SemaType.cpp revision 9e6bef4fb5efb19c7286fa24d8aedab9c3d625fc
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/Parse/DeclSpec.h"
20using namespace clang;
21
22/// \brief Perform adjustment on the parameter type of a function.
23///
24/// This routine adjusts the given parameter type @p T to the actual
25/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
26/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
27QualType Sema::adjustParameterType(QualType T) {
28  // C99 6.7.5.3p7:
29  if (T->isArrayType()) {
30    // C99 6.7.5.3p7:
31    //   A declaration of a parameter as "array of type" shall be
32    //   adjusted to "qualified pointer to type", where the type
33    //   qualifiers (if any) are those specified within the [ and ] of
34    //   the array type derivation.
35    return Context.getArrayDecayedType(T);
36  } else if (T->isFunctionType())
37    // C99 6.7.5.3p8:
38    //   A declaration of a parameter as "function returning type"
39    //   shall be adjusted to "pointer to function returning type", as
40    //   in 6.3.2.1.
41    return Context.getPointerType(T);
42
43  return T;
44}
45
46/// \brief Convert the specified declspec to the appropriate type
47/// object.
48/// \param DS  the declaration specifiers
49/// \param DeclLoc The location of the declarator identifier or invalid if none.
50/// \returns The type described by the declaration specifiers.  This function
51/// never returns null.
52QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS,
53                                     SourceLocation DeclLoc,
54                                     bool &isInvalid) {
55  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
56  // checking.
57  QualType Result;
58
59  switch (DS.getTypeSpecType()) {
60  case DeclSpec::TST_void:
61    Result = Context.VoidTy;
62    break;
63  case DeclSpec::TST_char:
64    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
65      Result = Context.CharTy;
66    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
67      Result = Context.SignedCharTy;
68    else {
69      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
70             "Unknown TSS value");
71      Result = Context.UnsignedCharTy;
72    }
73    break;
74  case DeclSpec::TST_wchar:
75    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
76      Result = Context.WCharTy;
77    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
78      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
79        << DS.getSpecifierName(DS.getTypeSpecType());
80      Result = Context.getSignedWCharType();
81    } else {
82      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
83        "Unknown TSS value");
84      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
85        << DS.getSpecifierName(DS.getTypeSpecType());
86      Result = Context.getUnsignedWCharType();
87    }
88    break;
89  case DeclSpec::TST_unspecified:
90    // "<proto1,proto2>" is an objc qualified ID with a missing id.
91    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
92      Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
93                                              DS.getNumProtocolQualifiers());
94      break;
95    }
96
97    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
98    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
99    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
100    // Note that the one exception to this is function definitions, which are
101    // allowed to be completely missing a declspec.  This is handled in the
102    // parser already though by it pretending to have seen an 'int' in this
103    // case.
104    if (getLangOptions().ImplicitInt) {
105      // In C89 mode, we only warn if there is a completely missing declspec
106      // when one is not allowed.
107      if (DS.isEmpty()) {
108        if (DeclLoc.isInvalid())
109          DeclLoc = DS.getSourceRange().getBegin();
110        Diag(DeclLoc, diag::warn_missing_declspec)
111          << DS.getSourceRange()
112        << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
113                                                 "int");
114      }
115    } else if (!DS.hasTypeSpecifier()) {
116      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
117      // "At least one type specifier shall be given in the declaration
118      // specifiers in each declaration, and in the specifier-qualifier list in
119      // each struct declaration and type name."
120      // FIXME: Does Microsoft really have the implicit int extension in C++?
121      if (DeclLoc.isInvalid())
122        DeclLoc = DS.getSourceRange().getBegin();
123
124      if (getLangOptions().CPlusPlus && !getLangOptions().Microsoft)
125        Diag(DeclLoc, diag::err_missing_type_specifier)
126          << DS.getSourceRange();
127      else
128        Diag(DeclLoc, diag::warn_missing_type_specifier)
129          << DS.getSourceRange();
130
131      // FIXME: If we could guarantee that the result would be well-formed, it
132      // would be useful to have a code insertion hint here. However, after
133      // emitting this warning/error, we often emit other errors.
134    }
135
136    // FALL THROUGH.
137  case DeclSpec::TST_int: {
138    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
139      switch (DS.getTypeSpecWidth()) {
140      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
141      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
142      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
143      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
144      }
145    } else {
146      switch (DS.getTypeSpecWidth()) {
147      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
148      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
149      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
150      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
151      }
152    }
153    break;
154  }
155  case DeclSpec::TST_float: Result = Context.FloatTy; break;
156  case DeclSpec::TST_double:
157    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
158      Result = Context.LongDoubleTy;
159    else
160      Result = Context.DoubleTy;
161    break;
162  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
163  case DeclSpec::TST_decimal32:    // _Decimal32
164  case DeclSpec::TST_decimal64:    // _Decimal64
165  case DeclSpec::TST_decimal128:   // _Decimal128
166    Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
167    Result = Context.IntTy;
168    isInvalid = true;
169    break;
170  case DeclSpec::TST_class:
171  case DeclSpec::TST_enum:
172  case DeclSpec::TST_union:
173  case DeclSpec::TST_struct: {
174    Decl *D = static_cast<Decl *>(DS.getTypeRep());
175    assert(D && "Didn't get a decl for a class/enum/union/struct?");
176    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
177           DS.getTypeSpecSign() == 0 &&
178           "Can't handle qualifiers on typedef names yet!");
179    // TypeQuals handled by caller.
