SemaType.cpp revision 7aa5475ca2f62df5ba3f3b647ee141a40bf48fd3
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/Expr.h"
18#include "clang/Basic/Diagnostic.h"
19#include "clang/Parse/DeclSpec.h"
20using namespace clang;
21
22/// ConvertDeclSpecToType - Convert the specified declspec to the appropriate
23/// type object.  This returns null on error.
24QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS) {
25  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
26  // checking.
27  QualType Result;
28
29  switch (DS.getTypeSpecType()) {
30  default: assert(0 && "Unknown TypeSpecType!");
31  case DeclSpec::TST_void:
32    Result = Context.VoidTy;
33    break;
34  case DeclSpec::TST_char:
35    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
36      Result = Context.CharTy;
37    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
38      Result = Context.SignedCharTy;
39    else {
40      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
41             "Unknown TSS value");
42      Result = Context.UnsignedCharTy;
43    }
44    break;
45  case DeclSpec::TST_wchar:
46    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
47      Result = Context.WCharTy;
48    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
49      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec,
50           DS.getSpecifierName(DS.getTypeSpecType()));
51      Result = Context.getSignedWCharType();
52    } else {
53      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
54        "Unknown TSS value");
55      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec,
56           DS.getSpecifierName(DS.getTypeSpecType()));
57      Result = Context.getUnsignedWCharType();
58    }
59    break;
60  case DeclSpec::TST_unspecified:
61    // "<proto1,proto2>" is an objc qualified ID with a missing id.
62      if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
63      Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
64                                              DS.getNumProtocolQualifiers());
65      break;
66    }
67
68    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
69    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
70    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
71    // Note that the one exception to this is function definitions, which are
72    // allowed to be completely missing a declspec.  This is handled in the
73    // parser already though by it pretending to have seen an 'int' in this
74    // case.
75    if (getLangOptions().ImplicitInt) {
76      if ((DS.getParsedSpecifiers() & (DeclSpec::PQ_StorageClassSpecifier |
77                                       DeclSpec::PQ_TypeSpecifier |
78                                       DeclSpec::PQ_TypeQualifier)) == 0)
79        Diag(DS.getSourceRange().getBegin(), diag::ext_missing_declspec);
80    } else {
81      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
82      // "At least one type specifier shall be given in the declaration
83      // specifiers in each declaration, and in the specifier-qualifier list in
84      // each struct declaration and type name."
85      if (!DS.hasTypeSpecifier())
86        Diag(DS.getSourceRange().getBegin(), diag::ext_missing_type_specifier);
87    }
88
89    // FALL THROUGH.
90  case DeclSpec::TST_int: {
91    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
92      switch (DS.getTypeSpecWidth()) {
93      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
94      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
95      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
96      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
97      }
98    } else {
99      switch (DS.getTypeSpecWidth()) {
100      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
101      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
102      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
103      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
104      }
105    }
106    break;
107  }
108  case DeclSpec::TST_float: Result = Context.FloatTy; break;
109  case DeclSpec::TST_double:
110    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
111      Result = Context.LongDoubleTy;
112    else
113      Result = Context.DoubleTy;
114    break;
115  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
116  case DeclSpec::TST_decimal32:    // _Decimal32
117  case DeclSpec::TST_decimal64:    // _Decimal64
118  case DeclSpec::TST_decimal128:   // _Decimal128
119    assert(0 && "FIXME: GNU decimal extensions not supported yet!");
120  case DeclSpec::TST_class:
121  case DeclSpec::TST_enum:
122  case DeclSpec::TST_union:
123  case DeclSpec::TST_struct: {
124    Decl *D = static_cast<Decl *>(DS.getTypeRep());
125    assert(D && "Didn't get a decl for a class/enum/union/struct?");
126    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
127           DS.getTypeSpecSign() == 0 &&
128           "Can't handle qualifiers on typedef names yet!");
129    // TypeQuals handled by caller.
130    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
131    break;
132  }
133  case DeclSpec::TST_typedef: {
134    Decl *D = static_cast<Decl *>(DS.getTypeRep());
135    assert(D && "Didn't get a decl for a typedef?");
136    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
137           DS.getTypeSpecSign() == 0 &&
138           "Can't handle qualifiers on typedef names yet!");
139    DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers();
140
141    // FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so
142    // we have this "hack" for now...
