SemaType.cpp revision 86ad52274e497d28a03aa9e5b0c43fb325421c72
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Decl.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/Parse/DeclSpec.h"
19#include "clang/Basic/LangOptions.h"
20using namespace clang;
21
22/// ConvertDeclSpecToType - Convert the specified declspec to the appropriate
23/// type object.  This returns null on error.
24QualType Sema::ConvertDeclSpecToType(DeclSpec &DS) {
25  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
26  // checking.
27  QualType Result;
28
29  switch (DS.getTypeSpecType()) {
30  default: assert(0 && "Unknown TypeSpecType!");
31  case DeclSpec::TST_void:
32    Result = Context.VoidTy;
33    break;
34  case DeclSpec::TST_char:
35    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
36      Result = Context.CharTy;
37    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
38      Result = Context.SignedCharTy;
39    else {
40      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
41             "Unknown TSS value");
42      Result = Context.UnsignedCharTy;
43    }
44    break;
45  case DeclSpec::TST_unspecified:
46    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
47    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
48    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
49    // Note that the one exception to this is function definitions, which are
50    // allowed to be completely missing a declspec.  This is handled in the
51    // parser already though by it pretending to have seen an 'int' in this
52    // case.
53    if (getLangOptions().ImplicitInt) {
54      if ((DS.getParsedSpecifiers() & (DeclSpec::PQ_StorageClassSpecifier |
55                                       DeclSpec::PQ_TypeSpecifier |
56                                       DeclSpec::PQ_TypeQualifier)) == 0)
57        Diag(DS.getSourceRange().getBegin(), diag::ext_missing_declspec);
58    } else {
59      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
60      // "At least one type specifier shall be given in the declaration
61      // specifiers in each declaration, and in the specifier-qualifier list in
62      // each struct declaration and type name."
63      if (!DS.hasTypeSpecifier())
64        Diag(DS.getSourceRange().getBegin(), diag::ext_missing_type_specifier);
65    }
66
67    // FALL THROUGH.
68  case DeclSpec::TST_int: {
69    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
70      switch (DS.getTypeSpecWidth()) {
71      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
72      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
73      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
74      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
75      }
76    } else {
77      switch (DS.getTypeSpecWidth()) {
78      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
79      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
80      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
81      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
82      }
83    }
84    break;
85  }
86  case DeclSpec::TST_float: Result = Context.FloatTy; break;
87  case DeclSpec::TST_double:
88    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
89      Result = Context.LongDoubleTy;
90    else
91      Result = Context.DoubleTy;
92    break;
93  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
94  case DeclSpec::TST_decimal32:    // _Decimal32
95  case DeclSpec::TST_decimal64:    // _Decimal64
96  case DeclSpec::TST_decimal128:   // _Decimal128
97    assert(0 && "FIXME: GNU decimal extensions not supported yet!");
98  case DeclSpec::TST_class:
99  case DeclSpec::TST_enum:
100  case DeclSpec::TST_union:
101  case DeclSpec::TST_struct: {
102    Decl *D = static_cast<Decl *>(DS.getTypeRep());
103    assert(D && "Didn't get a decl for a class/enum/union/struct?");
104    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
105           DS.getTypeSpecSign() == 0 &&
106           "Can't handle qualifiers on typedef names yet!");
107    // TypeQuals handled by caller.
108    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
109    break;
110  }
111  case DeclSpec::TST_typedef: {
112    Decl *D = static_cast<Decl *>(DS.getTypeRep());
113    assert(D && "Didn't get a decl for a typedef?");
114    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
115           DS.getTypeSpecSign() == 0 &&
116           "Can't handle qualifiers on typedef names yet!");
117
118    // FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so
119    // we have this "hack" for now...
120    if (ObjCInterfaceDecl *ObjCIntDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
121      if (DS.getProtocolQualifiers() == 0) {
122        Result = Context.getObjCInterfaceType(ObjCIntDecl);
123        break;
124      }
125
126      Action::DeclTy **PPDecl = &(*DS.getProtocolQualifiers())[0];
127      Result = Context.getObjCQualifiedInterfaceType(ObjCIntDecl,
128                                   reinterpret_cast<ObjCProtocolDecl**>(PPDecl),
129                                                 DS.getNumProtocolQualifiers());
130      break;
131    }
132    else if (TypedefDecl *typeDecl = dyn_cast<TypedefDecl>(D)) {
133      if (Context.getObjCIdType() == Context.getTypedefType(typeDecl)
134          && DS.getProtocolQualifiers()) {
135          // id<protocol-list>
136        Action::DeclTy **PPDecl = &(*DS.getProtocolQualifiers())[0];
137        Result = Context.getObjCQualifiedIdType(typeDecl->getUnderlyingType(),
138                                 reinterpret_cast<ObjCProtocolDecl**>(PPDecl),
139                                            DS.getNumProtocolQualifiers());
140        break;
141      }
142    }
143    // TypeQuals handled by caller.