180    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
181
182    if (D->isInvalidDecl())
183      isInvalid = true;
184    break;
185  }
186  case DeclSpec::TST_typename: {
187    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
188           DS.getTypeSpecSign() == 0 &&
189           "Can't handle qualifiers on typedef names yet!");
190    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
191
192    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
193      // FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so we have
194      // this "hack" for now...
195      if (const ObjCInterfaceType *Interface = Result->getAsObjCInterfaceType())
196        Result = Context.getObjCQualifiedInterfaceType(Interface->getDecl(),
197                                                       (ObjCProtocolDecl**)PQ,
198                                               DS.getNumProtocolQualifiers());
199      else if (Result == Context.getObjCIdType())
200        // id<protocol-list>
201        Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
202                                                DS.getNumProtocolQualifiers());
203      else if (Result == Context.getObjCClassType()) {
204        if (DeclLoc.isInvalid())
205          DeclLoc = DS.getSourceRange().getBegin();
206        // Class<protocol-list>
207        Diag(DeclLoc, diag::err_qualified_class_unsupported)
208          << DS.getSourceRange();
209      } else {
210        if (DeclLoc.isInvalid())
211          DeclLoc = DS.getSourceRange().getBegin();
212        Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
213          << DS.getSourceRange();
214        isInvalid = true;
215      }
216    }
217
218    // If this is a reference to an invalid typedef, propagate the invalidity.
219    if (TypedefType *TDT = dyn_cast<TypedefType>(Result))
220      if (TDT->getDecl()->isInvalidDecl())
221        isInvalid = true;
222
223    // TypeQuals handled by caller.
224    break;
225  }
226  case DeclSpec::TST_typeofType:
227    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
228    assert(!Result.isNull() && "Didn't get a type for typeof?");
229    // TypeQuals handled by caller.
230    Result = Context.getTypeOfType(Result);
231    break;
232  case DeclSpec::TST_typeofExpr: {
233    Expr *E = static_cast<Expr *>(DS.getTypeRep());
234    assert(E && "Didn't get an expression for typeof?");
235    // TypeQuals handled by caller.
236    Result = Context.getTypeOfExprType(E);
237    break;
238  }
239  case DeclSpec::TST_error:
240    Result = Context.IntTy;
241    isInvalid = true;
242    break;
243  }
244
245  // Handle complex types.
246  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
247    if (getLangOptions().Freestanding)
248      Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
249    Result = Context.getComplexType(Result);
250  }
251
252  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
253         "FIXME: imaginary types not supported yet!");
254
255  // See if there are any attributes on the declspec that apply to the type (as
256  // opposed to the decl).
257  if (const AttributeList *AL = DS.getAttributes())
258    ProcessTypeAttributeList(Result, AL);
259
260  // Apply const/volatile/restrict qualifiers to T.
261  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
262
263    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
264    // or incomplete types shall not be restrict-qualified."  C++ also allows
265    // restrict-qualified references.
266    if (TypeQuals & QualType::Restrict) {
267      if (Result->isPointerType() || Result->isReferenceType()) {
268        QualType EltTy = Result->isPointerType() ?
269          Result->getAsPointerType()->getPointeeType() :
270          Result->getAsReferenceType()->getPointeeType();
271
272        // If we have a pointer or reference, the pointee must have an object
273        // incomplete type.
274        if (!EltTy->isIncompleteOrObjectType()) {
275          Diag(DS.getRestrictSpecLoc(),
276               diag::err_typecheck_invalid_restrict_invalid_pointee)
277            << EltTy << DS.getSourceRange();
278          TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
279        }
280      } else {
281        Diag(DS.getRestrictSpecLoc(),
282             diag::err_typecheck_invalid_restrict_not_pointer)
283          << Result << DS.getSourceRange();
284        TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
285      }
286    }
287
288    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
289    // of a function type includes any type qualifiers, the behavior is
290    // undefined."
291    if (Result->isFunctionType() && TypeQuals) {
292      // Get some location to point at, either the C or V location.
293      SourceLocation Loc;
294      if (TypeQuals & QualType::Const)
295        Loc = DS.getConstSpecLoc();
296      else {
297        assert((TypeQuals & QualType::Volatile) &&
298               "Has CV quals but not C or V?");
299        Loc = DS.getVolatileSpecLoc();
300      }
301      Diag(Loc, diag::warn_typecheck_function_qualifiers)
302        << Result << DS.getSourceRange();
303    }
304
305    // C++ [dcl.ref]p1:
306    //   Cv-qualified references are ill-formed except when the
307    //   cv-qualifiers are introduced through the use of a typedef
308    //   (7.1.3) or of a template type argument (14.3), in which
309    //   case the cv-qualifiers are ignored.