143    if (ObjCInterfaceDecl *ObjCIntDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
144      if (PQ == 0) {
145        Result = Context.getObjCInterfaceType(ObjCIntDecl);
146        break;
147      }
148
149      Result = Context.getObjCQualifiedInterfaceType(ObjCIntDecl,
150                                                     (ObjCProtocolDecl**)PQ,
151                                                 DS.getNumProtocolQualifiers());
152      break;
153    } else if (TypedefDecl *typeDecl = dyn_cast<TypedefDecl>(D)) {
154      if (Context.getObjCIdType() == Context.getTypedefType(typeDecl) && PQ) {
155        // id<protocol-list>
156        Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
157                                                DS.getNumProtocolQualifiers());
158        break;
159      }
160    }
161    // TypeQuals handled by caller.
162    Result = Context.getTypeDeclType(dyn_cast<TypeDecl>(D));
163    break;
164  }
165  case DeclSpec::TST_typeofType:
166    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
167    assert(!Result.isNull() && "Didn't get a type for typeof?");
168    // TypeQuals handled by caller.
169    Result = Context.getTypeOfType(Result);
170    break;
171  case DeclSpec::TST_typeofExpr: {
172    Expr *E = static_cast<Expr *>(DS.getTypeRep());
173    assert(E && "Didn't get an expression for typeof?");
174    // TypeQuals handled by caller.
175    Result = Context.getTypeOfExpr(E);
176    break;
177  }
178  }
179
180  // Handle complex types.
181  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex)
182    Result = Context.getComplexType(Result);
183
184  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
185         "FIXME: imaginary types not supported yet!");
186
187  // See if there are any attributes on the declspec that apply to the type (as
188  // opposed to the decl).
189  if (const AttributeList *AL = DS.getAttributes())
190    ProcessTypeAttributeList(Result, AL);
191
192  // Apply const/volatile/restrict qualifiers to T.
193  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
194
195    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
196    // or incomplete types shall not be restrict-qualified."  C++ also allows
197    // restrict-qualified references.
198    if (TypeQuals & QualType::Restrict) {
199      if (const PointerLikeType *PT = Result->getAsPointerLikeType()) {
200        QualType EltTy = PT->getPointeeType();
201
202        // If we have a pointer or reference, the pointee must have an object or
203        // incomplete type.
204        if (!EltTy->isIncompleteOrObjectType()) {
205          Diag(DS.getRestrictSpecLoc(),
206               diag::err_typecheck_invalid_restrict_invalid_pointee,
207               EltTy.getAsString(), DS.getSourceRange());
208          TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
209        }
210      } else {
211        Diag(DS.getRestrictSpecLoc(),
212             diag::err_typecheck_invalid_restrict_not_pointer,
213             Result.getAsString(), DS.getSourceRange());
214        TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
215      }
216    }
217
218    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
219    // of a function type includes any type qualifiers, the behavior is
220    // undefined."
221    if (Result->isFunctionType() && TypeQuals) {
222      // Get some location to point at, either the C or V location.
223      SourceLocation Loc;
224      if (TypeQuals & QualType::Const)
225        Loc = DS.getConstSpecLoc();
226      else {
227        assert((TypeQuals & QualType::Volatile) &&
228               "Has CV quals but not C or V?");
229        Loc = DS.getVolatileSpecLoc();
230      }
231      Diag(Loc, diag::warn_typecheck_function_qualifiers,
232           Result.getAsString(), DS.getSourceRange());
233    }
234
235    Result = Result.getQualifiedType(TypeQuals);
236  }
237  return Result;
238}
239
240/// GetTypeForDeclarator - Convert the type for the specified declarator to Type
241/// instances.
242QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
243  // long long is a C99 feature.
244  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
245      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
246    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
247
248  QualType T = ConvertDeclSpecToType(D.getDeclSpec());
249
250  // Walk the DeclTypeInfo, building the recursive type as we go.  DeclTypeInfos
251  // are ordered from the identifier out, which is opposite of what we want :).
252  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
253    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
254    switch (DeclType.Kind) {
255    default: assert(0 && "Unknown decltype!");
256    case DeclaratorChunk::BlockPointer:
257      if (DeclType.Cls.TypeQuals)
258        Diag(D.getIdentifierLoc(), diag::err_qualified_block_pointer_type);
259      if (!T.getTypePtr()->isFunctionType())
260        Diag(D.getIdentifierLoc(), diag::err_nonfunction_block_type);
261      else
262        T = Context.getBlockPointerType(T);
263      break;
264    case DeclaratorChunk::Pointer:
265      if (T->isReferenceType()) {
266        // C++ 8.3.2p4: There shall be no ... pointers to references ...
