SemaType.cpp revision 82bfa19fe3be324b13fdbcda46304b52c500f0d4
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/ScopeInfo.h"
15#include "clang/Sema/SemaInternal.h"
16#include "clang/Sema/Template.h"
17#include "clang/Basic/OpenCL.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTMutationListener.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/TypeLoc.h"
24#include "clang/AST/TypeLocVisitor.h"
25#include "clang/AST/Expr.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Parse/ParseDiagnostic.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/DelayedDiagnostic.h"
32#include "clang/Sema/Lookup.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/Support/ErrorHandling.h"
35using namespace clang;
36
37/// isOmittedBlockReturnType - Return true if this declarator is missing a
38/// return type because this is a omitted return type on a block literal.
39static bool isOmittedBlockReturnType(const Declarator &D) {
40  if (D.getContext() != Declarator::BlockLiteralContext ||
41      D.getDeclSpec().hasTypeSpecifier())
42    return false;
43
44  if (D.getNumTypeObjects() == 0)
45    return true;   // ^{ ... }
46
47  if (D.getNumTypeObjects() == 1 &&
48      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
49    return true;   // ^(int X, float Y) { ... }
50
51  return false;
52}
53
54/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
55/// doesn't apply to the given type.
56static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
57                                     QualType type) {
58  bool useExpansionLoc = false;
59
60  unsigned diagID = 0;
61  switch (attr.getKind()) {
62  case AttributeList::AT_ObjCGC:
63    diagID = diag::warn_pointer_attribute_wrong_type;
64    useExpansionLoc = true;
65    break;
66
67  case AttributeList::AT_ObjCOwnership:
68    diagID = diag::warn_objc_object_attribute_wrong_type;
69    useExpansionLoc = true;
70    break;
71
72  default:
73    // Assume everything else was a function attribute.
74    diagID = diag::warn_function_attribute_wrong_type;
75    break;
76  }
77
78  SourceLocation loc = attr.getLoc();
79  StringRef name = attr.getName()->getName();
80
81  // The GC attributes are usually written with macros;  special-case them.
82  if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
83    if (attr.getParameterName()->isStr("strong")) {
84      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
85    } else if (attr.getParameterName()->isStr("weak")) {
86      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
87    }
88  }
89
90  S.Diag(loc, diagID) << name << type;
91}
92
93// objc_gc applies to Objective-C pointers or, otherwise, to the
94// smallest available pointer type (i.e. 'void*' in 'void**').
95#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
96    case AttributeList::AT_ObjCGC: \
97    case AttributeList::AT_ObjCOwnership
98
99// Function type attributes.
100#define FUNCTION_TYPE_ATTRS_CASELIST \
101    case AttributeList::AT_NoReturn: \
102    case AttributeList::AT_CDecl: \
103    case AttributeList::AT_FastCall: \
104    case AttributeList::AT_StdCall: \
105    case AttributeList::AT_ThisCall: \
106    case AttributeList::AT_Pascal: \
107    case AttributeList::AT_Regparm: \
108    case AttributeList::AT_Pcs \
109
110namespace {
111  /// An object which stores processing state for the entire
112  /// GetTypeForDeclarator process.
113  class TypeProcessingState {
114    Sema &sema;
115
116    /// The declarator being processed.
117    Declarator &declarator;
118
119    /// The index of the declarator chunk we're currently processing.
120    /// May be the total number of valid chunks, indicating the
121    /// DeclSpec.
122    unsigned chunkIndex;
123
124    /// Whether there are non-trivial modifications to the decl spec.
125    bool trivial;
126
127    /// Whether we saved the attributes in the decl spec.
128    bool hasSavedAttrs;
129
130    /// The original set of attributes on the DeclSpec.
131    SmallVector<AttributeList*, 2> savedAttrs;
132
133    /// A list of attributes to diagnose the uselessness of when the
134    /// processing is complete.
135    SmallVector<AttributeList*, 2> ignoredTypeAttrs;
136
137  public:
138    TypeProcessingState(Sema &sema, Declarator &declarator)
139      : sema(sema), declarator(declarator),
140        chunkIndex(declarator.getNumTypeObjects()),
141        trivial(true), hasSavedAttrs(false) {}
142
143    Sema &getSema() const {
144      return sema;
145    }
146
147    Declarator &getDeclarator() const {
148      return declarator;
149    }
150
151    unsigned getCurrentChunkIndex() const {
152      return chunkIndex;
153    }
154
155    void setCurrentChunkIndex(unsigned idx) {
156      assert(idx <= declarator.getNumTypeObjects());
157      chunkIndex = idx;
158    }
159
160    AttributeList *&getCurrentAttrListRef() const {
161      assert(chunkIndex <= declarator.getNumTypeObjects());
162      if (chunkIndex == declarator.getNumTypeObjects())
163        return getMutableDeclSpec().getAttributes().getListRef();
164      return declarator.getTypeObject(chunkIndex).getAttrListRef();
165    }
166
167    /// Save the current set of attributes on the DeclSpec.
168    void saveDeclSpecAttrs() {
169      // Don't try to save them multiple times.
170      if (hasSavedAttrs) return;
171
172      DeclSpec &spec = getMutableDeclSpec();
173      for (AttributeList *attr = spec.getAttributes().getList(); attr;
174             attr = attr->getNext())
175        savedAttrs.push_back(attr);
176      trivial &= savedAttrs.empty();
177      hasSavedAttrs = true;
178    }
179
180    /// Record that we had nowhere to put the given type attribute.
181    /// We will diagnose such attributes later.
182    void addIgnoredTypeAttr(AttributeList &attr) {
183      ignoredTypeAttrs.push_back(&attr);
184    }
185
186    /// Diagnose all the ignored type attributes, given that the
187    /// declarator worked out to the given type.
188    void diagnoseIgnoredTypeAttrs(QualType type) const {
189      for (SmallVectorImpl<AttributeList*>::const_iterator
190             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
191           i != e; ++i)
192        diagnoseBadTypeAttribute(getSema(), **i, type);
193    }
194
195    ~TypeProcessingState() {
196      if (trivial) return;
197
198      restoreDeclSpecAttrs();
199    }
200
201  private:
202    DeclSpec &getMutableDeclSpec() const {
203      return const_cast<DeclSpec&>(declarator.getDeclSpec());
204    }
205
206    void restoreDeclSpecAttrs() {
207      assert(hasSavedAttrs);
208
209      if (savedAttrs.empty()) {
210        getMutableDeclSpec().getAttributes().set(0);
211        return;
212      }
213
214      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
215      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
216        savedAttrs[i]->setNext(savedAttrs[i+1]);
217      savedAttrs.back()->setNext(0);
218    }
219  };
220
221  /// Basically std::pair except that we really want to avoid an
222  /// implicit operator= for safety concerns.  It's also a minor
223  /// link-time optimization for this to be a private type.
224  struct AttrAndList {
225    /// The attribute.
226    AttributeList &first;
227
228    /// The head of the list the attribute is currently in.
229    AttributeList *&second;
230
231    AttrAndList(AttributeList &attr, AttributeList *&head)
232      : first(attr), second(head) {}
233  };
234}
235
236namespace llvm {
237  template <> struct isPodLike<AttrAndList> {
238    static const bool value = true;
239  };
240}
241
242static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
243  attr.setNext(head);
244  head = &attr;
245}
246
247static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
248  if (head == &attr) {
249    head = attr.getNext();
250    return;
251  }
252
253  AttributeList *cur = head;
254  while (true) {
255    assert(cur && cur->getNext() && "ran out of attrs?");
256    if (cur->getNext() == &attr) {
257      cur->setNext(attr.getNext());
258      return;
259    }
260    cur = cur->getNext();
261  }
262}
263
264static void moveAttrFromListToList(AttributeList &attr,
265                                   AttributeList *&fromList,
266                                   AttributeList *&toList) {
267  spliceAttrOutOfList(attr, fromList);
268  spliceAttrIntoList(attr, toList);
269}
270
271static void processTypeAttrs(TypeProcessingState &state,
272                             QualType &type, bool isDeclSpec,
273                             AttributeList *attrs);
274
275static bool handleFunctionTypeAttr(TypeProcessingState &state,
276                                   AttributeList &attr,
277                                   QualType &type);
278
279static bool handleObjCGCTypeAttr(TypeProcessingState &state,
280                                 AttributeList &attr, QualType &type);
281
282static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
283                                       AttributeList &attr, QualType &type);
284
285static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
286                                      AttributeList &attr, QualType &type) {
287  if (attr.getKind() == AttributeList::AT_ObjCGC)
288    return handleObjCGCTypeAttr(state, attr, type);
289  assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
290  return handleObjCOwnershipTypeAttr(state, attr, type);
291}
292
293/// Given that an objc_gc attribute was written somewhere on a
294/// declaration *other* than on the declarator itself (for which, use
295/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
296/// didn't apply in whatever position it was written in, try to move
297/// it to a more appropriate position.
298static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
299                                          AttributeList &attr,
300                                          QualType type) {
301  Declarator &declarator = state.getDeclarator();
302  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
303    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
304    switch (chunk.Kind) {
305    case DeclaratorChunk::Pointer:
306    case DeclaratorChunk::BlockPointer:
307      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
308                             chunk.getAttrListRef());
309      return;
310
311    case DeclaratorChunk::Paren:
312    case DeclaratorChunk::Array:
313      continue;
314
315    // Don't walk through these.
316    case DeclaratorChunk::Reference:
317    case DeclaratorChunk::Function:
318    case DeclaratorChunk::MemberPointer:
319      goto error;
320    }
321  }
322 error:
323
324  diagnoseBadTypeAttribute(state.getSema(), attr, type);
325}
326
327/// Distribute an objc_gc type attribute that was written on the
328/// declarator.
329static void
330distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
331                                            AttributeList &attr,
332                                            QualType &declSpecType) {
333  Declarator &declarator = state.getDeclarator();
334
335  // objc_gc goes on the innermost pointer to something that's not a
336  // pointer.
337  unsigned innermost = -1U;
338  bool considerDeclSpec = true;
339  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
340    DeclaratorChunk &chunk = declarator.getTypeObject(i);
341    switch (chunk.Kind) {
342    case DeclaratorChunk::Pointer:
343    case DeclaratorChunk::BlockPointer:
344      innermost = i;
345      continue;
346
347    case DeclaratorChunk::Reference:
348    case DeclaratorChunk::MemberPointer:
349    case DeclaratorChunk::Paren:
350    case DeclaratorChunk::Array:
351      continue;
352
353    case DeclaratorChunk::Function:
354      considerDeclSpec = false;
355      goto done;
356    }
357  }
358 done:
359
360  // That might actually be the decl spec if we weren't blocked by
361  // anything in the declarator.
362  if (considerDeclSpec) {
363    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
364      // Splice the attribute into the decl spec.  Prevents the
365      // attribute from being applied multiple times and gives
366      // the source-location-filler something to work with.
367      state.saveDeclSpecAttrs();
368      moveAttrFromListToList(attr, declarator.getAttrListRef(),
369               declarator.getMutableDeclSpec().getAttributes().getListRef());
370      return;
371    }
372  }
373
374  // Otherwise, if we found an appropriate chunk, splice the attribute
375  // into it.
376  if (innermost != -1U) {
377    moveAttrFromListToList(attr, declarator.getAttrListRef(),
378                       declarator.getTypeObject(innermost).getAttrListRef());
379    return;
380  }
381
382  // Otherwise, diagnose when we're done building the type.
383  spliceAttrOutOfList(attr, declarator.getAttrListRef());
384  state.addIgnoredTypeAttr(attr);
385}
386
387/// A function type attribute was written somewhere in a declaration
388/// *other* than on the declarator itself or in the decl spec.  Given
389/// that it didn't apply in whatever position it was written in, try
390/// to move it to a more appropriate position.
391static void distributeFunctionTypeAttr(TypeProcessingState &state,
392                                       AttributeList &attr,
393                                       QualType type) {
394  Declarator &declarator = state.getDeclarator();
395
396  // Try to push the attribute from the return type of a function to
397  // the function itself.
398  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
399    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
400    switch (chunk.Kind) {
401    case DeclaratorChunk::Function:
402      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
403                             chunk.getAttrListRef());
404      return;
405
406    case DeclaratorChunk::Paren:
407    case DeclaratorChunk::Pointer:
408    case DeclaratorChunk::BlockPointer:
409    case DeclaratorChunk::Array:
410    case DeclaratorChunk::Reference:
411    case DeclaratorChunk::MemberPointer:
412      continue;
413    }
414  }
415
416  diagnoseBadTypeAttribute(state.getSema(), attr, type);
417}
418
419/// Try to distribute a function type attribute to the innermost
420/// function chunk or type.  Returns true if the attribute was
421/// distributed, false if no location was found.
422static bool
423distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
424                                      AttributeList &attr,
425                                      AttributeList *&attrList,
426                                      QualType &declSpecType) {
427  Declarator &declarator = state.getDeclarator();
428
429  // Put it on the innermost function chunk, if there is one.
430  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
431    DeclaratorChunk &chunk = declarator.getTypeObject(i);
432    if (chunk.Kind != DeclaratorChunk::Function) continue;
433
434    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
435    return true;
436  }
437
438  if (handleFunctionTypeAttr(state, attr, declSpecType)) {
439    spliceAttrOutOfList(attr, attrList);
440    return true;
441  }
442
443  return false;
444}
445
446/// A function type attribute was written in the decl spec.  Try to
447/// apply it somewhere.
448static void
449distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
450                                       AttributeList &attr,
451                                       QualType &declSpecType) {
452  state.saveDeclSpecAttrs();
453
454  // Try to distribute to the innermost.
455  if (distributeFunctionTypeAttrToInnermost(state, attr,
456                                            state.getCurrentAttrListRef(),
457                                            declSpecType))
458    return;
459
460  // If that failed, diagnose the bad attribute when the declarator is
461  // fully built.
462  state.addIgnoredTypeAttr(attr);
463}
464
465/// A function type attribute was written on the declarator.  Try to
466/// apply it somewhere.
467static void
468distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
469                                         AttributeList &attr,
470                                         QualType &declSpecType) {
471  Declarator &declarator = state.getDeclarator();
472
473  // Try to distribute to the innermost.
474  if (distributeFunctionTypeAttrToInnermost(state, attr,
475                                            declarator.getAttrListRef(),
476                                            declSpecType))
477    return;
478
479  // If that failed, diagnose the bad attribute when the declarator is
480  // fully built.
481  spliceAttrOutOfList(attr, declarator.getAttrListRef());
482  state.addIgnoredTypeAttr(attr);
483}
484
485/// \brief Given that there are attributes written on the declarator
486/// itself, try to distribute any type attributes to the appropriate
487/// declarator chunk.
488///
489/// These are attributes like the following:
490///   int f ATTR;
491///   int (f ATTR)();
492/// but not necessarily this:
493///   int f() ATTR;
494static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
495                                              QualType &declSpecType) {
496  // Collect all the type attributes from the declarator itself.
497  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
498  AttributeList *attr = state.getDeclarator().getAttributes();
499  AttributeList *next;
500  do {
501    next = attr->getNext();
502
503    switch (attr->getKind()) {
504    OBJC_POINTER_TYPE_ATTRS_CASELIST:
505      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
506      break;
507
508    case AttributeList::AT_NSReturnsRetained:
509      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
510        break;
511      // fallthrough
512
513    FUNCTION_TYPE_ATTRS_CASELIST:
514      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
515      break;
516
517    default:
518      break;
519    }
520  } while ((attr = next));
521}
522
523/// Add a synthetic '()' to a block-literal declarator if it is
524/// required, given the return type.
525static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
526                                          QualType declSpecType) {
527  Declarator &declarator = state.getDeclarator();
528
529  // First, check whether the declarator would produce a function,
530  // i.e. whether the innermost semantic chunk is a function.
531  if (declarator.isFunctionDeclarator()) {
532    // If so, make that declarator a prototyped declarator.
533    declarator.getFunctionTypeInfo().hasPrototype = true;
534    return;
535  }
536
537  // If there are any type objects, the type as written won't name a
538  // function, regardless of the decl spec type.  This is because a
539  // block signature declarator is always an abstract-declarator, and
540  // abstract-declarators can't just be parentheses chunks.  Therefore
541  // we need to build a function chunk unless there are no type
542  // objects and the decl spec type is a function.
543  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
544    return;
545
546  // Note that there *are* cases with invalid declarators where
547  // declarators consist solely of parentheses.  In general, these
548  // occur only in failed efforts to make function declarators, so
549  // faking up the function chunk is still the right thing to do.
550
551  // Otherwise, we need to fake up a function declarator.
552  SourceLocation loc = declarator.getLocStart();
553
554  // ...and *prepend* it to the declarator.
555  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
556                             /*proto*/ true,
557                             /*variadic*/ false,
558                             /*ambiguous*/ false, SourceLocation(),
559                             /*args*/ 0, 0,
560                             /*type quals*/ 0,
561                             /*ref-qualifier*/true, SourceLocation(),
562                             /*const qualifier*/SourceLocation(),
563                             /*volatile qualifier*/SourceLocation(),
564                             /*mutable qualifier*/SourceLocation(),
565                             /*EH*/ EST_None, SourceLocation(), 0, 0, 0, 0,
566                             /*parens*/ loc, loc,
567                             declarator));
568
569  // For consistency, make sure the state still has us as processing
570  // the decl spec.
571  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
572  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
573}
574
575/// \brief Convert the specified declspec to the appropriate type
576/// object.
577/// \param state Specifies the declarator containing the declaration specifier
578/// to be converted, along with other associated processing state.
579/// \returns The type described by the declaration specifiers.  This function
580/// never returns null.
581static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
582  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
583  // checking.
584
585  Sema &S = state.getSema();
586  Declarator &declarator = state.getDeclarator();
587  const DeclSpec &DS = declarator.getDeclSpec();
588  SourceLocation DeclLoc = declarator.getIdentifierLoc();
589  if (DeclLoc.isInvalid())
590    DeclLoc = DS.getLocStart();
591
592  ASTContext &Context = S.Context;
593
594  QualType Result;
595  switch (DS.getTypeSpecType()) {
596  case DeclSpec::TST_void:
597    Result = Context.VoidTy;
598    break;
599  case DeclSpec::TST_char:
600    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
601      Result = Context.CharTy;
602    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
603      Result = Context.SignedCharTy;
604    else {
605      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
606             "Unknown TSS value");
607      Result = Context.UnsignedCharTy;
608    }
609    break;
610  case DeclSpec::TST_wchar:
611    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
612      Result = Context.WCharTy;
613    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
614      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
615        << DS.getSpecifierName(DS.getTypeSpecType());
616      Result = Context.getSignedWCharType();
617    } else {
618      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
619        "Unknown TSS value");
620      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
621        << DS.getSpecifierName(DS.getTypeSpecType());
622      Result = Context.getUnsignedWCharType();
623    }
624    break;
625  case DeclSpec::TST_char16:
626      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
627        "Unknown TSS value");
628      Result = Context.Char16Ty;
629    break;
630  case DeclSpec::TST_char32:
631      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
632        "Unknown TSS value");
633      Result = Context.Char32Ty;
634    break;
635  case DeclSpec::TST_unspecified:
636    // "<proto1,proto2>" is an objc qualified ID with a missing id.
637    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
638      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
639                                         (ObjCProtocolDecl*const*)PQ,
640                                         DS.getNumProtocolQualifiers());
641      Result = Context.getObjCObjectPointerType(Result);
642      break;
643    }
644
645    // If this is a missing declspec in a block literal return context, then it
646    // is inferred from the return statements inside the block.
647    // The declspec is always missing in a lambda expr context; it is either
648    // specified with a trailing return type or inferred.
