SemaType.cpp revision 8c952cd40ccec9d720931f27e7d722fed207d536
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/TypeLoc.h"
22#include "clang/AST/TypeLocVisitor.h"
23#include "clang/Basic/OpenCL.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Lex/Preprocessor.h"
27#include "clang/Parse/ParseDiagnostic.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/DelayedDiagnostic.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/ScopeInfo.h"
32#include "clang/Sema/Template.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallString.h"
35#include "llvm/Support/ErrorHandling.h"
36using namespace clang;
37
38/// isOmittedBlockReturnType - Return true if this declarator is missing a
39/// return type because this is a omitted return type on a block literal.
40static bool isOmittedBlockReturnType(const Declarator &D) {
41  if (D.getContext() != Declarator::BlockLiteralContext ||
42      D.getDeclSpec().hasTypeSpecifier())
43    return false;
44
45  if (D.getNumTypeObjects() == 0)
46    return true;   // ^{ ... }
47
48  if (D.getNumTypeObjects() == 1 &&
49      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
50    return true;   // ^(int X, float Y) { ... }
51
52  return false;
53}
54
55/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
56/// doesn't apply to the given type.
57static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
58                                     QualType type) {
59  bool useExpansionLoc = false;
60
61  unsigned diagID = 0;
62  switch (attr.getKind()) {
63  case AttributeList::AT_ObjCGC:
64    diagID = diag::warn_pointer_attribute_wrong_type;
65    useExpansionLoc = true;
66    break;
67
68  case AttributeList::AT_ObjCOwnership:
69    diagID = diag::warn_objc_object_attribute_wrong_type;
70    useExpansionLoc = true;
71    break;
72
73  default:
74    // Assume everything else was a function attribute.
75    diagID = diag::warn_function_attribute_wrong_type;
76    break;
77  }
78
79  SourceLocation loc = attr.getLoc();
80  StringRef name = attr.getName()->getName();
81
82  // The GC attributes are usually written with macros;  special-case them.
83  if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
84    if (attr.getParameterName()->isStr("strong")) {
85      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
86    } else if (attr.getParameterName()->isStr("weak")) {
87      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
88    }
89  }
90
91  S.Diag(loc, diagID) << name << type;
92}
93
94// objc_gc applies to Objective-C pointers or, otherwise, to the
95// smallest available pointer type (i.e. 'void*' in 'void**').
96#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
97    case AttributeList::AT_ObjCGC: \
98    case AttributeList::AT_ObjCOwnership
99
100// Function type attributes.
101#define FUNCTION_TYPE_ATTRS_CASELIST \
102    case AttributeList::AT_NoReturn: \
103    case AttributeList::AT_CDecl: \
104    case AttributeList::AT_FastCall: \
105    case AttributeList::AT_StdCall: \
106    case AttributeList::AT_ThisCall: \
107    case AttributeList::AT_Pascal: \
108    case AttributeList::AT_Regparm: \
109    case AttributeList::AT_Pcs: \
110    case AttributeList::AT_PnaclCall: \
111    case AttributeList::AT_IntelOclBicc \
112
113namespace {
114  /// An object which stores processing state for the entire
115  /// GetTypeForDeclarator process.
116  class TypeProcessingState {
117    Sema &sema;
118
119    /// The declarator being processed.
120    Declarator &declarator;
121
122    /// The index of the declarator chunk we're currently processing.
123    /// May be the total number of valid chunks, indicating the
124    /// DeclSpec.
125    unsigned chunkIndex;
126
127    /// Whether there are non-trivial modifications to the decl spec.
128    bool trivial;
129
130    /// Whether we saved the attributes in the decl spec.
131    bool hasSavedAttrs;
132
133    /// The original set of attributes on the DeclSpec.
134    SmallVector<AttributeList*, 2> savedAttrs;
135
136    /// A list of attributes to diagnose the uselessness of when the
137    /// processing is complete.
138    SmallVector<AttributeList*, 2> ignoredTypeAttrs;
139
140  public:
141    TypeProcessingState(Sema &sema, Declarator &declarator)
142      : sema(sema), declarator(declarator),
143        chunkIndex(declarator.getNumTypeObjects()),
144        trivial(true), hasSavedAttrs(false) {}
145
146    Sema &getSema() const {
147      return sema;
148    }
149
150    Declarator &getDeclarator() const {
151      return declarator;
152    }
153
154    bool isProcessingDeclSpec() const {
155      return chunkIndex == declarator.getNumTypeObjects();
156    }
157
158    unsigned getCurrentChunkIndex() const {
159      return chunkIndex;
160    }
161
162    void setCurrentChunkIndex(unsigned idx) {
163      assert(idx <= declarator.getNumTypeObjects());
164      chunkIndex = idx;
165    }
166
167    AttributeList *&getCurrentAttrListRef() const {
168      if (isProcessingDeclSpec())
169        return getMutableDeclSpec().getAttributes().getListRef();
170      return declarator.getTypeObject(chunkIndex).getAttrListRef();
171    }
172
173    /// Save the current set of attributes on the DeclSpec.
174    void saveDeclSpecAttrs() {
175      // Don't try to save them multiple times.
176      if (hasSavedAttrs) return;
177
178      DeclSpec &spec = getMutableDeclSpec();
179      for (AttributeList *attr = spec.getAttributes().getList(); attr;
180             attr = attr->getNext())
181        savedAttrs.push_back(attr);
182      trivial &= savedAttrs.empty();
183      hasSavedAttrs = true;
184    }
185
186    /// Record that we had nowhere to put the given type attribute.
187    /// We will diagnose such attributes later.
188    void addIgnoredTypeAttr(AttributeList &attr) {
189      ignoredTypeAttrs.push_back(&attr);
190    }
191
192    /// Diagnose all the ignored type attributes, given that the
193    /// declarator worked out to the given type.
194    void diagnoseIgnoredTypeAttrs(QualType type) const {
195      for (SmallVectorImpl<AttributeList*>::const_iterator
196             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
197           i != e; ++i)
198        diagnoseBadTypeAttribute(getSema(), **i, type);
199    }
200
201    ~TypeProcessingState() {
202      if (trivial) return;
203
204      restoreDeclSpecAttrs();
205    }
206
207  private:
208    DeclSpec &getMutableDeclSpec() const {
209      return const_cast<DeclSpec&>(declarator.getDeclSpec());
210    }
211
212    void restoreDeclSpecAttrs() {
213      assert(hasSavedAttrs);
214
215      if (savedAttrs.empty()) {
216        getMutableDeclSpec().getAttributes().set(0);
217        return;
218      }
219
220      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
221      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
222        savedAttrs[i]->setNext(savedAttrs[i+1]);
223      savedAttrs.back()->setNext(0);
224    }
225  };
226
227  /// Basically std::pair except that we really want to avoid an
228  /// implicit operator= for safety concerns.  It's also a minor
229  /// link-time optimization for this to be a private type.
230  struct AttrAndList {
231    /// The attribute.
232    AttributeList &first;
233
234    /// The head of the list the attribute is currently in.
235    AttributeList *&second;
236
237    AttrAndList(AttributeList &attr, AttributeList *&head)
238      : first(attr), second(head) {}
239  };
240}
241
242namespace llvm {
243  template <> struct isPodLike<AttrAndList> {
244    static const bool value = true;
245  };
246}
247
248static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
249  attr.setNext(head);
250  head = &attr;
251}
252
253static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
254  if (head == &attr) {
255    head = attr.getNext();
256    return;
257  }
258
259  AttributeList *cur = head;
260  while (true) {
261    assert(cur && cur->getNext() && "ran out of attrs?");
262    if (cur->getNext() == &attr) {
263      cur->setNext(attr.getNext());
264      return;
265    }
266    cur = cur->getNext();
267  }
268}
269
270static void moveAttrFromListToList(AttributeList &attr,
271                                   AttributeList *&fromList,
272                                   AttributeList *&toList) {
273  spliceAttrOutOfList(attr, fromList);
274  spliceAttrIntoList(attr, toList);
275}
276
277/// The location of a type attribute.
278enum TypeAttrLocation {
279  /// The attribute is in the decl-specifier-seq.
280  TAL_DeclSpec,
281  /// The attribute is part of a DeclaratorChunk.
282  TAL_DeclChunk,
283  /// The attribute is immediately after the declaration's name.
284  TAL_DeclName
285};
286
287static void processTypeAttrs(TypeProcessingState &state,
288                             QualType &type, TypeAttrLocation TAL,
289                             AttributeList *attrs);
290
291static bool handleFunctionTypeAttr(TypeProcessingState &state,
292                                   AttributeList &attr,
293                                   QualType &type);
294
295static bool handleObjCGCTypeAttr(TypeProcessingState &state,
296                                 AttributeList &attr, QualType &type);
297
298static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
299                                       AttributeList &attr, QualType &type);
300
301static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
302                                      AttributeList &attr, QualType &type) {
303  if (attr.getKind() == AttributeList::AT_ObjCGC)
304    return handleObjCGCTypeAttr(state, attr, type);
305  assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
306  return handleObjCOwnershipTypeAttr(state, attr, type);
307}
308
309/// Given the index of a declarator chunk, check whether that chunk
310/// directly specifies the return type of a function and, if so, find
311/// an appropriate place for it.
312///
313/// \param i - a notional index which the search will start
314///   immediately inside
315static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
316                                                unsigned i) {
317  assert(i <= declarator.getNumTypeObjects());
318
319  DeclaratorChunk *result = 0;
320
321  // First, look inwards past parens for a function declarator.
322  for (; i != 0; --i) {
323    DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
324    switch (fnChunk.Kind) {
325    case DeclaratorChunk::Paren:
326      continue;
327
328    // If we find anything except a function, bail out.
329    case DeclaratorChunk::Pointer:
330    case DeclaratorChunk::BlockPointer:
331    case DeclaratorChunk::Array:
332    case DeclaratorChunk::Reference:
333    case DeclaratorChunk::MemberPointer:
334      return result;
335
336    // If we do find a function declarator, scan inwards from that,
337    // looking for a block-pointer declarator.
338    case DeclaratorChunk::Function:
339      for (--i; i != 0; --i) {
340        DeclaratorChunk &blockChunk = declarator.getTypeObject(i-1);
341        switch (blockChunk.Kind) {
342        case DeclaratorChunk::Paren:
343        case DeclaratorChunk::Pointer:
344        case DeclaratorChunk::Array:
345        case DeclaratorChunk::Function:
346        case DeclaratorChunk::Reference:
347        case DeclaratorChunk::MemberPointer:
348          continue;
349        case DeclaratorChunk::BlockPointer:
350          result = &blockChunk;
351          goto continue_outer;
352        }
353        llvm_unreachable("bad declarator chunk kind");
354      }
355
356      // If we run out of declarators doing that, we're done.
357      return result;
358    }
359    llvm_unreachable("bad declarator chunk kind");
360
361    // Okay, reconsider from our new point.
362  continue_outer: ;
363  }
364
365  // Ran out of chunks, bail out.
366  return result;
367}
368
369/// Given that an objc_gc attribute was written somewhere on a
370/// declaration *other* than on the declarator itself (for which, use
371/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
372/// didn't apply in whatever position it was written in, try to move
373/// it to a more appropriate position.
374static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
375                                          AttributeList &attr,
376                                          QualType type) {
377  Declarator &declarator = state.getDeclarator();
378
379  // Move it to the outermost normal or block pointer declarator.
380  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
381    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
382    switch (chunk.Kind) {
383    case DeclaratorChunk::Pointer:
384    case DeclaratorChunk::BlockPointer: {
385      // But don't move an ARC ownership attribute to the return type
386      // of a block.
387      DeclaratorChunk *destChunk = 0;
388      if (state.isProcessingDeclSpec() &&
389          attr.getKind() == AttributeList::AT_ObjCOwnership)
390        destChunk = maybeMovePastReturnType(declarator, i - 1);
391      if (!destChunk) destChunk = &chunk;
392
393      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
394                             destChunk->getAttrListRef());
395      return;
396    }
397
398    case DeclaratorChunk::Paren:
399    case DeclaratorChunk::Array:
400      continue;
401
402    // We may be starting at the return type of a block.
403    case DeclaratorChunk::Function:
404      if (state.isProcessingDeclSpec() &&
405          attr.getKind() == AttributeList::AT_ObjCOwnership) {
406        if (DeclaratorChunk *dest = maybeMovePastReturnType(declarator, i)) {
407          moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
408                                 dest->getAttrListRef());
409          return;
410        }
411      }
412      goto error;
413
414    // Don't walk through these.
415    case DeclaratorChunk::Reference:
416    case DeclaratorChunk::MemberPointer:
417      goto error;
418    }
419  }
420 error:
421
422  diagnoseBadTypeAttribute(state.getSema(), attr, type);
423}
424
425/// Distribute an objc_gc type attribute that was written on the
426/// declarator.
427static void
428distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
429                                            AttributeList &attr,
430                                            QualType &declSpecType) {
431  Declarator &declarator = state.getDeclarator();
432
433  // objc_gc goes on the innermost pointer to something that's not a
434  // pointer.
435  unsigned innermost = -1U;
436  bool considerDeclSpec = true;
437  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
438    DeclaratorChunk &chunk = declarator.getTypeObject(i);
439    switch (chunk.Kind) {
440    case DeclaratorChunk::Pointer:
441    case DeclaratorChunk::BlockPointer:
442      innermost = i;
443      continue;
444
445    case DeclaratorChunk::Reference:
446    case DeclaratorChunk::MemberPointer:
447    case DeclaratorChunk::Paren:
448    case DeclaratorChunk::Array:
449      continue;
450
451    case DeclaratorChunk::Function:
452      considerDeclSpec = false;
453      goto done;
454    }
455  }
456 done:
457
458  // That might actually be the decl spec if we weren't blocked by
459  // anything in the declarator.
460  if (considerDeclSpec) {
461    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
462      // Splice the attribute into the decl spec.  Prevents the
463      // attribute from being applied multiple times and gives
464      // the source-location-filler something to work with.
465      state.saveDeclSpecAttrs();
466      moveAttrFromListToList(attr, declarator.getAttrListRef(),
467               declarator.getMutableDeclSpec().getAttributes().getListRef());
468      return;
469    }
470  }
471
472  // Otherwise, if we found an appropriate chunk, splice the attribute
473  // into it.
474  if (innermost != -1U) {
475    moveAttrFromListToList(attr, declarator.getAttrListRef(),
476                       declarator.getTypeObject(innermost).getAttrListRef());
477    return;
478  }
479
480  // Otherwise, diagnose when we're done building the type.
481  spliceAttrOutOfList(attr, declarator.getAttrListRef());
482  state.addIgnoredTypeAttr(attr);
483}
484
485/// A function type attribute was written somewhere in a declaration
486/// *other* than on the declarator itself or in the decl spec.  Given
487/// that it didn't apply in whatever position it was written in, try
488/// to move it to a more appropriate position.
489static void distributeFunctionTypeAttr(TypeProcessingState &state,
490                                       AttributeList &attr,
491                                       QualType type) {
492  Declarator &declarator = state.getDeclarator();
493
494  // Try to push the attribute from the return type of a function to
495  // the function itself.
496  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
497    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
498    switch (chunk.Kind) {
499    case DeclaratorChunk::Function:
500      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
501                             chunk.getAttrListRef());
502      return;
503
504    case DeclaratorChunk::Paren:
505    case DeclaratorChunk::Pointer:
506    case DeclaratorChunk::BlockPointer:
507    case DeclaratorChunk::Array:
508    case DeclaratorChunk::Reference:
509    case DeclaratorChunk::MemberPointer:
510      continue;
511    }
512  }
513
514  diagnoseBadTypeAttribute(state.getSema(), attr, type);
515}
516
517/// Try to distribute a function type attribute to the innermost
518/// function chunk or type.  Returns true if the attribute was
519/// distributed, false if no location was found.
520static bool
521distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
522                                      AttributeList &attr,
523                                      AttributeList *&attrList,
524                                      QualType &declSpecType) {
525  Declarator &declarator = state.getDeclarator();
526
527  // Put it on the innermost function chunk, if there is one.
528  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
529    DeclaratorChunk &chunk = declarator.getTypeObject(i);
530    if (chunk.Kind != DeclaratorChunk::Function) continue;
531
532    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
533    return true;
534  }
535
536  if (handleFunctionTypeAttr(state, attr, declSpecType)) {
537    spliceAttrOutOfList(attr, attrList);
538    return true;
539  }
540
541  return false;
542}
543
544/// A function type attribute was written in the decl spec.  Try to
545/// apply it somewhere.
546static void
547distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
548                                       AttributeList &attr,
549                                       QualType &declSpecType) {
550  state.saveDeclSpecAttrs();
551
552  // C++11 attributes before the decl specifiers actually appertain to
553  // the declarators. Move them straight there. We don't support the
554  // 'put them wherever you like' semantics we allow for GNU attributes.
555  if (attr.isCXX11Attribute()) {
556    moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
557                           state.getDeclarator().getAttrListRef());
558    return;
559  }
560
561  // Try to distribute to the innermost.
562  if (distributeFunctionTypeAttrToInnermost(state, attr,
563                                            state.getCurrentAttrListRef(),
564                                            declSpecType))
565    return;
566
567  // If that failed, diagnose the bad attribute when the declarator is
568  // fully built.
569  state.addIgnoredTypeAttr(attr);
570}
571
572/// A function type attribute was written on the declarator.  Try to
573/// apply it somewhere.
574static void
575distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
576                                         AttributeList &attr,
577                                         QualType &declSpecType) {
578  Declarator &declarator = state.getDeclarator();
579
580  // Try to distribute to the innermost.
581  if (distributeFunctionTypeAttrToInnermost(state, attr,
582                                            declarator.getAttrListRef(),
583                                            declSpecType))
584    return;
585
586  // If that failed, diagnose the bad attribute when the declarator is
587  // fully built.
588  spliceAttrOutOfList(attr, declarator.getAttrListRef());
589  state.addIgnoredTypeAttr(attr);
590}
591
592/// \brief Given that there are attributes written on the declarator
593/// itself, try to distribute any type attributes to the appropriate
594/// declarator chunk.
595///
596/// These are attributes like the following:
597///   int f ATTR;
598///   int (f ATTR)();
599/// but not necessarily this:
600///   int f() ATTR;
601static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
602                                              QualType &declSpecType) {
603  // Collect all the type attributes from the declarator itself.
604  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
605  AttributeList *attr = state.getDeclarator().getAttributes();
606  AttributeList *next;
607  do {
608    next = attr->getNext();
609
610    // Do not distribute C++11 attributes. They have strict rules for what
611    // they appertain to.
612    if (attr->isCXX11Attribute())
613      continue;
614
615    switch (attr->getKind()) {
616    OBJC_POINTER_TYPE_ATTRS_CASELIST:
617      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
618      break;
619
620    case AttributeList::AT_NSReturnsRetained:
621      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
622        break;
623      // fallthrough
624
625    FUNCTION_TYPE_ATTRS_CASELIST:
626      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
627      break;
628
629    default:
630      break;
631    }
632  } while ((attr = next));
633}
634
635/// Add a synthetic '()' to a block-literal declarator if it is
636/// required, given the return type.
637static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
638                                          QualType declSpecType) {
639  Declarator &declarator = state.getDeclarator();
640
641  // First, check whether the declarator would produce a function,
642  // i.e. whether the innermost semantic chunk is a function.
643  if (declarator.isFunctionDeclarator()) {
644    // If so, make that declarator a prototyped declarator.
645    declarator.getFunctionTypeInfo().hasPrototype = true;
646    return;
647  }
648
649  // If there are any type objects, the type as written won't name a
650  // function, regardless of the decl spec type.  This is because a
651  // block signature declarator is always an abstract-declarator, and
652  // abstract-declarators can't just be parentheses chunks.  Therefore
653  // we need to build a function chunk unless there are no type
654  // objects and the decl spec type is a function.
655  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
656    return;
657
658  // Note that there *are* cases with invalid declarators where
659  // declarators consist solely of parentheses.  In general, these
660  // occur only in failed efforts to make function declarators, so
661  // faking up the function chunk is still the right thing to do.
662
663  // Otherwise, we need to fake up a function declarator.
664  SourceLocation loc = declarator.getLocStart();
665
666  // ...and *prepend* it to the declarator.
667  SourceLocation NoLoc;
668  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
669                             /*HasProto=*/true,
670                             /*IsAmbiguous=*/false,
671                             /*LParenLoc=*/NoLoc,
672                             /*ArgInfo=*/0,
673                             /*NumArgs=*/0,
674                             /*EllipsisLoc=*/NoLoc,
675                             /*RParenLoc=*/NoLoc,
676                             /*TypeQuals=*/0,
677                             /*RefQualifierIsLvalueRef=*/true,
678                             /*RefQualifierLoc=*/NoLoc,
679                             /*ConstQualifierLoc=*/NoLoc,
680                             /*VolatileQualifierLoc=*/NoLoc,
681                             /*MutableLoc=*/NoLoc,
682                             EST_None,
683                             /*ESpecLoc=*/NoLoc,
684                             /*Exceptions=*/0,
685                             /*ExceptionRanges=*/0,
686                             /*NumExceptions=*/0,
687                             /*NoexceptExpr=*/0,
688                             loc, loc, declarator));
689
690  // For consistency, make sure the state still has us as processing
691  // the decl spec.
