SemaType.cpp revision 8a447af1297f4751f102a7ec060c6b303be7ccb5
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/Parse/DeclSpec.h"
20using namespace clang;
21
22/// \brief Perform adjustment on the parameter type of a function.
23///
24/// This routine adjusts the given parameter type @p T to the actual
25/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
26/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
27QualType Sema::adjustParameterType(QualType T) {
28  // C99 6.7.5.3p7:
29  if (T->isArrayType()) {
30    // C99 6.7.5.3p7:
31    //   A declaration of a parameter as "array of type" shall be
32    //   adjusted to "qualified pointer to type", where the type
33    //   qualifiers (if any) are those specified within the [ and ] of
34    //   the array type derivation.
35    return Context.getArrayDecayedType(T);
36  } else if (T->isFunctionType())
37    // C99 6.7.5.3p8:
38    //   A declaration of a parameter as "function returning type"
39    //   shall be adjusted to "pointer to function returning type", as
40    //   in 6.3.2.1.
41    return Context.getPointerType(T);
42
43  return T;
44}
45
46/// \brief Convert the specified declspec to the appropriate type
47/// object.
48/// \param DS  the declaration specifiers
49/// \param DeclLoc The location of the declarator identifier or invalid if none.
50/// \returns The type described by the declaration specifiers, or NULL
51/// if there was an error.
52QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS,
53                                     SourceLocation DeclLoc) {
54  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
55  // checking.
56  QualType Result;
57
58  switch (DS.getTypeSpecType()) {
59  case DeclSpec::TST_void:
60    Result = Context.VoidTy;
61    break;
62  case DeclSpec::TST_char:
63    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
64      Result = Context.CharTy;
65    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
66      Result = Context.SignedCharTy;
67    else {
68      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
69             "Unknown TSS value");
70      Result = Context.UnsignedCharTy;
71    }
72    break;
73  case DeclSpec::TST_wchar:
74    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
75      Result = Context.WCharTy;
76    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
77      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
78        << DS.getSpecifierName(DS.getTypeSpecType());
79      Result = Context.getSignedWCharType();
80    } else {
81      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
82        "Unknown TSS value");
83      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
84        << DS.getSpecifierName(DS.getTypeSpecType());
85      Result = Context.getUnsignedWCharType();
86    }
87    break;
88  case DeclSpec::TST_unspecified:
89    // "<proto1,proto2>" is an objc qualified ID with a missing id.
90    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
91      Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
92                                              DS.getNumProtocolQualifiers());
93      break;
94    }
95
96    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
97    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
98    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
99    // Note that the one exception to this is function definitions, which are
100    // allowed to be completely missing a declspec.  This is handled in the
101    // parser already though by it pretending to have seen an 'int' in this
102    // case.
103    if (getLangOptions().ImplicitInt) {
104      // In C89 mode, we only warn if there is a completely missing declspec
105      // when one is not allowed.
106      if (DS.isEmpty()) {
107        if (DeclLoc.isInvalid())
108          DeclLoc = DS.getSourceRange().getBegin();
109        Diag(DeclLoc, diag::warn_missing_declspec)
110          << DS.getSourceRange()
111        << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
112                                                 "int");
113      }
114    } else if (!DS.hasTypeSpecifier()) {
115      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
116      // "At least one type specifier shall be given in the declaration
117      // specifiers in each declaration, and in the specifier-qualifier list in
118      // each struct declaration and type name."
119      // FIXME: Does Microsoft really have the implicit int extension in C++?
120      if (DeclLoc.isInvalid())
121        DeclLoc = DS.getSourceRange().getBegin();
122
123      if (getLangOptions().CPlusPlus && !getLangOptions().Microsoft)
124        Diag(DeclLoc, diag::err_missing_type_specifier)
125          << DS.getSourceRange();
126      else
127        Diag(DeclLoc, diag::warn_missing_type_specifier)
128          << DS.getSourceRange();
129
130      // FIXME: If we could guarantee that the result would be
131      // well-formed, it would be useful to have a code insertion hint
132      // here. However, after emitting this warning/error, we often
133      // emit other errors.
134    }
135
136    // FALL THROUGH.
137  case DeclSpec::TST_int: {
138    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
139      switch (DS.getTypeSpecWidth()) {
140      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
141      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
142      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
143      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
144      }
145    } else {
146      switch (DS.getTypeSpecWidth()) {
147      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
148      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
149      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
150      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
151      }
152    }
153    break;
154  }
155  case DeclSpec::TST_float: Result = Context.FloatTy; break;
156  case DeclSpec::TST_double:
157    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
158      Result = Context.LongDoubleTy;
159    else
160      Result = Context.DoubleTy;
161    break;
162  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
163  case DeclSpec::TST_decimal32:    // _Decimal32
164  case DeclSpec::TST_decimal64:    // _Decimal64
165  case DeclSpec::TST_decimal128:   // _Decimal128
166    assert(0 && "FIXME: GNU decimal extensions not supported yet!");
167  case DeclSpec::TST_class:
168  case DeclSpec::TST_enum:
169  case DeclSpec::TST_union:
170  case DeclSpec::TST_struct: {
171    Decl *D = static_cast<Decl *>(DS.getTypeRep());
172    assert(D && "Didn't get a decl for a class/enum/union/struct?");
173    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
174           DS.getTypeSpecSign() == 0 &&
175           "Can't handle qualifiers on typedef names yet!");
176    // TypeQuals handled by caller.
