_objc_ownership:
66    diagID = diag::warn_objc_object_attribute_wrong_type;
67    useExpansionLoc = true;
68    break;
69
70  default:
71    // Assume everything else was a function attribute.
72    diagID = diag::warn_function_attribute_wrong_type;
73    break;
74  }
75
76  SourceLocation loc = attr.getLoc();
77  StringRef name = attr.getName()->getName();
78
79  // The GC attributes are usually written with macros;  special-case them.
80  if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
81    if (attr.getParameterName()->isStr("strong")) {
82      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
83    } else if (attr.getParameterName()->isStr("weak")) {
84      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
85    }
86  }
87
88  S.Diag(loc, diagID) << name << type;
89}
90
91// objc_gc applies to Objective-C pointers or, otherwise, to the
92// smallest available pointer type (i.e. 'void*' in 'void**').
93#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
94    case AttributeList::AT_objc_gc: \
95    case AttributeList::AT_objc_ownership
96
97// Function type attributes.
98#define FUNCTION_TYPE_ATTRS_CASELIST \
99    case AttributeList::AT_noreturn: \
100    case AttributeList::AT_cdecl: \
101    case AttributeList::AT_fastcall: \
102    case AttributeList::AT_stdcall: \
103    case AttributeList::AT_thiscall: \
104    case AttributeList::AT_pascal: \
105    case AttributeList::AT_regparm: \
106    case AttributeList::AT_pcs \
107
108namespace {
109  /// An object which stores processing state for the entire
110  /// GetTypeForDeclarator process.
111  class TypeProcessingState {
112    Sema &sema;
113
114    /// The declarator being processed.
115    Declarator &declarator;
116
117    /// The index of the declarator chunk we're currently processing.
118    /// May be the total number of valid chunks, indicating the
119    /// DeclSpec.
120    unsigned chunkIndex;
121
122    /// Whether there are non-trivial modifications to the decl spec.
123    bool trivial;
124
125    /// Whether we saved the attributes in the decl spec.
126    bool hasSavedAttrs;
127
128    /// The original set of attributes on the DeclSpec.
129    SmallVector<AttributeList*, 2> savedAttrs;
130
131    /// A list of attributes to diagnose the uselessness of when the
132    /// processing is complete.
133    SmallVector<AttributeList*, 2> ignoredTypeAttrs;
134
135  public:
136    TypeProcessingState(Sema &sema, Declarator &declarator)
137      : sema(sema), declarator(declarator),
138        chunkIndex(declarator.getNumTypeObjects()),
139        trivial(true), hasSavedAttrs(false) {}
140
141    Sema &getSema() const {
142      return sema;
143    }
144
145    Declarator &getDeclarator() const {
146      return declarator;
147    }
148
149    unsigned getCurrentChunkIndex() const {
150      return chunkIndex;
151    }
152
153    void setCurrentChunkIndex(unsigned idx) {
154      assert(idx <= declarator.getNumTypeObjects());
155      chunkIndex = idx;
156    }
157
158    AttributeList *&getCurrentAttrListRef() const {
159      assert(chunkIndex <= declarator.getNumTypeObjects());
160      if (chunkIndex == declarator.getNumTypeObjects())
161        return getMutableDeclSpec().getAttributes().getListRef();
162      return declarator.getTypeObject(chunkIndex).getAttrListRef();
163    }
164
165    /// Save the current set of attributes on the DeclSpec.
166    void saveDeclSpecAttrs() {
167      // Don't try to save them multiple times.
168      if (hasSavedAttrs) return;
169
170      DeclSpec &spec = getMutableDeclSpec();
171      for (AttributeList *attr = spec.getAttributes().getList(); attr;
172             attr = attr->getNext())
173        savedAttrs.push_back(attr);
174      trivial &= savedAttrs.empty();
175      hasSavedAttrs = true;
176    }
177
178    /// Record that we had nowhere to put the given type attribute.
179    /// We will diagnose such attributes later.
180    void addIgnoredTypeAttr(AttributeList &attr) {
181      ignoredTypeAttrs.push_back(&attr);
182    }
183
184    /// Diagnose all the ignored type attributes, given that the
185    /// declarator worked out to the given type.
186    void diagnoseIgnoredTypeAttrs(QualType type) const {
187      for (SmallVectorImpl<AttributeList*>::const_iterator
188             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
189           i != e; ++i)
190        diagnoseBadTypeAttribute(getSema(), **i, type);
191    }
192
193    ~TypeProcessingState() {
194      if (trivial) return;
195
196      restoreDeclSpecAttrs();
197    }
198
199  private:
200    DeclSpec &getMutableDeclSpec() const {
201      return const_cast<DeclSpec&>(declarator.getDeclSpec());
202    }
203
204    void restoreDeclSpecAttrs() {
205      assert(hasSavedAttrs);
206
207      if (savedAttrs.empty()) {
208        getMutableDeclSpec().getAttributes().set(0);
209        return;
210      }
211
212      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
213      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
214        savedAttrs[i]->setNext(savedAttrs[i+1]);
215      savedAttrs.back()->setNext(0);
216    }
217  };
218
219  /// Basically std::pair except that we really want to avoid an
220  /// implicit operator= for safety concerns.  It's also a minor
221  /// link-time optimization for this to be a private type.
222  struct AttrAndList {
223    /// The attribute.
224    AttributeList &first;
225
226    /// The head of the list the attribute is currently in.
227    AttributeList *&second;
228
229    AttrAndList(AttributeList &attr, AttributeList *&head)
230      : first(attr), second(head) {}
231  };
232}
233
234namespace llvm {
235  template <> struct isPodLike<AttrAndList> {
236    static const bool value = true;
237  };
238}
239
240static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
241  attr.setNext(head);
242  head = &attr;
243}
244
245static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
246  if (head == &attr) {
247    head = attr.getNext();
248    return;
249  }
250
251  AttributeList *cur = head;
252  while (true) {
253    assert(cur && cur->getNext() && "ran out of attrs?");
254    if (cur->getNext() == &attr) {
255      cur->setNext(attr.getNext());
256      return;
257    }
258    cur = cur->getNext();
259  }
260}
261
262static void moveAttrFromListToList(AttributeList &attr,
263                                   AttributeList *&fromList,
264                                   AttributeList *&toList) {
265  spliceAttrOutOfList(attr, fromList);
266  spliceAttrIntoList(attr, toList);
267}
268
269static void processTypeAttrs(TypeProcessingState &state,
270                             QualType &type, bool isDeclSpec,
271                             AttributeList *attrs);
272
273static bool handleFunctionTypeAttr(TypeProcessingState &state,
274                                   AttributeList &attr,
275                                   QualType &type);
276
277static bool handleObjCGCTypeAttr(TypeProcessingState &state,
278                                 AttributeList &attr, QualType &type);
279
280static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
281                                       AttributeList &attr, QualType &type);
282
283static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
284                                      AttributeList &attr, QualType &type) {
285  if (attr.getKind() == AttributeList::AT_objc_gc)
286    return handleObjCGCTypeAttr(state, attr, type);
287  assert(attr.getKind() == AttributeList::AT_objc_ownership);
288  return handleObjCOwnershipTypeAttr(state, attr, type);
289}
290
291/// Given that an objc_gc attribute was written somewhere on a
292/// declaration *other* than on the declarator itself (for which, use
293/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
294/// didn't apply in whatever position it was written in, try to move
295/// it to a more appropriate position.
296static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
297                                          AttributeList &attr,
298                                          QualType type) {
299  Declarator &declarator = state.getDeclarator();
300  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
301    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
302    switch (chunk.Kind) {
303    case DeclaratorChunk::Pointer:
304    case DeclaratorChunk::BlockPointer:
305      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
306                             chunk.getAttrListRef());
307      return;
308
309    case DeclaratorChunk::Paren:
310    case DeclaratorChunk::Array:
311      continue;
312
313    // Don't walk through these.
314    case DeclaratorChunk::Reference:
315    case DeclaratorChunk::Function:
316    case DeclaratorChunk::MemberPointer:
317      goto error;
318    }
319  }
320 error:
321
322  diagnoseBadTypeAttribute(state.getSema(), attr, type);
323}
324
325/// Distribute an objc_gc type attribute that was written on the
326/// declarator.
327static void
328distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
329                                            AttributeList &attr,
330                                            QualType &declSpecType) {
331  Declarator &declarator = state.getDeclarator();
332
333  // objc_gc goes on the innermost pointer to something that's not a
334  // pointer.
335  unsigned innermost = -1U;
336  bool considerDeclSpec = true;
337  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
338    DeclaratorChunk &chunk = declarator.getTypeObject(i);
339    switch (chunk.Kind) {
340    case DeclaratorChunk::Pointer:
341    case DeclaratorChunk::BlockPointer:
342      innermost = i;
343      continue;
344
345    case DeclaratorChunk::Reference:
346    case DeclaratorChunk::MemberPointer:
347    case DeclaratorChunk::Paren:
348    case DeclaratorChunk::Array:
349      continue;
350
351    case DeclaratorChunk::Function:
352      considerDeclSpec = false;
353      goto done;
354    }
355  }
356 done:
357
358  // That might actually be the decl spec if we weren't blocked by
359  // anything in the declarator.
360  if (considerDeclSpec) {
361    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
362      // Splice the attribute into the decl spec.  Prevents the
363      // attribute from being applied multiple times and gives
364      // the source-location-filler something to work with.
365      state.saveDeclSpecAttrs();
366      moveAttrFromListToList(attr, declarator.getAttrListRef(),
367               declarator.getMutableDeclSpec().getAttributes().getListRef());
368      return;
369    }
370  }
371
372  // Otherwise, if we found an appropriate chunk, splice the attribute
373  // into it.
374  if (innermost != -1U) {
375    moveAttrFromListToList(attr, declarator.getAttrListRef(),
376                       declarator.getTypeObject(innermost).getAttrListRef());
377    return;
378  }
379
380  // Otherwise, diagnose when we're done building the type.
381  spliceAttrOutOfList(attr, declarator.getAttrListRef());
382  state.addIgnoredTypeAttr(attr);
383}
384
385/// A function type attribute was written somewhere in a declaration
386/// *other* than on the declarator itself or in the decl spec.  Given
387/// that it didn't apply in whatever position it was written in, try
388/// to move it to a more appropriate position.
389static void distributeFunctionTypeAttr(TypeProcessingState &state,
390                                       AttributeList &attr,
391                                       QualType type) {
392  Declarator &declarator = state.getDeclarator();
393
394  // Try to push the attribute from the return type of a function to
395  // the function itself.
396  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
397    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
398    switch (chunk.Kind) {
399    case DeclaratorChunk::Function:
400      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
401                             chunk.getAttrListRef());
402      return;
403
404    case DeclaratorChunk::Paren:
405    case DeclaratorChunk::Pointer:
406    case DeclaratorChunk::BlockPointer:
407    case DeclaratorChunk::Array:
408    case DeclaratorChunk::Reference:
409    case DeclaratorChunk::MemberPointer:
410      continue;
411    }
412  }
413
414  diagnoseBadTypeAttribute(state.getSema(), attr, type);
415}
416
417/// Try to distribute a function type attribute to the innermost
418/// function chunk or type.  Returns true if the attribute was
419/// distributed, false if no location was found.
420static bool
421distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
422                                      AttributeList &attr,
423                                      AttributeList *&attrList,
424                                      QualType &declSpecType) {
425  Declarator &declarator = state.getDeclarator();
426
427  // Put it on the innermost function chunk, if there is one.
428  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
429    DeclaratorChunk &chunk = declarator.getTypeObject(i);
430    if (chunk.Kind != DeclaratorChunk::Function) continue;
431
432    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
433    return true;
434  }
435
436  if (handleFunctionTypeAttr(state, attr, declSpecType)) {
437    spliceAttrOutOfList(attr, attrList);
438    return true;
439  }
440
441  return false;
442}
443
444/// A function type attribute was written in the decl spec.  Try to
445/// apply it somewhere.
446static void
447distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
448                                       AttributeList &attr,
449                                       QualType &declSpecType) {
450  state.saveDeclSpecAttrs();
451
452  // Try to distribute to the innermost.
453  if (distributeFunctionTypeAttrToInnermost(state, attr,
454                                            state.getCurrentAttrListRef(),
455                                            declSpecType))
456    return;
457
458  // If that failed, diagnose the bad attribute when the declarator is
459  // fully built.
460  state.addIgnoredTypeAttr(attr);
461}
462
463/// A function type attribute was written on the declarator.  Try to
464/// apply it somewhere.
465static void
466distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
467                                         AttributeList &attr,
468                                         QualType &declSpecType) {
469  Declarator &declarator = state.getDeclarator();
470
471  // Try to distribute to the innermost.
472  if (distributeFunctionTypeAttrToInnermost(state, attr,
473                                            declarator.getAttrListRef(),
474                                            declSpecType))
475    return;
476
477  // If that failed, diagnose the bad attribute when the declarator is
478  // fully built.
479  spliceAttrOutOfList(attr, declarator.getAttrListRef());
480  state.addIgnoredTypeAttr(attr);
481}
482
483/// \brief Given that there are attributes written on the declarator
484/// itself, try to distribute any type attributes to the appropriate
485/// declarator chunk.
486///
487/// These are attributes like the following:
488///   int f ATTR;
489///   int (f ATTR)();
490/// but not necessarily this:
491///   int f() ATTR;
492static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
493                                              QualType &declSpecType) {
494  // Collect all the type attributes from the declarator itself.
495  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
496  AttributeList *attr = state.getDeclarator().getAttributes();
497  AttributeList *next;
498  do {
499    next = attr->getNext();
500
501    switch (attr->getKind()) {
502    OBJC_POINTER_TYPE_ATTRS_CASELIST:
503      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
504      break;
505
506    case AttributeList::AT_ns_returns_retained:
507      if (!state.getSema().getLangOptions().ObjCAutoRefCount)
508        break;
509      // fallthrough
510
511    FUNCTION_TYPE_ATTRS_CASELIST:
512      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
513      break;
514
515    default:
516      break;
517    }
518  } while ((attr = next));
519}
520
521/// Add a synthetic '()' to a block-literal declarator if it is
522/// required, given the return type.
523static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
524                                          QualType declSpecType) {
525  Declarator &declarator = state.getDeclarator();
526
527  // First, check whether the declarator would produce a function,
528  // i.e. whether the innermost semantic chunk is a function.
529  if (declarator.isFunctionDeclarator()) {
530    // If so, make that declarator a prototyped declarator.
531    declarator.getFunctionTypeInfo().hasPrototype = true;
532    return;
533  }
534
535  // If there are any type objects, the type as written won't name a
536  // function, regardless of the decl spec type.  This is because a
537  // block signature declarator is always an abstract-declarator, and
538  // abstract-declarators can't just be parentheses chunks.  Therefore
539  // we need to build a function chunk unless there are no type
540  // objects and the decl spec type is a function.
541  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
542    return;
543
544  // Note that there *are* cases with invalid declarators where
545  // declarators consist solely of parentheses.  In general, these
546  // occur only in failed efforts to make function declarators, so
547  // faking up the function chunk is still the right thing to do.
548
549  // Otherwise, we need to fake up a function declarator.
550  SourceLocation loc = declarator.getSourceRange().getBegin();
551
552  // ...and *prepend* it to the declarator.
553  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
554                             /*proto*/ true,
555                             /*variadic*/ false, SourceLocation(),
556                             /*args*/ 0, 0,
557                             /*type quals*/ 0,
558                             /*ref-qualifier*/true, SourceLocation(),
559                             /*const qualifier*/SourceLocation(),
560                             /*volatile qualifier*/SourceLocation(),
561                             /*mutable qualifier*/SourceLocation(),
562                             /*EH*/ EST_None, SourceLocation(), 0, 0, 0, 0,
563                             /*parens*/ loc, loc,
564                             declarator));
565
566  // For consistency, make sure the state still has us as processing
567  // the decl spec.
568  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
569  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
570}
571
572/// \brief Convert the specified declspec to the appropriate type
573/// object.
574/// \param D  the declarator containing the declaration specifier.
575/// \returns The type described by the declaration specifiers.  This function
576/// never returns null.
577static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
578  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
579  // checking.
580
581  Sema &S = state.getSema();
582  Declarator &declarator = state.getDeclarator();
583  const DeclSpec &DS = declarator.getDeclSpec();
584  SourceLocation DeclLoc = declarator.getIdentifierLoc();
585  if (DeclLoc.isInvalid())
586    DeclLoc = DS.getSourceRange().getBegin();
587
588  ASTContext &Context = S.Context;
589
590  QualType Result;
591  switch (DS.getTypeSpecType()) {
592  case DeclSpec::TST_void:
593    Result = Context.VoidTy;
594    break;
595  case DeclSpec::TST_char:
596    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
597      Result = Context.CharTy;
598    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
599      Result = Context.SignedCharTy;
600    else {
601      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
602             "Unknown TSS value");
603      Result = Context.UnsignedCharTy;
604    }
605    break;
606  case DeclSpec::TST_wchar:
607    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
608      Result = Context.WCharTy;
609    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
610      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
611        << DS.getSpecifierName(DS.getTypeSpecType());
612      Result = Context.getSignedWCharType();
613    } else {
614      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
615        "Unknown TSS value");
616      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
617        << DS.getSpecifierName(DS.getTypeSpecType());
618      Result = Context.getUnsignedWCharType();
619    }
620    break;
621  case DeclSpec::TST_char16:
622      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
623        "Unknown TSS value");
624      Result = Context.Char16Ty;
625    break;
626  case DeclSpec::TST_char32:
627      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
628        "Unknown TSS value");
629      Result = Context.Char32Ty;
630    break;
631  case DeclSpec::TST_unspecified:
632    // "<proto1,proto2>" is an objc qualified ID with a missing id.
633    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
634      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
635                                         (ObjCProtocolDecl**)PQ,
636                                         DS.getNumProtocolQualifiers());
637      Result = Context.getObjCObjectPointerType(Result);
638      break;
639    }
640
641    // If this is a missing declspec in a block literal return context, then it
642    // is inferred from the return statements inside the block.
643    // The declspec is always missing in a lambda expr context; it is either
644    // specified with a trailing return type or inferred.
645    if (declarator.getContext() == Declarator::LambdaExprContext ||
646        isOmittedBlockReturnType(declarator)) {
647      Result = Context.DependentTy;
648      break;
649    }
650
651    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
652    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
653    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
654    // Note that the one exception to this is function definitions, which are
655    // allowed to be completely missing a declspec.  This is handled in the
656    // parser already though by it pretending to have seen an 'int' in this
657    // case.