649    if (declarator.getContext() == Declarator::LambdaExprContext ||
650        isOmittedBlockReturnType(declarator)) {
651      Result = Context.DependentTy;
652      break;
653    }
654
655    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
656    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
657    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
658    // Note that the one exception to this is function definitions, which are
659    // allowed to be completely missing a declspec.  This is handled in the
660    // parser already though by it pretending to have seen an 'int' in this
661    // case.
662    if (S.getLangOpts().ImplicitInt) {
663      // In C89 mode, we only warn if there is a completely missing declspec
664      // when one is not allowed.
665      if (DS.isEmpty()) {
666        S.Diag(DeclLoc, diag::ext_missing_declspec)
667          << DS.getSourceRange()
668        << FixItHint::CreateInsertion(DS.getLocStart(), "int");
669      }
670    } else if (!DS.hasTypeSpecifier()) {
671      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
672      // "At least one type specifier shall be given in the declaration
673      // specifiers in each declaration, and in the specifier-qualifier list in
674      // each struct declaration and type name."
675      // FIXME: Does Microsoft really have the implicit int extension in C++?
676      if (S.getLangOpts().CPlusPlus &&
677          !S.getLangOpts().MicrosoftExt) {
678        S.Diag(DeclLoc, diag::err_missing_type_specifier)
679          << DS.getSourceRange();
680
681        // When this occurs in C++ code, often something is very broken with the
682        // value being declared, poison it as invalid so we don't get chains of
683        // errors.
684        declarator.setInvalidType(true);
685      } else {
686        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
687          << DS.getSourceRange();
688      }
689    }
690
691    // FALL THROUGH.
692  case DeclSpec::TST_int: {
693    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
694      switch (DS.getTypeSpecWidth()) {
695      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
696      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
697      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
698      case DeclSpec::TSW_longlong:
699        Result = Context.LongLongTy;
700
701        // 'long long' is a C99 or C++11 feature.
702        if (!S.getLangOpts().C99) {
703          if (S.getLangOpts().CPlusPlus)
704            S.Diag(DS.getTypeSpecWidthLoc(),
705                   S.getLangOpts().CPlusPlus0x ?
706                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
707          else
708            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
709        }
710        break;
711      }
712    } else {
713      switch (DS.getTypeSpecWidth()) {
714      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
715      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
716      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
717      case DeclSpec::TSW_longlong:
718        Result = Context.UnsignedLongLongTy;
719
720        // 'long long' is a C99 or C++11 feature.
721        if (!S.getLangOpts().C99) {
722          if (S.getLangOpts().CPlusPlus)
723            S.Diag(DS.getTypeSpecWidthLoc(),
724                   S.getLangOpts().CPlusPlus0x ?
725                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
726          else
727            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
728        }
729        break;
730      }
731    }
732    break;
733  }
734  case DeclSpec::TST_int128:
735    if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
736      Result = Context.UnsignedInt128Ty;
737    else
738      Result = Context.Int128Ty;
739    break;
740  case DeclSpec::TST_half: Result = Context.HalfTy; break;
741  case DeclSpec::TST_float: Result = Context.FloatTy; break;
742  case DeclSpec::TST_double:
743    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
744      Result = Context.LongDoubleTy;
745    else
746      Result = Context.DoubleTy;
747
748    if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
749      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
750      declarator.setInvalidType(true);
751    }
752    break;
753  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
754  case DeclSpec::TST_decimal32:    // _Decimal32
755  case DeclSpec::TST_decimal64:    // _Decimal64
756  case DeclSpec::TST_decimal128:   // _Decimal128
757    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
758    Result = Context.IntTy;
759    declarator.setInvalidType(true);
760    break;
761  case DeclSpec::TST_class:
762  case DeclSpec::TST_enum:
763  case DeclSpec::TST_union:
764  case DeclSpec::TST_struct:
765  case DeclSpec::TST_interface: {
766    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
767    if (!D) {
768      // This can happen in C++ with ambiguous lookups.
769      Result = Context.IntTy;
770      declarator.setInvalidType(true);
771      break;
772    }
773
774    // If the type is deprecated or unavailable, diagnose it.
775    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
776
777    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
778           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
779
780    // TypeQuals handled by caller.
781    Result = Context.getTypeDeclType(D);
782
783    // In both C and C++, make an ElaboratedType.
784    ElaboratedTypeKeyword Keyword
785      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
786    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
787    break;
788  }
789  case DeclSpec::TST_typename: {
790    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
791           DS.getTypeSpecSign() == 0 &&
792           "Can't handle qualifiers on typedef names yet!");
793    Result = S.GetTypeFromParser(DS.getRepAsType());
794    if (Result.isNull())
795      declarator.setInvalidType(true);
796    else if (DeclSpec::ProtocolQualifierListTy PQ
797               = DS.getProtocolQualifiers()) {
798      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
799        // Silently drop any existing protocol qualifiers.
800        // TODO: determine whether that's the right thing to do.
801        if (ObjT->getNumProtocols())
802          Result = ObjT->getBaseType();
803
804        if (DS.getNumProtocolQualifiers())
805          Result = Context.getObjCObjectType(Result,
806                                             (ObjCProtocolDecl*const*) PQ,
807                                             DS.getNumProtocolQualifiers());
808      } else if (Result->isObjCIdType()) {
809        // id<protocol-list>
810        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
811                                           (ObjCProtocolDecl*const*) PQ,
812                                           DS.getNumProtocolQualifiers());
813        Result = Context.getObjCObjectPointerType(Result);
814      } else if (Result->isObjCClassType()) {
815        // Class<protocol-list>
816        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
817                                           (ObjCProtocolDecl*const*) PQ,
818                                           DS.getNumProtocolQualifiers());
819        Result = Context.getObjCObjectPointerType(Result);
820      } else {
821        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
822          << DS.getSourceRange();
823        declarator.setInvalidType(true);
824      }
825    }
826
827    // TypeQuals handled by caller.
828    break;
829  }
830  case DeclSpec::TST_typeofType:
831    // FIXME: Preserve type source info.
832    Result = S.GetTypeFromParser(DS.getRepAsType());
833    assert(!Result.isNull() && "Didn't get a type for typeof?");
834    if (!Result->isDependentType())
835      if (const TagType *TT = Result->getAs<TagType>())
836        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
837    // TypeQuals handled by caller.
838    Result = Context.getTypeOfType(Result);
839    break;
840  case DeclSpec::TST_typeofExpr: {
841    Expr *E = DS.getRepAsExpr();
842    assert(E && "Didn't get an expression for typeof?");
843    // TypeQuals handled by caller.
844    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
845    if (Result.isNull()) {
846      Result = Context.IntTy;
847      declarator.setInvalidType(true);
848    }
849    break;
850  }
851  case DeclSpec::TST_decltype: {
852    Expr *E = DS.getRepAsExpr();
853    assert(E && "Didn't get an expression for decltype?");
854    // TypeQuals handled by caller.
855    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
856    if (Result.isNull()) {
857      Result = Context.IntTy;
858      declarator.setInvalidType(true);
859    }
860    break;
861  }
862  case DeclSpec::TST_underlyingType:
863    Result = S.GetTypeFromParser(DS.getRepAsType());
864    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
865    Result = S.BuildUnaryTransformType(Result,
866                                       UnaryTransformType::EnumUnderlyingType,
867                                       DS.getTypeSpecTypeLoc());
868    if (Result.isNull()) {
869      Result = Context.IntTy;
870      declarator.setInvalidType(true);
871    }
872    break;
873
874  case DeclSpec::TST_auto: {
875    // TypeQuals handled by caller.
876    Result = Context.getAutoType(QualType());
877    break;
878  }
879
880  case DeclSpec::TST_unknown_anytype:
881    Result = Context.UnknownAnyTy;
882    break;
883
884  case DeclSpec::TST_atomic:
885    Result = S.GetTypeFromParser(DS.getRepAsType());
886    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
887    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
888    if (Result.isNull()) {
889      Result = Context.IntTy;
890      declarator.setInvalidType(true);
891    }
892    break;
893
894  case DeclSpec::TST_error:
895    Result = Context.IntTy;
896    declarator.setInvalidType(true);
897    break;
898  }
899
900  // Handle complex types.
901  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
902    if (S.getLangOpts().Freestanding)
903      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
904    Result = Context.getComplexType(Result);
905  } else if (DS.isTypeAltiVecVector()) {
906    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
907    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
908    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
909    if (DS.isTypeAltiVecPixel())
910      VecKind = VectorType::AltiVecPixel;
911    else if (DS.isTypeAltiVecBool())
912      VecKind = VectorType::AltiVecBool;
913    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
914  }
915
916  // FIXME: Imaginary.
917  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
918    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
919
920  // Before we process any type attributes, synthesize a block literal
921  // function declarator if necessary.
922  if (declarator.getContext() == Declarator::BlockLiteralContext)
923    maybeSynthesizeBlockSignature(state, Result);
924
925  // Apply any type attributes from the decl spec.  This may cause the
926  // list of type attributes to be temporarily saved while the type
927  // attributes are pushed around.
928  if (AttributeList *attrs = DS.getAttributes().getList())
929    processTypeAttrs(state, Result, true, attrs);
930
931  // Apply const/volatile/restrict qualifiers to T.
932  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
933
934    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
935    // or incomplete types shall not be restrict-qualified."  C++ also allows
936    // restrict-qualified references.
937    if (TypeQuals & DeclSpec::TQ_restrict) {
938      if (Result->isAnyPointerType() || Result->isReferenceType()) {
939        QualType EltTy;
940        if (Result->isObjCObjectPointerType())
941          EltTy = Result;
942        else
943          EltTy = Result->isPointerType() ?
944                    Result->getAs<PointerType>()->getPointeeType() :
945                    Result->getAs<ReferenceType>()->getPointeeType();
946
947        // If we have a pointer or reference, the pointee must have an object
948        // incomplete type.
949        if (!EltTy->isIncompleteOrObjectType()) {
950          S.Diag(DS.getRestrictSpecLoc(),
951               diag::err_typecheck_invalid_restrict_invalid_pointee)
952            << EltTy << DS.getSourceRange();
953          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
954        }
955      } else {
956        S.Diag(DS.getRestrictSpecLoc(),
957               diag::err_typecheck_invalid_restrict_not_pointer)
958          << Result << DS.getSourceRange();
959        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
960      }
961    }
962
963    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
964    // of a function type includes any type qualifiers, the behavior is
965    // undefined."
966    if (Result->isFunctionType() && TypeQuals) {
967      // Get some location to point at, either the C or V location.
968      SourceLocation Loc;
969      if (TypeQuals & DeclSpec::TQ_const)
970        Loc = DS.getConstSpecLoc();
971      else if (TypeQuals & DeclSpec::TQ_volatile)
972        Loc = DS.getVolatileSpecLoc();
973      else {
974        assert((TypeQuals & DeclSpec::TQ_restrict) &&
975               "Has CVR quals but not C, V, or R?");
976        Loc = DS.getRestrictSpecLoc();
977      }
978      S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
979        << Result << DS.getSourceRange();
980    }
981
982    // C++ [dcl.ref]p1:
983    //   Cv-qualified references are ill-formed except when the
984    //   cv-qualifiers are introduced through the use of a typedef
985    //   (7.1.3) or of a template type argument (14.3), in which
986    //   case the cv-qualifiers are ignored.
987    // FIXME: Shouldn't we be checking SCS_typedef here?
988    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
989        TypeQuals && Result->isReferenceType()) {
990      TypeQuals &= ~DeclSpec::TQ_const;
991      TypeQuals &= ~DeclSpec::TQ_volatile;
992    }
993
994    // C90 6.5.3 constraints: "The same type qualifier shall not appear more
995    // than once in the same specifier-list or qualifier-list, either directly
996    // or via one or more typedefs."
997    if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
998        && TypeQuals & Result.getCVRQualifiers()) {
999      if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1000        S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1001          << "const";
1002      }
1003
1004      if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1005        S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1006          << "volatile";
1007      }
1008
1009      // C90 doesn't have restrict, so it doesn't force us to produce a warning
1010      // in this case.
1011    }
1012
1013    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
1014    Result = Context.getQualifiedType(Result, Quals);
1015  }
1016
1017  return Result;
1018}
1019
1020static std::string getPrintableNameForEntity(DeclarationName Entity) {
1021  if (Entity)
1022    return Entity.getAsString();
1023
1024  return "type name";
1025}
1026
1027QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1028                                  Qualifiers Qs) {
1029  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1030  // object or incomplete types shall not be restrict-qualified."
1031  if (Qs.hasRestrict()) {
1032    unsigned DiagID = 0;
1033    QualType ProblemTy;
1034
1035    const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
1036    if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
1037      if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
1038        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1039        ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
1040      }
1041    } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1042      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1043        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1044        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1045      }
1046    } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
1047      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1048        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1049        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1050      }
1051    } else if (!Ty->isDependentType()) {
1052      // FIXME: this deserves a proper diagnostic
1053      DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1054      ProblemTy = T;
1055    }
1056
1057    if (DiagID) {
1058      Diag(Loc, DiagID) << ProblemTy;
1059      Qs.removeRestrict();
1060    }
1061  }
1062
1063  return Context.getQualifiedType(T, Qs);
1064}
1065
1066/// \brief Build a paren type including \p T.
1067QualType Sema::BuildParenType(QualType T) {
1068  return Context.getParenType(T);
1069}
1070
1071/// Given that we're building a pointer or reference to the given
1072static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1073                                           SourceLocation loc,
1074                                           bool isReference) {
1075  // Bail out if retention is unrequired or already specified.
1076  if (!type->isObjCLifetimeType() ||
1077      type.getObjCLifetime() != Qualifiers::OCL_None)
1078    return type;
1079
1080  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1081
1082  // If the object type is const-qualified, we can safely use
1083  // __unsafe_unretained.  This is safe (because there are no read
1084  // barriers), and it'll be safe to coerce anything but __weak* to
1085  // the resulting type.
1086  if (type.isConstQualified()) {
1087    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1088
1089  // Otherwise, check whether the static type does not require
1090  // retaining.  This currently only triggers for Class (possibly
1091  // protocol-qualifed, and arrays thereof).
1092  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1093    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1094
1095  // If we are in an unevaluated context, like sizeof, skip adding a
1096  // qualification.
1097  } else if (S.isUnevaluatedContext()) {
1098    return type;
1099
1100  // If that failed, give an error and recover using __strong.  __strong
1101  // is the option most likely to prevent spurious second-order diagnostics,
1102  // like when binding a reference to a field.
1103  } else {
1104    // These types can show up in private ivars in system headers, so
1105    // we need this to not be an error in those cases.  Instead we
1106    // want to delay.
1107    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1108      S.DelayedDiagnostics.add(
1109          sema::DelayedDiagnostic::makeForbiddenType(loc,
1110              diag::err_arc_indirect_no_ownership, type, isReference));
1111    } else {
1112      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1113    }
1114    implicitLifetime = Qualifiers::OCL_Strong;
1115  }
1116  assert(implicitLifetime && "didn't infer any lifetime!");
1117
1118  Qualifiers qs;
1119  qs.addObjCLifetime(implicitLifetime);
1120  return S.Context.getQualifiedType(type, qs);
1121}
1122
1123/// \brief Build a pointer type.
1124///
1125/// \param T The type to which we'll be building a pointer.
1126///
1127/// \param Loc The location of the entity whose type involves this
1128/// pointer type or, if there is no such entity, the location of the
1129/// type that will have pointer type.
1130///
1131/// \param Entity The name of the entity that involves the pointer
1132/// type, if known.
1133///
1134/// \returns A suitable pointer type, if there are no
1135/// errors. Otherwise, returns a NULL type.
1136QualType Sema::BuildPointerType(QualType T,
1137                                SourceLocation Loc, DeclarationName Entity) {
1138  if (T->isReferenceType()) {
1139    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1140    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1141      << getPrintableNameForEntity(Entity) << T;
1142    return QualType();
1143  }
1144
1145  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1146
1147  // In ARC, it is forbidden to build pointers to unqualified pointers.
1148  if (getLangOpts().ObjCAutoRefCount)
1149    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1150
1151  // Build the pointer type.
1152  return Context.getPointerType(T);
1153}
1154
1155/// \brief Build a reference type.
1156///
1157/// \param T The type to which we'll be building a reference.
1158///
1159/// \param Loc The location of the entity whose type involves this
1160/// reference type or, if there is no such entity, the location of the
1161/// type that will have reference type.
1162///
1163/// \param Entity The name of the entity that involves the reference
1164/// type, if known.
1165///
1166/// \returns A suitable reference type, if there are no
1167/// errors. Otherwise, returns a NULL type.
1168QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1169                                  SourceLocation Loc,
1170                                  DeclarationName Entity) {
1171  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1172         "Unresolved overloaded function type");
1173
1174  // C++0x [dcl.ref]p6:
1175  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1176  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1177  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1178  //   the type "lvalue reference to T", while an attempt to create the type
1179  //   "rvalue reference to cv TR" creates the type TR.
1180  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1181
1182  // C++ [dcl.ref]p4: There shall be no references to references.
1183  //
1184  // According to C++ DR 106, references to references are only
1185  // diagnosed when they are written directly (e.g., "int & &"),
1186  // but not when they happen via a typedef:
1187  //
1188  //   typedef int& intref;
1189  //   typedef intref& intref2;
1190  //
1191  // Parser::ParseDeclaratorInternal diagnoses the case where
1192  // references are written directly; here, we handle the
1193  // collapsing of references-to-references as described in C++0x.
1194  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1195
1196  // C++ [dcl.ref]p1:
1197  //   A declarator that specifies the type "reference to cv void"
1198  //   is ill-formed.
1199  if (T->isVoidType()) {
1200    Diag(Loc, diag::err_reference_to_void);
1201    return QualType();
1202  }
1203
1204  // In ARC, it is forbidden to build references to unqualified pointers.
1205  if (getLangOpts().ObjCAutoRefCount)
1206    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1207
1208  // Handle restrict on references.
1209  if (LValueRef)
1210    return Context.getLValueReferenceType(T, SpelledAsLValue);
1211  return Context.getRValueReferenceType(T);
1212}
1213
1214/// Check whether the specified array size makes the array type a VLA.  If so,
1215/// return true, if not, return the size of the array in SizeVal.
1216static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1217  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1218  // (like gnu99, but not c99) accept any evaluatable value as an extension.
1219  class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1220  public:
1221    VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
1222
1223    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1224    }
1225
1226    virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) {
1227      S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
1228    }
1229  } Diagnoser;
1230
1231  return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
1232                                           S.LangOpts.GNUMode).isInvalid();
1233}
1234
1235
1236/// \brief Build an array type.
1237///
1238/// \param T The type of each element in the array.
1239///
1240/// \param ASM C99 array size modifier (e.g., '*', 'static').
1241///
1242/// \param ArraySize Expression describing the size of the array.
1243///
1244/// \param Brackets The range from the opening '[' to the closing ']'.
1245///
1246/// \param Entity The name of the entity that involves the array
1247/// type, if known.
1248///
1249/// \returns A suitable array type, if there are no errors. Otherwise,
1250/// returns a NULL type.
1251QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1252                              Expr *ArraySize, unsigned Quals,
1253                              SourceRange Brackets, DeclarationName Entity) {
1254
1255  SourceLocation Loc = Brackets.getBegin();
1256  if (getLangOpts().CPlusPlus) {
1257    // C++ [dcl.array]p1:
1258    //   T is called the array element type; this type shall not be a reference
1259    //   type, the (possibly cv-qualified) type void, a function type or an
1260    //   abstract class type.
1261    //
1262    // C++ [dcl.array]p3:
1263    //   When several "array of" specifications are adjacent, [...] only the
1264    //   first of the constant expressions that specify the bounds of the arrays
1265    //   may be omitted.