177    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
178    break;
179  }
180  case DeclSpec::TST_typename: {
181    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
182           DS.getTypeSpecSign() == 0 &&
183           "Can't handle qualifiers on typedef names yet!");
184    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
185
186    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
187      // FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so
188      // we have this "hack" for now...
189      if (const ObjCInterfaceType *Interface = Result->getAsObjCInterfaceType())
190        Result = Context.getObjCQualifiedInterfaceType(Interface->getDecl(),
191                                                       (ObjCProtocolDecl**)PQ,
192                                               DS.getNumProtocolQualifiers());
193      else if (Result == Context.getObjCIdType())
194        // id<protocol-list>
195        Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
196                                                DS.getNumProtocolQualifiers());
197      else if (Result == Context.getObjCClassType()) {
198        if (DeclLoc.isInvalid())
199          DeclLoc = DS.getSourceRange().getBegin();
200        // Class<protocol-list>
201        Diag(DeclLoc, diag::err_qualified_class_unsupported)
202          << DS.getSourceRange();
203      } else {
204        if (DeclLoc.isInvalid())
205          DeclLoc = DS.getSourceRange().getBegin();
206        Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
207          << DS.getSourceRange();
208      }
209    }
210    // TypeQuals handled by caller.
211    break;
212  }
213  case DeclSpec::TST_typeofType:
214    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
215    assert(!Result.isNull() && "Didn't get a type for typeof?");
216    // TypeQuals handled by caller.
217    Result = Context.getTypeOfType(Result);
218    break;
219  case DeclSpec::TST_typeofExpr: {
220    Expr *E = static_cast<Expr *>(DS.getTypeRep());
221    assert(E && "Didn't get an expression for typeof?");
222    // TypeQuals handled by caller.
223    Result = Context.getTypeOfExprType(E);
224    break;
225  }
226  case DeclSpec::TST_error:
227    return QualType();
228  }
229
230  // Handle complex types.
231  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
232    if (getLangOptions().Freestanding)
233      Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
234    Result = Context.getComplexType(Result);
235  }
236
237  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
238         "FIXME: imaginary types not supported yet!");
239
240  // See if there are any attributes on the declspec that apply to the type (as
241  // opposed to the decl).
242  if (const AttributeList *AL = DS.getAttributes())
243    ProcessTypeAttributeList(Result, AL);
244
245  // Apply const/volatile/restrict qualifiers to T.
246  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
247
248    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
249    // or incomplete types shall not be restrict-qualified."  C++ also allows
250    // restrict-qualified references.
251    if (TypeQuals & QualType::Restrict) {
252      if (Result->isPointerType() || Result->isReferenceType()) {
253        QualType EltTy = Result->isPointerType() ?
254          Result->getAsPointerType()->getPointeeType() :
255          Result->getAsReferenceType()->getPointeeType();
256
257        // If we have a pointer or reference, the pointee must have an object
258        // incomplete type.
259        if (!EltTy->isIncompleteOrObjectType()) {
260          Diag(DS.getRestrictSpecLoc(),
261               diag::err_typecheck_invalid_restrict_invalid_pointee)
262            << EltTy << DS.getSourceRange();
263          TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
264        }
265      } else {
266        Diag(DS.getRestrictSpecLoc(),
267             diag::err_typecheck_invalid_restrict_not_pointer)
268          << Result << DS.getSourceRange();
269        TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
270      }
271    }
272
273    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
274    // of a function type includes any type qualifiers, the behavior is
275    // undefined."
276    if (Result->isFunctionType() && TypeQuals) {
277      // Get some location to point at, either the C or V location.
278      SourceLocation Loc;
279      if (TypeQuals & QualType::Const)
280        Loc = DS.getConstSpecLoc();
281      else {
282        assert((TypeQuals & QualType::Volatile) &&
283               "Has CV quals but not C or V?");
284        Loc = DS.getVolatileSpecLoc();
285      }
286      Diag(Loc, diag::warn_typecheck_function_qualifiers)
287        << Result << DS.getSourceRange();
288    }
289
290    // C++ [dcl.ref]p1:
291    //   Cv-qualified references are ill-formed except when the
292    //   cv-qualifiers are introduced through the use of a typedef
293    //   (7.1.3) or of a template type argument (14.3), in which
294    //   case the cv-qualifiers are ignored.
295    // FIXME: Shouldn't we be checking SCS_typedef here?
