SemaType.cpp revision 95e20014f3cf65a7e7717849772e52c105fb7da3
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/TypeLocVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26using namespace clang;
27
28/// \brief Perform adjustment on the parameter type of a function.
29///
30/// This routine adjusts the given parameter type @p T to the actual
31/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
32/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
33QualType Sema::adjustParameterType(QualType T) {
34  // C99 6.7.5.3p7:
35  //   A declaration of a parameter as "array of type" shall be
36  //   adjusted to "qualified pointer to type", where the type
37  //   qualifiers (if any) are those specified within the [ and ] of
38  //   the array type derivation.
39  if (T->isArrayType())
40    return Context.getArrayDecayedType(T);
41
42  // C99 6.7.5.3p8:
43  //   A declaration of a parameter as "function returning type"
44  //   shall be adjusted to "pointer to function returning type", as
45  //   in 6.3.2.1.
46  if (T->isFunctionType())
47    return Context.getPointerType(T);
48
49  return T;
50}
51
52
53
54/// isOmittedBlockReturnType - Return true if this declarator is missing a
55/// return type because this is a omitted return type on a block literal.
56static bool isOmittedBlockReturnType(const Declarator &D) {
57  if (D.getContext() != Declarator::BlockLiteralContext ||
58      D.getDeclSpec().hasTypeSpecifier())
59    return false;
60
61  if (D.getNumTypeObjects() == 0)
62    return true;   // ^{ ... }
63
64  if (D.getNumTypeObjects() == 1 &&
65      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
66    return true;   // ^(int X, float Y) { ... }
67
68  return false;
69}
70
71typedef std::pair<const AttributeList*,QualType> DelayedAttribute;
72typedef llvm::SmallVectorImpl<DelayedAttribute> DelayedAttributeSet;
73
74static void ProcessTypeAttributeList(Sema &S, QualType &Type,
75                                     const AttributeList *Attrs,
76                                     DelayedAttributeSet &DelayedFnAttrs);
77static bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr);
78
79static void ProcessDelayedFnAttrs(Sema &S, QualType &Type,
80                                  DelayedAttributeSet &Attrs) {
81  for (DelayedAttributeSet::iterator I = Attrs.begin(),
82         E = Attrs.end(); I != E; ++I)
83    if (ProcessFnAttr(S, Type, *I->first))
84      S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
85        << I->first->getName() << I->second;
86  Attrs.clear();
87}
88
89static void DiagnoseDelayedFnAttrs(Sema &S, DelayedAttributeSet &Attrs) {
90  for (DelayedAttributeSet::iterator I = Attrs.begin(),
91         E = Attrs.end(); I != E; ++I) {
92    S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
93      << I->first->getName() << I->second;
94  }
95  Attrs.clear();
96}
97
98/// \brief Convert the specified declspec to the appropriate type
99/// object.
100/// \param D  the declarator containing the declaration specifier.
101/// \returns The type described by the declaration specifiers.  This function
102/// never returns null.
103static QualType ConvertDeclSpecToType(Sema &TheSema,
104                                      Declarator &TheDeclarator,
105                                      DelayedAttributeSet &Delayed) {
106  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
107  // checking.
108  const DeclSpec &DS = TheDeclarator.getDeclSpec();
109  SourceLocation DeclLoc = TheDeclarator.getIdentifierLoc();
110  if (DeclLoc.isInvalid())
111    DeclLoc = DS.getSourceRange().getBegin();
112
113  ASTContext &Context = TheSema.Context;
114
115  QualType Result;
116  switch (DS.getTypeSpecType()) {
117  case DeclSpec::TST_void:
118    Result = Context.VoidTy;
119    break;
120  case DeclSpec::TST_char:
121    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
122      Result = Context.CharTy;
123    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
124      Result = Context.SignedCharTy;
125    else {
126      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
127             "Unknown TSS value");
128      Result = Context.UnsignedCharTy;
129    }
130    break;
131  case DeclSpec::TST_wchar:
132    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
133      Result = Context.WCharTy;
134    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
135      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
136        << DS.getSpecifierName(DS.getTypeSpecType());
137      Result = Context.getSignedWCharType();
138    } else {
139      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
140        "Unknown TSS value");
141      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
142        << DS.getSpecifierName(DS.getTypeSpecType());
143      Result = Context.getUnsignedWCharType();
144    }
145    break;
146  case DeclSpec::TST_char16:
147      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
148        "Unknown TSS value");
149      Result = Context.Char16Ty;
150    break;
151  case DeclSpec::TST_char32:
152      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
153        "Unknown TSS value");
154      Result = Context.Char32Ty;
155    break;
156  case DeclSpec::TST_unspecified:
157    // "<proto1,proto2>" is an objc qualified ID with a missing id.
158    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
159      Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
160                                                (ObjCProtocolDecl**)PQ,
161                                                DS.getNumProtocolQualifiers());
162      break;
163    }
164
165    // If this is a missing declspec in a block literal return context, then it
166    // is inferred from the return statements inside the block.
167    if (isOmittedBlockReturnType(TheDeclarator)) {
168      Result = Context.DependentTy;
169      break;
170    }
171
172    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
173    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
174    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
175    // Note that the one exception to this is function definitions, which are
176    // allowed to be completely missing a declspec.  This is handled in the
177    // parser already though by it pretending to have seen an 'int' in this
178    // case.
179    if (TheSema.getLangOptions().ImplicitInt) {
180      // In C89 mode, we only warn if there is a completely missing declspec
181      // when one is not allowed.
182      if (DS.isEmpty()) {
183        TheSema.Diag(DeclLoc, diag::ext_missing_declspec)
184          << DS.getSourceRange()
185        << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
186                                                 "int");
187      }
188    } else if (!DS.hasTypeSpecifier()) {
189      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
190      // "At least one type specifier shall be given in the declaration
191      // specifiers in each declaration, and in the specifier-qualifier list in
192      // each struct declaration and type name."
193      // FIXME: Does Microsoft really have the implicit int extension in C++?
194      if (TheSema.getLangOptions().CPlusPlus &&
195          !TheSema.getLangOptions().Microsoft) {
196        TheSema.Diag(DeclLoc, diag::err_missing_type_specifier)
197          << DS.getSourceRange();
198
199        // When this occurs in C++ code, often something is very broken with the
200        // value being declared, poison it as invalid so we don't get chains of
201        // errors.
202        TheDeclarator.setInvalidType(true);
203      } else {
204        TheSema.Diag(DeclLoc, diag::ext_missing_type_specifier)
205          << DS.getSourceRange();
206      }
207    }
208
209    // FALL THROUGH.
210  case DeclSpec::TST_int: {
211    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
212      switch (DS.getTypeSpecWidth()) {
213      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
214      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
215      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
216      case DeclSpec::TSW_longlong:
217        Result = Context.LongLongTy;
218
219        // long long is a C99 feature.
220        if (!TheSema.getLangOptions().C99 &&
221            !TheSema.getLangOptions().CPlusPlus0x)
222          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
223        break;
224      }
225    } else {
226      switch (DS.getTypeSpecWidth()) {
227      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
228      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
229      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
230      case DeclSpec::TSW_longlong:
231        Result = Context.UnsignedLongLongTy;
232
233        // long long is a C99 feature.
234        if (!TheSema.getLangOptions().C99 &&
235            !TheSema.getLangOptions().CPlusPlus0x)
236          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
237        break;
238      }
239    }
240    break;
241  }
242  case DeclSpec::TST_float: Result = Context.FloatTy; break;
243  case DeclSpec::TST_double:
244    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
245      Result = Context.LongDoubleTy;
246    else
247      Result = Context.DoubleTy;
248    break;
249  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
250  case DeclSpec::TST_decimal32:    // _Decimal32
251  case DeclSpec::TST_decimal64:    // _Decimal64
252  case DeclSpec::TST_decimal128:   // _Decimal128
253    TheSema.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
254    Result = Context.IntTy;
255    TheDeclarator.setInvalidType(true);
256    break;
257  case DeclSpec::TST_class:
258  case DeclSpec::TST_enum:
259  case DeclSpec::TST_union:
260  case DeclSpec::TST_struct: {
261    TypeDecl *D
262      = dyn_cast_or_null<TypeDecl>(static_cast<Decl *>(DS.getTypeRep()));
263    if (!D) {
264      // This can happen in C++ with ambiguous lookups.
265      Result = Context.IntTy;
266      TheDeclarator.setInvalidType(true);
267      break;
268    }
269
270    // If the type is deprecated or unavailable, diagnose it.