267        Diag(DeclType.Loc, diag::err_illegal_decl_pointer_to_reference,
268             D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
269        D.setInvalidType(true);
270        T = Context.IntTy;
271      }
272
273      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
274      // object or incomplete types shall not be restrict-qualified."
275      if ((DeclType.Ptr.TypeQuals & QualType::Restrict) &&
276          !T->isIncompleteOrObjectType()) {
277        Diag(DeclType.Loc,
278             diag::err_typecheck_invalid_restrict_invalid_pointee,
279             T.getAsString());
280        DeclType.Ptr.TypeQuals &= QualType::Restrict;
281      }
282
283      // Apply the pointer typequals to the pointer object.
284      T = Context.getPointerType(T).getQualifiedType(DeclType.Ptr.TypeQuals);
285      break;
286    case DeclaratorChunk::Reference:
287      if (const ReferenceType *RT = T->getAsReferenceType()) {
288        // C++ 8.3.2p4: There shall be no references to references.
289        Diag(DeclType.Loc, diag::err_illegal_decl_reference_to_reference,
290             D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
291        D.setInvalidType(true);
292        T = RT->getPointeeType();
293      }
294
295      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
296      // object or incomplete types shall not be restrict-qualified."
297      if (DeclType.Ref.HasRestrict &&
298          !T->isIncompleteOrObjectType()) {
299        Diag(DeclType.Loc,
300             diag::err_typecheck_invalid_restrict_invalid_pointee,
301             T.getAsString());
302        DeclType.Ref.HasRestrict = false;
303      }
304
305      T = Context.getReferenceType(T);
306
307      // Handle restrict on references.
308      if (DeclType.Ref.HasRestrict)
309        T.addRestrict();
310      break;
311    case DeclaratorChunk::Array: {
312      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
313      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
314      ArrayType::ArraySizeModifier ASM;
315      if (ATI.isStar)
316        ASM = ArrayType::Star;
317      else if (ATI.hasStatic)
318        ASM = ArrayType::Static;
319      else
320        ASM = ArrayType::Normal;
321
322      // C99 6.7.5.2p1: If the element type is an incomplete or function type,
323      // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
324      if (T->isIncompleteType()) {
325        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_incomplete_type,
326             T.getAsString());
327        T = Context.IntTy;
328        D.setInvalidType(true);
329      } else if (T->isFunctionType()) {
330        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_functions,
331             D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
332        T = Context.getPointerType(T);
333        D.setInvalidType(true);
334      } else if (const ReferenceType *RT = T->getAsReferenceType()) {
335        // C++ 8.3.2p4: There shall be no ... arrays of references ...
336        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_references,
337             D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
338        T = RT->getPointeeType();
339        D.setInvalidType(true);
340      } else if (const RecordType *EltTy = T->getAsRecordType()) {
341        // If the element type is a struct or union that contains a variadic
342        // array, reject it: C99 6.7.2.1p2.
343        if (EltTy->getDecl()->hasFlexibleArrayMember()) {
344          Diag(DeclType.Loc, diag::err_flexible_array_in_array,
345               T.getAsString());
346          T = Context.IntTy;
347          D.setInvalidType(true);
348        }
349      } else if (T->isObjCInterfaceType()) {
350        Diag(DeclType.Loc, diag::warn_objc_array_of_interfaces,
351             T.getAsString());
352      }
353
354      // C99 6.7.5.2p1: The size expression shall have integer type.
355      if (ArraySize && !ArraySize->getType()->isIntegerType()) {
356        Diag(ArraySize->getLocStart(), diag::err_array_size_non_int,
357             ArraySize->getType().getAsString(), ArraySize->getSourceRange());
358        D.setInvalidType(true);
359        delete ArraySize;
360        ATI.NumElts = ArraySize = 0;
361      }
362      llvm::APSInt ConstVal(32);
363      if (!ArraySize) {
364        T = Context.getIncompleteArrayType(T, ASM, ATI.TypeQuals);
365      } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
366                 !T->isConstantSizeType()) {
367        // Per C99, a variable array is an array with either a non-constant
368        // size or an element type that has a non-constant-size
369        T = Context.getVariableArrayType(T, ArraySize, ASM, ATI.TypeQuals);
370      } else {
371        // C99 6.7.5.2p1: If the expression is a constant expression, it shall
372        // have a value greater than zero.
