SemaType.cpp revision a481ec4150ad203440852a2bfee0883dd26f7530
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/TypeLocVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26using namespace clang;
27
28#include <iostream>
29
30/// \brief Perform adjustment on the parameter type of a function.
31///
32/// This routine adjusts the given parameter type @p T to the actual
33/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
34/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
35QualType Sema::adjustParameterType(QualType T) {
36  // C99 6.7.5.3p7:
37  //   A declaration of a parameter as "array of type" shall be
38  //   adjusted to "qualified pointer to type", where the type
39  //   qualifiers (if any) are those specified within the [ and ] of
40  //   the array type derivation.
41  if (T->isArrayType())
42    return Context.getArrayDecayedType(T);
43
44  // C99 6.7.5.3p8:
45  //   A declaration of a parameter as "function returning type"
46  //   shall be adjusted to "pointer to function returning type", as
47  //   in 6.3.2.1.
48  if (T->isFunctionType())
49    return Context.getPointerType(T);
50
51  return T;
52}
53
54
55
56/// isOmittedBlockReturnType - Return true if this declarator is missing a
57/// return type because this is a omitted return type on a block literal.
58static bool isOmittedBlockReturnType(const Declarator &D) {
59  if (D.getContext() != Declarator::BlockLiteralContext ||
60      D.getDeclSpec().hasTypeSpecifier())
61    return false;
62
63  if (D.getNumTypeObjects() == 0)
64    return true;   // ^{ ... }
65
66  if (D.getNumTypeObjects() == 1 &&
67      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
68    return true;   // ^(int X, float Y) { ... }
69
70  return false;
71}
72
73typedef std::pair<const AttributeList*,QualType> DelayedAttribute;
74typedef llvm::SmallVectorImpl<DelayedAttribute> DelayedAttributeSet;
75
76static void ProcessTypeAttributeList(Sema &S, QualType &Type,
77                                     bool IsDeclSpec,
78                                     const AttributeList *Attrs,
79                                     DelayedAttributeSet &DelayedFnAttrs);
80static bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr);
81
82static void ProcessDelayedFnAttrs(Sema &S, QualType &Type,
83                                  DelayedAttributeSet &Attrs) {
84  for (DelayedAttributeSet::iterator I = Attrs.begin(),
85         E = Attrs.end(); I != E; ++I)
86    if (ProcessFnAttr(S, Type, *I->first)) {
87      S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
88        << I->first->getName() << I->second;
89      // Avoid any further processing of this attribute.
90      I->first->setInvalid();
91    }
92  Attrs.clear();
93}
94
95static void DiagnoseDelayedFnAttrs(Sema &S, DelayedAttributeSet &Attrs) {
96  for (DelayedAttributeSet::iterator I = Attrs.begin(),
97         E = Attrs.end(); I != E; ++I) {
98    S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
99      << I->first->getName() << I->second;
100    // Avoid any further processing of this attribute.
101    I->first->setInvalid();
102  }
103  Attrs.clear();
104}
105
106/// \brief Convert the specified declspec to the appropriate type
107/// object.
108/// \param D  the declarator containing the declaration specifier.
109/// \returns The type described by the declaration specifiers.  This function
110/// never returns null.
111static QualType ConvertDeclSpecToType(Sema &TheSema,
112                                      Declarator &TheDeclarator,
113                                      DelayedAttributeSet &Delayed) {
114  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
115  // checking.
116  const DeclSpec &DS = TheDeclarator.getDeclSpec();
117  SourceLocation DeclLoc = TheDeclarator.getIdentifierLoc();
118  if (DeclLoc.isInvalid())
119    DeclLoc = DS.getSourceRange().getBegin();
120
121  ASTContext &Context = TheSema.Context;
122
123  QualType Result;
124  switch (DS.getTypeSpecType()) {
125  case DeclSpec::TST_void:
126    Result = Context.VoidTy;
127    break;
128  case DeclSpec::TST_char:
129    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
130      Result = Context.CharTy;
131    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
132      Result = Context.SignedCharTy;
133    else {
134      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
135             "Unknown TSS value");
136      Result = Context.UnsignedCharTy;
137    }
138    break;
139  case DeclSpec::TST_wchar:
140    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
141      Result = Context.WCharTy;
142    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
143      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
144        << DS.getSpecifierName(DS.getTypeSpecType());
145      Result = Context.getSignedWCharType();
146    } else {
147      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
148        "Unknown TSS value");
149      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
150        << DS.getSpecifierName(DS.getTypeSpecType());
151      Result = Context.getUnsignedWCharType();
152    }
153    break;
154  case DeclSpec::TST_char16:
155      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
156        "Unknown TSS value");
157      Result = Context.Char16Ty;
158    break;
159  case DeclSpec::TST_char32:
160      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
161        "Unknown TSS value");
162      Result = Context.Char32Ty;
163    break;
164  case DeclSpec::TST_unspecified:
165    // "<proto1,proto2>" is an objc qualified ID with a missing id.
166    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
167      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
168                                         (ObjCProtocolDecl**)PQ,
169                                         DS.getNumProtocolQualifiers());
170      Result = Context.getObjCObjectPointerType(Result);
171      break;
172    }
173
174    // If this is a missing declspec in a block literal return context, then it
175    // is inferred from the return statements inside the block.
176    if (isOmittedBlockReturnType(TheDeclarator)) {
177      Result = Context.DependentTy;
178      break;
179    }
180
181    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
182    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
183    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
184    // Note that the one exception to this is function definitions, which are
185    // allowed to be completely missing a declspec.  This is handled in the
186    // parser already though by it pretending to have seen an 'int' in this
187    // case.
188    if (TheSema.getLangOptions().ImplicitInt) {
189      // In C89 mode, we only warn if there is a completely missing declspec
190      // when one is not allowed.
191      if (DS.isEmpty()) {
192        TheSema.Diag(DeclLoc, diag::ext_missing_declspec)
193          << DS.getSourceRange()
194        << FixItHint::CreateInsertion(DS.getSourceRange().getBegin(), "int");
195      }
196    } else if (!DS.hasTypeSpecifier()) {
197      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
198      // "At least one type specifier shall be given in the declaration
199      // specifiers in each declaration, and in the specifier-qualifier list in
200      // each struct declaration and type name."
201      // FIXME: Does Microsoft really have the implicit int extension in C++?
202      if (TheSema.getLangOptions().CPlusPlus &&
203          !TheSema.getLangOptions().Microsoft) {
204        TheSema.Diag(DeclLoc, diag::err_missing_type_specifier)
205          << DS.getSourceRange();
206
207        // When this occurs in C++ code, often something is very broken with the
208        // value being declared, poison it as invalid so we don't get chains of
209        // errors.