692  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
693  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
694}
695
696/// \brief Convert the specified declspec to the appropriate type
697/// object.
698/// \param state Specifies the declarator containing the declaration specifier
699/// to be converted, along with other associated processing state.
700/// \returns The type described by the declaration specifiers.  This function
701/// never returns null.
702static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
703  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
704  // checking.
705
706  Sema &S = state.getSema();
707  Declarator &declarator = state.getDeclarator();
708  const DeclSpec &DS = declarator.getDeclSpec();
709  SourceLocation DeclLoc = declarator.getIdentifierLoc();
710  if (DeclLoc.isInvalid())
711    DeclLoc = DS.getLocStart();
712
713  ASTContext &Context = S.Context;
714
715  QualType Result;
716  switch (DS.getTypeSpecType()) {
717  case DeclSpec::TST_void:
718    Result = Context.VoidTy;
719    break;
720  case DeclSpec::TST_char:
721    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
722      Result = Context.CharTy;
723    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
724      Result = Context.SignedCharTy;
725    else {
726      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
727             "Unknown TSS value");
728      Result = Context.UnsignedCharTy;
729    }
730    break;
731  case DeclSpec::TST_wchar:
732    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
733      Result = Context.WCharTy;
734    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
735      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
736        << DS.getSpecifierName(DS.getTypeSpecType());
737      Result = Context.getSignedWCharType();
738    } else {
739      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
740        "Unknown TSS value");
741      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
742        << DS.getSpecifierName(DS.getTypeSpecType());
743      Result = Context.getUnsignedWCharType();
744    }
745    break;
746  case DeclSpec::TST_char16:
747      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
748        "Unknown TSS value");
749      Result = Context.Char16Ty;
750    break;
751  case DeclSpec::TST_char32:
752      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
753        "Unknown TSS value");
754      Result = Context.Char32Ty;
755    break;
756  case DeclSpec::TST_unspecified:
757    // "<proto1,proto2>" is an objc qualified ID with a missing id.
758    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
759      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
760                                         (ObjCProtocolDecl*const*)PQ,
761                                         DS.getNumProtocolQualifiers());
762      Result = Context.getObjCObjectPointerType(Result);
763      break;
764    }
765
766    // If this is a missing declspec in a block literal return context, then it
767    // is inferred from the return statements inside the block.
768    // The declspec is always missing in a lambda expr context; it is either
769    // specified with a trailing return type or inferred.
770    if (declarator.getContext() == Declarator::LambdaExprContext ||
771        isOmittedBlockReturnType(declarator)) {
772      Result = Context.DependentTy;
773      break;
774    }
775
776    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
777    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
778    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
779    // Note that the one exception to this is function definitions, which are
780    // allowed to be completely missing a declspec.  This is handled in the
781    // parser already though by it pretending to have seen an 'int' in this
782    // case.
783    if (S.getLangOpts().ImplicitInt) {
784      // In C89 mode, we only warn if there is a completely missing declspec
785      // when one is not allowed.
786      if (DS.isEmpty()) {
787        S.Diag(DeclLoc, diag::ext_missing_declspec)
788          << DS.getSourceRange()
789        << FixItHint::CreateInsertion(DS.getLocStart(), "int");
790      }
791    } else if (!DS.hasTypeSpecifier()) {
792      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
793      // "At least one type specifier shall be given in the declaration
794      // specifiers in each declaration, and in the specifier-qualifier list in
795      // each struct declaration and type name."
796      // FIXME: Does Microsoft really have the implicit int extension in C++?
797      if (S.getLangOpts().CPlusPlus &&
798          !S.getLangOpts().MicrosoftExt) {
799        S.Diag(DeclLoc, diag::err_missing_type_specifier)
800          << DS.getSourceRange();
801
802        // When this occurs in C++ code, often something is very broken with the
803        // value being declared, poison it as invalid so we don't get chains of
804        // errors.
805        declarator.setInvalidType(true);
806      } else {
807        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
808          << DS.getSourceRange();
809      }
810    }
811
812    // FALL THROUGH.
813  case DeclSpec::TST_int: {
814    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
815      switch (DS.getTypeSpecWidth()) {
816      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
817      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
818      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
819      case DeclSpec::TSW_longlong:
820        Result = Context.LongLongTy;
821
822        // 'long long' is a C99 or C++11 feature.
823        if (!S.getLangOpts().C99) {
824          if (S.getLangOpts().CPlusPlus)
825            S.Diag(DS.getTypeSpecWidthLoc(),
826                   S.getLangOpts().CPlusPlus11 ?
827                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
828          else
829            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
830        }
831        break;
832      }
833    } else {
834      switch (DS.getTypeSpecWidth()) {
835      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
836      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
837      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
838      case DeclSpec::TSW_longlong:
839        Result = Context.UnsignedLongLongTy;
840
841        // 'long long' is a C99 or C++11 feature.
842        if (!S.getLangOpts().C99) {
843          if (S.getLangOpts().CPlusPlus)
844            S.Diag(DS.getTypeSpecWidthLoc(),
845                   S.getLangOpts().CPlusPlus11 ?
846                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
847          else
848            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
849        }
850        break;
851      }
852    }
853    break;
854  }
855  case DeclSpec::TST_int128:
856    if (!S.PP.getTargetInfo().hasInt128Type())
857      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_int128_unsupported);
858    if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
859      Result = Context.UnsignedInt128Ty;
860    else
861      Result = Context.Int128Ty;
862    break;
863  case DeclSpec::TST_half: Result = Context.HalfTy; break;
864  case DeclSpec::TST_float: Result = Context.FloatTy; break;
865  case DeclSpec::TST_double:
866    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
867      Result = Context.LongDoubleTy;
868    else
869      Result = Context.DoubleTy;
870
871    if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
872      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
873      declarator.setInvalidType(true);
874    }
875    break;
876  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
877  case DeclSpec::TST_decimal32:    // _Decimal32
878  case DeclSpec::TST_decimal64:    // _Decimal64
879  case DeclSpec::TST_decimal128:   // _Decimal128
880    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
881    Result = Context.IntTy;
882    declarator.setInvalidType(true);
883    break;
884  case DeclSpec::TST_class:
885  case DeclSpec::TST_enum:
886  case DeclSpec::TST_union:
887  case DeclSpec::TST_struct:
888  case DeclSpec::TST_interface: {
889    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
890    if (!D) {
891      // This can happen in C++ with ambiguous lookups.
892      Result = Context.IntTy;
893      declarator.setInvalidType(true);
894      break;
895    }
896
897    // If the type is deprecated or unavailable, diagnose it.
898    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
899
900    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
901           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
902
903    // TypeQuals handled by caller.
904    Result = Context.getTypeDeclType(D);
905
906    // In both C and C++, make an ElaboratedType.
907    ElaboratedTypeKeyword Keyword
908      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
909    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
910    break;
911  }
912  case DeclSpec::TST_typename: {
913    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
914           DS.getTypeSpecSign() == 0 &&
915           "Can't handle qualifiers on typedef names yet!");
916    Result = S.GetTypeFromParser(DS.getRepAsType());
917    if (Result.isNull())
918      declarator.setInvalidType(true);
919    else if (DeclSpec::ProtocolQualifierListTy PQ
920               = DS.getProtocolQualifiers()) {
921      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
922        // Silently drop any existing protocol qualifiers.
923        // TODO: determine whether that's the right thing to do.
924        if (ObjT->getNumProtocols())
925          Result = ObjT->getBaseType();
926
927        if (DS.getNumProtocolQualifiers())
928          Result = Context.getObjCObjectType(Result,
929                                             (ObjCProtocolDecl*const*) PQ,
930                                             DS.getNumProtocolQualifiers());
931      } else if (Result->isObjCIdType()) {
932        // id<protocol-list>
933        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
934                                           (ObjCProtocolDecl*const*) PQ,
935                                           DS.getNumProtocolQualifiers());
936        Result = Context.getObjCObjectPointerType(Result);
937      } else if (Result->isObjCClassType()) {
938        // Class<protocol-list>
939        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
940                                           (ObjCProtocolDecl*const*) PQ,
941                                           DS.getNumProtocolQualifiers());
942        Result = Context.getObjCObjectPointerType(Result);
943      } else {
944        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
945          << DS.getSourceRange();
946        declarator.setInvalidType(true);
947      }
948    }
949
950    // TypeQuals handled by caller.
951    break;
952  }
953  case DeclSpec::TST_typeofType:
954    // FIXME: Preserve type source info.
955    Result = S.GetTypeFromParser(DS.getRepAsType());
956    assert(!Result.isNull() && "Didn't get a type for typeof?");
957    if (!Result->isDependentType())
958      if (const TagType *TT = Result->getAs<TagType>())
959        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
960    // TypeQuals handled by caller.
961    Result = Context.getTypeOfType(Result);
962    break;
963  case DeclSpec::TST_typeofExpr: {
964    Expr *E = DS.getRepAsExpr();
965    assert(E && "Didn't get an expression for typeof?");
966    // TypeQuals handled by caller.
967    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
968    if (Result.isNull()) {
969      Result = Context.IntTy;
970      declarator.setInvalidType(true);
971    }
972    break;
973  }
974  case DeclSpec::TST_decltype: {
975    Expr *E = DS.getRepAsExpr();
976    assert(E && "Didn't get an expression for decltype?");
977    // TypeQuals handled by caller.
978    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
979    if (Result.isNull()) {
980      Result = Context.IntTy;
981      declarator.setInvalidType(true);
982    }
983    break;
984  }
985  case DeclSpec::TST_underlyingType:
986    Result = S.GetTypeFromParser(DS.getRepAsType());
987    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
988    Result = S.BuildUnaryTransformType(Result,
989                                       UnaryTransformType::EnumUnderlyingType,
990                                       DS.getTypeSpecTypeLoc());
991    if (Result.isNull()) {
992      Result = Context.IntTy;
993      declarator.setInvalidType(true);
994    }
995    break;
996
997  case DeclSpec::TST_auto: {
998    // TypeQuals handled by caller.
999    Result = Context.getAutoType(QualType());
1000    break;
1001  }
1002
1003  case DeclSpec::TST_unknown_anytype:
1004    Result = Context.UnknownAnyTy;
1005    break;
1006
1007  case DeclSpec::TST_atomic:
1008    Result = S.GetTypeFromParser(DS.getRepAsType());
1009    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1010    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1011    if (Result.isNull()) {
1012      Result = Context.IntTy;
1013      declarator.setInvalidType(true);
1014    }
1015    break;
1016
1017  case DeclSpec::TST_image1d_t:
1018    Result = Context.OCLImage1dTy;
1019    break;
1020
1021  case DeclSpec::TST_image1d_array_t:
1022    Result = Context.OCLImage1dArrayTy;
1023    break;
1024
1025  case DeclSpec::TST_image1d_buffer_t:
1026    Result = Context.OCLImage1dBufferTy;
1027    break;
1028
1029  case DeclSpec::TST_image2d_t:
1030    Result = Context.OCLImage2dTy;
1031    break;
1032
1033  case DeclSpec::TST_image2d_array_t:
1034    Result = Context.OCLImage2dArrayTy;
1035    break;
1036
1037  case DeclSpec::TST_image3d_t:
1038    Result = Context.OCLImage3dTy;
1039    break;
1040
1041  case DeclSpec::TST_sampler_t:
1042    Result = Context.OCLSamplerTy;
1043    break;
1044
1045  case DeclSpec::TST_event_t:
1046    Result = Context.OCLEventTy;
1047    break;
1048
1049  case DeclSpec::TST_error:
1050    Result = Context.IntTy;
1051    declarator.setInvalidType(true);
1052    break;
1053  }
1054
1055  // Handle complex types.
1056  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1057    if (S.getLangOpts().Freestanding)
1058      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1059    Result = Context.getComplexType(Result);
1060  } else if (DS.isTypeAltiVecVector()) {
1061    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1062    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1063    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1064    if (DS.isTypeAltiVecPixel())
1065      VecKind = VectorType::AltiVecPixel;
1066    else if (DS.isTypeAltiVecBool())
1067      VecKind = VectorType::AltiVecBool;
1068    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1069  }
1070
1071  // FIXME: Imaginary.
1072  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1073    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1074
1075  // Before we process any type attributes, synthesize a block literal
1076  // function declarator if necessary.
1077  if (declarator.getContext() == Declarator::BlockLiteralContext)
1078    maybeSynthesizeBlockSignature(state, Result);
1079
1080  // Apply any type attributes from the decl spec.  This may cause the
1081  // list of type attributes to be temporarily saved while the type
1082  // attributes are pushed around.
1083  if (AttributeList *attrs = DS.getAttributes().getList())
1084    processTypeAttrs(state, Result, TAL_DeclSpec, attrs);
1085
1086  // Apply const/volatile/restrict qualifiers to T.
1087  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1088
1089    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
1090    // of a function type includes any type qualifiers, the behavior is
1091    // undefined."
1092    if (Result->isFunctionType() && TypeQuals) {
1093      if (TypeQuals & DeclSpec::TQ_const)
1094        S.Diag(DS.getConstSpecLoc(), diag::warn_typecheck_function_qualifiers)
1095          << Result << DS.getSourceRange();
1096      else if (TypeQuals & DeclSpec::TQ_volatile)
1097        S.Diag(DS.getVolatileSpecLoc(), diag::warn_typecheck_function_qualifiers)
1098          << Result << DS.getSourceRange();
1099      else {
1100        assert((TypeQuals & (DeclSpec::TQ_restrict | DeclSpec::TQ_atomic)) &&
1101               "Has CVRA quals but not C, V, R, or A?");
1102        // No diagnostic; we'll diagnose 'restrict' or '_Atomic' applied to a
1103        // function type later, in BuildQualifiedType.
1104      }
1105    }
1106
1107    // C++ [dcl.ref]p1:
1108    //   Cv-qualified references are ill-formed except when the
1109    //   cv-qualifiers are introduced through the use of a typedef
1110    //   (7.1.3) or of a template type argument (14.3), in which
1111    //   case the cv-qualifiers are ignored.
1112    // FIXME: Shouldn't we be checking SCS_typedef here?
1113    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1114        TypeQuals && Result->isReferenceType()) {
1115      TypeQuals &= ~DeclSpec::TQ_const;
1116      TypeQuals &= ~DeclSpec::TQ_volatile;
1117      TypeQuals &= ~DeclSpec::TQ_atomic;
1118    }
1119
1120    // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1121    // than once in the same specifier-list or qualifier-list, either directly
1122    // or via one or more typedefs."
1123    if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1124        && TypeQuals & Result.getCVRQualifiers()) {
1125      if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1126        S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1127          << "const";
1128      }
1129
1130      if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1131        S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1132          << "volatile";
1133      }
1134
1135      // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1136      // produce a warning in this case.
1137    }
1138
1139    QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1140
1141    // If adding qualifiers fails, just use the unqualified type.
1142    if (Qualified.isNull())
1143      declarator.setInvalidType(true);
1144    else
1145      Result = Qualified;
1146  }
1147
1148  return Result;
1149}
1150
1151static std::string getPrintableNameForEntity(DeclarationName Entity) {
1152  if (Entity)
1153    return Entity.getAsString();
1154
1155  return "type name";
1156}
1157
1158QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1159                                  Qualifiers Qs, const DeclSpec *DS) {
1160  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1161  // object or incomplete types shall not be restrict-qualified."
1162  if (Qs.hasRestrict()) {
1163    unsigned DiagID = 0;
1164    QualType ProblemTy;
1165
1166    if (T->isAnyPointerType() || T->isReferenceType() ||
1167        T->isMemberPointerType()) {
1168      QualType EltTy;
1169      if (T->isObjCObjectPointerType())
1170        EltTy = T;
1171      else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1172        EltTy = PTy->getPointeeType();
1173      else
1174        EltTy = T->getPointeeType();
1175
1176      // If we have a pointer or reference, the pointee must have an object
1177      // incomplete type.
1178      if (!EltTy->isIncompleteOrObjectType()) {
1179        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1180        ProblemTy = EltTy;
1181      }
1182    } else if (!T->isDependentType()) {
1183      DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1184      ProblemTy = T;
1185    }
1186
1187    if (DiagID) {
1188      Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1189      Qs.removeRestrict();
1190    }
1191  }
1192
1193  return Context.getQualifiedType(T, Qs);
1194}
1195
1196QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1197                                  unsigned CVRA, const DeclSpec *DS) {
1198  // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic.
1199  unsigned CVR = CVRA & ~DeclSpec::TQ_atomic;
1200
1201  // C11 6.7.3/5:
1202  //   If the same qualifier appears more than once in the same
1203  //   specifier-qualifier-list, either directly or via one or more typedefs,
1204  //   the behavior is the same as if it appeared only once.
1205  //
1206  // It's not specified what happens when the _Atomic qualifier is applied to
1207  // a type specified with the _Atomic specifier, but we assume that this
1208  // should be treated as if the _Atomic qualifier appeared multiple times.
1209  if (CVRA & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1210    // C11 6.7.3/5:
1211    //   If other qualifiers appear along with the _Atomic qualifier in a
1212    //   specifier-qualifier-list, the resulting type is the so-qualified
1213    //   atomic type.
1214    //
1215    // Don't need to worry about array types here, since _Atomic can't be
1216    // applied to such types.
1217    SplitQualType Split = T.getSplitUnqualifiedType();
1218    T = BuildAtomicType(QualType(Split.Ty, 0),
1219                        DS ? DS->getAtomicSpecLoc() : Loc);
1220    if (T.isNull())
1221      return T;
1222    Split.Quals.addCVRQualifiers(CVR);
1223    return BuildQualifiedType(T, Loc, Split.Quals);
1224  }
1225
1226  return BuildQualifiedType(T, Loc, Qualifiers::fromCVRMask(CVR), DS);
1227}
1228
1229/// \brief Build a paren type including \p T.
1230QualType Sema::BuildParenType(QualType T) {
1231  return Context.getParenType(T);
1232}
1233
1234/// Given that we're building a pointer or reference to the given
1235static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1236                                           SourceLocation loc,
1237                                           bool isReference) {
1238  // Bail out if retention is unrequired or already specified.
1239  if (!type->isObjCLifetimeType() ||
1240      type.getObjCLifetime() != Qualifiers::OCL_None)
1241    return type;
1242
1243  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1244
1245  // If the object type is const-qualified, we can safely use
1246  // __unsafe_unretained.  This is safe (because there are no read
1247  // barriers), and it'll be safe to coerce anything but __weak* to
1248  // the resulting type.
1249  if (type.isConstQualified()) {
1250    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1251
1252  // Otherwise, check whether the static type does not require
1253  // retaining.  This currently only triggers for Class (possibly
1254  // protocol-qualifed, and arrays thereof).
1255  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1256    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1257
1258  // If we are in an unevaluated context, like sizeof, skip adding a
1259  // qualification.
1260  } else if (S.isUnevaluatedContext()) {
1261    return type;
1262
1263  // If that failed, give an error and recover using __strong.  __strong
1264  // is the option most likely to prevent spurious second-order diagnostics,
1265  // like when binding a reference to a field.
1266  } else {
1267    // These types can show up in private ivars in system headers, so
1268    // we need this to not be an error in those cases.  Instead we
1269    // want to delay.
1270    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1271      S.DelayedDiagnostics.add(
1272          sema::DelayedDiagnostic::makeForbiddenType(loc,
1273              diag::err_arc_indirect_no_ownership, type, isReference));
1274    } else {
1275      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1276    }
1277    implicitLifetime = Qualifiers::OCL_Strong;
1278  }
1279  assert(implicitLifetime && "didn't infer any lifetime!");
1280
1281  Qualifiers qs;
1282  qs.addObjCLifetime(implicitLifetime);
1283  return S.Context.getQualifiedType(type, qs);
1284}
1285
1286/// \brief Build a pointer type.
1287///
1288/// \param T The type to which we'll be building a pointer.
1289///
1290/// \param Loc The location of the entity whose type involves this
1291/// pointer type or, if there is no such entity, the location of the
1292/// type that will have pointer type.
1293///
1294/// \param Entity The name of the entity that involves the pointer
1295/// type, if known.
1296///
1297/// \returns A suitable pointer type, if there are no
1298/// errors. Otherwise, returns a NULL type.
1299QualType Sema::BuildPointerType(QualType T,
1300                                SourceLocation Loc, DeclarationName Entity) {
1301  if (T->isReferenceType()) {
1302    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1303    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1304      << getPrintableNameForEntity(Entity) << T;
1305    return QualType();
1306  }
1307
1308  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1309
1310  // In ARC, it is forbidden to build pointers to unqualified pointers.
1311  if (getLangOpts().ObjCAutoRefCount)
1312    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1313
1314  // Build the pointer type.
1315  return Context.getPointerType(T);
1316}
1317
1318/// \brief Build a reference type.
1319///
1320/// \param T The type to which we'll be building a reference.