271    TheSema.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeLoc());
272
273    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
274           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
275
276    // TypeQuals handled by caller.
277    Result = Context.getTypeDeclType(D);
278
279    // In C++, make an ElaboratedType.
280    if (TheSema.getLangOptions().CPlusPlus) {
281      TagDecl::TagKind Tag
282        = TagDecl::getTagKindForTypeSpec(DS.getTypeSpecType());
283      Result = Context.getElaboratedType(Result, Tag);
284    }
285
286    if (D->isInvalidDecl())
287      TheDeclarator.setInvalidType(true);
288    break;
289  }
290  case DeclSpec::TST_typename: {
291    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
292           DS.getTypeSpecSign() == 0 &&
293           "Can't handle qualifiers on typedef names yet!");
294    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
295
296    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
297      if (const ObjCInterfaceType *
298            Interface = Result->getAs<ObjCInterfaceType>()) {
299        // It would be nice if protocol qualifiers were only stored with the
300        // ObjCObjectPointerType. Unfortunately, this isn't possible due
301        // to the following typedef idiom (which is uncommon, but allowed):
302        //
303        // typedef Foo<P> T;
304        // static void func() {
305        //   Foo<P> *yy;
306        //   T *zz;
307        // }
308        Result = Context.getObjCInterfaceType(Interface->getDecl(),
309                                              (ObjCProtocolDecl**)PQ,
310                                              DS.getNumProtocolQualifiers());
311      } else if (Result->isObjCIdType())
312        // id<protocol-list>
313        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
314                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
315      else if (Result->isObjCClassType()) {
316        // Class<protocol-list>
317        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinClassTy,
318                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
319      } else {
320        TheSema.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
321          << DS.getSourceRange();
322        TheDeclarator.setInvalidType(true);
323      }
324    }
325
326    // TypeQuals handled by caller.
327    break;
328  }
329  case DeclSpec::TST_typeofType:
330    // FIXME: Preserve type source info.
331    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
332    assert(!Result.isNull() && "Didn't get a type for typeof?");
333    // TypeQuals handled by caller.
334    Result = Context.getTypeOfType(Result);
335    break;
336  case DeclSpec::TST_typeofExpr: {
337    Expr *E = static_cast<Expr *>(DS.getTypeRep());
338    assert(E && "Didn't get an expression for typeof?");
339    // TypeQuals handled by caller.
340    Result = TheSema.BuildTypeofExprType(E);
341    if (Result.isNull()) {
342      Result = Context.IntTy;
343      TheDeclarator.setInvalidType(true);
344    }
345    break;
346  }
347  case DeclSpec::TST_decltype: {
348    Expr *E = static_cast<Expr *>(DS.getTypeRep());
349    assert(E && "Didn't get an expression for decltype?");
350    // TypeQuals handled by caller.
351    Result = TheSema.BuildDecltypeType(E);
352    if (Result.isNull()) {
353      Result = Context.IntTy;
354      TheDeclarator.setInvalidType(true);
355    }
356    break;
357  }
358  case DeclSpec::TST_auto: {
359    // TypeQuals handled by caller.
360    Result = Context.UndeducedAutoTy;
361    break;
362  }
363
364  case DeclSpec::TST_error:
365    Result = Context.IntTy;
366    TheDeclarator.setInvalidType(true);
367    break;
368  }
369
370  // Handle complex types.
371  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
372    if (TheSema.getLangOptions().Freestanding)
373      TheSema.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
374    Result = Context.getComplexType(Result);
375  } else if (DS.isTypeAltiVecVector()) {
376    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
377    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
378    Result = Context.getVectorType(Result, 128/typeSize, true,
379      DS.isTypeAltiVecPixel());
380  }
381
382  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
383         "FIXME: imaginary types not supported yet!");
384
385  // See if there are any attributes on the declspec that apply to the type (as
386  // opposed to the decl).
387  if (const AttributeList *AL = DS.getAttributes())
388    ProcessTypeAttributeList(TheSema, Result, AL, Delayed);
389
390  // Apply const/volatile/restrict qualifiers to T.
391  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
392
393    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
394    // or incomplete types shall not be restrict-qualified."  C++ also allows
395    // restrict-qualified references.
396    if (TypeQuals & DeclSpec::TQ_restrict) {
397      if (Result->isAnyPointerType() || Result->isReferenceType()) {
398        QualType EltTy;
399        if (Result->isObjCObjectPointerType())
400          EltTy = Result;
401        else
402          EltTy = Result->isPointerType() ?
403                    Result->getAs<PointerType>()->getPointeeType() :
404                    Result->getAs<ReferenceType>()->getPointeeType();
405
406        // If we have a pointer or reference, the pointee must have an object
407        // incomplete type.
408        if (!EltTy->isIncompleteOrObjectType()) {
409          TheSema.Diag(DS.getRestrictSpecLoc(),
410               diag::err_typecheck_invalid_restrict_invalid_pointee)
411            << EltTy << DS.getSourceRange();
412          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
413        }
414      } else {
415        TheSema.Diag(DS.getRestrictSpecLoc(),
416             diag::err_typecheck_invalid_restrict_not_pointer)
417          << Result << DS.getSourceRange();
418        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
419      }
420    }
421
422    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
423    // of a function type includes any type qualifiers, the behavior is
424    // undefined."
425    if (Result->isFunctionType() && TypeQuals) {
426      // Get some location to point at, either the C or V location.
427      SourceLocation Loc;
428      if (TypeQuals & DeclSpec::TQ_const)
429        Loc = DS.getConstSpecLoc();
430      else if (TypeQuals & DeclSpec::TQ_volatile)
431        Loc = DS.getVolatileSpecLoc();
432      else {
433        assert((TypeQuals & DeclSpec::TQ_restrict) &&
434               "Has CVR quals but not C, V, or R?");
435        Loc = DS.getRestrictSpecLoc();
436      }
437      TheSema.Diag(Loc, diag::warn_typecheck_function_qualifiers)
438        << Result << DS.getSourceRange();
439    }
440
441    // C++ [dcl.ref]p1:
442    //   Cv-qualified references are ill-formed except when the
443    //   cv-qualifiers are introduced through the use of a typedef
444    //   (7.1.3) or of a template type argument (14.3), in which
445    //   case the cv-qualifiers are ignored.
446    // FIXME: Shouldn't we be checking SCS_typedef here?
447    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
448        TypeQuals && Result->isReferenceType()) {
449      TypeQuals &= ~DeclSpec::TQ_const;
450      TypeQuals &= ~DeclSpec::TQ_volatile;
451    }
452
453    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
454    Result = Context.getQualifiedType(Result, Quals);
455  }
456
457  return Result;
458}
459
460static std::string getPrintableNameForEntity(DeclarationName Entity) {
461  if (Entity)
462    return Entity.getAsString();
463
464  return "type name";
465}
466
467/// \brief Build a pointer type.
468///
469/// \param T The type to which we'll be building a pointer.
470///
471/// \param Quals The cvr-qualifiers to be applied to the pointer type.
472///
473/// \param Loc The location of the entity whose type involves this
474/// pointer type or, if there is no such entity, the location of the
475/// type that will have pointer type.
476///
477/// \param Entity The name of the entity that involves the pointer
478/// type, if known.
479///
480/// \returns A suitable pointer type, if there are no
481/// errors. Otherwise, returns a NULL type.
482QualType Sema::BuildPointerType(QualType T, unsigned Quals,
483                                SourceLocation Loc, DeclarationName Entity) {
484  if (T->isReferenceType()) {
485    // C++ 8.3.2p4: There shall be no ... pointers to references ...
486    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
487      << getPrintableNameForEntity(Entity) << T;
488    return QualType();
489  }
490
491  Qualifiers Qs = Qualifiers::fromCVRMask(Quals);
492
493  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
494  // object or incomplete types shall not be restrict-qualified."
495  if (Qs.hasRestrict() && !T->isIncompleteOrObjectType()) {
496    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
497      << T;
498    Qs.removeRestrict();
499  }
500
501  // Build the pointer type.
502  return Context.getQualifiedType(Context.getPointerType(T), Qs);
503}
504
505/// \brief Build a reference type.
506///
507/// \param T The type to which we'll be building a reference.
508///
509/// \param CVR The cvr-qualifiers to be applied to the reference type.
510///
511/// \param Loc The location of the entity whose type involves this
512/// reference type or, if there is no such entity, the location of the
513/// type that will have reference type.