310    // FIXME: Shouldn't we be checking SCS_typedef here?
311    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
312        TypeQuals && Result->isReferenceType()) {
313      TypeQuals &= ~QualType::Const;
314      TypeQuals &= ~QualType::Volatile;
315    }
316
317    Result = Result.getQualifiedType(TypeQuals);
318  }
319  return Result;
320}
321
322static std::string getPrintableNameForEntity(DeclarationName Entity) {
323  if (Entity)
324    return Entity.getAsString();
325
326  return "type name";
327}
328
329/// \brief Build a pointer type.
330///
331/// \param T The type to which we'll be building a pointer.
332///
333/// \param Quals The cvr-qualifiers to be applied to the pointer type.
334///
335/// \param Loc The location of the entity whose type involves this
336/// pointer type or, if there is no such entity, the location of the
337/// type that will have pointer type.
338///
339/// \param Entity The name of the entity that involves the pointer
340/// type, if known.
341///
342/// \returns A suitable pointer type, if there are no
343/// errors. Otherwise, returns a NULL type.
344QualType Sema::BuildPointerType(QualType T, unsigned Quals,
345                                SourceLocation Loc, DeclarationName Entity) {
346  if (T->isReferenceType()) {
347    // C++ 8.3.2p4: There shall be no ... pointers to references ...
348    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
349      << getPrintableNameForEntity(Entity);
350    return QualType();
351  }
352
353  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
354  // object or incomplete types shall not be restrict-qualified."
355  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
356    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
357      << T;
358    Quals &= ~QualType::Restrict;
359  }
360
361  // Build the pointer type.
362  return Context.getPointerType(T).getQualifiedType(Quals);
363}
364
365/// \brief Build a reference type.
366///
367/// \param T The type to which we'll be building a reference.
368///
369/// \param Quals The cvr-qualifiers to be applied to the reference type.
370///
371/// \param Loc The location of the entity whose type involves this
372/// reference type or, if there is no such entity, the location of the
373/// type that will have reference type.
374///
375/// \param Entity The name of the entity that involves the reference
376/// type, if known.
377///
378/// \returns A suitable reference type, if there are no
379/// errors. Otherwise, returns a NULL type.
380QualType Sema::BuildReferenceType(QualType T, bool LValueRef, unsigned Quals,
381                                  SourceLocation Loc, DeclarationName Entity) {
382  if (LValueRef) {
383    if (const RValueReferenceType *R = T->getAsRValueReferenceType()) {
384      // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
385      //   reference to a type T, and attempt to create the type "lvalue
386      //   reference to cv TD" creates the type "lvalue reference to T".
387      // We use the qualifiers (restrict or none) of the original reference,
388      // not the new ones. This is consistent with GCC.
389      return Context.getLValueReferenceType(R->getPointeeType()).
390               getQualifiedType(T.getCVRQualifiers());
391    }
392  }
393  if (T->isReferenceType()) {
394    // C++ [dcl.ref]p4: There shall be no references to references.
395    //
396    // According to C++ DR 106, references to references are only
397    // diagnosed when they are written directly (e.g., "int & &"),
398    // but not when they happen via a typedef:
399    //
400    //   typedef int& intref;
401    //   typedef intref& intref2;
402    //
403    // Parser::ParserDeclaratorInternal diagnoses the case where
404    // references are written directly; here, we handle the
405    // collapsing of references-to-references as described in C++
406    // DR 106 and amended by C++ DR 540.
407    return T;
408  }
409
410  // C++ [dcl.ref]p1:
411  //   A declarator that specifies the type “reference to cv void”
412  //   is ill-formed.
413  if (T->isVoidType()) {
414    Diag(Loc, diag::err_reference_to_void);
415    return QualType();
416  }
417
418  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
419  // object or incomplete types shall not be restrict-qualified."
420  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
421    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
422      << T;
423    Quals &= ~QualType::Restrict;
424  }
425
426  // C++ [dcl.ref]p1:
427  //   [...] Cv-qualified references are ill-formed except when the
428  //   cv-qualifiers are introduced through the use of a typedef
429  //   (7.1.3) or of a template type argument (14.3), in which case
430  //   the cv-qualifiers are ignored.
431  //
432  // We diagnose extraneous cv-qualifiers for the non-typedef,
433  // non-template type argument case within the parser. Here, we just
434  // ignore any extraneous cv-qualifiers.
435  Quals &= ~QualType::Const;
436  Quals &= ~QualType::Volatile;
437
438  // Handle restrict on references.
439  if (LValueRef)
440    return Context.getLValueReferenceType(T).getQualifiedType(Quals);
441  return Context.getRValueReferenceType(T).getQualifiedType(Quals);
442}
443
444/// \brief Build an array type.
445///
446/// \param T The type of each element in the array.
447///
448/// \param ASM C99 array size modifier (e.g., '*', 'static').
449///
450/// \param ArraySize Expression describing the size of the array.
451///
452/// \param Quals The cvr-qualifiers to be applied to the array's
453/// element type.