296    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
297        TypeQuals && Result->isReferenceType()) {
298      TypeQuals &= ~QualType::Const;
299      TypeQuals &= ~QualType::Volatile;
300    }
301
302    Result = Result.getQualifiedType(TypeQuals);
303  }
304  return Result;
305}
306
307static std::string getPrintableNameForEntity(DeclarationName Entity) {
308  if (Entity)
309    return Entity.getAsString();
310
311  return "type name";
312}
313
314/// \brief Build a pointer type.
315///
316/// \param T The type to which we'll be building a pointer.
317///
318/// \param Quals The cvr-qualifiers to be applied to the pointer type.
319///
320/// \param Loc The location of the entity whose type involves this
321/// pointer type or, if there is no such entity, the location of the
322/// type that will have pointer type.
323///
324/// \param Entity The name of the entity that involves the pointer
325/// type, if known.
326///
327/// \returns A suitable pointer type, if there are no
328/// errors. Otherwise, returns a NULL type.
329QualType Sema::BuildPointerType(QualType T, unsigned Quals,
330                                SourceLocation Loc, DeclarationName Entity) {
331  if (T->isReferenceType()) {
332    // C++ 8.3.2p4: There shall be no ... pointers to references ...
333    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
334      << getPrintableNameForEntity(Entity);
335    return QualType();
336  }
337
338  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
339  // object or incomplete types shall not be restrict-qualified."
340  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
341    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
342      << T;
343    Quals &= ~QualType::Restrict;
344  }
345
346  // Build the pointer type.
347  return Context.getPointerType(T).getQualifiedType(Quals);
348}
349
350/// \brief Build a reference type.
351///
352/// \param T The type to which we'll be building a reference.
353///
354/// \param Quals The cvr-qualifiers to be applied to the reference type.
355///
356/// \param Loc The location of the entity whose type involves this
357/// reference type or, if there is no such entity, the location of the
358/// type that will have reference type.
359///
360/// \param Entity The name of the entity that involves the reference
361/// type, if known.
362///
363/// \returns A suitable reference type, if there are no
364/// errors. Otherwise, returns a NULL type.
365QualType Sema::BuildReferenceType(QualType T, bool LValueRef, unsigned Quals,
366                                  SourceLocation Loc, DeclarationName Entity) {
367  if (LValueRef) {
368    if (const RValueReferenceType *R = T->getAsRValueReferenceType()) {
369      // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
370      //   reference to a type T, and attempt to create the type "lvalue
371      //   reference to cv TD" creates the type "lvalue reference to T".
372      // We use the qualifiers (restrict or none) of the original reference,
373      // not the new ones. This is consistent with GCC.
374      return Context.getLValueReferenceType(R->getPointeeType()).
375               getQualifiedType(T.getCVRQualifiers());
376    }
377  }
378  if (T->isReferenceType()) {
379    // C++ [dcl.ref]p4: There shall be no references to references.
380    //
381    // According to C++ DR 106, references to references are only
382    // diagnosed when they are written directly (e.g., "int & &"),
383    // but not when they happen via a typedef:
384    //
385    //   typedef int& intref;
386    //   typedef intref& intref2;
387    //
388    // Parser::ParserDeclaratorInternal diagnoses the case where
389    // references are written directly; here, we handle the
390    // collapsing of references-to-references as described in C++
391    // DR 106 and amended by C++ DR 540.
392    return T;
393  }
394
395  // C++ [dcl.ref]p1:
396  //   A declarator that specifies the type “reference to cv void”
397  //   is ill-formed.
398  if (T->isVoidType()) {
399    Diag(Loc, diag::err_reference_to_void);
400    return QualType();
401  }
402
403  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
404  // object or incomplete types shall not be restrict-qualified."
405  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
406    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
407      << T;
408    Quals &= ~QualType::Restrict;
409  }
410
411  // C++ [dcl.ref]p1:
412  //   [...] Cv-qualified references are ill-formed except when the
413  //   cv-qualifiers are introduced through the use of a typedef
414  //   (7.1.3) or of a template type argument (14.3), in which case
415  //   the cv-qualifiers are ignored.
416  //
417  // We diagnose extraneous cv-qualifiers for the non-typedef,
418  // non-template type argument case within the parser. Here, we just
419  // ignore any extraneous cv-qualifiers.
420  Quals &= ~QualType::Const;
421  Quals &= ~QualType::Volatile;
422
423  // Handle restrict on references.
424  if (LValueRef)
425    return Context.getLValueReferenceType(T).getQualifiedType(Quals);
426  return Context.getRValueReferenceType(T).getQualifiedType(Quals);
427}
428
429/// \brief Build an array type.
430///
431/// \param T The type of each element in the array.
432///
433/// \param ASM C99 array size modifier (e.g., '*', 'static').
434///
435/// \param ArraySize Expression describing the size of the array.
436///
437/// \param Quals The cvr-qualifiers to be applied to the array's
438/// element type.
439///
440/// \param Loc The location of the entity whose type involves this
441/// array type or, if there is no such entity, the location of the
442/// type that will have array type.