144    Result = Context.getTypeDeclType(dyn_cast<TypeDecl>(D));
145    break;
146  }
147  case DeclSpec::TST_typeofType:
148    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
149    assert(!Result.isNull() && "Didn't get a type for typeof?");
150    // TypeQuals handled by caller.
151    Result = Context.getTypeOfType(Result);
152    break;
153  case DeclSpec::TST_typeofExpr: {
154    Expr *E = static_cast<Expr *>(DS.getTypeRep());
155    assert(E && "Didn't get an expression for typeof?");
156    // TypeQuals handled by caller.
157    Result = Context.getTypeOfExpr(E);
158    break;
159  }
160  }
161
162  // Handle complex types.
163  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex)
164    Result = Context.getComplexType(Result);
165
166  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
167         "FIXME: imaginary types not supported yet!");
168
169  // See if there are any attributes on the declspec that apply to the type (as
170  // opposed to the decl).
171  if (AttributeList *AL = DS.getAttributes())
172    DS.SetAttributes(ProcessTypeAttributes(Result, AL));
173
174  // Apply const/volatile/restrict qualifiers to T.
175  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
176
177    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
178    // or incomplete types shall not be restrict-qualified."  C++ also allows
179    // restrict-qualified references.
180    if (TypeQuals & QualType::Restrict) {
181      if (const PointerLikeType *PT = Result->getAsPointerLikeType()) {
182        QualType EltTy = PT->getPointeeType();
183
184        // If we have a pointer or reference, the pointee must have an object or
185        // incomplete type.
186        if (!EltTy->isIncompleteOrObjectType()) {
187          Diag(DS.getRestrictSpecLoc(),
188               diag::err_typecheck_invalid_restrict_invalid_pointee,
189               EltTy.getAsString(), DS.getSourceRange());
190          TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
191        }
192      } else {
193        Diag(DS.getRestrictSpecLoc(),
194             diag::err_typecheck_invalid_restrict_not_pointer,
195             Result.getAsString(), DS.getSourceRange());
196        TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
197      }
198    }
199
200    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
201    // of a function type includes any type qualifiers, the behavior is
202    // undefined."
203    if (Result->isFunctionType() && TypeQuals) {
204      // Get some location to point at, either the C or V location.
205      SourceLocation Loc;
206      if (TypeQuals & QualType::Const)
207        Loc = DS.getConstSpecLoc();
208      else {
209        assert((TypeQuals & QualType::Volatile) &&
210               "Has CV quals but not C or V?");
211        Loc = DS.getVolatileSpecLoc();
212      }
213      Diag(Loc, diag::warn_typecheck_function_qualifiers,
214           Result.getAsString(), DS.getSourceRange());
215    }
216
217    Result = Result.getQualifiedType(TypeQuals);
218  }
219  return Result;
220}
221
222/// GetTypeForDeclarator - Convert the type for the specified declarator to Type
223/// instances.
224QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
225  // long long is a C99 feature.
226  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
227      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
228    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
229
230  QualType T = ConvertDeclSpecToType(D.getDeclSpec());
231
232  // Walk the DeclTypeInfo, building the recursive type as we go.  DeclTypeInfos
233  // are ordered from the identifier out, which is opposite of what we want :).
234  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
235    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
236    switch (DeclType.Kind) {
237    default: assert(0 && "Unknown decltype!");
238    case DeclaratorChunk::Pointer:
239      if (T->isReferenceType()) {
240        // C++ 8.3.2p4: There shall be no ... pointers to references ...
241        Diag(DeclType.Loc, diag::err_illegal_decl_pointer_to_reference,
242             D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
243        D.setInvalidType(true);
244        T = Context.IntTy;
245      }
246
247      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
248      // object or incomplete types shall not be restrict-qualified."