658    if (S.getLangOptions().ImplicitInt) {
659      // In C89 mode, we only warn if there is a completely missing declspec
660      // when one is not allowed.
661      if (DS.isEmpty()) {
662        S.Diag(DeclLoc, diag::ext_missing_declspec)
663          << DS.getSourceRange()
664        << FixItHint::CreateInsertion(DS.getSourceRange().getBegin(), "int");
665      }
666    } else if (!DS.hasTypeSpecifier()) {
667      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
668      // "At least one type specifier shall be given in the declaration
669      // specifiers in each declaration, and in the specifier-qualifier list in
670      // each struct declaration and type name."
671      // FIXME: Does Microsoft really have the implicit int extension in C++?
672      if (S.getLangOptions().CPlusPlus &&
673          !S.getLangOptions().MicrosoftExt) {
674        S.Diag(DeclLoc, diag::err_missing_type_specifier)
675          << DS.getSourceRange();
676
677        // When this occurs in C++ code, often something is very broken with the
678        // value being declared, poison it as invalid so we don't get chains of
679        // errors.
680        declarator.setInvalidType(true);
681      } else {
682        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
683          << DS.getSourceRange();
684      }
685    }
686
687    // FALL THROUGH.
688  case DeclSpec::TST_int: {
689    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
690      switch (DS.getTypeSpecWidth()) {
691      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
692      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
693      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
694      case DeclSpec::TSW_longlong:
695        Result = Context.LongLongTy;
696
697        // long long is a C99 feature.
698        if (!S.getLangOptions().C99)
699          S.Diag(DS.getTypeSpecWidthLoc(),
700                 S.getLangOptions().CPlusPlus0x ?
701                   diag::warn_cxx98_compat_longlong : diag::ext_longlong);
702        break;
703      }
704    } else {
705      switch (DS.getTypeSpecWidth()) {
706      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
707      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
708      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
709      case DeclSpec::TSW_longlong:
710        Result = Context.UnsignedLongLongTy;
711
712        // long long is a C99 feature.
713        if (!S.getLangOptions().C99)
714          S.Diag(DS.getTypeSpecWidthLoc(),
715                 S.getLangOptions().CPlusPlus0x ?
716                   diag::warn_cxx98_compat_longlong : diag::ext_longlong);
717        break;
718      }
719    }
720    break;
721  }
722  case DeclSpec::TST_half: Result = Context.HalfTy; break;
723  case DeclSpec::TST_float: Result = Context.FloatTy; break;
724  case DeclSpec::TST_double:
725    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
726      Result = Context.LongDoubleTy;
727    else
728      Result = Context.DoubleTy;
729
730    if (S.getLangOptions().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
731      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
732      declarator.setInvalidType(true);
733    }
734    break;
735  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
736  case DeclSpec::TST_decimal32:    // _Decimal32
737  case DeclSpec::TST_decimal64:    // _Decimal64
738  case DeclSpec::TST_decimal128:   // _Decimal128
739    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
740    Result = Context.IntTy;
741    declarator.setInvalidType(true);
742    break;
743  case DeclSpec::TST_class:
744  case DeclSpec::TST_enum:
745  case DeclSpec::TST_union:
746  case DeclSpec::TST_struct: {
747    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
748    if (!D) {
749      // This can happen in C++ with ambiguous lookups.
750      Result = Context.IntTy;
751      declarator.setInvalidType(true);
752      break;
753    }
754
755    // If the type is deprecated or unavailable, diagnose it.
756    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
757
758    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
759           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
760
761    // TypeQuals handled by caller.
762    Result = Context.getTypeDeclType(D);
763
764    // In both C and C++, make an ElaboratedType.
765    ElaboratedTypeKeyword Keyword
766      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
767    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
768
769    if (D->isInvalidDecl())
770      declarator.setInvalidType(true);
771    break;
772  }
773  case DeclSpec::TST_typename: {
774    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
775           DS.getTypeSpecSign() == 0 &&
776           "Can't handle qualifiers on typedef names yet!");
777    Result = S.GetTypeFromParser(DS.getRepAsType());
778    if (Result.isNull())
779      declarator.setInvalidType(true);
780    else if (DeclSpec::ProtocolQualifierListTy PQ
781               = DS.getProtocolQualifiers()) {
782      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
783        // Silently drop any existing protocol qualifiers.
784        // TODO: determine whether that's the right thing to do.
785        if (ObjT->getNumProtocols())
786          Result = ObjT->getBaseType();
787
788        if (DS.getNumProtocolQualifiers())
789          Result = Context.getObjCObjectType(Result,
790                                             (ObjCProtocolDecl**) PQ,
791                                             DS.getNumProtocolQualifiers());
792      } else if (Result->isObjCIdType()) {
793        // id<protocol-list>
794        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
795                                           (ObjCProtocolDecl**) PQ,
796                                           DS.getNumProtocolQualifiers());
797        Result = Context.getObjCObjectPointerType(Result);
798      } else if (Result->isObjCClassType()) {
799        // Class<protocol-list>
800        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
801                                           (ObjCProtocolDecl**) PQ,
802                                           DS.getNumProtocolQualifiers());
803        Result = Context.getObjCObjectPointerType(Result);
804      } else {
805        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
806          << DS.getSourceRange();
807        declarator.setInvalidType(true);
808      }
809    }
810
811    // TypeQuals handled by caller.
812    break;
813  }
814  case DeclSpec::TST_typeofType:
815    // FIXME: Preserve type source info.
816    Result = S.GetTypeFromParser(DS.getRepAsType());
817    assert(!Result.isNull() && "Didn't get a type for typeof?");
818    if (!Result->isDependentType())
819      if (const TagType *TT = Result->getAs<TagType>())
820        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
821    // TypeQuals handled by caller.
822    Result = Context.getTypeOfType(Result);
823    break;
824  case DeclSpec::TST_typeofExpr: {
825    Expr *E = DS.getRepAsExpr();
826    assert(E && "Didn't get an expression for typeof?");
827    // TypeQuals handled by caller.
828    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
829    if (Result.isNull()) {
830      Result = Context.IntTy;
831      declarator.setInvalidType(true);
832    }
833    break;
834  }
835  case DeclSpec::TST_decltype: {
836    Expr *E = DS.getRepAsExpr();
837    assert(E && "Didn't get an expression for decltype?");
838    // TypeQuals handled by caller.
839    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
840    if (Result.isNull()) {
841      Result = Context.IntTy;
842      declarator.setInvalidType(true);
843    }
844    break;
845  }
846  case DeclSpec::TST_underlyingType:
847    Result = S.GetTypeFromParser(DS.getRepAsType());
848    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
849    Result = S.BuildUnaryTransformType(Result,
850                                       UnaryTransformType::EnumUnderlyingType,
851                                       DS.getTypeSpecTypeLoc());
852    if (Result.isNull()) {
853      Result = Context.IntTy;
854      declarator.setInvalidType(true);
855    }
856    break;
857
858  case DeclSpec::TST_auto: {
859    // TypeQuals handled by caller.
860    Result = Context.getAutoType(QualType());
861    break;
862  }
863
864  case DeclSpec::TST_unknown_anytype:
865    Result = Context.UnknownAnyTy;
866    break;
867
868  case DeclSpec::TST_atomic:
869    Result = S.GetTypeFromParser(DS.getRepAsType());
870    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
871    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
872    if (Result.isNull()) {
873      Result = Context.IntTy;
874      declarator.setInvalidType(true);
875    }
876    break;
877
878  case DeclSpec::TST_error:
879    Result = Context.IntTy;
880    declarator.setInvalidType(true);
881    break;
882  }
883
884  // Handle complex types.
885  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
886    if (S.getLangOptions().Freestanding)
887      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
888    Result = Context.getComplexType(Result);
889  } else if (DS.isTypeAltiVecVector()) {
890    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
891    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
892    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
893    if (DS.isTypeAltiVecPixel())
894      VecKind = VectorType::AltiVecPixel;
895    else if (DS.isTypeAltiVecBool())
896      VecKind = VectorType::AltiVecBool;
897    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
898  }
899
900  // FIXME: Imaginary.
901  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
902    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
903
904  // Before we process any type attributes, synthesize a block literal
905  // function declarator if necessary.
906  if (declarator.getContext() == Declarator::BlockLiteralContext)
907    maybeSynthesizeBlockSignature(state, Result);
908
909  // Apply any type attributes from the decl spec.  This may cause the
910  // list of type attributes to be temporarily saved while the type
911  // attributes are pushed around.
912  if (AttributeList *attrs = DS.getAttributes().getList())
913    processTypeAttrs(state, Result, true, attrs);
914
915  // Apply const/volatile/restrict qualifiers to T.
916  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
917
918    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
919    // or incomplete types shall not be restrict-qualified."  C++ also allows
920    // restrict-qualified references.
921    if (TypeQuals & DeclSpec::TQ_restrict) {
922      if (Result->isAnyPointerType() || Result->isReferenceType()) {
923        QualType EltTy;
924        if (Result->isObjCObjectPointerType())
925          EltTy = Result;
926        else
927          EltTy = Result->isPointerType() ?
928                    Result->getAs<PointerType>()->getPointeeType() :
929                    Result->getAs<ReferenceType>()->getPointeeType();
930
931        // If we have a pointer or reference, the pointee must have an object
932        // incomplete type.
933        if (!EltTy->isIncompleteOrObjectType()) {
934          S.Diag(DS.getRestrictSpecLoc(),
935               diag::err_typecheck_invalid_restrict_invalid_pointee)
936            << EltTy << DS.getSourceRange();
937          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
938        }
939      } else {
940        S.Diag(DS.getRestrictSpecLoc(),
941               diag::err_typecheck_invalid_restrict_not_pointer)
942          << Result << DS.getSourceRange();
943        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
944      }
945    }
946
947    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
948    // of a function type includes any type qualifiers, the behavior is
949    // undefined."
950    if (Result->isFunctionType() && TypeQuals) {
951      // Get some location to point at, either the C or V location.
952      SourceLocation Loc;
953      if (TypeQuals & DeclSpec::TQ_const)
954        Loc = DS.getConstSpecLoc();
955      else if (TypeQuals & DeclSpec::TQ_volatile)
956        Loc = DS.getVolatileSpecLoc();
957      else {
958        assert((TypeQuals & DeclSpec::TQ_restrict) &&
959               "Has CVR quals but not C, V, or R?");
960        Loc = DS.getRestrictSpecLoc();
961      }
962      S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
963        << Result << DS.getSourceRange();
964    }
965
966    // C++ [dcl.ref]p1:
967    //   Cv-qualified references are ill-formed except when the
968    //   cv-qualifiers are introduced through the use of a typedef
969    //   (7.1.3) or of a template type argument (14.3), in which
970    //   case the cv-qualifiers are ignored.
971    // FIXME: Shouldn't we be checking SCS_typedef here?
972    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
973        TypeQuals && Result->isReferenceType()) {
974      TypeQuals &= ~DeclSpec::TQ_const;
975      TypeQuals &= ~DeclSpec::TQ_volatile;
976    }
977
978    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
979    Result = Context.getQualifiedType(Result, Quals);
980  }
981
982  return Result;
983}
984
985static std::string getPrintableNameForEntity(DeclarationName Entity) {
986  if (Entity)
987    return Entity.getAsString();
988
989  return "type name";
990}
991
992QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
993                                  Qualifiers Qs) {
994  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
995  // object or incomplete types shall not be restrict-qualified."
996  if (Qs.hasRestrict()) {
997    unsigned DiagID = 0;
998    QualType ProblemTy;
999
1000    const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
1001    if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
1002      if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
1003        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1004        ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
1005      }
1006    } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1007      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1008        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1009        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1010      }
1011    } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
1012      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1013        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1014        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1015      }
1016    } else if (!Ty->isDependentType()) {
1017      // FIXME: this deserves a proper diagnostic
1018      DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1019      ProblemTy = T;
1020    }
1021
1022    if (DiagID) {
1023      Diag(Loc, DiagID) << ProblemTy;
1024      Qs.removeRestrict();
1025    }
1026  }
1027
1028  return Context.getQualifiedType(T, Qs);
1029}
1030
1031/// \brief Build a paren type including \p T.
1032QualType Sema::BuildParenType(QualType T) {
1033  return Context.getParenType(T);
1034}
1035
1036/// Given that we're building a pointer or reference to the given
1037static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1038                                           SourceLocation loc,
1039                                           bool isReference) {
1040  // Bail out if retention is unrequired or already specified.
1041  if (!type->isObjCLifetimeType() ||
1042      type.getObjCLifetime() != Qualifiers::OCL_None)
1043    return type;
1044
1045  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1046
1047  // If the object type is const-qualified, we can safely use
1048  // __unsafe_unretained.  This is safe (because there are no read
1049  // barriers), and it'll be safe to coerce anything but __weak* to
1050  // the resulting type.
1051  if (type.isConstQualified()) {
1052    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1053
1054  // Otherwise, check whether the static type does not require
1055  // retaining.  This currently only triggers for Class (possibly
1056  // protocol-qualifed, and arrays thereof).
1057  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1058    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1059
1060  // If we are in an unevaluated context, like sizeof, skip adding a
1061  // qualification.
1062  } else if (S.ExprEvalContexts.back().Context == Sema::Unevaluated) {
1063    return type;
1064
1065  // If that failed, give an error and recover using __autoreleasing.
1066  } else {
1067    // These types can show up in private ivars in system headers, so
1068    // we need this to not be an error in those cases.  Instead we
1069    // want to delay.
1070    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1071      S.DelayedDiagnostics.add(
1072          sema::DelayedDiagnostic::makeForbiddenType(loc,
1073              diag::err_arc_indirect_no_ownership, type, isReference));
1074    } else {
1075      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1076    }
1077    implicitLifetime = Qualifiers::OCL_Autoreleasing;
1078  }
1079  assert(implicitLifetime && "didn't infer any lifetime!");
1080
1081  Qualifiers qs;
1082  qs.addObjCLifetime(implicitLifetime);
1083  return S.Context.getQualifiedType(type, qs);
1084}
1085
1086/// \brief Build a pointer type.
1087///
1088/// \param T The type to which we'll be building a pointer.
1089///
1090/// \param Loc The location of the entity whose type involves this
1091/// pointer type or, if there is no such entity, the location of the
1092/// type that will have pointer type.
1093///
1094/// \param Entity The name of the entity that involves the pointer
1095/// type, if known.
1096///
1097/// \returns A suitable pointer type, if there are no
1098/// errors. Otherwise, returns a NULL type.
1099QualType Sema::BuildPointerType(QualType T,
1100                                SourceLocation Loc, DeclarationName Entity) {
1101  if (T->isReferenceType()) {
1102    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1103    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1104      << getPrintableNameForEntity(Entity) << T;
1105    return QualType();
1106  }
1107
1108  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1109
1110  // In ARC, it is forbidden to build pointers to unqualified pointers.
1111  if (getLangOptions().ObjCAutoRefCount)
1112    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1113
1114  // Build the pointer type.
1115  return Context.getPointerType(T);
1116}
1117
1118/// \brief Build a reference type.
1119///
1120/// \param T The type to which we'll be building a reference.
1121///
1122/// \param Loc The location of the entity whose type involves this
1123/// reference type or, if there is no such entity, the location of the
1124/// type that will have reference type.
1125///
1126/// \param Entity The name of the entity that involves the reference
1127/// type, if known.
1128///
1129/// \returns A suitable reference type, if there are no
1130/// errors. Otherwise, returns a NULL type.
1131QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1132                                  SourceLocation Loc,
1133                                  DeclarationName Entity) {
1134  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1135         "Unresolved overloaded function type");
1136
1137  // C++0x [dcl.ref]p6:
1138  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1139  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1140  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1141  //   the type "lvalue reference to T", while an attempt to create the type
1142  //   "rvalue reference to cv TR" creates the type TR.
1143  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1144
1145  // C++ [dcl.ref]p4: There shall be no references to references.
1146  //
1147  // According to C++ DR 106, references to references are only
1148  // diagnosed when they are written directly (e.g., "int & &"),
1149  // but not when they happen via a typedef:
1150  //
1151  //   typedef int& intref;
1152  //   typedef intref& intref2;
1153  //
1154  // Parser::ParseDeclaratorInternal diagnoses the case where
1155  // references are written directly; here, we handle the
1156  // collapsing of references-to-references as described in C++0x.
1157  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1158
1159  // C++ [dcl.ref]p1:
1160  //   A declarator that specifies the type "reference to cv void"
1161  //   is ill-formed.
1162  if (T->isVoidType()) {
1163    Diag(Loc, diag::err_reference_to_void);
1164    return QualType();
1165  }
1166
1167  // In ARC, it is forbidden to build references to unqualified pointers.
1168  if (getLangOptions().ObjCAutoRefCount)
1169    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1170
1171  // Handle restrict on references.
1172  if (LValueRef)
1173    return Context.getLValueReferenceType(T, SpelledAsLValue);
1174  return Context.getRValueReferenceType(T);
1175}
1176
1177/// Check whether the specified array size makes the array type a VLA.  If so,
1178/// return true, if not, return the size of the array in SizeVal.
1179static bool isArraySizeVLA(Expr *ArraySize, llvm::APSInt &SizeVal, Sema &S) {
1180  // If the size is an ICE, it certainly isn't a VLA.
1181  if (ArraySize->isIntegerConstantExpr(SizeVal, S.Context))
1182    return false;
1183
1184  // If we're in a GNU mode (like gnu99, but not c99) accept any evaluatable
1185  // value as an extension.
1186  if (S.LangOpts.GNUMode && ArraySize->EvaluateAsInt(SizeVal, S.Context)) {
1187    S.Diag(ArraySize->getLocStart(), diag::ext_vla_folded_to_constant);
1188    return false;
1189  }
1190
1191  return true;
1192}
1193
1194
1195/// \brief Build an array type.
1196///
1197/// \param T The type of each element in the array.
1198///
1199/// \param ASM C99 array size modifier (e.g., '*', 'static').
1200///
1201/// \param ArraySize Expression describing the size of the array.
1202///
1203/// \param Loc The location of the entity whose type involves this
1204/// array type or, if there is no such entity, the location of the
1205/// type that will have array type.
1206///
1207/// \param Entity The name of the entity that involves the array
1208/// type, if known.