514///
515/// \param Entity The name of the entity that involves the reference
516/// type, if known.
517///
518/// \returns A suitable reference type, if there are no
519/// errors. Otherwise, returns a NULL type.
520QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
521                                  unsigned CVR, SourceLocation Loc,
522                                  DeclarationName Entity) {
523  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
524
525  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
526
527  // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
528  //   reference to a type T, and attempt to create the type "lvalue
529  //   reference to cv TD" creates the type "lvalue reference to T".
530  // We use the qualifiers (restrict or none) of the original reference,
531  // not the new ones. This is consistent with GCC.
532
533  // C++ [dcl.ref]p4: There shall be no references to references.
534  //
535  // According to C++ DR 106, references to references are only
536  // diagnosed when they are written directly (e.g., "int & &"),
537  // but not when they happen via a typedef:
538  //
539  //   typedef int& intref;
540  //   typedef intref& intref2;
541  //
542  // Parser::ParseDeclaratorInternal diagnoses the case where
543  // references are written directly; here, we handle the
544  // collapsing of references-to-references as described in C++
545  // DR 106 and amended by C++ DR 540.
546
547  // C++ [dcl.ref]p1:
548  //   A declarator that specifies the type "reference to cv void"
549  //   is ill-formed.
550  if (T->isVoidType()) {
551    Diag(Loc, diag::err_reference_to_void);
552    return QualType();
553  }
554
555  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
556  // object or incomplete types shall not be restrict-qualified."
557  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
558    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
559      << T;
560    Quals.removeRestrict();
561  }
562
563  // C++ [dcl.ref]p1:
564  //   [...] Cv-qualified references are ill-formed except when the
565  //   cv-qualifiers are introduced through the use of a typedef
566  //   (7.1.3) or of a template type argument (14.3), in which case
567  //   the cv-qualifiers are ignored.
568  //
569  // We diagnose extraneous cv-qualifiers for the non-typedef,
570  // non-template type argument case within the parser. Here, we just
571  // ignore any extraneous cv-qualifiers.
572  Quals.removeConst();
573  Quals.removeVolatile();
574
575  // Handle restrict on references.
576  if (LValueRef)
577    return Context.getQualifiedType(
578               Context.getLValueReferenceType(T, SpelledAsLValue), Quals);
579  return Context.getQualifiedType(Context.getRValueReferenceType(T), Quals);
580}
581
582/// \brief Build an array type.
583///
584/// \param T The type of each element in the array.
585///
586/// \param ASM C99 array size modifier (e.g., '*', 'static').
587///
588/// \param ArraySize Expression describing the size of the array.
589///
590/// \param Quals The cvr-qualifiers to be applied to the array's
591/// element type.
592///
593/// \param Loc The location of the entity whose type involves this
594/// array type or, if there is no such entity, the location of the
595/// type that will have array type.
596///
597/// \param Entity The name of the entity that involves the array
598/// type, if known.
599///
600/// \returns A suitable array type, if there are no errors. Otherwise,
601/// returns a NULL type.
602QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
603                              Expr *ArraySize, unsigned Quals,
604                              SourceRange Brackets, DeclarationName Entity) {
605
606  SourceLocation Loc = Brackets.getBegin();
607  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
608  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
609  // Not in C++, though. There we only dislike void.
610  if (getLangOptions().CPlusPlus) {
611    if (T->isVoidType()) {
612      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
613      return QualType();
614    }
615  } else {
616    if (RequireCompleteType(Loc, T,
617                            diag::err_illegal_decl_array_incomplete_type))
618      return QualType();
619  }
620
621  if (T->isFunctionType()) {
622    Diag(Loc, diag::err_illegal_decl_array_of_functions)
623      << getPrintableNameForEntity(Entity) << T;
624    return QualType();
625  }
626
627  // C++ 8.3.2p4: There shall be no ... arrays of references ...
628  if (T->isReferenceType()) {
629    Diag(Loc, diag::err_illegal_decl_array_of_references)
630      << getPrintableNameForEntity(Entity) << T;
631    return QualType();
632  }
633
634  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
635    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
636      << getPrintableNameForEntity(Entity);
637    return QualType();
638  }
639
640  if (const RecordType *EltTy = T->getAs<RecordType>()) {
641    // If the element type is a struct or union that contains a variadic
642    // array, accept it as a GNU extension: C99 6.7.2.1p2.
643    if (EltTy->getDecl()->hasFlexibleArrayMember())
644      Diag(Loc, diag::ext_flexible_array_in_array) << T;
645  } else if (T->isObjCInterfaceType()) {
646    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
647    return QualType();
648  }
649
650  // C99 6.7.5.2p1: The size expression shall have integer type.
651  if (ArraySize && !ArraySize->isTypeDependent() &&
652      !ArraySize->getType()->isIntegerType()) {
653    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
654      << ArraySize->getType() << ArraySize->getSourceRange();
655    ArraySize->Destroy(Context);
656    return QualType();
657  }
658  llvm::APSInt ConstVal(32);
659  if (!ArraySize) {
660    if (ASM == ArrayType::Star)
661      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
662    else
663      T = Context.getIncompleteArrayType(T, ASM, Quals);
664  } else if (ArraySize->isValueDependent()) {
665    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
666  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
667             (!T->isDependentType() && !T->isIncompleteType() &&
668              !T->isConstantSizeType())) {
669    // Per C99, a variable array is an array with either a non-constant
670    // size or an element type that has a non-constant-size
671    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
672  } else {
673    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
674    // have a value greater than zero.
675    if (ConstVal.isSigned() && ConstVal.isNegative()) {
676      Diag(ArraySize->getLocStart(),
677           diag::err_typecheck_negative_array_size)
678        << ArraySize->getSourceRange();
679      return QualType();
680    }
681    if (ConstVal == 0) {
682      // GCC accepts zero sized static arrays.
683      Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
684        << ArraySize->getSourceRange();
685    }
686    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
687  }
688  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
689  if (!getLangOptions().C99) {
690    if (ArraySize && !ArraySize->isTypeDependent() &&
691        !ArraySize->isValueDependent() &&
692        !ArraySize->isIntegerConstantExpr(Context))
693      Diag(Loc, getLangOptions().CPlusPlus? diag::err_vla_cxx : diag::ext_vla);
694    else if (ASM != ArrayType::Normal || Quals != 0)
695      Diag(Loc,
696           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
697                                     : diag::ext_c99_array_usage);
698  }
699
700  return T;
701}
702
703/// \brief Build an ext-vector type.
704///
705/// Run the required checks for the extended vector type.
706QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
707                                  SourceLocation AttrLoc) {
708
709  Expr *Arg = (Expr *)ArraySize.get();
710
711  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
712  // in conjunction with complex types (pointers, arrays, functions, etc.).
713  if (!T->isDependentType() &&
714      !T->isIntegerType() && !T->isRealFloatingType()) {
715    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
716    return QualType();
717  }
718
719  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
720    llvm::APSInt vecSize(32);
721    if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
722      Diag(AttrLoc, diag::err_attribute_argument_not_int)
723      << "ext_vector_type" << Arg->getSourceRange();
724      return QualType();
725    }
726
727    // unlike gcc's vector_size attribute, the size is specified as the
728    // number of elements, not the number of bytes.
729    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
730
731    if (vectorSize == 0) {
732      Diag(AttrLoc, diag::err_attribute_zero_size)
733      << Arg->getSourceRange();
734      return QualType();
735    }
736
737    if (!T->isDependentType())
738      return Context.getExtVectorType(T, vectorSize);
739  }
740
741  return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
742                                                AttrLoc);
743}
744
745/// \brief Build a function type.
746///
747/// This routine checks the function type according to C++ rules and
748/// under the assumption that the result type and parameter types have
749/// just been instantiated from a template. It therefore duplicates
750/// some of the behavior of GetTypeForDeclarator, but in a much
751/// simpler form that is only suitable for this narrow use case.
752///
753/// \param T The return type of the function.
754///
755/// \param ParamTypes The parameter types of the function. This array
756/// will be modified to account for adjustments to the types of the
757/// function parameters.
758///
759/// \param NumParamTypes The number of parameter types in ParamTypes.
760///
761/// \param Variadic Whether this is a variadic function type.
762///
763/// \param Quals The cvr-qualifiers to be applied to the function type.
764///
765/// \param Loc The location of the entity whose type involves this
766/// function type or, if there is no such entity, the location of the
767/// type that will have function type.