249      if ((DeclType.Ptr.TypeQuals & QualType::Restrict) &&
250          !T->isIncompleteOrObjectType()) {
251        Diag(DeclType.Loc,
252             diag::err_typecheck_invalid_restrict_invalid_pointee,
253             T.getAsString());
254        DeclType.Ptr.TypeQuals &= QualType::Restrict;
255      }
256
257      // Apply the pointer typequals to the pointer object.
258      T = Context.getPointerType(T).getQualifiedType(DeclType.Ptr.TypeQuals);
259
260      // See if there are any attributes on the pointer that apply to it.
261      if (AttributeList *AL = DeclType.Ptr.AttrList)
262        DeclType.Ptr.AttrList = ProcessTypeAttributes(T, AL);
263
264      break;
265    case DeclaratorChunk::Reference:
266      if (const ReferenceType *RT = T->getAsReferenceType()) {
267        // C++ 8.3.2p4: There shall be no references to references.
268        Diag(DeclType.Loc, diag::err_illegal_decl_reference_to_reference,
269             D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
270        D.setInvalidType(true);
271        T = RT->getPointeeType();
272      }
273
274      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
275      // object or incomplete types shall not be restrict-qualified."
276      if (DeclType.Ref.HasRestrict &&
277          !T->isIncompleteOrObjectType()) {
278        Diag(DeclType.Loc,
279             diag::err_typecheck_invalid_restrict_invalid_pointee,
280             T.getAsString());
281        DeclType.Ref.HasRestrict = false;
282      }
283
284      T = Context.getReferenceType(T);
285
286      // Handle restrict on references.
287      if (DeclType.Ref.HasRestrict)
288        T.addRestrict();
289
290      // See if there are any attributes on the pointer that apply to it.
291      if (AttributeList *AL = DeclType.Ref.AttrList)
292        DeclType.Ref.AttrList = ProcessTypeAttributes(T, AL);
293      break;
294    case DeclaratorChunk::Array: {
295      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
296      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
297      ArrayType::ArraySizeModifier ASM;
298      if (ATI.isStar)
299        ASM = ArrayType::Star;
300      else if (ATI.hasStatic)
301        ASM = ArrayType::Static;
302      else
303        ASM = ArrayType::Normal;
304
305      // C99 6.7.5.2p1: If the element type is an incomplete or function type,
306      // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
307      if (T->isIncompleteType()) {
308        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_incomplete_type,
309             T.getAsString());
310        T = Context.IntTy;
311        D.setInvalidType(true);
312      } else if (T->isFunctionType()) {
313        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_functions,
314             D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
315        T = Context.getPointerType(T);
316        D.setInvalidType(true);
317      } else if (const ReferenceType *RT = T->getAsReferenceType()) {
318        // C++ 8.3.2p4: There shall be no ... arrays of references ...
319        Diag(D.getIdentifierLoc(), diag::err_illegal_decl_array_of_references,
320             D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
321        T = RT->getPointeeType();
322        D.setInvalidType(true);
323      } else if (const RecordType *EltTy = T->getAsRecordType()) {
324        // If the element type is a struct or union that contains a variadic
325        // array, reject it: C99 6.7.2.1p2.
326        if (EltTy->getDecl()->hasFlexibleArrayMember()) {
327          Diag(DeclType.Loc, diag::err_flexible_array_in_array,
328               T.getAsString());
329          T = Context.IntTy;
330          D.setInvalidType(true);
331        }
332      }
333      // C99 6.7.5.2p1: The size expression shall have integer type.
334      if (ArraySize && !ArraySize->getType()->isIntegerType()) {
335        Diag(ArraySize->getLocStart(), diag::err_array_size_non_int,
336             ArraySize->getType().getAsString(), ArraySize->getSourceRange());
337        D.setInvalidType(true);
338        delete ArraySize;
339        ATI.NumElts = ArraySize = 0;
340      }
341      llvm::APSInt ConstVal(32);
342      if (!ArraySize) {
343        T = Context.getIncompleteArrayType(T, ASM, ATI.TypeQuals);
344      } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
345                 !T->isConstantSizeType()) {
346        // Per C99, a variable array is an array with either a non-constant
347        // size or an element type that has a non-constant-size
348        T = Context.getVariableArrayType(T, ArraySize, ASM, ATI.TypeQuals);
349      } else {
350        // C99 6.7.5.2p1: If the expression is a constant expression, it shall
351        // have a value greater than zero.
352        if (ConstVal.isSigned()) {
353          if (ConstVal.isNegative()) {
354            Diag(ArraySize->getLocStart(),
355                 diag::err_typecheck_negative_array_size,
356                 ArraySize->getSourceRange());
357            D.setInvalidType(true);
358          } else if (ConstVal == 0) {
359            // GCC accepts zero sized static arrays.