454///
455/// \param Loc The location of the entity whose type involves this
456/// array type or, if there is no such entity, the location of the
457/// type that will have array type.
458///
459/// \param Entity The name of the entity that involves the array
460/// type, if known.
461///
462/// \returns A suitable array type, if there are no errors. Otherwise,
463/// returns a NULL type.
464QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
465                              Expr *ArraySize, unsigned Quals,
466                              SourceLocation Loc, DeclarationName Entity) {
467  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
468  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
469  if (RequireCompleteType(Loc, T,
470                             diag::err_illegal_decl_array_incomplete_type))
471    return QualType();
472
473  if (T->isFunctionType()) {
474    Diag(Loc, diag::err_illegal_decl_array_of_functions)
475      << getPrintableNameForEntity(Entity);
476    return QualType();
477  }
478
479  // C++ 8.3.2p4: There shall be no ... arrays of references ...
480  if (T->isReferenceType()) {
481    Diag(Loc, diag::err_illegal_decl_array_of_references)
482      << getPrintableNameForEntity(Entity);
483    return QualType();
484  }
485
486  if (const RecordType *EltTy = T->getAsRecordType()) {
487    // If the element type is a struct or union that contains a variadic
488    // array, accept it as a GNU extension: C99 6.7.2.1p2.
489    if (EltTy->getDecl()->hasFlexibleArrayMember())
490      Diag(Loc, diag::ext_flexible_array_in_array) << T;
491  } else if (T->isObjCInterfaceType()) {
492    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
493    return QualType();
494  }
495
496  // C99 6.7.5.2p1: The size expression shall have integer type.
497  if (ArraySize && !ArraySize->isTypeDependent() &&
498      !ArraySize->getType()->isIntegerType()) {
499    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
500      << ArraySize->getType() << ArraySize->getSourceRange();
501    ArraySize->Destroy(Context);
502    return QualType();
503  }
504  llvm::APSInt ConstVal(32);
505  if (!ArraySize) {
506    if (ASM == ArrayType::Star)
507      T = Context.getVariableArrayType(T, 0, ASM, Quals);
508    else
509      T = Context.getIncompleteArrayType(T, ASM, Quals);
510  } else if (ArraySize->isValueDependent()) {
511    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals);
512  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
513             (!T->isDependentType() && !T->isConstantSizeType())) {
514    // Per C99, a variable array is an array with either a non-constant
515    // size or an element type that has a non-constant-size
516    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals);
517  } else {
518    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
519    // have a value greater than zero.
520    if (ConstVal.isSigned()) {
521      if (ConstVal.isNegative()) {
522        Diag(ArraySize->getLocStart(),
523             diag::err_typecheck_negative_array_size)
524          << ArraySize->getSourceRange();
525        return QualType();
526      } else if (ConstVal == 0) {
527        // GCC accepts zero sized static arrays.
528        Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
529          << ArraySize->getSourceRange();
530      }
531    }
532    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
533  }
534  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
535  if (!getLangOptions().C99) {
536    if (ArraySize && !ArraySize->isTypeDependent() &&
537        !ArraySize->isValueDependent() &&
538        !ArraySize->isIntegerConstantExpr(Context))
539      Diag(Loc, diag::ext_vla);
540    else if (ASM != ArrayType::Normal || Quals != 0)
541      Diag(Loc, diag::ext_c99_array_usage);
542  }
543
544  return T;
545}
546
547/// \brief Build a function type.
548///
549/// This routine checks the function type according to C++ rules and
550/// under the assumption that the result type and parameter types have
551/// just been instantiated from a template. It therefore duplicates
552/// some of the behavior of GetTypeForDeclarator, but in a much
553/// simpler form that is only suitable for this narrow use case.
554///
555/// \param T The return type of the function.
556///
557/// \param ParamTypes The parameter types of the function. This array
558/// will be modified to account for adjustments to the types of the
559/// function parameters.
560///
561/// \param NumParamTypes The number of parameter types in ParamTypes.
562///
563/// \param Variadic Whether this is a variadic function type.
564///
565/// \param Quals The cvr-qualifiers to be applied to the function type.
566///
567/// \param Loc The location of the entity whose type involves this
568/// function type or, if there is no such entity, the location of the
569/// type that will have function type.
570///
571/// \param Entity The name of the entity that involves the function
572/// type, if known.
573///
574/// \returns A suitable function type, if there are no
575/// errors. Otherwise, returns a NULL type.
576QualType Sema::BuildFunctionType(QualType T,
577                                 QualType *ParamTypes,
578                                 unsigned NumParamTypes,
579                                 bool Variadic, unsigned Quals,
580                                 SourceLocation Loc, DeclarationName Entity) {
581  if (T->isArrayType() || T->isFunctionType()) {
582    Diag(Loc, diag::err_func_returning_array_function) << T;
583    return QualType();
584  }
585
586  bool Invalid = false;
587  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
588    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
589    if (ParamType->isVoidType()) {
590      Diag(Loc, diag::err_param_with_void_type);
591      Invalid = true;
592    }
593
594    ParamTypes[Idx] = ParamType;
595  }
596
597  if (Invalid)
598    return QualType();
599
600  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
601                                 Quals);
602}
603
604/// GetTypeForDeclarator - Convert the type for the specified
605/// declarator to Type instances. Skip the outermost Skip type
606/// objects.
607QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S, unsigned Skip) {
608  bool OmittedReturnType = false;
609
610  if (D.getContext() == Declarator::BlockLiteralContext
611      && Skip == 0
612      && !D.getDeclSpec().hasTypeSpecifier()
613      && (D.getNumTypeObjects() == 0
614          || (D.getNumTypeObjects() == 1
615              && D.getTypeObject(0).Kind == DeclaratorChunk::Function)))
616    OmittedReturnType = true;
617
618  // long long is a C99 feature.
619  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
620      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
621    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
622
623  // Determine the type of the declarator. Not all forms of declarator
624  // have a type.
625  QualType T;
626  switch (D.getKind()) {
627  case Declarator::DK_Abstract:
628  case Declarator::DK_Normal:
629  case Declarator::DK_Operator: {
630    const DeclSpec &DS = D.getDeclSpec();
631    if (OmittedReturnType) {
632      // We default to a dependent type initially.  Can be modified by
633      // the first return statement.
634      T = Context.DependentTy;
635    } else {
636      bool isInvalid = false;
637      T = ConvertDeclSpecToType(DS, D.getIdentifierLoc(), isInvalid);
638      if (isInvalid)
639        D.setInvalidType(true);
640    }
641    break;
642  }
643
644  case Declarator::DK_Constructor:
645  case Declarator::DK_Destructor:
646  case Declarator::DK_Conversion:
647    // Constructors and destructors don't have return types. Use
648    // "void" instead. Conversion operators will check their return
649    // types separately.
650    T = Context.VoidTy;
651    break;
652  }
653
654  // The name we're declaring, if any.
655  DeclarationName Name;
656  if (D.getIdentifier())
657    Name = D.getIdentifier();
658
659  // Walk the DeclTypeInfo, building the recursive type as we go.
660  // DeclTypeInfos are ordered from the identifier out, which is
661  // opposite of what we want :).
662  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
663    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1+Skip);
664    switch (DeclType.Kind) {
665    default: assert(0 && "Unknown decltype!");
666    case DeclaratorChunk::BlockPointer:
667      // If blocks are disabled, emit an error.
668      if (!LangOpts.Blocks)
669        Diag(DeclType.Loc, diag::err_blocks_disable);
670
671      if (!T.getTypePtr()->isFunctionType())
672        Diag(D.getIdentifierLoc(), diag::err_nonfunction_block_type);
673      else
674        T = (Context.getBlockPointerType(T)
675             .getQualifiedType(DeclType.Cls.TypeQuals));
676      break;
677    case DeclaratorChunk::Pointer:
678      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
679      break;
680    case DeclaratorChunk::Reference:
681      T = BuildReferenceType(T, DeclType.Ref.LValueRef,
682                             DeclType.Ref.HasRestrict ? QualType::Restrict : 0,
683                             DeclType.Loc, Name);
684      break;
685    case DeclaratorChunk::Array: {
686      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
687      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
688      ArrayType::ArraySizeModifier ASM;
689      if (ATI.isStar)
690        ASM = ArrayType::Star;
691      else if (ATI.hasStatic)
692        ASM = ArrayType::Static;
693      else
694        ASM = ArrayType::Normal;
695      if (ASM == ArrayType::Star &&
696          D.getContext() != Declarator::PrototypeContext) {
697        // FIXME: This check isn't quite right: it allows star in prototypes
698        // for function definitions, and disallows some edge cases detailed
699        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
700        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
701        ASM = ArrayType::Normal;
702        D.setInvalidType(true);
703      }
704      T = BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals, DeclType.Loc, Name);
705      break;
706    }
707    case DeclaratorChunk::Function: {
708      // If the function declarator has a prototype (i.e. it is not () and
709      // does not have a K&R-style identifier list), then the arguments are part
710      // of the type, otherwise the argument list is ().
711      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
712
713      // C99 6.7.5.3p1: The return type may not be a function or array type.
714      if (T->isArrayType() || T->isFunctionType()) {
715        Diag(DeclType.Loc, diag::err_func_returning_array_function) << T;
716        T = Context.IntTy;
717        D.setInvalidType(true);
718      }
719
720      if (FTI.NumArgs == 0) {
721        if (getLangOptions().CPlusPlus) {
722          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
723          // function takes no arguments.
724          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic,FTI.TypeQuals);
725        } else if (FTI.isVariadic) {
726          // We allow a zero-parameter variadic function in C if the
727          // function is marked with the "overloadable"
728          // attribute. Scan for this attribute now.
729          bool Overloadable = false;
730          for (const AttributeList *Attrs = D.getAttributes();
731               Attrs; Attrs = Attrs->getNext()) {
732            if (Attrs->getKind() == AttributeList::AT_overloadable) {
733              Overloadable = true;
734              break;
735            }
736          }
737
738          if (!Overloadable)
739            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
740          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0);
741        } else {
742          // Simple void foo(), where the incoming T is the result type.