443///
444/// \param Entity The name of the entity that involves the array
445/// type, if known.
446///
447/// \returns A suitable array type, if there are no errors. Otherwise,
448/// returns a NULL type.
449QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
450                              Expr *ArraySize, unsigned Quals,
451                              SourceLocation Loc, DeclarationName Entity) {
452  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
453  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
454  if (RequireCompleteType(Loc, T,
455                             diag::err_illegal_decl_array_incomplete_type))
456    return QualType();
457
458  if (T->isFunctionType()) {
459    Diag(Loc, diag::err_illegal_decl_array_of_functions)
460      << getPrintableNameForEntity(Entity);
461    return QualType();
462  }
463
464  // C++ 8.3.2p4: There shall be no ... arrays of references ...
465  if (T->isReferenceType()) {
466    Diag(Loc, diag::err_illegal_decl_array_of_references)
467      << getPrintableNameForEntity(Entity);
468    return QualType();
469  }
470
471  if (const RecordType *EltTy = T->getAsRecordType()) {
472    // If the element type is a struct or union that contains a variadic
473    // array, accept it as a GNU extension: C99 6.7.2.1p2.
474    if (EltTy->getDecl()->hasFlexibleArrayMember())
475      Diag(Loc, diag::ext_flexible_array_in_array) << T;
476  } else if (T->isObjCInterfaceType()) {
477    Diag(Loc, diag::warn_objc_array_of_interfaces) << T;
478  }
479
480  // C99 6.7.5.2p1: The size expression shall have integer type.
481  if (ArraySize && !ArraySize->isTypeDependent() &&
482      !ArraySize->getType()->isIntegerType()) {
483    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
484      << ArraySize->getType() << ArraySize->getSourceRange();
485    ArraySize->Destroy(Context);
486    return QualType();
487  }
488  llvm::APSInt ConstVal(32);
489  if (!ArraySize) {
490    T = Context.getIncompleteArrayType(T, ASM, Quals);
491  } else if (ArraySize->isValueDependent()) {
492    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals);
493  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
494             (!T->isDependentType() && !T->isConstantSizeType())) {
495    // Per C99, a variable array is an array with either a non-constant
496    // size or an element type that has a non-constant-size
497    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals);
498  } else {
499    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
500    // have a value greater than zero.
501    if (ConstVal.isSigned()) {
502      if (ConstVal.isNegative()) {
503        Diag(ArraySize->getLocStart(),
504             diag::err_typecheck_negative_array_size)
505          << ArraySize->getSourceRange();
506        return QualType();
507      } else if (ConstVal == 0) {
508        // GCC accepts zero sized static arrays.
509        Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
510          << ArraySize->getSourceRange();
511      }
512    }
513    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
514  }
515  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
516  if (!getLangOptions().C99) {
517    if (ArraySize && !ArraySize->isTypeDependent() &&
518        !ArraySize->isValueDependent() &&
519        !ArraySize->isIntegerConstantExpr(Context))
520      Diag(Loc, diag::ext_vla);
521    else if (ASM != ArrayType::Normal || Quals != 0)
522      Diag(Loc, diag::ext_c99_array_usage);
523  }
524
525  return T;
526}
527
528/// \brief Build a function type.
529///
530/// This routine checks the function type according to C++ rules and
531/// under the assumption that the result type and parameter types have
532/// just been instantiated from a template. It therefore duplicates
533/// some of the behavior of GetTypeForDeclarator, but in a much
534/// simpler form that is only suitable for this narrow use case.
535///
536/// \param T The return type of the function.
537///
538/// \param ParamTypes The parameter types of the function. This array
539/// will be modified to account for adjustments to the types of the
540/// function parameters.
541///
542/// \param NumParamTypes The number of parameter types in ParamTypes.
543///
544/// \param Variadic Whether this is a variadic function type.
545///
546/// \param Quals The cvr-qualifiers to be applied to the function type.
547///
548/// \param Loc The location of the entity whose type involves this
549/// function type or, if there is no such entity, the location of the
550/// type that will have function type.
551///
552/// \param Entity The name of the entity that involves the function
553/// type, if known.
554///
555/// \returns A suitable function type, if there are no
556/// errors. Otherwise, returns a NULL type.
557QualType Sema::BuildFunctionType(QualType T,
558                                 QualType *ParamTypes,
559                                 unsigned NumParamTypes,
560                                 bool Variadic, unsigned Quals,
561                                 SourceLocation Loc, DeclarationName Entity) {
562  if (T->isArrayType() || T->isFunctionType()) {
563    Diag(Loc, diag::err_func_returning_array_function) << T;
564    return QualType();
565  }
566
567  bool Invalid = false;
568  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
569    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
570    if (ParamType->isVoidType()) {
571      Diag(Loc, diag::err_param_with_void_type);
572      Invalid = true;
573    }
574
575    ParamTypes[Idx] = ParamType;
576  }
577
578  if (Invalid)
579    return QualType();
580
581  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
582                                 Quals);
583}
584
585/// GetTypeForDeclarator - Convert the type for the specified
586/// declarator to Type instances. Skip the outermost Skip type
587/// objects.
588QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S, unsigned Skip) {
589  bool OmittedReturnType = false;
590
591  if (D.getContext() == Declarator::BlockLiteralContext
592      && Skip == 0
593      && !D.getDeclSpec().hasTypeSpecifier()
594      && (D.getNumTypeObjects() == 0
595          || (D.getNumTypeObjects() == 1
596              && D.getTypeObject(0).Kind == DeclaratorChunk::Function)))
597    OmittedReturnType = true;
598
599  // long long is a C99 feature.
600  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
601      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
602    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
603
604  // Determine the type of the declarator. Not all forms of declarator
605  // have a type.
606  QualType T;
607  switch (D.getKind()) {
608  case Declarator::DK_Abstract:
609  case Declarator::DK_Normal:
610  case Declarator::DK_Operator: {
611    const DeclSpec &DS = D.getDeclSpec();
612    if (OmittedReturnType) {
613      // We default to a dependent type initially.  Can be modified by
614      // the first return statement.
615      T = Context.DependentTy;
616    } else {
617      T = ConvertDeclSpecToType(DS, D.getIdentifierLoc());
618      if (T.isNull())
619        return T;
620    }
621    break;
622  }
623
624  case Declarator::DK_Constructor:
625  case Declarator::DK_Destructor:
626  case Declarator::DK_Conversion:
627    // Constructors and destructors don't have return types. Use
628    // "void" instead. Conversion operators will check their return
629    // types separately.
630    T = Context.VoidTy;
631    break;
632  }
633
634  // The name we're declaring, if any.
635  DeclarationName Name;
636  if (D.getIdentifier())
637    Name = D.getIdentifier();
638
639  // Walk the DeclTypeInfo, building the recursive type as we go.
640  // DeclTypeInfos are ordered from the identifier out, which is
641  // opposite of what we want :).
642  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
643    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1+Skip);
644    switch (DeclType.Kind) {
645    default: assert(0 && "Unknown decltype!");
646    case DeclaratorChunk::BlockPointer:
647      // If blocks are disabled, emit an error.
648      if (!LangOpts.Blocks)
649        Diag(DeclType.Loc, diag::err_blocks_disable);
650
651      if (DeclType.Cls.TypeQuals)
652        Diag(D.getIdentifierLoc(), diag::err_qualified_block_pointer_type);
653      if (!T.getTypePtr()->isFunctionType())
654        Diag(D.getIdentifierLoc(), diag::err_nonfunction_block_type);
655      else
656        T = Context.getBlockPointerType(T);
657      break;
658    case DeclaratorChunk::Pointer:
659      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
660      break;
661    case DeclaratorChunk::Reference:
662      T = BuildReferenceType(T, DeclType.Ref.LValueRef,
663                             DeclType.Ref.HasRestrict ? QualType::Restrict : 0,
664                             DeclType.Loc, Name);
665      break;
666    case DeclaratorChunk::Array: {
667      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
668      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
669      ArrayType::ArraySizeModifier ASM;
670      if (ATI.isStar)
671        ASM = ArrayType::Star;
672      else if (ATI.hasStatic)
673        ASM = ArrayType::Static;
674      else
675        ASM = ArrayType::Normal;
676      T = BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals, DeclType.Loc, Name);
677      break;
678    }
679    case DeclaratorChunk::Function: {
680      // If the function declarator has a prototype (i.e. it is not () and
681      // does not have a K&R-style identifier list), then the arguments are part
682      // of the type, otherwise the argument list is ().
683      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
684
685      // C99 6.7.5.3p1: The return type may not be a function or array type.
686      if (T->isArrayType() || T->isFunctionType()) {
687        Diag(DeclType.Loc, diag::err_func_returning_array_function) << T;
688        T = Context.IntTy;
689        D.setInvalidType(true);
690      }
691
692      if (FTI.NumArgs == 0) {
693        if (getLangOptions().CPlusPlus) {
694          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
695          // function takes no arguments.
696          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic,FTI.TypeQuals);
697        } else if (FTI.isVariadic) {
698          // We allow a zero-parameter variadic function in C if the
699          // function is marked with the "overloadable"
700          // attribute. Scan for this attribute now.
701          bool Overloadable = false;
702          for (const AttributeList *Attrs = D.getAttributes();
703               Attrs; Attrs = Attrs->getNext()) {
704            if (Attrs->getKind() == AttributeList::AT_overloadable) {
705              Overloadable = true;
706              break;
707            }
708          }
709
710          if (!Overloadable)
711            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
712          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0);
713        } else {
714          // Simple void foo(), where the incoming T is the result type.
715          T = Context.getFunctionNoProtoType(T);
716        }
717      } else if (FTI.ArgInfo[0].Param == 0) {
718        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
719        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
720      } else {
721        // Otherwise, we have a function with an argument list that is
722        // potentially variadic.