1321///
1322/// \param Loc The location of the entity whose type involves this
1323/// reference type or, if there is no such entity, the location of the
1324/// type that will have reference type.
1325///
1326/// \param Entity The name of the entity that involves the reference
1327/// type, if known.
1328///
1329/// \returns A suitable reference type, if there are no
1330/// errors. Otherwise, returns a NULL type.
1331QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1332                                  SourceLocation Loc,
1333                                  DeclarationName Entity) {
1334  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1335         "Unresolved overloaded function type");
1336
1337  // C++0x [dcl.ref]p6:
1338  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1339  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1340  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1341  //   the type "lvalue reference to T", while an attempt to create the type
1342  //   "rvalue reference to cv TR" creates the type TR.
1343  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1344
1345  // C++ [dcl.ref]p4: There shall be no references to references.
1346  //
1347  // According to C++ DR 106, references to references are only
1348  // diagnosed when they are written directly (e.g., "int & &"),
1349  // but not when they happen via a typedef:
1350  //
1351  //   typedef int& intref;
1352  //   typedef intref& intref2;
1353  //
1354  // Parser::ParseDeclaratorInternal diagnoses the case where
1355  // references are written directly; here, we handle the
1356  // collapsing of references-to-references as described in C++0x.
1357  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1358
1359  // C++ [dcl.ref]p1:
1360  //   A declarator that specifies the type "reference to cv void"
1361  //   is ill-formed.
1362  if (T->isVoidType()) {
1363    Diag(Loc, diag::err_reference_to_void);
1364    return QualType();
1365  }
1366
1367  // In ARC, it is forbidden to build references to unqualified pointers.
1368  if (getLangOpts().ObjCAutoRefCount)
1369    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1370
1371  // Handle restrict on references.
1372  if (LValueRef)
1373    return Context.getLValueReferenceType(T, SpelledAsLValue);
1374  return Context.getRValueReferenceType(T);
1375}
1376
1377/// Check whether the specified array size makes the array type a VLA.  If so,
1378/// return true, if not, return the size of the array in SizeVal.
1379static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1380  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1381  // (like gnu99, but not c99) accept any evaluatable value as an extension.
1382  class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1383  public:
1384    VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
1385
1386    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1387    }
1388
1389    virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) {
1390      S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
1391    }
1392  } Diagnoser;
1393
1394  return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
1395                                           S.LangOpts.GNUMode).isInvalid();
1396}
1397
1398
1399/// \brief Build an array type.
1400///
1401/// \param T The type of each element in the array.
1402///
1403/// \param ASM C99 array size modifier (e.g., '*', 'static').
1404///
1405/// \param ArraySize Expression describing the size of the array.
1406///
1407/// \param Brackets The range from the opening '[' to the closing ']'.
1408///
1409/// \param Entity The name of the entity that involves the array
1410/// type, if known.
1411///
1412/// \returns A suitable array type, if there are no errors. Otherwise,
1413/// returns a NULL type.
1414QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1415                              Expr *ArraySize, unsigned Quals,
1416                              SourceRange Brackets, DeclarationName Entity) {
1417
1418  SourceLocation Loc = Brackets.getBegin();
1419  if (getLangOpts().CPlusPlus) {
1420    // C++ [dcl.array]p1:
1421    //   T is called the array element type; this type shall not be a reference
1422    //   type, the (possibly cv-qualified) type void, a function type or an
1423    //   abstract class type.
1424    //
1425    // C++ [dcl.array]p3:
1426    //   When several "array of" specifications are adjacent, [...] only the
1427    //   first of the constant expressions that specify the bounds of the arrays
1428    //   may be omitted.
1429    //
1430    // Note: function types are handled in the common path with C.
1431    if (T->isReferenceType()) {
1432      Diag(Loc, diag::err_illegal_decl_array_of_references)
1433      << getPrintableNameForEntity(Entity) << T;
1434      return QualType();
1435    }
1436
1437    if (T->isVoidType() || T->isIncompleteArrayType()) {
1438      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1439      return QualType();
1440    }
1441
1442    if (RequireNonAbstractType(Brackets.getBegin(), T,
1443                               diag::err_array_of_abstract_type))
1444      return QualType();
1445
1446  } else {
1447    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1448    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1449    if (RequireCompleteType(Loc, T,
1450                            diag::err_illegal_decl_array_incomplete_type))
1451      return QualType();
1452  }
1453
1454  if (T->isFunctionType()) {
1455    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1456      << getPrintableNameForEntity(Entity) << T;
1457    return QualType();
1458  }
1459
1460  if (T->getContainedAutoType()) {
1461    Diag(Loc, diag::err_illegal_decl_array_of_auto)
1462      << getPrintableNameForEntity(Entity) << T;
1463    return QualType();
1464  }
1465
1466  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1467    // If the element type is a struct or union that contains a variadic
1468    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1469    if (EltTy->getDecl()->hasFlexibleArrayMember())
1470      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1471  } else if (T->isObjCObjectType()) {
1472    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1473    return QualType();
1474  }
1475
1476  // Do placeholder conversions on the array size expression.
1477  if (ArraySize && ArraySize->hasPlaceholderType()) {
1478    ExprResult Result = CheckPlaceholderExpr(ArraySize);
1479    if (Result.isInvalid()) return QualType();
1480    ArraySize = Result.take();
1481  }
1482
1483  // Do lvalue-to-rvalue conversions on the array size expression.
1484  if (ArraySize && !ArraySize->isRValue()) {
1485    ExprResult Result = DefaultLvalueConversion(ArraySize);
1486    if (Result.isInvalid())
1487      return QualType();
1488
1489    ArraySize = Result.take();
1490  }
1491
1492  // C99 6.7.5.2p1: The size expression shall have integer type.
1493  // C++11 allows contextual conversions to such types.
1494  if (!getLangOpts().CPlusPlus11 &&
1495      ArraySize && !ArraySize->isTypeDependent() &&
1496      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1497    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1498      << ArraySize->getType() << ArraySize->getSourceRange();
1499    return QualType();
1500  }
1501
1502  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1503  if (!ArraySize) {
1504    if (ASM == ArrayType::Star)
1505      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1506    else
1507      T = Context.getIncompleteArrayType(T, ASM, Quals);
1508  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1509    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1510  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
1511              !T->isConstantSizeType()) ||
1512             isArraySizeVLA(*this, ArraySize, ConstVal)) {
1513    // Even in C++11, don't allow contextual conversions in the array bound
1514    // of a VLA.
1515    if (getLangOpts().CPlusPlus11 &&
1516        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1517      Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1518        << ArraySize->getType() << ArraySize->getSourceRange();
1519      return QualType();
1520    }
1521
1522    // C99: an array with an element type that has a non-constant-size is a VLA.
1523    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1524    // that we can fold to a non-zero positive value as an extension.
1525    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1526  } else {
1527    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1528    // have a value greater than zero.
1529    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1530      if (Entity)
1531        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1532          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1533      else
1534        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1535          << ArraySize->getSourceRange();
1536      return QualType();
1537    }
1538    if (ConstVal == 0) {
1539      // GCC accepts zero sized static arrays. We allow them when
1540      // we're not in a SFINAE context.
1541      Diag(ArraySize->getLocStart(),
1542           isSFINAEContext()? diag::err_typecheck_zero_array_size
1543                            : diag::ext_typecheck_zero_array_size)
1544        << ArraySize->getSourceRange();
1545
1546      if (ASM == ArrayType::Static) {
1547        Diag(ArraySize->getLocStart(),
1548             diag::warn_typecheck_zero_static_array_size)
1549          << ArraySize->getSourceRange();
1550        ASM = ArrayType::Normal;
1551      }
1552    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1553               !T->isIncompleteType()) {
1554      // Is the array too large?
1555      unsigned ActiveSizeBits
1556        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1557      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1558        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1559          << ConstVal.toString(10)
1560          << ArraySize->getSourceRange();
1561    }
1562
1563    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1564  }
1565
1566  // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
1567  if (getLangOpts().OpenCL && T->isVariableArrayType()) {
1568    Diag(Loc, diag::err_opencl_vla);
1569    return QualType();
1570  }
1571  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1572  if (!getLangOpts().C99) {
1573    if (T->isVariableArrayType()) {
1574      // Prohibit the use of non-POD types in VLAs.
1575      QualType BaseT = Context.getBaseElementType(T);
1576      if (!T->isDependentType() &&
1577          !BaseT.isPODType(Context) &&
1578          !BaseT->isObjCLifetimeType()) {
1579        Diag(Loc, diag::err_vla_non_pod)
1580          << BaseT;
1581        return QualType();
1582      }
1583      // Prohibit the use of VLAs during template argument deduction.
1584      else if (isSFINAEContext()) {
1585        Diag(Loc, diag::err_vla_in_sfinae);
1586        return QualType();
1587      }
1588      // Just extwarn about VLAs.
1589      else
1590        Diag(Loc, diag::ext_vla);
1591    } else if (ASM != ArrayType::Normal || Quals != 0)
1592      Diag(Loc,
1593           getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
1594                                     : diag::ext_c99_array_usage) << ASM;
1595  }
1596
1597  if (T->isVariableArrayType()) {
1598    // Warn about VLAs for -Wvla.
1599    Diag(Loc, diag::warn_vla_used);
1600  }
1601
1602  return T;
1603}
1604
1605/// \brief Build an ext-vector type.
1606///
1607/// Run the required checks for the extended vector type.
1608QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1609                                  SourceLocation AttrLoc) {
1610  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1611  // in conjunction with complex types (pointers, arrays, functions, etc.).
1612  if (!T->isDependentType() &&
1613      !T->isIntegerType() && !T->isRealFloatingType()) {
1614    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1615    return QualType();
1616  }
1617
1618  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1619    llvm::APSInt vecSize(32);
1620    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1621      Diag(AttrLoc, diag::err_attribute_argument_not_int)
1622        << "ext_vector_type" << ArraySize->getSourceRange();
1623      return QualType();
1624    }
1625
1626    // unlike gcc's vector_size attribute, the size is specified as the
1627    // number of elements, not the number of bytes.
1628    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1629
1630    if (vectorSize == 0) {
1631      Diag(AttrLoc, diag::err_attribute_zero_size)
1632      << ArraySize->getSourceRange();
1633      return QualType();
1634    }
1635
1636    return Context.getExtVectorType(T, vectorSize);
1637  }
1638
1639  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1640}
1641
1642QualType Sema::BuildFunctionType(QualType T,
1643                                 llvm::MutableArrayRef<QualType> ParamTypes,
1644                                 SourceLocation Loc, DeclarationName Entity,
1645                                 const FunctionProtoType::ExtProtoInfo &EPI) {
1646  if (T->isArrayType() || T->isFunctionType()) {
1647    Diag(Loc, diag::err_func_returning_array_function)
1648      << T->isFunctionType() << T;
1649    return QualType();
1650  }
1651
1652  // Functions cannot return half FP.
1653  if (T->isHalfType()) {
1654    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1655      FixItHint::CreateInsertion(Loc, "*");
1656    return QualType();
1657  }
1658
1659  bool Invalid = false;
1660  for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
1661    // FIXME: Loc is too inprecise here, should use proper locations for args.
1662    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1663    if (ParamType->isVoidType()) {
1664      Diag(Loc, diag::err_param_with_void_type);
1665      Invalid = true;
1666    } else if (ParamType->isHalfType()) {
1667      // Disallow half FP arguments.
1668      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1669        FixItHint::CreateInsertion(Loc, "*");
1670      Invalid = true;
1671    }
1672
1673    ParamTypes[Idx] = ParamType;
1674  }
1675
1676  if (Invalid)
1677    return QualType();
1678
1679  return Context.getFunctionType(T, ParamTypes, EPI);
1680}
1681
1682/// \brief Build a member pointer type \c T Class::*.
1683///
1684/// \param T the type to which the member pointer refers.
1685/// \param Class the class type into which the member pointer points.
1686/// \param Loc the location where this type begins
1687/// \param Entity the name of the entity that will have this member pointer type
1688///
1689/// \returns a member pointer type, if successful, or a NULL type if there was
1690/// an error.
1691QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1692                                      SourceLocation Loc,
1693                                      DeclarationName Entity) {
1694  // Verify that we're not building a pointer to pointer to function with
1695  // exception specification.
1696  if (CheckDistantExceptionSpec(T)) {
1697    Diag(Loc, diag::err_distant_exception_spec);
1698
1699    // FIXME: If we're doing this as part of template instantiation,
1700    // we should return immediately.
1701
1702    // Build the type anyway, but use the canonical type so that the
1703    // exception specifiers are stripped off.
1704    T = Context.getCanonicalType(T);
1705  }
1706
1707  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1708  //   with reference type, or "cv void."
1709  if (T->isReferenceType()) {
1710    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1711      << (Entity? Entity.getAsString() : "type name") << T;
1712    return QualType();
1713  }
1714
1715  if (T->isVoidType()) {
1716    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1717      << (Entity? Entity.getAsString() : "type name");
1718    return QualType();
1719  }
1720
1721  if (!Class->isDependentType() && !Class->isRecordType()) {
1722    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1723    return QualType();
1724  }
1725
1726  // C++ allows the class type in a member pointer to be an incomplete type.
1727  // In the Microsoft ABI, the size of the member pointer can vary
1728  // according to the class type, which means that we really need a
1729  // complete type if possible, which means we need to instantiate templates.
1730  //
1731  // For now, just require a complete type, which will instantiate
1732  // templates.  This will also error if the type is just forward-declared,
1733  // which is a bug, but it's a bug that saves us from dealing with some
1734  // complexities at the moment.
1735  if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
1736      RequireCompleteType(Loc, Class, diag::err_incomplete_type))
1737    return QualType();
1738
1739  return Context.getMemberPointerType(T, Class.getTypePtr());
1740}
1741
1742/// \brief Build a block pointer type.
1743///
1744/// \param T The type to which we'll be building a block pointer.
1745///
1746/// \param Loc The source location, used for diagnostics.
1747///
1748/// \param Entity The name of the entity that involves the block pointer
1749/// type, if known.
1750///
1751/// \returns A suitable block pointer type, if there are no
1752/// errors. Otherwise, returns a NULL type.
1753QualType Sema::BuildBlockPointerType(QualType T,
1754                                     SourceLocation Loc,
1755                                     DeclarationName Entity) {
1756  if (!T->isFunctionType()) {
1757    Diag(Loc, diag::err_nonfunction_block_type);
1758    return QualType();
1759  }
1760
1761  return Context.getBlockPointerType(T);
1762}
1763
1764QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1765  QualType QT = Ty.get();
1766  if (QT.isNull()) {
1767    if (TInfo) *TInfo = 0;
1768    return QualType();
1769  }
1770
1771  TypeSourceInfo *DI = 0;
1772  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1773    QT = LIT->getType();
1774    DI = LIT->getTypeSourceInfo();
1775  }
1776
1777  if (TInfo) *TInfo = DI;
1778  return QT;
1779}
1780
1781static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1782                                            Qualifiers::ObjCLifetime ownership,
1783                                            unsigned chunkIndex);
1784
1785/// Given that this is the declaration of a parameter under ARC,
1786/// attempt to infer attributes and such for pointer-to-whatever
1787/// types.
1788static void inferARCWriteback(TypeProcessingState &state,
1789                              QualType &declSpecType) {
1790  Sema &S = state.getSema();
1791  Declarator &declarator = state.getDeclarator();
1792
1793  // TODO: should we care about decl qualifiers?
1794
1795  // Check whether the declarator has the expected form.  We walk
1796  // from the inside out in order to make the block logic work.
1797  unsigned outermostPointerIndex = 0;
1798  bool isBlockPointer = false;
1799  unsigned numPointers = 0;
1800  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1801    unsigned chunkIndex = i;
1802    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1803    switch (chunk.Kind) {
1804    case DeclaratorChunk::Paren:
1805      // Ignore parens.
1806      break;
1807
1808    case DeclaratorChunk::Reference:
1809    case DeclaratorChunk::Pointer:
1810      // Count the number of pointers.  Treat references
1811      // interchangeably as pointers; if they're mis-ordered, normal
1812      // type building will discover that.
1813      outermostPointerIndex = chunkIndex;
1814      numPointers++;
1815      break;
1816
1817    case DeclaratorChunk::BlockPointer:
1818      // If we have a pointer to block pointer, that's an acceptable
1819      // indirect reference; anything else is not an application of
1820      // the rules.
1821      if (numPointers != 1) return;
1822      numPointers++;
1823      outermostPointerIndex = chunkIndex;
1824      isBlockPointer = true;
1825
1826      // We don't care about pointer structure in return values here.
1827      goto done;
1828
1829    case DeclaratorChunk::Array: // suppress if written (id[])?
1830    case DeclaratorChunk::Function:
1831    case DeclaratorChunk::MemberPointer:
1832      return;
1833    }
1834  }
1835 done:
1836
1837  // If we have *one* pointer, then we want to throw the qualifier on
1838  // the declaration-specifiers, which means that it needs to be a
1839  // retainable object type.
1840  if (numPointers == 1) {
1841    // If it's not a retainable object type, the rule doesn't apply.
1842    if (!declSpecType->isObjCRetainableType()) return;
1843
1844    // If it already has lifetime, don't do anything.
1845    if (declSpecType.getObjCLifetime()) return;
1846
1847    // Otherwise, modify the type in-place.
1848    Qualifiers qs;
1849
1850    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1851      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1852    else
1853      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1854    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1855
1856  // If we have *two* pointers, then we want to throw the qualifier on
1857  // the outermost pointer.
1858  } else if (numPointers == 2) {
1859    // If we don't have a block pointer, we need to check whether the
1860    // declaration-specifiers gave us something that will turn into a
1861    // retainable object pointer after we slap the first pointer on it.
1862    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1863      return;
1864
1865    // Look for an explicit lifetime attribute there.
1866    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1867    if (chunk.Kind != DeclaratorChunk::Pointer &&
1868        chunk.Kind != DeclaratorChunk::BlockPointer)
1869      return;
1870    for (const AttributeList *attr = chunk.getAttrs(); attr;
1871           attr = attr->getNext())
1872      if (attr->getKind() == AttributeList::AT_ObjCOwnership)
1873        return;
1874
1875    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1876                                          outermostPointerIndex);
1877
1878  // Any other number of pointers/references does not trigger the rule.
1879  } else return;
1880
1881  // TODO: mark whether we did this inference?
1882}
1883
1884static void diagnoseIgnoredQualifiers(
1885    Sema &S, unsigned Quals,
1886    SourceLocation FallbackLoc,
1887    SourceLocation ConstQualLoc = SourceLocation(),
1888    SourceLocation VolatileQualLoc = SourceLocation(),
1889    SourceLocation RestrictQualLoc = SourceLocation(),
1890    SourceLocation AtomicQualLoc = SourceLocation()) {
1891  assert(Quals && "no qualifiers to diagnose");
1892  const SourceManager &SM = S.getSourceManager();
1893
1894  struct Qual {
1895    unsigned Mask;
1896    const char *Name;
1897    SourceLocation Loc;
1898  } const QualKinds[4] = {
1899    { DeclSpec::TQ_const, "const", ConstQualLoc },
1900    { DeclSpec::TQ_volatile, "volatile", VolatileQualLoc },
1901    { DeclSpec::TQ_restrict, "restrict", RestrictQualLoc },
1902    { DeclSpec::TQ_atomic, "_Atomic", AtomicQualLoc }
1903  };
1904
1905  llvm::SmallString<32> QualStr;
1906  unsigned NumQuals = 0;
1907  SourceLocation Loc;
1908  FixItHint FixIts[4];
1909
1910  // Build a string naming the redundant qualifiers.
1911  for (unsigned I = 0; I != 4; ++I) {
1912    if (Quals & QualKinds[I].Mask) {
1913      if (!QualStr.empty()) QualStr += ' ';
1914      QualStr += QualKinds[I].Name;
1915
1916      // If we have a location for the qualifier, offer a fixit.
1917      SourceLocation QualLoc = QualKinds[I].Loc;
1918      if (!QualLoc.isInvalid()) {
1919        FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
1920        if (Loc.isInvalid() || SM.isBeforeInTranslationUnit(QualLoc, Loc))
1921          Loc = QualLoc;
1922      }
1923
1924      ++NumQuals;
1925    }
1926  }
1927
1928  S.Diag(Loc.isInvalid() ? FallbackLoc : Loc, diag::warn_qual_return_type)
1929    << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
1930}
1931
1932// Diagnose pointless type qualifiers on the return type of a function.
1933static void diagnoseIgnoredFunctionQualifiers(Sema &S, QualType RetTy,
1934                                              Declarator &D,
1935                                              unsigned FunctionChunkIndex) {
1936  unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
1937
1938  if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
1939    // FIXME: TypeSourceInfo doesn't preserve location information for
1940    // qualifiers.