1209///
1210/// \returns A suitable array type, if there are no errors. Otherwise,
1211/// returns a NULL type.
1212QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1213                              Expr *ArraySize, unsigned Quals,
1214                              SourceRange Brackets, DeclarationName Entity) {
1215
1216  SourceLocation Loc = Brackets.getBegin();
1217  if (getLangOptions().CPlusPlus) {
1218    // C++ [dcl.array]p1:
1219    //   T is called the array element type; this type shall not be a reference
1220    //   type, the (possibly cv-qualified) type void, a function type or an
1221    //   abstract class type.
1222    //
1223    // Note: function types are handled in the common path with C.
1224    if (T->isReferenceType()) {
1225      Diag(Loc, diag::err_illegal_decl_array_of_references)
1226      << getPrintableNameForEntity(Entity) << T;
1227      return QualType();
1228    }
1229
1230    if (T->isVoidType()) {
1231      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1232      return QualType();
1233    }
1234
1235    if (RequireNonAbstractType(Brackets.getBegin(), T,
1236                               diag::err_array_of_abstract_type))
1237      return QualType();
1238
1239  } else {
1240    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1241    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1242    if (RequireCompleteType(Loc, T,
1243                            diag::err_illegal_decl_array_incomplete_type))
1244      return QualType();
1245  }
1246
1247  if (T->isFunctionType()) {
1248    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1249      << getPrintableNameForEntity(Entity) << T;
1250    return QualType();
1251  }
1252
1253  if (T->getContainedAutoType()) {
1254    Diag(Loc, diag::err_illegal_decl_array_of_auto)
1255      << getPrintableNameForEntity(Entity) << T;
1256    return QualType();
1257  }
1258
1259  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1260    // If the element type is a struct or union that contains a variadic
1261    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1262    if (EltTy->getDecl()->hasFlexibleArrayMember())
1263      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1264  } else if (T->isObjCObjectType()) {
1265    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1266    return QualType();
1267  }
1268
1269  // Do placeholder conversions on the array size expression.
1270  if (ArraySize && ArraySize->hasPlaceholderType()) {
1271    ExprResult Result = CheckPlaceholderExpr(ArraySize);
1272    if (Result.isInvalid()) return QualType();
1273    ArraySize = Result.take();
1274  }
1275
1276  // Do lvalue-to-rvalue conversions on the array size expression.
1277  if (ArraySize && !ArraySize->isRValue()) {
1278    ExprResult Result = DefaultLvalueConversion(ArraySize);
1279    if (Result.isInvalid())
1280      return QualType();
1281
1282    ArraySize = Result.take();
1283  }
1284
1285  // C99 6.7.5.2p1: The size expression shall have integer type.
1286  // TODO: in theory, if we were insane, we could allow contextual
1287  // conversions to integer type here.
1288  if (ArraySize && !ArraySize->isTypeDependent() &&
1289      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1290    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1291      << ArraySize->getType() << ArraySize->getSourceRange();
1292    return QualType();
1293  }
1294  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1295  if (!ArraySize) {
1296    if (ASM == ArrayType::Star)
1297      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1298    else
1299      T = Context.getIncompleteArrayType(T, ASM, Quals);
1300  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1301    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1302  } else if (!T->isDependentType() && !T->isIncompleteType() &&
1303             !T->isConstantSizeType()) {
1304    // C99: an array with an element type that has a non-constant-size is a VLA.
1305    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1306  } else if (isArraySizeVLA(ArraySize, ConstVal, *this)) {
1307    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1308    // that we can fold to a non-zero positive value as an extension.
1309    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1310  } else {
1311    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1312    // have a value greater than zero.
1313    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1314      if (Entity)
1315        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1316          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1317      else
1318        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1319          << ArraySize->getSourceRange();
1320      return QualType();
1321    }
1322    if (ConstVal == 0) {
1323      // GCC accepts zero sized static arrays. We allow them when
1324      // we're not in a SFINAE context.
1325      Diag(ArraySize->getLocStart(),
1326           isSFINAEContext()? diag::err_typecheck_zero_array_size
1327                            : diag::ext_typecheck_zero_array_size)
1328        << ArraySize->getSourceRange();
1329
1330      if (ASM == ArrayType::Static) {
1331        Diag(ArraySize->getLocStart(),
1332             diag::warn_typecheck_zero_static_array_size)
1333          << ArraySize->getSourceRange();
1334        ASM = ArrayType::Normal;
1335      }
1336    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1337               !T->isIncompleteType()) {
1338      // Is the array too large?
1339      unsigned ActiveSizeBits
1340        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1341      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1342        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1343          << ConstVal.toString(10)
1344          << ArraySize->getSourceRange();
1345    }
1346
1347    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1348  }
1349  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1350  if (!getLangOptions().C99) {
1351    if (T->isVariableArrayType()) {
1352      // Prohibit the use of non-POD types in VLAs.
1353      QualType BaseT = Context.getBaseElementType(T);
1354      if (!T->isDependentType() &&
1355          !BaseT.isPODType(Context) &&
1356          !BaseT->isObjCLifetimeType()) {
1357        Diag(Loc, diag::err_vla_non_pod)
1358          << BaseT;
1359        return QualType();
1360      }
1361      // Prohibit the use of VLAs during template argument deduction.
1362      else if (isSFINAEContext()) {
1363        Diag(Loc, diag::err_vla_in_sfinae);
1364        return QualType();
1365      }
1366      // Just extwarn about VLAs.
1367      else
1368        Diag(Loc, diag::ext_vla);
1369    } else if (ASM != ArrayType::Normal || Quals != 0)
1370      Diag(Loc,
1371           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
1372                                     : diag::ext_c99_array_usage) << ASM;
1373  }
1374
1375  return T;
1376}
1377
1378/// \brief Build an ext-vector type.
1379///
1380/// Run the required checks for the extended vector type.
1381QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1382                                  SourceLocation AttrLoc) {
1383  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1384  // in conjunction with complex types (pointers, arrays, functions, etc.).
1385  if (!T->isDependentType() &&
1386      !T->isIntegerType() && !T->isRealFloatingType()) {
1387    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1388    return QualType();
1389  }
1390
1391  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1392    llvm::APSInt vecSize(32);
1393    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1394      Diag(AttrLoc, diag::err_attribute_argument_not_int)
1395        << "ext_vector_type" << ArraySize->getSourceRange();
1396      return QualType();
1397    }
1398
1399    // unlike gcc's vector_size attribute, the size is specified as the
1400    // number of elements, not the number of bytes.
1401    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1402
1403    if (vectorSize == 0) {
1404      Diag(AttrLoc, diag::err_attribute_zero_size)
1405      << ArraySize->getSourceRange();
1406      return QualType();
1407    }
1408
1409    return Context.getExtVectorType(T, vectorSize);
1410  }
1411
1412  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1413}
1414
1415/// \brief Build a function type.
1416///
1417/// This routine checks the function type according to C++ rules and
1418/// under the assumption that the result type and parameter types have
1419/// just been instantiated from a template. It therefore duplicates
1420/// some of the behavior of GetTypeForDeclarator, but in a much
1421/// simpler form that is only suitable for this narrow use case.
1422///
1423/// \param T The return type of the function.
1424///
1425/// \param ParamTypes The parameter types of the function. This array
1426/// will be modified to account for adjustments to the types of the
1427/// function parameters.
1428///
1429/// \param NumParamTypes The number of parameter types in ParamTypes.
1430///
1431/// \param Variadic Whether this is a variadic function type.
1432///
1433/// \param Quals The cvr-qualifiers to be applied to the function type.
1434///
1435/// \param Loc The location of the entity whose type involves this
1436/// function type or, if there is no such entity, the location of the
1437/// type that will have function type.
1438///
1439/// \param Entity The name of the entity that involves the function
1440/// type, if known.
1441///
1442/// \returns A suitable function type, if there are no
1443/// errors. Otherwise, returns a NULL type.
1444QualType Sema::BuildFunctionType(QualType T,
1445                                 QualType *ParamTypes,
1446                                 unsigned NumParamTypes,
1447                                 bool Variadic, unsigned Quals,
1448                                 RefQualifierKind RefQualifier,
1449                                 SourceLocation Loc, DeclarationName Entity,
1450                                 FunctionType::ExtInfo Info) {
1451  if (T->isArrayType() || T->isFunctionType()) {
1452    Diag(Loc, diag::err_func_returning_array_function)
1453      << T->isFunctionType() << T;
1454    return QualType();
1455  }
1456
1457  // Functions cannot return half FP.
1458  if (T->isHalfType()) {
1459    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1460      FixItHint::CreateInsertion(Loc, "*");
1461    return QualType();
1462  }
1463
1464  bool Invalid = false;
1465  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
1466    // FIXME: Loc is too inprecise here, should use proper locations for args.
1467    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1468    if (ParamType->isVoidType()) {
1469      Diag(Loc, diag::err_param_with_void_type);
1470      Invalid = true;
1471    } else if (ParamType->isHalfType()) {
1472      // Disallow half FP arguments.
1473      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1474        FixItHint::CreateInsertion(Loc, "*");
1475      Invalid = true;
1476    }
1477
1478    ParamTypes[Idx] = ParamType;
1479  }
1480
1481  if (Invalid)
1482    return QualType();
1483
1484  FunctionProtoType::ExtProtoInfo EPI;
1485  EPI.Variadic = Variadic;
1486  EPI.TypeQuals = Quals;
1487  EPI.RefQualifier = RefQualifier;
1488  EPI.ExtInfo = Info;
1489
1490  return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
1491}
1492
1493/// \brief Build a member pointer type \c T Class::*.
1494///
1495/// \param T the type to which the member pointer refers.
1496/// \param Class the class type into which the member pointer points.
1497/// \param CVR Qualifiers applied to the member pointer type
1498/// \param Loc the location where this type begins
1499/// \param Entity the name of the entity that will have this member pointer type
1500///
1501/// \returns a member pointer type, if successful, or a NULL type if there was
1502/// an error.
1503QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1504                                      SourceLocation Loc,
1505                                      DeclarationName Entity) {
1506  // Verify that we're not building a pointer to pointer to function with
1507  // exception specification.
1508  if (CheckDistantExceptionSpec(T)) {
1509    Diag(Loc, diag::err_distant_exception_spec);
1510
1511    // FIXME: If we're doing this as part of template instantiation,
1512    // we should return immediately.
1513
1514    // Build the type anyway, but use the canonical type so that the
1515    // exception specifiers are stripped off.
1516    T = Context.getCanonicalType(T);
1517  }
1518
1519  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1520  //   with reference type, or "cv void."
1521  if (T->isReferenceType()) {
1522    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1523      << (Entity? Entity.getAsString() : "type name") << T;
1524    return QualType();
1525  }
1526
1527  if (T->isVoidType()) {
1528    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1529      << (Entity? Entity.getAsString() : "type name");
1530    return QualType();
1531  }
1532
1533  if (!Class->isDependentType() && !Class->isRecordType()) {
1534    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1535    return QualType();
1536  }
1537
1538  // In the Microsoft ABI, the class is allowed to be an incomplete
1539  // type. In such cases, the compiler makes a worst-case assumption.
1540  // We make no such assumption right now, so emit an error if the
1541  // class isn't a complete type.
1542  if (Context.getTargetInfo().getCXXABI() == CXXABI_Microsoft &&
1543      RequireCompleteType(Loc, Class, diag::err_incomplete_type))
1544    return QualType();
1545
1546  return Context.getMemberPointerType(T, Class.getTypePtr());
1547}
1548
1549/// \brief Build a block pointer type.
1550///
1551/// \param T The type to which we'll be building a block pointer.
1552///
1553/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
1554///
1555/// \param Loc The location of the entity whose type involves this
1556/// block pointer type or, if there is no such entity, the location of the
1557/// type that will have block pointer type.
1558///
1559/// \param Entity The name of the entity that involves the block pointer
1560/// type, if known.
1561///
1562/// \returns A suitable block pointer type, if there are no
1563/// errors. Otherwise, returns a NULL type.
1564QualType Sema::BuildBlockPointerType(QualType T,
1565                                     SourceLocation Loc,
1566                                     DeclarationName Entity) {
1567  if (!T->isFunctionType()) {
1568    Diag(Loc, diag::err_nonfunction_block_type);
1569    return QualType();
1570  }
1571
1572  return Context.getBlockPointerType(T);
1573}
1574
1575QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1576  QualType QT = Ty.get();
1577  if (QT.isNull()) {
1578    if (TInfo) *TInfo = 0;
1579    return QualType();
1580  }
1581
1582  TypeSourceInfo *DI = 0;
1583  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1584    QT = LIT->getType();
1585    DI = LIT->getTypeSourceInfo();
1586  }
1587
1588  if (TInfo) *TInfo = DI;
1589  return QT;
1590}
1591
1592static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1593                                            Qualifiers::ObjCLifetime ownership,
1594                                            unsigned chunkIndex);
1595
1596/// Given that this is the declaration of a parameter under ARC,
1597/// attempt to infer attributes and such for pointer-to-whatever
1598/// types.
1599static void inferARCWriteback(TypeProcessingState &state,
1600                              QualType &declSpecType) {
1601  Sema &S = state.getSema();
1602  Declarator &declarator = state.getDeclarator();
1603
1604  // TODO: should we care about decl qualifiers?
1605
1606  // Check whether the declarator has the expected form.  We walk
1607  // from the inside out in order to make the block logic work.
1608  unsigned outermostPointerIndex = 0;
1609  bool isBlockPointer = false;
1610  unsigned numPointers = 0;
1611  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1612    unsigned chunkIndex = i;
1613    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1614    switch (chunk.Kind) {
1615    case DeclaratorChunk::Paren:
1616      // Ignore parens.
1617      break;
1618
1619    case DeclaratorChunk::Reference:
1620    case DeclaratorChunk::Pointer:
1621      // Count the number of pointers.  Treat references
1622      // interchangeably as pointers; if they're mis-ordered, normal
1623      // type building will discover that.
1624      outermostPointerIndex = chunkIndex;
1625      numPointers++;
1626      break;
1627
1628    case DeclaratorChunk::BlockPointer:
1629      // If we have a pointer to block pointer, that's an acceptable
1630      // indirect reference; anything else is not an application of
1631      // the rules.
1632      if (numPointers != 1) return;
1633      numPointers++;
1634      outermostPointerIndex = chunkIndex;
1635      isBlockPointer = true;
1636
1637      // We don't care about pointer structure in return values here.
1638      goto done;
1639
1640    case DeclaratorChunk::Array: // suppress if written (id[])?
1641    case DeclaratorChunk::Function:
1642    case DeclaratorChunk::MemberPointer:
1643      return;
1644    }
1645  }
1646 done:
1647
1648  // If we have *one* pointer, then we want to throw the qualifier on
1649  // the declaration-specifiers, which means that it needs to be a
1650  // retainable object type.
1651  if (numPointers == 1) {
1652    // If it's not a retainable object type, the rule doesn't apply.
1653    if (!declSpecType->isObjCRetainableType()) return;
1654
1655    // If it already has lifetime, don't do anything.
1656    if (declSpecType.getObjCLifetime()) return;
1657
1658    // Otherwise, modify the type in-place.
1659    Qualifiers qs;
1660
1661    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1662      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1663    else
1664      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1665    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1666
1667  // If we have *two* pointers, then we want to throw the qualifier on
1668  // the outermost pointer.
1669  } else if (numPointers == 2) {
1670    // If we don't have a block pointer, we need to check whether the
1671    // declaration-specifiers gave us something that will turn into a
1672    // retainable object pointer after we slap the first pointer on it.
1673    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1674      return;
1675
1676    // Look for an explicit lifetime attribute there.
1677    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1678    if (chunk.Kind != DeclaratorChunk::Pointer &&
1679        chunk.Kind != DeclaratorChunk::BlockPointer)
1680      return;
1681    for (const AttributeList *attr = chunk.getAttrs(); attr;
1682           attr = attr->getNext())
1683      if (attr->getKind() == AttributeList::AT_objc_ownership)
1684        return;
1685
1686    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1687                                          outermostPointerIndex);
1688
1689  // Any other number of pointers/references does not trigger the rule.
1690  } else return;
1691
1692  // TODO: mark whether we did this inference?
1693}
1694
1695static void DiagnoseIgnoredQualifiers(unsigned Quals,
1696                                      SourceLocation ConstQualLoc,
1697                                      SourceLocation VolatileQualLoc,
1698                                      SourceLocation RestrictQualLoc,
1699                                      Sema& S) {
1700  std::string QualStr;
1701  unsigned NumQuals = 0;
1702  SourceLocation Loc;
1703
1704  FixItHint ConstFixIt;
1705  FixItHint VolatileFixIt;
1706  FixItHint RestrictFixIt;
1707
1708  const SourceManager &SM = S.getSourceManager();
1709
1710  // FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
1711  // find a range and grow it to encompass all the qualifiers, regardless of
1712  // the order in which they textually appear.
1713  if (Quals & Qualifiers::Const) {
1714    ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
1715    QualStr = "const";
1716    ++NumQuals;
1717    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(ConstQualLoc, Loc))
1718      Loc = ConstQualLoc;
1719  }
1720  if (Quals & Qualifiers::Volatile) {
1721    VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
1722    QualStr += (NumQuals == 0 ? "volatile" : " volatile");
1723    ++NumQuals;
1724    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(VolatileQualLoc, Loc))
1725      Loc = VolatileQualLoc;
1726  }
1727  if (Quals & Qualifiers::Restrict) {
1728    RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
1729    QualStr += (NumQuals == 0 ? "restrict" : " restrict");
1730    ++NumQuals;
1731    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(RestrictQualLoc, Loc))
1732      Loc = RestrictQualLoc;
1733  }
1734
1735  assert(NumQuals > 0 && "No known qualifiers?");
1736
1737  S.Diag(Loc, diag::warn_qual_return_type)
1738    << QualStr << NumQuals << ConstFixIt << VolatileFixIt << RestrictFixIt;
1739}
1740
1741static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
1742                                             TypeSourceInfo *&ReturnTypeInfo) {
1743  Sema &SemaRef = state.getSema();
1744  Declarator &D = state.getDeclarator();
1745  QualType T;
1746  ReturnTypeInfo = 0;
1747
1748  // The TagDecl owned by the DeclSpec.