723        llvm::SmallVector<QualType, 16> ArgTys;
724
725        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
726          ParmVarDecl *Param =
727            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
728          QualType ArgTy = Param->getType();
729          assert(!ArgTy.isNull() && "Couldn't parse type?");
730
731          // Adjust the parameter type.
732          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
733
734          // Look for 'void'.  void is allowed only as a single argument to a
735          // function with no other parameters (C99 6.7.5.3p10).  We record
736          // int(void) as a FunctionProtoType with an empty argument list.
737          if (ArgTy->isVoidType()) {
738            // If this is something like 'float(int, void)', reject it.  'void'
739            // is an incomplete type (C99 6.2.5p19) and function decls cannot
740            // have arguments of incomplete type.
741            if (FTI.NumArgs != 1 || FTI.isVariadic) {
742              Diag(DeclType.Loc, diag::err_void_only_param);
743              ArgTy = Context.IntTy;
744              Param->setType(ArgTy);
745            } else if (FTI.ArgInfo[i].Ident) {
746              // Reject, but continue to parse 'int(void abc)'.
747              Diag(FTI.ArgInfo[i].IdentLoc,
748                   diag::err_param_with_void_type);
749              ArgTy = Context.IntTy;
750              Param->setType(ArgTy);
751            } else {
752              // Reject, but continue to parse 'float(const void)'.
753              if (ArgTy.getCVRQualifiers())
754                Diag(DeclType.Loc, diag::err_void_param_qualified);
755
756              // Do not add 'void' to the ArgTys list.
757              break;
758            }
759          } else if (!FTI.hasPrototype) {
760            if (ArgTy->isPromotableIntegerType()) {
761              ArgTy = Context.IntTy;
762            } else if (const BuiltinType* BTy = ArgTy->getAsBuiltinType()) {
763              if (BTy->getKind() == BuiltinType::Float)
764                ArgTy = Context.DoubleTy;
765            }
766          }
767
768          ArgTys.push_back(ArgTy);
769        }
770        T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
771                                    FTI.isVariadic, FTI.TypeQuals);
772      }
773      break;
774    }
775    case DeclaratorChunk::MemberPointer:
776      // The scope spec must refer to a class, or be dependent.
777      DeclContext *DC = computeDeclContext(DeclType.Mem.Scope());
778      QualType ClsType;
779      // FIXME: Extend for dependent types when it's actually supported.
780      // See ActOnCXXNestedNameSpecifier.
781      if (CXXRecordDecl *RD = dyn_cast_or_null<CXXRecordDecl>(DC)) {
782        ClsType = Context.getTagDeclType(RD);
783      } else {
784        if (DC) {
785          Diag(DeclType.Mem.Scope().getBeginLoc(),
786               diag::err_illegal_decl_mempointer_in_nonclass)
787            << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
788            << DeclType.Mem.Scope().getRange();
789        }
790        D.setInvalidType(true);
791        ClsType = Context.IntTy;
792      }
793
794      // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
795      //   with reference type, or "cv void."
796      if (T->isReferenceType()) {
797        Diag(DeclType.Loc, diag::err_illegal_decl_pointer_to_reference)
798          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
799        D.setInvalidType(true);
800        T = Context.IntTy;
801      }
802      if (T->isVoidType()) {
803        Diag(DeclType.Loc, diag::err_illegal_decl_mempointer_to_void)
804          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
805        T = Context.IntTy;
806      }
807
808      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
809      // object or incomplete types shall not be restrict-qualified."
810      if ((DeclType.Mem.TypeQuals & QualType::Restrict) &&
811          !T->isIncompleteOrObjectType()) {
812        Diag(DeclType.Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
813          << T;
814        DeclType.Mem.TypeQuals &= ~QualType::Restrict;
815      }
816
817      T = Context.getMemberPointerType(T, ClsType.getTypePtr()).
818                    getQualifiedType(DeclType.Mem.TypeQuals);
819
820      break;
821    }
822
823    if (T.isNull()) {
824      D.setInvalidType(true);
825      T = Context.IntTy;
826    }
827
828    // See if there are any attributes on this declarator chunk.
829    if (const AttributeList *AL = DeclType.getAttrs())
830      ProcessTypeAttributeList(T, AL);
831  }
832
833  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
834    const FunctionProtoType *FnTy = T->getAsFunctionProtoType();
835    assert(FnTy && "Why oh why is there not a FunctionProtoType here ?");
836
837    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
838    // for a nonstatic member function, the function type to which a pointer
839    // to member refers, or the top-level function type of a function typedef
840    // declaration.
841    if (FnTy->getTypeQuals() != 0 &&
842        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
843        ((D.getContext() != Declarator::MemberContext &&
844          (!D.getCXXScopeSpec().isSet() ||
845           !computeDeclContext(D.getCXXScopeSpec())->isRecord())) ||
846         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
847      if (D.isFunctionDeclarator())
848        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
849      else
850        Diag(D.getIdentifierLoc(),
851             diag::err_invalid_qualified_typedef_function_type_use);
852
853      // Strip the cv-quals from the type.