1941    diagnoseIgnoredQualifiers(S, RetTy.getCVRQualifiers() | AtomicQual,
1942                              D.getIdentifierLoc());
1943    return;
1944  }
1945
1946  for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
1947                End = D.getNumTypeObjects();
1948       OuterChunkIndex != End; ++OuterChunkIndex) {
1949    DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
1950    switch (OuterChunk.Kind) {
1951    case DeclaratorChunk::Paren:
1952      continue;
1953
1954    case DeclaratorChunk::Pointer: {
1955      DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
1956      diagnoseIgnoredQualifiers(
1957          S, PTI.TypeQuals,
1958          SourceLocation(),
1959          SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
1960          SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
1961          SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
1962          SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc));
1963      return;
1964    }
1965
1966    case DeclaratorChunk::Function:
1967    case DeclaratorChunk::BlockPointer:
1968    case DeclaratorChunk::Reference:
1969    case DeclaratorChunk::Array:
1970    case DeclaratorChunk::MemberPointer:
1971      // FIXME: We can't currently provide an accurate source location and a
1972      // fix-it hint for these.
1973      diagnoseIgnoredQualifiers(S, RetTy.getCVRQualifiers() | AtomicQual,
1974                                D.getIdentifierLoc());
1975      return;
1976    }
1977
1978    llvm_unreachable("unknown declarator chunk kind");
1979  }
1980
1981  // If the qualifiers come from a conversion function type, don't diagnose
1982  // them -- they're not necessarily redundant, since such a conversion
1983  // operator can be explicitly called as "x.operator const int()".
1984  if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
1985    return;
1986
1987  // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
1988  // which are present there.
1989  diagnoseIgnoredQualifiers(S, D.getDeclSpec().getTypeQualifiers() | AtomicQual,
1990                            D.getIdentifierLoc(),
1991                            D.getDeclSpec().getConstSpecLoc(),
1992                            D.getDeclSpec().getVolatileSpecLoc(),
1993                            D.getDeclSpec().getRestrictSpecLoc(),
1994                            D.getDeclSpec().getAtomicSpecLoc());
1995}
1996
1997static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
1998                                             TypeSourceInfo *&ReturnTypeInfo) {
1999  Sema &SemaRef = state.getSema();
2000  Declarator &D = state.getDeclarator();
2001  QualType T;
2002  ReturnTypeInfo = 0;
2003
2004  // The TagDecl owned by the DeclSpec.
2005  TagDecl *OwnedTagDecl = 0;
2006
2007  switch (D.getName().getKind()) {
2008  case UnqualifiedId::IK_ImplicitSelfParam:
2009  case UnqualifiedId::IK_OperatorFunctionId:
2010  case UnqualifiedId::IK_Identifier:
2011  case UnqualifiedId::IK_LiteralOperatorId:
2012  case UnqualifiedId::IK_TemplateId:
2013    T = ConvertDeclSpecToType(state);
2014
2015    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
2016      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2017      // Owned declaration is embedded in declarator.
2018      OwnedTagDecl->setEmbeddedInDeclarator(true);
2019    }
2020    break;
2021
2022  case UnqualifiedId::IK_ConstructorName:
2023  case UnqualifiedId::IK_ConstructorTemplateId:
2024  case UnqualifiedId::IK_DestructorName:
2025    // Constructors and destructors don't have return types. Use
2026    // "void" instead.
2027    T = SemaRef.Context.VoidTy;
2028    if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
2029      processTypeAttrs(state, T, TAL_DeclSpec, attrs);
2030    break;
2031
2032  case UnqualifiedId::IK_ConversionFunctionId:
2033    // The result type of a conversion function is the type that it
2034    // converts to.
2035    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
2036                                  &ReturnTypeInfo);
2037    break;
2038  }
2039
2040  if (D.getAttributes())
2041    distributeTypeAttrsFromDeclarator(state, T);
2042
2043  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
2044  // In C++11, a function declarator using 'auto' must have a trailing return
2045  // type (this is checked later) and we can skip this. In other languages
2046  // using auto, we need to check regardless.
2047  if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2048      (!SemaRef.getLangOpts().CPlusPlus11 || !D.isFunctionDeclarator())) {
2049    int Error = -1;
2050
2051    switch (D.getContext()) {
2052    case Declarator::KNRTypeListContext:
2053      llvm_unreachable("K&R type lists aren't allowed in C++");
2054    case Declarator::LambdaExprContext:
2055      llvm_unreachable("Can't specify a type specifier in lambda grammar");
2056    case Declarator::ObjCParameterContext:
2057    case Declarator::ObjCResultContext:
2058    case Declarator::PrototypeContext:
2059      Error = 0; // Function prototype
2060      break;
2061    case Declarator::MemberContext:
2062      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
2063        break;
2064      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
2065      case TTK_Enum: llvm_unreachable("unhandled tag kind");
2066      case TTK_Struct: Error = 1; /* Struct member */ break;
2067      case TTK_Union:  Error = 2; /* Union member */ break;
2068      case TTK_Class:  Error = 3; /* Class member */ break;
2069      case TTK_Interface: Error = 4; /* Interface member */ break;
2070      }
2071      break;
2072    case Declarator::CXXCatchContext:
2073    case Declarator::ObjCCatchContext:
2074      Error = 5; // Exception declaration
2075      break;
2076    case Declarator::TemplateParamContext:
2077      Error = 6; // Template parameter
2078      break;
2079    case Declarator::BlockLiteralContext:
2080      Error = 7; // Block literal
2081      break;
2082    case Declarator::TemplateTypeArgContext:
2083      Error = 8; // Template type argument
2084      break;
2085    case Declarator::AliasDeclContext:
2086    case Declarator::AliasTemplateContext:
2087      Error = 10; // Type alias
2088      break;
2089    case Declarator::TrailingReturnContext:
2090      Error = 11; // Function return type
2091      break;
2092    case Declarator::TypeNameContext:
2093      Error = 12; // Generic
2094      break;
2095    case Declarator::FileContext:
2096    case Declarator::BlockContext:
2097    case Declarator::ForContext:
2098    case Declarator::ConditionContext:
2099    case Declarator::CXXNewContext:
2100      break;
2101    }
2102
2103    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2104      Error = 9;
2105
2106    // In Objective-C it is an error to use 'auto' on a function declarator.
2107    if (D.isFunctionDeclarator())
2108      Error = 11;
2109
2110    // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
2111    // contains a trailing return type. That is only legal at the outermost
2112    // level. Check all declarator chunks (outermost first) anyway, to give
2113    // better diagnostics.
2114    if (SemaRef.getLangOpts().CPlusPlus11 && Error != -1) {
2115      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2116        unsigned chunkIndex = e - i - 1;
2117        state.setCurrentChunkIndex(chunkIndex);
2118        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2119        if (DeclType.Kind == DeclaratorChunk::Function) {
2120          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2121          if (FTI.hasTrailingReturnType()) {
2122            Error = -1;
2123            break;
2124          }
2125        }
2126      }
2127    }
2128
2129    if (Error != -1) {
2130      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2131                   diag::err_auto_not_allowed)
2132        << Error;
2133      T = SemaRef.Context.IntTy;
2134      D.setInvalidType(true);
2135    } else
2136      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2137                   diag::warn_cxx98_compat_auto_type_specifier);
2138  }
2139
2140  if (SemaRef.getLangOpts().CPlusPlus &&
2141      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
2142    // Check the contexts where C++ forbids the declaration of a new class
2143    // or enumeration in a type-specifier-seq.
2144    switch (D.getContext()) {
2145    case Declarator::TrailingReturnContext:
2146      // Class and enumeration definitions are syntactically not allowed in
2147      // trailing return types.
2148      llvm_unreachable("parser should not have allowed this");
2149      break;
2150    case Declarator::FileContext:
2151    case Declarator::MemberContext:
2152    case Declarator::BlockContext:
2153    case Declarator::ForContext:
2154    case Declarator::BlockLiteralContext:
2155    case Declarator::LambdaExprContext:
2156      // C++11 [dcl.type]p3:
2157      //   A type-specifier-seq shall not define a class or enumeration unless
2158      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
2159      //   the declaration of a template-declaration.
2160    case Declarator::AliasDeclContext:
2161      break;
2162    case Declarator::AliasTemplateContext:
2163      SemaRef.Diag(OwnedTagDecl->getLocation(),
2164             diag::err_type_defined_in_alias_template)
2165        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2166      D.setInvalidType(true);
2167      break;
2168    case Declarator::TypeNameContext:
2169    case Declarator::TemplateParamContext:
2170    case Declarator::CXXNewContext:
2171    case Declarator::CXXCatchContext:
2172    case Declarator::ObjCCatchContext:
2173    case Declarator::TemplateTypeArgContext:
2174      SemaRef.Diag(OwnedTagDecl->getLocation(),
2175             diag::err_type_defined_in_type_specifier)
2176        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2177      D.setInvalidType(true);
2178      break;
2179    case Declarator::PrototypeContext:
2180    case Declarator::ObjCParameterContext:
2181    case Declarator::ObjCResultContext:
2182    case Declarator::KNRTypeListContext:
2183      // C++ [dcl.fct]p6:
2184      //   Types shall not be defined in return or parameter types.
2185      SemaRef.Diag(OwnedTagDecl->getLocation(),
2186                   diag::err_type_defined_in_param_type)
2187        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2188      D.setInvalidType(true);
2189      break;
2190    case Declarator::ConditionContext:
2191      // C++ 6.4p2:
2192      // The type-specifier-seq shall not contain typedef and shall not declare
2193      // a new class or enumeration.
2194      SemaRef.Diag(OwnedTagDecl->getLocation(),
2195                   diag::err_type_defined_in_condition);
2196      D.setInvalidType(true);
2197      break;
2198    }
2199  }
2200
2201  return T;
2202}
2203
2204static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
2205  std::string Quals =
2206    Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
2207
2208  switch (FnTy->getRefQualifier()) {
2209  case RQ_None:
2210    break;
2211
2212  case RQ_LValue:
2213    if (!Quals.empty())
2214      Quals += ' ';
2215    Quals += '&';
2216    break;
2217
2218  case RQ_RValue:
2219    if (!Quals.empty())
2220      Quals += ' ';
2221    Quals += "&&";
2222    break;
2223  }
2224
2225  return Quals;
2226}
2227
2228/// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
2229/// can be contained within the declarator chunk DeclType, and produce an
2230/// appropriate diagnostic if not.
2231static void checkQualifiedFunction(Sema &S, QualType T,
2232                                   DeclaratorChunk &DeclType) {
2233  // C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
2234  // cv-qualifier or a ref-qualifier can only appear at the topmost level
2235  // of a type.
2236  int DiagKind = -1;
2237  switch (DeclType.Kind) {
2238  case DeclaratorChunk::Paren:
2239  case DeclaratorChunk::MemberPointer:
2240    // These cases are permitted.
2241    return;
2242  case DeclaratorChunk::Array:
2243  case DeclaratorChunk::Function:
2244    // These cases don't allow function types at all; no need to diagnose the
2245    // qualifiers separately.
2246    return;
2247  case DeclaratorChunk::BlockPointer:
2248    DiagKind = 0;
2249    break;
2250  case DeclaratorChunk::Pointer:
2251    DiagKind = 1;
2252    break;
2253  case DeclaratorChunk::Reference:
2254    DiagKind = 2;
2255    break;
2256  }
2257
2258  assert(DiagKind != -1);
2259  S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
2260    << DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
2261    << getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
2262}
2263
2264/// Produce an approprioate diagnostic for an ambiguity between a function
2265/// declarator and a C++ direct-initializer.
2266static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
2267                                       DeclaratorChunk &DeclType, QualType RT) {
2268  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2269  assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
2270
2271  // If the return type is void there is no ambiguity.
2272  if (RT->isVoidType())
2273    return;
2274
2275  // An initializer for a non-class type can have at most one argument.
2276  if (!RT->isRecordType() && FTI.NumArgs > 1)
2277    return;
2278
2279  // An initializer for a reference must have exactly one argument.
2280  if (RT->isReferenceType() && FTI.NumArgs != 1)
2281    return;
2282
2283  // Only warn if this declarator is declaring a function at block scope, and
2284  // doesn't have a storage class (such as 'extern') specified.
2285  if (!D.isFunctionDeclarator() ||
2286      D.getFunctionDefinitionKind() != FDK_Declaration ||
2287      !S.CurContext->isFunctionOrMethod() ||
2288      D.getDeclSpec().getStorageClassSpecAsWritten()
2289        != DeclSpec::SCS_unspecified)
2290    return;
2291
2292  // Inside a condition, a direct initializer is not permitted. We allow one to
2293  // be parsed in order to give better diagnostics in condition parsing.
2294  if (D.getContext() == Declarator::ConditionContext)
2295    return;
2296
2297  SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
2298
2299  S.Diag(DeclType.Loc,
2300         FTI.NumArgs ? diag::warn_parens_disambiguated_as_function_declaration
2301                     : diag::warn_empty_parens_are_function_decl)
2302    << ParenRange;
2303
2304  // If the declaration looks like:
2305  //   T var1,
2306  //   f();
2307  // and name lookup finds a function named 'f', then the ',' was
2308  // probably intended to be a ';'.
2309  if (!D.isFirstDeclarator() && D.getIdentifier()) {
2310    FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
2311    FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
2312    if (Comma.getFileID() != Name.getFileID() ||
2313        Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
2314      LookupResult Result(S, D.getIdentifier(), SourceLocation(),
2315                          Sema::LookupOrdinaryName);
2316      if (S.LookupName(Result, S.getCurScope()))
2317        S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
2318          << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
2319          << D.getIdentifier();
2320    }
2321  }
2322
2323  if (FTI.NumArgs > 0) {
2324    // For a declaration with parameters, eg. "T var(T());", suggest adding parens
2325    // around the first parameter to turn the declaration into a variable
2326    // declaration.
2327    SourceRange Range = FTI.ArgInfo[0].Param->getSourceRange();
2328    SourceLocation B = Range.getBegin();
2329    SourceLocation E = S.PP.getLocForEndOfToken(Range.getEnd());
2330    // FIXME: Maybe we should suggest adding braces instead of parens
2331    // in C++11 for classes that don't have an initializer_list constructor.
2332    S.Diag(B, diag::note_additional_parens_for_variable_declaration)
2333      << FixItHint::CreateInsertion(B, "(")
2334      << FixItHint::CreateInsertion(E, ")");
2335  } else {
2336    // For a declaration without parameters, eg. "T var();", suggest replacing the
2337    // parens with an initializer to turn the declaration into a variable
2338    // declaration.
2339    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
2340
2341    // Empty parens mean value-initialization, and no parens mean
2342    // default initialization. These are equivalent if the default
2343    // constructor is user-provided or if zero-initialization is a
2344    // no-op.
2345    if (RD && RD->hasDefinition() &&
2346        (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
2347      S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
2348        << FixItHint::CreateRemoval(ParenRange);
2349    else {
2350      std::string Init = S.getFixItZeroInitializerForType(RT);
2351      if (Init.empty() && S.LangOpts.CPlusPlus11)
2352        Init = "{}";
2353      if (!Init.empty())
2354        S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
2355          << FixItHint::CreateReplacement(ParenRange, Init);
2356    }
2357  }
2358}
2359
2360static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
2361                                                QualType declSpecType,
2362                                                TypeSourceInfo *TInfo) {
2363
2364  QualType T = declSpecType;
2365  Declarator &D = state.getDeclarator();
2366  Sema &S = state.getSema();
2367  ASTContext &Context = S.Context;
2368  const LangOptions &LangOpts = S.getLangOpts();
2369
2370  // The name we're declaring, if any.
2371  DeclarationName Name;
2372  if (D.getIdentifier())
2373    Name = D.getIdentifier();
2374
2375  // Does this declaration declare a typedef-name?
2376  bool IsTypedefName =
2377    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2378    D.getContext() == Declarator::AliasDeclContext ||
2379    D.getContext() == Declarator::AliasTemplateContext;
2380
2381  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2382  bool IsQualifiedFunction = T->isFunctionProtoType() &&
2383      (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
2384       T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
2385
2386  // Walk the DeclTypeInfo, building the recursive type as we go.
2387  // DeclTypeInfos are ordered from the identifier out, which is
2388  // opposite of what we want :).
2389  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2390    unsigned chunkIndex = e - i - 1;
2391    state.setCurrentChunkIndex(chunkIndex);
2392    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2393    if (IsQualifiedFunction) {
2394      checkQualifiedFunction(S, T, DeclType);
2395      IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
2396    }
2397    switch (DeclType.Kind) {
2398    case DeclaratorChunk::Paren:
2399      T = S.BuildParenType(T);
2400      break;
2401    case DeclaratorChunk::BlockPointer:
2402      // If blocks are disabled, emit an error.
2403      if (!LangOpts.Blocks)
2404        S.Diag(DeclType.Loc, diag::err_blocks_disable);
2405
2406      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
2407      if (DeclType.Cls.TypeQuals)
2408        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
2409      break;
2410    case DeclaratorChunk::Pointer:
2411      // Verify that we're not building a pointer to pointer to function with
2412      // exception specification.
2413      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2414        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2415        D.setInvalidType(true);
2416        // Build the type anyway.
2417      }
2418      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
2419        T = Context.getObjCObjectPointerType(T);
2420        if (DeclType.Ptr.TypeQuals)
2421          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2422        break;
2423      }
2424      T = S.BuildPointerType(T, DeclType.Loc, Name);
2425      if (DeclType.Ptr.TypeQuals)
2426        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2427
2428      break;
2429    case DeclaratorChunk::Reference: {
2430      // Verify that we're not building a reference to pointer to function with
2431      // exception specification.
2432      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2433        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2434        D.setInvalidType(true);
2435        // Build the type anyway.
2436      }
2437      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2438
2439      Qualifiers Quals;
2440      if (DeclType.Ref.HasRestrict)
2441        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2442      break;
2443    }
2444    case DeclaratorChunk::Array: {
2445      // Verify that we're not building an array of pointers to function with
2446      // exception specification.
2447      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2448        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2449        D.setInvalidType(true);
2450        // Build the type anyway.
2451      }
2452      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2453      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2454      ArrayType::ArraySizeModifier ASM;
2455      if (ATI.isStar)
2456        ASM = ArrayType::Star;
2457      else if (ATI.hasStatic)
2458        ASM = ArrayType::Static;
2459      else
2460        ASM = ArrayType::Normal;
2461      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2462        // FIXME: This check isn't quite right: it allows star in prototypes
2463        // for function definitions, and disallows some edge cases detailed
2464        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2465        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2466        ASM = ArrayType::Normal;
2467        D.setInvalidType(true);
2468      }
2469
2470      // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
2471      // shall appear only in a declaration of a function parameter with an
2472      // array type, ...
2473      if (ASM == ArrayType::Static || ATI.TypeQuals) {
2474        if (!(D.isPrototypeContext() ||
2475              D.getContext() == Declarator::KNRTypeListContext)) {
2476          S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
2477              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2478          // Remove the 'static' and the type qualifiers.
2479          if (ASM == ArrayType::Static)
2480            ASM = ArrayType::Normal;
2481          ATI.TypeQuals = 0;
2482          D.setInvalidType(true);
2483        }
2484
2485        // C99 6.7.5.2p1: ... and then only in the outermost array type
2486        // derivation.
2487        unsigned x = chunkIndex;
2488        while (x != 0) {
2489          // Walk outwards along the declarator chunks.
2490          x--;
2491          const DeclaratorChunk &DC = D.getTypeObject(x);
2492          switch (DC.Kind) {
2493          case DeclaratorChunk::Paren:
2494            continue;
2495          case DeclaratorChunk::Array:
2496          case DeclaratorChunk::Pointer:
2497          case DeclaratorChunk::Reference:
2498          case DeclaratorChunk::MemberPointer:
2499            S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
2500              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2501            if (ASM == ArrayType::Static)
2502              ASM = ArrayType::Normal;
2503            ATI.TypeQuals = 0;
2504            D.setInvalidType(true);
2505            break;
2506          case DeclaratorChunk::Function:
2507          case DeclaratorChunk::BlockPointer:
2508            // These are invalid anyway, so just ignore.
2509            break;
2510          }
2511        }
2512      }
2513
2514      T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2515                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2516      break;
2517    }
2518    case DeclaratorChunk::Function: {
2519      // If the function declarator has a prototype (i.e. it is not () and
2520      // does not have a K&R-style identifier list), then the arguments are part
2521      // of the type, otherwise the argument list is ().
2522      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2523      IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
2524
2525      // Check for auto functions and trailing return type and adjust the
2526      // return type accordingly.
2527      if (!D.isInvalidType()) {
2528        // trailing-return-type is only required if we're declaring a function,
2529        // and not, for instance, a pointer to a function.
2530        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2531            !FTI.hasTrailingReturnType() && chunkIndex == 0) {
2532          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2533               diag::err_auto_missing_trailing_return);
2534          T = Context.IntTy;
2535          D.setInvalidType(true);
2536        } else if (FTI.hasTrailingReturnType()) {
2537          // T must be exactly 'auto' at this point. See CWG issue 681.
2538          if (isa<ParenType>(T)) {
2539            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2540                 diag::err_trailing_return_in_parens)
2541              << T << D.getDeclSpec().getSourceRange();
2542            D.setInvalidType(true);
2543          } else if (D.getContext() != Declarator::LambdaExprContext &&
2544                     (T.hasQualifiers() || !isa<AutoType>(T))) {
2545            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2546                 diag::err_trailing_return_without_auto)
2547              << T << D.getDeclSpec().getSourceRange();
2548            D.setInvalidType(true);
2549          }
2550          T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
2551          if (T.isNull()) {
2552            // An error occurred parsing the trailing return type.