1266    //
1267    // Note: function types are handled in the common path with C.
1268    if (T->isReferenceType()) {
1269      Diag(Loc, diag::err_illegal_decl_array_of_references)
1270      << getPrintableNameForEntity(Entity) << T;
1271      return QualType();
1272    }
1273
1274    if (T->isVoidType() || T->isIncompleteArrayType()) {
1275      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1276      return QualType();
1277    }
1278
1279    if (RequireNonAbstractType(Brackets.getBegin(), T,
1280                               diag::err_array_of_abstract_type))
1281      return QualType();
1282
1283  } else {
1284    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1285    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1286    if (RequireCompleteType(Loc, T,
1287                            diag::err_illegal_decl_array_incomplete_type))
1288      return QualType();
1289  }
1290
1291  if (T->isFunctionType()) {
1292    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1293      << getPrintableNameForEntity(Entity) << T;
1294    return QualType();
1295  }
1296
1297  if (T->getContainedAutoType()) {
1298    Diag(Loc, diag::err_illegal_decl_array_of_auto)
1299      << getPrintableNameForEntity(Entity) << T;
1300    return QualType();
1301  }
1302
1303  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1304    // If the element type is a struct or union that contains a variadic
1305    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1306    if (EltTy->getDecl()->hasFlexibleArrayMember())
1307      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1308  } else if (T->isObjCObjectType()) {
1309    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1310    return QualType();
1311  }
1312
1313  // Do placeholder conversions on the array size expression.
1314  if (ArraySize && ArraySize->hasPlaceholderType()) {
1315    ExprResult Result = CheckPlaceholderExpr(ArraySize);
1316    if (Result.isInvalid()) return QualType();
1317    ArraySize = Result.take();
1318  }
1319
1320  // Do lvalue-to-rvalue conversions on the array size expression.
1321  if (ArraySize && !ArraySize->isRValue()) {
1322    ExprResult Result = DefaultLvalueConversion(ArraySize);
1323    if (Result.isInvalid())
1324      return QualType();
1325
1326    ArraySize = Result.take();
1327  }
1328
1329  // C99 6.7.5.2p1: The size expression shall have integer type.
1330  // C++11 allows contextual conversions to such types.
1331  if (!getLangOpts().CPlusPlus0x &&
1332      ArraySize && !ArraySize->isTypeDependent() &&
1333      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1334    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1335      << ArraySize->getType() << ArraySize->getSourceRange();
1336    return QualType();
1337  }
1338
1339  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1340  if (!ArraySize) {
1341    if (ASM == ArrayType::Star)
1342      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1343    else
1344      T = Context.getIncompleteArrayType(T, ASM, Quals);
1345  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1346    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1347  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
1348              !T->isConstantSizeType()) ||
1349             isArraySizeVLA(*this, ArraySize, ConstVal)) {
1350    // Even in C++11, don't allow contextual conversions in the array bound
1351    // of a VLA.
1352    if (getLangOpts().CPlusPlus0x &&
1353        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1354      Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1355        << ArraySize->getType() << ArraySize->getSourceRange();
1356      return QualType();
1357    }
1358
1359    // C99: an array with an element type that has a non-constant-size is a VLA.
1360    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1361    // that we can fold to a non-zero positive value as an extension.
1362    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1363  } else {
1364    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1365    // have a value greater than zero.
1366    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1367      if (Entity)
1368        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1369          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1370      else
1371        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1372          << ArraySize->getSourceRange();
1373      return QualType();
1374    }
1375    if (ConstVal == 0) {
1376      // GCC accepts zero sized static arrays. We allow them when
1377      // we're not in a SFINAE context.
1378      Diag(ArraySize->getLocStart(),
1379           isSFINAEContext()? diag::err_typecheck_zero_array_size
1380                            : diag::ext_typecheck_zero_array_size)
1381        << ArraySize->getSourceRange();
1382
1383      if (ASM == ArrayType::Static) {
1384        Diag(ArraySize->getLocStart(),
1385             diag::warn_typecheck_zero_static_array_size)
1386          << ArraySize->getSourceRange();
1387        ASM = ArrayType::Normal;
1388      }
1389    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1390               !T->isIncompleteType()) {
1391      // Is the array too large?
1392      unsigned ActiveSizeBits
1393        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1394      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1395        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1396          << ConstVal.toString(10)
1397          << ArraySize->getSourceRange();
1398    }
1399
1400    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1401  }
1402  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1403  if (!getLangOpts().C99) {
1404    if (T->isVariableArrayType()) {
1405      // Prohibit the use of non-POD types in VLAs.
1406      QualType BaseT = Context.getBaseElementType(T);
1407      if (!T->isDependentType() &&
1408          !BaseT.isPODType(Context) &&
1409          !BaseT->isObjCLifetimeType()) {
1410        Diag(Loc, diag::err_vla_non_pod)
1411          << BaseT;
1412        return QualType();
1413      }
1414      // Prohibit the use of VLAs during template argument deduction.
1415      else if (isSFINAEContext()) {
1416        Diag(Loc, diag::err_vla_in_sfinae);
1417        return QualType();
1418      }
1419      // Just extwarn about VLAs.
1420      else
1421        Diag(Loc, diag::ext_vla);
1422    } else if (ASM != ArrayType::Normal || Quals != 0)
1423      Diag(Loc,
1424           getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
1425                                     : diag::ext_c99_array_usage) << ASM;
1426  }
1427
1428  return T;
1429}
1430
1431/// \brief Build an ext-vector type.
1432///
1433/// Run the required checks for the extended vector type.
1434QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1435                                  SourceLocation AttrLoc) {
1436  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1437  // in conjunction with complex types (pointers, arrays, functions, etc.).
1438  if (!T->isDependentType() &&
1439      !T->isIntegerType() && !T->isRealFloatingType()) {
1440    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1441    return QualType();
1442  }
1443
1444  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1445    llvm::APSInt vecSize(32);
1446    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1447      Diag(AttrLoc, diag::err_attribute_argument_not_int)
1448        << "ext_vector_type" << ArraySize->getSourceRange();
1449      return QualType();
1450    }
1451
1452    // unlike gcc's vector_size attribute, the size is specified as the
1453    // number of elements, not the number of bytes.
1454    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1455
1456    if (vectorSize == 0) {
1457      Diag(AttrLoc, diag::err_attribute_zero_size)
1458      << ArraySize->getSourceRange();
1459      return QualType();
1460    }
1461
1462    return Context.getExtVectorType(T, vectorSize);
1463  }
1464
1465  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1466}
1467
1468/// \brief Build a function type.
1469///
1470/// This routine checks the function type according to C++ rules and
1471/// under the assumption that the result type and parameter types have
1472/// just been instantiated from a template. It therefore duplicates
1473/// some of the behavior of GetTypeForDeclarator, but in a much
1474/// simpler form that is only suitable for this narrow use case.
1475///
1476/// \param T The return type of the function.
1477///
1478/// \param ParamTypes The parameter types of the function. This array
1479/// will be modified to account for adjustments to the types of the
1480/// function parameters.
1481///
1482/// \param NumParamTypes The number of parameter types in ParamTypes.
1483///
1484/// \param Variadic Whether this is a variadic function type.
1485///
1486/// \param HasTrailingReturn Whether this function has a trailing return type.
1487///
1488/// \param Quals The cvr-qualifiers to be applied to the function type.
1489///
1490/// \param Loc The location of the entity whose type involves this
1491/// function type or, if there is no such entity, the location of the
1492/// type that will have function type.
1493///
1494/// \param Entity The name of the entity that involves the function
1495/// type, if known.
1496///
1497/// \returns A suitable function type, if there are no
1498/// errors. Otherwise, returns a NULL type.
1499QualType Sema::BuildFunctionType(QualType T,
1500                                 QualType *ParamTypes,
1501                                 unsigned NumParamTypes,
1502                                 bool Variadic, bool HasTrailingReturn,
1503                                 unsigned Quals,
1504                                 RefQualifierKind RefQualifier,
1505                                 SourceLocation Loc, DeclarationName Entity,
1506                                 FunctionType::ExtInfo Info) {
1507  if (T->isArrayType() || T->isFunctionType()) {
1508    Diag(Loc, diag::err_func_returning_array_function)
1509      << T->isFunctionType() << T;
1510    return QualType();
1511  }
1512
1513  // Functions cannot return half FP.
1514  if (T->isHalfType()) {
1515    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1516      FixItHint::CreateInsertion(Loc, "*");
1517    return QualType();
1518  }
1519
1520  bool Invalid = false;
1521  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
1522    // FIXME: Loc is too inprecise here, should use proper locations for args.
1523    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1524    if (ParamType->isVoidType()) {
1525      Diag(Loc, diag::err_param_with_void_type);
1526      Invalid = true;
1527    } else if (ParamType->isHalfType()) {
1528      // Disallow half FP arguments.
1529      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1530        FixItHint::CreateInsertion(Loc, "*");
1531      Invalid = true;
1532    }
1533
1534    ParamTypes[Idx] = ParamType;
1535  }
1536
1537  if (Invalid)
1538    return QualType();
1539
1540  FunctionProtoType::ExtProtoInfo EPI;
1541  EPI.Variadic = Variadic;
1542  EPI.HasTrailingReturn = HasTrailingReturn;
1543  EPI.TypeQuals = Quals;
1544  EPI.RefQualifier = RefQualifier;
1545  EPI.ExtInfo = Info;
1546
1547  return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
1548}
1549
1550/// \brief Build a member pointer type \c T Class::*.
1551///
1552/// \param T the type to which the member pointer refers.
1553/// \param Class the class type into which the member pointer points.
1554/// \param Loc the location where this type begins
1555/// \param Entity the name of the entity that will have this member pointer type
1556///
1557/// \returns a member pointer type, if successful, or a NULL type if there was
1558/// an error.
1559QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1560                                      SourceLocation Loc,
1561                                      DeclarationName Entity) {
1562  // Verify that we're not building a pointer to pointer to function with
1563  // exception specification.
1564  if (CheckDistantExceptionSpec(T)) {
1565    Diag(Loc, diag::err_distant_exception_spec);
1566
1567    // FIXME: If we're doing this as part of template instantiation,
1568    // we should return immediately.
1569
1570    // Build the type anyway, but use the canonical type so that the
1571    // exception specifiers are stripped off.
1572    T = Context.getCanonicalType(T);
1573  }
1574
1575  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1576  //   with reference type, or "cv void."
1577  if (T->isReferenceType()) {
1578    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1579      << (Entity? Entity.getAsString() : "type name") << T;
1580    return QualType();
1581  }
1582
1583  if (T->isVoidType()) {
1584    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1585      << (Entity? Entity.getAsString() : "type name");
1586    return QualType();
1587  }
1588
1589  if (!Class->isDependentType() && !Class->isRecordType()) {
1590    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1591    return QualType();
1592  }
1593
1594  // In the Microsoft ABI, the class is allowed to be an incomplete
1595  // type. In such cases, the compiler makes a worst-case assumption.
1596  // We make no such assumption right now, so emit an error if the
1597  // class isn't a complete type.
1598  if (Context.getTargetInfo().getCXXABI() == CXXABI_Microsoft &&
1599      RequireCompleteType(Loc, Class, diag::err_incomplete_type))
1600    return QualType();
1601
1602  return Context.getMemberPointerType(T, Class.getTypePtr());
1603}
1604
1605/// \brief Build a block pointer type.
1606///
1607/// \param T The type to which we'll be building a block pointer.
1608///
1609/// \param Loc The source location, used for diagnostics.
1610///
1611/// \param Entity The name of the entity that involves the block pointer
1612/// type, if known.
1613///
1614/// \returns A suitable block pointer type, if there are no
1615/// errors. Otherwise, returns a NULL type.
1616QualType Sema::BuildBlockPointerType(QualType T,
1617                                     SourceLocation Loc,
1618                                     DeclarationName Entity) {
1619  if (!T->isFunctionType()) {
1620    Diag(Loc, diag::err_nonfunction_block_type);
1621    return QualType();
1622  }
1623
1624  return Context.getBlockPointerType(T);
1625}
1626
1627QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1628  QualType QT = Ty.get();
1629  if (QT.isNull()) {
1630    if (TInfo) *TInfo = 0;
1631    return QualType();
1632  }
1633
1634  TypeSourceInfo *DI = 0;
1635  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1636    QT = LIT->getType();
1637    DI = LIT->getTypeSourceInfo();
1638  }
1639
1640  if (TInfo) *TInfo = DI;
1641  return QT;
1642}
1643
1644static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1645                                            Qualifiers::ObjCLifetime ownership,
1646                                            unsigned chunkIndex);
1647
1648/// Given that this is the declaration of a parameter under ARC,
1649/// attempt to infer attributes and such for pointer-to-whatever
1650/// types.
1651static void inferARCWriteback(TypeProcessingState &state,
1652                              QualType &declSpecType) {
1653  Sema &S = state.getSema();
1654  Declarator &declarator = state.getDeclarator();
1655
1656  // TODO: should we care about decl qualifiers?
1657
1658  // Check whether the declarator has the expected form.  We walk
1659  // from the inside out in order to make the block logic work.
1660  unsigned outermostPointerIndex = 0;
1661  bool isBlockPointer = false;
1662  unsigned numPointers = 0;
1663  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1664    unsigned chunkIndex = i;
1665    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1666    switch (chunk.Kind) {
1667    case DeclaratorChunk::Paren:
1668      // Ignore parens.
1669      break;
1670
1671    case DeclaratorChunk::Reference:
1672    case DeclaratorChunk::Pointer:
1673      // Count the number of pointers.  Treat references
1674      // interchangeably as pointers; if they're mis-ordered, normal
1675      // type building will discover that.
1676      outermostPointerIndex = chunkIndex;
1677      numPointers++;
1678      break;
1679
1680    case DeclaratorChunk::BlockPointer:
1681      // If we have a pointer to block pointer, that's an acceptable
1682      // indirect reference; anything else is not an application of
1683      // the rules.
1684      if (numPointers != 1) return;
1685      numPointers++;
1686      outermostPointerIndex = chunkIndex;
1687      isBlockPointer = true;
1688
1689      // We don't care about pointer structure in return values here.
1690      goto done;
1691
1692    case DeclaratorChunk::Array: // suppress if written (id[])?
1693    case DeclaratorChunk::Function:
1694    case DeclaratorChunk::MemberPointer:
1695      return;
1696    }
1697  }
1698 done:
1699
1700  // If we have *one* pointer, then we want to throw the qualifier on
1701  // the declaration-specifiers, which means that it needs to be a
1702  // retainable object type.
1703  if (numPointers == 1) {
1704    // If it's not a retainable object type, the rule doesn't apply.
1705    if (!declSpecType->isObjCRetainableType()) return;
1706
1707    // If it already has lifetime, don't do anything.
1708    if (declSpecType.getObjCLifetime()) return;
1709
1710    // Otherwise, modify the type in-place.
1711    Qualifiers qs;
1712
1713    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1714      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1715    else
1716      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1717    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1718
1719  // If we have *two* pointers, then we want to throw the qualifier on
1720  // the outermost pointer.
1721  } else if (numPointers == 2) {
1722    // If we don't have a block pointer, we need to check whether the
1723    // declaration-specifiers gave us something that will turn into a
1724    // retainable object pointer after we slap the first pointer on it.
1725    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1726      return;
1727
1728    // Look for an explicit lifetime attribute there.
1729    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1730    if (chunk.Kind != DeclaratorChunk::Pointer &&
1731        chunk.Kind != DeclaratorChunk::BlockPointer)
1732      return;
1733    for (const AttributeList *attr = chunk.getAttrs(); attr;
1734           attr = attr->getNext())
1735      if (attr->getKind() == AttributeList::AT_ObjCOwnership)
1736        return;
1737
1738    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1739                                          outermostPointerIndex);
1740
1741  // Any other number of pointers/references does not trigger the rule.
1742  } else return;
1743
1744  // TODO: mark whether we did this inference?
1745}
1746
1747static void DiagnoseIgnoredQualifiers(unsigned Quals,
1748                                      SourceLocation ConstQualLoc,
1749                                      SourceLocation VolatileQualLoc,
1750                                      SourceLocation RestrictQualLoc,
1751                                      Sema& S) {
1752  std::string QualStr;
1753  unsigned NumQuals = 0;
1754  SourceLocation Loc;
1755
1756  FixItHint ConstFixIt;
1757  FixItHint VolatileFixIt;
1758  FixItHint RestrictFixIt;
1759
1760  const SourceManager &SM = S.getSourceManager();
1761
1762  // FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
1763  // find a range and grow it to encompass all the qualifiers, regardless of
1764  // the order in which they textually appear.
1765  if (Quals & Qualifiers::Const) {
1766    ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
1767    QualStr = "const";
1768    ++NumQuals;
1769    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(ConstQualLoc, Loc))
1770      Loc = ConstQualLoc;
1771  }
1772  if (Quals & Qualifiers::Volatile) {
1773    VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
1774    QualStr += (NumQuals == 0 ? "volatile" : " volatile");
1775    ++NumQuals;
1776    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(VolatileQualLoc, Loc))
1777      Loc = VolatileQualLoc;
1778  }
1779  if (Quals & Qualifiers::Restrict) {
1780    RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
1781    QualStr += (NumQuals == 0 ? "restrict" : " restrict");
1782    ++NumQuals;
1783    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(RestrictQualLoc, Loc))
1784      Loc = RestrictQualLoc;
1785  }
1786
1787  assert(NumQuals > 0 && "No known qualifiers?");
1788
1789  S.Diag(Loc, diag::warn_qual_return_type)
1790    << QualStr << NumQuals << ConstFixIt << VolatileFixIt << RestrictFixIt;
1791}
1792
1793static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
1794                                             TypeSourceInfo *&ReturnTypeInfo) {
1795  Sema &SemaRef = state.getSema();
1796  Declarator &D = state.getDeclarator();
1797  QualType T;
1798  ReturnTypeInfo = 0;
1799
1800  // The TagDecl owned by the DeclSpec.
1801  TagDecl *OwnedTagDecl = 0;
1802
1803  switch (D.getName().getKind()) {
1804  case UnqualifiedId::IK_ImplicitSelfParam:
1805  case UnqualifiedId::IK_OperatorFunctionId:
1806  case UnqualifiedId::IK_Identifier:
1807  case UnqualifiedId::IK_LiteralOperatorId:
1808  case UnqualifiedId::IK_TemplateId:
1809    T = ConvertDeclSpecToType(state);
1810
1811    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
1812      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
1813      // Owned declaration is embedded in declarator.
1814      OwnedTagDecl->setEmbeddedInDeclarator(true);
1815    }
1816    break;
1817
1818  case UnqualifiedId::IK_ConstructorName:
1819  case UnqualifiedId::IK_ConstructorTemplateId:
1820  case UnqualifiedId::IK_DestructorName:
1821    // Constructors and destructors don't have return types. Use
1822    // "void" instead.
1823    T = SemaRef.Context.VoidTy;
1824    if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
1825      processTypeAttrs(state, T, true, attrs);
1826    break;
1827
1828  case UnqualifiedId::IK_ConversionFunctionId:
1829    // The result type of a conversion function is the type that it
1830    // converts to.
1831    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
1832                                  &ReturnTypeInfo);
1833    break;
1834  }
1835
1836  if (D.getAttributes())
1837    distributeTypeAttrsFromDeclarator(state, T);
1838
1839  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
1840  // In C++11, a function declarator using 'auto' must have a trailing return
1841  // type (this is checked later) and we can skip this. In other languages
1842  // using auto, we need to check regardless.