1749  TagDecl *OwnedTagDecl = 0;
1750
1751  switch (D.getName().getKind()) {
1752  case UnqualifiedId::IK_ImplicitSelfParam:
1753  case UnqualifiedId::IK_OperatorFunctionId:
1754  case UnqualifiedId::IK_Identifier:
1755  case UnqualifiedId::IK_LiteralOperatorId:
1756  case UnqualifiedId::IK_TemplateId:
1757    T = ConvertDeclSpecToType(state);
1758
1759    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
1760      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
1761      // Owned declaration is embedded in declarator.
1762      OwnedTagDecl->setEmbeddedInDeclarator(true);
1763    }
1764    break;
1765
1766  case UnqualifiedId::IK_ConstructorName:
1767  case UnqualifiedId::IK_ConstructorTemplateId:
1768  case UnqualifiedId::IK_DestructorName:
1769    // Constructors and destructors don't have return types. Use
1770    // "void" instead.
1771    T = SemaRef.Context.VoidTy;
1772    break;
1773
1774  case UnqualifiedId::IK_ConversionFunctionId:
1775    // The result type of a conversion function is the type that it
1776    // converts to.
1777    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
1778                                  &ReturnTypeInfo);
1779    break;
1780  }
1781
1782  if (D.getAttributes())
1783    distributeTypeAttrsFromDeclarator(state, T);
1784
1785  // C++0x [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
1786  // In C++0x, a function declarator using 'auto' must have a trailing return
1787  // type (this is checked later) and we can skip this. In other languages
1788  // using auto, we need to check regardless.
1789  if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
1790      (!SemaRef.getLangOptions().CPlusPlus0x || !D.isFunctionDeclarator())) {
1791    int Error = -1;
1792
1793    switch (D.getContext()) {
1794    case Declarator::KNRTypeListContext:
1795      llvm_unreachable("K&R type lists aren't allowed in C++");
1796    case Declarator::LambdaExprContext:
1797      llvm_unreachable("Can't specify a type specifier in lambda grammar");
1798    case Declarator::ObjCParameterContext:
1799    case Declarator::ObjCResultContext:
1800    case Declarator::PrototypeContext:
1801      Error = 0; // Function prototype
1802      break;
1803    case Declarator::MemberContext:
1804      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
1805        break;
1806      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
1807      case TTK_Enum: llvm_unreachable("unhandled tag kind");
1808      case TTK_Struct: Error = 1; /* Struct member */ break;
1809      case TTK_Union:  Error = 2; /* Union member */ break;
1810      case TTK_Class:  Error = 3; /* Class member */ break;
1811      }
1812      break;
1813    case Declarator::CXXCatchContext:
1814    case Declarator::ObjCCatchContext:
1815      Error = 4; // Exception declaration
1816      break;
1817    case Declarator::TemplateParamContext:
1818      Error = 5; // Template parameter
1819      break;
1820    case Declarator::BlockLiteralContext:
1821      Error = 6; // Block literal
1822      break;
1823    case Declarator::TemplateTypeArgContext:
1824      Error = 7; // Template type argument
1825      break;
1826    case Declarator::AliasDeclContext:
1827    case Declarator::AliasTemplateContext:
1828      Error = 9; // Type alias
1829      break;
1830    case Declarator::TypeNameContext:
1831      Error = 11; // Generic
1832      break;
1833    case Declarator::FileContext:
1834    case Declarator::BlockContext:
1835    case Declarator::ForContext:
1836    case Declarator::ConditionContext:
1837    case Declarator::CXXNewContext:
1838      break;
1839    }
1840
1841    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1842      Error = 8;
1843
1844    // In Objective-C it is an error to use 'auto' on a function declarator.
1845    if (D.isFunctionDeclarator())
1846      Error = 10;
1847
1848    // C++0x [dcl.spec.auto]p2: 'auto' is always fine if the declarator
1849    // contains a trailing return type. That is only legal at the outermost
1850    // level. Check all declarator chunks (outermost first) anyway, to give
1851    // better diagnostics.
1852    if (SemaRef.getLangOptions().CPlusPlus0x && Error != -1) {
1853      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1854        unsigned chunkIndex = e - i - 1;
1855        state.setCurrentChunkIndex(chunkIndex);
1856        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1857        if (DeclType.Kind == DeclaratorChunk::Function) {
1858          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1859          if (FTI.TrailingReturnType) {
1860            Error = -1;
1861            break;
1862          }
1863        }
1864      }
1865    }
1866
1867    if (Error != -1) {
1868      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1869                   diag::err_auto_not_allowed)
1870        << Error;
1871      T = SemaRef.Context.IntTy;
1872      D.setInvalidType(true);
1873    } else
1874      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1875                   diag::warn_cxx98_compat_auto_type_specifier);
1876  }
1877
1878  if (SemaRef.getLangOptions().CPlusPlus &&
1879      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
1880    // Check the contexts where C++ forbids the declaration of a new class
1881    // or enumeration in a type-specifier-seq.
1882    switch (D.getContext()) {
1883    case Declarator::FileContext:
1884    case Declarator::MemberContext:
1885    case Declarator::BlockContext:
1886    case Declarator::ForContext:
1887    case Declarator::BlockLiteralContext:
1888    case Declarator::LambdaExprContext:
1889      // C++0x [dcl.type]p3:
1890      //   A type-specifier-seq shall not define a class or enumeration unless
1891      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
1892      //   the declaration of a template-declaration.
1893    case Declarator::AliasDeclContext:
1894      break;
1895    case Declarator::AliasTemplateContext:
1896      SemaRef.Diag(OwnedTagDecl->getLocation(),
1897             diag::err_type_defined_in_alias_template)
1898        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1899      break;
1900    case Declarator::TypeNameContext:
1901    case Declarator::TemplateParamContext:
1902    case Declarator::CXXNewContext:
1903    case Declarator::CXXCatchContext:
1904    case Declarator::ObjCCatchContext:
1905    case Declarator::TemplateTypeArgContext:
1906      SemaRef.Diag(OwnedTagDecl->getLocation(),
1907             diag::err_type_defined_in_type_specifier)
1908        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1909      break;
1910    case Declarator::PrototypeContext:
1911    case Declarator::ObjCParameterContext:
1912    case Declarator::ObjCResultContext:
1913    case Declarator::KNRTypeListContext:
1914      // C++ [dcl.fct]p6:
1915      //   Types shall not be defined in return or parameter types.
1916      SemaRef.Diag(OwnedTagDecl->getLocation(),
1917                   diag::err_type_defined_in_param_type)
1918        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1919      break;
1920    case Declarator::ConditionContext:
1921      // C++ 6.4p2:
1922      // The type-specifier-seq shall not contain typedef and shall not declare
1923      // a new class or enumeration.
1924      SemaRef.Diag(OwnedTagDecl->getLocation(),
1925                   diag::err_type_defined_in_condition);
1926      break;
1927    }
1928  }
1929
1930  return T;
1931}
1932
1933static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
1934                                                QualType declSpecType,
1935                                                TypeSourceInfo *TInfo) {
1936
1937  QualType T = declSpecType;
1938  Declarator &D = state.getDeclarator();
1939  Sema &S = state.getSema();
1940  ASTContext &Context = S.Context;
1941  const LangOptions &LangOpts = S.getLangOptions();
1942
1943  bool ImplicitlyNoexcept = false;
1944  if (D.getName().getKind() == UnqualifiedId::IK_OperatorFunctionId &&
1945      LangOpts.CPlusPlus0x) {
1946    OverloadedOperatorKind OO = D.getName().OperatorFunctionId.Operator;
1947    /// In C++0x, deallocation functions (normal and array operator delete)
1948    /// are implicitly noexcept.
1949    if (OO == OO_Delete || OO == OO_Array_Delete)
1950      ImplicitlyNoexcept = true;
1951  }
1952
1953  // The name we're declaring, if any.
1954  DeclarationName Name;
1955  if (D.getIdentifier())
1956    Name = D.getIdentifier();
1957
1958  // Does this declaration declare a typedef-name?
1959  bool IsTypedefName =
1960    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
1961    D.getContext() == Declarator::AliasDeclContext ||
1962    D.getContext() == Declarator::AliasTemplateContext;
1963
1964  // Walk the DeclTypeInfo, building the recursive type as we go.
1965  // DeclTypeInfos are ordered from the identifier out, which is
1966  // opposite of what we want :).
1967  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1968    unsigned chunkIndex = e - i - 1;
1969    state.setCurrentChunkIndex(chunkIndex);
1970    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1971    switch (DeclType.Kind) {
1972    case DeclaratorChunk::Paren:
1973      T = S.BuildParenType(T);
1974      break;
1975    case DeclaratorChunk::BlockPointer:
1976      // If blocks are disabled, emit an error.
1977      if (!LangOpts.Blocks)
1978        S.Diag(DeclType.Loc, diag::err_blocks_disable);
1979
1980      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
1981      if (DeclType.Cls.TypeQuals)
1982        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
1983      break;
1984    case DeclaratorChunk::Pointer:
1985      // Verify that we're not building a pointer to pointer to function with
1986      // exception specification.
1987      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
1988        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1989        D.setInvalidType(true);
1990        // Build the type anyway.
1991      }
1992      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
1993        T = Context.getObjCObjectPointerType(T);
1994        if (DeclType.Ptr.TypeQuals)
1995          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
1996        break;
1997      }
1998      T = S.BuildPointerType(T, DeclType.Loc, Name);
1999      if (DeclType.Ptr.TypeQuals)
2000        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2001
2002      break;
2003    case DeclaratorChunk::Reference: {
2004      // Verify that we're not building a reference to pointer to function with
2005      // exception specification.
2006      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2007        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2008        D.setInvalidType(true);
2009        // Build the type anyway.
2010      }
2011      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2012
2013      Qualifiers Quals;
2014      if (DeclType.Ref.HasRestrict)
2015        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2016      break;
2017    }
2018    case DeclaratorChunk::Array: {
2019      // Verify that we're not building an array of pointers to function with
2020      // exception specification.
2021      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2022        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2023        D.setInvalidType(true);
2024        // Build the type anyway.
2025      }
2026      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2027      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2028      ArrayType::ArraySizeModifier ASM;
2029      if (ATI.isStar)
2030        ASM = ArrayType::Star;
2031      else if (ATI.hasStatic)
2032        ASM = ArrayType::Static;
2033      else
2034        ASM = ArrayType::Normal;
2035      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2036        // FIXME: This check isn't quite right: it allows star in prototypes
2037        // for function definitions, and disallows some edge cases detailed
2038        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2039        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2040        ASM = ArrayType::Normal;
2041        D.setInvalidType(true);
2042      }
2043      T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2044                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2045      break;
2046    }
2047    case DeclaratorChunk::Function: {
2048      // If the function declarator has a prototype (i.e. it is not () and
2049      // does not have a K&R-style identifier list), then the arguments are part
2050      // of the type, otherwise the argument list is ().
2051      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2052
2053      // Check for auto functions and trailing return type and adjust the
2054      // return type accordingly.
2055      if (!D.isInvalidType()) {
2056        // trailing-return-type is only required if we're declaring a function,
2057        // and not, for instance, a pointer to a function.
2058        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2059            !FTI.TrailingReturnType && chunkIndex == 0) {
2060          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2061               diag::err_auto_missing_trailing_return);
2062          T = Context.IntTy;
2063          D.setInvalidType(true);
2064        } else if (FTI.TrailingReturnType) {
2065          // T must be exactly 'auto' at this point. See CWG issue 681.
2066          if (isa<ParenType>(T)) {
2067            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2068                 diag::err_trailing_return_in_parens)
2069              << T << D.getDeclSpec().getSourceRange();
2070            D.setInvalidType(true);
2071          } else if (D.getContext() != Declarator::LambdaExprContext &&
2072                     (T.hasQualifiers() || !isa<AutoType>(T))) {
2073            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2074                 diag::err_trailing_return_without_auto)
2075              << T << D.getDeclSpec().getSourceRange();
2076            D.setInvalidType(true);
2077          }
2078
2079          T = S.GetTypeFromParser(
2080            ParsedType::getFromOpaquePtr(FTI.TrailingReturnType),
2081            &TInfo);
2082        }
2083      }
2084
2085      // C99 6.7.5.3p1: The return type may not be a function or array type.
2086      // For conversion functions, we'll diagnose this particular error later.
2087      if ((T->isArrayType() || T->isFunctionType()) &&
2088          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2089        unsigned diagID = diag::err_func_returning_array_function;
2090        // Last processing chunk in block context means this function chunk
2091        // represents the block.
2092        if (chunkIndex == 0 &&
2093            D.getContext() == Declarator::BlockLiteralContext)
2094          diagID = diag::err_block_returning_array_function;
2095        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2096        T = Context.IntTy;
2097        D.setInvalidType(true);
2098      }
2099
2100      // Do not allow returning half FP value.
2101      // FIXME: This really should be in BuildFunctionType.
2102      if (T->isHalfType()) {
2103        S.Diag(D.getIdentifierLoc(),
2104             diag::err_parameters_retval_cannot_have_fp16_type) << 1
2105          << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
2106        D.setInvalidType(true);
2107      }
2108
2109      // cv-qualifiers on return types are pointless except when the type is a
2110      // class type in C++.
2111      if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
2112          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
2113          (!LangOpts.CPlusPlus || !T->isDependentType())) {
2114        assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
2115        DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2116        assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
2117
2118        DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
2119
2120        DiagnoseIgnoredQualifiers(PTI.TypeQuals,
2121            SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2122            SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2123            SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2124            S);
2125
2126      } else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
2127          (!LangOpts.CPlusPlus ||
2128           (!T->isDependentType() && !T->isRecordType()))) {
2129
2130        DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
2131                                  D.getDeclSpec().getConstSpecLoc(),
2132                                  D.getDeclSpec().getVolatileSpecLoc(),
2133                                  D.getDeclSpec().getRestrictSpecLoc(),
2134                                  S);
2135      }
2136
2137      if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2138        // C++ [dcl.fct]p6:
2139        //   Types shall not be defined in return or parameter types.
2140        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2141        if (Tag->isCompleteDefinition())
2142          S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2143            << Context.getTypeDeclType(Tag);
2144      }
2145
2146      // Exception specs are not allowed in typedefs. Complain, but add it
2147      // anyway.
2148      if (IsTypedefName && FTI.getExceptionSpecType())
2149        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2150          << (D.getContext() == Declarator::AliasDeclContext ||
2151              D.getContext() == Declarator::AliasTemplateContext);
2152
2153      if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2154        // Simple void foo(), where the incoming T is the result type.
2155        T = Context.getFunctionNoProtoType(T);
2156      } else {
2157        // We allow a zero-parameter variadic function in C if the
2158        // function is marked with the "overloadable" attribute. Scan
2159        // for this attribute now.
2160        if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2161          bool Overloadable = false;
2162          for (const AttributeList *Attrs = D.getAttributes();
2163               Attrs; Attrs = Attrs->getNext()) {
2164            if (Attrs->getKind() == AttributeList::AT_overloadable) {
2165              Overloadable = true;
2166              break;
2167            }
2168          }
2169
2170          if (!Overloadable)
2171            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2172        }
2173
2174        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2175          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2176          // definition.
2177          S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2178          D.setInvalidType(true);
2179          break;
2180        }
2181
2182        FunctionProtoType::ExtProtoInfo EPI;
2183        EPI.Variadic = FTI.isVariadic;
2184        EPI.TypeQuals = FTI.TypeQuals;
2185        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2186                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2187                    : RQ_RValue;
2188
2189        // Otherwise, we have a function with an argument list that is
2190        // potentially variadic.
2191        SmallVector<QualType, 16> ArgTys;
2192        ArgTys.reserve(FTI.NumArgs);
2193
2194        SmallVector<bool, 16> ConsumedArguments;
2195        ConsumedArguments.reserve(FTI.NumArgs);
2196        bool HasAnyConsumedArguments = false;
2197
2198        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2199          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2200          QualType ArgTy = Param->getType();
2201          assert(!ArgTy.isNull() && "Couldn't parse type?");
2202
2203          // Adjust the parameter type.
2204          assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
2205                 "Unadjusted type?");
2206
2207          // Look for 'void'.  void is allowed only as a single argument to a
2208          // function with no other parameters (C99 6.7.5.3p10).  We record
2209          // int(void) as a FunctionProtoType with an empty argument list.
2210          if (ArgTy->isVoidType()) {
2211            // If this is something like 'float(int, void)', reject it.  'void'
2212            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2213            // have arguments of incomplete type.
2214            if (FTI.NumArgs != 1 || FTI.isVariadic) {
2215              S.Diag(DeclType.Loc, diag::err_void_only_param);
2216              ArgTy = Context.IntTy;
2217              Param->setType(ArgTy);
2218            } else if (FTI.ArgInfo[i].Ident) {
2219              // Reject, but continue to parse 'int(void abc)'.
2220              S.Diag(FTI.ArgInfo[i].IdentLoc,
2221                   diag::err_param_with_void_type);
2222              ArgTy = Context.IntTy;
2223              Param->setType(ArgTy);
2224            } else {
2225              // Reject, but continue to parse 'float(const void)'.
2226              if (ArgTy.hasQualifiers())
2227                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2228
2229              // Do not add 'void' to the ArgTys list.
2230              break;
2231            }
2232          } else if (ArgTy->isHalfType()) {
2233            // Disallow half FP arguments.
2234            // FIXME: This really should be in BuildFunctionType.
2235            S.Diag(Param->getLocation(),
2236               diag::err_parameters_retval_cannot_have_fp16_type) << 0
2237            << FixItHint::CreateInsertion(Param->getLocation(), "*");
2238            D.setInvalidType();
2239          } else if (!FTI.hasPrototype) {
2240            if (ArgTy->isPromotableIntegerType()) {
2241              ArgTy = Context.getPromotedIntegerType(ArgTy);
2242              Param->setKNRPromoted(true);
2243            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2244              if (BTy->getKind() == BuiltinType::Float) {
2245                ArgTy = Context.DoubleTy;
2246                Param->setKNRPromoted(true);
2247              }
2248            }
2249          }
2250
2251          if (LangOpts.ObjCAutoRefCount) {
2252            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2253            ConsumedArguments.push_back(Consumed);
2254            HasAnyConsumedArguments |= Consumed;
2255          }
2256
2257          ArgTys.push_back(ArgTy);
2258        }
2259
2260        if (HasAnyConsumedArguments)
2261          EPI.ConsumedArguments = ConsumedArguments.data();
2262
2263        SmallVector<QualType, 4> Exceptions;
2264        EPI.ExceptionSpecType = FTI.getExceptionSpecType();
2265        if (FTI.getExceptionSpecType() == EST_Dynamic) {
2266          Exceptions.reserve(FTI.NumExceptions);
2267          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
2268            // FIXME: Preserve type source info.