210        TheDeclarator.setInvalidType(true);
211      } else {
212        TheSema.Diag(DeclLoc, diag::ext_missing_type_specifier)
213          << DS.getSourceRange();
214      }
215    }
216
217    // FALL THROUGH.
218  case DeclSpec::TST_int: {
219    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
220      switch (DS.getTypeSpecWidth()) {
221      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
222      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
223      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
224      case DeclSpec::TSW_longlong:
225        Result = Context.LongLongTy;
226
227        // long long is a C99 feature.
228        if (!TheSema.getLangOptions().C99 &&
229            !TheSema.getLangOptions().CPlusPlus0x)
230          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
231        break;
232      }
233    } else {
234      switch (DS.getTypeSpecWidth()) {
235      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
236      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
237      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
238      case DeclSpec::TSW_longlong:
239        Result = Context.UnsignedLongLongTy;
240
241        // long long is a C99 feature.
242        if (!TheSema.getLangOptions().C99 &&
243            !TheSema.getLangOptions().CPlusPlus0x)
244          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
245        break;
246      }
247    }
248    break;
249  }
250  case DeclSpec::TST_float: Result = Context.FloatTy; break;
251  case DeclSpec::TST_double:
252    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
253      Result = Context.LongDoubleTy;
254    else
255      Result = Context.DoubleTy;
256    break;
257  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
258  case DeclSpec::TST_decimal32:    // _Decimal32
259  case DeclSpec::TST_decimal64:    // _Decimal64
260  case DeclSpec::TST_decimal128:   // _Decimal128
261    TheSema.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
262    Result = Context.IntTy;
263    TheDeclarator.setInvalidType(true);
264    break;
265  case DeclSpec::TST_class:
266  case DeclSpec::TST_enum:
267  case DeclSpec::TST_union:
268  case DeclSpec::TST_struct: {
269    TypeDecl *D
270      = dyn_cast_or_null<TypeDecl>(static_cast<Decl *>(DS.getTypeRep()));
271    if (!D) {
272      // This can happen in C++ with ambiguous lookups.
273      Result = Context.IntTy;
274      TheDeclarator.setInvalidType(true);
275      break;
276    }
277
278    // If the type is deprecated or unavailable, diagnose it.
279    TheSema.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeLoc());
280
281    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
282           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
283
284    // TypeQuals handled by caller.
285    Result = Context.getTypeDeclType(D);
286
287    // In C++, make an ElaboratedType.
288    if (TheSema.getLangOptions().CPlusPlus) {
289      ElaboratedTypeKeyword Keyword
290        = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
291      Result = TheSema.getElaboratedType(Keyword, DS.getTypeSpecScope(),
292                                         Result);
293    }
294    if (D->isInvalidDecl())
295      TheDeclarator.setInvalidType(true);
296    break;
297  }
298  case DeclSpec::TST_typename: {
299    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
300           DS.getTypeSpecSign() == 0 &&
301           "Can't handle qualifiers on typedef names yet!");
302    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
303
304    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
305      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
306        // Silently drop any existing protocol qualifiers.
307        // TODO: determine whether that's the right thing to do.
308        if (ObjT->getNumProtocols())
309          Result = ObjT->getBaseType();
310
311        if (DS.getNumProtocolQualifiers())
312          Result = Context.getObjCObjectType(Result,
313                                             (ObjCProtocolDecl**) PQ,
314                                             DS.getNumProtocolQualifiers());
315      } else if (Result->isObjCIdType()) {
316        // id<protocol-list>
317        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
318                                           (ObjCProtocolDecl**) PQ,
319                                           DS.getNumProtocolQualifiers());
320        Result = Context.getObjCObjectPointerType(Result);
321      } else if (Result->isObjCClassType()) {
322        // Class<protocol-list>
323        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
324                                           (ObjCProtocolDecl**) PQ,
325                                           DS.getNumProtocolQualifiers());
326        Result = Context.getObjCObjectPointerType(Result);
327      } else {
328        TheSema.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
329          << DS.getSourceRange();
330        TheDeclarator.setInvalidType(true);
331      }
332    }
333
334    // TypeQuals handled by caller.
335    break;
336  }
337  case DeclSpec::TST_typeofType:
338    // FIXME: Preserve type source info.
339    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
340    assert(!Result.isNull() && "Didn't get a type for typeof?");
341    // TypeQuals handled by caller.
342    Result = Context.getTypeOfType(Result);
343    break;
344  case DeclSpec::TST_typeofExpr: {
345    Expr *E = static_cast<Expr *>(DS.getTypeRep());
346    assert(E && "Didn't get an expression for typeof?");
347    // TypeQuals handled by caller.
348    Result = TheSema.BuildTypeofExprType(E);
349    if (Result.isNull()) {
350      Result = Context.IntTy;
351      TheDeclarator.setInvalidType(true);
352    }
353    break;
354  }
355  case DeclSpec::TST_decltype: {
356    Expr *E = static_cast<Expr *>(DS.getTypeRep());
357    assert(E && "Didn't get an expression for decltype?");
358    // TypeQuals handled by caller.
359    Result = TheSema.BuildDecltypeType(E);
360    if (Result.isNull()) {
361      Result = Context.IntTy;
362      TheDeclarator.setInvalidType(true);
363    }
364    break;
365  }
366  case DeclSpec::TST_auto: {
367    // TypeQuals handled by caller.
368    Result = Context.UndeducedAutoTy;
369    break;
370  }
371
372  case DeclSpec::TST_error:
373    Result = Context.IntTy;
374    TheDeclarator.setInvalidType(true);
375    break;
376  }
377
378  // Handle complex types.
379  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
380    if (TheSema.getLangOptions().Freestanding)
381      TheSema.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
382    Result = Context.getComplexType(Result);
383  } else if (DS.isTypeAltiVecVector()) {
384    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
385    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
386    Result = Context.getVectorType(Result, 128/typeSize, true,
387      DS.isTypeAltiVecPixel());
388  }
389
390  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
391         "FIXME: imaginary types not supported yet!");
392
393  // See if there are any attributes on the declspec that apply to the type (as
394  // opposed to the decl).
395  if (const AttributeList *AL = DS.getAttributes())
396    ProcessTypeAttributeList(TheSema, Result, true, AL, Delayed);
397
398  // Apply const/volatile/restrict qualifiers to T.
399  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
400
401    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
402    // or incomplete types shall not be restrict-qualified."  C++ also allows
403    // restrict-qualified references.