1843  if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
1844      (!SemaRef.getLangOpts().CPlusPlus0x || !D.isFunctionDeclarator())) {
1845    int Error = -1;
1846
1847    switch (D.getContext()) {
1848    case Declarator::KNRTypeListContext:
1849      llvm_unreachable("K&R type lists aren't allowed in C++");
1850    case Declarator::LambdaExprContext:
1851      llvm_unreachable("Can't specify a type specifier in lambda grammar");
1852    case Declarator::ObjCParameterContext:
1853    case Declarator::ObjCResultContext:
1854    case Declarator::PrototypeContext:
1855      Error = 0; // Function prototype
1856      break;
1857    case Declarator::MemberContext:
1858      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
1859        break;
1860      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
1861      case TTK_Enum: llvm_unreachable("unhandled tag kind");
1862      case TTK_Struct: Error = 1; /* Struct member */ break;
1863      case TTK_Union:  Error = 2; /* Union member */ break;
1864      case TTK_Class:  Error = 3; /* Class member */ break;
1865      case TTK_Interface: Error = 4; /* Interface member */ break;
1866      }
1867      break;
1868    case Declarator::CXXCatchContext:
1869    case Declarator::ObjCCatchContext:
1870      Error = 5; // Exception declaration
1871      break;
1872    case Declarator::TemplateParamContext:
1873      Error = 6; // Template parameter
1874      break;
1875    case Declarator::BlockLiteralContext:
1876      Error = 7; // Block literal
1877      break;
1878    case Declarator::TemplateTypeArgContext:
1879      Error = 8; // Template type argument
1880      break;
1881    case Declarator::AliasDeclContext:
1882    case Declarator::AliasTemplateContext:
1883      Error = 10; // Type alias
1884      break;
1885    case Declarator::TrailingReturnContext:
1886      Error = 11; // Function return type
1887      break;
1888    case Declarator::TypeNameContext:
1889      Error = 12; // Generic
1890      break;
1891    case Declarator::FileContext:
1892    case Declarator::BlockContext:
1893    case Declarator::ForContext:
1894    case Declarator::ConditionContext:
1895    case Declarator::CXXNewContext:
1896      break;
1897    }
1898
1899    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1900      Error = 9;
1901
1902    // In Objective-C it is an error to use 'auto' on a function declarator.
1903    if (D.isFunctionDeclarator())
1904      Error = 11;
1905
1906    // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
1907    // contains a trailing return type. That is only legal at the outermost
1908    // level. Check all declarator chunks (outermost first) anyway, to give
1909    // better diagnostics.
1910    if (SemaRef.getLangOpts().CPlusPlus0x && Error != -1) {
1911      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1912        unsigned chunkIndex = e - i - 1;
1913        state.setCurrentChunkIndex(chunkIndex);
1914        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1915        if (DeclType.Kind == DeclaratorChunk::Function) {
1916          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1917          if (FTI.hasTrailingReturnType()) {
1918            Error = -1;
1919            break;
1920          }
1921        }
1922      }
1923    }
1924
1925    if (Error != -1) {
1926      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1927                   diag::err_auto_not_allowed)
1928        << Error;
1929      T = SemaRef.Context.IntTy;
1930      D.setInvalidType(true);
1931    } else
1932      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1933                   diag::warn_cxx98_compat_auto_type_specifier);
1934  }
1935
1936  if (SemaRef.getLangOpts().CPlusPlus &&
1937      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
1938    // Check the contexts where C++ forbids the declaration of a new class
1939    // or enumeration in a type-specifier-seq.
1940    switch (D.getContext()) {
1941    case Declarator::TrailingReturnContext:
1942      // Class and enumeration definitions are syntactically not allowed in
1943      // trailing return types.
1944      llvm_unreachable("parser should not have allowed this");
1945      break;
1946    case Declarator::FileContext:
1947    case Declarator::MemberContext:
1948    case Declarator::BlockContext:
1949    case Declarator::ForContext:
1950    case Declarator::BlockLiteralContext:
1951    case Declarator::LambdaExprContext:
1952      // C++11 [dcl.type]p3:
1953      //   A type-specifier-seq shall not define a class or enumeration unless
1954      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
1955      //   the declaration of a template-declaration.
1956    case Declarator::AliasDeclContext:
1957      break;
1958    case Declarator::AliasTemplateContext:
1959      SemaRef.Diag(OwnedTagDecl->getLocation(),
1960             diag::err_type_defined_in_alias_template)
1961        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1962      break;
1963    case Declarator::TypeNameContext:
1964    case Declarator::TemplateParamContext:
1965    case Declarator::CXXNewContext:
1966    case Declarator::CXXCatchContext:
1967    case Declarator::ObjCCatchContext:
1968    case Declarator::TemplateTypeArgContext:
1969      SemaRef.Diag(OwnedTagDecl->getLocation(),
1970             diag::err_type_defined_in_type_specifier)
1971        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1972      break;
1973    case Declarator::PrototypeContext:
1974    case Declarator::ObjCParameterContext:
1975    case Declarator::ObjCResultContext:
1976    case Declarator::KNRTypeListContext:
1977      // C++ [dcl.fct]p6:
1978      //   Types shall not be defined in return or parameter types.
1979      SemaRef.Diag(OwnedTagDecl->getLocation(),
1980                   diag::err_type_defined_in_param_type)
1981        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1982      break;
1983    case Declarator::ConditionContext:
1984      // C++ 6.4p2:
1985      // The type-specifier-seq shall not contain typedef and shall not declare
1986      // a new class or enumeration.
1987      SemaRef.Diag(OwnedTagDecl->getLocation(),
1988                   diag::err_type_defined_in_condition);
1989      break;
1990    }
1991  }
1992
1993  return T;
1994}
1995
1996static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1997  std::string Quals =
1998    Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
1999
2000  switch (FnTy->getRefQualifier()) {
2001  case RQ_None:
2002    break;
2003
2004  case RQ_LValue:
2005    if (!Quals.empty())
2006      Quals += ' ';
2007    Quals += '&';
2008    break;
2009
2010  case RQ_RValue:
2011    if (!Quals.empty())
2012      Quals += ' ';
2013    Quals += "&&";
2014    break;
2015  }
2016
2017  return Quals;
2018}
2019
2020/// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
2021/// can be contained within the declarator chunk DeclType, and produce an
2022/// appropriate diagnostic if not.
2023static void checkQualifiedFunction(Sema &S, QualType T,
2024                                   DeclaratorChunk &DeclType) {
2025  // C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
2026  // cv-qualifier or a ref-qualifier can only appear at the topmost level
2027  // of a type.
2028  int DiagKind = -1;
2029  switch (DeclType.Kind) {
2030  case DeclaratorChunk::Paren:
2031  case DeclaratorChunk::MemberPointer:
2032    // These cases are permitted.
2033    return;
2034  case DeclaratorChunk::Array:
2035  case DeclaratorChunk::Function:
2036    // These cases don't allow function types at all; no need to diagnose the
2037    // qualifiers separately.
2038    return;
2039  case DeclaratorChunk::BlockPointer:
2040    DiagKind = 0;
2041    break;
2042  case DeclaratorChunk::Pointer:
2043    DiagKind = 1;
2044    break;
2045  case DeclaratorChunk::Reference:
2046    DiagKind = 2;
2047    break;
2048  }
2049
2050  assert(DiagKind != -1);
2051  S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
2052    << DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
2053    << getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
2054}
2055
2056/// Produce an approprioate diagnostic for an ambiguity between a function
2057/// declarator and a C++ direct-initializer.
2058static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
2059                                       DeclaratorChunk &DeclType, QualType RT) {
2060  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2061  assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
2062
2063  // If the return type is void there is no ambiguity.
2064  if (RT->isVoidType())
2065    return;
2066
2067  // An initializer for a non-class type can have at most one argument.
2068  if (!RT->isRecordType() && FTI.NumArgs > 1)
2069    return;
2070
2071  // An initializer for a reference must have exactly one argument.
2072  if (RT->isReferenceType() && FTI.NumArgs != 1)
2073    return;
2074
2075  // Only warn if this declarator is declaring a function at block scope, and
2076  // doesn't have a storage class (such as 'extern') specified.
2077  if (!D.isFunctionDeclarator() ||
2078      D.getFunctionDefinitionKind() != FDK_Declaration ||
2079      !S.CurContext->isFunctionOrMethod() ||
2080      D.getDeclSpec().getStorageClassSpecAsWritten()
2081        != DeclSpec::SCS_unspecified)
2082    return;
2083
2084  // Inside a condition, a direct initializer is not permitted. We allow one to
2085  // be parsed in order to give better diagnostics in condition parsing.
2086  if (D.getContext() == Declarator::ConditionContext)
2087    return;
2088
2089  SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
2090
2091  S.Diag(DeclType.Loc,
2092         FTI.NumArgs ? diag::warn_parens_disambiguated_as_function_declaration
2093                     : diag::warn_empty_parens_are_function_decl)
2094    << ParenRange;
2095
2096  // If the declaration looks like:
2097  //   T var1,
2098  //   f();
2099  // and name lookup finds a function named 'f', then the ',' was
2100  // probably intended to be a ';'.
2101  if (!D.isFirstDeclarator() && D.getIdentifier()) {
2102    FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
2103    FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
2104    if (Comma.getFileID() != Name.getFileID() ||
2105        Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
2106      LookupResult Result(S, D.getIdentifier(), SourceLocation(),
2107                          Sema::LookupOrdinaryName);
2108      if (S.LookupName(Result, S.getCurScope()))
2109        S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
2110          << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
2111          << D.getIdentifier();
2112    }
2113  }
2114
2115  if (FTI.NumArgs > 0) {
2116    // For a declaration with parameters, eg. "T var(T());", suggest adding parens
2117    // around the first parameter to turn the declaration into a variable
2118    // declaration.
2119    SourceRange Range = FTI.ArgInfo[0].Param->getSourceRange();
2120    SourceLocation B = Range.getBegin();
2121    SourceLocation E = S.PP.getLocForEndOfToken(Range.getEnd());
2122    // FIXME: Maybe we should suggest adding braces instead of parens
2123    // in C++11 for classes that don't have an initializer_list constructor.
2124    S.Diag(B, diag::note_additional_parens_for_variable_declaration)
2125      << FixItHint::CreateInsertion(B, "(")
2126      << FixItHint::CreateInsertion(E, ")");
2127  } else {
2128    // For a declaration without parameters, eg. "T var();", suggest replacing the
2129    // parens with an initializer to turn the declaration into a variable
2130    // declaration.
2131    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
2132
2133    // Empty parens mean value-initialization, and no parens mean
2134    // default initialization. These are equivalent if the default
2135    // constructor is user-provided or if zero-initialization is a
2136    // no-op.
2137    if (RD && RD->hasDefinition() &&
2138        (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
2139      S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
2140        << FixItHint::CreateRemoval(ParenRange);
2141    else {
2142      std::string Init = S.getFixItZeroInitializerForType(RT);
2143      if (Init.empty() && S.LangOpts.CPlusPlus0x)
2144        Init = "{}";
2145      if (!Init.empty())
2146        S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
2147          << FixItHint::CreateReplacement(ParenRange, Init);
2148    }
2149  }
2150}
2151
2152static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
2153                                                QualType declSpecType,
2154                                                TypeSourceInfo *TInfo) {
2155
2156  QualType T = declSpecType;
2157  Declarator &D = state.getDeclarator();
2158  Sema &S = state.getSema();
2159  ASTContext &Context = S.Context;
2160  const LangOptions &LangOpts = S.getLangOpts();
2161
2162  bool ImplicitlyNoexcept = false;
2163  if (D.getName().getKind() == UnqualifiedId::IK_OperatorFunctionId &&
2164      LangOpts.CPlusPlus0x) {
2165    OverloadedOperatorKind OO = D.getName().OperatorFunctionId.Operator;
2166    /// In C++0x, deallocation functions (normal and array operator delete)
2167    /// are implicitly noexcept.
2168    if (OO == OO_Delete || OO == OO_Array_Delete)
2169      ImplicitlyNoexcept = true;
2170  }
2171
2172  // The name we're declaring, if any.
2173  DeclarationName Name;
2174  if (D.getIdentifier())
2175    Name = D.getIdentifier();
2176
2177  // Does this declaration declare a typedef-name?
2178  bool IsTypedefName =
2179    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2180    D.getContext() == Declarator::AliasDeclContext ||
2181    D.getContext() == Declarator::AliasTemplateContext;
2182
2183  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2184  bool IsQualifiedFunction = T->isFunctionProtoType() &&
2185      (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
2186       T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
2187
2188  // Walk the DeclTypeInfo, building the recursive type as we go.
2189  // DeclTypeInfos are ordered from the identifier out, which is
2190  // opposite of what we want :).
2191  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2192    unsigned chunkIndex = e - i - 1;
2193    state.setCurrentChunkIndex(chunkIndex);
2194    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2195    if (IsQualifiedFunction) {
2196      checkQualifiedFunction(S, T, DeclType);
2197      IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
2198    }
2199    switch (DeclType.Kind) {
2200    case DeclaratorChunk::Paren:
2201      T = S.BuildParenType(T);
2202      break;
2203    case DeclaratorChunk::BlockPointer:
2204      // If blocks are disabled, emit an error.
2205      if (!LangOpts.Blocks)
2206        S.Diag(DeclType.Loc, diag::err_blocks_disable);
2207
2208      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
2209      if (DeclType.Cls.TypeQuals)
2210        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
2211      break;
2212    case DeclaratorChunk::Pointer:
2213      // Verify that we're not building a pointer to pointer to function with
2214      // exception specification.
2215      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2216        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2217        D.setInvalidType(true);
2218        // Build the type anyway.
2219      }
2220      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
2221        T = Context.getObjCObjectPointerType(T);
2222        if (DeclType.Ptr.TypeQuals)
2223          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2224        break;
2225      }
2226      T = S.BuildPointerType(T, DeclType.Loc, Name);
2227      if (DeclType.Ptr.TypeQuals)
2228        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2229
2230      break;
2231    case DeclaratorChunk::Reference: {
2232      // Verify that we're not building a reference to pointer to function with
2233      // exception specification.
2234      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2235        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2236        D.setInvalidType(true);
2237        // Build the type anyway.
2238      }
2239      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2240
2241      Qualifiers Quals;
2242      if (DeclType.Ref.HasRestrict)
2243        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2244      break;
2245    }
2246    case DeclaratorChunk::Array: {
2247      // Verify that we're not building an array of pointers to function with
2248      // exception specification.
2249      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2250        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2251        D.setInvalidType(true);
2252        // Build the type anyway.
2253      }
2254      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2255      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2256      ArrayType::ArraySizeModifier ASM;
2257      if (ATI.isStar)
2258        ASM = ArrayType::Star;
2259      else if (ATI.hasStatic)
2260        ASM = ArrayType::Static;
2261      else
2262        ASM = ArrayType::Normal;
2263      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2264        // FIXME: This check isn't quite right: it allows star in prototypes
2265        // for function definitions, and disallows some edge cases detailed
2266        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2267        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2268        ASM = ArrayType::Normal;
2269        D.setInvalidType(true);
2270      }
2271
2272      // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
2273      // shall appear only in a declaration of a function parameter with an
2274      // array type, ...
2275      if (ASM == ArrayType::Static || ATI.TypeQuals) {
2276        if (!(D.isPrototypeContext() ||
2277              D.getContext() == Declarator::KNRTypeListContext)) {
2278          S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
2279              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2280          // Remove the 'static' and the type qualifiers.
2281          if (ASM == ArrayType::Static)
2282            ASM = ArrayType::Normal;
2283          ATI.TypeQuals = 0;
2284          D.setInvalidType(true);
2285        }
2286
2287        // C99 6.7.5.2p1: ... and then only in the outermost array type
2288        // derivation.
2289        unsigned x = chunkIndex;
2290        while (x != 0) {
2291          // Walk outwards along the declarator chunks.
2292          x--;
2293          const DeclaratorChunk &DC = D.getTypeObject(x);
2294          switch (DC.Kind) {
2295          case DeclaratorChunk::Paren:
2296            continue;
2297          case DeclaratorChunk::Array:
2298          case DeclaratorChunk::Pointer:
2299          case DeclaratorChunk::Reference:
2300          case DeclaratorChunk::MemberPointer:
2301            S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
2302              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2303            if (ASM == ArrayType::Static)
2304              ASM = ArrayType::Normal;
2305            ATI.TypeQuals = 0;
2306            D.setInvalidType(true);
2307            break;
2308          case DeclaratorChunk::Function:
2309          case DeclaratorChunk::BlockPointer:
2310            // These are invalid anyway, so just ignore.
2311            break;
2312          }
2313        }
2314      }
2315
2316      T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2317                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2318      break;
2319    }
2320    case DeclaratorChunk::Function: {
2321      // If the function declarator has a prototype (i.e. it is not () and
2322      // does not have a K&R-style identifier list), then the arguments are part
2323      // of the type, otherwise the argument list is ().
2324      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2325      IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
2326
2327      // Check for auto functions and trailing return type and adjust the
2328      // return type accordingly.
2329      if (!D.isInvalidType()) {
2330        // trailing-return-type is only required if we're declaring a function,
2331        // and not, for instance, a pointer to a function.
2332        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2333            !FTI.hasTrailingReturnType() && chunkIndex == 0) {
2334          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2335               diag::err_auto_missing_trailing_return);
2336          T = Context.IntTy;
2337          D.setInvalidType(true);
2338        } else if (FTI.hasTrailingReturnType()) {
2339          // T must be exactly 'auto' at this point. See CWG issue 681.
2340          if (isa<ParenType>(T)) {
2341            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2342                 diag::err_trailing_return_in_parens)
2343              << T << D.getDeclSpec().getSourceRange();
2344            D.setInvalidType(true);
2345          } else if (D.getContext() != Declarator::LambdaExprContext &&
2346                     (T.hasQualifiers() || !isa<AutoType>(T))) {
2347            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2348                 diag::err_trailing_return_without_auto)
2349              << T << D.getDeclSpec().getSourceRange();
2350            D.setInvalidType(true);
2351          }
2352          T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
2353          if (T.isNull()) {
2354            // An error occurred parsing the trailing return type.
2355            T = Context.IntTy;
2356            D.setInvalidType(true);
2357          }
2358        }
2359      }
2360
2361      // C99 6.7.5.3p1: The return type may not be a function or array type.
2362      // For conversion functions, we'll diagnose this particular error later.
2363      if ((T->isArrayType() || T->isFunctionType()) &&
2364          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2365        unsigned diagID = diag::err_func_returning_array_function;
2366        // Last processing chunk in block context means this function chunk
2367        // represents the block.
2368        if (chunkIndex == 0 &&
2369            D.getContext() == Declarator::BlockLiteralContext)
2370          diagID = diag::err_block_returning_array_function;
2371        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2372        T = Context.IntTy;
2373        D.setInvalidType(true);
2374      }
2375
2376      // Do not allow returning half FP value.
2377      // FIXME: This really should be in BuildFunctionType.
2378      if (T->isHalfType()) {
2379        S.Diag(D.getIdentifierLoc(),
2380             diag::err_parameters_retval_cannot_have_fp16_type) << 1
2381          << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
2382        D.setInvalidType(true);
2383      }
2384
2385      // cv-qualifiers on return types are pointless except when the type is a
2386      // class type in C++.
2387      if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
2388          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
2389          (!LangOpts.CPlusPlus || !T->isDependentType())) {
2390        assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
2391        DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2392        assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
2393
2394        DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
2395
2396        DiagnoseIgnoredQualifiers(PTI.TypeQuals,
2397            SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2398            SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2399            SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2400            S);
2401
2402      } else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
2403          (!LangOpts.CPlusPlus ||
2404           (!T->isDependentType() && !T->isRecordType()))) {
2405
2406        DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
2407                                  D.getDeclSpec().getConstSpecLoc(),
2408                                  D.getDeclSpec().getVolatileSpecLoc(),
2409                                  D.getDeclSpec().getRestrictSpecLoc(),
2410                                  S);
2411      }
2412
2413      if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2414        // C++ [dcl.fct]p6:
2415        //   Types shall not be defined in return or parameter types.