2269            QualType ET = S.GetTypeFromParser(FTI.Exceptions[ei].Ty);
2270            // Check that the type is valid for an exception spec, and
2271            // drop it if not.
2272            if (!S.CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
2273              Exceptions.push_back(ET);
2274          }
2275          EPI.NumExceptions = Exceptions.size();
2276          EPI.Exceptions = Exceptions.data();
2277        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2278          // If an error occurred, there's no expression here.
2279          if (Expr *NoexceptExpr = FTI.NoexceptExpr) {
2280            assert((NoexceptExpr->isTypeDependent() ||
2281                    NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
2282                        Context.BoolTy) &&
2283                 "Parser should have made sure that the expression is boolean");
2284            SourceLocation ErrLoc;
2285            llvm::APSInt Dummy;
2286            if (!NoexceptExpr->isValueDependent() &&
2287                !NoexceptExpr->isIntegerConstantExpr(Dummy, Context, &ErrLoc,
2288                                                     /*evaluated*/false))
2289              S.Diag(ErrLoc, diag::err_noexcept_needs_constant_expression)
2290                  << NoexceptExpr->getSourceRange();
2291            else
2292              EPI.NoexceptExpr = NoexceptExpr;
2293          }
2294        } else if (FTI.getExceptionSpecType() == EST_None &&
2295                   ImplicitlyNoexcept && chunkIndex == 0) {
2296          // Only the outermost chunk is marked noexcept, of course.
2297          EPI.ExceptionSpecType = EST_BasicNoexcept;
2298        }
2299
2300        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
2301      }
2302
2303      break;
2304    }
2305    case DeclaratorChunk::MemberPointer:
2306      // The scope spec must refer to a class, or be dependent.
2307      CXXScopeSpec &SS = DeclType.Mem.Scope();
2308      QualType ClsType;
2309      if (SS.isInvalid()) {
2310        // Avoid emitting extra errors if we already errored on the scope.
2311        D.setInvalidType(true);
2312      } else if (S.isDependentScopeSpecifier(SS) ||
2313                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
2314        NestedNameSpecifier *NNS
2315          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2316        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
2317        switch (NNS->getKind()) {
2318        case NestedNameSpecifier::Identifier:
2319          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
2320                                                 NNS->getAsIdentifier());
2321          break;
2322
2323        case NestedNameSpecifier::Namespace:
2324        case NestedNameSpecifier::NamespaceAlias:
2325        case NestedNameSpecifier::Global:
2326          llvm_unreachable("Nested-name-specifier must name a type");
2327
2328        case NestedNameSpecifier::TypeSpec:
2329        case NestedNameSpecifier::TypeSpecWithTemplate:
2330          ClsType = QualType(NNS->getAsType(), 0);
2331          // Note: if the NNS has a prefix and ClsType is a nondependent
2332          // TemplateSpecializationType, then the NNS prefix is NOT included
2333          // in ClsType; hence we wrap ClsType into an ElaboratedType.
2334          // NOTE: in particular, no wrap occurs if ClsType already is an
2335          // Elaborated, DependentName, or DependentTemplateSpecialization.
2336          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
2337            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
2338          break;
2339        }
2340      } else {
2341        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
2342             diag::err_illegal_decl_mempointer_in_nonclass)
2343          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
2344          << DeclType.Mem.Scope().getRange();
2345        D.setInvalidType(true);
2346      }
2347
2348      if (!ClsType.isNull())
2349        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
2350      if (T.isNull()) {
2351        T = Context.IntTy;
2352        D.setInvalidType(true);
2353      } else if (DeclType.Mem.TypeQuals) {
2354        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
2355      }
2356      break;
2357    }
2358
2359    if (T.isNull()) {
2360      D.setInvalidType(true);
2361      T = Context.IntTy;
2362    }
2363
2364    // See if there are any attributes on this declarator chunk.
2365    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
2366      processTypeAttrs(state, T, false, attrs);
2367  }
2368
2369  if (LangOpts.CPlusPlus && T->isFunctionType()) {
2370    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
2371    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
2372
2373    // C++ 8.3.5p4:
2374    //   A cv-qualifier-seq shall only be part of the function type
2375    //   for a nonstatic member function, the function type to which a pointer
2376    //   to member refers, or the top-level function type of a function typedef
2377    //   declaration.
2378    //
2379    // Core issue 547 also allows cv-qualifiers on function types that are
2380    // top-level template type arguments.
2381    bool FreeFunction;
2382    if (!D.getCXXScopeSpec().isSet()) {
2383      FreeFunction = ((D.getContext() != Declarator::MemberContext &&
2384                       D.getContext() != Declarator::LambdaExprContext) ||
2385                      D.getDeclSpec().isFriendSpecified());
2386    } else {
2387      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
2388      FreeFunction = (DC && !DC->isRecord());
2389    }
2390
2391    // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
2392    // function that is not a constructor declares that function to be const.
2393    if (D.getDeclSpec().isConstexprSpecified() && !FreeFunction &&
2394        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static &&
2395        D.getName().getKind() != UnqualifiedId::IK_ConstructorName &&
2396        D.getName().getKind() != UnqualifiedId::IK_ConstructorTemplateId &&
2397        !(FnTy->getTypeQuals() & DeclSpec::TQ_const)) {
2398      // Rebuild function type adding a 'const' qualifier.
2399      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2400      EPI.TypeQuals |= DeclSpec::TQ_const;
2401      T = Context.getFunctionType(FnTy->getResultType(),
2402                                  FnTy->arg_type_begin(),
2403                                  FnTy->getNumArgs(), EPI);
2404    }
2405
2406    // C++0x [dcl.fct]p6:
2407    //   A ref-qualifier shall only be part of the function type for a
2408    //   non-static member function, the function type to which a pointer to
2409    //   member refers, or the top-level function type of a function typedef
2410    //   declaration.
2411    if ((FnTy->getTypeQuals() != 0 || FnTy->getRefQualifier()) &&
2412        !(D.getContext() == Declarator::TemplateTypeArgContext &&
2413          !D.isFunctionDeclarator()) && !IsTypedefName &&
2414        (FreeFunction ||
2415         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
2416      if (D.getContext() == Declarator::TemplateTypeArgContext) {
2417        // Accept qualified function types as template type arguments as a GNU
2418        // extension. This is also the subject of C++ core issue 547.
2419        std::string Quals;
2420        if (FnTy->getTypeQuals() != 0)
2421          Quals = Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
2422
2423        switch (FnTy->getRefQualifier()) {
2424        case RQ_None:
2425          break;
2426
2427        case RQ_LValue:
2428          if (!Quals.empty())
2429            Quals += ' ';
2430          Quals += '&';
2431          break;
2432
2433        case RQ_RValue:
2434          if (!Quals.empty())
2435            Quals += ' ';
2436          Quals += "&&";
2437          break;
2438        }
2439
2440        S.Diag(D.getIdentifierLoc(),
2441             diag::ext_qualified_function_type_template_arg)
2442          << Quals;
2443      } else {
2444        if (FnTy->getTypeQuals() != 0) {
2445          if (D.isFunctionDeclarator()) {
2446            SourceRange Range = D.getIdentifierLoc();
2447            for (unsigned I = 0, N = D.getNumTypeObjects(); I != N; ++I) {
2448              const DeclaratorChunk &Chunk = D.getTypeObject(N-I-1);
2449              if (Chunk.Kind == DeclaratorChunk::Function &&
2450                  Chunk.Fun.TypeQuals != 0) {
2451                switch (Chunk.Fun.TypeQuals) {
2452                case Qualifiers::Const:
2453                  Range = Chunk.Fun.getConstQualifierLoc();
2454                  break;
2455                case Qualifiers::Volatile:
2456                  Range = Chunk.Fun.getVolatileQualifierLoc();
2457                  break;
2458                case Qualifiers::Const | Qualifiers::Volatile: {
2459                    SourceLocation CLoc = Chunk.Fun.getConstQualifierLoc();
2460                    SourceLocation VLoc = Chunk.Fun.getVolatileQualifierLoc();
2461                    if (S.getSourceManager()
2462                        .isBeforeInTranslationUnit(CLoc, VLoc)) {
2463                      Range = SourceRange(CLoc, VLoc);
2464                    } else {
2465                      Range = SourceRange(VLoc, CLoc);
2466                    }
2467                  }
2468                  break;
2469                }
2470                break;
2471              }
2472            }
2473            S.Diag(Range.getBegin(), diag::err_invalid_qualified_function_type)
2474                << FixItHint::CreateRemoval(Range);
2475          } else
2476            S.Diag(D.getIdentifierLoc(),
2477                 diag::err_invalid_qualified_typedef_function_type_use)
2478              << FreeFunction;
2479        }
2480
2481        if (FnTy->getRefQualifier()) {
2482          if (D.isFunctionDeclarator()) {
2483            SourceLocation Loc = D.getIdentifierLoc();
2484            for (unsigned I = 0, N = D.getNumTypeObjects(); I != N; ++I) {
2485              const DeclaratorChunk &Chunk = D.getTypeObject(N-I-1);
2486              if (Chunk.Kind == DeclaratorChunk::Function &&
2487                  Chunk.Fun.hasRefQualifier()) {
2488                Loc = Chunk.Fun.getRefQualifierLoc();
2489                break;
2490              }
2491            }
2492
2493            S.Diag(Loc, diag::err_invalid_ref_qualifier_function_type)
2494              << (FnTy->getRefQualifier() == RQ_LValue)
2495              << FixItHint::CreateRemoval(Loc);
2496          } else {
2497            S.Diag(D.getIdentifierLoc(),
2498                 diag::err_invalid_ref_qualifier_typedef_function_type_use)
2499              << FreeFunction
2500              << (FnTy->getRefQualifier() == RQ_LValue);
2501          }
2502        }
2503
2504        // Strip the cv-qualifiers and ref-qualifiers from the type.
2505        FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2506        EPI.TypeQuals = 0;
2507        EPI.RefQualifier = RQ_None;
2508
2509        T = Context.getFunctionType(FnTy->getResultType(),
2510                                    FnTy->arg_type_begin(),
2511                                    FnTy->getNumArgs(), EPI);
2512      }
2513    }
2514  }
2515
2516  // Apply any undistributed attributes from the declarator.
2517  if (!T.isNull())
2518    if (AttributeList *attrs = D.getAttributes())
2519      processTypeAttrs(state, T, false, attrs);
2520
2521  // Diagnose any ignored type attributes.
2522  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
2523
2524  // C++0x [dcl.constexpr]p9:
2525  //  A constexpr specifier used in an object declaration declares the object
2526  //  as const.
2527  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
2528    T.addConst();
2529  }
2530
2531  // If there was an ellipsis in the declarator, the declaration declares a
2532  // parameter pack whose type may be a pack expansion type.
2533  if (D.hasEllipsis() && !T.isNull()) {
2534    // C++0x [dcl.fct]p13:
2535    //   A declarator-id or abstract-declarator containing an ellipsis shall
2536    //   only be used in a parameter-declaration. Such a parameter-declaration
2537    //   is a parameter pack (14.5.3). [...]
2538    switch (D.getContext()) {
2539    case Declarator::PrototypeContext:
2540      // C++0x [dcl.fct]p13:
2541      //   [...] When it is part of a parameter-declaration-clause, the
2542      //   parameter pack is a function parameter pack (14.5.3). The type T
2543      //   of the declarator-id of the function parameter pack shall contain
2544      //   a template parameter pack; each template parameter pack in T is
2545      //   expanded by the function parameter pack.
2546      //
2547      // We represent function parameter packs as function parameters whose
2548      // type is a pack expansion.
2549      if (!T->containsUnexpandedParameterPack()) {
2550        S.Diag(D.getEllipsisLoc(),
2551             diag::err_function_parameter_pack_without_parameter_packs)
2552          << T <<  D.getSourceRange();
2553        D.setEllipsisLoc(SourceLocation());
2554      } else {
2555        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2556      }
2557      break;
2558
2559    case Declarator::TemplateParamContext:
2560      // C++0x [temp.param]p15:
2561      //   If a template-parameter is a [...] is a parameter-declaration that
2562      //   declares a parameter pack (8.3.5), then the template-parameter is a
2563      //   template parameter pack (14.5.3).
2564      //
2565      // Note: core issue 778 clarifies that, if there are any unexpanded
2566      // parameter packs in the type of the non-type template parameter, then
2567      // it expands those parameter packs.
2568      if (T->containsUnexpandedParameterPack())
2569        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2570      else
2571        S.Diag(D.getEllipsisLoc(),
2572               LangOpts.CPlusPlus0x
2573                 ? diag::warn_cxx98_compat_variadic_templates
2574                 : diag::ext_variadic_templates);
2575      break;
2576
2577    case Declarator::FileContext:
2578    case Declarator::KNRTypeListContext:
2579    case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
2580    case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
2581    case Declarator::TypeNameContext:
2582    case Declarator::CXXNewContext:
2583    case Declarator::AliasDeclContext:
2584    case Declarator::AliasTemplateContext:
2585    case Declarator::MemberContext:
2586    case Declarator::BlockContext:
2587    case Declarator::ForContext:
2588    case Declarator::ConditionContext:
2589    case Declarator::CXXCatchContext:
2590    case Declarator::ObjCCatchContext:
2591    case Declarator::BlockLiteralContext:
2592    case Declarator::LambdaExprContext:
2593    case Declarator::TemplateTypeArgContext:
2594      // FIXME: We may want to allow parameter packs in block-literal contexts
2595      // in the future.
2596      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
2597      D.setEllipsisLoc(SourceLocation());
2598      break;
2599    }
2600  }
2601
2602  if (T.isNull())
2603    return Context.getNullTypeSourceInfo();
2604  else if (D.isInvalidType())
2605    return Context.getTrivialTypeSourceInfo(T);
2606
2607  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
2608}
2609
2610/// GetTypeForDeclarator - Convert the type for the specified
2611/// declarator to Type instances.
2612///
2613/// The result of this call will never be null, but the associated
2614/// type may be a null type if there's an unrecoverable error.
2615TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
2616  // Determine the type of the declarator. Not all forms of declarator
2617  // have a type.
2618
2619  TypeProcessingState state(*this, D);
2620
2621  TypeSourceInfo *ReturnTypeInfo = 0;
2622  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2623  if (T.isNull())
2624    return Context.getNullTypeSourceInfo();
2625
2626  if (D.isPrototypeContext() && getLangOptions().ObjCAutoRefCount)
2627    inferARCWriteback(state, T);
2628
2629  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
2630}
2631
2632static void transferARCOwnershipToDeclSpec(Sema &S,
2633                                           QualType &declSpecTy,
2634                                           Qualifiers::ObjCLifetime ownership) {
2635  if (declSpecTy->isObjCRetainableType() &&
2636      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
2637    Qualifiers qs;
2638    qs.addObjCLifetime(ownership);
2639    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
2640  }
2641}
2642
2643static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2644                                            Qualifiers::ObjCLifetime ownership,
2645                                            unsigned chunkIndex) {
2646  Sema &S = state.getSema();
2647  Declarator &D = state.getDeclarator();
2648
2649  // Look for an explicit lifetime attribute.
2650  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
2651  for (const AttributeList *attr = chunk.getAttrs(); attr;
2652         attr = attr->getNext())
2653    if (attr->getKind() == AttributeList::AT_objc_ownership)
2654      return;
2655
2656  const char *attrStr = 0;
2657  switch (ownership) {
2658  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
2659  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
2660  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
2661  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
2662  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
2663  }
2664
2665  // If there wasn't one, add one (with an invalid source location
2666  // so that we don't make an AttributedType for it).
2667  AttributeList *attr = D.getAttributePool()
2668    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
2669            /*scope*/ 0, SourceLocation(),
2670            &S.Context.Idents.get(attrStr), SourceLocation(),
2671            /*args*/ 0, 0,
2672            /*declspec*/ false, /*C++0x*/ false);
2673  spliceAttrIntoList(*attr, chunk.getAttrListRef());
2674
2675  // TODO: mark whether we did this inference?
2676}
2677
2678/// \brief Used for transfering ownership in casts resulting in l-values.
2679static void transferARCOwnership(TypeProcessingState &state,
2680                                 QualType &declSpecTy,
2681                                 Qualifiers::ObjCLifetime ownership) {
2682  Sema &S = state.getSema();
2683  Declarator &D = state.getDeclarator();
2684
2685  int inner = -1;
2686  bool hasIndirection = false;
2687  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2688    DeclaratorChunk &chunk = D.getTypeObject(i);
2689    switch (chunk.Kind) {
2690    case DeclaratorChunk::Paren:
2691      // Ignore parens.
2692      break;
2693
2694    case DeclaratorChunk::Array:
2695    case DeclaratorChunk::Reference:
2696    case DeclaratorChunk::Pointer:
2697      if (inner != -1)
2698        hasIndirection = true;
2699      inner = i;
2700      break;
2701
2702    case DeclaratorChunk::BlockPointer:
2703      if (inner != -1)
2704        transferARCOwnershipToDeclaratorChunk(state, ownership, i);
2705      return;
2706
2707    case DeclaratorChunk::Function:
2708    case DeclaratorChunk::MemberPointer:
2709      return;
2710    }
2711  }
2712
2713  if (inner == -1)
2714    return;
2715
2716  DeclaratorChunk &chunk = D.getTypeObject(inner);
2717  if (chunk.Kind == DeclaratorChunk::Pointer) {
2718    if (declSpecTy->isObjCRetainableType())
2719      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2720    if (declSpecTy->isObjCObjectType() && hasIndirection)
2721      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
2722  } else {
2723    assert(chunk.Kind == DeclaratorChunk::Array ||
2724           chunk.Kind == DeclaratorChunk::Reference);
2725    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2726  }
2727}
2728
2729TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
2730  TypeProcessingState state(*this, D);
2731
2732  TypeSourceInfo *ReturnTypeInfo = 0;
2733  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2734  if (declSpecTy.isNull())
2735    return Context.getNullTypeSourceInfo();
2736
2737  if (getLangOptions().ObjCAutoRefCount) {
2738    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
2739    if (ownership != Qualifiers::OCL_None)
2740      transferARCOwnership(state, declSpecTy, ownership);
2741  }
2742
2743  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
2744}
2745
2746/// Map an AttributedType::Kind to an AttributeList::Kind.