768///
769/// \param Entity The name of the entity that involves the function
770/// type, if known.
771///
772/// \returns A suitable function type, if there are no
773/// errors. Otherwise, returns a NULL type.
774QualType Sema::BuildFunctionType(QualType T,
775                                 QualType *ParamTypes,
776                                 unsigned NumParamTypes,
777                                 bool Variadic, unsigned Quals,
778                                 SourceLocation Loc, DeclarationName Entity) {
779  if (T->isArrayType() || T->isFunctionType()) {
780    Diag(Loc, diag::err_func_returning_array_function)
781      << T->isFunctionType() << T;
782    return QualType();
783  }
784
785  bool Invalid = false;
786  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
787    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
788    if (ParamType->isVoidType()) {
789      Diag(Loc, diag::err_param_with_void_type);
790      Invalid = true;
791    }
792
793    ParamTypes[Idx] = ParamType;
794  }
795
796  if (Invalid)
797    return QualType();
798
799  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
800                                 Quals);
801}
802
803/// \brief Build a member pointer type \c T Class::*.
804///
805/// \param T the type to which the member pointer refers.
806/// \param Class the class type into which the member pointer points.
807/// \param CVR Qualifiers applied to the member pointer type
808/// \param Loc the location where this type begins
809/// \param Entity the name of the entity that will have this member pointer type
810///
811/// \returns a member pointer type, if successful, or a NULL type if there was
812/// an error.
813QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
814                                      unsigned CVR, SourceLocation Loc,
815                                      DeclarationName Entity) {
816  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
817
818  // Verify that we're not building a pointer to pointer to function with
819  // exception specification.
820  if (CheckDistantExceptionSpec(T)) {
821    Diag(Loc, diag::err_distant_exception_spec);
822
823    // FIXME: If we're doing this as part of template instantiation,
824    // we should return immediately.
825
826    // Build the type anyway, but use the canonical type so that the
827    // exception specifiers are stripped off.
828    T = Context.getCanonicalType(T);
829  }
830
831  // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
832  //   with reference type, or "cv void."
833  if (T->isReferenceType()) {
834    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
835      << (Entity? Entity.getAsString() : "type name") << T;
836    return QualType();
837  }
838
839  if (T->isVoidType()) {
840    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
841      << (Entity? Entity.getAsString() : "type name");
842    return QualType();
843  }
844
845  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
846  // object or incomplete types shall not be restrict-qualified."
847  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
848    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
849      << T;
850
851    // FIXME: If we're doing this as part of template instantiation,
852    // we should return immediately.
853    Quals.removeRestrict();
854  }
855
856  if (!Class->isDependentType() && !Class->isRecordType()) {
857    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
858    return QualType();
859  }
860
861  return Context.getQualifiedType(
862           Context.getMemberPointerType(T, Class.getTypePtr()), Quals);
863}
864
865/// \brief Build a block pointer type.
866///
867/// \param T The type to which we'll be building a block pointer.
868///
869/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
870///
871/// \param Loc The location of the entity whose type involves this
872/// block pointer type or, if there is no such entity, the location of the
873/// type that will have block pointer type.
874///
875/// \param Entity The name of the entity that involves the block pointer
876/// type, if known.
877///
878/// \returns A suitable block pointer type, if there are no
879/// errors. Otherwise, returns a NULL type.
880QualType Sema::BuildBlockPointerType(QualType T, unsigned CVR,
881                                     SourceLocation Loc,
882                                     DeclarationName Entity) {
883  if (!T->isFunctionType()) {
884    Diag(Loc, diag::err_nonfunction_block_type);
885    return QualType();
886  }
887
888  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
889  return Context.getQualifiedType(Context.getBlockPointerType(T), Quals);
890}
891
892QualType Sema::GetTypeFromParser(TypeTy *Ty, TypeSourceInfo **TInfo) {
893  QualType QT = QualType::getFromOpaquePtr(Ty);
894  if (QT.isNull()) {
895    if (TInfo) *TInfo = 0;
896    return QualType();
897  }
898
899  TypeSourceInfo *DI = 0;
900  if (LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
901    QT = LIT->getType();
902    DI = LIT->getTypeSourceInfo();
903  }
904
905  if (TInfo) *TInfo = DI;
906  return QT;
907}
908
909/// GetTypeForDeclarator - Convert the type for the specified
910/// declarator to Type instances.
911///
912/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
913/// owns the declaration of a type (e.g., the definition of a struct
914/// type), then *OwnedDecl will receive the owned declaration.
915QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
916                                    TypeSourceInfo **TInfo,
917                                    TagDecl **OwnedDecl) {
918  // Determine the type of the declarator. Not all forms of declarator
919  // have a type.
920  QualType T;
921
922  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromDeclSpec;
923
924  switch (D.getName().getKind()) {
925  case UnqualifiedId::IK_Identifier:
926  case UnqualifiedId::IK_OperatorFunctionId:
927  case UnqualifiedId::IK_LiteralOperatorId:
928  case UnqualifiedId::IK_TemplateId:
929    T = ConvertDeclSpecToType(*this, D, FnAttrsFromDeclSpec);
930
931    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
932      TagDecl* Owned = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
933      // Owned is embedded if it was defined here, or if it is the
934      // very first (i.e., canonical) declaration of this tag type.
935      Owned->setEmbeddedInDeclarator(Owned->isDefinition() ||
936                                     Owned->isCanonicalDecl());
937      if (OwnedDecl) *OwnedDecl = Owned;
938    }
939    break;
940
941  case UnqualifiedId::IK_ConstructorName:
942  case UnqualifiedId::IK_ConstructorTemplateId:
943  case UnqualifiedId::IK_DestructorName:
944    // Constructors and destructors don't have return types. Use
945    // "void" instead.
946    T = Context.VoidTy;
947    break;
948
949  case UnqualifiedId::IK_ConversionFunctionId:
950    // The result type of a conversion function is the type that it
951    // converts to.
952    T = GetTypeFromParser(D.getName().ConversionFunctionId);
953    break;
954  }
955
956  if (T.isNull())
957    return T;
958
959  if (T == Context.UndeducedAutoTy) {
960    int Error = -1;
961
962    switch (D.getContext()) {
963    case Declarator::KNRTypeListContext:
964      assert(0 && "K&R type lists aren't allowed in C++");
965      break;
966    case Declarator::PrototypeContext:
967      Error = 0; // Function prototype
968      break;
969    case Declarator::MemberContext:
970      switch (cast<TagDecl>(CurContext)->getTagKind()) {
971      case TagDecl::TK_enum: assert(0 && "unhandled tag kind"); break;
972      case TagDecl::TK_struct: Error = 1; /* Struct member */ break;
973      case TagDecl::TK_union:  Error = 2; /* Union member */ break;
974      case TagDecl::TK_class:  Error = 3; /* Class member */ break;
975      }
976      break;
977    case Declarator::CXXCatchContext:
978      Error = 4; // Exception declaration
979      break;
980    case Declarator::TemplateParamContext:
981      Error = 5; // Template parameter
982      break;
983    case Declarator::BlockLiteralContext:
984      Error = 6;  // Block literal
985      break;
986    case Declarator::FileContext:
987    case Declarator::BlockContext:
988    case Declarator::ForContext:
989    case Declarator::ConditionContext:
990    case Declarator::TypeNameContext:
991      break;
992    }
993
994    if (Error != -1) {
995      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
996        << Error;
997      T = Context.IntTy;
998      D.setInvalidType(true);
999    }
1000  }
1001
1002  // The name we're declaring, if any.
1003  DeclarationName Name;
1004  if (D.getIdentifier())
1005    Name = D.getIdentifier();
1006
1007  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromPreviousChunk;
1008
1009  // Walk the DeclTypeInfo, building the recursive type as we go.
1010  // DeclTypeInfos are ordered from the identifier out, which is
1011  // opposite of what we want :).
1012  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1013    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
1014    switch (DeclType.Kind) {
1015    default: assert(0 && "Unknown decltype!");
1016    case DeclaratorChunk::BlockPointer:
1017      // If blocks are disabled, emit an error.
1018      if (!LangOpts.Blocks)
1019        Diag(DeclType.Loc, diag::err_blocks_disable);
1020
1021      T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(),
1022                                Name);
1023      break;
1024    case DeclaratorChunk::Pointer:
1025      // Verify that we're not building a pointer to pointer to function with
1026      // exception specification.
1027      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1028        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1029        D.setInvalidType(true);
1030        // Build the type anyway.