2416        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2417        if (Tag->isCompleteDefinition())
2418          S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2419            << Context.getTypeDeclType(Tag);
2420      }
2421
2422      // Exception specs are not allowed in typedefs. Complain, but add it
2423      // anyway.
2424      if (IsTypedefName && FTI.getExceptionSpecType())
2425        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2426          << (D.getContext() == Declarator::AliasDeclContext ||
2427              D.getContext() == Declarator::AliasTemplateContext);
2428
2429      // If we see "T var();" or "T var(T());" at block scope, it is probably
2430      // an attempt to initialize a variable, not a function declaration.
2431      if (FTI.isAmbiguous)
2432        warnAboutAmbiguousFunction(S, D, DeclType, T);
2433
2434      if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2435        // Simple void foo(), where the incoming T is the result type.
2436        T = Context.getFunctionNoProtoType(T);
2437      } else {
2438        // We allow a zero-parameter variadic function in C if the
2439        // function is marked with the "overloadable" attribute. Scan
2440        // for this attribute now.
2441        if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2442          bool Overloadable = false;
2443          for (const AttributeList *Attrs = D.getAttributes();
2444               Attrs; Attrs = Attrs->getNext()) {
2445            if (Attrs->getKind() == AttributeList::AT_Overloadable) {
2446              Overloadable = true;
2447              break;
2448            }
2449          }
2450
2451          if (!Overloadable)
2452            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2453        }
2454
2455        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2456          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2457          // definition.
2458          S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2459          D.setInvalidType(true);
2460          break;
2461        }
2462
2463        FunctionProtoType::ExtProtoInfo EPI;
2464        EPI.Variadic = FTI.isVariadic;
2465        EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
2466        EPI.TypeQuals = FTI.TypeQuals;
2467        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2468                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2469                    : RQ_RValue;
2470
2471        // Otherwise, we have a function with an argument list that is
2472        // potentially variadic.
2473        SmallVector<QualType, 16> ArgTys;
2474        ArgTys.reserve(FTI.NumArgs);
2475
2476        SmallVector<bool, 16> ConsumedArguments;
2477        ConsumedArguments.reserve(FTI.NumArgs);
2478        bool HasAnyConsumedArguments = false;
2479
2480        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2481          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2482          QualType ArgTy = Param->getType();
2483          assert(!ArgTy.isNull() && "Couldn't parse type?");
2484
2485          // Adjust the parameter type.
2486          assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
2487                 "Unadjusted type?");
2488
2489          // Look for 'void'.  void is allowed only as a single argument to a
2490          // function with no other parameters (C99 6.7.5.3p10).  We record
2491          // int(void) as a FunctionProtoType with an empty argument list.
2492          if (ArgTy->isVoidType()) {
2493            // If this is something like 'float(int, void)', reject it.  'void'
2494            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2495            // have arguments of incomplete type.
2496            if (FTI.NumArgs != 1 || FTI.isVariadic) {
2497              S.Diag(DeclType.Loc, diag::err_void_only_param);
2498              ArgTy = Context.IntTy;
2499              Param->setType(ArgTy);
2500            } else if (FTI.ArgInfo[i].Ident) {
2501              // Reject, but continue to parse 'int(void abc)'.
2502              S.Diag(FTI.ArgInfo[i].IdentLoc,
2503                   diag::err_param_with_void_type);
2504              ArgTy = Context.IntTy;
2505              Param->setType(ArgTy);
2506            } else {
2507              // Reject, but continue to parse 'float(const void)'.
2508              if (ArgTy.hasQualifiers())
2509                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2510
2511              // Do not add 'void' to the ArgTys list.
2512              break;
2513            }
2514          } else if (ArgTy->isHalfType()) {
2515            // Disallow half FP arguments.
2516            // FIXME: This really should be in BuildFunctionType.
2517            S.Diag(Param->getLocation(),
2518               diag::err_parameters_retval_cannot_have_fp16_type) << 0
2519            << FixItHint::CreateInsertion(Param->getLocation(), "*");
2520            D.setInvalidType();
2521          } else if (!FTI.hasPrototype) {
2522            if (ArgTy->isPromotableIntegerType()) {
2523              ArgTy = Context.getPromotedIntegerType(ArgTy);
2524              Param->setKNRPromoted(true);
2525            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2526              if (BTy->getKind() == BuiltinType::Float) {
2527                ArgTy = Context.DoubleTy;
2528                Param->setKNRPromoted(true);
2529              }
2530            }
2531          }
2532
2533          if (LangOpts.ObjCAutoRefCount) {
2534            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2535            ConsumedArguments.push_back(Consumed);
2536            HasAnyConsumedArguments |= Consumed;
2537          }
2538
2539          ArgTys.push_back(ArgTy);
2540        }
2541
2542        if (HasAnyConsumedArguments)
2543          EPI.ConsumedArguments = ConsumedArguments.data();
2544
2545        SmallVector<QualType, 4> Exceptions;
2546        SmallVector<ParsedType, 2> DynamicExceptions;
2547        SmallVector<SourceRange, 2> DynamicExceptionRanges;
2548        Expr *NoexceptExpr = 0;
2549
2550        if (FTI.getExceptionSpecType() == EST_Dynamic) {
2551          // FIXME: It's rather inefficient to have to split into two vectors
2552          // here.
2553          unsigned N = FTI.NumExceptions;
2554          DynamicExceptions.reserve(N);
2555          DynamicExceptionRanges.reserve(N);
2556          for (unsigned I = 0; I != N; ++I) {
2557            DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
2558            DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
2559          }
2560        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2561          NoexceptExpr = FTI.NoexceptExpr;
2562        }
2563
2564        S.checkExceptionSpecification(FTI.getExceptionSpecType(),
2565                                      DynamicExceptions,
2566                                      DynamicExceptionRanges,
2567                                      NoexceptExpr,
2568                                      Exceptions,
2569                                      EPI);
2570
2571        if (FTI.getExceptionSpecType() == EST_None &&
2572            ImplicitlyNoexcept && chunkIndex == 0) {
2573          // Only the outermost chunk is marked noexcept, of course.
2574          EPI.ExceptionSpecType = EST_BasicNoexcept;
2575        }
2576
2577        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
2578      }
2579
2580      break;
2581    }
2582    case DeclaratorChunk::MemberPointer:
2583      // The scope spec must refer to a class, or be dependent.
2584      CXXScopeSpec &SS = DeclType.Mem.Scope();
2585      QualType ClsType;
2586      if (SS.isInvalid()) {
2587        // Avoid emitting extra errors if we already errored on the scope.
2588        D.setInvalidType(true);
2589      } else if (S.isDependentScopeSpecifier(SS) ||
2590                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
2591        NestedNameSpecifier *NNS
2592          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2593        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
2594        switch (NNS->getKind()) {
2595        case NestedNameSpecifier::Identifier:
2596          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
2597                                                 NNS->getAsIdentifier());
2598          break;
2599
2600        case NestedNameSpecifier::Namespace:
2601        case NestedNameSpecifier::NamespaceAlias:
2602        case NestedNameSpecifier::Global:
2603          llvm_unreachable("Nested-name-specifier must name a type");
2604
2605        case NestedNameSpecifier::TypeSpec:
2606        case NestedNameSpecifier::TypeSpecWithTemplate:
2607          ClsType = QualType(NNS->getAsType(), 0);
2608          // Note: if the NNS has a prefix and ClsType is a nondependent
2609          // TemplateSpecializationType, then the NNS prefix is NOT included
2610          // in ClsType; hence we wrap ClsType into an ElaboratedType.
2611          // NOTE: in particular, no wrap occurs if ClsType already is an
2612          // Elaborated, DependentName, or DependentTemplateSpecialization.
2613          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
2614            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
2615          break;
2616        }
2617      } else {
2618        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
2619             diag::err_illegal_decl_mempointer_in_nonclass)
2620          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
2621          << DeclType.Mem.Scope().getRange();
2622        D.setInvalidType(true);
2623      }
2624
2625      if (!ClsType.isNull())
2626        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
2627      if (T.isNull()) {
2628        T = Context.IntTy;
2629        D.setInvalidType(true);
2630      } else if (DeclType.Mem.TypeQuals) {
2631        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
2632      }
2633      break;
2634    }
2635
2636    if (T.isNull()) {
2637      D.setInvalidType(true);
2638      T = Context.IntTy;
2639    }
2640
2641    // See if there are any attributes on this declarator chunk.
2642    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
2643      processTypeAttrs(state, T, false, attrs);
2644  }
2645
2646  if (LangOpts.CPlusPlus && T->isFunctionType()) {
2647    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
2648    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
2649
2650    // C++ 8.3.5p4:
2651    //   A cv-qualifier-seq shall only be part of the function type
2652    //   for a nonstatic member function, the function type to which a pointer
2653    //   to member refers, or the top-level function type of a function typedef
2654    //   declaration.
2655    //
2656    // Core issue 547 also allows cv-qualifiers on function types that are
2657    // top-level template type arguments.
2658    bool FreeFunction;
2659    if (!D.getCXXScopeSpec().isSet()) {
2660      FreeFunction = ((D.getContext() != Declarator::MemberContext &&
2661                       D.getContext() != Declarator::LambdaExprContext) ||
2662                      D.getDeclSpec().isFriendSpecified());
2663    } else {
2664      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
2665      FreeFunction = (DC && !DC->isRecord());
2666    }
2667
2668    // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
2669    // function that is not a constructor declares that function to be const.
2670    if (D.getDeclSpec().isConstexprSpecified() && !FreeFunction &&
2671        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static &&
2672        D.getName().getKind() != UnqualifiedId::IK_ConstructorName &&
2673        D.getName().getKind() != UnqualifiedId::IK_ConstructorTemplateId &&
2674        !(FnTy->getTypeQuals() & DeclSpec::TQ_const)) {
2675      // Rebuild function type adding a 'const' qualifier.
2676      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2677      EPI.TypeQuals |= DeclSpec::TQ_const;
2678      T = Context.getFunctionType(FnTy->getResultType(),
2679                                  FnTy->arg_type_begin(),
2680                                  FnTy->getNumArgs(), EPI);
2681    }
2682
2683    // C++11 [dcl.fct]p6 (w/DR1417):
2684    // An attempt to specify a function type with a cv-qualifier-seq or a
2685    // ref-qualifier (including by typedef-name) is ill-formed unless it is:
2686    //  - the function type for a non-static member function,
2687    //  - the function type to which a pointer to member refers,
2688    //  - the top-level function type of a function typedef declaration or
2689    //    alias-declaration,
2690    //  - the type-id in the default argument of a type-parameter, or
2691    //  - the type-id of a template-argument for a type-parameter
2692    if (IsQualifiedFunction &&
2693        !(!FreeFunction &&
2694          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
2695        !IsTypedefName &&
2696        D.getContext() != Declarator::TemplateTypeArgContext) {
2697      SourceLocation Loc = D.getLocStart();
2698      SourceRange RemovalRange;
2699      unsigned I;
2700      if (D.isFunctionDeclarator(I)) {
2701        SmallVector<SourceLocation, 4> RemovalLocs;
2702        const DeclaratorChunk &Chunk = D.getTypeObject(I);
2703        assert(Chunk.Kind == DeclaratorChunk::Function);
2704        if (Chunk.Fun.hasRefQualifier())
2705          RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
2706        if (Chunk.Fun.TypeQuals & Qualifiers::Const)
2707          RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
2708        if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
2709          RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
2710        // FIXME: We do not track the location of the __restrict qualifier.
2711        //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
2712        //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
2713        if (!RemovalLocs.empty()) {
2714          std::sort(RemovalLocs.begin(), RemovalLocs.end(),
2715                    BeforeThanCompare<SourceLocation>(S.getSourceManager()));
2716          RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
2717          Loc = RemovalLocs.front();
2718        }
2719      }
2720
2721      S.Diag(Loc, diag::err_invalid_qualified_function_type)
2722        << FreeFunction << D.isFunctionDeclarator() << T
2723        << getFunctionQualifiersAsString(FnTy)
2724        << FixItHint::CreateRemoval(RemovalRange);
2725
2726      // Strip the cv-qualifiers and ref-qualifiers from the type.
2727      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2728      EPI.TypeQuals = 0;
2729      EPI.RefQualifier = RQ_None;
2730
2731      T = Context.getFunctionType(FnTy->getResultType(),
2732                                  FnTy->arg_type_begin(),
2733                                  FnTy->getNumArgs(), EPI);
2734    }
2735  }
2736
2737  // Apply any undistributed attributes from the declarator.
2738  if (!T.isNull())
2739    if (AttributeList *attrs = D.getAttributes())
2740      processTypeAttrs(state, T, false, attrs);
2741
2742  // Diagnose any ignored type attributes.
2743  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
2744
2745  // C++0x [dcl.constexpr]p9:
2746  //  A constexpr specifier used in an object declaration declares the object
2747  //  as const.
2748  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
2749    T.addConst();
2750  }
2751
2752  // If there was an ellipsis in the declarator, the declaration declares a
2753  // parameter pack whose type may be a pack expansion type.
2754  if (D.hasEllipsis() && !T.isNull()) {
2755    // C++0x [dcl.fct]p13:
2756    //   A declarator-id or abstract-declarator containing an ellipsis shall
2757    //   only be used in a parameter-declaration. Such a parameter-declaration
2758    //   is a parameter pack (14.5.3). [...]
2759    switch (D.getContext()) {
2760    case Declarator::PrototypeContext:
2761      // C++0x [dcl.fct]p13:
2762      //   [...] When it is part of a parameter-declaration-clause, the
2763      //   parameter pack is a function parameter pack (14.5.3). The type T
2764      //   of the declarator-id of the function parameter pack shall contain
2765      //   a template parameter pack; each template parameter pack in T is
2766      //   expanded by the function parameter pack.
2767      //
2768      // We represent function parameter packs as function parameters whose
2769      // type is a pack expansion.
2770      if (!T->containsUnexpandedParameterPack()) {
2771        S.Diag(D.getEllipsisLoc(),
2772             diag::err_function_parameter_pack_without_parameter_packs)
2773          << T <<  D.getSourceRange();
2774        D.setEllipsisLoc(SourceLocation());
2775      } else {
2776        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2777      }
2778      break;
2779
2780    case Declarator::TemplateParamContext:
2781      // C++0x [temp.param]p15:
2782      //   If a template-parameter is a [...] is a parameter-declaration that
2783      //   declares a parameter pack (8.3.5), then the template-parameter is a
2784      //   template parameter pack (14.5.3).
2785      //
2786      // Note: core issue 778 clarifies that, if there are any unexpanded
2787      // parameter packs in the type of the non-type template parameter, then
2788      // it expands those parameter packs.
2789      if (T->containsUnexpandedParameterPack())
2790        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2791      else
2792        S.Diag(D.getEllipsisLoc(),
2793               LangOpts.CPlusPlus0x
2794                 ? diag::warn_cxx98_compat_variadic_templates
2795                 : diag::ext_variadic_templates);
2796      break;
2797
2798    case Declarator::FileContext:
2799    case Declarator::KNRTypeListContext:
2800    case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
2801    case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
2802    case Declarator::TypeNameContext:
2803    case Declarator::CXXNewContext:
2804    case Declarator::AliasDeclContext:
2805    case Declarator::AliasTemplateContext:
2806    case Declarator::MemberContext:
2807    case Declarator::BlockContext:
2808    case Declarator::ForContext:
2809    case Declarator::ConditionContext:
2810    case Declarator::CXXCatchContext:
2811    case Declarator::ObjCCatchContext:
2812    case Declarator::BlockLiteralContext:
2813    case Declarator::LambdaExprContext:
2814    case Declarator::TrailingReturnContext:
2815    case Declarator::TemplateTypeArgContext:
2816      // FIXME: We may want to allow parameter packs in block-literal contexts
2817      // in the future.
2818      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
2819      D.setEllipsisLoc(SourceLocation());
2820      break;
2821    }
2822  }
2823
2824  if (T.isNull())
2825    return Context.getNullTypeSourceInfo();
2826  else if (D.isInvalidType())
2827    return Context.getTrivialTypeSourceInfo(T);
2828
2829  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
2830}
2831
2832/// GetTypeForDeclarator - Convert the type for the specified
2833/// declarator to Type instances.
2834///
2835/// The result of this call will never be null, but the associated
2836/// type may be a null type if there's an unrecoverable error.
2837TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
2838  // Determine the type of the declarator. Not all forms of declarator
2839  // have a type.
2840
2841  TypeProcessingState state(*this, D);
2842
2843  TypeSourceInfo *ReturnTypeInfo = 0;
2844  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2845  if (T.isNull())
2846    return Context.getNullTypeSourceInfo();
2847
2848  if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
2849    inferARCWriteback(state, T);
2850
2851  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
2852}
2853
2854static void transferARCOwnershipToDeclSpec(Sema &S,
2855                                           QualType &declSpecTy,
2856                                           Qualifiers::ObjCLifetime ownership) {
2857  if (declSpecTy->isObjCRetainableType() &&
2858      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
2859    Qualifiers qs;
2860    qs.addObjCLifetime(ownership);
2861    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
2862  }
2863}
2864
2865static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2866                                            Qualifiers::ObjCLifetime ownership,
2867                                            unsigned chunkIndex) {
2868  Sema &S = state.getSema();
2869  Declarator &D = state.getDeclarator();
2870
2871  // Look for an explicit lifetime attribute.
2872  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
2873  for (const AttributeList *attr = chunk.getAttrs(); attr;
2874         attr = attr->getNext())
2875    if (attr->getKind() == AttributeList::AT_ObjCOwnership)
2876      return;
2877
2878  const char *attrStr = 0;
2879  switch (ownership) {
2880  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
2881  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
2882  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
2883  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
2884  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
2885  }
2886
2887  // If there wasn't one, add one (with an invalid source location
2888  // so that we don't make an AttributedType for it).
2889  AttributeList *attr = D.getAttributePool()
2890    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
2891            /*scope*/ 0, SourceLocation(),
2892            &S.Context.Idents.get(attrStr), SourceLocation(),
2893            /*args*/ 0, 0, AttributeList::AS_GNU);
2894  spliceAttrIntoList(*attr, chunk.getAttrListRef());
2895
2896  // TODO: mark whether we did this inference?
2897}
2898
2899/// \brief Used for transferring ownership in casts resulting in l-values.
2900static void transferARCOwnership(TypeProcessingState &state,
2901                                 QualType &declSpecTy,
2902                                 Qualifiers::ObjCLifetime ownership) {
2903  Sema &S = state.getSema();
2904  Declarator &D = state.getDeclarator();
2905
2906  int inner = -1;
2907  bool hasIndirection = false;
2908  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2909    DeclaratorChunk &chunk = D.getTypeObject(i);
2910    switch (chunk.Kind) {
2911    case DeclaratorChunk::Paren:
2912      // Ignore parens.