404    if (TypeQuals & DeclSpec::TQ_restrict) {
405      if (Result->isAnyPointerType() || Result->isReferenceType()) {
406        QualType EltTy;
407        if (Result->isObjCObjectPointerType())
408          EltTy = Result;
409        else
410          EltTy = Result->isPointerType() ?
411                    Result->getAs<PointerType>()->getPointeeType() :
412                    Result->getAs<ReferenceType>()->getPointeeType();
413
414        // If we have a pointer or reference, the pointee must have an object
415        // incomplete type.
416        if (!EltTy->isIncompleteOrObjectType()) {
417          TheSema.Diag(DS.getRestrictSpecLoc(),
418               diag::err_typecheck_invalid_restrict_invalid_pointee)
419            << EltTy << DS.getSourceRange();
420          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
421        }
422      } else {
423        TheSema.Diag(DS.getRestrictSpecLoc(),
424             diag::err_typecheck_invalid_restrict_not_pointer)
425          << Result << DS.getSourceRange();
426        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
427      }
428    }
429
430    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
431    // of a function type includes any type qualifiers, the behavior is
432    // undefined."
433    if (Result->isFunctionType() && TypeQuals) {
434      // Get some location to point at, either the C or V location.
435      SourceLocation Loc;
436      if (TypeQuals & DeclSpec::TQ_const)
437        Loc = DS.getConstSpecLoc();
438      else if (TypeQuals & DeclSpec::TQ_volatile)
439        Loc = DS.getVolatileSpecLoc();
440      else {
441        assert((TypeQuals & DeclSpec::TQ_restrict) &&
442               "Has CVR quals but not C, V, or R?");
443        Loc = DS.getRestrictSpecLoc();
444      }
445      TheSema.Diag(Loc, diag::warn_typecheck_function_qualifiers)
446        << Result << DS.getSourceRange();
447    }
448
449    // C++ [dcl.ref]p1:
450    //   Cv-qualified references are ill-formed except when the
451    //   cv-qualifiers are introduced through the use of a typedef
452    //   (7.1.3) or of a template type argument (14.3), in which
453    //   case the cv-qualifiers are ignored.
454    // FIXME: Shouldn't we be checking SCS_typedef here?
455    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
456        TypeQuals && Result->isReferenceType()) {
457      TypeQuals &= ~DeclSpec::TQ_const;
458      TypeQuals &= ~DeclSpec::TQ_volatile;
459    }
460
461    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
462    Result = Context.getQualifiedType(Result, Quals);
463  }
464
465  return Result;
466}
467
468static std::string getPrintableNameForEntity(DeclarationName Entity) {
469  if (Entity)
470    return Entity.getAsString();
471
472  return "type name";
473}
474
475/// \brief Build a pointer type.
476///
477/// \param T The type to which we'll be building a pointer.
478///
479/// \param Quals The cvr-qualifiers to be applied to the pointer type.
480///
481/// \param Loc The location of the entity whose type involves this
482/// pointer type or, if there is no such entity, the location of the
483/// type that will have pointer type.
484///
485/// \param Entity The name of the entity that involves the pointer
486/// type, if known.
487///
488/// \returns A suitable pointer type, if there are no
489/// errors. Otherwise, returns a NULL type.
490QualType Sema::BuildPointerType(QualType T, unsigned Quals,
491                                SourceLocation Loc, DeclarationName Entity) {
492  if (T->isReferenceType()) {
493    // C++ 8.3.2p4: There shall be no ... pointers to references ...
494    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
495      << getPrintableNameForEntity(Entity) << T;
496    return QualType();
497  }
498
499  Qualifiers Qs = Qualifiers::fromCVRMask(Quals);
500
501  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
502  // object or incomplete types shall not be restrict-qualified."
503  if (Qs.hasRestrict() && !T->isIncompleteOrObjectType()) {
504    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
505      << T;
506    Qs.removeRestrict();
507  }
508
509  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
510
511  // Build the pointer type.
512  return Context.getQualifiedType(Context.getPointerType(T), Qs);
513}
514
515/// \brief Build a reference type.
516///
517/// \param T The type to which we'll be building a reference.
518///
519/// \param CVR The cvr-qualifiers to be applied to the reference type.
520///
521/// \param Loc The location of the entity whose type involves this
522/// reference type or, if there is no such entity, the location of the
523/// type that will have reference type.
524///
525/// \param Entity The name of the entity that involves the reference
526/// type, if known.
527///
528/// \returns A suitable reference type, if there are no
529/// errors. Otherwise, returns a NULL type.
530QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
531                                  unsigned CVR, SourceLocation Loc,
532                                  DeclarationName Entity) {
533  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
534
535  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
536
537  // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
538  //   reference to a type T, and attempt to create the type "lvalue
539  //   reference to cv TD" creates the type "lvalue reference to T".
540  // We use the qualifiers (restrict or none) of the original reference,
541  // not the new ones. This is consistent with GCC.
542
543  // C++ [dcl.ref]p4: There shall be no references to references.
544  //
545  // According to C++ DR 106, references to references are only
546  // diagnosed when they are written directly (e.g., "int & &"),
547  // but not when they happen via a typedef:
548  //
549  //   typedef int& intref;
550  //   typedef intref& intref2;
551  //
552  // Parser::ParseDeclaratorInternal diagnoses the case where
553  // references are written directly; here, we handle the
554  // collapsing of references-to-references as described in C++
555  // DR 106 and amended by C++ DR 540.
556
557  // C++ [dcl.ref]p1:
558  //   A declarator that specifies the type "reference to cv void"
559  //   is ill-formed.
560  if (T->isVoidType()) {
561    Diag(Loc, diag::err_reference_to_void);
562    return QualType();
563  }
564
565  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
566  // object or incomplete types shall not be restrict-qualified."
567  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
568    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
569      << T;
570    Quals.removeRestrict();
571  }
572
573  // C++ [dcl.ref]p1:
574  //   [...] Cv-qualified references are ill-formed except when the
575  //   cv-qualifiers are introduced through the use of a typedef
576  //   (7.1.3) or of a template type argument (14.3), in which case
577  //   the cv-qualifiers are ignored.
578  //
579  // We diagnose extraneous cv-qualifiers for the non-typedef,
580  // non-template type argument case within the parser. Here, we just
581  // ignore any extraneous cv-qualifiers.
582  Quals.removeConst();
583  Quals.removeVolatile();
584
585  // Handle restrict on references.
586  if (LValueRef)
587    return Context.getQualifiedType(
588               Context.getLValueReferenceType(T, SpelledAsLValue), Quals);
589  return Context.getQualifiedType(Context.getRValueReferenceType(T), Quals);
590}
591
592/// \brief Build an array type.
593///
594/// \param T The type of each element in the array.
595///
596/// \param ASM C99 array size modifier (e.g., '*', 'static').
597///
598/// \param ArraySize Expression describing the size of the array.