373        if (ConstVal.isSigned()) {
374          if (ConstVal.isNegative()) {
375            Diag(ArraySize->getLocStart(),
376                 diag::err_typecheck_negative_array_size,
377                 ArraySize->getSourceRange());
378            D.setInvalidType(true);
379          } else if (ConstVal == 0) {
380            // GCC accepts zero sized static arrays.
381            Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size,
382                 ArraySize->getSourceRange());
383          }
384        }
385        T = Context.getConstantArrayType(T, ConstVal, ASM, ATI.TypeQuals);
386      }
387      // If this is not C99, extwarn about VLA's and C99 array size modifiers.
388      if (!getLangOptions().C99 &&
389          (ASM != ArrayType::Normal ||
390           (ArraySize && !ArraySize->isIntegerConstantExpr(Context))))
391        Diag(D.getIdentifierLoc(), diag::ext_vla);
392      break;
393    }
394    case DeclaratorChunk::Function:
395      // If the function declarator has a prototype (i.e. it is not () and
396      // does not have a K&R-style identifier list), then the arguments are part
397      // of the type, otherwise the argument list is ().
398      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
399
400      // C99 6.7.5.3p1: The return type may not be a function or array type.
401      if (T->isArrayType() || T->isFunctionType()) {
402        Diag(DeclType.Loc, diag::err_func_returning_array_function,
403             T.getAsString());
404        T = Context.IntTy;
405        D.setInvalidType(true);
406      }
407
408      if (FTI.NumArgs == 0) {
409        // Simple void foo(), where the incoming T is the result type.
410        T = Context.getFunctionTypeNoProto(T);
411      } else if (FTI.ArgInfo[0].Param == 0) {
412        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
413        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
414      } else {
415        // Otherwise, we have a function with an argument list that is
416        // potentially variadic.
417        llvm::SmallVector<QualType, 16> ArgTys;
418
419        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
420          ParmVarDecl *Param = (ParmVarDecl *)FTI.ArgInfo[i].Param;
421          QualType ArgTy = Param->getType();
422          assert(!ArgTy.isNull() && "Couldn't parse type?");
423          //
424          // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
425          // This matches the conversion that is done in
426          // Sema::ActOnParamDeclarator(). Without this conversion, the
427          // argument type in the function prototype *will not* match the
428          // type in ParmVarDecl (which makes the code generator unhappy).
429          //
430          // FIXME: We still apparently need the conversion in
431          // Sema::ActOnParamDeclarator(). This doesn't make any sense, since
432          // it should be driving off the type being created here.
433          //
434          // FIXME: If a source translation tool needs to see the original type,
435          // then we need to consider storing both types somewhere...
436          //
437          if (ArgTy->isArrayType()) {
438            ArgTy = Context.getArrayDecayedType(ArgTy);
439          } else if (ArgTy->isFunctionType())
440            ArgTy = Context.getPointerType(ArgTy);
441
442          // Look for 'void'.  void is allowed only as a single argument to a
443          // function with no other parameters (C99 6.7.5.3p10).  We record
444          // int(void) as a FunctionTypeProto with an empty argument list.
445          else if (ArgTy->isVoidType()) {
446            // If this is something like 'float(int, void)', reject it.  'void'
447            // is an incomplete type (C99 6.2.5p19) and function decls cannot
448            // have arguments of incomplete type.
449            if (FTI.NumArgs != 1 || FTI.isVariadic) {
450              Diag(DeclType.Loc, diag::err_void_only_param);
451              ArgTy = Context.IntTy;
452              Param->setType(ArgTy);
453            } else if (FTI.ArgInfo[i].Ident) {
454              // Reject, but continue to parse 'int(void abc)'.
455              Diag(FTI.ArgInfo[i].IdentLoc,
456                   diag::err_param_with_void_type);
457              ArgTy = Context.IntTy;
458              Param->setType(ArgTy);
459            } else {
460              // Reject, but continue to parse 'float(const void)'.
461              if (ArgTy.getCVRQualifiers())
462                Diag(DeclType.Loc, diag::err_void_param_qualified);
463
464              // Do not add 'void' to the ArgTys list.