2553            T = Context.IntTy;
2554            D.setInvalidType(true);
2555          }
2556        }
2557      }
2558
2559      // C99 6.7.5.3p1: The return type may not be a function or array type.
2560      // For conversion functions, we'll diagnose this particular error later.
2561      if ((T->isArrayType() || T->isFunctionType()) &&
2562          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2563        unsigned diagID = diag::err_func_returning_array_function;
2564        // Last processing chunk in block context means this function chunk
2565        // represents the block.
2566        if (chunkIndex == 0 &&
2567            D.getContext() == Declarator::BlockLiteralContext)
2568          diagID = diag::err_block_returning_array_function;
2569        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2570        T = Context.IntTy;
2571        D.setInvalidType(true);
2572      }
2573
2574      // Do not allow returning half FP value.
2575      // FIXME: This really should be in BuildFunctionType.
2576      if (T->isHalfType()) {
2577        if (S.getLangOpts().OpenCL) {
2578          if (!S.getOpenCLOptions().cl_khr_fp16) {
2579            S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
2580            D.setInvalidType(true);
2581          }
2582        } else {
2583          S.Diag(D.getIdentifierLoc(),
2584            diag::err_parameters_retval_cannot_have_fp16_type) << 1;
2585          D.setInvalidType(true);
2586        }
2587      }
2588
2589      // cv-qualifiers on return types are pointless except when the type is a
2590      // class type in C++.
2591      if ((T.getCVRQualifiers() || T->isAtomicType()) &&
2592          !(S.getLangOpts().CPlusPlus &&
2593            (T->isDependentType() || T->isRecordType())))
2594        diagnoseIgnoredFunctionQualifiers(S, T, D, chunkIndex);
2595
2596      // Objective-C ARC ownership qualifiers are ignored on the function
2597      // return type (by type canonicalization). Complain if this attribute
2598      // was written here.
2599      if (T.getQualifiers().hasObjCLifetime()) {
2600        SourceLocation AttrLoc;
2601        if (chunkIndex + 1 < D.getNumTypeObjects()) {
2602          DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2603          for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
2604               Attr; Attr = Attr->getNext()) {
2605            if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
2606              AttrLoc = Attr->getLoc();
2607              break;
2608            }
2609          }
2610        }
2611        if (AttrLoc.isInvalid()) {
2612          for (const AttributeList *Attr
2613                 = D.getDeclSpec().getAttributes().getList();
2614               Attr; Attr = Attr->getNext()) {
2615            if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
2616              AttrLoc = Attr->getLoc();
2617              break;
2618            }
2619          }
2620        }
2621
2622        if (AttrLoc.isValid()) {
2623          // The ownership attributes are almost always written via
2624          // the predefined
2625          // __strong/__weak/__autoreleasing/__unsafe_unretained.
2626          if (AttrLoc.isMacroID())
2627            AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
2628
2629          S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
2630            << T.getQualifiers().getObjCLifetime();
2631        }
2632      }
2633
2634      if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2635        // C++ [dcl.fct]p6:
2636        //   Types shall not be defined in return or parameter types.
2637        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2638        if (Tag->isCompleteDefinition())
2639          S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2640            << Context.getTypeDeclType(Tag);
2641      }
2642
2643      // Exception specs are not allowed in typedefs. Complain, but add it
2644      // anyway.
2645      if (IsTypedefName && FTI.getExceptionSpecType())
2646        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2647          << (D.getContext() == Declarator::AliasDeclContext ||
2648              D.getContext() == Declarator::AliasTemplateContext);
2649
2650      // If we see "T var();" or "T var(T());" at block scope, it is probably
2651      // an attempt to initialize a variable, not a function declaration.
2652      if (FTI.isAmbiguous)
2653        warnAboutAmbiguousFunction(S, D, DeclType, T);
2654
2655      if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2656        // Simple void foo(), where the incoming T is the result type.
2657        T = Context.getFunctionNoProtoType(T);
2658      } else {
2659        // We allow a zero-parameter variadic function in C if the
2660        // function is marked with the "overloadable" attribute. Scan
2661        // for this attribute now.
2662        if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2663          bool Overloadable = false;
2664          for (const AttributeList *Attrs = D.getAttributes();
2665               Attrs; Attrs = Attrs->getNext()) {
2666            if (Attrs->getKind() == AttributeList::AT_Overloadable) {
2667              Overloadable = true;
2668              break;
2669            }
2670          }
2671
2672          if (!Overloadable)
2673            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2674        }
2675
2676        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2677          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2678          // definition.
2679          S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2680          D.setInvalidType(true);
2681          // Recover by creating a K&R-style function type.
2682          T = Context.getFunctionNoProtoType(T);
2683          break;
2684        }
2685
2686        FunctionProtoType::ExtProtoInfo EPI;
2687        EPI.Variadic = FTI.isVariadic;
2688        EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
2689        EPI.TypeQuals = FTI.TypeQuals;
2690        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2691                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2692                    : RQ_RValue;
2693
2694        // Otherwise, we have a function with an argument list that is
2695        // potentially variadic.
2696        SmallVector<QualType, 16> ArgTys;
2697        ArgTys.reserve(FTI.NumArgs);
2698
2699        SmallVector<bool, 16> ConsumedArguments;
2700        ConsumedArguments.reserve(FTI.NumArgs);
2701        bool HasAnyConsumedArguments = false;
2702
2703        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2704          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2705          QualType ArgTy = Param->getType();
2706          assert(!ArgTy.isNull() && "Couldn't parse type?");
2707
2708          // Adjust the parameter type.
2709          assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
2710                 "Unadjusted type?");
2711
2712          // Look for 'void'.  void is allowed only as a single argument to a
2713          // function with no other parameters (C99 6.7.5.3p10).  We record
2714          // int(void) as a FunctionProtoType with an empty argument list.
2715          if (ArgTy->isVoidType()) {
2716            // If this is something like 'float(int, void)', reject it.  'void'
2717            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2718            // have arguments of incomplete type.
2719            if (FTI.NumArgs != 1 || FTI.isVariadic) {
2720              S.Diag(DeclType.Loc, diag::err_void_only_param);
2721              ArgTy = Context.IntTy;
2722              Param->setType(ArgTy);
2723            } else if (FTI.ArgInfo[i].Ident) {
2724              // Reject, but continue to parse 'int(void abc)'.
2725              S.Diag(FTI.ArgInfo[i].IdentLoc,
2726                   diag::err_param_with_void_type);
2727              ArgTy = Context.IntTy;
2728              Param->setType(ArgTy);
2729            } else {
2730              // Reject, but continue to parse 'float(const void)'.
2731              if (ArgTy.hasQualifiers())
2732                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2733
2734              // Do not add 'void' to the ArgTys list.
2735              break;
2736            }
2737          } else if (ArgTy->isHalfType()) {
2738            // Disallow half FP arguments.
2739            // FIXME: This really should be in BuildFunctionType.
2740            if (S.getLangOpts().OpenCL) {
2741              if (!S.getOpenCLOptions().cl_khr_fp16) {
2742                S.Diag(Param->getLocation(),
2743                  diag::err_opencl_half_argument) << ArgTy;
2744                D.setInvalidType();
2745                Param->setInvalidDecl();
2746              }
2747            } else {
2748              S.Diag(Param->getLocation(),
2749                diag::err_parameters_retval_cannot_have_fp16_type) << 0;
2750              D.setInvalidType();
2751            }
2752          } else if (!FTI.hasPrototype) {
2753            if (ArgTy->isPromotableIntegerType()) {
2754              ArgTy = Context.getPromotedIntegerType(ArgTy);
2755              Param->setKNRPromoted(true);
2756            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2757              if (BTy->getKind() == BuiltinType::Float) {
2758                ArgTy = Context.DoubleTy;
2759                Param->setKNRPromoted(true);
2760              }
2761            }
2762          }
2763
2764          if (LangOpts.ObjCAutoRefCount) {
2765            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2766            ConsumedArguments.push_back(Consumed);
2767            HasAnyConsumedArguments |= Consumed;
2768          }
2769
2770          ArgTys.push_back(ArgTy);
2771        }
2772
2773        if (HasAnyConsumedArguments)
2774          EPI.ConsumedArguments = ConsumedArguments.data();
2775
2776        SmallVector<QualType, 4> Exceptions;
2777        SmallVector<ParsedType, 2> DynamicExceptions;
2778        SmallVector<SourceRange, 2> DynamicExceptionRanges;
2779        Expr *NoexceptExpr = 0;
2780
2781        if (FTI.getExceptionSpecType() == EST_Dynamic) {
2782          // FIXME: It's rather inefficient to have to split into two vectors
2783          // here.
2784          unsigned N = FTI.NumExceptions;
2785          DynamicExceptions.reserve(N);
2786          DynamicExceptionRanges.reserve(N);
2787          for (unsigned I = 0; I != N; ++I) {
2788            DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
2789            DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
2790          }
2791        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2792          NoexceptExpr = FTI.NoexceptExpr;
2793        }
2794
2795        S.checkExceptionSpecification(FTI.getExceptionSpecType(),
2796                                      DynamicExceptions,
2797                                      DynamicExceptionRanges,
2798                                      NoexceptExpr,
2799                                      Exceptions,
2800                                      EPI);
2801
2802        T = Context.getFunctionType(T, ArgTys, EPI);
2803      }
2804
2805      break;
2806    }
2807    case DeclaratorChunk::MemberPointer:
2808      // The scope spec must refer to a class, or be dependent.
2809      CXXScopeSpec &SS = DeclType.Mem.Scope();
2810      QualType ClsType;
2811      if (SS.isInvalid()) {
2812        // Avoid emitting extra errors if we already errored on the scope.
2813        D.setInvalidType(true);
2814      } else if (S.isDependentScopeSpecifier(SS) ||
2815                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
2816        NestedNameSpecifier *NNS
2817          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2818        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
2819        switch (NNS->getKind()) {
2820        case NestedNameSpecifier::Identifier:
2821          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
2822                                                 NNS->getAsIdentifier());
2823          break;
2824
2825        case NestedNameSpecifier::Namespace:
2826        case NestedNameSpecifier::NamespaceAlias:
2827        case NestedNameSpecifier::Global:
2828          llvm_unreachable("Nested-name-specifier must name a type");
2829
2830        case NestedNameSpecifier::TypeSpec:
2831        case NestedNameSpecifier::TypeSpecWithTemplate:
2832          ClsType = QualType(NNS->getAsType(), 0);
2833          // Note: if the NNS has a prefix and ClsType is a nondependent
2834          // TemplateSpecializationType, then the NNS prefix is NOT included
2835          // in ClsType; hence we wrap ClsType into an ElaboratedType.
2836          // NOTE: in particular, no wrap occurs if ClsType already is an
2837          // Elaborated, DependentName, or DependentTemplateSpecialization.
2838          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
2839            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
2840          break;
2841        }
2842      } else {
2843        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
2844             diag::err_illegal_decl_mempointer_in_nonclass)
2845          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
2846          << DeclType.Mem.Scope().getRange();
2847        D.setInvalidType(true);
2848      }
2849
2850      if (!ClsType.isNull())
2851        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
2852      if (T.isNull()) {
2853        T = Context.IntTy;
2854        D.setInvalidType(true);
2855      } else if (DeclType.Mem.TypeQuals) {
2856        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
2857      }
2858      break;
2859    }
2860
2861    if (T.isNull()) {
2862      D.setInvalidType(true);
2863      T = Context.IntTy;
2864    }
2865
2866    // See if there are any attributes on this declarator chunk.
2867    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
2868      processTypeAttrs(state, T, TAL_DeclChunk, attrs);
2869  }
2870
2871  if (LangOpts.CPlusPlus && T->isFunctionType()) {
2872    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
2873    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
2874
2875    // C++ 8.3.5p4:
2876    //   A cv-qualifier-seq shall only be part of the function type
2877    //   for a nonstatic member function, the function type to which a pointer
2878    //   to member refers, or the top-level function type of a function typedef
2879    //   declaration.
2880    //
2881    // Core issue 547 also allows cv-qualifiers on function types that are
2882    // top-level template type arguments.
2883    bool FreeFunction;
2884    if (!D.getCXXScopeSpec().isSet()) {
2885      FreeFunction = ((D.getContext() != Declarator::MemberContext &&
2886                       D.getContext() != Declarator::LambdaExprContext) ||
2887                      D.getDeclSpec().isFriendSpecified());
2888    } else {
2889      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
2890      FreeFunction = (DC && !DC->isRecord());
2891    }
2892
2893    // C++11 [dcl.fct]p6 (w/DR1417):
2894    // An attempt to specify a function type with a cv-qualifier-seq or a
2895    // ref-qualifier (including by typedef-name) is ill-formed unless it is:
2896    //  - the function type for a non-static member function,
2897    //  - the function type to which a pointer to member refers,
2898    //  - the top-level function type of a function typedef declaration or
2899    //    alias-declaration,
2900    //  - the type-id in the default argument of a type-parameter, or
2901    //  - the type-id of a template-argument for a type-parameter
2902    if (IsQualifiedFunction &&
2903        !(!FreeFunction &&
2904          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
2905        !IsTypedefName &&
2906        D.getContext() != Declarator::TemplateTypeArgContext) {
2907      SourceLocation Loc = D.getLocStart();
2908      SourceRange RemovalRange;
2909      unsigned I;
2910      if (D.isFunctionDeclarator(I)) {
2911        SmallVector<SourceLocation, 4> RemovalLocs;
2912        const DeclaratorChunk &Chunk = D.getTypeObject(I);
2913        assert(Chunk.Kind == DeclaratorChunk::Function);
2914        if (Chunk.Fun.hasRefQualifier())
2915          RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
2916        if (Chunk.Fun.TypeQuals & Qualifiers::Const)
2917          RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
2918        if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
2919          RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
2920        // FIXME: We do not track the location of the __restrict qualifier.
2921        //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
2922        //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
2923        if (!RemovalLocs.empty()) {
2924          std::sort(RemovalLocs.begin(), RemovalLocs.end(),
2925                    BeforeThanCompare<SourceLocation>(S.getSourceManager()));
2926          RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
2927          Loc = RemovalLocs.front();
2928        }
2929      }
2930
2931      S.Diag(Loc, diag::err_invalid_qualified_function_type)
2932        << FreeFunction << D.isFunctionDeclarator() << T
2933        << getFunctionQualifiersAsString(FnTy)
2934        << FixItHint::CreateRemoval(RemovalRange);
2935
2936      // Strip the cv-qualifiers and ref-qualifiers from the type.
2937      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2938      EPI.TypeQuals = 0;
2939      EPI.RefQualifier = RQ_None;
2940
2941      T = Context.getFunctionType(FnTy->getResultType(),
2942                                  ArrayRef<QualType>(FnTy->arg_type_begin(),
2943                                                     FnTy->getNumArgs()),
2944                                  EPI);
2945      // Rebuild any parens around the identifier in the function type.
2946      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2947        if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
2948          break;
2949        T = S.BuildParenType(T);
2950      }
2951    }
2952  }
2953
2954  // Apply any undistributed attributes from the declarator.
2955  if (!T.isNull())
2956    if (AttributeList *attrs = D.getAttributes())
2957      processTypeAttrs(state, T, TAL_DeclName, attrs);
2958
2959  // Diagnose any ignored type attributes.
2960  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
2961
2962  // C++0x [dcl.constexpr]p9:
2963  //  A constexpr specifier used in an object declaration declares the object
2964  //  as const.
2965  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
2966    T.addConst();
2967  }
2968
2969  // If there was an ellipsis in the declarator, the declaration declares a
2970  // parameter pack whose type may be a pack expansion type.
2971  if (D.hasEllipsis() && !T.isNull()) {
2972    // C++0x [dcl.fct]p13:
2973    //   A declarator-id or abstract-declarator containing an ellipsis shall
2974    //   only be used in a parameter-declaration. Such a parameter-declaration
2975    //   is a parameter pack (14.5.3). [...]
2976    switch (D.getContext()) {
2977    case Declarator::PrototypeContext:
2978      // C++0x [dcl.fct]p13:
2979      //   [...] When it is part of a parameter-declaration-clause, the
2980      //   parameter pack is a function parameter pack (14.5.3). The type T
2981      //   of the declarator-id of the function parameter pack shall contain
2982      //   a template parameter pack; each template parameter pack in T is
2983      //   expanded by the function parameter pack.
2984      //
2985      // We represent function parameter packs as function parameters whose
2986      // type is a pack expansion.
2987      if (!T->containsUnexpandedParameterPack()) {
2988        S.Diag(D.getEllipsisLoc(),
2989             diag::err_function_parameter_pack_without_parameter_packs)
2990          << T <<  D.getSourceRange();
2991        D.setEllipsisLoc(SourceLocation());
2992      } else {
2993        T = Context.getPackExpansionType(T, None);
2994      }
2995      break;
2996
2997    case Declarator::TemplateParamContext:
2998      // C++0x [temp.param]p15:
2999      //   If a template-parameter is a [...] is a parameter-declaration that
3000      //   declares a parameter pack (8.3.5), then the template-parameter is a
3001      //   template parameter pack (14.5.3).
3002      //
3003      // Note: core issue 778 clarifies that, if there are any unexpanded
3004      // parameter packs in the type of the non-type template parameter, then
3005      // it expands those parameter packs.
3006      if (T->containsUnexpandedParameterPack())
3007        T = Context.getPackExpansionType(T, None);
3008      else
3009        S.Diag(D.getEllipsisLoc(),
3010               LangOpts.CPlusPlus11
3011                 ? diag::warn_cxx98_compat_variadic_templates
3012                 : diag::ext_variadic_templates);
3013      break;
3014
3015    case Declarator::FileContext:
3016    case Declarator::KNRTypeListContext:
3017    case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
3018    case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
3019    case Declarator::TypeNameContext:
3020    case Declarator::CXXNewContext:
3021    case Declarator::AliasDeclContext:
3022    case Declarator::AliasTemplateContext:
3023    case Declarator::MemberContext:
3024    case Declarator::BlockContext:
3025    case Declarator::ForContext:
3026    case Declarator::ConditionContext:
3027    case Declarator::CXXCatchContext:
3028    case Declarator::ObjCCatchContext:
3029    case Declarator::BlockLiteralContext:
3030    case Declarator::LambdaExprContext:
3031    case Declarator::TrailingReturnContext:
3032    case Declarator::TemplateTypeArgContext:
3033      // FIXME: We may want to allow parameter packs in block-literal contexts
3034      // in the future.
3035      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
3036      D.setEllipsisLoc(SourceLocation());
3037      break;
3038    }
3039  }
3040
3041  if (T.isNull())
3042    return Context.getNullTypeSourceInfo();
3043  else if (D.isInvalidType())
3044    return Context.getTrivialTypeSourceInfo(T);
3045
3046  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
3047}
3048
3049/// GetTypeForDeclarator - Convert the type for the specified
3050/// declarator to Type instances.
3051///
3052/// The result of this call will never be null, but the associated
3053/// type may be a null type if there's an unrecoverable error.
3054TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
3055  // Determine the type of the declarator. Not all forms of declarator
3056  // have a type.
3057
3058  TypeProcessingState state(*this, D);
3059
3060  TypeSourceInfo *ReturnTypeInfo = 0;
3061  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
3062  if (T.isNull())
3063    return Context.getNullTypeSourceInfo();
3064
3065  if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
3066    inferARCWriteback(state, T);
3067
3068  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
3069}
3070
3071static void transferARCOwnershipToDeclSpec(Sema &S,
3072                                           QualType &declSpecTy,
3073                                           Qualifiers::ObjCLifetime ownership) {
3074  if (declSpecTy->isObjCRetainableType() &&
3075      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
3076    Qualifiers qs;
3077    qs.addObjCLifetime(ownership);
3078    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
3079  }
3080}
3081
3082static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
3083                                            Qualifiers::ObjCLifetime ownership,
3084                                            unsigned chunkIndex) {
3085  Sema &S = state.getSema();
3086  Declarator &D = state.getDeclarator();
3087
3088  // Look for an explicit lifetime attribute.
3089  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
3090  for (const AttributeList *attr = chunk.getAttrs(); attr;
3091         attr = attr->getNext())
3092    if (attr->getKind() == AttributeList::AT_ObjCOwnership)
3093      return;
3094
3095  const char *attrStr = 0;
3096  switch (ownership) {
3097  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
3098  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
3099  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
3100  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
3101  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
3102  }
3103
3104  // If there wasn't one, add one (with an invalid source location
3105  // so that we don't make an AttributedType for it).
3106  AttributeList *attr = D.getAttributePool()
3107    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
3108            /*scope*/ 0, SourceLocation(),
3109            &S.Context.Idents.get(attrStr), SourceLocation(),
3110            /*args*/ 0, 0, AttributeList::AS_GNU);
3111  spliceAttrIntoList(*attr, chunk.getAttrListRef());
3112
3113  // TODO: mark whether we did this inference?
3114}
3115
3116/// \brief Used for transferring ownership in casts resulting in l-values.