599///
600/// \param Quals The cvr-qualifiers to be applied to the array's
601/// element type.
602///
603/// \param Loc The location of the entity whose type involves this
604/// array type or, if there is no such entity, the location of the
605/// type that will have array type.
606///
607/// \param Entity The name of the entity that involves the array
608/// type, if known.
609///
610/// \returns A suitable array type, if there are no errors. Otherwise,
611/// returns a NULL type.
612QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
613                              Expr *ArraySize, unsigned Quals,
614                              SourceRange Brackets, DeclarationName Entity) {
615
616  SourceLocation Loc = Brackets.getBegin();
617  if (getLangOptions().CPlusPlus) {
618    // C++ [dcl.array]p1:
619    //   T is called the array element type; this type shall not be a reference
620    //   type, the (possibly cv-qualified) type void, a function type or an
621    //   abstract class type.
622    //
623    // Note: function types are handled in the common path with C.
624    if (T->isReferenceType()) {
625      Diag(Loc, diag::err_illegal_decl_array_of_references)
626      << getPrintableNameForEntity(Entity) << T;
627      return QualType();
628    }
629
630    if (T->isVoidType()) {
631      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
632      return QualType();
633    }
634
635    if (RequireNonAbstractType(Brackets.getBegin(), T,
636                               diag::err_array_of_abstract_type))
637      return QualType();
638
639  } else {
640    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
641    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
642    if (RequireCompleteType(Loc, T,
643                            diag::err_illegal_decl_array_incomplete_type))
644      return QualType();
645  }
646
647  if (T->isFunctionType()) {
648    Diag(Loc, diag::err_illegal_decl_array_of_functions)
649      << getPrintableNameForEntity(Entity) << T;
650    return QualType();
651  }
652
653  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
654    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
655      << getPrintableNameForEntity(Entity);
656    return QualType();
657  }
658
659  if (const RecordType *EltTy = T->getAs<RecordType>()) {
660    // If the element type is a struct or union that contains a variadic
661    // array, accept it as a GNU extension: C99 6.7.2.1p2.
662    if (EltTy->getDecl()->hasFlexibleArrayMember())
663      Diag(Loc, diag::ext_flexible_array_in_array) << T;
664  } else if (T->isObjCObjectType()) {
665    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
666    return QualType();
667  }
668
669  // C99 6.7.5.2p1: The size expression shall have integer type.
670  if (ArraySize && !ArraySize->isTypeDependent() &&
671      !ArraySize->getType()->isIntegerType()) {
672    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
673      << ArraySize->getType() << ArraySize->getSourceRange();
674    ArraySize->Destroy(Context);
675    return QualType();
676  }
677  llvm::APSInt ConstVal(32);
678  if (!ArraySize) {
679    if (ASM == ArrayType::Star)
680      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
681    else
682      T = Context.getIncompleteArrayType(T, ASM, Quals);
683  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
684    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
685  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
686             (!T->isDependentType() && !T->isIncompleteType() &&
687              !T->isConstantSizeType())) {
688    // Per C99, a variable array is an array with either a non-constant
689    // size or an element type that has a non-constant-size
690    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
691  } else {
692    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
693    // have a value greater than zero.
694    if (ConstVal.isSigned() && ConstVal.isNegative()) {
695      Diag(ArraySize->getLocStart(),
696           diag::err_typecheck_negative_array_size)
697        << ArraySize->getSourceRange();
698      return QualType();
699    }
700    if (ConstVal == 0) {
701      // GCC accepts zero sized static arrays. We allow them when
702      // we're not in a SFINAE context.
703      Diag(ArraySize->getLocStart(),
704           isSFINAEContext()? diag::err_typecheck_zero_array_size
705                            : diag::ext_typecheck_zero_array_size)
706        << ArraySize->getSourceRange();
707    }
708    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
709  }
710  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
711  if (!getLangOptions().C99) {
712    if (T->isVariableArrayType()) {
713      // Prohibit the use of non-POD types in VLAs.
714      if (!Context.getBaseElementType(T)->isPODType()) {
715        Diag(Loc, diag::err_vla_non_pod)
716          << Context.getBaseElementType(T);
717        return QualType();
718      }
719      // Prohibit the use of VLAs during template argument deduction.
720      else if (isSFINAEContext()) {
721        Diag(Loc, diag::err_vla_in_sfinae);
722        return QualType();
723      }
724      // Just extwarn about VLAs.
725      else
726        Diag(Loc, diag::ext_vla);
727    } else if (ASM != ArrayType::Normal || Quals != 0)
728      Diag(Loc,
729           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
730                                     : diag::ext_c99_array_usage);
731  }
732
733  return T;
734}
735
736/// \brief Build an ext-vector type.
737///
738/// Run the required checks for the extended vector type.
739QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
740                                  SourceLocation AttrLoc) {
741
742  Expr *Arg = (Expr *)ArraySize.get();
743
744  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
745  // in conjunction with complex types (pointers, arrays, functions, etc.).
746  if (!T->isDependentType() &&
747      !T->isIntegerType() && !T->isRealFloatingType()) {
748    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
749    return QualType();
750  }
751
752  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
753    llvm::APSInt vecSize(32);
754    if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
755      Diag(AttrLoc, diag::err_attribute_argument_not_int)
756      << "ext_vector_type" << Arg->getSourceRange();
757      return QualType();
758    }
759
760    // unlike gcc's vector_size attribute, the size is specified as the
761    // number of elements, not the number of bytes.
762    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
763
764    if (vectorSize == 0) {
765      Diag(AttrLoc, diag::err_attribute_zero_size)
766      << Arg->getSourceRange();
767      return QualType();
768    }
769
770    if (!T->isDependentType())
771      return Context.getExtVectorType(T, vectorSize);
772  }
773
774  return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
775                                                AttrLoc);
776}
777
778/// \brief Build a function type.
779///
780/// This routine checks the function type according to C++ rules and
781/// under the assumption that the result type and parameter types have
782/// just been instantiated from a template. It therefore duplicates
783/// some of the behavior of GetTypeForDeclarator, but in a much
784/// simpler form that is only suitable for this narrow use case.
785///
786/// \param T The return type of the function.
787///
788/// \param ParamTypes The parameter types of the function. This array
789/// will be modified to account for adjustments to the types of the
790/// function parameters.
791///
792/// \param NumParamTypes The number of parameter types in ParamTypes.
793///
794/// \param Variadic Whether this is a variadic function type.
795///
796/// \param Quals The cvr-qualifiers to be applied to the function type.
797///
798/// \param Loc The location of the entity whose type involves this
799/// function type or, if there is no such entity, the location of the
800/// type that will have function type.