465              break;
466            }
467          } else if (!FTI.hasPrototype) {
468            if (ArgTy->isPromotableIntegerType()) {
469              ArgTy = Context.IntTy;
470            } else if (const BuiltinType* BTy = ArgTy->getAsBuiltinType()) {
471              if (BTy->getKind() == BuiltinType::Float)
472                ArgTy = Context.DoubleTy;
473            }
474          }
475
476          ArgTys.push_back(ArgTy);
477        }
478        T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
479                                    FTI.isVariadic);
480      }
481      break;
482    }
483
484    // See if there are any attributes on this declarator chunk.
485    if (const AttributeList *AL = DeclType.getAttrs())
486      ProcessTypeAttributeList(T, AL);
487  }
488
489  // If there were any type attributes applied to the decl itself (not the
490  // type, apply the type attribute to the type!)
491  if (const AttributeList *Attrs = D.getAttributes())
492    ProcessTypeAttributeList(T, Attrs);
493
494  return T;
495}
496
497/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
498/// declarator
499QualType Sema::ObjCGetTypeForMethodDefinition(DeclTy *D) {
500  ObjCMethodDecl *MDecl = dyn_cast<ObjCMethodDecl>(static_cast<Decl *>(D));
501  QualType T = MDecl->getResultType();
502  llvm::SmallVector<QualType, 16> ArgTys;
503
504  // Add the first two invisible argument types for self and _cmd.
505  if (MDecl->isInstance()) {
506    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
507    selfTy = Context.getPointerType(selfTy);
508    ArgTys.push_back(selfTy);
509  }
510  else
511    ArgTys.push_back(Context.getObjCIdType());
512  ArgTys.push_back(Context.getObjCSelType());
513
514  for (int i = 0, e = MDecl->getNumParams(); i != e; ++i) {
515    ParmVarDecl *PDecl = MDecl->getParamDecl(i);
516    QualType ArgTy = PDecl->getType();
517    assert(!ArgTy.isNull() && "Couldn't parse type?");
518    // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
519    // This matches the conversion that is done in
520    // Sema::ActOnParamDeclarator().
521    if (ArgTy->isArrayType())
522      ArgTy = Context.getArrayDecayedType(ArgTy);
523    else if (ArgTy->isFunctionType())
524      ArgTy = Context.getPointerType(ArgTy);
525    ArgTys.push_back(ArgTy);
526  }
527  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
528                              MDecl->isVariadic());
529  return T;
530}
531
532Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
533  // C99 6.7.6: Type names have no identifier.  This is already validated by
534  // the parser.
535  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
536
537  QualType T = GetTypeForDeclarator(D, S);
538
539  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
540
541  // Check that there are no default arguments (C++ only).
542  if (getLangOptions().CPlusPlus)
543    CheckExtraCXXDefaultArguments(D);
544
545  // In this context, we *do not* check D.getInvalidType(). If the declarator
546  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
547  // though it will not reflect the user specified type.
548  return T.getAsOpaquePtr();
549}
550
551
552
553//===----------------------------------------------------------------------===//
554// Type Attribute Processing
555//===----------------------------------------------------------------------===//
556
557/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
558/// specified type.  The attribute contains 1 argument, the id of the address
559/// space for the type.
560static void HandleAddressSpaceTypeAttribute(QualType &Type,
561                                            const AttributeList &Attr, Sema &S){
562  // If this type is already address space qualified, reject it.
563  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
564  // for two or more different address spaces."
565  if (Type.getAddressSpace()) {
566    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
567    return;
568  }
569
570  // Check the attribute arguments.
571  if (Attr.getNumArgs() != 1) {
572    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
573           std::string("1"));
574    return;
575  }
576  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
577  llvm::APSInt addrSpace(32);
578  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
579    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int,
580           ASArgExpr->getSourceRange());
581    return;
582  }
583
584  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
585  Type = S.Context.getASQualType(Type, ASIdx);
586}
587
588void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
589  // Scan through and apply attributes to this type where it makes sense.  Some
590  // attributes (such as __address_space__, __vector_size__, etc) apply to the
591  // type, but others can be present in the type specifiers even though they
592  // apply to the decl.  Here we apply type attributes and ignore the rest.
593  for (; AL; AL = AL->getNext()) {
594    // If this is an attribute we can handle, do so now, otherwise, add it to
595    // the LeftOverAttrs list for rechaining.
596    switch (AL->getKind()) {
597    default: break;
598    case AttributeList::AT_address_space:
599      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
600      break;
601    }
602  }
603}
604
605
606