854      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
855                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
856    }
857  }
858
859  // If there were any type attributes applied to the decl itself (not the
860  // type, apply the type attribute to the type!)
861  if (const AttributeList *Attrs = D.getAttributes())
862    ProcessTypeAttributeList(T, Attrs);
863
864  return T;
865}
866
867/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
868/// declarator
869QualType Sema::ObjCGetTypeForMethodDefinition(DeclPtrTy D) {
870  ObjCMethodDecl *MDecl = cast<ObjCMethodDecl>(D.getAs<Decl>());
871  QualType T = MDecl->getResultType();
872  llvm::SmallVector<QualType, 16> ArgTys;
873
874  // Add the first two invisible argument types for self and _cmd.
875  if (MDecl->isInstanceMethod()) {
876    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
877    selfTy = Context.getPointerType(selfTy);
878    ArgTys.push_back(selfTy);
879  } else
880    ArgTys.push_back(Context.getObjCIdType());
881  ArgTys.push_back(Context.getObjCSelType());
882
883  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
884       E = MDecl->param_end(); PI != E; ++PI) {
885    QualType ArgTy = (*PI)->getType();
886    assert(!ArgTy.isNull() && "Couldn't parse type?");
887    ArgTy = adjustParameterType(ArgTy);
888    ArgTys.push_back(ArgTy);
889  }
890  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
891                              MDecl->isVariadic(), 0);
892  return T;
893}
894
895/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
896/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
897/// they point to and return true. If T1 and T2 aren't pointer types
898/// or pointer-to-member types, or if they are not similar at this
899/// level, returns false and leaves T1 and T2 unchanged. Top-level
900/// qualifiers on T1 and T2 are ignored. This function will typically
901/// be called in a loop that successively "unwraps" pointer and
902/// pointer-to-member types to compare them at each level.
903bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
904  const PointerType *T1PtrType = T1->getAsPointerType(),
905                    *T2PtrType = T2->getAsPointerType();
906  if (T1PtrType && T2PtrType) {
907    T1 = T1PtrType->getPointeeType();
908    T2 = T2PtrType->getPointeeType();
909    return true;
910  }
911
912  const MemberPointerType *T1MPType = T1->getAsMemberPointerType(),
913                          *T2MPType = T2->getAsMemberPointerType();
914  if (T1MPType && T2MPType &&
915      Context.getCanonicalType(T1MPType->getClass()) ==
916      Context.getCanonicalType(T2MPType->getClass())) {
917    T1 = T1MPType->getPointeeType();
918    T2 = T2MPType->getPointeeType();
919    return true;
920  }
921  return false;
922}
923
924Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
925  // C99 6.7.6: Type names have no identifier.  This is already validated by
926  // the parser.
927  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
928
929  QualType T = GetTypeForDeclarator(D, S);
930  if (T.isNull())
931    return true;
932
933  // Check that there are no default arguments (C++ only).
934  if (getLangOptions().CPlusPlus)
935    CheckExtraCXXDefaultArguments(D);
936
937  return T.getAsOpaquePtr();
938}
939
940
941
942//===----------------------------------------------------------------------===//
943// Type Attribute Processing
944//===----------------------------------------------------------------------===//
945
946/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
947/// specified type.  The attribute contains 1 argument, the id of the address
948/// space for the type.
949static void HandleAddressSpaceTypeAttribute(QualType &Type,
950                                            const AttributeList &Attr, Sema &S){
951  // If this type is already address space qualified, reject it.
952  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
953  // for two or more different address spaces."
954  if (Type.getAddressSpace()) {
955    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
956    return;
957  }
958
959  // Check the attribute arguments.
960  if (Attr.getNumArgs() != 1) {
961    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
962    return;
963  }
964  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
965  llvm::APSInt addrSpace(32);
966  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
967    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
968      << ASArgExpr->getSourceRange();
969    return;
970  }
971
972  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
973  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
974}
975
976/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
977/// specified type.  The attribute contains 1 argument, weak or strong.
978static void HandleObjCGCTypeAttribute(QualType &Type,
979                                      const AttributeList &Attr, Sema &S) {
980  if (Type.getObjCGCAttr() != QualType::GCNone) {
981    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
982    return;
983  }
984
985  // Check the attribute arguments.
986  if (!Attr.getParameterName()) {
987    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
988      << "objc_gc" << 1;
989    return;
990  }
991  QualType::GCAttrTypes GCAttr;
992  if (Attr.getNumArgs() != 0) {
993    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
994    return;
995  }
996  if (Attr.getParameterName()->isStr("weak"))
997    GCAttr = QualType::Weak;
998  else if (Attr.getParameterName()->isStr("strong"))
999    GCAttr = QualType::Strong;
1000  else {
1001    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1002      << "objc_gc" << Attr.getParameterName();
1003    return;
1004  }
1005
1006  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1007}
1008
1009void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
1010  // Scan through and apply attributes to this type where it makes sense.  Some
1011  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1012  // type, but others can be present in the type specifiers even though they
1013  // apply to the decl.  Here we apply type attributes and ignore the rest.