801///
802/// \param Entity The name of the entity that involves the function
803/// type, if known.
804///
805/// \returns A suitable function type, if there are no
806/// errors. Otherwise, returns a NULL type.
807QualType Sema::BuildFunctionType(QualType T,
808                                 QualType *ParamTypes,
809                                 unsigned NumParamTypes,
810                                 bool Variadic, unsigned Quals,
811                                 SourceLocation Loc, DeclarationName Entity) {
812  if (T->isArrayType() || T->isFunctionType()) {
813    Diag(Loc, diag::err_func_returning_array_function)
814      << T->isFunctionType() << T;
815    return QualType();
816  }
817
818  bool Invalid = false;
819  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
820    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
821    if (ParamType->isVoidType()) {
822      Diag(Loc, diag::err_param_with_void_type);
823      Invalid = true;
824    }
825
826    ParamTypes[Idx] = ParamType;
827  }
828
829  if (Invalid)
830    return QualType();
831
832  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
833                                 Quals, false, false, 0, 0,
834                                 FunctionType::ExtInfo());
835}
836
837/// \brief Build a member pointer type \c T Class::*.
838///
839/// \param T the type to which the member pointer refers.
840/// \param Class the class type into which the member pointer points.
841/// \param CVR Qualifiers applied to the member pointer type
842/// \param Loc the location where this type begins
843/// \param Entity the name of the entity that will have this member pointer type
844///
845/// \returns a member pointer type, if successful, or a NULL type if there was
846/// an error.
847QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
848                                      unsigned CVR, SourceLocation Loc,
849                                      DeclarationName Entity) {
850  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
851
852  // Verify that we're not building a pointer to pointer to function with
853  // exception specification.
854  if (CheckDistantExceptionSpec(T)) {
855    Diag(Loc, diag::err_distant_exception_spec);
856
857    // FIXME: If we're doing this as part of template instantiation,
858    // we should return immediately.
859
860    // Build the type anyway, but use the canonical type so that the
861    // exception specifiers are stripped off.
862    T = Context.getCanonicalType(T);
863  }
864
865  // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
866  //   with reference type, or "cv void."
867  if (T->isReferenceType()) {
868    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
869      << (Entity? Entity.getAsString() : "type name") << T;
870    return QualType();
871  }
872
873  if (T->isVoidType()) {
874    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
875      << (Entity? Entity.getAsString() : "type name");
876    return QualType();
877  }
878
879  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
880  // object or incomplete types shall not be restrict-qualified."
881  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
882    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
883      << T;
884
885    // FIXME: If we're doing this as part of template instantiation,
886    // we should return immediately.
887    Quals.removeRestrict();
888  }
889
890  if (!Class->isDependentType() && !Class->isRecordType()) {
891    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
892    return QualType();
893  }
894
895  return Context.getQualifiedType(
896           Context.getMemberPointerType(T, Class.getTypePtr()), Quals);
897}
898
899/// \brief Build a block pointer type.
900///
901/// \param T The type to which we'll be building a block pointer.
902///
903/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
904///
905/// \param Loc The location of the entity whose type involves this
906/// block pointer type or, if there is no such entity, the location of the
907/// type that will have block pointer type.
908///
909/// \param Entity The name of the entity that involves the block pointer
910/// type, if known.
911///
912/// \returns A suitable block pointer type, if there are no
913/// errors. Otherwise, returns a NULL type.
914QualType Sema::BuildBlockPointerType(QualType T, unsigned CVR,
915                                     SourceLocation Loc,
916                                     DeclarationName Entity) {
917  if (!T->isFunctionType()) {
918    Diag(Loc, diag::err_nonfunction_block_type);
919    return QualType();
920  }
921
922  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
923  return Context.getQualifiedType(Context.getBlockPointerType(T), Quals);
924}
925
926QualType Sema::GetTypeFromParser(TypeTy *Ty, TypeSourceInfo **TInfo) {
927  QualType QT = QualType::getFromOpaquePtr(Ty);
928  if (QT.isNull()) {
929    if (TInfo) *TInfo = 0;
930    return QualType();
931  }
932
933  TypeSourceInfo *DI = 0;
934  if (LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
935    QT = LIT->getType();
936    DI = LIT->getTypeSourceInfo();
937  }
938
939  if (TInfo) *TInfo = DI;
940  return QT;
941}
942
943/// GetTypeForDeclarator - Convert the type for the specified
944/// declarator to Type instances.
945///
946/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
947/// owns the declaration of a type (e.g., the definition of a struct
948/// type), then *OwnedDecl will receive the owned declaration.
949QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
950                                    TypeSourceInfo **TInfo,
951                                    TagDecl **OwnedDecl) {
952  // Determine the type of the declarator. Not all forms of declarator
953  // have a type.
954  QualType T;
955  TypeSourceInfo *ReturnTypeInfo = 0;
956
957  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromDeclSpec;
958
959  switch (D.getName().getKind()) {
960  case UnqualifiedId::IK_Identifier:
961  case UnqualifiedId::IK_OperatorFunctionId:
962  case UnqualifiedId::IK_LiteralOperatorId:
963  case UnqualifiedId::IK_TemplateId:
964    T = ConvertDeclSpecToType(*this, D, FnAttrsFromDeclSpec);
965
966    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
967      TagDecl* Owned = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
968      // Owned is embedded if it was defined here, or if it is the
969      // very first (i.e., canonical) declaration of this tag type.
970      Owned->setEmbeddedInDeclarator(Owned->isDefinition() ||
971                                     Owned->isCanonicalDecl());
972      if (OwnedDecl) *OwnedDecl = Owned;
973    }
974    break;
975
976  case UnqualifiedId::IK_ConstructorName:
977  case UnqualifiedId::IK_ConstructorTemplateId:
978  case UnqualifiedId::IK_DestructorName:
979    // Constructors and destructors don't have return types. Use
980    // "void" instead.
981    T = Context.VoidTy;
982
983    if (TInfo)
984      ReturnTypeInfo = Context.getTrivialTypeSourceInfo(T,
985                                                    D.getName().StartLocation);
986    break;
987
988  case UnqualifiedId::IK_ConversionFunctionId:
989    // The result type of a conversion function is the type that it
990    // converts to.