3117static void transferARCOwnership(TypeProcessingState &state,
3118                                 QualType &declSpecTy,
3119                                 Qualifiers::ObjCLifetime ownership) {
3120  Sema &S = state.getSema();
3121  Declarator &D = state.getDeclarator();
3122
3123  int inner = -1;
3124  bool hasIndirection = false;
3125  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3126    DeclaratorChunk &chunk = D.getTypeObject(i);
3127    switch (chunk.Kind) {
3128    case DeclaratorChunk::Paren:
3129      // Ignore parens.
3130      break;
3131
3132    case DeclaratorChunk::Array:
3133    case DeclaratorChunk::Reference:
3134    case DeclaratorChunk::Pointer:
3135      if (inner != -1)
3136        hasIndirection = true;
3137      inner = i;
3138      break;
3139
3140    case DeclaratorChunk::BlockPointer:
3141      if (inner != -1)
3142        transferARCOwnershipToDeclaratorChunk(state, ownership, i);
3143      return;
3144
3145    case DeclaratorChunk::Function:
3146    case DeclaratorChunk::MemberPointer:
3147      return;
3148    }
3149  }
3150
3151  if (inner == -1)
3152    return;
3153
3154  DeclaratorChunk &chunk = D.getTypeObject(inner);
3155  if (chunk.Kind == DeclaratorChunk::Pointer) {
3156    if (declSpecTy->isObjCRetainableType())
3157      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
3158    if (declSpecTy->isObjCObjectType() && hasIndirection)
3159      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
3160  } else {
3161    assert(chunk.Kind == DeclaratorChunk::Array ||
3162           chunk.Kind == DeclaratorChunk::Reference);
3163    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
3164  }
3165}
3166
3167TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
3168  TypeProcessingState state(*this, D);
3169
3170  TypeSourceInfo *ReturnTypeInfo = 0;
3171  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
3172  if (declSpecTy.isNull())
3173    return Context.getNullTypeSourceInfo();
3174
3175  if (getLangOpts().ObjCAutoRefCount) {
3176    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
3177    if (ownership != Qualifiers::OCL_None)
3178      transferARCOwnership(state, declSpecTy, ownership);
3179  }
3180
3181  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
3182}
3183
3184/// Map an AttributedType::Kind to an AttributeList::Kind.
3185static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
3186  switch (kind) {
3187  case AttributedType::attr_address_space:
3188    return AttributeList::AT_AddressSpace;
3189  case AttributedType::attr_regparm:
3190    return AttributeList::AT_Regparm;
3191  case AttributedType::attr_vector_size:
3192    return AttributeList::AT_VectorSize;
3193  case AttributedType::attr_neon_vector_type:
3194    return AttributeList::AT_NeonVectorType;
3195  case AttributedType::attr_neon_polyvector_type:
3196    return AttributeList::AT_NeonPolyVectorType;
3197  case AttributedType::attr_objc_gc:
3198    return AttributeList::AT_ObjCGC;
3199  case AttributedType::attr_objc_ownership:
3200    return AttributeList::AT_ObjCOwnership;
3201  case AttributedType::attr_noreturn:
3202    return AttributeList::AT_NoReturn;
3203  case AttributedType::attr_cdecl:
3204    return AttributeList::AT_CDecl;
3205  case AttributedType::attr_fastcall:
3206    return AttributeList::AT_FastCall;
3207  case AttributedType::attr_stdcall:
3208    return AttributeList::AT_StdCall;
3209  case AttributedType::attr_thiscall:
3210    return AttributeList::AT_ThisCall;
3211  case AttributedType::attr_pascal:
3212    return AttributeList::AT_Pascal;
3213  case AttributedType::attr_pcs:
3214    return AttributeList::AT_Pcs;
3215  case AttributedType::attr_pnaclcall:
3216    return AttributeList::AT_PnaclCall;
3217  case AttributedType::attr_inteloclbicc:
3218    return AttributeList::AT_IntelOclBicc;
3219  }
3220  llvm_unreachable("unexpected attribute kind!");
3221}
3222
3223static void fillAttributedTypeLoc(AttributedTypeLoc TL,
3224                                  const AttributeList *attrs) {
3225  AttributedType::Kind kind = TL.getAttrKind();
3226
3227  assert(attrs && "no type attributes in the expected location!");
3228  AttributeList::Kind parsedKind = getAttrListKind(kind);
3229  while (attrs->getKind() != parsedKind) {
3230    attrs = attrs->getNext();
3231    assert(attrs && "no matching attribute in expected location!");
3232  }
3233
3234  TL.setAttrNameLoc(attrs->getLoc());
3235  if (TL.hasAttrExprOperand())
3236    TL.setAttrExprOperand(attrs->getArg(0));
3237  else if (TL.hasAttrEnumOperand())
3238    TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
3239
3240  // FIXME: preserve this information to here.
3241  if (TL.hasAttrOperand())
3242    TL.setAttrOperandParensRange(SourceRange());
3243}
3244
3245namespace {
3246  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
3247    ASTContext &Context;
3248    const DeclSpec &DS;
3249
3250  public:
3251    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
3252      : Context(Context), DS(DS) {}
3253
3254    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3255      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
3256      Visit(TL.getModifiedLoc());
3257    }
3258    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3259      Visit(TL.getUnqualifiedLoc());
3260    }
3261    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
3262      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3263    }
3264    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
3265      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3266      // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
3267      // addition field. What we have is good enough for dispay of location
3268      // of 'fixit' on interface name.
3269      TL.setNameEndLoc(DS.getLocEnd());
3270    }
3271    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
3272      // Handle the base type, which might not have been written explicitly.
3273      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
3274        TL.setHasBaseTypeAsWritten(false);
3275        TL.getBaseLoc().initialize(Context, SourceLocation());
3276      } else {
3277        TL.setHasBaseTypeAsWritten(true);
3278        Visit(TL.getBaseLoc());
3279      }
3280
3281      // Protocol qualifiers.
3282      if (DS.getProtocolQualifiers()) {
3283        assert(TL.getNumProtocols() > 0);
3284        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
3285        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
3286        TL.setRAngleLoc(DS.getSourceRange().getEnd());
3287        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
3288          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
3289      } else {
3290        assert(TL.getNumProtocols() == 0);
3291        TL.setLAngleLoc(SourceLocation());
3292        TL.setRAngleLoc(SourceLocation());
3293      }
3294    }
3295    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3296      TL.setStarLoc(SourceLocation());
3297      Visit(TL.getPointeeLoc());
3298    }
3299    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
3300      TypeSourceInfo *TInfo = 0;
3301      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3302
3303      // If we got no declarator info from previous Sema routines,
3304      // just fill with the typespec loc.
3305      if (!TInfo) {
3306        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
3307        return;
3308      }
3309
3310      TypeLoc OldTL = TInfo->getTypeLoc();
3311      if (TInfo->getType()->getAs<ElaboratedType>()) {
3312        ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
3313        TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
3314            .castAs<TemplateSpecializationTypeLoc>();
3315        TL.copy(NamedTL);
3316      }
3317      else
3318        TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
3319    }
3320    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
3321      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
3322      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3323      TL.setParensRange(DS.getTypeofParensRange());
3324    }
3325    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
3326      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
3327      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3328      TL.setParensRange(DS.getTypeofParensRange());
3329      assert(DS.getRepAsType());
3330      TypeSourceInfo *TInfo = 0;
3331      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3332      TL.setUnderlyingTInfo(TInfo);
3333    }
3334    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
3335      // FIXME: This holds only because we only have one unary transform.
3336      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
3337      TL.setKWLoc(DS.getTypeSpecTypeLoc());
3338      TL.setParensRange(DS.getTypeofParensRange());
3339      assert(DS.getRepAsType());
3340      TypeSourceInfo *TInfo = 0;
3341      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3342      TL.setUnderlyingTInfo(TInfo);
3343    }
3344    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
3345      // By default, use the source location of the type specifier.
3346      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
3347      if (TL.needsExtraLocalData()) {
3348        // Set info for the written builtin specifiers.
3349        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
3350        // Try to have a meaningful source location.
3351        if (TL.getWrittenSignSpec() != TSS_unspecified)
3352          // Sign spec loc overrides the others (e.g., 'unsigned long').
3353          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
3354        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
3355          // Width spec loc overrides type spec loc (e.g., 'short int').
3356          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
3357      }
3358    }
3359    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
3360      ElaboratedTypeKeyword Keyword
3361        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
3362      if (DS.getTypeSpecType() == TST_typename) {
3363        TypeSourceInfo *TInfo = 0;
3364        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3365        if (TInfo) {
3366          TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
3367          return;
3368        }
3369      }
3370      TL.setElaboratedKeywordLoc(Keyword != ETK_None
3371                                 ? DS.getTypeSpecTypeLoc()
3372                                 : SourceLocation());
3373      const CXXScopeSpec& SS = DS.getTypeSpecScope();
3374      TL.setQualifierLoc(SS.getWithLocInContext(Context));
3375      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
3376    }
3377    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
3378      assert(DS.getTypeSpecType() == TST_typename);
3379      TypeSourceInfo *TInfo = 0;
3380      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3381      assert(TInfo);
3382      TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
3383    }
3384    void VisitDependentTemplateSpecializationTypeLoc(
3385                                 DependentTemplateSpecializationTypeLoc TL) {
3386      assert(DS.getTypeSpecType() == TST_typename);
3387      TypeSourceInfo *TInfo = 0;
3388      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3389      assert(TInfo);
3390      TL.copy(
3391          TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
3392    }
3393    void VisitTagTypeLoc(TagTypeLoc TL) {
3394      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
3395    }
3396    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
3397      // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
3398      // or an _Atomic qualifier.
3399      if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
3400        TL.setKWLoc(DS.getTypeSpecTypeLoc());
3401        TL.setParensRange(DS.getTypeofParensRange());
3402
3403        TypeSourceInfo *TInfo = 0;
3404        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3405        assert(TInfo);
3406        TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
3407      } else {
3408        TL.setKWLoc(DS.getAtomicSpecLoc());
3409        // No parens, to indicate this was spelled as an _Atomic qualifier.
3410        TL.setParensRange(SourceRange());
3411        Visit(TL.getValueLoc());
3412      }
3413    }
3414
3415    void VisitTypeLoc(TypeLoc TL) {
3416      // FIXME: add other typespec types and change this to an assert.
3417      TL.initialize(Context, DS.getTypeSpecTypeLoc());
3418    }
3419  };
3420
3421  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
3422    ASTContext &Context;
3423    const DeclaratorChunk &Chunk;
3424
3425  public:
3426    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
3427      : Context(Context), Chunk(Chunk) {}
3428
3429    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3430      llvm_unreachable("qualified type locs not expected here!");
3431    }
3432
3433    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3434      fillAttributedTypeLoc(TL, Chunk.getAttrs());
3435    }
3436    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
3437      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3438      TL.setCaretLoc(Chunk.Loc);
3439    }
3440    void VisitPointerTypeLoc(PointerTypeLoc TL) {
3441      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3442      TL.setStarLoc(Chunk.Loc);
3443    }
3444    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3445      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3446      TL.setStarLoc(Chunk.Loc);
3447    }
3448    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3449      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3450      const CXXScopeSpec& SS = Chunk.Mem.Scope();
3451      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3452
3453      const Type* ClsTy = TL.getClass();
3454      QualType ClsQT = QualType(ClsTy, 0);
3455      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3456      // Now copy source location info into the type loc component.
3457      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3458      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3459      case NestedNameSpecifier::Identifier:
3460        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3461        {
3462          DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
3463          DNTLoc.setElaboratedKeywordLoc(SourceLocation());
3464          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3465          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3466        }
3467        break;
3468
3469      case NestedNameSpecifier::TypeSpec:
3470      case NestedNameSpecifier::TypeSpecWithTemplate:
3471        if (isa<ElaboratedType>(ClsTy)) {
3472          ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
3473          ETLoc.setElaboratedKeywordLoc(SourceLocation());
3474          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3475          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3476          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3477        } else {
3478          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3479        }
3480        break;
3481
3482      case NestedNameSpecifier::Namespace:
3483      case NestedNameSpecifier::NamespaceAlias:
3484      case NestedNameSpecifier::Global:
3485        llvm_unreachable("Nested-name-specifier must name a type");
3486      }
3487
3488      // Finally fill in MemberPointerLocInfo fields.
3489      TL.setStarLoc(Chunk.Loc);
3490      TL.setClassTInfo(ClsTInfo);
3491    }
3492    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3493      assert(Chunk.Kind == DeclaratorChunk::Reference);
3494      // 'Amp' is misleading: this might have been originally
3495      /// spelled with AmpAmp.
3496      TL.setAmpLoc(Chunk.Loc);
3497    }
3498    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3499      assert(Chunk.Kind == DeclaratorChunk::Reference);
3500      assert(!Chunk.Ref.LValueRef);
3501      TL.setAmpAmpLoc(Chunk.Loc);
3502    }
3503    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3504      assert(Chunk.Kind == DeclaratorChunk::Array);
3505      TL.setLBracketLoc(Chunk.Loc);
3506      TL.setRBracketLoc(Chunk.EndLoc);
3507      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3508    }
3509    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3510      assert(Chunk.Kind == DeclaratorChunk::Function);
3511      TL.setLocalRangeBegin(Chunk.Loc);
3512      TL.setLocalRangeEnd(Chunk.EndLoc);
3513
3514      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3515      TL.setLParenLoc(FTI.getLParenLoc());
3516      TL.setRParenLoc(FTI.getRParenLoc());
3517      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
3518        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3519        TL.setArg(tpi++, Param);
3520      }
3521      // FIXME: exception specs
3522    }
3523    void VisitParenTypeLoc(ParenTypeLoc TL) {
3524      assert(Chunk.Kind == DeclaratorChunk::Paren);
3525      TL.setLParenLoc(Chunk.Loc);
3526      TL.setRParenLoc(Chunk.EndLoc);
3527    }
3528
3529    void VisitTypeLoc(TypeLoc TL) {
3530      llvm_unreachable("unsupported TypeLoc kind in declarator!");
3531    }
3532  };
3533}
3534
3535static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
3536  SourceLocation Loc;
3537  switch (Chunk.Kind) {
3538  case DeclaratorChunk::Function:
3539  case DeclaratorChunk::Array:
3540  case DeclaratorChunk::Paren:
3541    llvm_unreachable("cannot be _Atomic qualified");
3542
3543  case DeclaratorChunk::Pointer:
3544    Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
3545    break;
3546
3547  case DeclaratorChunk::BlockPointer:
3548  case DeclaratorChunk::Reference:
3549  case DeclaratorChunk::MemberPointer:
3550    // FIXME: Provide a source location for the _Atomic keyword.
3551    break;
3552  }
3553
3554  ATL.setKWLoc(Loc);
3555  ATL.setParensRange(SourceRange());
3556}
3557
3558/// \brief Create and instantiate a TypeSourceInfo with type source information.
3559///
3560/// \param T QualType referring to the type as written in source code.
3561///
3562/// \param ReturnTypeInfo For declarators whose return type does not show
3563/// up in the normal place in the declaration specifiers (such as a C++
3564/// conversion function), this pointer will refer to a type source information
3565/// for that return type.
3566TypeSourceInfo *
3567Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3568                                     TypeSourceInfo *ReturnTypeInfo) {
3569  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3570  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3571
3572  // Handle parameter packs whose type is a pack expansion.
3573  if (isa<PackExpansionType>(T)) {
3574    CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
3575    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3576  }
3577
3578  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3579    // An AtomicTypeLoc might be produced by an atomic qualifier in this
3580    // declarator chunk.
3581    if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
3582      fillAtomicQualLoc(ATL, D.getTypeObject(i));
3583      CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
3584    }
3585
3586    while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
3587      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3588      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3589    }
3590
3591    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3592    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3593  }
3594
3595  // If we have different source information for the return type, use
3596  // that.  This really only applies to C++ conversion functions.
3597  if (ReturnTypeInfo) {
3598    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3599    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3600    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3601  } else {
3602    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3603  }
3604
3605  return TInfo;
3606}
3607
3608/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3609ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3610  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3611  // and Sema during declaration parsing. Try deallocating/caching them when
3612  // it's appropriate, instead of allocating them and keeping them around.
3613  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3614                                                       TypeAlignment);
3615  new (LocT) LocInfoType(T, TInfo);
3616  assert(LocT->getTypeClass() != T->getTypeClass() &&
3617         "LocInfoType's TypeClass conflicts with an existing Type class");
3618  return ParsedType::make(QualType(LocT, 0));
3619}
3620
3621void LocInfoType::getAsStringInternal(std::string &Str,
3622                                      const PrintingPolicy &Policy) const {
3623  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3624         " was used directly instead of getting the QualType through"
3625         " GetTypeFromParser");
3626}
3627
3628TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3629  // C99 6.7.6: Type names have no identifier.  This is already validated by
3630  // the parser.
3631  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3632
3633  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3634  QualType T = TInfo->getType();
3635  if (D.isInvalidType())
3636    return true;
3637
3638  // Make sure there are no unused decl attributes on the declarator.
3639  // We don't want to do this for ObjC parameters because we're going
3640  // to apply them to the actual parameter declaration.
3641  // Likewise, we don't want to do this for alias declarations, because
3642  // we are actually going to build a declaration from this eventually.
3643  if (D.getContext() != Declarator::ObjCParameterContext &&
3644      D.getContext() != Declarator::AliasDeclContext &&
3645      D.getContext() != Declarator::AliasTemplateContext)
3646    checkUnusedDeclAttributes(D);
3647
3648  if (getLangOpts().CPlusPlus) {
3649    // Check that there are no default arguments (C++ only).
3650    CheckExtraCXXDefaultArguments(D);
3651  }
3652
3653  return CreateParsedType(T, TInfo);
3654}
3655
3656ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3657  QualType T = Context.getObjCInstanceType();
3658  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3659  return CreateParsedType(T, TInfo);
3660}
3661
3662
3663//===----------------------------------------------------------------------===//
3664// Type Attribute Processing
3665//===----------------------------------------------------------------------===//
3666
3667/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3668/// specified type.  The attribute contains 1 argument, the id of the address
3669/// space for the type.
3670static void HandleAddressSpaceTypeAttribute(QualType &Type,
3671                                            const AttributeList &Attr, Sema &S){
3672
3673  // If this type is already address space qualified, reject it.
3674  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3675  // qualifiers for two or more different address spaces."
3676  if (Type.getAddressSpace()) {
3677    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3678    Attr.setInvalid();
3679    return;
3680  }
3681
3682  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3683  // qualified by an address-space qualifier."
3684  if (Type->isFunctionType()) {
3685    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3686    Attr.setInvalid();
3687    return;
3688  }
3689
3690  // Check the attribute arguments.
3691  if (Attr.getNumArgs() != 1) {
3692    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3693    Attr.setInvalid();
3694    return;
3695  }
3696  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
3697  llvm::APSInt addrSpace(32);
3698  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3699      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3700    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
3701      << ASArgExpr->getSourceRange();
3702    Attr.setInvalid();
3703    return;
3704  }
3705
3706  // Bounds checking.
3707  if (addrSpace.isSigned()) {
3708    if (addrSpace.isNegative()) {
3709      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3710        << ASArgExpr->getSourceRange();
3711      Attr.setInvalid();
3712      return;
3713    }
3714    addrSpace.setIsSigned(false);
3715  }
3716  llvm::APSInt max(addrSpace.getBitWidth());
3717  max = Qualifiers::MaxAddressSpace;
3718  if (addrSpace > max) {
3719    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3720      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
3721    Attr.setInvalid();
3722    return;
3723  }
3724
3725  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3726  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3727}
3728
3729/// Does this type have a "direct" ownership qualifier?  That is,
3730/// is it written like "__strong id", as opposed to something like
3731/// "typeof(foo)", where that happens to be strong?
3732static bool hasDirectOwnershipQualifier(QualType type) {
3733  // Fast path: no qualifier at all.
3734  assert(type.getQualifiers().hasObjCLifetime());
3735
3736  while (true) {
3737    // __strong id
3738    if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
3739      if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
3740        return true;
3741
3742      type = attr->getModifiedType();
3743
3744    // X *__strong (...)
3745    } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
3746      type = paren->getInnerType();
3747
3748    // That's it for things we want to complain about.  In particular,
3749    // we do not want to look through typedefs, typeof(expr),
3750    // typeof(type), or any other way that the type is somehow
3751    // abstracted.
3752    } else {
3753
3754      return false;
3755    }
3756  }
3757}
3758
3759/// handleObjCOwnershipTypeAttr - Process an objc_ownership
3760/// attribute on the specified type.
3761///
3762/// Returns 'true' if the attribute was handled.
3763static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
3764                                       AttributeList &attr,
3765                                       QualType &type) {
3766  bool NonObjCPointer = false;
3767
3768  if (!type->isDependentType()) {
3769    if (const PointerType *ptr = type->getAs<PointerType>()) {
3770      QualType pointee = ptr->getPointeeType();
3771      if (pointee->isObjCRetainableType() || pointee->isPointerType())
3772        return false;
3773      // It is important not to lose the source info that there was an attribute
3774      // applied to non-objc pointer. We will create an attributed type but
3775      // its type will be the same as the original type.