2913      break;
2914
2915    case DeclaratorChunk::Array:
2916    case DeclaratorChunk::Reference:
2917    case DeclaratorChunk::Pointer:
2918      if (inner != -1)
2919        hasIndirection = true;
2920      inner = i;
2921      break;
2922
2923    case DeclaratorChunk::BlockPointer:
2924      if (inner != -1)
2925        transferARCOwnershipToDeclaratorChunk(state, ownership, i);
2926      return;
2927
2928    case DeclaratorChunk::Function:
2929    case DeclaratorChunk::MemberPointer:
2930      return;
2931    }
2932  }
2933
2934  if (inner == -1)
2935    return;
2936
2937  DeclaratorChunk &chunk = D.getTypeObject(inner);
2938  if (chunk.Kind == DeclaratorChunk::Pointer) {
2939    if (declSpecTy->isObjCRetainableType())
2940      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2941    if (declSpecTy->isObjCObjectType() && hasIndirection)
2942      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
2943  } else {
2944    assert(chunk.Kind == DeclaratorChunk::Array ||
2945           chunk.Kind == DeclaratorChunk::Reference);
2946    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2947  }
2948}
2949
2950TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
2951  TypeProcessingState state(*this, D);
2952
2953  TypeSourceInfo *ReturnTypeInfo = 0;
2954  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2955  if (declSpecTy.isNull())
2956    return Context.getNullTypeSourceInfo();
2957
2958  if (getLangOpts().ObjCAutoRefCount) {
2959    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
2960    if (ownership != Qualifiers::OCL_None)
2961      transferARCOwnership(state, declSpecTy, ownership);
2962  }
2963
2964  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
2965}
2966
2967/// Map an AttributedType::Kind to an AttributeList::Kind.
2968static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
2969  switch (kind) {
2970  case AttributedType::attr_address_space:
2971    return AttributeList::AT_AddressSpace;
2972  case AttributedType::attr_regparm:
2973    return AttributeList::AT_Regparm;
2974  case AttributedType::attr_vector_size:
2975    return AttributeList::AT_VectorSize;
2976  case AttributedType::attr_neon_vector_type:
2977    return AttributeList::AT_NeonVectorType;
2978  case AttributedType::attr_neon_polyvector_type:
2979    return AttributeList::AT_NeonPolyVectorType;
2980  case AttributedType::attr_objc_gc:
2981    return AttributeList::AT_ObjCGC;
2982  case AttributedType::attr_objc_ownership:
2983    return AttributeList::AT_ObjCOwnership;
2984  case AttributedType::attr_noreturn:
2985    return AttributeList::AT_NoReturn;
2986  case AttributedType::attr_cdecl:
2987    return AttributeList::AT_CDecl;
2988  case AttributedType::attr_fastcall:
2989    return AttributeList::AT_FastCall;
2990  case AttributedType::attr_stdcall:
2991    return AttributeList::AT_StdCall;
2992  case AttributedType::attr_thiscall:
2993    return AttributeList::AT_ThisCall;
2994  case AttributedType::attr_pascal:
2995    return AttributeList::AT_Pascal;
2996  case AttributedType::attr_pcs:
2997    return AttributeList::AT_Pcs;
2998  }
2999  llvm_unreachable("unexpected attribute kind!");
3000}
3001
3002static void fillAttributedTypeLoc(AttributedTypeLoc TL,
3003                                  const AttributeList *attrs) {
3004  AttributedType::Kind kind = TL.getAttrKind();
3005
3006  assert(attrs && "no type attributes in the expected location!");
3007  AttributeList::Kind parsedKind = getAttrListKind(kind);
3008  while (attrs->getKind() != parsedKind) {
3009    attrs = attrs->getNext();
3010    assert(attrs && "no matching attribute in expected location!");
3011  }
3012
3013  TL.setAttrNameLoc(attrs->getLoc());
3014  if (TL.hasAttrExprOperand())
3015    TL.setAttrExprOperand(attrs->getArg(0));
3016  else if (TL.hasAttrEnumOperand())
3017    TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
3018
3019  // FIXME: preserve this information to here.
3020  if (TL.hasAttrOperand())
3021    TL.setAttrOperandParensRange(SourceRange());
3022}
3023
3024namespace {
3025  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
3026    ASTContext &Context;
3027    const DeclSpec &DS;
3028
3029  public:
3030    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
3031      : Context(Context), DS(DS) {}
3032
3033    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3034      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
3035      Visit(TL.getModifiedLoc());
3036    }
3037    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3038      Visit(TL.getUnqualifiedLoc());
3039    }
3040    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
3041      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3042    }
3043    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
3044      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3045      // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
3046      // addition field. What we have is good enough for dispay of location
3047      // of 'fixit' on interface name.
3048      TL.setNameEndLoc(DS.getLocEnd());
3049    }
3050    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
3051      // Handle the base type, which might not have been written explicitly.
3052      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
3053        TL.setHasBaseTypeAsWritten(false);
3054        TL.getBaseLoc().initialize(Context, SourceLocation());
3055      } else {
3056        TL.setHasBaseTypeAsWritten(true);
3057        Visit(TL.getBaseLoc());
3058      }
3059
3060      // Protocol qualifiers.
3061      if (DS.getProtocolQualifiers()) {
3062        assert(TL.getNumProtocols() > 0);
3063        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
3064        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
3065        TL.setRAngleLoc(DS.getSourceRange().getEnd());
3066        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
3067          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
3068      } else {
3069        assert(TL.getNumProtocols() == 0);
3070        TL.setLAngleLoc(SourceLocation());
3071        TL.setRAngleLoc(SourceLocation());
3072      }
3073    }
3074    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3075      TL.setStarLoc(SourceLocation());
3076      Visit(TL.getPointeeLoc());
3077    }
3078    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
3079      TypeSourceInfo *TInfo = 0;
3080      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3081
3082      // If we got no declarator info from previous Sema routines,
3083      // just fill with the typespec loc.
3084      if (!TInfo) {
3085        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
3086        return;
3087      }
3088
3089      TypeLoc OldTL = TInfo->getTypeLoc();
3090      if (TInfo->getType()->getAs<ElaboratedType>()) {
3091        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
3092        TemplateSpecializationTypeLoc NamedTL =
3093          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
3094        TL.copy(NamedTL);
3095      }
3096      else
3097        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
3098    }
3099    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
3100      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
3101      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3102      TL.setParensRange(DS.getTypeofParensRange());
3103    }
3104    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
3105      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
3106      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3107      TL.setParensRange(DS.getTypeofParensRange());
3108      assert(DS.getRepAsType());
3109      TypeSourceInfo *TInfo = 0;
3110      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3111      TL.setUnderlyingTInfo(TInfo);
3112    }
3113    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
3114      // FIXME: This holds only because we only have one unary transform.
3115      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
3116      TL.setKWLoc(DS.getTypeSpecTypeLoc());
3117      TL.setParensRange(DS.getTypeofParensRange());
3118      assert(DS.getRepAsType());
3119      TypeSourceInfo *TInfo = 0;
3120      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3121      TL.setUnderlyingTInfo(TInfo);
3122    }
3123    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
3124      // By default, use the source location of the type specifier.
3125      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
3126      if (TL.needsExtraLocalData()) {
3127        // Set info for the written builtin specifiers.
3128        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
3129        // Try to have a meaningful source location.
3130        if (TL.getWrittenSignSpec() != TSS_unspecified)
3131          // Sign spec loc overrides the others (e.g., 'unsigned long').
3132          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
3133        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
3134          // Width spec loc overrides type spec loc (e.g., 'short int').
3135          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
3136      }
3137    }
3138    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
3139      ElaboratedTypeKeyword Keyword
3140        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
3141      if (DS.getTypeSpecType() == TST_typename) {
3142        TypeSourceInfo *TInfo = 0;
3143        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3144        if (TInfo) {
3145          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
3146          return;
3147        }
3148      }
3149      TL.setElaboratedKeywordLoc(Keyword != ETK_None
3150                                 ? DS.getTypeSpecTypeLoc()
3151                                 : SourceLocation());
3152      const CXXScopeSpec& SS = DS.getTypeSpecScope();
3153      TL.setQualifierLoc(SS.getWithLocInContext(Context));
3154      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
3155    }
3156    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
3157      assert(DS.getTypeSpecType() == TST_typename);
3158      TypeSourceInfo *TInfo = 0;
3159      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3160      assert(TInfo);
3161      TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
3162    }
3163    void VisitDependentTemplateSpecializationTypeLoc(
3164                                 DependentTemplateSpecializationTypeLoc TL) {
3165      assert(DS.getTypeSpecType() == TST_typename);
3166      TypeSourceInfo *TInfo = 0;
3167      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3168      assert(TInfo);
3169      TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
3170                TInfo->getTypeLoc()));
3171    }
3172    void VisitTagTypeLoc(TagTypeLoc TL) {
3173      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
3174    }
3175    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
3176      TL.setKWLoc(DS.getTypeSpecTypeLoc());
3177      TL.setParensRange(DS.getTypeofParensRange());
3178
3179      TypeSourceInfo *TInfo = 0;
3180      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3181      TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
3182    }
3183
3184    void VisitTypeLoc(TypeLoc TL) {
3185      // FIXME: add other typespec types and change this to an assert.
3186      TL.initialize(Context, DS.getTypeSpecTypeLoc());
3187    }
3188  };
3189
3190  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
3191    ASTContext &Context;
3192    const DeclaratorChunk &Chunk;
3193
3194  public:
3195    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
3196      : Context(Context), Chunk(Chunk) {}
3197
3198    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3199      llvm_unreachable("qualified type locs not expected here!");
3200    }
3201
3202    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3203      fillAttributedTypeLoc(TL, Chunk.getAttrs());
3204    }
3205    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
3206      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3207      TL.setCaretLoc(Chunk.Loc);
3208    }
3209    void VisitPointerTypeLoc(PointerTypeLoc TL) {
3210      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3211      TL.setStarLoc(Chunk.Loc);
3212    }
3213    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3214      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3215      TL.setStarLoc(Chunk.Loc);
3216    }
3217    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3218      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3219      const CXXScopeSpec& SS = Chunk.Mem.Scope();
3220      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3221
3222      const Type* ClsTy = TL.getClass();
3223      QualType ClsQT = QualType(ClsTy, 0);
3224      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3225      // Now copy source location info into the type loc component.
3226      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3227      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3228      case NestedNameSpecifier::Identifier:
3229        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3230        {
3231          DependentNameTypeLoc DNTLoc = cast<DependentNameTypeLoc>(ClsTL);
3232          DNTLoc.setElaboratedKeywordLoc(SourceLocation());
3233          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3234          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3235        }
3236        break;
3237
3238      case NestedNameSpecifier::TypeSpec:
3239      case NestedNameSpecifier::TypeSpecWithTemplate:
3240        if (isa<ElaboratedType>(ClsTy)) {
3241          ElaboratedTypeLoc ETLoc = *cast<ElaboratedTypeLoc>(&ClsTL);
3242          ETLoc.setElaboratedKeywordLoc(SourceLocation());
3243          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3244          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3245          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3246        } else {
3247          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3248        }
3249        break;
3250
3251      case NestedNameSpecifier::Namespace:
3252      case NestedNameSpecifier::NamespaceAlias:
3253      case NestedNameSpecifier::Global:
3254        llvm_unreachable("Nested-name-specifier must name a type");
3255      }
3256
3257      // Finally fill in MemberPointerLocInfo fields.
3258      TL.setStarLoc(Chunk.Loc);
3259      TL.setClassTInfo(ClsTInfo);
3260    }
3261    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3262      assert(Chunk.Kind == DeclaratorChunk::Reference);
3263      // 'Amp' is misleading: this might have been originally
3264      /// spelled with AmpAmp.
3265      TL.setAmpLoc(Chunk.Loc);
3266    }
3267    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3268      assert(Chunk.Kind == DeclaratorChunk::Reference);
3269      assert(!Chunk.Ref.LValueRef);
3270      TL.setAmpAmpLoc(Chunk.Loc);
3271    }
3272    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3273      assert(Chunk.Kind == DeclaratorChunk::Array);
3274      TL.setLBracketLoc(Chunk.Loc);
3275      TL.setRBracketLoc(Chunk.EndLoc);
3276      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3277    }
3278    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3279      assert(Chunk.Kind == DeclaratorChunk::Function);
3280      TL.setLocalRangeBegin(Chunk.Loc);
3281      TL.setLocalRangeEnd(Chunk.EndLoc);
3282
3283      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3284      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
3285        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3286        TL.setArg(tpi++, Param);
3287      }
3288      // FIXME: exception specs
3289    }
3290    void VisitParenTypeLoc(ParenTypeLoc TL) {
3291      assert(Chunk.Kind == DeclaratorChunk::Paren);
3292      TL.setLParenLoc(Chunk.Loc);
3293      TL.setRParenLoc(Chunk.EndLoc);
3294    }
3295
3296    void VisitTypeLoc(TypeLoc TL) {
3297      llvm_unreachable("unsupported TypeLoc kind in declarator!");
3298    }
3299  };
3300}
3301
3302/// \brief Create and instantiate a TypeSourceInfo with type source information.
3303///
3304/// \param T QualType referring to the type as written in source code.
3305///
3306/// \param ReturnTypeInfo For declarators whose return type does not show
3307/// up in the normal place in the declaration specifiers (such as a C++
3308/// conversion function), this pointer will refer to a type source information
3309/// for that return type.
3310TypeSourceInfo *
3311Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3312                                     TypeSourceInfo *ReturnTypeInfo) {
3313  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3314  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3315
3316  // Handle parameter packs whose type is a pack expansion.
3317  if (isa<PackExpansionType>(T)) {
3318    cast<PackExpansionTypeLoc>(CurrTL).setEllipsisLoc(D.getEllipsisLoc());
3319    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3320  }
3321
3322  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3323    while (isa<AttributedTypeLoc>(CurrTL)) {
3324      AttributedTypeLoc TL = cast<AttributedTypeLoc>(CurrTL);
3325      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3326      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3327    }
3328
3329    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3330    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3331  }
3332
3333  // If we have different source information for the return type, use
3334  // that.  This really only applies to C++ conversion functions.
3335  if (ReturnTypeInfo) {
3336    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3337    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3338    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3339  } else {
3340    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3341  }
3342
3343  return TInfo;
3344}
3345
3346/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3347ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3348  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3349  // and Sema during declaration parsing. Try deallocating/caching them when
3350  // it's appropriate, instead of allocating them and keeping them around.
3351  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3352                                                       TypeAlignment);
3353  new (LocT) LocInfoType(T, TInfo);
3354  assert(LocT->getTypeClass() != T->getTypeClass() &&
3355         "LocInfoType's TypeClass conflicts with an existing Type class");
3356  return ParsedType::make(QualType(LocT, 0));
3357}
3358
3359void LocInfoType::getAsStringInternal(std::string &Str,
3360                                      const PrintingPolicy &Policy) const {
3361  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3362         " was used directly instead of getting the QualType through"
3363         " GetTypeFromParser");
3364}
3365
3366TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3367  // C99 6.7.6: Type names have no identifier.  This is already validated by
3368  // the parser.
3369  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3370
3371  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3372  QualType T = TInfo->getType();
3373  if (D.isInvalidType())
3374    return true;
3375
3376  // Make sure there are no unused decl attributes on the declarator.
3377  // We don't want to do this for ObjC parameters because we're going
3378  // to apply them to the actual parameter declaration.
3379  if (D.getContext() != Declarator::ObjCParameterContext)
3380    checkUnusedDeclAttributes(D);
3381
3382  if (getLangOpts().CPlusPlus) {
3383    // Check that there are no default arguments (C++ only).
3384    CheckExtraCXXDefaultArguments(D);
3385  }
3386
3387  return CreateParsedType(T, TInfo);
3388}
3389
3390ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3391  QualType T = Context.getObjCInstanceType();
3392  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3393  return CreateParsedType(T, TInfo);
3394}
3395
3396
3397//===----------------------------------------------------------------------===//
3398// Type Attribute Processing
3399//===----------------------------------------------------------------------===//
3400
3401/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3402/// specified type.  The attribute contains 1 argument, the id of the address
3403/// space for the type.
3404static void HandleAddressSpaceTypeAttribute(QualType &Type,
3405                                            const AttributeList &Attr, Sema &S){
3406
3407  // If this type is already address space qualified, reject it.
3408  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3409  // qualifiers for two or more different address spaces."
3410  if (Type.getAddressSpace()) {
3411    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3412    Attr.setInvalid();
3413    return;
3414  }
3415
3416  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3417  // qualified by an address-space qualifier."
3418  if (Type->isFunctionType()) {
3419    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3420    Attr.setInvalid();
3421    return;
3422  }
3423
3424  // Check the attribute arguments.
3425  if (Attr.getNumArgs() != 1) {
3426    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3427    Attr.setInvalid();
3428    return;
3429  }
3430  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
3431  llvm::APSInt addrSpace(32);
3432  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3433      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3434    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
3435      << ASArgExpr->getSourceRange();
3436    Attr.setInvalid();
3437    return;
3438  }
3439
3440  // Bounds checking.
3441  if (addrSpace.isSigned()) {
3442    if (addrSpace.isNegative()) {
3443      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3444        << ASArgExpr->getSourceRange();
3445      Attr.setInvalid();
3446      return;
3447    }
3448    addrSpace.setIsSigned(false);
3449  }
3450  llvm::APSInt max(addrSpace.getBitWidth());
3451  max = Qualifiers::MaxAddressSpace;
3452  if (addrSpace > max) {
3453    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3454      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
3455    Attr.setInvalid();
3456    return;
3457  }
3458
3459  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3460  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3461}
3462
3463/// Does this type have a "direct" ownership qualifier?  That is,
3464/// is it written like "__strong id", as opposed to something like
3465/// "typeof(foo)", where that happens to be strong?
3466static bool hasDirectOwnershipQualifier(QualType type) {
3467  // Fast path: no qualifier at all.
3468  assert(type.getQualifiers().hasObjCLifetime());
3469
3470  while (true) {
3471    // __strong id
3472    if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
3473      if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
3474        return true;
3475
3476      type = attr->getModifiedType();
3477
3478    // X *__strong (...)
3479    } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
3480      type = paren->getInnerType();
3481
3482    // That's it for things we want to complain about.  In particular,
3483    // we do not want to look through typedefs, typeof(expr),
3484    // typeof(type), or any other way that the type is somehow
3485    // abstracted.
3486    } else {
3487
3488      return false;
3489    }
3490  }
3491}
3492
3493/// handleObjCOwnershipTypeAttr - Process an objc_ownership
3494/// attribute on the specified type.
3495///
3496/// Returns 'true' if the attribute was handled.
3497static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
3498                                       AttributeList &attr,
3499                                       QualType &type) {
3500  bool NonObjCPointer = false;
3501
3502  if (!type->isDependentType()) {
3503    if (const PointerType *ptr = type->getAs<PointerType>()) {
3504      QualType pointee = ptr->getPointeeType();
3505      if (pointee->isObjCRetainableType() || pointee->isPointerType())
3506        return false;
3507      // It is important not to lose the source info that there was an attribute
3508      // applied to non-objc pointer. We will create an attributed type but
3509      // its type will be the same as the original type.
3510      NonObjCPointer = true;
3511    } else if (!type->isObjCRetainableType()) {
3512      return false;
3513    }
3514  }
3515
3516  Sema &S = state.getSema();
3517  SourceLocation AttrLoc = attr.getLoc();
3518  if (AttrLoc.isMacroID())
3519    AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
3520
3521  if (!attr.getParameterName()) {
3522    S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
3523      << "objc_ownership" << 1;
3524    attr.setInvalid();
3525    return true;
3526  }
3527
3528  // Consume lifetime attributes without further comment outside of
3529  // ARC mode.
3530  if (!S.getLangOpts().ObjCAutoRefCount)
3531    return true;
3532
3533  Qualifiers::ObjCLifetime lifetime;
3534  if (attr.getParameterName()->isStr("none"))
3535    lifetime = Qualifiers::OCL_ExplicitNone;
3536  else if (attr.getParameterName()->isStr("strong"))
3537    lifetime = Qualifiers::OCL_Strong;
3538  else if (attr.getParameterName()->isStr("weak"))
3539    lifetime = Qualifiers::OCL_Weak;
3540  else if (attr.getParameterName()->isStr("autoreleasing"))
3541    lifetime = Qualifiers::OCL_Autoreleasing;
3542  else {
3543    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
3544      << "objc_ownership" << attr.getParameterName();
3545    attr.setInvalid();
3546    return true;
3547  }
3548
3549  SplitQualType underlyingType = type.split();
3550
3551  // Check for redundant/conflicting ownership qualifiers.