360            Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size,
361                 ArraySize->getSourceRange());
362          }
363        }
364        T = Context.getConstantArrayType(T, ConstVal, ASM, ATI.TypeQuals);
365      }
366      // If this is not C99, extwarn about VLA's and C99 array size modifiers.
367      if (!getLangOptions().C99 &&
368          (ASM != ArrayType::Normal ||
369           (ArraySize && !ArraySize->isIntegerConstantExpr(Context))))
370        Diag(D.getIdentifierLoc(), diag::ext_vla);
371      break;
372    }
373    case DeclaratorChunk::Function:
374      // If the function declarator has a prototype (i.e. it is not () and
375      // does not have a K&R-style identifier list), then the arguments are part
376      // of the type, otherwise the argument list is ().
377      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
378
379      // C99 6.7.5.3p1: The return type may not be a function or array type.
380      if (T->isArrayType() || T->isFunctionType()) {
381        Diag(DeclType.Loc, diag::err_func_returning_array_function,
382             T.getAsString());
383        T = Context.IntTy;
384        D.setInvalidType(true);
385      }
386
387      if (!FTI.hasPrototype) {
388        // Simple void foo(), where the incoming T is the result type.
389        T = Context.getFunctionTypeNoProto(T);
390
391        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
392        if (FTI.NumArgs != 0)
393          Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
394
395      } else {
396        // Otherwise, we have a function with an argument list that is
397        // potentially variadic.
398        llvm::SmallVector<QualType, 16> ArgTys;
399
400        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
401          ParmVarDecl *Param = (ParmVarDecl *)FTI.ArgInfo[i].Param;
402          QualType ArgTy = Param->getType();
403          assert(!ArgTy.isNull() && "Couldn't parse type?");
404          //
405          // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
406          // This matches the conversion that is done in
407          // Sema::ActOnParamDeclarator(). Without this conversion, the
408          // argument type in the function prototype *will not* match the
409          // type in ParmVarDecl (which makes the code generator unhappy).
410          //
411          // FIXME: We still apparently need the conversion in
412          // Sema::ActOnParamDeclarator(). This doesn't make any sense, since
413          // it should be driving off the type being created here.
414          //
415          // FIXME: If a source translation tool needs to see the original type,
416          // then we need to consider storing both types somewhere...
417          //
418          if (ArgTy->isArrayType()) {
419            ArgTy = Context.getArrayDecayedType(ArgTy);
420          } else if (ArgTy->isFunctionType())
421            ArgTy = Context.getPointerType(ArgTy);
422
423          // Look for 'void'.  void is allowed only as a single argument to a
424          // function with no other parameters (C99 6.7.5.3p10).  We record
425          // int(void) as a FunctionTypeProto with an empty argument list.
426          else if (ArgTy->isVoidType()) {
427            // If this is something like 'float(int, void)', reject it.  'void'
428            // is an incomplete type (C99 6.2.5p19) and function decls cannot
429            // have arguments of incomplete type.
430            if (FTI.NumArgs != 1 || FTI.isVariadic) {
431              Diag(DeclType.Loc, diag::err_void_only_param);
432              ArgTy = Context.IntTy;
433              Param->setType(ArgTy);
434            } else if (FTI.ArgInfo[i].Ident) {
435              // Reject, but continue to parse 'int(void abc)'.
436              Diag(FTI.ArgInfo[i].IdentLoc,
437                   diag::err_param_with_void_type);
438              ArgTy = Context.IntTy;
439              Param->setType(ArgTy);
440            } else {
441              // Reject, but continue to parse 'float(const void)'.
442              if (ArgTy.getCVRQualifiers())
443                Diag(DeclType.Loc, diag::err_void_param_qualified);
444
445              // Do not add 'void' to the ArgTys list.
446              break;
447            }
448          }
449
450          ArgTys.push_back(ArgTy);
451        }
452        T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
453                                    FTI.isVariadic);
454      }
455      break;
456    }
457  }
458
459  return T;
460}
461
462/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
463/// declarator
464QualType Sema::ObjCGetTypeForMethodDefinition(DeclTy *D) {
465  ObjCMethodDecl *MDecl = dyn_cast<ObjCMethodDecl>(static_cast<Decl *>(D));
466  QualType T = MDecl->getResultType();
467  llvm::SmallVector<QualType, 16> ArgTys;
468
469  // Add the first two invisible argument types for self and _cmd.