743          T = Context.getFunctionNoProtoType(T);
744        }
745      } else if (FTI.ArgInfo[0].Param == 0) {
746        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
747        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
748      } else {
749        // Otherwise, we have a function with an argument list that is
750        // potentially variadic.
751        llvm::SmallVector<QualType, 16> ArgTys;
752
753        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
754          ParmVarDecl *Param =
755            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
756          QualType ArgTy = Param->getType();
757          assert(!ArgTy.isNull() && "Couldn't parse type?");
758
759          // Adjust the parameter type.
760          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
761
762          // Look for 'void'.  void is allowed only as a single argument to a
763          // function with no other parameters (C99 6.7.5.3p10).  We record
764          // int(void) as a FunctionProtoType with an empty argument list.
765          if (ArgTy->isVoidType()) {
766            // If this is something like 'float(int, void)', reject it.  'void'
767            // is an incomplete type (C99 6.2.5p19) and function decls cannot
768            // have arguments of incomplete type.
769            if (FTI.NumArgs != 1 || FTI.isVariadic) {
770              Diag(DeclType.Loc, diag::err_void_only_param);
771              ArgTy = Context.IntTy;
772              Param->setType(ArgTy);
773            } else if (FTI.ArgInfo[i].Ident) {
774              // Reject, but continue to parse 'int(void abc)'.
775              Diag(FTI.ArgInfo[i].IdentLoc,
776                   diag::err_param_with_void_type);
777              ArgTy = Context.IntTy;
778              Param->setType(ArgTy);
779            } else {
780              // Reject, but continue to parse 'float(const void)'.
781              if (ArgTy.getCVRQualifiers())
782                Diag(DeclType.Loc, diag::err_void_param_qualified);
783
784              // Do not add 'void' to the ArgTys list.
785              break;
786            }
787          } else if (!FTI.hasPrototype) {
788            if (ArgTy->isPromotableIntegerType()) {
789              ArgTy = Context.IntTy;
790            } else if (const BuiltinType* BTy = ArgTy->getAsBuiltinType()) {
791              if (BTy->getKind() == BuiltinType::Float)
792                ArgTy = Context.DoubleTy;
793            }
794          }
795
796          ArgTys.push_back(ArgTy);
797        }
798        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
799                                    FTI.isVariadic, FTI.TypeQuals);
800      }
801      break;
802    }
803    case DeclaratorChunk::MemberPointer:
804      // The scope spec must refer to a class, or be dependent.
805      DeclContext *DC = computeDeclContext(DeclType.Mem.Scope());
806      QualType ClsType;
807      // FIXME: Extend for dependent types when it's actually supported.
808      // See ActOnCXXNestedNameSpecifier.
809      if (CXXRecordDecl *RD = dyn_cast_or_null<CXXRecordDecl>(DC)) {
810        ClsType = Context.getTagDeclType(RD);
811      } else {
812        if (DC) {
813          Diag(DeclType.Mem.Scope().getBeginLoc(),
814               diag::err_illegal_decl_mempointer_in_nonclass)
815            << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
816            << DeclType.Mem.Scope().getRange();
817        }
818        D.setInvalidType(true);
819        ClsType = Context.IntTy;
820      }
821
822      // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
823      //   with reference type, or "cv void."
824      if (T->isReferenceType()) {
825        Diag(DeclType.Loc, diag::err_illegal_decl_pointer_to_reference)
826          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
827        D.setInvalidType(true);
828        T = Context.IntTy;
829      }
830      if (T->isVoidType()) {
831        Diag(DeclType.Loc, diag::err_illegal_decl_mempointer_to_void)
832          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
833        T = Context.IntTy;
834      }
835
836      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
837      // object or incomplete types shall not be restrict-qualified."
838      if ((DeclType.Mem.TypeQuals & QualType::Restrict) &&
839          !T->isIncompleteOrObjectType()) {
840        Diag(DeclType.Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
841          << T;
842        DeclType.Mem.TypeQuals &= ~QualType::Restrict;
843      }
844
845      T = Context.getMemberPointerType(T, ClsType.getTypePtr()).
846                    getQualifiedType(DeclType.Mem.TypeQuals);
847
848      break;
849    }
850
851    if (T.isNull()) {
852      D.setInvalidType(true);
853      T = Context.IntTy;
854    }
855
856    // See if there are any attributes on this declarator chunk.
857    if (const AttributeList *AL = DeclType.getAttrs())
858      ProcessTypeAttributeList(T, AL);
859  }
860
861  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
862    const FunctionProtoType *FnTy = T->getAsFunctionProtoType();
863    assert(FnTy && "Why oh why is there not a FunctionProtoType here ?");
864
865    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
866    // for a nonstatic member function, the function type to which a pointer
867    // to member refers, or the top-level function type of a function typedef
868    // declaration.