3776      NonObjCPointer = true;
3777    } else if (!type->isObjCRetainableType()) {
3778      return false;
3779    }
3780
3781    // Don't accept an ownership attribute in the declspec if it would
3782    // just be the return type of a block pointer.
3783    if (state.isProcessingDeclSpec()) {
3784      Declarator &D = state.getDeclarator();
3785      if (maybeMovePastReturnType(D, D.getNumTypeObjects()))
3786        return false;
3787    }
3788  }
3789
3790  Sema &S = state.getSema();
3791  SourceLocation AttrLoc = attr.getLoc();
3792  if (AttrLoc.isMacroID())
3793    AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
3794
3795  if (!attr.getParameterName()) {
3796    S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
3797      << "objc_ownership" << 1;
3798    attr.setInvalid();
3799    return true;
3800  }
3801
3802  // Consume lifetime attributes without further comment outside of
3803  // ARC mode.
3804  if (!S.getLangOpts().ObjCAutoRefCount)
3805    return true;
3806
3807  Qualifiers::ObjCLifetime lifetime;
3808  if (attr.getParameterName()->isStr("none"))
3809    lifetime = Qualifiers::OCL_ExplicitNone;
3810  else if (attr.getParameterName()->isStr("strong"))
3811    lifetime = Qualifiers::OCL_Strong;
3812  else if (attr.getParameterName()->isStr("weak"))
3813    lifetime = Qualifiers::OCL_Weak;
3814  else if (attr.getParameterName()->isStr("autoreleasing"))
3815    lifetime = Qualifiers::OCL_Autoreleasing;
3816  else {
3817    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
3818      << "objc_ownership" << attr.getParameterName();
3819    attr.setInvalid();
3820    return true;
3821  }
3822
3823  SplitQualType underlyingType = type.split();
3824
3825  // Check for redundant/conflicting ownership qualifiers.
3826  if (Qualifiers::ObjCLifetime previousLifetime
3827        = type.getQualifiers().getObjCLifetime()) {
3828    // If it's written directly, that's an error.
3829    if (hasDirectOwnershipQualifier(type)) {
3830      S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
3831        << type;
3832      return true;
3833    }
3834
3835    // Otherwise, if the qualifiers actually conflict, pull sugar off
3836    // until we reach a type that is directly qualified.
3837    if (previousLifetime != lifetime) {
3838      // This should always terminate: the canonical type is
3839      // qualified, so some bit of sugar must be hiding it.
3840      while (!underlyingType.Quals.hasObjCLifetime()) {
3841        underlyingType = underlyingType.getSingleStepDesugaredType();
3842      }
3843      underlyingType.Quals.removeObjCLifetime();
3844    }
3845  }
3846
3847  underlyingType.Quals.addObjCLifetime(lifetime);
3848
3849  if (NonObjCPointer) {
3850    StringRef name = attr.getName()->getName();
3851    switch (lifetime) {
3852    case Qualifiers::OCL_None:
3853    case Qualifiers::OCL_ExplicitNone:
3854      break;
3855    case Qualifiers::OCL_Strong: name = "__strong"; break;
3856    case Qualifiers::OCL_Weak: name = "__weak"; break;
3857    case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
3858    }
3859    S.Diag(AttrLoc, diag::warn_objc_object_attribute_wrong_type)
3860      << name << type;
3861  }
3862
3863  QualType origType = type;
3864  if (!NonObjCPointer)
3865    type = S.Context.getQualifiedType(underlyingType);
3866
3867  // If we have a valid source location for the attribute, use an
3868  // AttributedType instead.
3869  if (AttrLoc.isValid())
3870    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
3871                                       origType, type);
3872
3873  // Forbid __weak if the runtime doesn't support it.
3874  if (lifetime == Qualifiers::OCL_Weak &&
3875      !S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {
3876
3877    // Actually, delay this until we know what we're parsing.
3878    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
3879      S.DelayedDiagnostics.add(
3880          sema::DelayedDiagnostic::makeForbiddenType(
3881              S.getSourceManager().getExpansionLoc(AttrLoc),
3882              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
3883    } else {
3884      S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
3885    }
3886
3887    attr.setInvalid();
3888    return true;
3889  }
3890
3891  // Forbid __weak for class objects marked as
3892  // objc_arc_weak_reference_unavailable
3893  if (lifetime == Qualifiers::OCL_Weak) {
3894    if (const ObjCObjectPointerType *ObjT =
3895          type->getAs<ObjCObjectPointerType>()) {
3896      if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
3897        if (Class->isArcWeakrefUnavailable()) {
3898            S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
3899            S.Diag(ObjT->getInterfaceDecl()->getLocation(),
3900                   diag::note_class_declared);
3901        }
3902      }
3903    }
3904  }
3905
3906  return true;
3907}
3908
3909/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
3910/// attribute on the specified type.  Returns true to indicate that
3911/// the attribute was handled, false to indicate that the type does
3912/// not permit the attribute.
3913static bool handleObjCGCTypeAttr(TypeProcessingState &state,
3914                                 AttributeList &attr,
3915                                 QualType &type) {
3916  Sema &S = state.getSema();
3917
3918  // Delay if this isn't some kind of pointer.
3919  if (!type->isPointerType() &&
3920      !type->isObjCObjectPointerType() &&
3921      !type->isBlockPointerType())
3922    return false;
3923
3924  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
3925    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
3926    attr.setInvalid();
3927    return true;
3928  }
3929
3930  // Check the attribute arguments.
3931  if (!attr.getParameterName()) {
3932    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3933      << "objc_gc" << 1;
3934    attr.setInvalid();
3935    return true;
3936  }
3937  Qualifiers::GC GCAttr;
3938  if (attr.getNumArgs() != 0) {
3939    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3940    attr.setInvalid();
3941    return true;
3942  }
3943  if (attr.getParameterName()->isStr("weak"))
3944    GCAttr = Qualifiers::Weak;
3945  else if (attr.getParameterName()->isStr("strong"))
3946    GCAttr = Qualifiers::Strong;
3947  else {
3948    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3949      << "objc_gc" << attr.getParameterName();
3950    attr.setInvalid();
3951    return true;
3952  }
3953
3954  QualType origType = type;
3955  type = S.Context.getObjCGCQualType(origType, GCAttr);
3956
3957  // Make an attributed type to preserve the source information.
3958  if (attr.getLoc().isValid())
3959    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
3960                                       origType, type);
3961
3962  return true;
3963}
3964
3965namespace {
3966  /// A helper class to unwrap a type down to a function for the
3967  /// purposes of applying attributes there.
3968  ///
3969  /// Use:
3970  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
3971  ///   if (unwrapped.isFunctionType()) {
3972  ///     const FunctionType *fn = unwrapped.get();
3973  ///     // change fn somehow
3974  ///     T = unwrapped.wrap(fn);
3975  ///   }
3976  struct FunctionTypeUnwrapper {
3977    enum WrapKind {
3978      Desugar,
3979      Parens,
3980      Pointer,
3981      BlockPointer,
3982      Reference,
3983      MemberPointer
3984    };
3985
3986    QualType Original;
3987    const FunctionType *Fn;
3988    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
3989
3990    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
3991      while (true) {
3992        const Type *Ty = T.getTypePtr();
3993        if (isa<FunctionType>(Ty)) {
3994          Fn = cast<FunctionType>(Ty);
3995          return;
3996        } else if (isa<ParenType>(Ty)) {
3997          T = cast<ParenType>(Ty)->getInnerType();
3998          Stack.push_back(Parens);
3999        } else if (isa<PointerType>(Ty)) {
4000          T = cast<PointerType>(Ty)->getPointeeType();
4001          Stack.push_back(Pointer);
4002        } else if (isa<BlockPointerType>(Ty)) {
4003          T = cast<BlockPointerType>(Ty)->getPointeeType();
4004          Stack.push_back(BlockPointer);
4005        } else if (isa<MemberPointerType>(Ty)) {
4006          T = cast<MemberPointerType>(Ty)->getPointeeType();
4007          Stack.push_back(MemberPointer);
4008        } else if (isa<ReferenceType>(Ty)) {
4009          T = cast<ReferenceType>(Ty)->getPointeeType();
4010          Stack.push_back(Reference);
4011        } else {
4012          const Type *DTy = Ty->getUnqualifiedDesugaredType();
4013          if (Ty == DTy) {
4014            Fn = 0;
4015            return;
4016          }
4017
4018          T = QualType(DTy, 0);
4019          Stack.push_back(Desugar);
4020        }
4021      }
4022    }
4023
4024    bool isFunctionType() const { return (Fn != 0); }
4025    const FunctionType *get() const { return Fn; }
4026
4027    QualType wrap(Sema &S, const FunctionType *New) {
4028      // If T wasn't modified from the unwrapped type, do nothing.
4029      if (New == get()) return Original;
4030
4031      Fn = New;
4032      return wrap(S.Context, Original, 0);
4033    }
4034
4035  private:
4036    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
4037      if (I == Stack.size())
4038        return C.getQualifiedType(Fn, Old.getQualifiers());
4039
4040      // Build up the inner type, applying the qualifiers from the old
4041      // type to the new type.
4042      SplitQualType SplitOld = Old.split();
4043
4044      // As a special case, tail-recurse if there are no qualifiers.
4045      if (SplitOld.Quals.empty())
4046        return wrap(C, SplitOld.Ty, I);
4047      return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
4048    }
4049
4050    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
4051      if (I == Stack.size()) return QualType(Fn, 0);
4052
4053      switch (static_cast<WrapKind>(Stack[I++])) {
4054      case Desugar:
4055        // This is the point at which we potentially lose source
4056        // information.
4057        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
4058
4059      case Parens: {
4060        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
4061        return C.getParenType(New);
4062      }
4063
4064      case Pointer: {
4065        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
4066        return C.getPointerType(New);
4067      }
4068
4069      case BlockPointer: {
4070        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
4071        return C.getBlockPointerType(New);
4072      }
4073
4074      case MemberPointer: {
4075        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
4076        QualType New = wrap(C, OldMPT->getPointeeType(), I);
4077        return C.getMemberPointerType(New, OldMPT->getClass());
4078      }
4079
4080      case Reference: {
4081        const ReferenceType *OldRef = cast<ReferenceType>(Old);
4082        QualType New = wrap(C, OldRef->getPointeeType(), I);
4083        if (isa<LValueReferenceType>(OldRef))
4084          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
4085        else
4086          return C.getRValueReferenceType(New);
4087      }
4088      }
4089
4090      llvm_unreachable("unknown wrapping kind");
4091    }
4092  };
4093}
4094
4095/// Process an individual function attribute.  Returns true to
4096/// indicate that the attribute was handled, false if it wasn't.
4097static bool handleFunctionTypeAttr(TypeProcessingState &state,
4098                                   AttributeList &attr,
4099                                   QualType &type) {
4100  Sema &S = state.getSema();
4101
4102  FunctionTypeUnwrapper unwrapped(S, type);
4103
4104  if (attr.getKind() == AttributeList::AT_NoReturn) {
4105    if (S.CheckNoReturnAttr(attr))
4106      return true;
4107
4108    // Delay if this is not a function type.
4109    if (!unwrapped.isFunctionType())
4110      return false;
4111
4112    // Otherwise we can process right away.
4113    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
4114    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4115    return true;
4116  }
4117
4118  // ns_returns_retained is not always a type attribute, but if we got
4119  // here, we're treating it as one right now.
4120  if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
4121    assert(S.getLangOpts().ObjCAutoRefCount &&
4122           "ns_returns_retained treated as type attribute in non-ARC");
4123    if (attr.getNumArgs()) return true;
4124
4125    // Delay if this is not a function type.
4126    if (!unwrapped.isFunctionType())
4127      return false;
4128
4129    FunctionType::ExtInfo EI
4130      = unwrapped.get()->getExtInfo().withProducesResult(true);
4131    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4132    return true;
4133  }
4134
4135  if (attr.getKind() == AttributeList::AT_Regparm) {
4136    unsigned value;
4137    if (S.CheckRegparmAttr(attr, value))
4138      return true;
4139
4140    // Delay if this is not a function type.
4141    if (!unwrapped.isFunctionType())
4142      return false;
4143
4144    // Diagnose regparm with fastcall.
4145    const FunctionType *fn = unwrapped.get();
4146    CallingConv CC = fn->getCallConv();
4147    if (CC == CC_X86FastCall) {
4148      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4149        << FunctionType::getNameForCallConv(CC)
4150        << "regparm";
4151      attr.setInvalid();
4152      return true;
4153    }
4154
4155    FunctionType::ExtInfo EI =
4156      unwrapped.get()->getExtInfo().withRegParm(value);
4157    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4158    return true;
4159  }
4160
4161  // Delay if the type didn't work out to a function.
4162  if (!unwrapped.isFunctionType()) return false;
4163
4164  // Otherwise, a calling convention.
4165  CallingConv CC;
4166  if (S.CheckCallingConvAttr(attr, CC))
4167    return true;
4168
4169  const FunctionType *fn = unwrapped.get();
4170  CallingConv CCOld = fn->getCallConv();
4171  if (S.Context.getCanonicalCallConv(CC) ==
4172      S.Context.getCanonicalCallConv(CCOld)) {
4173    FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
4174    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4175    return true;
4176  }
4177
4178  if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
4179    // Should we diagnose reapplications of the same convention?
4180    S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4181      << FunctionType::getNameForCallConv(CC)
4182      << FunctionType::getNameForCallConv(CCOld);
4183    attr.setInvalid();
4184    return true;
4185  }
4186
4187  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
4188  if (CC == CC_X86FastCall) {
4189    if (isa<FunctionNoProtoType>(fn)) {
4190      S.Diag(attr.getLoc(), diag::err_cconv_knr)
4191        << FunctionType::getNameForCallConv(CC);
4192      attr.setInvalid();
4193      return true;
4194    }
4195
4196    const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
4197    if (FnP->isVariadic()) {
4198      S.Diag(attr.getLoc(), diag::err_cconv_varargs)
4199        << FunctionType::getNameForCallConv(CC);
4200      attr.setInvalid();
4201      return true;
4202    }
4203
4204    // Also diagnose fastcall with regparm.
4205    if (fn->getHasRegParm()) {
4206      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4207        << "regparm"
4208        << FunctionType::getNameForCallConv(CC);
4209      attr.setInvalid();
4210      return true;
4211    }
4212  }
4213
4214  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
4215  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4216  return true;
4217}
4218
4219/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
4220static void HandleOpenCLImageAccessAttribute(QualType& CurType,
4221                                             const AttributeList &Attr,
4222                                             Sema &S) {
4223  // Check the attribute arguments.
4224  if (Attr.getNumArgs() != 1) {
4225    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4226    Attr.setInvalid();
4227    return;
4228  }
4229  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
4230  llvm::APSInt arg(32);
4231  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
4232      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
4233    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4234      << "opencl_image_access" << sizeExpr->getSourceRange();
4235    Attr.setInvalid();
4236    return;
4237  }
4238  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
4239  switch (iarg) {
4240  case CLIA_read_only:
4241  case CLIA_write_only:
4242  case CLIA_read_write:
4243    // Implemented in a separate patch
4244    break;
4245  default:
4246    // Implemented in a separate patch
4247    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4248      << sizeExpr->getSourceRange();
4249    Attr.setInvalid();
4250    break;
4251  }
4252}
4253
4254/// HandleVectorSizeAttribute - this attribute is only applicable to integral
4255/// and float scalars, although arrays, pointers, and function return values are
4256/// allowed in conjunction with this construct. Aggregates with this attribute
4257/// are invalid, even if they are of the same size as a corresponding scalar.
4258/// The raw attribute should contain precisely 1 argument, the vector size for
4259/// the variable, measured in bytes. If curType and rawAttr are well formed,
4260/// this routine will return a new vector type.
4261static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
4262                                 Sema &S) {
4263  // Check the attribute arguments.
4264  if (Attr.getNumArgs() != 1) {
4265    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4266    Attr.setInvalid();
4267    return;
4268  }
4269  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
4270  llvm::APSInt vecSize(32);
4271  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
4272      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
4273    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4274      << "vector_size" << sizeExpr->getSourceRange();
4275    Attr.setInvalid();
4276    return;
4277  }
4278  // the base type must be integer or float, and can't already be a vector.
4279  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
4280    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
4281    Attr.setInvalid();
4282    return;
4283  }
4284  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4285  // vecSize is specified in bytes - convert to bits.
4286  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
4287
4288  // the vector size needs to be an integral multiple of the type size.
4289  if (vectorSize % typeSize) {
4290    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4291      << sizeExpr->getSourceRange();
4292    Attr.setInvalid();
4293    return;
4294  }
4295  if (vectorSize == 0) {
4296    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
4297      << sizeExpr->getSourceRange();
4298    Attr.setInvalid();
4299    return;
4300  }
4301
4302  // Success! Instantiate the vector type, the number of elements is > 0, and
4303  // not required to be a power of 2, unlike GCC.
4304  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
4305                                    VectorType::GenericVector);
4306}
4307
4308/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
4309/// a type.
4310static void HandleExtVectorTypeAttr(QualType &CurType,
4311                                    const AttributeList &Attr,
4312                                    Sema &S) {
4313  Expr *sizeExpr;
4314
4315  // Special case where the argument is a template id.
4316  if (Attr.getParameterName()) {
4317    CXXScopeSpec SS;
4318    SourceLocation TemplateKWLoc;
4319    UnqualifiedId id;
4320    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
4321
4322    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
4323                                          id, false, false);
4324    if (Size.isInvalid())
4325      return;
4326
4327    sizeExpr = Size.get();
4328  } else {
4329    // check the attribute arguments.
4330    if (Attr.getNumArgs() != 1) {
4331      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4332      return;
4333    }
4334    sizeExpr = Attr.getArg(0);
4335  }
4336
4337  // Create the vector type.
4338  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
4339  if (!T.isNull())
4340    CurType = T;
4341}
4342
4343/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
4344/// "neon_polyvector_type" attributes are used to create vector types that
4345/// are mangled according to ARM's ABI.  Otherwise, these types are identical
4346/// to those created with the "vector_size" attribute.  Unlike "vector_size"
4347/// the argument to these Neon attributes is the number of vector elements,
4348/// not the vector size in bytes.  The vector width and element type must
4349/// match one of the standard Neon vector types.
4350static void HandleNeonVectorTypeAttr(QualType& CurType,
4351                                     const AttributeList &Attr, Sema &S,
4352                                     VectorType::VectorKind VecKind,
4353                                     const char *AttrName) {
4354  // Check the attribute arguments.
4355  if (Attr.getNumArgs() != 1) {
4356    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4357    Attr.setInvalid();
4358    return;
4359  }
4360  // The number of elements must be an ICE.
4361  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
4362  llvm::APSInt numEltsInt(32);
4363  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
4364      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
4365    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4366      << AttrName << numEltsExpr->getSourceRange();
4367    Attr.setInvalid();
4368    return;
4369  }
4370  // Only certain element types are supported for Neon vectors.
4371  const BuiltinType* BTy = CurType->getAs<BuiltinType>();
4372  if (!BTy ||
4373      (VecKind == VectorType::NeonPolyVector &&
4374       BTy->getKind() != BuiltinType::SChar &&
4375       BTy->getKind() != BuiltinType::Short) ||
4376      (BTy->getKind() != BuiltinType::SChar &&
4377       BTy->getKind() != BuiltinType::UChar &&
4378       BTy->getKind() != BuiltinType::Short &&
4379       BTy->getKind() != BuiltinType::UShort &&
4380       BTy->getKind() != BuiltinType::Int &&
4381       BTy->getKind() != BuiltinType::UInt &&
4382       BTy->getKind() != BuiltinType::LongLong &&
4383       BTy->getKind() != BuiltinType::ULongLong &&
4384       BTy->getKind() != BuiltinType::Float)) {
4385    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
4386    Attr.setInvalid();
4387    return;
4388  }
4389  // The total size of the vector must be 64 or 128 bits.
4390  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4391  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
4392  unsigned vecSize = typeSize * numElts;
4393  if (vecSize != 64 && vecSize != 128) {
4394    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
4395    Attr.setInvalid();
4396    return;
4397  }
4398
4399  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
4400}
4401
4402static void processTypeAttrs(TypeProcessingState &state, QualType &type,
4403                             TypeAttrLocation TAL, AttributeList *attrs) {
4404  // Scan through and apply attributes to this type where it makes sense.  Some
4405  // attributes (such as __address_space__, __vector_size__, etc) apply to the
4406  // type, but others can be present in the type specifiers even though they
4407  // apply to the decl.  Here we apply type attributes and ignore the rest.
4408
4409  AttributeList *next;
4410  do {
4411    AttributeList &attr = *attrs;
4412    next = attr.getNext();
4413
4414    // Skip attributes that were marked to be invalid.
4415    if (attr.isInvalid())
4416      continue;
4417
4418    if (attr.isCXX11Attribute()) {
4419      // [[gnu::...]] attributes are treated as declaration attributes, so may
4420      // not appertain to a DeclaratorChunk, even if we handle them as type
4421      // attributes.