470  if (MDecl->isInstance()) {
471    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
472    selfTy = Context.getPointerType(selfTy);
473    ArgTys.push_back(selfTy);
474  }
475  else
476    ArgTys.push_back(Context.getObjCIdType());
477  ArgTys.push_back(Context.getObjCSelType());
478
479  for (int i = 0, e = MDecl->getNumParams(); i != e; ++i) {
480    ParmVarDecl *PDecl = MDecl->getParamDecl(i);
481    QualType ArgTy = PDecl->getType();
482    assert(!ArgTy.isNull() && "Couldn't parse type?");
483    // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
484    // This matches the conversion that is done in
485    // Sema::ActOnParamDeclarator().
486    if (ArgTy->isArrayType())
487      ArgTy = Context.getArrayDecayedType(ArgTy);
488    else if (ArgTy->isFunctionType())
489      ArgTy = Context.getPointerType(ArgTy);
490    ArgTys.push_back(ArgTy);
491  }
492  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
493                              MDecl->isVariadic());
494  return T;
495}
496
497Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
498  // C99 6.7.6: Type names have no identifier.  This is already validated by
499  // the parser.
500  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
501
502  QualType T = GetTypeForDeclarator(D, S);
503
504  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
505
506  // Check that there are no default arguments (C++ only).
507  if (getLangOptions().CPlusPlus)
508    CheckExtraCXXDefaultArguments(D);
509
510  // In this context, we *do not* check D.getInvalidType(). If the declarator
511  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
512  // though it will not reflect the user specified type.
513  return T.getAsOpaquePtr();
514}
515
516AttributeList *Sema::ProcessTypeAttributes(QualType &Result, AttributeList *AL){
517  // Scan through and apply attributes to this type where it makes sense.  Some
518  // attributes (such as __address_space__, __vector_size__, etc) apply to the
519  // type, but others can be present in the type specifiers even though they
520  // apply to the decl.  Here we apply and delete attributes that apply to the
521  // type and leave the others alone.
522  llvm::SmallVector<AttributeList *, 8> LeftOverAttrs;
523  while (AL) {
524    // Unlink this attribute from the chain, so we can process it independently.
525    AttributeList *ThisAttr = AL;
526    AL = AL->getNext();
527    ThisAttr->setNext(0);
528
529    // If this is an attribute we can handle, do so now, otherwise, add it to
530    // the LeftOverAttrs list for rechaining.
531    switch (ThisAttr->getKind()) {
532    default: break;
533    case AttributeList::AT_address_space:
534      Result = HandleAddressSpaceTypeAttribute(Result, ThisAttr);
535      delete ThisAttr;  // Consume the attribute.
536      continue;
537    }
538
539    LeftOverAttrs.push_back(ThisAttr);
540  }
541
542  // Rechain any attributes that haven't been deleted to the DeclSpec.
543  AttributeList *List = 0;
544  for (unsigned i = 0, e = LeftOverAttrs.size(); i != e; ++i) {
545    LeftOverAttrs[i]->setNext(List);
546    List = LeftOverAttrs[i];
547  }
548
549  return List;
550}
551
552/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
553/// specified type.
554QualType Sema::HandleAddressSpaceTypeAttribute(QualType Type,
555                                               AttributeList *Attr) {
556  // If this type is already address space qualified, reject it.
557  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
558  // for two or more different address spaces."
559  if (Type.getAddressSpace()) {
560    Diag(Attr->getLoc(), diag::err_attribute_address_multiple_qualifiers);
561    return Type;
562  }
563
564  // Check the attribute arguments.
565  if (Attr->getNumArgs() != 1) {
566    Diag(Attr->getLoc(), diag::err_attribute_wrong_number_arguments,
567         std::string("1"));
568    return Type;
569  }
570  Expr *ASArgExpr = static_cast<Expr *>(Attr->getArg(0));
571  llvm::APSInt addrSpace(32);
572  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, Context)) {
573    Diag(Attr->getLoc(), diag::err_attribute_address_space_not_int,
574         ASArgExpr->getSourceRange());
575    return Type;
576  }
577
578  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
579  return Context.getASQualType(Type, ASIdx);
580}
581
582/// HandleModeTypeAttribute - Process a mode attribute on the
583/// specified type.