991    T = GetTypeFromParser(D.getName().ConversionFunctionId,
992                          TInfo? &ReturnTypeInfo : 0);
993    break;
994  }
995
996  if (T.isNull())
997    return T;
998
999  if (T == Context.UndeducedAutoTy) {
1000    int Error = -1;
1001
1002    switch (D.getContext()) {
1003    case Declarator::KNRTypeListContext:
1004      assert(0 && "K&R type lists aren't allowed in C++");
1005      break;
1006    case Declarator::PrototypeContext:
1007      Error = 0; // Function prototype
1008      break;
1009    case Declarator::MemberContext:
1010      switch (cast<TagDecl>(CurContext)->getTagKind()) {
1011      case TTK_Enum: assert(0 && "unhandled tag kind"); break;
1012      case TTK_Struct: Error = 1; /* Struct member */ break;
1013      case TTK_Union:  Error = 2; /* Union member */ break;
1014      case TTK_Class:  Error = 3; /* Class member */ break;
1015      }
1016      break;
1017    case Declarator::CXXCatchContext:
1018      Error = 4; // Exception declaration
1019      break;
1020    case Declarator::TemplateParamContext:
1021      Error = 5; // Template parameter
1022      break;
1023    case Declarator::BlockLiteralContext:
1024      Error = 6;  // Block literal
1025      break;
1026    case Declarator::FileContext:
1027    case Declarator::BlockContext:
1028    case Declarator::ForContext:
1029    case Declarator::ConditionContext:
1030    case Declarator::TypeNameContext:
1031      break;
1032    }
1033
1034    if (Error != -1) {
1035      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
1036        << Error;
1037      T = Context.IntTy;
1038      D.setInvalidType(true);
1039    }
1040  }
1041
1042  // The name we're declaring, if any.
1043  DeclarationName Name;
1044  if (D.getIdentifier())
1045    Name = D.getIdentifier();
1046
1047  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromPreviousChunk;
1048
1049  // Walk the DeclTypeInfo, building the recursive type as we go.
1050  // DeclTypeInfos are ordered from the identifier out, which is
1051  // opposite of what we want :).
1052  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1053    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
1054    switch (DeclType.Kind) {
1055    default: assert(0 && "Unknown decltype!");
1056    case DeclaratorChunk::BlockPointer:
1057      // If blocks are disabled, emit an error.
1058      if (!LangOpts.Blocks)
1059        Diag(DeclType.Loc, diag::err_blocks_disable);
1060
1061      T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(),
1062                                Name);
1063      break;
1064    case DeclaratorChunk::Pointer:
1065      // Verify that we're not building a pointer to pointer to function with
1066      // exception specification.
1067      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1068        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1069        D.setInvalidType(true);
1070        // Build the type anyway.
1071      }
1072      if (getLangOptions().ObjC1 && T->getAs<ObjCObjectType>()) {
1073        T = Context.getObjCObjectPointerType(T);
1074        T = Context.getCVRQualifiedType(T, DeclType.Ptr.TypeQuals);
1075        break;
1076      }
1077      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
1078      break;
1079    case DeclaratorChunk::Reference: {
1080      Qualifiers Quals;
1081      if (DeclType.Ref.HasRestrict) Quals.addRestrict();
1082
1083      // Verify that we're not building a reference to pointer to function with
1084      // exception specification.
1085      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1086        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1087        D.setInvalidType(true);
1088        // Build the type anyway.
1089      }
1090      T = BuildReferenceType(T, DeclType.Ref.LValueRef, Quals,
1091                             DeclType.Loc, Name);
1092      break;
1093    }
1094    case DeclaratorChunk::Array: {
1095      // Verify that we're not building an array of pointers to function with
1096      // exception specification.
1097      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1098        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1099        D.setInvalidType(true);
1100        // Build the type anyway.
1101      }
1102      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1103      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
1104      ArrayType::ArraySizeModifier ASM;
1105      if (ATI.isStar)
1106        ASM = ArrayType::Star;
1107      else if (ATI.hasStatic)
1108        ASM = ArrayType::Static;
1109      else
1110        ASM = ArrayType::Normal;
1111      if (ASM == ArrayType::Star &&
1112          D.getContext() != Declarator::PrototypeContext) {
1113        // FIXME: This check isn't quite right: it allows star in prototypes
1114        // for function definitions, and disallows some edge cases detailed
1115        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
1116        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
1117        ASM = ArrayType::Normal;
1118        D.setInvalidType(true);
1119      }
1120      T = BuildArrayType(T, ASM, ArraySize,
1121                         Qualifiers::fromCVRMask(ATI.TypeQuals),
1122                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
1123      break;
1124    }
1125    case DeclaratorChunk::Function: {
1126      // If the function declarator has a prototype (i.e. it is not () and
1127      // does not have a K&R-style identifier list), then the arguments are part
1128      // of the type, otherwise the argument list is ().
1129      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1130
1131      // C99 6.7.5.3p1: The return type may not be a function or array type.
1132      // For conversion functions, we'll diagnose this particular error later.
1133      if ((T->isArrayType() || T->isFunctionType()) &&
1134          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
1135        Diag(DeclType.Loc, diag::err_func_returning_array_function)
1136          << T->isFunctionType() << T;
1137        T = Context.IntTy;
1138        D.setInvalidType(true);
1139      }
1140
1141      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
1142        // C++ [dcl.fct]p6:
1143        //   Types shall not be defined in return or parameter types.
1144        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
1145        if (Tag->isDefinition())
1146          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
1147            << Context.getTypeDeclType(Tag);
1148      }
1149
1150      // Exception specs are not allowed in typedefs. Complain, but add it
1151      // anyway.
1152      if (FTI.hasExceptionSpec &&
1153          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1154        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
1155
1156      if (FTI.NumArgs == 0) {
1157        if (getLangOptions().CPlusPlus) {
1158          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
1159          // function takes no arguments.
1160          llvm::SmallVector<QualType, 4> Exceptions;
1161          Exceptions.reserve(FTI.NumExceptions);
1162          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1163            // FIXME: Preserve type source info.
1164            QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1165            // Check that the type is valid for an exception spec, and drop it
1166            // if not.
1167            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1168              Exceptions.push_back(ET);
1169          }
1170          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
1171                                      FTI.hasExceptionSpec,
1172                                      FTI.hasAnyExceptionSpec,
1173                                      Exceptions.size(), Exceptions.data(),
1174                                      FunctionType::ExtInfo());
1175        } else if (FTI.isVariadic) {
1176          // We allow a zero-parameter variadic function in C if the
1177          // function is marked with the "overloadable"
1178          // attribute. Scan for this attribute now.
1179          bool Overloadable = false;
1180          for (const AttributeList *Attrs = D.getAttributes();
1181               Attrs; Attrs = Attrs->getNext()) {
1182            if (Attrs->getKind() == AttributeList::AT_overloadable) {
1183              Overloadable = true;
1184              break;
1185            }
1186          }
1187
1188          if (!Overloadable)
1189            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
1190          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0,
1191                                      false, false, 0, 0,
1192                                      FunctionType::ExtInfo());
1193        } else {
1194          // Simple void foo(), where the incoming T is the result type.