4422      if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
4423        if (TAL == TAL_DeclChunk) {
4424          state.getSema().Diag(attr.getLoc(),
4425                               diag::warn_cxx11_gnu_attribute_on_type)
4426              << attr.getName();
4427          continue;
4428        }
4429      } else if (TAL != TAL_DeclChunk) {
4430        // Otherwise, only consider type processing for a C++11 attribute if
4431        // it's actually been applied to a type.
4432        continue;
4433      }
4434    }
4435
4436    // If this is an attribute we can handle, do so now,
4437    // otherwise, add it to the FnAttrs list for rechaining.
4438    switch (attr.getKind()) {
4439    default:
4440      // A C++11 attribute on a declarator chunk must appertain to a type.
4441      if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
4442        state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
4443          << attr.getName();
4444        attr.setUsedAsTypeAttr();
4445      }
4446      break;
4447
4448    case AttributeList::UnknownAttribute:
4449      if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
4450        state.getSema().Diag(attr.getLoc(),
4451                             diag::warn_unknown_attribute_ignored)
4452          << attr.getName();
4453      break;
4454
4455    case AttributeList::IgnoredAttribute:
4456      break;
4457
4458    case AttributeList::AT_MayAlias:
4459      // FIXME: This attribute needs to actually be handled, but if we ignore
4460      // it it breaks large amounts of Linux software.
4461      attr.setUsedAsTypeAttr();
4462      break;
4463    case AttributeList::AT_AddressSpace:
4464      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
4465      attr.setUsedAsTypeAttr();
4466      break;
4467    OBJC_POINTER_TYPE_ATTRS_CASELIST:
4468      if (!handleObjCPointerTypeAttr(state, attr, type))
4469        distributeObjCPointerTypeAttr(state, attr, type);
4470      attr.setUsedAsTypeAttr();
4471      break;
4472    case AttributeList::AT_VectorSize:
4473      HandleVectorSizeAttr(type, attr, state.getSema());
4474      attr.setUsedAsTypeAttr();
4475      break;
4476    case AttributeList::AT_ExtVectorType:
4477      HandleExtVectorTypeAttr(type, attr, state.getSema());
4478      attr.setUsedAsTypeAttr();
4479      break;
4480    case AttributeList::AT_NeonVectorType:
4481      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4482                               VectorType::NeonVector, "neon_vector_type");
4483      attr.setUsedAsTypeAttr();
4484      break;
4485    case AttributeList::AT_NeonPolyVectorType:
4486      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4487                               VectorType::NeonPolyVector,
4488                               "neon_polyvector_type");
4489      attr.setUsedAsTypeAttr();
4490      break;
4491    case AttributeList::AT_OpenCLImageAccess:
4492      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
4493      attr.setUsedAsTypeAttr();
4494      break;
4495
4496    case AttributeList::AT_Win64:
4497    case AttributeList::AT_Ptr32:
4498    case AttributeList::AT_Ptr64:
4499      // FIXME: Don't ignore these. We have partial handling for them as
4500      // declaration attributes in SemaDeclAttr.cpp; that should be moved here.
4501      attr.setUsedAsTypeAttr();
4502      break;
4503
4504    case AttributeList::AT_NSReturnsRetained:
4505      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
4506        break;
4507      // fallthrough into the function attrs
4508
4509    FUNCTION_TYPE_ATTRS_CASELIST:
4510      attr.setUsedAsTypeAttr();
4511
4512      // Never process function type attributes as part of the
4513      // declaration-specifiers.
4514      if (TAL == TAL_DeclSpec)
4515        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
4516
4517      // Otherwise, handle the possible delays.
4518      else if (!handleFunctionTypeAttr(state, attr, type))
4519        distributeFunctionTypeAttr(state, attr, type);
4520      break;
4521    }
4522  } while ((attrs = next));
4523}
4524
4525/// \brief Ensure that the type of the given expression is complete.
4526///
4527/// This routine checks whether the expression \p E has a complete type. If the
4528/// expression refers to an instantiable construct, that instantiation is
4529/// performed as needed to complete its type. Furthermore
4530/// Sema::RequireCompleteType is called for the expression's type (or in the
4531/// case of a reference type, the referred-to type).
4532///
4533/// \param E The expression whose type is required to be complete.
4534/// \param Diagnoser The object that will emit a diagnostic if the type is
4535/// incomplete.
4536///
4537/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
4538/// otherwise.
4539bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
4540  QualType T = E->getType();
4541
4542  // Fast path the case where the type is already complete.
4543  if (!T->isIncompleteType())
4544    return false;
4545
4546  // Incomplete array types may be completed by the initializer attached to
4547  // their definitions. For static data members of class templates we need to
4548  // instantiate the definition to get this initializer and complete the type.
4549  if (T->isIncompleteArrayType()) {
4550    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4551      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4552        if (Var->isStaticDataMember() &&
4553            Var->getInstantiatedFromStaticDataMember()) {
4554
4555          MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
4556          assert(MSInfo && "Missing member specialization information?");
4557          if (MSInfo->getTemplateSpecializationKind()
4558                != TSK_ExplicitSpecialization) {
4559            // If we don't already have a point of instantiation, this is it.
4560            if (MSInfo->getPointOfInstantiation().isInvalid()) {
4561              MSInfo->setPointOfInstantiation(E->getLocStart());
4562
4563              // This is a modification of an existing AST node. Notify
4564              // listeners.
4565              if (ASTMutationListener *L = getASTMutationListener())
4566                L->StaticDataMemberInstantiated(Var);
4567            }
4568
4569            InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
4570
4571            // Update the type to the newly instantiated definition's type both
4572            // here and within the expression.
4573            if (VarDecl *Def = Var->getDefinition()) {
4574              DRE->setDecl(Def);
4575              T = Def->getType();
4576              DRE->setType(T);
4577              E->setType(T);
4578            }
4579          }
4580
4581          // We still go on to try to complete the type independently, as it
4582          // may also require instantiations or diagnostics if it remains
4583          // incomplete.
4584        }
4585      }
4586    }
4587  }
4588
4589  // FIXME: Are there other cases which require instantiating something other
4590  // than the type to complete the type of an expression?
4591
4592  // Look through reference types and complete the referred type.
4593  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
4594    T = Ref->getPointeeType();
4595
4596  return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
4597}
4598
4599namespace {
4600  struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
4601    unsigned DiagID;
4602
4603    TypeDiagnoserDiag(unsigned DiagID)
4604      : Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
4605
4606    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
4607      if (Suppressed) return;
4608      S.Diag(Loc, DiagID) << T;
4609    }
4610  };
4611}
4612
4613bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
4614  TypeDiagnoserDiag Diagnoser(DiagID);
4615  return RequireCompleteExprType(E, Diagnoser);
4616}
4617
4618/// @brief Ensure that the type T is a complete type.
4619///
4620/// This routine checks whether the type @p T is complete in any
4621/// context where a complete type is required. If @p T is a complete
4622/// type, returns false. If @p T is a class template specialization,
4623/// this routine then attempts to perform class template
4624/// instantiation. If instantiation fails, or if @p T is incomplete
4625/// and cannot be completed, issues the diagnostic @p diag (giving it
4626/// the type @p T) and returns true.
4627///
4628/// @param Loc  The location in the source that the incomplete type
4629/// diagnostic should refer to.
4630///
4631/// @param T  The type that this routine is examining for completeness.
4632///
4633/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
4634/// @c false otherwise.
4635bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4636                               TypeDiagnoser &Diagnoser) {
4637  // FIXME: Add this assertion to make sure we always get instantiation points.
4638  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
4639  // FIXME: Add this assertion to help us flush out problems with
4640  // checking for dependent types and type-dependent expressions.
4641  //
4642  //  assert(!T->isDependentType() &&
4643  //         "Can't ask whether a dependent type is complete");
4644
4645  // If we have a complete type, we're done.
4646  NamedDecl *Def = 0;
4647  if (!T->isIncompleteType(&Def)) {
4648    // If we know about the definition but it is not visible, complain.
4649    if (!Diagnoser.Suppressed && Def && !LookupResult::isVisible(Def)) {
4650      // Suppress this error outside of a SFINAE context if we've already
4651      // emitted the error once for this type. There's no usefulness in
4652      // repeating the diagnostic.
4653      // FIXME: Add a Fix-It that imports the corresponding module or includes
4654      // the header.
4655      Module *Owner = Def->getOwningModule();
4656      Diag(Loc, diag::err_module_private_definition)
4657        << T << Owner->getFullModuleName();
4658      Diag(Def->getLocation(), diag::note_previous_definition);
4659
4660      if (!isSFINAEContext()) {
4661        // Recover by implicitly importing this module.
4662        createImplicitModuleImport(Loc, Owner);
4663      }
4664    }
4665
4666    return false;
4667  }
4668
4669  const TagType *Tag = T->getAs<TagType>();
4670  const ObjCInterfaceType *IFace = 0;
4671
4672  if (Tag) {
4673    // Avoid diagnosing invalid decls as incomplete.
4674    if (Tag->getDecl()->isInvalidDecl())
4675      return true;
4676
4677    // Give the external AST source a chance to complete the type.
4678    if (Tag->getDecl()->hasExternalLexicalStorage()) {
4679      Context.getExternalSource()->CompleteType(Tag->getDecl());
4680      if (!Tag->isIncompleteType())
4681        return false;
4682    }
4683  }
4684  else if ((IFace = T->getAs<ObjCInterfaceType>())) {
4685    // Avoid diagnosing invalid decls as incomplete.
4686    if (IFace->getDecl()->isInvalidDecl())
4687      return true;
4688
4689    // Give the external AST source a chance to complete the type.
4690    if (IFace->getDecl()->hasExternalLexicalStorage()) {
4691      Context.getExternalSource()->CompleteType(IFace->getDecl());
4692      if (!IFace->isIncompleteType())
4693        return false;
4694    }
4695  }
4696
4697  // If we have a class template specialization or a class member of a
4698  // class template specialization, or an array with known size of such,
4699  // try to instantiate it.
4700  QualType MaybeTemplate = T;
4701  while (const ConstantArrayType *Array
4702           = Context.getAsConstantArrayType(MaybeTemplate))
4703    MaybeTemplate = Array->getElementType();
4704  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
4705    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
4706          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
4707      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
4708        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
4709                                                      TSK_ImplicitInstantiation,
4710                                            /*Complain=*/!Diagnoser.Suppressed);
4711    } else if (CXXRecordDecl *Rec
4712                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
4713      CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
4714      if (!Rec->isBeingDefined() && Pattern) {
4715        MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
4716        assert(MSI && "Missing member specialization information?");
4717        // This record was instantiated from a class within a template.
4718        if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4719          return InstantiateClass(Loc, Rec, Pattern,
4720                                  getTemplateInstantiationArgs(Rec),
4721                                  TSK_ImplicitInstantiation,
4722                                  /*Complain=*/!Diagnoser.Suppressed);
4723      }
4724    }
4725  }
4726
4727  if (Diagnoser.Suppressed)
4728    return true;
4729
4730  // We have an incomplete type. Produce a diagnostic.
4731  Diagnoser.diagnose(*this, Loc, T);
4732
4733  // If the type was a forward declaration of a class/struct/union
4734  // type, produce a note.
4735  if (Tag && !Tag->getDecl()->isInvalidDecl())
4736    Diag(Tag->getDecl()->getLocation(),
4737         Tag->isBeingDefined() ? diag::note_type_being_defined
4738                               : diag::note_forward_declaration)
4739      << QualType(Tag, 0);
4740
4741  // If the Objective-C class was a forward declaration, produce a note.
4742  if (IFace && !IFace->getDecl()->isInvalidDecl())
4743    Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
4744
4745  return true;
4746}
4747
4748bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4749                               unsigned DiagID) {
4750  TypeDiagnoserDiag Diagnoser(DiagID);
4751  return RequireCompleteType(Loc, T, Diagnoser);
4752}
4753
4754/// \brief Get diagnostic %select index for tag kind for
4755/// literal type diagnostic message.
4756/// WARNING: Indexes apply to particular diagnostics only!
4757///
4758/// \returns diagnostic %select index.
4759static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
4760  switch (Tag) {
4761  case TTK_Struct: return 0;
4762  case TTK_Interface: return 1;
4763  case TTK_Class:  return 2;
4764  default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
4765  }
4766}
4767
4768/// @brief Ensure that the type T is a literal type.
4769///
4770/// This routine checks whether the type @p T is a literal type. If @p T is an
4771/// incomplete type, an attempt is made to complete it. If @p T is a literal
4772/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
4773/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
4774/// it the type @p T), along with notes explaining why the type is not a
4775/// literal type, and returns true.
4776///
4777/// @param Loc  The location in the source that the non-literal type
4778/// diagnostic should refer to.
4779///
4780/// @param T  The type that this routine is examining for literalness.
4781///
4782/// @param Diagnoser Emits a diagnostic if T is not a literal type.
4783///
4784/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
4785/// @c false otherwise.
4786bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
4787                              TypeDiagnoser &Diagnoser) {
4788  assert(!T->isDependentType() && "type should not be dependent");
4789
4790  QualType ElemType = Context.getBaseElementType(T);
4791  RequireCompleteType(Loc, ElemType, 0);
4792
4793  if (T->isLiteralType())
4794    return false;
4795
4796  if (Diagnoser.Suppressed)
4797    return true;
4798
4799  Diagnoser.diagnose(*this, Loc, T);
4800
4801  if (T->isVariableArrayType())
4802    return true;
4803
4804  const RecordType *RT = ElemType->getAs<RecordType>();
4805  if (!RT)
4806    return true;
4807
4808  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4809
4810  // A partially-defined class type can't be a literal type, because a literal
4811  // class type must have a trivial destructor (which can't be checked until
4812  // the class definition is complete).
4813  if (!RD->isCompleteDefinition()) {
4814    RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
4815    return true;
4816  }
4817
4818  // If the class has virtual base classes, then it's not an aggregate, and
4819  // cannot have any constexpr constructors or a trivial default constructor,
4820  // so is non-literal. This is better to diagnose than the resulting absence
4821  // of constexpr constructors.
4822  if (RD->getNumVBases()) {
4823    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
4824      << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
4825    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
4826           E = RD->vbases_end(); I != E; ++I)
4827      Diag(I->getLocStart(),
4828           diag::note_constexpr_virtual_base_here) << I->getSourceRange();
4829  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
4830             !RD->hasTrivialDefaultConstructor()) {
4831    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
4832  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
4833    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4834         E = RD->bases_end(); I != E; ++I) {
4835      if (!I->getType()->isLiteralType()) {
4836        Diag(I->getLocStart(),
4837             diag::note_non_literal_base_class)
4838          << RD << I->getType() << I->getSourceRange();
4839        return true;
4840      }
4841    }
4842    for (CXXRecordDecl::field_iterator I = RD->field_begin(),
4843         E = RD->field_end(); I != E; ++I) {
4844      if (!I->getType()->isLiteralType() ||
4845          I->getType().isVolatileQualified()) {
4846        Diag(I->getLocation(), diag::note_non_literal_field)
4847          << RD << *I << I->getType()
4848          << I->getType().isVolatileQualified();
4849        return true;
4850      }
4851    }
4852  } else if (!RD->hasTrivialDestructor()) {
4853    // All fields and bases are of literal types, so have trivial destructors.
4854    // If this class's destructor is non-trivial it must be user-declared.
4855    CXXDestructorDecl *Dtor = RD->getDestructor();
4856    assert(Dtor && "class has literal fields and bases but no dtor?");
4857    if (!Dtor)
4858      return true;
4859
4860    Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
4861         diag::note_non_literal_user_provided_dtor :
4862         diag::note_non_literal_nontrivial_dtor) << RD;
4863    if (!Dtor->isUserProvided())
4864      SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
4865  }
4866
4867  return true;
4868}
4869
4870bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
4871  TypeDiagnoserDiag Diagnoser(DiagID);
4872  return RequireLiteralType(Loc, T, Diagnoser);
4873}
4874
4875/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
4876/// and qualified by the nested-name-specifier contained in SS.
4877QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
4878                                 const CXXScopeSpec &SS, QualType T) {
4879  if (T.isNull())
4880    return T;
4881  NestedNameSpecifier *NNS;
4882  if (SS.isValid())
4883    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4884  else {
4885    if (Keyword == ETK_None)
4886      return T;
4887    NNS = 0;
4888  }
4889  return Context.getElaboratedType(Keyword, NNS, T);
4890}
4891
4892QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
4893  ExprResult ER = CheckPlaceholderExpr(E);
4894  if (ER.isInvalid()) return QualType();
4895  E = ER.take();
4896
4897  if (!E->isTypeDependent()) {
4898    QualType T = E->getType();
4899    if (const TagType *TT = T->getAs<TagType>())
4900      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
4901  }
4902  return Context.getTypeOfExprType(E);
4903}
4904
4905/// getDecltypeForExpr - Given an expr, will return the decltype for
4906/// that expression, according to the rules in C++11
4907/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
4908static QualType getDecltypeForExpr(Sema &S, Expr *E) {
4909  if (E->isTypeDependent())
4910    return S.Context.DependentTy;
4911
4912  // C++11 [dcl.type.simple]p4:
4913  //   The type denoted by decltype(e) is defined as follows:
4914  //
4915  //     - if e is an unparenthesized id-expression or an unparenthesized class
4916  //       member access (5.2.5), decltype(e) is the type of the entity named
4917  //       by e. If there is no such entity, or if e names a set of overloaded
4918  //       functions, the program is ill-formed;
4919  //
4920  // We apply the same rules for Objective-C ivar and property references.
4921  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4922    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
4923      return VD->getType();
4924  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
4925    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
4926      return FD->getType();
4927  } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
4928    return IR->getDecl()->getType();
4929  } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
4930    if (PR->isExplicitProperty())
4931      return PR->getExplicitProperty()->getType();
4932  }
4933
4934  // C++11 [expr.lambda.prim]p18:
4935  //   Every occurrence of decltype((x)) where x is a possibly
4936  //   parenthesized id-expression that names an entity of automatic
4937  //   storage duration is treated as if x were transformed into an
4938  //   access to a corresponding data member of the closure type that
4939  //   would have been declared if x were an odr-use of the denoted
4940  //   entity.
4941  using namespace sema;
4942  if (S.getCurLambda()) {
4943    if (isa<ParenExpr>(E)) {
4944      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4945        if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4946          QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
4947          if (!T.isNull())
4948            return S.Context.getLValueReferenceType(T);
4949        }
4950      }
4951    }
4952  }
4953
4954
4955  // C++11 [dcl.type.simple]p4:
4956  //   [...]
4957  QualType T = E->getType();
4958  switch (E->getValueKind()) {
4959  //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
4960  //       type of e;
4961  case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
4962  //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
4963  //       type of e;
4964  case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
4965  //  - otherwise, decltype(e) is the type of e.
4966  case VK_RValue: break;
4967  }
4968
4969  return T;
4970}
4971
4972QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
4973  ExprResult ER = CheckPlaceholderExpr(E);
4974  if (ER.isInvalid()) return QualType();
4975  E = ER.take();
4976
4977  return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
4978}
4979
4980QualType Sema::BuildUnaryTransformType(QualType BaseType,
4981                                       UnaryTransformType::UTTKind UKind,
4982                                       SourceLocation Loc) {
4983  switch (UKind) {
4984  case UnaryTransformType::EnumUnderlyingType:
4985    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
4986      Diag(Loc, diag::err_only_enums_have_underlying_types);
4987      return QualType();
4988    } else {
4989      QualType Underlying = BaseType;
4990      if (!BaseType->isDependentType()) {
4991        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
4992        assert(ED && "EnumType has no EnumDecl");
4993        DiagnoseUseOfDecl(ED, Loc);
4994        Underlying = ED->getIntegerType();
4995      }
4996      assert(!Underlying.isNull());
4997      return Context.getUnaryTransformType(BaseType, Underlying,
4998                                        UnaryTransformType::EnumUnderlyingType);
4999    }
5000  }
5001  llvm_unreachable("unknown unary transform type");
5002}
5003
5004QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
5005  if (!T->isDependentType()) {
5006    // FIXME: It isn't entirely clear whether incomplete atomic types
5007    // are allowed or not; for simplicity, ban them for the moment.
5008    if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
5009      return QualType();
5010
5011    int DisallowedKind = -1;
5012    if (T->isArrayType())
5013      DisallowedKind = 1;
5014    else if (T->isFunctionType())
5015      DisallowedKind = 2;
5016    else if (T->isReferenceType())
5017      DisallowedKind = 3;
5018    else if (T->isAtomicType())
5019      DisallowedKind = 4;
5020    else if (T.hasQualifiers())
5021      DisallowedKind = 5;
5022    else if (!T.isTriviallyCopyableType(Context))
5023      // Some other non-trivially-copyable type (probably a C++ class)
5024      DisallowedKind = 6;
5025
5026    if (DisallowedKind != -1) {
5027      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
5028      return QualType();
5029    }
5030
5031    // FIXME: Do we need any handling for ARC here?
5032  }
5033
5034  // Build the pointer type.
5035  return Context.getAtomicType(T);
5036}
5037