1031      }
1032      if (getLangOptions().ObjC1 && T->isObjCInterfaceType()) {
1033        const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>();
1034        T = Context.getObjCObjectPointerType(T,
1035                                         (ObjCProtocolDecl **)OIT->qual_begin(),
1036                                         OIT->getNumProtocols());
1037        break;
1038      }
1039      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
1040      break;
1041    case DeclaratorChunk::Reference: {
1042      Qualifiers Quals;
1043      if (DeclType.Ref.HasRestrict) Quals.addRestrict();
1044
1045      // Verify that we're not building a reference to pointer to function with
1046      // exception specification.
1047      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1048        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1049        D.setInvalidType(true);
1050        // Build the type anyway.
1051      }
1052      T = BuildReferenceType(T, DeclType.Ref.LValueRef, Quals,
1053                             DeclType.Loc, Name);
1054      break;
1055    }
1056    case DeclaratorChunk::Array: {
1057      // Verify that we're not building an array of pointers to function with
1058      // exception specification.
1059      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1060        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1061        D.setInvalidType(true);
1062        // Build the type anyway.
1063      }
1064      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1065      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
1066      ArrayType::ArraySizeModifier ASM;
1067      if (ATI.isStar)
1068        ASM = ArrayType::Star;
1069      else if (ATI.hasStatic)
1070        ASM = ArrayType::Static;
1071      else
1072        ASM = ArrayType::Normal;
1073      if (ASM == ArrayType::Star &&
1074          D.getContext() != Declarator::PrototypeContext) {
1075        // FIXME: This check isn't quite right: it allows star in prototypes
1076        // for function definitions, and disallows some edge cases detailed
1077        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
1078        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
1079        ASM = ArrayType::Normal;
1080        D.setInvalidType(true);
1081      }
1082      T = BuildArrayType(T, ASM, ArraySize,
1083                         Qualifiers::fromCVRMask(ATI.TypeQuals),
1084                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
1085      break;
1086    }
1087    case DeclaratorChunk::Function: {
1088      // If the function declarator has a prototype (i.e. it is not () and
1089      // does not have a K&R-style identifier list), then the arguments are part
1090      // of the type, otherwise the argument list is ().
1091      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1092
1093      // C99 6.7.5.3p1: The return type may not be a function or array type.
1094      // For conversion functions, we'll diagnose this particular error later.
1095      if ((T->isArrayType() || T->isFunctionType()) &&
1096          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
1097        Diag(DeclType.Loc, diag::err_func_returning_array_function)
1098          << T->isFunctionType() << T;
1099        T = Context.IntTy;
1100        D.setInvalidType(true);
1101      }
1102
1103      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
1104        // C++ [dcl.fct]p6:
1105        //   Types shall not be defined in return or parameter types.
1106        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
1107        if (Tag->isDefinition())
1108          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
1109            << Context.getTypeDeclType(Tag);
1110      }
1111
1112      // Exception specs are not allowed in typedefs. Complain, but add it
1113      // anyway.
1114      if (FTI.hasExceptionSpec &&
1115          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1116        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
1117
1118      if (FTI.NumArgs == 0) {
1119        if (getLangOptions().CPlusPlus) {
1120          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
1121          // function takes no arguments.
1122          llvm::SmallVector<QualType, 4> Exceptions;
1123          Exceptions.reserve(FTI.NumExceptions);
1124          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1125            // FIXME: Preserve type source info.
1126            QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1127            // Check that the type is valid for an exception spec, and drop it
1128            // if not.
1129            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1130              Exceptions.push_back(ET);
1131          }
1132          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
1133                                      FTI.hasExceptionSpec,
1134                                      FTI.hasAnyExceptionSpec,
1135                                      Exceptions.size(), Exceptions.data());
1136        } else if (FTI.isVariadic) {
1137          // We allow a zero-parameter variadic function in C if the
1138          // function is marked with the "overloadable"
1139          // attribute. Scan for this attribute now.
1140          bool Overloadable = false;
1141          for (const AttributeList *Attrs = D.getAttributes();
1142               Attrs; Attrs = Attrs->getNext()) {
1143            if (Attrs->getKind() == AttributeList::AT_overloadable) {
1144              Overloadable = true;
1145              break;
1146            }
1147          }
1148
1149          if (!Overloadable)
1150            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
1151          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0);
1152        } else {
1153          // Simple void foo(), where the incoming T is the result type.
1154          T = Context.getFunctionNoProtoType(T);
1155        }
1156      } else if (FTI.ArgInfo[0].Param == 0) {
1157        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
1158        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
1159        D.setInvalidType(true);
1160      } else {
1161        // Otherwise, we have a function with an argument list that is
1162        // potentially variadic.
1163        llvm::SmallVector<QualType, 16> ArgTys;
1164
1165        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1166          ParmVarDecl *Param =
1167            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
1168          QualType ArgTy = Param->getType();
1169          assert(!ArgTy.isNull() && "Couldn't parse type?");
1170
1171          // Adjust the parameter type.
1172          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1173
1174          // Look for 'void'.  void is allowed only as a single argument to a
1175          // function with no other parameters (C99 6.7.5.3p10).  We record
1176          // int(void) as a FunctionProtoType with an empty argument list.
1177          if (ArgTy->isVoidType()) {
1178            // If this is something like 'float(int, void)', reject it.  'void'
1179            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1180            // have arguments of incomplete type.
1181            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1182              Diag(DeclType.Loc, diag::err_void_only_param);
1183              ArgTy = Context.IntTy;
1184              Param->setType(ArgTy);
1185            } else if (FTI.ArgInfo[i].Ident) {
1186              // Reject, but continue to parse 'int(void abc)'.
1187              Diag(FTI.ArgInfo[i].IdentLoc,
1188                   diag::err_param_with_void_type);
1189              ArgTy = Context.IntTy;
1190              Param->setType(ArgTy);
1191            } else {
1192              // Reject, but continue to parse 'float(const void)'.
1193              if (ArgTy.hasQualifiers())
1194                Diag(DeclType.Loc, diag::err_void_param_qualified);
1195
1196              // Do not add 'void' to the ArgTys list.
1197              break;
1198            }
1199          } else if (!FTI.hasPrototype) {
1200            if (ArgTy->isPromotableIntegerType()) {
1201              ArgTy = Context.getPromotedIntegerType(ArgTy);
1202            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
1203              if (BTy->getKind() == BuiltinType::Float)
1204                ArgTy = Context.DoubleTy;
1205            }
1206          }
1207
1208          ArgTys.push_back(ArgTy);
1209        }
1210
1211        llvm::SmallVector<QualType, 4> Exceptions;
1212        Exceptions.reserve(FTI.NumExceptions);
1213        for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1214          // FIXME: Preserve type source info.
1215          QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1216          // Check that the type is valid for an exception spec, and drop it if
1217          // not.
1218          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1219            Exceptions.push_back(ET);
1220        }
1221
1222        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
1223                                    FTI.isVariadic, FTI.TypeQuals,
1224                                    FTI.hasExceptionSpec,
1225                                    FTI.hasAnyExceptionSpec,
1226                                    Exceptions.size(), Exceptions.data());
1227      }
1228
1229      // For GCC compatibility, we allow attributes that apply only to
1230      // function types to be placed on a function's return type
1231      // instead (as long as that type doesn't happen to be function
1232      // or function-pointer itself).
1233      ProcessDelayedFnAttrs(*this, T, FnAttrsFromPreviousChunk);
1234
1235      break;
1236    }
1237    case DeclaratorChunk::MemberPointer:
1238      // Verify that we're not building a pointer to pointer to function with
1239      // exception specification.
1240      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1241        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1242        D.setInvalidType(true);
1243        // Build the type anyway.
1244      }
1245      // The scope spec must refer to a class, or be dependent.