2747static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
2748  switch (kind) {
2749  case AttributedType::attr_address_space:
2750    return AttributeList::AT_address_space;
2751  case AttributedType::attr_regparm:
2752    return AttributeList::AT_regparm;
2753  case AttributedType::attr_vector_size:
2754    return AttributeList::AT_vector_size;
2755  case AttributedType::attr_neon_vector_type:
2756    return AttributeList::AT_neon_vector_type;
2757  case AttributedType::attr_neon_polyvector_type:
2758    return AttributeList::AT_neon_polyvector_type;
2759  case AttributedType::attr_objc_gc:
2760    return AttributeList::AT_objc_gc;
2761  case AttributedType::attr_objc_ownership:
2762    return AttributeList::AT_objc_ownership;
2763  case AttributedType::attr_noreturn:
2764    return AttributeList::AT_noreturn;
2765  case AttributedType::attr_cdecl:
2766    return AttributeList::AT_cdecl;
2767  case AttributedType::attr_fastcall:
2768    return AttributeList::AT_fastcall;
2769  case AttributedType::attr_stdcall:
2770    return AttributeList::AT_stdcall;
2771  case AttributedType::attr_thiscall:
2772    return AttributeList::AT_thiscall;
2773  case AttributedType::attr_pascal:
2774    return AttributeList::AT_pascal;
2775  case AttributedType::attr_pcs:
2776    return AttributeList::AT_pcs;
2777  }
2778  llvm_unreachable("unexpected attribute kind!");
2779}
2780
2781static void fillAttributedTypeLoc(AttributedTypeLoc TL,
2782                                  const AttributeList *attrs) {
2783  AttributedType::Kind kind = TL.getAttrKind();
2784
2785  assert(attrs && "no type attributes in the expected location!");
2786  AttributeList::Kind parsedKind = getAttrListKind(kind);
2787  while (attrs->getKind() != parsedKind) {
2788    attrs = attrs->getNext();
2789    assert(attrs && "no matching attribute in expected location!");
2790  }
2791
2792  TL.setAttrNameLoc(attrs->getLoc());
2793  if (TL.hasAttrExprOperand())
2794    TL.setAttrExprOperand(attrs->getArg(0));
2795  else if (TL.hasAttrEnumOperand())
2796    TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
2797
2798  // FIXME: preserve this information to here.
2799  if (TL.hasAttrOperand())
2800    TL.setAttrOperandParensRange(SourceRange());
2801}
2802
2803namespace {
2804  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
2805    ASTContext &Context;
2806    const DeclSpec &DS;
2807
2808  public:
2809    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
2810      : Context(Context), DS(DS) {}
2811
2812    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
2813      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
2814      Visit(TL.getModifiedLoc());
2815    }
2816    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
2817      Visit(TL.getUnqualifiedLoc());
2818    }
2819    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
2820      TL.setNameLoc(DS.getTypeSpecTypeLoc());
2821    }
2822    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
2823      TL.setNameLoc(DS.getTypeSpecTypeLoc());
2824    }
2825    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
2826      // Handle the base type, which might not have been written explicitly.
2827      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
2828        TL.setHasBaseTypeAsWritten(false);
2829        TL.getBaseLoc().initialize(Context, SourceLocation());
2830      } else {
2831        TL.setHasBaseTypeAsWritten(true);
2832        Visit(TL.getBaseLoc());
2833      }
2834
2835      // Protocol qualifiers.
2836      if (DS.getProtocolQualifiers()) {
2837        assert(TL.getNumProtocols() > 0);
2838        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
2839        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
2840        TL.setRAngleLoc(DS.getSourceRange().getEnd());
2841        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
2842          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
2843      } else {
2844        assert(TL.getNumProtocols() == 0);
2845        TL.setLAngleLoc(SourceLocation());
2846        TL.setRAngleLoc(SourceLocation());
2847      }
2848    }
2849    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
2850      TL.setStarLoc(SourceLocation());
2851      Visit(TL.getPointeeLoc());
2852    }
2853    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
2854      TypeSourceInfo *TInfo = 0;
2855      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2856
2857      // If we got no declarator info from previous Sema routines,
2858      // just fill with the typespec loc.
2859      if (!TInfo) {
2860        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
2861        return;
2862      }
2863
2864      TypeLoc OldTL = TInfo->getTypeLoc();
2865      if (TInfo->getType()->getAs<ElaboratedType>()) {
2866        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
2867        TemplateSpecializationTypeLoc NamedTL =
2868          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
2869        TL.copy(NamedTL);
2870      }
2871      else
2872        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
2873    }
2874    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
2875      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
2876      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2877      TL.setParensRange(DS.getTypeofParensRange());
2878    }
2879    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
2880      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
2881      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2882      TL.setParensRange(DS.getTypeofParensRange());
2883      assert(DS.getRepAsType());
2884      TypeSourceInfo *TInfo = 0;
2885      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2886      TL.setUnderlyingTInfo(TInfo);
2887    }
2888    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
2889      // FIXME: This holds only because we only have one unary transform.
2890      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
2891      TL.setKWLoc(DS.getTypeSpecTypeLoc());
2892      TL.setParensRange(DS.getTypeofParensRange());
2893      assert(DS.getRepAsType());
2894      TypeSourceInfo *TInfo = 0;
2895      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2896      TL.setUnderlyingTInfo(TInfo);
2897    }
2898    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
2899      // By default, use the source location of the type specifier.
2900      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
2901      if (TL.needsExtraLocalData()) {
2902        // Set info for the written builtin specifiers.
2903        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
2904        // Try to have a meaningful source location.
2905        if (TL.getWrittenSignSpec() != TSS_unspecified)
2906          // Sign spec loc overrides the others (e.g., 'unsigned long').
2907          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
2908        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
2909          // Width spec loc overrides type spec loc (e.g., 'short int').
2910          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
2911      }
2912    }
2913    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
2914      ElaboratedTypeKeyword Keyword
2915        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2916      if (DS.getTypeSpecType() == TST_typename) {
2917        TypeSourceInfo *TInfo = 0;
2918        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2919        if (TInfo) {
2920          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
2921          return;
2922        }
2923      }
2924      TL.setKeywordLoc(Keyword != ETK_None
2925                       ? DS.getTypeSpecTypeLoc()
2926                       : SourceLocation());
2927      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2928      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2929      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
2930    }
2931    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
2932      ElaboratedTypeKeyword Keyword
2933        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2934      if (DS.getTypeSpecType() == TST_typename) {
2935        TypeSourceInfo *TInfo = 0;
2936        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2937        if (TInfo) {
2938          TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
2939          return;
2940        }
2941      }
2942      TL.setKeywordLoc(Keyword != ETK_None
2943                       ? DS.getTypeSpecTypeLoc()
2944                       : SourceLocation());
2945      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2946      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2947      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2948    }
2949    void VisitDependentTemplateSpecializationTypeLoc(
2950                                 DependentTemplateSpecializationTypeLoc TL) {
2951      ElaboratedTypeKeyword Keyword
2952        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2953      if (Keyword == ETK_Typename) {
2954        TypeSourceInfo *TInfo = 0;
2955        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2956        if (TInfo) {
2957          TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
2958                    TInfo->getTypeLoc()));
2959          return;
2960        }
2961      }
2962      TL.initializeLocal(Context, SourceLocation());
2963      TL.setKeywordLoc(Keyword != ETK_None
2964                       ? DS.getTypeSpecTypeLoc()
2965                       : SourceLocation());
2966      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2967      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2968      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2969    }
2970    void VisitTagTypeLoc(TagTypeLoc TL) {
2971      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2972    }
2973    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
2974      TL.setKWLoc(DS.getTypeSpecTypeLoc());
2975      TL.setParensRange(DS.getTypeofParensRange());
2976
2977      TypeSourceInfo *TInfo = 0;
2978      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2979      TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
2980    }
2981
2982    void VisitTypeLoc(TypeLoc TL) {
2983      // FIXME: add other typespec types and change this to an assert.
2984      TL.initialize(Context, DS.getTypeSpecTypeLoc());
2985    }
2986  };
2987
2988  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
2989    ASTContext &Context;
2990    const DeclaratorChunk &Chunk;
2991
2992  public:
2993    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
2994      : Context(Context), Chunk(Chunk) {}
2995
2996    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
2997      llvm_unreachable("qualified type locs not expected here!");
2998    }
2999
3000    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3001      fillAttributedTypeLoc(TL, Chunk.getAttrs());
3002    }
3003    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
3004      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3005      TL.setCaretLoc(Chunk.Loc);
3006    }
3007    void VisitPointerTypeLoc(PointerTypeLoc TL) {
3008      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3009      TL.setStarLoc(Chunk.Loc);
3010    }
3011    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3012      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3013      TL.setStarLoc(Chunk.Loc);
3014    }
3015    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3016      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3017      const CXXScopeSpec& SS = Chunk.Mem.Scope();
3018      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3019
3020      const Type* ClsTy = TL.getClass();
3021      QualType ClsQT = QualType(ClsTy, 0);
3022      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3023      // Now copy source location info into the type loc component.
3024      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3025      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3026      case NestedNameSpecifier::Identifier:
3027        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3028        {
3029          DependentNameTypeLoc DNTLoc = cast<DependentNameTypeLoc>(ClsTL);
3030          DNTLoc.setKeywordLoc(SourceLocation());
3031          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3032          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3033        }
3034        break;
3035
3036      case NestedNameSpecifier::TypeSpec:
3037      case NestedNameSpecifier::TypeSpecWithTemplate:
3038        if (isa<ElaboratedType>(ClsTy)) {
3039          ElaboratedTypeLoc ETLoc = *cast<ElaboratedTypeLoc>(&ClsTL);
3040          ETLoc.setKeywordLoc(SourceLocation());
3041          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3042          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3043          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3044        } else {
3045          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3046        }
3047        break;
3048
3049      case NestedNameSpecifier::Namespace:
3050      case NestedNameSpecifier::NamespaceAlias:
3051      case NestedNameSpecifier::Global:
3052        llvm_unreachable("Nested-name-specifier must name a type");
3053      }
3054
3055      // Finally fill in MemberPointerLocInfo fields.
3056      TL.setStarLoc(Chunk.Loc);
3057      TL.setClassTInfo(ClsTInfo);
3058    }
3059    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3060      assert(Chunk.Kind == DeclaratorChunk::Reference);
3061      // 'Amp' is misleading: this might have been originally
3062      /// spelled with AmpAmp.
3063      TL.setAmpLoc(Chunk.Loc);
3064    }
3065    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3066      assert(Chunk.Kind == DeclaratorChunk::Reference);
3067      assert(!Chunk.Ref.LValueRef);
3068      TL.setAmpAmpLoc(Chunk.Loc);
3069    }
3070    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3071      assert(Chunk.Kind == DeclaratorChunk::Array);
3072      TL.setLBracketLoc(Chunk.Loc);
3073      TL.setRBracketLoc(Chunk.EndLoc);
3074      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3075    }
3076    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3077      assert(Chunk.Kind == DeclaratorChunk::Function);
3078      TL.setLocalRangeBegin(Chunk.Loc);
3079      TL.setLocalRangeEnd(Chunk.EndLoc);
3080      TL.setTrailingReturn(!!Chunk.Fun.TrailingReturnType);
3081
3082      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3083      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
3084        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3085        TL.setArg(tpi++, Param);
3086      }
3087      // FIXME: exception specs
3088    }
3089    void VisitParenTypeLoc(ParenTypeLoc TL) {
3090      assert(Chunk.Kind == DeclaratorChunk::Paren);
3091      TL.setLParenLoc(Chunk.Loc);
3092      TL.setRParenLoc(Chunk.EndLoc);
3093    }
3094
3095    void VisitTypeLoc(TypeLoc TL) {
3096      llvm_unreachable("unsupported TypeLoc kind in declarator!");
3097    }
3098  };
3099}
3100
3101/// \brief Create and instantiate a TypeSourceInfo with type source information.
3102///
3103/// \param T QualType referring to the type as written in source code.
3104///
3105/// \param ReturnTypeInfo For declarators whose return type does not show
3106/// up in the normal place in the declaration specifiers (such as a C++
3107/// conversion function), this pointer will refer to a type source information
3108/// for that return type.
3109TypeSourceInfo *
3110Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3111                                     TypeSourceInfo *ReturnTypeInfo) {
3112  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3113  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3114
3115  // Handle parameter packs whose type is a pack expansion.
3116  if (isa<PackExpansionType>(T)) {
3117    cast<PackExpansionTypeLoc>(CurrTL).setEllipsisLoc(D.getEllipsisLoc());
3118    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3119  }
3120
3121  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3122    while (isa<AttributedTypeLoc>(CurrTL)) {
3123      AttributedTypeLoc TL = cast<AttributedTypeLoc>(CurrTL);
3124      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3125      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3126    }
3127
3128    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3129    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3130  }
3131
3132  // If we have different source information for the return type, use
3133  // that.  This really only applies to C++ conversion functions.
3134  if (ReturnTypeInfo) {
3135    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3136    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3137    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3138  } else {
3139    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3140  }
3141
3142  return TInfo;
3143}
3144
3145/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3146ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3147  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3148  // and Sema during declaration parsing. Try deallocating/caching them when
3149  // it's appropriate, instead of allocating them and keeping them around.
3150  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3151                                                       TypeAlignment);
3152  new (LocT) LocInfoType(T, TInfo);
3153  assert(LocT->getTypeClass() != T->getTypeClass() &&
3154         "LocInfoType's TypeClass conflicts with an existing Type class");
3155  return ParsedType::make(QualType(LocT, 0));
3156}
3157
3158void LocInfoType::getAsStringInternal(std::string &Str,
3159                                      const PrintingPolicy &Policy) const {
3160  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3161         " was used directly instead of getting the QualType through"
3162         " GetTypeFromParser");
3163}
3164
3165TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3166  // C99 6.7.6: Type names have no identifier.  This is already validated by
3167  // the parser.
3168  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3169
3170  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3171  QualType T = TInfo->getType();
3172  if (D.isInvalidType())
3173    return true;
3174
3175  // Make sure there are no unused decl attributes on the declarator.
3176  // We don't want to do this for ObjC parameters because we're going
3177  // to apply them to the actual parameter declaration.
3178  if (D.getContext() != Declarator::ObjCParameterContext)
3179    checkUnusedDeclAttributes(D);
3180
3181  if (getLangOptions().CPlusPlus) {
3182    // Check that there are no default arguments (C++ only).
3183    CheckExtraCXXDefaultArguments(D);
3184  }
3185
3186  return CreateParsedType(T, TInfo);
3187}
3188
3189ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3190  QualType T = Context.getObjCInstanceType();
3191  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3192  return CreateParsedType(T, TInfo);
3193}
3194
3195
3196//===----------------------------------------------------------------------===//
3197// Type Attribute Processing
3198//===----------------------------------------------------------------------===//
3199
3200/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3201/// specified type.  The attribute contains 1 argument, the id of the address
3202/// space for the type.
3203static void HandleAddressSpaceTypeAttribute(QualType &Type,
3204                                            const AttributeList &Attr, Sema &S){
3205
3206  // If this type is already address space qualified, reject it.
3207  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3208  // qualifiers for two or more different address spaces."
3209  if (Type.getAddressSpace()) {
3210    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3211    Attr.setInvalid();
3212    return;
3213  }
3214
3215  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3216  // qualified by an address-space qualifier."
3217  if (Type->isFunctionType()) {
3218    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3219    Attr.setInvalid();
3220    return;
3221  }
3222
3223  // Check the attribute arguments.
3224  if (Attr.getNumArgs() != 1) {
3225    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3226    Attr.setInvalid();
3227    return;
3228  }
3229  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
3230  llvm::APSInt addrSpace(32);
3231  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3232      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3233    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
3234      << ASArgExpr->getSourceRange();
3235    Attr.setInvalid();
3236    return;
3237  }
3238
3239  // Bounds checking.
3240  if (addrSpace.isSigned()) {
3241    if (addrSpace.isNegative()) {
3242      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3243        << ASArgExpr->getSourceRange();
3244      Attr.setInvalid();
3245      return;
3246    }
3247    addrSpace.setIsSigned(false);
3248  }
3249  llvm::APSInt max(addrSpace.getBitWidth());
3250  max = Qualifiers::MaxAddressSpace;
3251  if (addrSpace > max) {
3252    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3253      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
3254    Attr.setInvalid();
3255    return;
3256  }
3257
3258  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3259  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3260}
3261
3262/// handleObjCOwnershipTypeAttr - Process an objc_ownership
3263/// attribute on the specified type.
3264///
3265/// Returns 'true' if the attribute was handled.
3266static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
3267                                       AttributeList &attr,
3268                                       QualType &type) {
3269  bool NonObjCPointer = false;
3270
3271  if (!type->isDependentType()) {
3272    if (const PointerType *ptr = type->getAs<PointerType>()) {
3273      QualType pointee = ptr->getPointeeType();
3274      if (pointee->isObjCRetainableType() || pointee->isPointerType())
3275        return false;
3276      // It is important not to lose the source info that there was an attribute
3277      // applied to non-objc pointer. We will create an attributed type but
3278      // its type will be the same as the original type.
3279      NonObjCPointer = true;
3280    } else if (!type->isObjCRetainableType()) {
3281      return false;
3282    }
3283  }
3284
3285  Sema &S = state.getSema();
3286  SourceLocation AttrLoc = attr.getLoc();
3287  if (AttrLoc.isMacroID())
3288    AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
3289
3290  if (type.getQualifiers().getObjCLifetime()) {
3291    S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
3292      << type;
3293    return true;
3294  }
3295
3296  if (!attr.getParameterName()) {
3297    S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
3298      << "objc_ownership" << 1;
3299    attr.setInvalid();
3300    return true;
3301  }
3302
3303  Qualifiers::ObjCLifetime lifetime;
3304  if (attr.getParameterName()->isStr("none"))
3305    lifetime = Qualifiers::OCL_ExplicitNone;
3306  else if (attr.getParameterName()->isStr("strong"))
3307    lifetime = Qualifiers::OCL_Strong;
3308  else if (attr.getParameterName()->isStr("weak"))
3309    lifetime = Qualifiers::OCL_Weak;
3310  else if (attr.getParameterName()->isStr("autoreleasing"))
3311    lifetime = Qualifiers::OCL_Autoreleasing;
3312  else {
3313    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
3314      << "objc_ownership" << attr.getParameterName();
3315    attr.setInvalid();
3316    return true;
3317  }
3318
3319  // Consume lifetime attributes without further comment outside of
3320  // ARC mode.