1195          T = Context.getFunctionNoProtoType(T);
1196        }
1197      } else if (FTI.ArgInfo[0].Param == 0) {
1198        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
1199        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
1200        D.setInvalidType(true);
1201      } else {
1202        // Otherwise, we have a function with an argument list that is
1203        // potentially variadic.
1204        llvm::SmallVector<QualType, 16> ArgTys;
1205
1206        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1207          ParmVarDecl *Param =
1208            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
1209          QualType ArgTy = Param->getType();
1210          assert(!ArgTy.isNull() && "Couldn't parse type?");
1211
1212          // Adjust the parameter type.
1213          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1214
1215          // Look for 'void'.  void is allowed only as a single argument to a
1216          // function with no other parameters (C99 6.7.5.3p10).  We record
1217          // int(void) as a FunctionProtoType with an empty argument list.
1218          if (ArgTy->isVoidType()) {
1219            // If this is something like 'float(int, void)', reject it.  'void'
1220            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1221            // have arguments of incomplete type.
1222            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1223              Diag(DeclType.Loc, diag::err_void_only_param);
1224              ArgTy = Context.IntTy;
1225              Param->setType(ArgTy);
1226            } else if (FTI.ArgInfo[i].Ident) {
1227              // Reject, but continue to parse 'int(void abc)'.
1228              Diag(FTI.ArgInfo[i].IdentLoc,
1229                   diag::err_param_with_void_type);
1230              ArgTy = Context.IntTy;
1231              Param->setType(ArgTy);
1232            } else {
1233              // Reject, but continue to parse 'float(const void)'.
1234              if (ArgTy.hasQualifiers())
1235                Diag(DeclType.Loc, diag::err_void_param_qualified);
1236
1237              // Do not add 'void' to the ArgTys list.
1238              break;
1239            }
1240          } else if (!FTI.hasPrototype) {
1241            if (ArgTy->isPromotableIntegerType()) {
1242              ArgTy = Context.getPromotedIntegerType(ArgTy);
1243            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
1244              if (BTy->getKind() == BuiltinType::Float)
1245                ArgTy = Context.DoubleTy;
1246            }
1247          }
1248
1249          ArgTys.push_back(ArgTy);
1250        }
1251
1252        llvm::SmallVector<QualType, 4> Exceptions;
1253        Exceptions.reserve(FTI.NumExceptions);
1254        for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1255          // FIXME: Preserve type source info.
1256          QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1257          // Check that the type is valid for an exception spec, and drop it if
1258          // not.
1259          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1260            Exceptions.push_back(ET);
1261        }
1262
1263        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
1264                                    FTI.isVariadic, FTI.TypeQuals,
1265                                    FTI.hasExceptionSpec,
1266                                    FTI.hasAnyExceptionSpec,
1267                                    Exceptions.size(), Exceptions.data(),
1268                                    FunctionType::ExtInfo());
1269      }
1270
1271      // For GCC compatibility, we allow attributes that apply only to
1272      // function types to be placed on a function's return type
1273      // instead (as long as that type doesn't happen to be function
1274      // or function-pointer itself).
1275      ProcessDelayedFnAttrs(*this, T, FnAttrsFromPreviousChunk);
1276
1277      break;
1278    }
1279    case DeclaratorChunk::MemberPointer:
1280      // Verify that we're not building a pointer to pointer to function with
1281      // exception specification.
1282      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1283        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1284        D.setInvalidType(true);
1285        // Build the type anyway.
1286      }
1287      // The scope spec must refer to a class, or be dependent.
1288      QualType ClsType;
1289      if (DeclType.Mem.Scope().isInvalid()) {
1290        // Avoid emitting extra errors if we already errored on the scope.
1291        D.setInvalidType(true);
1292      } else if (isDependentScopeSpecifier(DeclType.Mem.Scope())
1293                 || dyn_cast_or_null<CXXRecordDecl>(
1294                                   computeDeclContext(DeclType.Mem.Scope()))) {
1295        NestedNameSpecifier *NNS
1296          = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
1297        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
1298        switch (NNS->getKind()) {
1299        case NestedNameSpecifier::Identifier:
1300          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
1301                                                 NNS->getAsIdentifier());
1302          break;
1303
1304        case NestedNameSpecifier::Namespace:
1305        case NestedNameSpecifier::Global:
1306          llvm_unreachable("Nested-name-specifier must name a type");
1307          break;
1308
1309        case NestedNameSpecifier::TypeSpec:
1310        case NestedNameSpecifier::TypeSpecWithTemplate:
1311          ClsType = QualType(NNS->getAsType(), 0);
1312          if (NNSPrefix)
1313            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
1314          break;
1315        }
1316      } else {
1317        Diag(DeclType.Mem.Scope().getBeginLoc(),
1318             diag::err_illegal_decl_mempointer_in_nonclass)
1319          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1320          << DeclType.Mem.Scope().getRange();
1321        D.setInvalidType(true);
1322      }
1323
1324      if (!ClsType.isNull())
1325        T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals,
1326                                   DeclType.Loc, D.getIdentifier());
1327      if (T.isNull()) {
1328        T = Context.IntTy;
1329        D.setInvalidType(true);
1330      }
1331      break;
1332    }
1333
1334    if (T.isNull()) {
1335      D.setInvalidType(true);
1336      T = Context.IntTy;
1337    }
1338
1339    DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);
1340
1341    // See if there are any attributes on this declarator chunk.
1342    if (const AttributeList *AL = DeclType.getAttrs())
1343      ProcessTypeAttributeList(*this, T, false, AL, FnAttrsFromPreviousChunk);
1344  }
1345
1346  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1347    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
1348    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
1349
1350    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1351    // for a nonstatic member function, the function type to which a pointer
1352    // to member refers, or the top-level function type of a function typedef
1353    // declaration.
1354    if (FnTy->getTypeQuals() != 0 &&
1355        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1356        ((D.getContext() != Declarator::MemberContext &&
1357          (!D.getCXXScopeSpec().isSet() ||
1358           !computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)
1359              ->isRecord())) ||
1360         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1361      if (D.isFunctionDeclarator())
1362        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1363      else
1364        Diag(D.getIdentifierLoc(),
1365             diag::err_invalid_qualified_typedef_function_type_use);
1366
1367      // Strip the cv-quals from the type.
1368      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1369                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0,
1370                                  false, false, 0, 0, FunctionType::ExtInfo());
1371    }
1372  }
1373
1374  // Process any function attributes we might have delayed from the
1375  // declaration-specifiers.