869    if (FnTy->getTypeQuals() != 0 &&
870        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
871        ((D.getContext() != Declarator::MemberContext &&
872          (!D.getCXXScopeSpec().isSet() ||
873           !computeDeclContext(D.getCXXScopeSpec())->isRecord())) ||
874         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
875      if (D.isFunctionDeclarator())
876        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
877      else
878        Diag(D.getIdentifierLoc(),
879             diag::err_invalid_qualified_typedef_function_type_use);
880
881      // Strip the cv-quals from the type.
882      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
883                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
884    }
885  }
886
887  // If there were any type attributes applied to the decl itself (not the
888  // type, apply the type attribute to the type!)
889  if (const AttributeList *Attrs = D.getAttributes())
890    ProcessTypeAttributeList(T, Attrs);
891
892  return T;
893}
894
895/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
896/// declarator
897QualType Sema::ObjCGetTypeForMethodDefinition(DeclPtrTy D) {
898  ObjCMethodDecl *MDecl = cast<ObjCMethodDecl>(D.getAs<Decl>());
899  QualType T = MDecl->getResultType();
900  llvm::SmallVector<QualType, 16> ArgTys;
901
902  // Add the first two invisible argument types for self and _cmd.
903  if (MDecl->isInstanceMethod()) {
904    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
905    selfTy = Context.getPointerType(selfTy);
906    ArgTys.push_back(selfTy);
907  } else
908    ArgTys.push_back(Context.getObjCIdType());
909  ArgTys.push_back(Context.getObjCSelType());
910
911  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
912       E = MDecl->param_end(); PI != E; ++PI) {
913    QualType ArgTy = (*PI)->getType();
914    assert(!ArgTy.isNull() && "Couldn't parse type?");
915    ArgTy = adjustParameterType(ArgTy);
916    ArgTys.push_back(ArgTy);
917  }
918  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
919                              MDecl->isVariadic(), 0);
920  return T;
921}
922
923/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
924/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
925/// they point to and return true. If T1 and T2 aren't pointer types
926/// or pointer-to-member types, or if they are not similar at this
927/// level, returns false and leaves T1 and T2 unchanged. Top-level
928/// qualifiers on T1 and T2 are ignored. This function will typically
929/// be called in a loop that successively "unwraps" pointer and
930/// pointer-to-member types to compare them at each level.
931bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
932  const PointerType *T1PtrType = T1->getAsPointerType(),
933                    *T2PtrType = T2->getAsPointerType();
934  if (T1PtrType && T2PtrType) {
935    T1 = T1PtrType->getPointeeType();
936    T2 = T2PtrType->getPointeeType();
937    return true;
938  }
939
940  const MemberPointerType *T1MPType = T1->getAsMemberPointerType(),
941                          *T2MPType = T2->getAsMemberPointerType();
942  if (T1MPType && T2MPType &&
943      Context.getCanonicalType(T1MPType->getClass()) ==
944      Context.getCanonicalType(T2MPType->getClass())) {
945    T1 = T1MPType->getPointeeType();
946    T2 = T2MPType->getPointeeType();
947    return true;
948  }
949  return false;
950}
951
952Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
953  // C99 6.7.6: Type names have no identifier.  This is already validated by
954  // the parser.
955  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
956
957  QualType T = GetTypeForDeclarator(D, S);
958  if (D.isInvalidType())
959    return true;
960
961  // Check that there are no default arguments (C++ only).
962  if (getLangOptions().CPlusPlus)
963    CheckExtraCXXDefaultArguments(D);
964
965  return T.getAsOpaquePtr();
966}
967
968
969
970//===----------------------------------------------------------------------===//
971// Type Attribute Processing
972//===----------------------------------------------------------------------===//
973
974/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
975/// specified type.  The attribute contains 1 argument, the id of the address
976/// space for the type.
977static void HandleAddressSpaceTypeAttribute(QualType &Type,
978                                            const AttributeList &Attr, Sema &S){
979  // If this type is already address space qualified, reject it.
980  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
981  // for two or more different address spaces."
982  if (Type.getAddressSpace()) {
983    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
984    return;
985  }
986
987  // Check the attribute arguments.
988  if (Attr.getNumArgs() != 1) {
989    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
990    return;
991  }
992  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
993  llvm::APSInt addrSpace(32);
994  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
995    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
996      << ASArgExpr->getSourceRange();
997    return;
998  }
999
1000  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1001  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1002}
1003
1004/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1005/// specified type.  The attribute contains 1 argument, weak or strong.
1006static void HandleObjCGCTypeAttribute(QualType &Type,
1007                                      const AttributeList &Attr, Sema &S) {
1008  if (Type.getObjCGCAttr() != QualType::GCNone) {
1009    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1010    return;
1011  }
1012
1013  // Check the attribute arguments.