1246      QualType ClsType;
1247      if (isDependentScopeSpecifier(DeclType.Mem.Scope())
1248            || dyn_cast_or_null<CXXRecordDecl>(
1249                                   computeDeclContext(DeclType.Mem.Scope()))) {
1250        NestedNameSpecifier *NNS
1251          = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
1252        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
1253        switch (NNS->getKind()) {
1254        case NestedNameSpecifier::Identifier:
1255          ClsType = Context.getTypenameType(NNSPrefix, NNS->getAsIdentifier());
1256          break;
1257
1258        case NestedNameSpecifier::Namespace:
1259        case NestedNameSpecifier::Global:
1260          llvm_unreachable("Nested-name-specifier must name a type");
1261          break;
1262
1263        case NestedNameSpecifier::TypeSpec:
1264        case NestedNameSpecifier::TypeSpecWithTemplate:
1265          ClsType = QualType(NNS->getAsType(), 0);
1266          if (NNSPrefix)
1267            ClsType = Context.getQualifiedNameType(NNSPrefix, ClsType);
1268          break;
1269        }
1270      } else {
1271        Diag(DeclType.Mem.Scope().getBeginLoc(),
1272             diag::err_illegal_decl_mempointer_in_nonclass)
1273          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1274          << DeclType.Mem.Scope().getRange();
1275        D.setInvalidType(true);
1276      }
1277
1278      if (!ClsType.isNull())
1279        T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals,
1280                                   DeclType.Loc, D.getIdentifier());
1281      if (T.isNull()) {
1282        T = Context.IntTy;
1283        D.setInvalidType(true);
1284      }
1285      break;
1286    }
1287
1288    if (T.isNull()) {
1289      D.setInvalidType(true);
1290      T = Context.IntTy;
1291    }
1292
1293    DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);
1294
1295    // See if there are any attributes on this declarator chunk.
1296    if (const AttributeList *AL = DeclType.getAttrs())
1297      ProcessTypeAttributeList(*this, T, AL, FnAttrsFromPreviousChunk);
1298  }
1299
1300  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1301    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
1302    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
1303
1304    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1305    // for a nonstatic member function, the function type to which a pointer
1306    // to member refers, or the top-level function type of a function typedef
1307    // declaration.
1308    if (FnTy->getTypeQuals() != 0 &&
1309        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1310        ((D.getContext() != Declarator::MemberContext &&
1311          (!D.getCXXScopeSpec().isSet() ||
1312           !computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)
1313              ->isRecord())) ||
1314         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1315      if (D.isFunctionDeclarator())
1316        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1317      else
1318        Diag(D.getIdentifierLoc(),
1319             diag::err_invalid_qualified_typedef_function_type_use);
1320
1321      // Strip the cv-quals from the type.
1322      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1323                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
1324    }
1325  }
1326
1327  // Process any function attributes we might have delayed from the
1328  // declaration-specifiers.
1329  ProcessDelayedFnAttrs(*this, T, FnAttrsFromDeclSpec);
1330
1331  // If there were any type attributes applied to the decl itself, not
1332  // the type, apply them to the result type.  But don't do this for
1333  // block-literal expressions, which are parsed wierdly.
1334  if (D.getContext() != Declarator::BlockLiteralContext)
1335    if (const AttributeList *Attrs = D.getAttributes())
1336      ProcessTypeAttributeList(*this, T, Attrs, FnAttrsFromPreviousChunk);
1337
1338  DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);
1339
1340  if (TInfo) {
1341    if (D.isInvalidType())
1342      *TInfo = 0;
1343    else
1344      *TInfo = GetTypeSourceInfoForDeclarator(D, T);
1345  }
1346
1347  return T;
1348}
1349
1350namespace {
1351  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
1352    const DeclSpec &DS;
1353
1354  public:
1355    TypeSpecLocFiller(const DeclSpec &DS) : DS(DS) {}
1356
1357    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1358      Visit(TL.getUnqualifiedLoc());
1359    }
1360    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
1361      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1362    }
1363    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
1364      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1365
1366      if (DS.getProtocolQualifiers()) {
1367        assert(TL.getNumProtocols() > 0);
1368        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1369        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1370        TL.setRAngleLoc(DS.getSourceRange().getEnd());
1371        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
1372          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1373      } else {
1374        assert(TL.getNumProtocols() == 0);
1375        TL.setLAngleLoc(SourceLocation());
1376        TL.setRAngleLoc(SourceLocation());
1377      }
1378    }
1379    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1380      assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1381
1382      TL.setStarLoc(SourceLocation());
1383
1384      if (DS.getProtocolQualifiers()) {
1385        assert(TL.getNumProtocols() > 0);
1386        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1387        TL.setHasProtocolsAsWritten(true);
1388        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1389        TL.setRAngleLoc(DS.getSourceRange().getEnd());
1390        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
1391          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1392
1393      } else {
1394        assert(TL.getNumProtocols() == 0);
1395        TL.setHasProtocolsAsWritten(false);
1396        TL.setLAngleLoc(SourceLocation());
1397        TL.setRAngleLoc(SourceLocation());
1398      }
1399
1400      // This might not have been written with an inner type.
1401      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
1402        TL.setHasBaseTypeAsWritten(false);
1403        TL.getBaseTypeLoc().initialize(SourceLocation());
1404      } else {
1405        TL.setHasBaseTypeAsWritten(true);
1406        Visit(TL.getBaseTypeLoc());
1407      }
1408    }
1409    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
1410      TypeSourceInfo *TInfo = 0;
1411      Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1412
1413      // If we got no declarator info from previous Sema routines,
1414      // just fill with the typespec loc.
1415      if (!TInfo) {
1416        TL.initialize(DS.getTypeSpecTypeLoc());
1417        return;
1418      }
1419
1420      TemplateSpecializationTypeLoc OldTL =
1421        cast<TemplateSpecializationTypeLoc>(TInfo->getTypeLoc());
1422      TL.copy(OldTL);
1423    }
1424    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
1425      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
1426      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
1427      TL.setParensRange(DS.getTypeofParensRange());
1428    }
1429    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
1430      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
1431      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
1432      TL.setParensRange(DS.getTypeofParensRange());
1433      assert(DS.getTypeRep());
1434      TypeSourceInfo *TInfo = 0;
1435      Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1436      TL.setUnderlyingTInfo(TInfo);
1437    }
1438    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
1439      // By default, use the source location of the type specifier.
1440      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
1441      if (TL.needsExtraLocalData()) {
1442        // Set info for the written builtin specifiers.
1443        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
1444        // Try to have a meaningful source location.
1445        if (TL.getWrittenSignSpec() != TSS_unspecified)
1446          // Sign spec loc overrides the others (e.g., 'unsigned long').
1447          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
1448        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
1449          // Width spec loc overrides type spec loc (e.g., 'short int').
1450          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
1451      }
1452    }
1453    void VisitTypeLoc(TypeLoc TL) {
1454      // FIXME: add other typespec types and change this to an assert.
1455      TL.initialize(DS.getTypeSpecTypeLoc());
1456    }
1457  };
1458
1459  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
1460    const DeclaratorChunk &Chunk;
1461
1462  public:
1463    DeclaratorLocFiller(const DeclaratorChunk &Chunk) : Chunk(Chunk) {}
1464
1465    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1466      llvm_unreachable("qualified type locs not expected here!");
1467    }
1468
1469    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
1470      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
1471      TL.setCaretLoc(Chunk.Loc);
1472    }
1473    void VisitPointerTypeLoc(PointerTypeLoc TL) {
1474      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1475      TL.setStarLoc(Chunk.Loc);
1476    }
1477    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1478      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1479      TL.setStarLoc(Chunk.Loc);
1480      TL.setHasBaseTypeAsWritten(true);
1481      TL.setHasProtocolsAsWritten(false);
1482      TL.setLAngleLoc(SourceLocation());
1483      TL.setRAngleLoc(SourceLocation());
1484    }
1485    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
1486      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
1487      TL.setStarLoc(Chunk.Loc);
1488      // FIXME: nested name specifier
1489    }
1490    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
1491      assert(Chunk.Kind == DeclaratorChunk::Reference);
1492      // 'Amp' is misleading: this might have been originally
1493      /// spelled with AmpAmp.
1494      TL.setAmpLoc(Chunk.Loc);
1495    }
1496    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
1497      assert(Chunk.Kind == DeclaratorChunk::Reference);
1498      assert(!Chunk.Ref.LValueRef);
1499      TL.setAmpAmpLoc(Chunk.Loc);
1500    }
1501    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
1502      assert(Chunk.Kind == DeclaratorChunk::Array);
1503      TL.setLBracketLoc(Chunk.Loc);
1504      TL.setRBracketLoc(Chunk.EndLoc);
1505      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
1506    }
1507    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
1508      assert(Chunk.Kind == DeclaratorChunk::Function);
1509      TL.setLParenLoc(Chunk.Loc);
1510      TL.setRParenLoc(Chunk.EndLoc);
1511
1512      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
1513      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
1514        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
1515        TL.setArg(tpi++, Param);
1516      }
1517      // FIXME: exception specs
1518    }
1519
1520    void VisitTypeLoc(TypeLoc TL) {
1521      llvm_unreachable("unsupported TypeLoc kind in declarator!");
1522    }
1523  };
1524}
1525
1526/// \brief Create and instantiate a TypeSourceInfo with type source information.