3552  if (Qualifiers::ObjCLifetime previousLifetime
3553        = type.getQualifiers().getObjCLifetime()) {
3554    // If it's written directly, that's an error.
3555    if (hasDirectOwnershipQualifier(type)) {
3556      S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
3557        << type;
3558      return true;
3559    }
3560
3561    // Otherwise, if the qualifiers actually conflict, pull sugar off
3562    // until we reach a type that is directly qualified.
3563    if (previousLifetime != lifetime) {
3564      // This should always terminate: the canonical type is
3565      // qualified, so some bit of sugar must be hiding it.
3566      while (!underlyingType.Quals.hasObjCLifetime()) {
3567        underlyingType = underlyingType.getSingleStepDesugaredType();
3568      }
3569      underlyingType.Quals.removeObjCLifetime();
3570    }
3571  }
3572
3573  underlyingType.Quals.addObjCLifetime(lifetime);
3574
3575  if (NonObjCPointer) {
3576    StringRef name = attr.getName()->getName();
3577    switch (lifetime) {
3578    case Qualifiers::OCL_None:
3579    case Qualifiers::OCL_ExplicitNone:
3580      break;
3581    case Qualifiers::OCL_Strong: name = "__strong"; break;
3582    case Qualifiers::OCL_Weak: name = "__weak"; break;
3583    case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
3584    }
3585    S.Diag(AttrLoc, diag::warn_objc_object_attribute_wrong_type)
3586      << name << type;
3587  }
3588
3589  QualType origType = type;
3590  if (!NonObjCPointer)
3591    type = S.Context.getQualifiedType(underlyingType);
3592
3593  // If we have a valid source location for the attribute, use an
3594  // AttributedType instead.
3595  if (AttrLoc.isValid())
3596    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
3597                                       origType, type);
3598
3599  // Forbid __weak if the runtime doesn't support it.
3600  if (lifetime == Qualifiers::OCL_Weak &&
3601      !S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {
3602
3603    // Actually, delay this until we know what we're parsing.
3604    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
3605      S.DelayedDiagnostics.add(
3606          sema::DelayedDiagnostic::makeForbiddenType(
3607              S.getSourceManager().getExpansionLoc(AttrLoc),
3608              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
3609    } else {
3610      S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
3611    }
3612
3613    attr.setInvalid();
3614    return true;
3615  }
3616
3617  // Forbid __weak for class objects marked as
3618  // objc_arc_weak_reference_unavailable
3619  if (lifetime == Qualifiers::OCL_Weak) {
3620    QualType T = type;
3621    while (const PointerType *ptr = T->getAs<PointerType>())
3622      T = ptr->getPointeeType();
3623    if (const ObjCObjectPointerType *ObjT = T->getAs<ObjCObjectPointerType>()) {
3624      if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
3625        if (Class->isArcWeakrefUnavailable()) {
3626            S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
3627            S.Diag(ObjT->getInterfaceDecl()->getLocation(),
3628                   diag::note_class_declared);
3629        }
3630      }
3631    }
3632  }
3633
3634  return true;
3635}
3636
3637/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
3638/// attribute on the specified type.  Returns true to indicate that
3639/// the attribute was handled, false to indicate that the type does
3640/// not permit the attribute.
3641static bool handleObjCGCTypeAttr(TypeProcessingState &state,
3642                                 AttributeList &attr,
3643                                 QualType &type) {
3644  Sema &S = state.getSema();
3645
3646  // Delay if this isn't some kind of pointer.
3647  if (!type->isPointerType() &&
3648      !type->isObjCObjectPointerType() &&
3649      !type->isBlockPointerType())
3650    return false;
3651
3652  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
3653    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
3654    attr.setInvalid();
3655    return true;
3656  }
3657
3658  // Check the attribute arguments.
3659  if (!attr.getParameterName()) {
3660    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3661      << "objc_gc" << 1;
3662    attr.setInvalid();
3663    return true;
3664  }
3665  Qualifiers::GC GCAttr;
3666  if (attr.getNumArgs() != 0) {
3667    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3668    attr.setInvalid();
3669    return true;
3670  }
3671  if (attr.getParameterName()->isStr("weak"))
3672    GCAttr = Qualifiers::Weak;
3673  else if (attr.getParameterName()->isStr("strong"))
3674    GCAttr = Qualifiers::Strong;
3675  else {
3676    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3677      << "objc_gc" << attr.getParameterName();
3678    attr.setInvalid();
3679    return true;
3680  }
3681
3682  QualType origType = type;
3683  type = S.Context.getObjCGCQualType(origType, GCAttr);
3684
3685  // Make an attributed type to preserve the source information.
3686  if (attr.getLoc().isValid())
3687    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
3688                                       origType, type);
3689
3690  return true;
3691}
3692
3693namespace {
3694  /// A helper class to unwrap a type down to a function for the
3695  /// purposes of applying attributes there.
3696  ///
3697  /// Use:
3698  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
3699  ///   if (unwrapped.isFunctionType()) {
3700  ///     const FunctionType *fn = unwrapped.get();
3701  ///     // change fn somehow
3702  ///     T = unwrapped.wrap(fn);
3703  ///   }
3704  struct FunctionTypeUnwrapper {
3705    enum WrapKind {
3706      Desugar,
3707      Parens,
3708      Pointer,
3709      BlockPointer,
3710      Reference,
3711      MemberPointer
3712    };
3713
3714    QualType Original;
3715    const FunctionType *Fn;
3716    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
3717
3718    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
3719      while (true) {
3720        const Type *Ty = T.getTypePtr();
3721        if (isa<FunctionType>(Ty)) {
3722          Fn = cast<FunctionType>(Ty);
3723          return;
3724        } else if (isa<ParenType>(Ty)) {
3725          T = cast<ParenType>(Ty)->getInnerType();
3726          Stack.push_back(Parens);
3727        } else if (isa<PointerType>(Ty)) {
3728          T = cast<PointerType>(Ty)->getPointeeType();
3729          Stack.push_back(Pointer);
3730        } else if (isa<BlockPointerType>(Ty)) {
3731          T = cast<BlockPointerType>(Ty)->getPointeeType();
3732          Stack.push_back(BlockPointer);
3733        } else if (isa<MemberPointerType>(Ty)) {
3734          T = cast<MemberPointerType>(Ty)->getPointeeType();
3735          Stack.push_back(MemberPointer);
3736        } else if (isa<ReferenceType>(Ty)) {
3737          T = cast<ReferenceType>(Ty)->getPointeeType();
3738          Stack.push_back(Reference);
3739        } else {
3740          const Type *DTy = Ty->getUnqualifiedDesugaredType();
3741          if (Ty == DTy) {
3742            Fn = 0;
3743            return;
3744          }
3745
3746          T = QualType(DTy, 0);
3747          Stack.push_back(Desugar);
3748        }
3749      }
3750    }
3751
3752    bool isFunctionType() const { return (Fn != 0); }
3753    const FunctionType *get() const { return Fn; }
3754
3755    QualType wrap(Sema &S, const FunctionType *New) {
3756      // If T wasn't modified from the unwrapped type, do nothing.
3757      if (New == get()) return Original;
3758
3759      Fn = New;
3760      return wrap(S.Context, Original, 0);
3761    }
3762
3763  private:
3764    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
3765      if (I == Stack.size())
3766        return C.getQualifiedType(Fn, Old.getQualifiers());
3767
3768      // Build up the inner type, applying the qualifiers from the old
3769      // type to the new type.
3770      SplitQualType SplitOld = Old.split();
3771
3772      // As a special case, tail-recurse if there are no qualifiers.
3773      if (SplitOld.Quals.empty())
3774        return wrap(C, SplitOld.Ty, I);
3775      return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
3776    }
3777
3778    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
3779      if (I == Stack.size()) return QualType(Fn, 0);
3780
3781      switch (static_cast<WrapKind>(Stack[I++])) {
3782      case Desugar:
3783        // This is the point at which we potentially lose source
3784        // information.
3785        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
3786
3787      case Parens: {
3788        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
3789        return C.getParenType(New);
3790      }
3791
3792      case Pointer: {
3793        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
3794        return C.getPointerType(New);
3795      }
3796
3797      case BlockPointer: {
3798        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
3799        return C.getBlockPointerType(New);
3800      }
3801
3802      case MemberPointer: {
3803        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
3804        QualType New = wrap(C, OldMPT->getPointeeType(), I);
3805        return C.getMemberPointerType(New, OldMPT->getClass());
3806      }
3807
3808      case Reference: {
3809        const ReferenceType *OldRef = cast<ReferenceType>(Old);
3810        QualType New = wrap(C, OldRef->getPointeeType(), I);
3811        if (isa<LValueReferenceType>(OldRef))
3812          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
3813        else
3814          return C.getRValueReferenceType(New);
3815      }
3816      }
3817
3818      llvm_unreachable("unknown wrapping kind");
3819    }
3820  };
3821}
3822
3823/// Process an individual function attribute.  Returns true to
3824/// indicate that the attribute was handled, false if it wasn't.
3825static bool handleFunctionTypeAttr(TypeProcessingState &state,
3826                                   AttributeList &attr,
3827                                   QualType &type) {
3828  Sema &S = state.getSema();
3829
3830  FunctionTypeUnwrapper unwrapped(S, type);
3831
3832  if (attr.getKind() == AttributeList::AT_NoReturn) {
3833    if (S.CheckNoReturnAttr(attr))
3834      return true;
3835
3836    // Delay if this is not a function type.
3837    if (!unwrapped.isFunctionType())
3838      return false;
3839
3840    // Otherwise we can process right away.
3841    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
3842    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3843    return true;
3844  }
3845
3846  // ns_returns_retained is not always a type attribute, but if we got
3847  // here, we're treating it as one right now.
3848  if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
3849    assert(S.getLangOpts().ObjCAutoRefCount &&
3850           "ns_returns_retained treated as type attribute in non-ARC");
3851    if (attr.getNumArgs()) return true;
3852
3853    // Delay if this is not a function type.
3854    if (!unwrapped.isFunctionType())
3855      return false;
3856
3857    FunctionType::ExtInfo EI
3858      = unwrapped.get()->getExtInfo().withProducesResult(true);
3859    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3860    return true;
3861  }
3862
3863  if (attr.getKind() == AttributeList::AT_Regparm) {
3864    unsigned value;
3865    if (S.CheckRegparmAttr(attr, value))
3866      return true;
3867
3868    // Delay if this is not a function type.
3869    if (!unwrapped.isFunctionType())
3870      return false;
3871
3872    // Diagnose regparm with fastcall.
3873    const FunctionType *fn = unwrapped.get();
3874    CallingConv CC = fn->getCallConv();
3875    if (CC == CC_X86FastCall) {
3876      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3877        << FunctionType::getNameForCallConv(CC)
3878        << "regparm";
3879      attr.setInvalid();
3880      return true;
3881    }
3882
3883    FunctionType::ExtInfo EI =
3884      unwrapped.get()->getExtInfo().withRegParm(value);
3885    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3886    return true;
3887  }
3888
3889  // Delay if the type didn't work out to a function.
3890  if (!unwrapped.isFunctionType()) return false;
3891
3892  // Otherwise, a calling convention.
3893  CallingConv CC;
3894  if (S.CheckCallingConvAttr(attr, CC))
3895    return true;
3896
3897  const FunctionType *fn = unwrapped.get();
3898  CallingConv CCOld = fn->getCallConv();
3899  if (S.Context.getCanonicalCallConv(CC) ==
3900      S.Context.getCanonicalCallConv(CCOld)) {
3901    FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
3902    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3903    return true;
3904  }
3905
3906  if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
3907    // Should we diagnose reapplications of the same convention?
3908    S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3909      << FunctionType::getNameForCallConv(CC)
3910      << FunctionType::getNameForCallConv(CCOld);
3911    attr.setInvalid();
3912    return true;
3913  }
3914
3915  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
3916  if (CC == CC_X86FastCall) {
3917    if (isa<FunctionNoProtoType>(fn)) {
3918      S.Diag(attr.getLoc(), diag::err_cconv_knr)
3919        << FunctionType::getNameForCallConv(CC);
3920      attr.setInvalid();
3921      return true;
3922    }
3923
3924    const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
3925    if (FnP->isVariadic()) {
3926      S.Diag(attr.getLoc(), diag::err_cconv_varargs)
3927        << FunctionType::getNameForCallConv(CC);
3928      attr.setInvalid();
3929      return true;
3930    }
3931
3932    // Also diagnose fastcall with regparm.
3933    if (fn->getHasRegParm()) {
3934      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3935        << "regparm"
3936        << FunctionType::getNameForCallConv(CC);
3937      attr.setInvalid();
3938      return true;
3939    }
3940  }
3941
3942  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
3943  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3944  return true;
3945}
3946
3947/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
3948static void HandleOpenCLImageAccessAttribute(QualType& CurType,
3949                                             const AttributeList &Attr,
3950                                             Sema &S) {
3951  // Check the attribute arguments.
3952  if (Attr.getNumArgs() != 1) {
3953    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3954    Attr.setInvalid();
3955    return;
3956  }
3957  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3958  llvm::APSInt arg(32);
3959  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3960      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
3961    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3962      << "opencl_image_access" << sizeExpr->getSourceRange();
3963    Attr.setInvalid();
3964    return;
3965  }
3966  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
3967  switch (iarg) {
3968  case CLIA_read_only:
3969  case CLIA_write_only:
3970  case CLIA_read_write:
3971    // Implemented in a separate patch
3972    break;
3973  default:
3974    // Implemented in a separate patch
3975    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3976      << sizeExpr->getSourceRange();
3977    Attr.setInvalid();
3978    break;
3979  }
3980}
3981
3982/// HandleVectorSizeAttribute - this attribute is only applicable to integral
3983/// and float scalars, although arrays, pointers, and function return values are
3984/// allowed in conjunction with this construct. Aggregates with this attribute
3985/// are invalid, even if they are of the same size as a corresponding scalar.
3986/// The raw attribute should contain precisely 1 argument, the vector size for
3987/// the variable, measured in bytes. If curType and rawAttr are well formed,
3988/// this routine will return a new vector type.
3989static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
3990                                 Sema &S) {
3991  // Check the attribute arguments.
3992  if (Attr.getNumArgs() != 1) {
3993    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3994    Attr.setInvalid();
3995    return;
3996  }
3997  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3998  llvm::APSInt vecSize(32);
3999  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
4000      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
4001    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4002      << "vector_size" << sizeExpr->getSourceRange();
4003    Attr.setInvalid();
4004    return;
4005  }
4006  // the base type must be integer or float, and can't already be a vector.
4007  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
4008    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
4009    Attr.setInvalid();
4010    return;
4011  }
4012  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4013  // vecSize is specified in bytes - convert to bits.
4014  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
4015
4016  // the vector size needs to be an integral multiple of the type size.
4017  if (vectorSize % typeSize) {
4018    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4019      << sizeExpr->getSourceRange();
4020    Attr.setInvalid();
4021    return;
4022  }
4023  if (vectorSize == 0) {
4024    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
4025      << sizeExpr->getSourceRange();
4026    Attr.setInvalid();
4027    return;
4028  }
4029
4030  // Success! Instantiate the vector type, the number of elements is > 0, and
4031  // not required to be a power of 2, unlike GCC.
4032  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
4033                                    VectorType::GenericVector);
4034}
4035
4036/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
4037/// a type.
4038static void HandleExtVectorTypeAttr(QualType &CurType,
4039                                    const AttributeList &Attr,
4040                                    Sema &S) {
4041  Expr *sizeExpr;
4042
4043  // Special case where the argument is a template id.
4044  if (Attr.getParameterName()) {
4045    CXXScopeSpec SS;
4046    SourceLocation TemplateKWLoc;
4047    UnqualifiedId id;
4048    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
4049
4050    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
4051                                          id, false, false);
4052    if (Size.isInvalid())
4053      return;
4054
4055    sizeExpr = Size.get();
4056  } else {
4057    // check the attribute arguments.
4058    if (Attr.getNumArgs() != 1) {
4059      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4060      return;
4061    }
4062    sizeExpr = Attr.getArg(0);
4063  }
4064
4065  // Create the vector type.
4066  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
4067  if (!T.isNull())
4068    CurType = T;
4069}
4070
4071/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
4072/// "neon_polyvector_type" attributes are used to create vector types that
4073/// are mangled according to ARM's ABI.  Otherwise, these types are identical
4074/// to those created with the "vector_size" attribute.  Unlike "vector_size"
4075/// the argument to these Neon attributes is the number of vector elements,
4076/// not the vector size in bytes.  The vector width and element type must
4077/// match one of the standard Neon vector types.
4078static void HandleNeonVectorTypeAttr(QualType& CurType,
4079                                     const AttributeList &Attr, Sema &S,
4080                                     VectorType::VectorKind VecKind,
4081                                     const char *AttrName) {
4082  // Check the attribute arguments.
4083  if (Attr.getNumArgs() != 1) {
4084    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4085    Attr.setInvalid();
4086    return;
4087  }
4088  // The number of elements must be an ICE.
4089  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
4090  llvm::APSInt numEltsInt(32);
4091  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
4092      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
4093    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4094      << AttrName << numEltsExpr->getSourceRange();
4095    Attr.setInvalid();
4096    return;
4097  }
4098  // Only certain element types are supported for Neon vectors.
4099  const BuiltinType* BTy = CurType->getAs<BuiltinType>();
4100  if (!BTy ||
4101      (VecKind == VectorType::NeonPolyVector &&
4102       BTy->getKind() != BuiltinType::SChar &&
4103       BTy->getKind() != BuiltinType::Short) ||
4104      (BTy->getKind() != BuiltinType::SChar &&
4105       BTy->getKind() != BuiltinType::UChar &&
4106       BTy->getKind() != BuiltinType::Short &&
4107       BTy->getKind() != BuiltinType::UShort &&
4108       BTy->getKind() != BuiltinType::Int &&
4109       BTy->getKind() != BuiltinType::UInt &&
4110       BTy->getKind() != BuiltinType::LongLong &&
4111       BTy->getKind() != BuiltinType::ULongLong &&
4112       BTy->getKind() != BuiltinType::Float)) {
4113    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
4114    Attr.setInvalid();
4115    return;
4116  }
4117  // The total size of the vector must be 64 or 128 bits.
4118  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4119  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
4120  unsigned vecSize = typeSize * numElts;
4121  if (vecSize != 64 && vecSize != 128) {
4122    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
4123    Attr.setInvalid();
4124    return;
4125  }
4126
4127  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
4128}
4129
4130static void processTypeAttrs(TypeProcessingState &state, QualType &type,
4131                             bool isDeclSpec, AttributeList *attrs) {
4132  // Scan through and apply attributes to this type where it makes sense.  Some
4133  // attributes (such as __address_space__, __vector_size__, etc) apply to the
4134  // type, but others can be present in the type specifiers even though they
4135  // apply to the decl.  Here we apply type attributes and ignore the rest.
4136
4137  AttributeList *next;
4138  do {
4139    AttributeList &attr = *attrs;
4140    next = attr.getNext();
4141
4142    // Skip attributes that were marked to be invalid.
4143    if (attr.isInvalid())
4144      continue;
4145
4146    // If this is an attribute we can handle, do so now,
4147    // otherwise, add it to the FnAttrs list for rechaining.