3321  if (!S.getLangOptions().ObjCAutoRefCount)
3322    return true;
3323
3324  if (NonObjCPointer) {
3325    StringRef name = attr.getName()->getName();
3326    switch (lifetime) {
3327    case Qualifiers::OCL_None:
3328    case Qualifiers::OCL_ExplicitNone:
3329      break;
3330    case Qualifiers::OCL_Strong: name = "__strong"; break;
3331    case Qualifiers::OCL_Weak: name = "__weak"; break;
3332    case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
3333    }
3334    S.Diag(AttrLoc, diag::warn_objc_object_attribute_wrong_type)
3335      << name << type;
3336  }
3337
3338  Qualifiers qs;
3339  qs.setObjCLifetime(lifetime);
3340  QualType origType = type;
3341  if (!NonObjCPointer)
3342    type = S.Context.getQualifiedType(type, qs);
3343
3344  // If we have a valid source location for the attribute, use an
3345  // AttributedType instead.
3346  if (AttrLoc.isValid())
3347    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
3348                                       origType, type);
3349
3350  // Forbid __weak if the runtime doesn't support it.
3351  if (lifetime == Qualifiers::OCL_Weak &&
3352      !S.getLangOptions().ObjCRuntimeHasWeak && !NonObjCPointer) {
3353
3354    // Actually, delay this until we know what we're parsing.
3355    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
3356      S.DelayedDiagnostics.add(
3357          sema::DelayedDiagnostic::makeForbiddenType(
3358              S.getSourceManager().getExpansionLoc(AttrLoc),
3359              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
3360    } else {
3361      S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
3362    }
3363
3364    attr.setInvalid();
3365    return true;
3366  }
3367
3368  // Forbid __weak for class objects marked as
3369  // objc_arc_weak_reference_unavailable
3370  if (lifetime == Qualifiers::OCL_Weak) {
3371    QualType T = type;
3372    while (const PointerType *ptr = T->getAs<PointerType>())
3373      T = ptr->getPointeeType();
3374    if (const ObjCObjectPointerType *ObjT = T->getAs<ObjCObjectPointerType>()) {
3375      ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl();
3376      if (Class->isArcWeakrefUnavailable()) {
3377          S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
3378          S.Diag(ObjT->getInterfaceDecl()->getLocation(),
3379                 diag::note_class_declared);
3380      }
3381    }
3382  }
3383
3384  return true;
3385}
3386
3387/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
3388/// attribute on the specified type.  Returns true to indicate that
3389/// the attribute was handled, false to indicate that the type does
3390/// not permit the attribute.
3391static bool handleObjCGCTypeAttr(TypeProcessingState &state,
3392                                 AttributeList &attr,
3393                                 QualType &type) {
3394  Sema &S = state.getSema();
3395
3396  // Delay if this isn't some kind of pointer.
3397  if (!type->isPointerType() &&
3398      !type->isObjCObjectPointerType() &&
3399      !type->isBlockPointerType())
3400    return false;
3401
3402  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
3403    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
3404    attr.setInvalid();
3405    return true;
3406  }
3407
3408  // Check the attribute arguments.
3409  if (!attr.getParameterName()) {
3410    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3411      << "objc_gc" << 1;
3412    attr.setInvalid();
3413    return true;
3414  }
3415  Qualifiers::GC GCAttr;
3416  if (attr.getNumArgs() != 0) {
3417    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3418    attr.setInvalid();
3419    return true;
3420  }
3421  if (attr.getParameterName()->isStr("weak"))
3422    GCAttr = Qualifiers::Weak;
3423  else if (attr.getParameterName()->isStr("strong"))
3424    GCAttr = Qualifiers::Strong;
3425  else {
3426    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3427      << "objc_gc" << attr.getParameterName();
3428    attr.setInvalid();
3429    return true;
3430  }
3431
3432  QualType origType = type;
3433  type = S.Context.getObjCGCQualType(origType, GCAttr);
3434
3435  // Make an attributed type to preserve the source information.
3436  if (attr.getLoc().isValid())
3437    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
3438                                       origType, type);
3439
3440  return true;
3441}
3442
3443namespace {
3444  /// A helper class to unwrap a type down to a function for the
3445  /// purposes of applying attributes there.
3446  ///
3447  /// Use:
3448  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
3449  ///   if (unwrapped.isFunctionType()) {
3450  ///     const FunctionType *fn = unwrapped.get();
3451  ///     // change fn somehow
3452  ///     T = unwrapped.wrap(fn);
3453  ///   }
3454  struct FunctionTypeUnwrapper {
3455    enum WrapKind {
3456      Desugar,
3457      Parens,
3458      Pointer,
3459      BlockPointer,
3460      Reference,
3461      MemberPointer
3462    };
3463
3464    QualType Original;
3465    const FunctionType *Fn;
3466    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
3467
3468    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
3469      while (true) {
3470        const Type *Ty = T.getTypePtr();
3471        if (isa<FunctionType>(Ty)) {
3472          Fn = cast<FunctionType>(Ty);
3473          return;
3474        } else if (isa<ParenType>(Ty)) {
3475          T = cast<ParenType>(Ty)->getInnerType();
3476          Stack.push_back(Parens);
3477        } else if (isa<PointerType>(Ty)) {
3478          T = cast<PointerType>(Ty)->getPointeeType();
3479          Stack.push_back(Pointer);
3480        } else if (isa<BlockPointerType>(Ty)) {
3481          T = cast<BlockPointerType>(Ty)->getPointeeType();
3482          Stack.push_back(BlockPointer);
3483        } else if (isa<MemberPointerType>(Ty)) {
3484          T = cast<MemberPointerType>(Ty)->getPointeeType();
3485          Stack.push_back(MemberPointer);
3486        } else if (isa<ReferenceType>(Ty)) {
3487          T = cast<ReferenceType>(Ty)->getPointeeType();
3488          Stack.push_back(Reference);
3489        } else {
3490          const Type *DTy = Ty->getUnqualifiedDesugaredType();
3491          if (Ty == DTy) {
3492            Fn = 0;
3493            return;
3494          }
3495
3496          T = QualType(DTy, 0);
3497          Stack.push_back(Desugar);
3498        }
3499      }
3500    }
3501
3502    bool isFunctionType() const { return (Fn != 0); }
3503    const FunctionType *get() const { return Fn; }
3504
3505    QualType wrap(Sema &S, const FunctionType *New) {
3506      // If T wasn't modified from the unwrapped type, do nothing.
3507      if (New == get()) return Original;
3508
3509      Fn = New;
3510      return wrap(S.Context, Original, 0);
3511    }
3512
3513  private:
3514    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
3515      if (I == Stack.size())
3516        return C.getQualifiedType(Fn, Old.getQualifiers());
3517
3518      // Build up the inner type, applying the qualifiers from the old
3519      // type to the new type.
3520      SplitQualType SplitOld = Old.split();
3521
3522      // As a special case, tail-recurse if there are no qualifiers.
3523      if (SplitOld.second.empty())
3524        return wrap(C, SplitOld.first, I);
3525      return C.getQualifiedType(wrap(C, SplitOld.first, I), SplitOld.second);
3526    }
3527
3528    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
3529      if (I == Stack.size()) return QualType(Fn, 0);
3530
3531      switch (static_cast<WrapKind>(Stack[I++])) {
3532      case Desugar:
3533        // This is the point at which we potentially lose source
3534        // information.
3535        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
3536
3537      case Parens: {
3538        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
3539        return C.getParenType(New);
3540      }
3541
3542      case Pointer: {
3543        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
3544        return C.getPointerType(New);
3545      }
3546
3547      case BlockPointer: {
3548        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
3549        return C.getBlockPointerType(New);
3550      }
3551
3552      case MemberPointer: {
3553        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
3554        QualType New = wrap(C, OldMPT->getPointeeType(), I);
3555        return C.getMemberPointerType(New, OldMPT->getClass());
3556      }
3557
3558      case Reference: {
3559        const ReferenceType *OldRef = cast<ReferenceType>(Old);
3560        QualType New = wrap(C, OldRef->getPointeeType(), I);
3561        if (isa<LValueReferenceType>(OldRef))
3562          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
3563        else
3564          return C.getRValueReferenceType(New);
3565      }
3566      }
3567
3568      llvm_unreachable("unknown wrapping kind");
3569    }
3570  };
3571}
3572
3573/// Process an individual function attribute.  Returns true to
3574/// indicate that the attribute was handled, false if it wasn't.
3575static bool handleFunctionTypeAttr(TypeProcessingState &state,
3576                                   AttributeList &attr,
3577                                   QualType &type) {
3578  Sema &S = state.getSema();
3579
3580  FunctionTypeUnwrapper unwrapped(S, type);
3581
3582  if (attr.getKind() == AttributeList::AT_noreturn) {
3583    if (S.CheckNoReturnAttr(attr))
3584      return true;
3585
3586    // Delay if this is not a function type.
3587    if (!unwrapped.isFunctionType())
3588      return false;
3589
3590    // Otherwise we can process right away.
3591    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
3592    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3593    return true;
3594  }
3595
3596  // ns_returns_retained is not always a type attribute, but if we got
3597  // here, we're treating it as one right now.
3598  if (attr.getKind() == AttributeList::AT_ns_returns_retained) {
3599    assert(S.getLangOptions().ObjCAutoRefCount &&
3600           "ns_returns_retained treated as type attribute in non-ARC");
3601    if (attr.getNumArgs()) return true;
3602
3603    // Delay if this is not a function type.
3604    if (!unwrapped.isFunctionType())
3605      return false;
3606
3607    FunctionType::ExtInfo EI
3608      = unwrapped.get()->getExtInfo().withProducesResult(true);
3609    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3610    return true;
3611  }
3612
3613  if (attr.getKind() == AttributeList::AT_regparm) {
3614    unsigned value;
3615    if (S.CheckRegparmAttr(attr, value))
3616      return true;
3617
3618    // Delay if this is not a function type.
3619    if (!unwrapped.isFunctionType())
3620      return false;
3621
3622    // Diagnose regparm with fastcall.
3623    const FunctionType *fn = unwrapped.get();
3624    CallingConv CC = fn->getCallConv();
3625    if (CC == CC_X86FastCall) {
3626      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3627        << FunctionType::getNameForCallConv(CC)
3628        << "regparm";
3629      attr.setInvalid();
3630      return true;
3631    }
3632
3633    FunctionType::ExtInfo EI =
3634      unwrapped.get()->getExtInfo().withRegParm(value);
3635    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3636    return true;
3637  }
3638
3639  // Otherwise, a calling convention.
3640  CallingConv CC;
3641  if (S.CheckCallingConvAttr(attr, CC))
3642    return true;
3643
3644  // Delay if the type didn't work out to a function.
3645  if (!unwrapped.isFunctionType()) return false;
3646
3647  const FunctionType *fn = unwrapped.get();
3648  CallingConv CCOld = fn->getCallConv();
3649  if (S.Context.getCanonicalCallConv(CC) ==
3650      S.Context.getCanonicalCallConv(CCOld)) {
3651    FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
3652    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3653    return true;
3654  }
3655
3656  if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
3657    // Should we diagnose reapplications of the same convention?
3658    S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3659      << FunctionType::getNameForCallConv(CC)
3660      << FunctionType::getNameForCallConv(CCOld);
3661    attr.setInvalid();
3662    return true;
3663  }
3664
3665  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
3666  if (CC == CC_X86FastCall) {
3667    if (isa<FunctionNoProtoType>(fn)) {
3668      S.Diag(attr.getLoc(), diag::err_cconv_knr)
3669        << FunctionType::getNameForCallConv(CC);
3670      attr.setInvalid();
3671      return true;
3672    }
3673
3674    const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
3675    if (FnP->isVariadic()) {
3676      S.Diag(attr.getLoc(), diag::err_cconv_varargs)
3677        << FunctionType::getNameForCallConv(CC);
3678      attr.setInvalid();
3679      return true;
3680    }
3681
3682    // Also diagnose fastcall with regparm.
3683    if (fn->getHasRegParm()) {
3684      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3685        << "regparm"
3686        << FunctionType::getNameForCallConv(CC);
3687      attr.setInvalid();
3688      return true;
3689    }
3690  }
3691
3692  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
3693  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3694  return true;
3695}
3696
3697/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
3698static void HandleOpenCLImageAccessAttribute(QualType& CurType,
3699                                             const AttributeList &Attr,
3700                                             Sema &S) {
3701  // Check the attribute arguments.
3702  if (Attr.getNumArgs() != 1) {
3703    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3704    Attr.setInvalid();
3705    return;
3706  }
3707  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3708  llvm::APSInt arg(32);
3709  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3710      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
3711    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3712      << "opencl_image_access" << sizeExpr->getSourceRange();
3713    Attr.setInvalid();
3714    return;
3715  }
3716  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
3717  switch (iarg) {
3718  case CLIA_read_only:
3719  case CLIA_write_only:
3720  case CLIA_read_write:
3721    // Implemented in a separate patch
3722    break;
3723  default:
3724    // Implemented in a separate patch
3725    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3726      << sizeExpr->getSourceRange();
3727    Attr.setInvalid();
3728    break;
3729  }
3730}
3731
3732/// HandleVectorSizeAttribute - this attribute is only applicable to integral
3733/// and float scalars, although arrays, pointers, and function return values are
3734/// allowed in conjunction with this construct. Aggregates with this attribute
3735/// are invalid, even if they are of the same size as a corresponding scalar.
3736/// The raw attribute should contain precisely 1 argument, the vector size for
3737/// the variable, measured in bytes. If curType and rawAttr are well formed,
3738/// this routine will return a new vector type.
3739static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
3740                                 Sema &S) {
3741  // Check the attribute arguments.
3742  if (Attr.getNumArgs() != 1) {
3743    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3744    Attr.setInvalid();
3745    return;
3746  }
3747  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3748  llvm::APSInt vecSize(32);
3749  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3750      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
3751    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3752      << "vector_size" << sizeExpr->getSourceRange();
3753    Attr.setInvalid();
3754    return;
3755  }
3756  // the base type must be integer or float, and can't already be a vector.
3757  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
3758    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
3759    Attr.setInvalid();
3760    return;
3761  }
3762  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3763  // vecSize is specified in bytes - convert to bits.
3764  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
3765
3766  // the vector size needs to be an integral multiple of the type size.
3767  if (vectorSize % typeSize) {
3768    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3769      << sizeExpr->getSourceRange();
3770    Attr.setInvalid();
3771    return;
3772  }
3773  if (vectorSize == 0) {
3774    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
3775      << sizeExpr->getSourceRange();
3776    Attr.setInvalid();
3777    return;
3778  }
3779
3780  // Success! Instantiate the vector type, the number of elements is > 0, and
3781  // not required to be a power of 2, unlike GCC.
3782  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
3783                                    VectorType::GenericVector);
3784}
3785
3786/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
3787/// a type.
3788static void HandleExtVectorTypeAttr(QualType &CurType,
3789                                    const AttributeList &Attr,
3790                                    Sema &S) {
3791  Expr *sizeExpr;
3792
3793  // Special case where the argument is a template id.
3794  if (Attr.getParameterName()) {
3795    CXXScopeSpec SS;
3796    UnqualifiedId id;
3797    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
3798
3799    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, id, false,
3800                                          false);
3801    if (Size.isInvalid())
3802      return;
3803
3804    sizeExpr = Size.get();
3805  } else {
3806    // check the attribute arguments.
3807    if (Attr.getNumArgs() != 1) {
3808      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3809      return;
3810    }
3811    sizeExpr = Attr.getArg(0);
3812  }
3813
3814  // Create the vector type.
3815  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
3816  if (!T.isNull())
3817    CurType = T;
3818}
3819
3820/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
3821/// "neon_polyvector_type" attributes are used to create vector types that
3822/// are mangled according to ARM's ABI.  Otherwise, these types are identical
3823/// to those created with the "vector_size" attribute.  Unlike "vector_size"
3824/// the argument to these Neon attributes is the number of vector elements,
3825/// not the vector size in bytes.  The vector width and element type must
3826/// match one of the standard Neon vector types.
3827static void HandleNeonVectorTypeAttr(QualType& CurType,
3828                                     const AttributeList &Attr, Sema &S,
3829                                     VectorType::VectorKind VecKind,
3830                                     const char *AttrName) {
3831  // Check the attribute arguments.
3832  if (Attr.getNumArgs() != 1) {
3833    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3834    Attr.setInvalid();
3835    return;
3836  }
3837  // The number of elements must be an ICE.
3838  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
3839  llvm::APSInt numEltsInt(32);
3840  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
3841      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
3842    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3843      << AttrName << numEltsExpr->getSourceRange();
3844    Attr.setInvalid();
3845    return;
3846  }
3847  // Only certain element types are supported for Neon vectors.
3848  const BuiltinType* BTy = CurType->getAs<BuiltinType>();
3849  if (!BTy ||
3850      (VecKind == VectorType::NeonPolyVector &&
3851       BTy->getKind() != BuiltinType::SChar &&
3852       BTy->getKind() != BuiltinType::Short) ||
3853      (BTy->getKind() != BuiltinType::SChar &&
3854       BTy->getKind() != BuiltinType::UChar &&
3855       BTy->getKind() != BuiltinType::Short &&
3856       BTy->getKind() != BuiltinType::UShort &&
3857       BTy->getKind() != BuiltinType::Int &&
3858       BTy->getKind() != BuiltinType::UInt &&
3859       BTy->getKind() != BuiltinType::LongLong &&
3860       BTy->getKind() != BuiltinType::ULongLong &&
3861       BTy->getKind() != BuiltinType::Float)) {
3862    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
3863    Attr.setInvalid();
3864    return;
3865  }
3866  // The total size of the vector must be 64 or 128 bits.
3867  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3868  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
3869  unsigned vecSize = typeSize * numElts;
3870  if (vecSize != 64 && vecSize != 128) {
3871    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
3872    Attr.setInvalid();
3873    return;
3874  }
3875
3876  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
3877}
3878
3879static void processTypeAttrs(TypeProcessingState &state, QualType &type,
3880                             bool isDeclSpec, AttributeList *attrs) {
3881  // Scan through and apply attributes to this type where it makes sense.  Some
3882  // attributes (such as __address_space__, __vector_size__, etc) apply to the
3883  // type, but others can be present in the type specifiers even though they
3884  // apply to the decl.  Here we apply type attributes and ignore the rest.