584QualType Sema::HandleModeTypeAttribute(QualType Type,
585                                       AttributeList *Attr) {
586  // This attribute isn't documented, but glibc uses it.  It changes
587  // the width of an int or unsigned int to the specified size.
588
589  // Check that there aren't any arguments
590  if (Attr->getNumArgs() != 0) {
591    Diag(Attr->getLoc(), diag::err_attribute_wrong_number_arguments,
592         std::string("0"));
593    return Type;
594  }
595
596  IdentifierInfo * Name = Attr->getParameterName();
597  if (!Name) {
598    Diag(Attr->getLoc(), diag::err_attribute_missing_parameter_name);
599    return Type;
600  }
601  const char *Str = Name->getName();
602  unsigned Len = Name->getLength();
603
604  // Normalize the attribute name, __foo__ becomes foo.
605  if (Len > 4 && Str[0] == '_' && Str[1] == '_' &&
606      Str[Len - 2] == '_' && Str[Len - 1] == '_') {
607    Str += 2;
608    Len -= 4;
609  }
610
611  unsigned DestWidth = 0;
612  bool IntegerMode = true;
613
614  switch (Len) {
615  case 2:
616    if (!memcmp(Str, "QI", 2)) { DestWidth =  8; break; }
617    if (!memcmp(Str, "HI", 2)) { DestWidth = 16; break; }
618    if (!memcmp(Str, "SI", 2)) { DestWidth = 32; break; }
619    if (!memcmp(Str, "DI", 2)) { DestWidth = 64; break; }
620    if (!memcmp(Str, "TI", 2)) { DestWidth = 128; break; }
621    if (!memcmp(Str, "SF", 2)) { DestWidth = 32; IntegerMode = false; break; }
622    if (!memcmp(Str, "DF", 2)) { DestWidth = 64; IntegerMode = false; break; }
623    if (!memcmp(Str, "XF", 2)) { DestWidth = 96; IntegerMode = false; break; }
624    if (!memcmp(Str, "TF", 2)) { DestWidth = 128; IntegerMode = false; break; }
625    break;
626  case 4:
627    if (!memcmp(Str, "word", 4)) {
628      // FIXME: glibc uses this to define register_t; this is
629      // narrover than a pointer on PIC16 and other embedded
630      // platforms
631      DestWidth = Context.getTypeSize(Context.VoidPtrTy);
632      break;
633    }
634    if (!memcmp(Str, "byte", 4)) {
635      DestWidth = Context.getTypeSize(Context.CharTy);
636      break;
637    }
638    break;
639  case 7:
640    if (!memcmp(Str, "pointer", 7)) {
641      DestWidth = Context.getTypeSize(Context.VoidPtrTy);
642      IntegerMode = true;
643      break;
644    }
645    break;
646  }
647
648  // FIXME: Need proper fixed-width types
649  QualType RetTy;
650  switch (DestWidth) {
651  case 0:
652    Diag(Attr->getLoc(), diag::err_unknown_machine_mode,
653         std::string(Str, Len));
654    return Type;
655  case 8:
656    assert(IntegerMode);
657    if (Type->isSignedIntegerType())
658      RetTy = Context.SignedCharTy;
659    else
660      RetTy = Context.UnsignedCharTy;
661    break;
662  case 16:
663    assert(IntegerMode);
664    if (Type->isSignedIntegerType())
665      RetTy = Context.ShortTy;
666    else
667      RetTy = Context.UnsignedShortTy;
668    break;
669  case 32:
670    if (!IntegerMode)
671      RetTy = Context.FloatTy;
672    else if (Type->isSignedIntegerType())
673      RetTy = Context.IntTy;
674    else
675      RetTy = Context.UnsignedIntTy;
676    break;
677  case 64:
678    if (!IntegerMode)
679      RetTy = Context.DoubleTy;
680    else if (Type->isSignedIntegerType())
681      RetTy = Context.LongLongTy;
682    else
683      RetTy = Context.UnsignedLongLongTy;
684    break;
685  default:
686    Diag(Attr->getLoc(), diag::err_unsupported_machine_mode,
687         std::string(Str, Len));
688    return Type;
689  }
690
691  if (!Type->getAsBuiltinType())
692    Diag(Attr->getLoc(), diag::err_mode_not_primitive);
693  else if (!(IntegerMode && Type->isIntegerType()) &&
694           !(!IntegerMode && Type->isFloatingType())) {
695    Diag(Attr->getLoc(), diag::err_mode_wrong_type);
696  }
697
698  return RetTy;
699}
700
701
702