1527///
1528/// \param T QualType referring to the type as written in source code.
1529TypeSourceInfo *
1530Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T) {
1531  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
1532  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
1533
1534  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1535    DeclaratorLocFiller(D.getTypeObject(i)).Visit(CurrTL);
1536    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
1537  }
1538
1539  TypeSpecLocFiller(D.getDeclSpec()).Visit(CurrTL);
1540
1541  return TInfo;
1542}
1543
1544/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
1545QualType Sema::CreateLocInfoType(QualType T, TypeSourceInfo *TInfo) {
1546  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
1547  // and Sema during declaration parsing. Try deallocating/caching them when
1548  // it's appropriate, instead of allocating them and keeping them around.
1549  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), 8);
1550  new (LocT) LocInfoType(T, TInfo);
1551  assert(LocT->getTypeClass() != T->getTypeClass() &&
1552         "LocInfoType's TypeClass conflicts with an existing Type class");
1553  return QualType(LocT, 0);
1554}
1555
1556void LocInfoType::getAsStringInternal(std::string &Str,
1557                                      const PrintingPolicy &Policy) const {
1558  assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
1559         " was used directly instead of getting the QualType through"
1560         " GetTypeFromParser");
1561}
1562
1563/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
1564/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
1565/// they point to and return true. If T1 and T2 aren't pointer types
1566/// or pointer-to-member types, or if they are not similar at this
1567/// level, returns false and leaves T1 and T2 unchanged. Top-level
1568/// qualifiers on T1 and T2 are ignored. This function will typically
1569/// be called in a loop that successively "unwraps" pointer and
1570/// pointer-to-member types to compare them at each level.
1571bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
1572  const PointerType *T1PtrType = T1->getAs<PointerType>(),
1573                    *T2PtrType = T2->getAs<PointerType>();
1574  if (T1PtrType && T2PtrType) {
1575    T1 = T1PtrType->getPointeeType();
1576    T2 = T2PtrType->getPointeeType();
1577    return true;
1578  }
1579
1580  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
1581                          *T2MPType = T2->getAs<MemberPointerType>();
1582  if (T1MPType && T2MPType &&
1583      Context.getCanonicalType(T1MPType->getClass()) ==
1584      Context.getCanonicalType(T2MPType->getClass())) {
1585    T1 = T1MPType->getPointeeType();
1586    T2 = T2MPType->getPointeeType();
1587    return true;
1588  }
1589  return false;
1590}
1591
1592Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1593  // C99 6.7.6: Type names have no identifier.  This is already validated by
1594  // the parser.
1595  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1596
1597  TypeSourceInfo *TInfo = 0;
1598  TagDecl *OwnedTag = 0;
1599  QualType T = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
1600  if (D.isInvalidType())
1601    return true;
1602
1603  if (getLangOptions().CPlusPlus) {
1604    // Check that there are no default arguments (C++ only).
1605    CheckExtraCXXDefaultArguments(D);
1606
1607    // C++0x [dcl.type]p3:
1608    //   A type-specifier-seq shall not define a class or enumeration
1609    //   unless it appears in the type-id of an alias-declaration
1610    //   (7.1.3).
1611    if (OwnedTag && OwnedTag->isDefinition())
1612      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1613        << Context.getTypeDeclType(OwnedTag);
1614  }
1615
1616  if (TInfo)
1617    T = CreateLocInfoType(T, TInfo);
1618
1619  return T.getAsOpaquePtr();
1620}
1621
1622
1623
1624//===----------------------------------------------------------------------===//
1625// Type Attribute Processing
1626//===----------------------------------------------------------------------===//
1627
1628/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1629/// specified type.  The attribute contains 1 argument, the id of the address
1630/// space for the type.
1631static void HandleAddressSpaceTypeAttribute(QualType &Type,
1632                                            const AttributeList &Attr, Sema &S){
1633
1634  // If this type is already address space qualified, reject it.
1635  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1636  // for two or more different address spaces."
1637  if (Type.getAddressSpace()) {
1638    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1639    return;
1640  }
1641
1642  // Check the attribute arguments.
1643  if (Attr.getNumArgs() != 1) {
1644    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1645    return;
1646  }
1647  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1648  llvm::APSInt addrSpace(32);
1649  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1650    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1651      << ASArgExpr->getSourceRange();
1652    return;
1653  }
1654
1655  // Bounds checking.
1656  if (addrSpace.isSigned()) {
1657    if (addrSpace.isNegative()) {
1658      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
1659        << ASArgExpr->getSourceRange();
1660      return;
1661    }
1662    addrSpace.setIsSigned(false);
1663  }
1664  llvm::APSInt max(addrSpace.getBitWidth());
1665  max = Qualifiers::MaxAddressSpace;
1666  if (addrSpace > max) {
1667    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
1668      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
1669    return;
1670  }
1671
1672  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1673  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1674}
1675
1676/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1677/// specified type.  The attribute contains 1 argument, weak or strong.
1678static void HandleObjCGCTypeAttribute(QualType &Type,
1679                                      const AttributeList &Attr, Sema &S) {
1680  if (Type.getObjCGCAttr() != Qualifiers::GCNone) {
1681    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1682    return;
1683  }
1684
1685  // Check the attribute arguments.
1686  if (!Attr.getParameterName()) {
1687    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1688      << "objc_gc" << 1;
1689    return;
1690  }
1691  Qualifiers::GC GCAttr;
1692  if (Attr.getNumArgs() != 0) {
1693    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1694    return;
1695  }
1696  if (Attr.getParameterName()->isStr("weak"))
1697    GCAttr = Qualifiers::Weak;
1698  else if (Attr.getParameterName()->isStr("strong"))
1699    GCAttr = Qualifiers::Strong;
1700  else {
1701    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1702      << "objc_gc" << Attr.getParameterName();
1703    return;
1704  }
1705
1706  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1707}
1708
1709/// Process an individual function attribute.  Returns true if the
1710/// attribute does not make sense to apply to this type.
1711bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr) {
1712  if (Attr.getKind() == AttributeList::AT_noreturn) {
1713    // Complain immediately if the arg count is wrong.
1714    if (Attr.getNumArgs() != 0) {
1715      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1716      return false;
1717    }
1718
1719    // Delay if this is not a function or pointer to block.
1720    if (!Type->isFunctionPointerType()
1721        && !Type->isBlockPointerType()
1722        && !Type->isFunctionType())
1723      return true;
1724
1725    // Otherwise we can process right away.
1726    Type = S.Context.getNoReturnType(Type);
1727    return false;
1728  }
1729
1730  // Otherwise, a calling convention.
1731  if (Attr.getNumArgs() != 0) {
1732    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1733    return false;
1734  }
1735
1736  QualType T = Type;
1737  if (const PointerType *PT = Type->getAs<PointerType>())
1738    T = PT->getPointeeType();
1739  const FunctionType *Fn = T->getAs<FunctionType>();
1740
1741  // Delay if the type didn't work out to a function.
1742  if (!Fn) return true;
1743
1744  // TODO: diagnose uses of these conventions on the wrong target.
1745  CallingConv CC;
1746  switch (Attr.getKind()) {
1747  case AttributeList::AT_cdecl: CC = CC_C; break;
1748  case AttributeList::AT_fastcall: CC = CC_X86FastCall; break;
1749  case AttributeList::AT_stdcall: CC = CC_X86StdCall; break;
1750  default: llvm_unreachable("unexpected attribute kind"); return false;
1751  }
1752
1753  CallingConv CCOld = Fn->getCallConv();
1754  if (CC == CCOld) return false;
1755
1756  if (CCOld != CC_Default) {
1757    // Should we diagnose reapplications of the same convention?