4148    switch (attr.getKind()) {
4149    default: break;
4150
4151    case AttributeList::AT_MayAlias:
4152      // FIXME: This attribute needs to actually be handled, but if we ignore
4153      // it it breaks large amounts of Linux software.
4154      attr.setUsedAsTypeAttr();
4155      break;
4156    case AttributeList::AT_AddressSpace:
4157      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
4158      attr.setUsedAsTypeAttr();
4159      break;
4160    OBJC_POINTER_TYPE_ATTRS_CASELIST:
4161      if (!handleObjCPointerTypeAttr(state, attr, type))
4162        distributeObjCPointerTypeAttr(state, attr, type);
4163      attr.setUsedAsTypeAttr();
4164      break;
4165    case AttributeList::AT_VectorSize:
4166      HandleVectorSizeAttr(type, attr, state.getSema());
4167      attr.setUsedAsTypeAttr();
4168      break;
4169    case AttributeList::AT_ExtVectorType:
4170      if (state.getDeclarator().getDeclSpec().getStorageClassSpec()
4171            != DeclSpec::SCS_typedef)
4172        HandleExtVectorTypeAttr(type, attr, state.getSema());
4173      attr.setUsedAsTypeAttr();
4174      break;
4175    case AttributeList::AT_NeonVectorType:
4176      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4177                               VectorType::NeonVector, "neon_vector_type");
4178      attr.setUsedAsTypeAttr();
4179      break;
4180    case AttributeList::AT_NeonPolyVectorType:
4181      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4182                               VectorType::NeonPolyVector,
4183                               "neon_polyvector_type");
4184      attr.setUsedAsTypeAttr();
4185      break;
4186    case AttributeList::AT_OpenCLImageAccess:
4187      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
4188      attr.setUsedAsTypeAttr();
4189      break;
4190
4191    case AttributeList::AT_Win64:
4192    case AttributeList::AT_Ptr32:
4193    case AttributeList::AT_Ptr64:
4194      // FIXME: don't ignore these
4195      attr.setUsedAsTypeAttr();
4196      break;
4197
4198    case AttributeList::AT_NSReturnsRetained:
4199      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
4200    break;
4201      // fallthrough into the function attrs
4202
4203    FUNCTION_TYPE_ATTRS_CASELIST:
4204      attr.setUsedAsTypeAttr();
4205
4206      // Never process function type attributes as part of the
4207      // declaration-specifiers.
4208      if (isDeclSpec)
4209        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
4210
4211      // Otherwise, handle the possible delays.
4212      else if (!handleFunctionTypeAttr(state, attr, type))
4213        distributeFunctionTypeAttr(state, attr, type);
4214      break;
4215    }
4216  } while ((attrs = next));
4217}
4218
4219/// \brief Ensure that the type of the given expression is complete.
4220///
4221/// This routine checks whether the expression \p E has a complete type. If the
4222/// expression refers to an instantiable construct, that instantiation is
4223/// performed as needed to complete its type. Furthermore
4224/// Sema::RequireCompleteType is called for the expression's type (or in the
4225/// case of a reference type, the referred-to type).
4226///
4227/// \param E The expression whose type is required to be complete.
4228/// \param Diagnoser The object that will emit a diagnostic if the type is
4229/// incomplete.
4230///
4231/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
4232/// otherwise.
4233bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
4234  QualType T = E->getType();
4235
4236  // Fast path the case where the type is already complete.
4237  if (!T->isIncompleteType())
4238    return false;
4239
4240  // Incomplete array types may be completed by the initializer attached to
4241  // their definitions. For static data members of class templates we need to
4242  // instantiate the definition to get this initializer and complete the type.
4243  if (T->isIncompleteArrayType()) {
4244    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4245      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4246        if (Var->isStaticDataMember() &&
4247            Var->getInstantiatedFromStaticDataMember()) {
4248
4249          MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
4250          assert(MSInfo && "Missing member specialization information?");
4251          if (MSInfo->getTemplateSpecializationKind()
4252                != TSK_ExplicitSpecialization) {
4253            // If we don't already have a point of instantiation, this is it.
4254            if (MSInfo->getPointOfInstantiation().isInvalid()) {
4255              MSInfo->setPointOfInstantiation(E->getLocStart());
4256
4257              // This is a modification of an existing AST node. Notify
4258              // listeners.
4259              if (ASTMutationListener *L = getASTMutationListener())
4260                L->StaticDataMemberInstantiated(Var);
4261            }
4262
4263            InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
4264
4265            // Update the type to the newly instantiated definition's type both
4266            // here and within the expression.
4267            if (VarDecl *Def = Var->getDefinition()) {
4268              DRE->setDecl(Def);
4269              T = Def->getType();
4270              DRE->setType(T);
4271              E->setType(T);
4272            }
4273          }
4274
4275          // We still go on to try to complete the type independently, as it
4276          // may also require instantiations or diagnostics if it remains
4277          // incomplete.
4278        }
4279      }
4280    }
4281  }
4282
4283  // FIXME: Are there other cases which require instantiating something other
4284  // than the type to complete the type of an expression?
4285
4286  // Look through reference types and complete the referred type.
4287  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
4288    T = Ref->getPointeeType();
4289
4290  return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
4291}
4292
4293namespace {
4294  struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
4295    unsigned DiagID;
4296
4297    TypeDiagnoserDiag(unsigned DiagID)
4298      : Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
4299
4300    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
4301      if (Suppressed) return;
4302      S.Diag(Loc, DiagID) << T;
4303    }
4304  };
4305}
4306
4307bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
4308  TypeDiagnoserDiag Diagnoser(DiagID);
4309  return RequireCompleteExprType(E, Diagnoser);
4310}
4311
4312/// @brief Ensure that the type T is a complete type.
4313///
4314/// This routine checks whether the type @p T is complete in any
4315/// context where a complete type is required. If @p T is a complete
4316/// type, returns false. If @p T is a class template specialization,
4317/// this routine then attempts to perform class template
4318/// instantiation. If instantiation fails, or if @p T is incomplete
4319/// and cannot be completed, issues the diagnostic @p diag (giving it
4320/// the type @p T) and returns true.
4321///
4322/// @param Loc  The location in the source that the incomplete type
4323/// diagnostic should refer to.
4324///
4325/// @param T  The type that this routine is examining for completeness.
4326///
4327/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
4328/// @c false otherwise.
4329bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4330                               TypeDiagnoser &Diagnoser) {
4331  // FIXME: Add this assertion to make sure we always get instantiation points.
4332  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
4333  // FIXME: Add this assertion to help us flush out problems with
4334  // checking for dependent types and type-dependent expressions.
4335  //
4336  //  assert(!T->isDependentType() &&
4337  //         "Can't ask whether a dependent type is complete");
4338
4339  // If we have a complete type, we're done.
4340  NamedDecl *Def = 0;
4341  if (!T->isIncompleteType(&Def)) {
4342    // If we know about the definition but it is not visible, complain.
4343    if (!Diagnoser.Suppressed && Def && !LookupResult::isVisible(Def)) {
4344      // Suppress this error outside of a SFINAE context if we've already
4345      // emitted the error once for this type. There's no usefulness in
4346      // repeating the diagnostic.
4347      // FIXME: Add a Fix-It that imports the corresponding module or includes
4348      // the header.
4349      if (isSFINAEContext() || HiddenDefinitions.insert(Def)) {
4350        Diag(Loc, diag::err_module_private_definition) << T;
4351        Diag(Def->getLocation(), diag::note_previous_definition);
4352      }
4353    }
4354
4355    return false;
4356  }
4357
4358  const TagType *Tag = T->getAs<TagType>();
4359  const ObjCInterfaceType *IFace = 0;
4360
4361  if (Tag) {
4362    // Avoid diagnosing invalid decls as incomplete.
4363    if (Tag->getDecl()->isInvalidDecl())
4364      return true;
4365
4366    // Give the external AST source a chance to complete the type.
4367    if (Tag->getDecl()->hasExternalLexicalStorage()) {
4368      Context.getExternalSource()->CompleteType(Tag->getDecl());
4369      if (!Tag->isIncompleteType())
4370        return false;
4371    }
4372  }
4373  else if ((IFace = T->getAs<ObjCInterfaceType>())) {
4374    // Avoid diagnosing invalid decls as incomplete.
4375    if (IFace->getDecl()->isInvalidDecl())
4376      return true;
4377
4378    // Give the external AST source a chance to complete the type.
4379    if (IFace->getDecl()->hasExternalLexicalStorage()) {
4380      Context.getExternalSource()->CompleteType(IFace->getDecl());
4381      if (!IFace->isIncompleteType())
4382        return false;
4383    }
4384  }
4385
4386  // If we have a class template specialization or a class member of a
4387  // class template specialization, or an array with known size of such,
4388  // try to instantiate it.
4389  QualType MaybeTemplate = T;
4390  while (const ConstantArrayType *Array
4391           = Context.getAsConstantArrayType(MaybeTemplate))
4392    MaybeTemplate = Array->getElementType();
4393  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
4394    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
4395          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
4396      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
4397        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
4398                                                      TSK_ImplicitInstantiation,
4399                                            /*Complain=*/!Diagnoser.Suppressed);
4400    } else if (CXXRecordDecl *Rec
4401                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
4402      CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
4403      if (!Rec->isBeingDefined() && Pattern) {
4404        MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
4405        assert(MSI && "Missing member specialization information?");
4406        // This record was instantiated from a class within a template.
4407        if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4408          return InstantiateClass(Loc, Rec, Pattern,
4409                                  getTemplateInstantiationArgs(Rec),
4410                                  TSK_ImplicitInstantiation,
4411                                  /*Complain=*/!Diagnoser.Suppressed);
4412      }
4413    }
4414  }
4415
4416  if (Diagnoser.Suppressed)
4417    return true;
4418
4419  // We have an incomplete type. Produce a diagnostic.
4420  Diagnoser.diagnose(*this, Loc, T);
4421
4422  // If the type was a forward declaration of a class/struct/union
4423  // type, produce a note.
4424  if (Tag && !Tag->getDecl()->isInvalidDecl())
4425    Diag(Tag->getDecl()->getLocation(),
4426         Tag->isBeingDefined() ? diag::note_type_being_defined
4427                               : diag::note_forward_declaration)
4428      << QualType(Tag, 0);
4429
4430  // If the Objective-C class was a forward declaration, produce a note.
4431  if (IFace && !IFace->getDecl()->isInvalidDecl())
4432    Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
4433
4434  return true;
4435}
4436
4437bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4438                               unsigned DiagID) {
4439  TypeDiagnoserDiag Diagnoser(DiagID);
4440  return RequireCompleteType(Loc, T, Diagnoser);
4441}
4442
4443/// \brief Get diagnostic %select index for tag kind for
4444/// literal type diagnostic message.
4445/// WARNING: Indexes apply to particular diagnostics only!
4446///
4447/// \returns diagnostic %select index.
4448static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
4449  switch (Tag) {
4450  case TTK_Struct: return 0;
4451  case TTK_Interface: return 1;
4452  case TTK_Class:  return 2;
4453  default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
4454  }
4455}
4456
4457/// @brief Ensure that the type T is a literal type.
4458///
4459/// This routine checks whether the type @p T is a literal type. If @p T is an
4460/// incomplete type, an attempt is made to complete it. If @p T is a literal
4461/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
4462/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
4463/// it the type @p T), along with notes explaining why the type is not a
4464/// literal type, and returns true.
4465///
4466/// @param Loc  The location in the source that the non-literal type
4467/// diagnostic should refer to.
4468///
4469/// @param T  The type that this routine is examining for literalness.
4470///
4471/// @param Diagnoser Emits a diagnostic if T is not a literal type.
4472///
4473/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
4474/// @c false otherwise.
4475bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
4476                              TypeDiagnoser &Diagnoser) {
4477  assert(!T->isDependentType() && "type should not be dependent");
4478
4479  QualType ElemType = Context.getBaseElementType(T);
4480  RequireCompleteType(Loc, ElemType, 0);
4481
4482  if (T->isLiteralType())
4483    return false;
4484
4485  if (Diagnoser.Suppressed)
4486    return true;
4487
4488  Diagnoser.diagnose(*this, Loc, T);
4489
4490  if (T->isVariableArrayType())
4491    return true;
4492
4493  const RecordType *RT = ElemType->getAs<RecordType>();
4494  if (!RT)
4495    return true;
4496
4497  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4498
4499  // A partially-defined class type can't be a literal type, because a literal
4500  // class type must have a trivial destructor (which can't be checked until
4501  // the class definition is complete).
4502  if (!RD->isCompleteDefinition()) {
4503    RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
4504    return true;
4505  }
4506
4507  // If the class has virtual base classes, then it's not an aggregate, and
4508  // cannot have any constexpr constructors or a trivial default constructor,
4509  // so is non-literal. This is better to diagnose than the resulting absence
4510  // of constexpr constructors.
4511  if (RD->getNumVBases()) {
4512    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
4513      << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
4514    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
4515           E = RD->vbases_end(); I != E; ++I)
4516      Diag(I->getLocStart(),
4517           diag::note_constexpr_virtual_base_here) << I->getSourceRange();
4518  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
4519             !RD->hasTrivialDefaultConstructor()) {
4520    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
4521  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
4522    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4523         E = RD->bases_end(); I != E; ++I) {
4524      if (!I->getType()->isLiteralType()) {
4525        Diag(I->getLocStart(),
4526             diag::note_non_literal_base_class)
4527          << RD << I->getType() << I->getSourceRange();
4528        return true;
4529      }
4530    }
4531    for (CXXRecordDecl::field_iterator I = RD->field_begin(),
4532         E = RD->field_end(); I != E; ++I) {
4533      if (!I->getType()->isLiteralType() ||
4534          I->getType().isVolatileQualified()) {
4535        Diag(I->getLocation(), diag::note_non_literal_field)
4536          << RD << *I << I->getType()
4537          << I->getType().isVolatileQualified();
4538        return true;
4539      }
4540    }
4541  } else if (!RD->hasTrivialDestructor()) {
4542    // All fields and bases are of literal types, so have trivial destructors.
4543    // If this class's destructor is non-trivial it must be user-declared.
4544    CXXDestructorDecl *Dtor = RD->getDestructor();
4545    assert(Dtor && "class has literal fields and bases but no dtor?");
4546    if (!Dtor)
4547      return true;
4548
4549    Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
4550         diag::note_non_literal_user_provided_dtor :
4551         diag::note_non_literal_nontrivial_dtor) << RD;
4552  }
4553
4554  return true;
4555}
4556
4557bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
4558  TypeDiagnoserDiag Diagnoser(DiagID);
4559  return RequireLiteralType(Loc, T, Diagnoser);
4560}
4561
4562/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
4563/// and qualified by the nested-name-specifier contained in SS.
4564QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
4565                                 const CXXScopeSpec &SS, QualType T) {
4566  if (T.isNull())
4567    return T;
4568  NestedNameSpecifier *NNS;
4569  if (SS.isValid())
4570    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4571  else {
4572    if (Keyword == ETK_None)
4573      return T;
4574    NNS = 0;
4575  }
4576  return Context.getElaboratedType(Keyword, NNS, T);
4577}
4578
4579QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
4580  ExprResult ER = CheckPlaceholderExpr(E);
4581  if (ER.isInvalid()) return QualType();
4582  E = ER.take();
4583
4584  if (!E->isTypeDependent()) {
4585    QualType T = E->getType();
4586    if (const TagType *TT = T->getAs<TagType>())
4587      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
4588  }
4589  return Context.getTypeOfExprType(E);
4590}
4591
4592/// getDecltypeForExpr - Given an expr, will return the decltype for
4593/// that expression, according to the rules in C++11
4594/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
4595static QualType getDecltypeForExpr(Sema &S, Expr *E) {
4596  if (E->isTypeDependent())
4597    return S.Context.DependentTy;
4598
4599  // C++11 [dcl.type.simple]p4:
4600  //   The type denoted by decltype(e) is defined as follows:
4601  //
4602  //     - if e is an unparenthesized id-expression or an unparenthesized class
4603  //       member access (5.2.5), decltype(e) is the type of the entity named
4604  //       by e. If there is no such entity, or if e names a set of overloaded
4605  //       functions, the program is ill-formed;
4606  //
4607  // We apply the same rules for Objective-C ivar and property references.
4608  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4609    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
4610      return VD->getType();
4611  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
4612    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
4613      return FD->getType();
4614  } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
4615    return IR->getDecl()->getType();
4616  } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
4617    if (PR->isExplicitProperty())
4618      return PR->getExplicitProperty()->getType();
4619  }
4620
4621  // C++11 [expr.lambda.prim]p18:
4622  //   Every occurrence of decltype((x)) where x is a possibly
4623  //   parenthesized id-expression that names an entity of automatic
4624  //   storage duration is treated as if x were transformed into an
4625  //   access to a corresponding data member of the closure type that
4626  //   would have been declared if x were an odr-use of the denoted
4627  //   entity.
4628  using namespace sema;
4629  if (S.getCurLambda()) {
4630    if (isa<ParenExpr>(E)) {
4631      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4632        if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4633          QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
4634          if (!T.isNull())
4635            return S.Context.getLValueReferenceType(T);
4636        }
4637      }
4638    }
4639  }
4640
4641
4642  // C++11 [dcl.type.simple]p4:
4643  //   [...]
4644  QualType T = E->getType();
4645  switch (E->getValueKind()) {
4646  //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
4647  //       type of e;
4648  case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
4649  //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
4650  //       type of e;
4651  case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
4652  //  - otherwise, decltype(e) is the type of e.
4653  case VK_RValue: break;
4654  }
4655
4656  return T;
4657}
4658
4659QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
4660  ExprResult ER = CheckPlaceholderExpr(E);
4661  if (ER.isInvalid()) return QualType();
4662  E = ER.take();
4663
4664  return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
4665}
4666
4667QualType Sema::BuildUnaryTransformType(QualType BaseType,
4668                                       UnaryTransformType::UTTKind UKind,
4669                                       SourceLocation Loc) {
4670  switch (UKind) {
4671  case UnaryTransformType::EnumUnderlyingType:
4672    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
4673      Diag(Loc, diag::err_only_enums_have_underlying_types);
4674      return QualType();
4675    } else {
4676      QualType Underlying = BaseType;
4677      if (!BaseType->isDependentType()) {
4678        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
4679        assert(ED && "EnumType has no EnumDecl");
4680        DiagnoseUseOfDecl(ED, Loc);
4681        Underlying = ED->getIntegerType();
4682      }
4683      assert(!Underlying.isNull());
4684      return Context.getUnaryTransformType(BaseType, Underlying,
4685                                        UnaryTransformType::EnumUnderlyingType);
4686    }
4687  }
4688  llvm_unreachable("unknown unary transform type");
4689}
4690
4691QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
4692  if (!T->isDependentType()) {
4693    // FIXME: It isn't entirely clear whether incomplete atomic types
4694    // are allowed or not; for simplicity, ban them for the moment.
4695    if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
4696      return QualType();
4697
4698    int DisallowedKind = -1;
4699    if (T->isArrayType())
4700      DisallowedKind = 1;
4701    else if (T->isFunctionType())
4702      DisallowedKind = 2;
4703    else if (T->isReferenceType())
4704      DisallowedKind = 3;
4705    else if (T->isAtomicType())
4706      DisallowedKind = 4;
4707    else if (T.hasQualifiers())
4708      DisallowedKind = 5;
4709    else if (!T.isTriviallyCopyableType(Context))
4710      // Some other non-trivially-copyable type (probably a C++ class)
4711      DisallowedKind = 6;
4712
4713    if (DisallowedKind != -1) {
4714      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
4715      return QualType();
4716    }
4717
4718    // FIXME: Do we need any handling for ARC here?
4719  }
4720
4721  // Build the pointer type.
4722  return Context.getAtomicType(T);
4723}
4724