1014  for (; AL; AL = AL->getNext()) {
1015    // If this is an attribute we can handle, do so now, otherwise, add it to
1016    // the LeftOverAttrs list for rechaining.
1017    switch (AL->getKind()) {
1018    default: break;
1019    case AttributeList::AT_address_space:
1020      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
1021      break;
1022    case AttributeList::AT_objc_gc:
1023      HandleObjCGCTypeAttribute(Result, *AL, *this);
1024      break;
1025    }
1026  }
1027}
1028
1029/// @brief Ensure that the type T is a complete type.
1030///
1031/// This routine checks whether the type @p T is complete in any
1032/// context where a complete type is required. If @p T is a complete
1033/// type, returns false. If @p T is a class template specialization,
1034/// this routine then attempts to perform class template
1035/// instantiation. If instantiation fails, or if @p T is incomplete
1036/// and cannot be completed, issues the diagnostic @p diag (giving it
1037/// the type @p T) and returns true.
1038///
1039/// @param Loc  The location in the source that the incomplete type
1040/// diagnostic should refer to.
1041///
1042/// @param T  The type that this routine is examining for completeness.
1043///
1044/// @param diag The diagnostic value (e.g.,
1045/// @c diag::err_typecheck_decl_incomplete_type) that will be used
1046/// for the error message if @p T is incomplete.
1047///
1048/// @param Range1  An optional range in the source code that will be a
1049/// part of the "incomplete type" error message.
1050///
1051/// @param Range2  An optional range in the source code that will be a
1052/// part of the "incomplete type" error message.
1053///
1054/// @param PrintType If non-NULL, the type that should be printed
1055/// instead of @p T. This parameter should be used when the type that
1056/// we're checking for incompleteness isn't the type that should be
1057/// displayed to the user, e.g., when T is a type and PrintType is a
1058/// pointer to T.
1059///
1060/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1061/// @c false otherwise.
1062bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, unsigned diag,
1063                                  SourceRange Range1, SourceRange Range2,
1064                                  QualType PrintType) {
1065  // If we have a complete type, we're done.
1066  if (!T->isIncompleteType())
1067    return false;
1068
1069  // If we have a class template specialization or a class member of a
1070  // class template specialization, try to instantiate it.
1071  if (const RecordType *Record = T->getAsRecordType()) {
1072    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
1073          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
1074      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
1075        // Update the class template specialization's location to
1076        // refer to the point of instantiation.
1077        if (Loc.isValid())
1078          ClassTemplateSpec->setLocation(Loc);
1079        return InstantiateClassTemplateSpecialization(ClassTemplateSpec,
1080                                             /*ExplicitInstantiation=*/false);
1081      }
1082    } else if (CXXRecordDecl *Rec
1083                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
1084      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
1085        // Find the class template specialization that surrounds this
1086        // member class.
1087        ClassTemplateSpecializationDecl *Spec = 0;
1088        for (DeclContext *Parent = Rec->getDeclContext();
1089             Parent && !Spec; Parent = Parent->getParent())
1090          Spec = dyn_cast<ClassTemplateSpecializationDecl>(Parent);
1091        assert(Spec && "Not a member of a class template specialization?");
1092        return InstantiateClass(Loc, Rec, Pattern,
1093                                Spec->getTemplateArgs(),
1094                                Spec->getNumTemplateArgs());
1095      }
1096    }
1097  }
1098
1099  if (PrintType.isNull())
1100    PrintType = T;
1101
1102  // We have an incomplete type. Produce a diagnostic.
1103  Diag(Loc, diag) << PrintType << Range1 << Range2;
1104
1105  // If the type was a forward declaration of a class/struct/union
1106  // type, produce
1107  const TagType *Tag = 0;
1108  if (const RecordType *Record = T->getAsRecordType())
1109    Tag = Record;
1110  else if (const EnumType *Enum = T->getAsEnumType())
1111    Tag = Enum;
1112
1113  if (Tag && !Tag->getDecl()->isInvalidDecl())
1114    Diag(Tag->getDecl()->getLocation(),
1115         Tag->isBeingDefined() ? diag::note_type_being_defined
1116                               : diag::note_forward_declaration)
1117        << QualType(Tag, 0);
1118
1119  return true;
1120}
1121
1122/// \brief Retrieve a version of the type 'T' that is qualified by the
1123/// nested-name-specifier contained in SS.
1124QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
1125  if (!SS.isSet() || SS.isInvalid() || T.isNull())
1126    return T;
1127
1128  NestedNameSpecifier *NNS
1129    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1130  return Context.getQualifiedNameType(NNS, T);
1131}
1132