1758    S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
1759      << FunctionType::getNameForCallConv(CC)
1760      << FunctionType::getNameForCallConv(CCOld);
1761    return false;
1762  }
1763
1764  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
1765  if (CC == CC_X86FastCall) {
1766    if (isa<FunctionNoProtoType>(Fn)) {
1767      S.Diag(Attr.getLoc(), diag::err_cconv_knr)
1768        << FunctionType::getNameForCallConv(CC);
1769      return false;
1770    }
1771
1772    const FunctionProtoType *FnP = cast<FunctionProtoType>(Fn);
1773    if (FnP->isVariadic()) {
1774      S.Diag(Attr.getLoc(), diag::err_cconv_varargs)
1775        << FunctionType::getNameForCallConv(CC);
1776      return false;
1777    }
1778  }
1779
1780  Type = S.Context.getCallConvType(Type, CC);
1781  return false;
1782}
1783
1784/// HandleVectorSizeAttribute - this attribute is only applicable to integral
1785/// and float scalars, although arrays, pointers, and function return values are
1786/// allowed in conjunction with this construct. Aggregates with this attribute
1787/// are invalid, even if they are of the same size as a corresponding scalar.
1788/// The raw attribute should contain precisely 1 argument, the vector size for
1789/// the variable, measured in bytes. If curType and rawAttr are well formed,
1790/// this routine will return a new vector type.
1791static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr, Sema &S) {
1792  // Check the attribute arugments.
1793  if (Attr.getNumArgs() != 1) {
1794    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1795    return;
1796  }
1797  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
1798  llvm::APSInt vecSize(32);
1799  if (!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
1800    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
1801      << "vector_size" << sizeExpr->getSourceRange();
1802    return;
1803  }
1804  // the base type must be integer or float, and can't already be a vector.
1805  if (CurType->isVectorType() ||
1806      (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
1807    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
1808    return;
1809  }
1810  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
1811  // vecSize is specified in bytes - convert to bits.
1812  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
1813
1814  // the vector size needs to be an integral multiple of the type size.
1815  if (vectorSize % typeSize) {
1816    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
1817      << sizeExpr->getSourceRange();
1818    return;
1819  }
1820  if (vectorSize == 0) {
1821    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
1822      << sizeExpr->getSourceRange();
1823    return;
1824  }
1825
1826  // Success! Instantiate the vector type, the number of elements is > 0, and
1827  // not required to be a power of 2, unlike GCC.
1828  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize, false, false);
1829}
1830
1831void ProcessTypeAttributeList(Sema &S, QualType &Result,
1832                              const AttributeList *AL,
1833                              DelayedAttributeSet &FnAttrs) {
1834  // Scan through and apply attributes to this type where it makes sense.  Some
1835  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1836  // type, but others can be present in the type specifiers even though they
1837  // apply to the decl.  Here we apply type attributes and ignore the rest.
1838  for (; AL; AL = AL->getNext()) {
1839    // If this is an attribute we can handle, do so now, otherwise, add it to
1840    // the LeftOverAttrs list for rechaining.
1841    switch (AL->getKind()) {
1842    default: break;
1843
1844    case AttributeList::AT_address_space:
1845      HandleAddressSpaceTypeAttribute(Result, *AL, S);
1846      break;
1847    case AttributeList::AT_objc_gc:
1848      HandleObjCGCTypeAttribute(Result, *AL, S);
1849      break;
1850    case AttributeList::AT_vector_size:
1851      HandleVectorSizeAttr(Result, *AL, S);
1852      break;
1853
1854    case AttributeList::AT_noreturn:
1855    case AttributeList::AT_cdecl:
1856    case AttributeList::AT_fastcall:
1857    case AttributeList::AT_stdcall:
1858      if (ProcessFnAttr(S, Result, *AL))
1859        FnAttrs.push_back(DelayedAttribute(AL, Result));
1860      break;
1861    }
1862  }
1863}
1864
1865/// @brief Ensure that the type T is a complete type.
1866///
1867/// This routine checks whether the type @p T is complete in any
1868/// context where a complete type is required. If @p T is a complete
1869/// type, returns false. If @p T is a class template specialization,
1870/// this routine then attempts to perform class template
1871/// instantiation. If instantiation fails, or if @p T is incomplete
1872/// and cannot be completed, issues the diagnostic @p diag (giving it
1873/// the type @p T) and returns true.
1874///
1875/// @param Loc  The location in the source that the incomplete type
1876/// diagnostic should refer to.
1877///
1878/// @param T  The type that this routine is examining for completeness.
1879///
1880/// @param PD The partial diagnostic that will be printed out if T is not a
1881/// complete type.
1882///
1883/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1884/// @c false otherwise.
1885bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
1886                               const PartialDiagnostic &PD,
1887                               std::pair<SourceLocation,
1888                                         PartialDiagnostic> Note) {
1889  unsigned diag = PD.getDiagID();
1890
1891  // FIXME: Add this assertion to make sure we always get instantiation points.
1892  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
1893  // FIXME: Add this assertion to help us flush out problems with
1894  // checking for dependent types and type-dependent expressions.
1895  //
1896  //  assert(!T->isDependentType() &&
1897  //         "Can't ask whether a dependent type is complete");
1898
1899  // If we have a complete type, we're done.
1900  if (!T->isIncompleteType())
1901    return false;
1902
1903  // If we have a class template specialization or a class member of a
1904  // class template specialization, or an array with known size of such,
1905  // try to instantiate it.
1906  QualType MaybeTemplate = T;
1907  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
1908    MaybeTemplate = Array->getElementType();
1909  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
1910    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
1911          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
1912      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
1913        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
1914                                                      TSK_ImplicitInstantiation,
1915                                                      /*Complain=*/diag != 0);
1916    } else if (CXXRecordDecl *Rec
1917                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
1918      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
1919        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
1920        assert(MSInfo && "Missing member specialization information?");
1921        // This record was instantiated from a class within a template.
1922        if (MSInfo->getTemplateSpecializationKind()
1923                                               != TSK_ExplicitSpecialization)
1924          return InstantiateClass(Loc, Rec, Pattern,
1925                                  getTemplateInstantiationArgs(Rec),
1926                                  TSK_ImplicitInstantiation,
1927                                  /*Complain=*/diag != 0);
1928      }
1929    }
1930  }
1931
1932  if (diag == 0)
1933    return true;
1934
1935  // We have an incomplete type. Produce a diagnostic.
1936  Diag(Loc, PD) << T;
1937
1938  // If we have a note, produce it.
1939  if (!Note.first.isInvalid())
1940    Diag(Note.first, Note.second);
1941
1942  // If the type was a forward declaration of a class/struct/union
1943  // type, produce
1944  const TagType *Tag = 0;
1945  if (const RecordType *Record = T->getAs<RecordType>())
1946    Tag = Record;
1947  else if (const EnumType *Enum = T->getAs<EnumType>())
1948    Tag = Enum;
1949
1950  if (Tag && !Tag->getDecl()->isInvalidDecl())
1951    Diag(Tag->getDecl()->getLocation(),
1952         Tag->isBeingDefined() ? diag::note_type_being_defined
1953                               : diag::note_forward_declaration)
1954        << QualType(Tag, 0);
1955
1956  return true;
1957}
1958
1959/// \brief Retrieve a version of the type 'T' that is qualified by the
1960/// nested-name-specifier contained in SS.
1961QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
1962  if (!SS.isSet() || SS.isInvalid() || T.isNull())
1963    return T;
1964
1965  NestedNameSpecifier *NNS
1966    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1967  return Context.getQualifiedNameType(NNS, T);
1968}
1969
1970QualType Sema::BuildTypeofExprType(Expr *E) {
1971  if (E->getType() == Context.OverloadTy) {
1972    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a
1973    // function template specialization wherever deduction cannot occur.
1974    if (FunctionDecl *Specialization
1975        = ResolveSingleFunctionTemplateSpecialization(E)) {
1976      E = FixOverloadedFunctionReference(E, Specialization);
1977      if (!E)
1978        return QualType();
1979    } else {
1980      Diag(E->getLocStart(),
1981           diag::err_cannot_determine_declared_type_of_overloaded_function)
1982        << false << E->getSourceRange();
1983      return QualType();
1984    }
1985  }
1986
1987  return Context.getTypeOfExprType(E);
1988}
1989
1990QualType Sema::BuildDecltypeType(Expr *E) {
1991  if (E->getType() == Context.OverloadTy) {
1992    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a
1993    // function template specialization wherever deduction cannot occur.
1994    if (FunctionDecl *Specialization
1995          = ResolveSingleFunctionTemplateSpecialization(E)) {
1996      E = FixOverloadedFunctionReference(E, Specialization);
1997      if (!E)
1998        return QualType();
1999    } else {
2000      Diag(E->getLocStart(),
2001           diag::err_cannot_determine_declared_type_of_overloaded_function)
2002        << true << E->getSourceRange();
2003      return QualType();
2004    }
2005  }
2006
2007  return Context.getDecltypeType(E);
2008}
2009