3885
3886  AttributeList *next;
3887  do {
3888    AttributeList &attr = *attrs;
3889    next = attr.getNext();
3890
3891    // Skip attributes that were marked to be invalid.
3892    if (attr.isInvalid())
3893      continue;
3894
3895    // If this is an attribute we can handle, do so now,
3896    // otherwise, add it to the FnAttrs list for rechaining.
3897    switch (attr.getKind()) {
3898    default: break;
3899
3900    case AttributeList::AT_may_alias:
3901      // FIXME: This attribute needs to actually be handled, but if we ignore
3902      // it it breaks large amounts of Linux software.
3903      attr.setUsedAsTypeAttr();
3904      break;
3905    case AttributeList::AT_address_space:
3906      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
3907      attr.setUsedAsTypeAttr();
3908      break;
3909    OBJC_POINTER_TYPE_ATTRS_CASELIST:
3910      if (!handleObjCPointerTypeAttr(state, attr, type))
3911        distributeObjCPointerTypeAttr(state, attr, type);
3912      attr.setUsedAsTypeAttr();
3913      break;
3914    case AttributeList::AT_vector_size:
3915      HandleVectorSizeAttr(type, attr, state.getSema());
3916      attr.setUsedAsTypeAttr();
3917      break;
3918    case AttributeList::AT_ext_vector_type:
3919      if (state.getDeclarator().getDeclSpec().getStorageClassSpec()
3920            != DeclSpec::SCS_typedef)
3921        HandleExtVectorTypeAttr(type, attr, state.getSema());
3922      attr.setUsedAsTypeAttr();
3923      break;
3924    case AttributeList::AT_neon_vector_type:
3925      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
3926                               VectorType::NeonVector, "neon_vector_type");
3927      attr.setUsedAsTypeAttr();
3928      break;
3929    case AttributeList::AT_neon_polyvector_type:
3930      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
3931                               VectorType::NeonPolyVector,
3932                               "neon_polyvector_type");
3933      attr.setUsedAsTypeAttr();
3934      break;
3935    case AttributeList::AT_opencl_image_access:
3936      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
3937      attr.setUsedAsTypeAttr();
3938      break;
3939
3940    case AttributeList::AT_ns_returns_retained:
3941      if (!state.getSema().getLangOptions().ObjCAutoRefCount)
3942	break;
3943      // fallthrough into the function attrs
3944
3945    FUNCTION_TYPE_ATTRS_CASELIST:
3946      attr.setUsedAsTypeAttr();
3947
3948      // Never process function type attributes as part of the
3949      // declaration-specifiers.
3950      if (isDeclSpec)
3951        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
3952
3953      // Otherwise, handle the possible delays.
3954      else if (!handleFunctionTypeAttr(state, attr, type))
3955        distributeFunctionTypeAttr(state, attr, type);
3956      break;
3957    }
3958  } while ((attrs = next));
3959}
3960
3961/// \brief Ensure that the type of the given expression is complete.
3962///
3963/// This routine checks whether the expression \p E has a complete type. If the
3964/// expression refers to an instantiable construct, that instantiation is
3965/// performed as needed to complete its type. Furthermore
3966/// Sema::RequireCompleteType is called for the expression's type (or in the
3967/// case of a reference type, the referred-to type).
3968///
3969/// \param E The expression whose type is required to be complete.
3970/// \param PD The partial diagnostic that will be printed out if the type cannot
3971/// be completed.
3972///
3973/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
3974/// otherwise.
3975bool Sema::RequireCompleteExprType(Expr *E, const PartialDiagnostic &PD,
3976                                   std::pair<SourceLocation,
3977                                             PartialDiagnostic> Note) {
3978  QualType T = E->getType();
3979
3980  // Fast path the case where the type is already complete.
3981  if (!T->isIncompleteType())
3982    return false;
3983
3984  // Incomplete array types may be completed by the initializer attached to
3985  // their definitions. For static data members of class templates we need to
3986  // instantiate the definition to get this initializer and complete the type.
3987  if (T->isIncompleteArrayType()) {
3988    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3989      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3990        if (Var->isStaticDataMember() &&
3991            Var->getInstantiatedFromStaticDataMember()) {
3992
3993          MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
3994          assert(MSInfo && "Missing member specialization information?");
3995          if (MSInfo->getTemplateSpecializationKind()
3996                != TSK_ExplicitSpecialization) {
3997            // If we don't already have a point of instantiation, this is it.
3998            if (MSInfo->getPointOfInstantiation().isInvalid()) {
3999              MSInfo->setPointOfInstantiation(E->getLocStart());
4000
4001              // This is a modification of an existing AST node. Notify
4002              // listeners.
4003              if (ASTMutationListener *L = getASTMutationListener())
4004                L->StaticDataMemberInstantiated(Var);
4005            }
4006
4007            InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
4008
4009            // Update the type to the newly instantiated definition's type both
4010            // here and within the expression.
4011            if (VarDecl *Def = Var->getDefinition()) {
4012              DRE->setDecl(Def);
4013              T = Def->getType();
4014              DRE->setType(T);
4015              E->setType(T);
4016            }
4017          }
4018
4019          // We still go on to try to complete the type independently, as it
4020          // may also require instantiations or diagnostics if it remains
4021          // incomplete.
4022        }
4023      }
4024    }
4025  }
4026
4027  // FIXME: Are there other cases which require instantiating something other
4028  // than the type to complete the type of an expression?
4029
4030  // Look through reference types and complete the referred type.
4031  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
4032    T = Ref->getPointeeType();
4033
4034  return RequireCompleteType(E->getExprLoc(), T, PD, Note);
4035}
4036
4037/// @brief Ensure that the type T is a complete type.
4038///
4039/// This routine checks whether the type @p T is complete in any
4040/// context where a complete type is required. If @p T is a complete
4041/// type, returns false. If @p T is a class template specialization,
4042/// this routine then attempts to perform class template
4043/// instantiation. If instantiation fails, or if @p T is incomplete
4044/// and cannot be completed, issues the diagnostic @p diag (giving it
4045/// the type @p T) and returns true.
4046///
4047/// @param Loc  The location in the source that the incomplete type
4048/// diagnostic should refer to.
4049///
4050/// @param T  The type that this routine is examining for completeness.
4051///
4052/// @param PD The partial diagnostic that will be printed out if T is not a
4053/// complete type.
4054///
4055/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
4056/// @c false otherwise.
4057bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4058                               const PartialDiagnostic &PD,
4059                               std::pair<SourceLocation,
4060                                         PartialDiagnostic> Note) {
4061  unsigned diag = PD.getDiagID();
4062
4063  // FIXME: Add this assertion to make sure we always get instantiation points.
4064  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
4065  // FIXME: Add this assertion to help us flush out problems with
4066  // checking for dependent types and type-dependent expressions.
4067  //
4068  //  assert(!T->isDependentType() &&
4069  //         "Can't ask whether a dependent type is complete");
4070
4071  // If we have a complete type, we're done.
4072  NamedDecl *Def = 0;
4073  if (!T->isIncompleteType(&Def)) {
4074    // If we know about the definition but it is not visible, complain.
4075    if (diag != 0 && Def && !LookupResult::isVisible(Def)) {
4076      // Suppress this error outside of a SFINAE context if we've already
4077      // emitted the error once for this type. There's no usefulness in
4078      // repeating the diagnostic.
4079      // FIXME: Add a Fix-It that imports the corresponding module or includes
4080      // the header.
4081      if (isSFINAEContext() || HiddenDefinitions.insert(Def)) {
4082        Diag(Loc, diag::err_module_private_definition) << T;
4083        Diag(Def->getLocation(), diag::note_previous_definition);
4084      }
4085    }
4086
4087    return false;
4088  }
4089
4090  const TagType *Tag = T->getAs<TagType>();
4091  const ObjCInterfaceType *IFace = 0;
4092
4093  if (Tag) {
4094    // Avoid diagnosing invalid decls as incomplete.
4095    if (Tag->getDecl()->isInvalidDecl())
4096      return true;
4097
4098    // Give the external AST source a chance to complete the type.
4099    if (Tag->getDecl()->hasExternalLexicalStorage()) {
4100      Context.getExternalSource()->CompleteType(Tag->getDecl());
4101      if (!Tag->isIncompleteType())
4102        return false;
4103    }
4104  }
4105  else if ((IFace = T->getAs<ObjCInterfaceType>())) {
4106    // Avoid diagnosing invalid decls as incomplete.
4107    if (IFace->getDecl()->isInvalidDecl())
4108      return true;
4109
4110    // Give the external AST source a chance to complete the type.
4111    if (IFace->getDecl()->hasExternalLexicalStorage()) {
4112      Context.getExternalSource()->CompleteType(IFace->getDecl());
4113      if (!IFace->isIncompleteType())
4114        return false;
4115    }
4116  }
4117
4118  // If we have a class template specialization or a class member of a
4119  // class template specialization, or an array with known size of such,
4120  // try to instantiate it.
4121  QualType MaybeTemplate = T;
4122  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
4123    MaybeTemplate = Array->getElementType();
4124  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
4125    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
4126          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
4127      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
4128        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
4129                                                      TSK_ImplicitInstantiation,
4130                                                      /*Complain=*/diag != 0);
4131    } else if (CXXRecordDecl *Rec
4132                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
4133      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
4134        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
4135        assert(MSInfo && "Missing member specialization information?");
4136        // This record was instantiated from a class within a template.
4137        if (MSInfo->getTemplateSpecializationKind()
4138                                               != TSK_ExplicitSpecialization)
4139          return InstantiateClass(Loc, Rec, Pattern,
4140                                  getTemplateInstantiationArgs(Rec),
4141                                  TSK_ImplicitInstantiation,
4142                                  /*Complain=*/diag != 0);
4143      }
4144    }
4145  }
4146
4147  if (diag == 0)
4148    return true;
4149
4150  // We have an incomplete type. Produce a diagnostic.
4151  Diag(Loc, PD) << T;
4152
4153  // If we have a note, produce it.
4154  if (!Note.first.isInvalid())
4155    Diag(Note.first, Note.second);
4156
4157  // If the type was a forward declaration of a class/struct/union
4158  // type, produce a note.
4159  if (Tag && !Tag->getDecl()->isInvalidDecl())
4160    Diag(Tag->getDecl()->getLocation(),
4161         Tag->isBeingDefined() ? diag::note_type_being_defined
4162                               : diag::note_forward_declaration)
4163      << QualType(Tag, 0);
4164
4165  // If the Objective-C class was a forward declaration, produce a note.
4166  if (IFace && !IFace->getDecl()->isInvalidDecl())
4167    Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
4168
4169  return true;
4170}
4171
4172bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4173                               const PartialDiagnostic &PD) {
4174  return RequireCompleteType(Loc, T, PD,
4175                             std::make_pair(SourceLocation(), PDiag(0)));
4176}
4177
4178bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4179                               unsigned DiagID) {
4180  return RequireCompleteType(Loc, T, PDiag(DiagID),
4181                             std::make_pair(SourceLocation(), PDiag(0)));
4182}
4183
4184/// @brief Ensure that the type T is a literal type.
4185///
4186/// This routine checks whether the type @p T is a literal type. If @p T is an
4187/// incomplete type, an attempt is made to complete it. If @p T is a literal
4188/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
4189/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
4190/// it the type @p T), along with notes explaining why the type is not a
4191/// literal type, and returns true.
4192///
4193/// @param Loc  The location in the source that the non-literal type
4194/// diagnostic should refer to.
4195///
4196/// @param T  The type that this routine is examining for literalness.
4197///
4198/// @param PD The partial diagnostic that will be printed out if T is not a
4199/// literal type.
4200///
4201/// @param AllowIncompleteType If true, an incomplete type will be considered
4202/// acceptable.
4203///
4204/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
4205/// @c false otherwise.
4206bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
4207                              const PartialDiagnostic &PD,
4208                              bool AllowIncompleteType) {
4209  assert(!T->isDependentType() && "type should not be dependent");
4210
4211  bool Incomplete = RequireCompleteType(Loc, T, 0);
4212  if (T->isLiteralType() || (AllowIncompleteType && Incomplete))
4213    return false;
4214
4215  if (PD.getDiagID() == 0)
4216    return true;
4217
4218  Diag(Loc, PD) << T;
4219
4220  if (T->isVariableArrayType())
4221    return true;
4222
4223  const RecordType *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>();
4224  if (!RT)
4225    return true;
4226
4227  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4228
4229  // If the class has virtual base classes, then it's not an aggregate, and
4230  // cannot have any constexpr constructors, so is non-literal. This is better
4231  // to diagnose than the resulting absence of constexpr constructors.
4232  if (RD->getNumVBases()) {
4233    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
4234      << RD->isStruct() << RD->getNumVBases();
4235    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
4236           E = RD->vbases_end(); I != E; ++I)
4237      Diag(I->getSourceRange().getBegin(),
4238           diag::note_constexpr_virtual_base_here) << I->getSourceRange();
4239  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor()) {
4240    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
4241
4242    switch (RD->getTemplateSpecializationKind()) {
4243    case TSK_Undeclared:
4244    case TSK_ExplicitSpecialization:
4245      break;
4246
4247    case TSK_ImplicitInstantiation:
4248    case TSK_ExplicitInstantiationDeclaration:
4249    case TSK_ExplicitInstantiationDefinition:
4250      // If the base template had constexpr constructors which were
4251      // instantiated as non-constexpr constructors, explain why.
4252      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
4253           E = RD->ctor_end(); I != E; ++I) {
4254        if ((*I)->isCopyConstructor() || (*I)->isMoveConstructor())
4255          continue;
4256
4257        FunctionDecl *Base = (*I)->getInstantiatedFromMemberFunction();
4258        if (Base && Base->isConstexpr())
4259          CheckConstexprFunctionDecl(*I, CCK_NoteNonConstexprInstantiation);
4260      }
4261    }
4262  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
4263    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4264         E = RD->bases_end(); I != E; ++I) {
4265      if (!I->getType()->isLiteralType()) {
4266        Diag(I->getSourceRange().getBegin(),
4267             diag::note_non_literal_base_class)
4268          << RD << I->getType() << I->getSourceRange();
4269        return true;
4270      }
4271    }
4272    for (CXXRecordDecl::field_iterator I = RD->field_begin(),
4273         E = RD->field_end(); I != E; ++I) {
4274      if (!(*I)->getType()->isLiteralType()) {
4275        Diag((*I)->getLocation(), diag::note_non_literal_field)
4276          << RD << (*I) << (*I)->getType();
4277        return true;
4278      } else if ((*I)->isMutable()) {
4279        Diag((*I)->getLocation(), diag::note_non_literal_mutable_field) << RD;
4280        return true;
4281      }
4282    }
4283  } else if (!RD->hasTrivialDestructor()) {
4284    // All fields and bases are of literal types, so have trivial destructors.
4285    // If this class's destructor is non-trivial it must be user-declared.
4286    CXXDestructorDecl *Dtor = RD->getDestructor();
4287    assert(Dtor && "class has literal fields and bases but no dtor?");
4288    if (!Dtor)
4289      return true;
4290
4291    Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
4292         diag::note_non_literal_user_provided_dtor :
4293         diag::note_non_literal_nontrivial_dtor) << RD;
4294  }
4295
4296  return true;
4297}
4298
4299/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
4300/// and qualified by the nested-name-specifier contained in SS.
4301QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
4302                                 const CXXScopeSpec &SS, QualType T) {
4303  if (T.isNull())
4304    return T;
4305  NestedNameSpecifier *NNS;
4306  if (SS.isValid())
4307    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4308  else {
4309    if (Keyword == ETK_None)
4310      return T;
4311    NNS = 0;
4312  }
4313  return Context.getElaboratedType(Keyword, NNS, T);
4314}
4315
4316QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
4317  ExprResult ER = CheckPlaceholderExpr(E);
4318  if (ER.isInvalid()) return QualType();
4319  E = ER.take();
4320
4321  if (!E->isTypeDependent()) {
4322    QualType T = E->getType();
4323    if (const TagType *TT = T->getAs<TagType>())
4324      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
4325  }
4326  return Context.getTypeOfExprType(E);
4327}
4328
4329QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
4330  ExprResult ER = CheckPlaceholderExpr(E);
4331  if (ER.isInvalid()) return QualType();
4332  E = ER.take();
4333
4334  return Context.getDecltypeType(E);
4335}
4336
4337QualType Sema::BuildUnaryTransformType(QualType BaseType,
4338                                       UnaryTransformType::UTTKind UKind,
4339                                       SourceLocation Loc) {
4340  switch (UKind) {
4341  case UnaryTransformType::EnumUnderlyingType:
4342    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
4343      Diag(Loc, diag::err_only_enums_have_underlying_types);
4344      return QualType();
4345    } else {
4346      QualType Underlying = BaseType;
4347      if (!BaseType->isDependentType()) {
4348        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
4349        assert(ED && "EnumType has no EnumDecl");
4350        DiagnoseUseOfDecl(ED, Loc);
4351        Underlying = ED->getIntegerType();
4352      }
4353      assert(!Underlying.isNull());
4354      return Context.getUnaryTransformType(BaseType, Underlying,
4355                                        UnaryTransformType::EnumUnderlyingType);
4356    }
4357  }
4358  llvm_unreachable("unknown unary transform type");
4359}
4360
4361QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
4362  if (!T->isDependentType()) {
4363    int DisallowedKind = -1;
4364    if (T->isIncompleteType())
4365      // FIXME: It isn't entirely clear whether incomplete atomic types
4366      // are allowed or not; for simplicity, ban them for the moment.
4367      DisallowedKind = 0;
4368    else if (T->isArrayType())
4369      DisallowedKind = 1;
4370    else if (T->isFunctionType())
4371      DisallowedKind = 2;
4372    else if (T->isReferenceType())
4373      DisallowedKind = 3;
4374    else if (T->isAtomicType())
4375      DisallowedKind = 4;
4376    else if (T.hasQualifiers())
4377      DisallowedKind = 5;
4378    else if (!T.isTriviallyCopyableType(Context))
4379      // Some other non-trivially-copyable type (probably a C++ class)
4380      DisallowedKind = 6;
4381
4382    if (DisallowedKind != -1) {
4383      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
4384      return QualType();
4385    }
4386
4387    // FIXME: Do we need any handling for ARC here?
4388  }
4389
4390  // Build the pointer type.
4391  return Context.getAtomicType(T);
4392}
4393