1014  if (!Attr.getParameterName()) {
1015    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1016      << "objc_gc" << 1;
1017    return;
1018  }
1019  QualType::GCAttrTypes GCAttr;
1020  if (Attr.getNumArgs() != 0) {
1021    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1022    return;
1023  }
1024  if (Attr.getParameterName()->isStr("weak"))
1025    GCAttr = QualType::Weak;
1026  else if (Attr.getParameterName()->isStr("strong"))
1027    GCAttr = QualType::Strong;
1028  else {
1029    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1030      << "objc_gc" << Attr.getParameterName();
1031    return;
1032  }
1033
1034  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1035}
1036
1037void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
1038  // Scan through and apply attributes to this type where it makes sense.  Some
1039  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1040  // type, but others can be present in the type specifiers even though they
1041  // apply to the decl.  Here we apply type attributes and ignore the rest.
1042  for (; AL; AL = AL->getNext()) {
1043    // If this is an attribute we can handle, do so now, otherwise, add it to
1044    // the LeftOverAttrs list for rechaining.
1045    switch (AL->getKind()) {
1046    default: break;
1047    case AttributeList::AT_address_space:
1048      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
1049      break;
1050    case AttributeList::AT_objc_gc:
1051      HandleObjCGCTypeAttribute(Result, *AL, *this);
1052      break;
1053    }
1054  }
1055}
1056
1057/// @brief Ensure that the type T is a complete type.
1058///
1059/// This routine checks whether the type @p T is complete in any
1060/// context where a complete type is required. If @p T is a complete
1061/// type, returns false. If @p T is a class template specialization,
1062/// this routine then attempts to perform class template
1063/// instantiation. If instantiation fails, or if @p T is incomplete
1064/// and cannot be completed, issues the diagnostic @p diag (giving it
1065/// the type @p T) and returns true.
1066///
1067/// @param Loc  The location in the source that the incomplete type
1068/// diagnostic should refer to.
1069///
1070/// @param T  The type that this routine is examining for completeness.
1071///
1072/// @param diag The diagnostic value (e.g.,
1073/// @c diag::err_typecheck_decl_incomplete_type) that will be used
1074/// for the error message if @p T is incomplete.
1075///
1076/// @param Range1  An optional range in the source code that will be a
1077/// part of the "incomplete type" error message.
1078///
1079/// @param Range2  An optional range in the source code that will be a
1080/// part of the "incomplete type" error message.
1081///
1082/// @param PrintType If non-NULL, the type that should be printed
1083/// instead of @p T. This parameter should be used when the type that
1084/// we're checking for incompleteness isn't the type that should be
1085/// displayed to the user, e.g., when T is a type and PrintType is a
1086/// pointer to T.
1087///
1088/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1089/// @c false otherwise.
1090bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, unsigned diag,
1091                               SourceRange Range1, SourceRange Range2,
1092                               QualType PrintType) {
1093  // If we have a complete type, we're done.
1094  if (!T->isIncompleteType())
1095    return false;
1096
1097  // If we have a class template specialization or a class member of a
1098  // class template specialization, try to instantiate it.
1099  if (const RecordType *Record = T->getAsRecordType()) {
1100    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
1101          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
1102      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
1103        // Update the class template specialization's location to
1104        // refer to the point of instantiation.
1105        if (Loc.isValid())
1106          ClassTemplateSpec->setLocation(Loc);
1107        return InstantiateClassTemplateSpecialization(ClassTemplateSpec,
1108                                             /*ExplicitInstantiation=*/false);
1109      }
1110    } else if (CXXRecordDecl *Rec
1111                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
1112      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
1113        // Find the class template specialization that surrounds this
1114        // member class.
1115        ClassTemplateSpecializationDecl *Spec = 0;
1116        for (DeclContext *Parent = Rec->getDeclContext();
1117             Parent && !Spec; Parent = Parent->getParent())
1118          Spec = dyn_cast<ClassTemplateSpecializationDecl>(Parent);
1119        assert(Spec && "Not a member of a class template specialization?");
1120        return InstantiateClass(Loc, Rec, Pattern, Spec->getTemplateArgs(),
1121                                /*ExplicitInstantiation=*/false);
1122      }
1123    }
1124  }
1125
1126  if (PrintType.isNull())
1127    PrintType = T;
1128
1129  // We have an incomplete type. Produce a diagnostic.
1130  Diag(Loc, diag) << PrintType << Range1 << Range2;
1131
1132  // If the type was a forward declaration of a class/struct/union
1133  // type, produce
1134  const TagType *Tag = 0;
1135  if (const RecordType *Record = T->getAsRecordType())
1136    Tag = Record;
1137  else if (const EnumType *Enum = T->getAsEnumType())
1138    Tag = Enum;
1139
1140  if (Tag && !Tag->getDecl()->isInvalidDecl())
1141    Diag(Tag->getDecl()->getLocation(),
1142         Tag->isBeingDefined() ? diag::note_type_being_defined
1143                               : diag::note_forward_declaration)
1144        << QualType(Tag, 0);
1145
1146  return true;
1147}
1148
1149/// \brief Retrieve a version of the type 'T' that is qualified by the
1150/// nested-name-specifier contained in SS.
1151QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
1152  if (!SS.isSet() || SS.isInvalid() || T.isNull())
1153    return T;
1154
1155  NestedNameSpecifier *NNS
1156    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1157  return Context.getQualifiedNameType(NNS, T);
1158}
1159