1376  ProcessDelayedFnAttrs(*this, T, FnAttrsFromDeclSpec);
1377
1378  // If there were any type attributes applied to the decl itself, not
1379  // the type, apply them to the result type.  But don't do this for
1380  // block-literal expressions, which are parsed wierdly.
1381  if (D.getContext() != Declarator::BlockLiteralContext)
1382    if (const AttributeList *Attrs = D.getAttributes())
1383      ProcessTypeAttributeList(*this, T, false, Attrs,
1384                               FnAttrsFromPreviousChunk);
1385
1386  DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);
1387
1388  if (TInfo) {
1389    if (D.isInvalidType())
1390      *TInfo = 0;
1391    else
1392      *TInfo = GetTypeSourceInfoForDeclarator(D, T, ReturnTypeInfo);
1393  }
1394
1395  return T;
1396}
1397
1398namespace {
1399  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
1400    const DeclSpec &DS;
1401
1402  public:
1403    TypeSpecLocFiller(const DeclSpec &DS) : DS(DS) {}
1404
1405    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1406      Visit(TL.getUnqualifiedLoc());
1407    }
1408    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
1409      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1410    }
1411    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
1412      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1413    }
1414    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
1415      // Handle the base type, which might not have been written explicitly.
1416      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
1417        TL.setHasBaseTypeAsWritten(false);
1418        TL.getBaseLoc().initialize(SourceLocation());
1419      } else {
1420        TL.setHasBaseTypeAsWritten(true);
1421        Visit(TL.getBaseLoc());
1422      }
1423
1424      // Protocol qualifiers.
1425      if (DS.getProtocolQualifiers()) {
1426        assert(TL.getNumProtocols() > 0);
1427        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1428        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1429        TL.setRAngleLoc(DS.getSourceRange().getEnd());
1430        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
1431          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1432      } else {
1433        assert(TL.getNumProtocols() == 0);
1434        TL.setLAngleLoc(SourceLocation());
1435        TL.setRAngleLoc(SourceLocation());
1436      }
1437    }
1438    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1439      TL.setStarLoc(SourceLocation());
1440      Visit(TL.getPointeeLoc());
1441    }
1442    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
1443      TypeSourceInfo *TInfo = 0;
1444      Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1445
1446      // If we got no declarator info from previous Sema routines,
1447      // just fill with the typespec loc.
1448      if (!TInfo) {
1449        TL.initialize(DS.getTypeSpecTypeLoc());
1450        return;
1451      }
1452
1453      TypeLoc OldTL = TInfo->getTypeLoc();
1454      if (TInfo->getType()->getAs<ElaboratedType>()) {
1455        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
1456        TemplateSpecializationTypeLoc NamedTL =
1457          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
1458        TL.copy(NamedTL);
1459      }
1460      else
1461        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
1462    }
1463    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
1464      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
1465      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
1466      TL.setParensRange(DS.getTypeofParensRange());
1467    }
1468    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
1469      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
1470      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
1471      TL.setParensRange(DS.getTypeofParensRange());
1472      assert(DS.getTypeRep());
1473      TypeSourceInfo *TInfo = 0;
1474      Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1475      TL.setUnderlyingTInfo(TInfo);
1476    }
1477    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
1478      // By default, use the source location of the type specifier.
1479      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
1480      if (TL.needsExtraLocalData()) {
1481        // Set info for the written builtin specifiers.
1482        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
1483        // Try to have a meaningful source location.
1484        if (TL.getWrittenSignSpec() != TSS_unspecified)
1485          // Sign spec loc overrides the others (e.g., 'unsigned long').
1486          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
1487        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
1488          // Width spec loc overrides type spec loc (e.g., 'short int').
1489          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
1490      }
1491    }
1492    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
1493      ElaboratedTypeKeyword Keyword
1494        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
1495      if (Keyword == ETK_Typename) {
1496        TypeSourceInfo *TInfo = 0;
1497        Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1498        if (TInfo) {
1499          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
1500          return;
1501        }
1502      }
1503      TL.setKeywordLoc(Keyword != ETK_None
1504                       ? DS.getTypeSpecTypeLoc()
1505                       : SourceLocation());
1506      const CXXScopeSpec& SS = DS.getTypeSpecScope();
1507      TL.setQualifierRange(SS.isEmpty() ? SourceRange(): SS.getRange());
1508      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
1509    }
1510    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
1511      ElaboratedTypeKeyword Keyword
1512        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
1513      if (Keyword == ETK_Typename) {
1514        TypeSourceInfo *TInfo = 0;
1515        Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1516        if (TInfo) {
1517          TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
1518          return;
1519        }
1520      }
1521      TL.setKeywordLoc(Keyword != ETK_None
1522                       ? DS.getTypeSpecTypeLoc()
1523                       : SourceLocation());
1524      const CXXScopeSpec& SS = DS.getTypeSpecScope();
1525      TL.setQualifierRange(SS.isEmpty() ? SourceRange() : SS.getRange());
1526      // FIXME: load appropriate source location.
1527      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1528    }
1529
1530    void VisitTypeLoc(TypeLoc TL) {
1531      // FIXME: add other typespec types and change this to an assert.
1532      TL.initialize(DS.getTypeSpecTypeLoc());
1533    }
1534  };
1535
1536  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
1537    const DeclaratorChunk &Chunk;
1538
1539  public:
1540    DeclaratorLocFiller(const DeclaratorChunk &Chunk) : Chunk(Chunk) {}
1541
1542    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1543      llvm_unreachable("qualified type locs not expected here!");
1544    }
1545
1546    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
1547      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
1548      TL.setCaretLoc(Chunk.Loc);
1549    }
1550    void VisitPointerTypeLoc(PointerTypeLoc TL) {
1551      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1552      TL.setStarLoc(Chunk.Loc);
1553    }
1554    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1555      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1556      TL.setStarLoc(Chunk.Loc);
1557    }
1558    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
1559      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
1560      TL.setStarLoc(Chunk.Loc);
1561      // FIXME: nested name specifier
1562    }
1563    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
1564      assert(Chunk.Kind == DeclaratorChunk::Reference);
1565      // 'Amp' is misleading: this might have been originally
1566      /// spelled with AmpAmp.
1567      TL.setAmpLoc(Chunk.Loc);
1568    }
1569    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
1570      assert(Chunk.Kind == DeclaratorChunk::Reference);
1571      assert(!Chunk.Ref.LValueRef);
1572      TL.setAmpAmpLoc(Chunk.Loc);
1573    }
1574    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
1575      assert(Chunk.Kind == DeclaratorChunk::Array);
1576      TL.setLBracketLoc(Chunk.Loc);
1577      TL.setRBracketLoc(Chunk.EndLoc);
1578      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
1579    }
1580    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
1581      assert(Chunk.Kind == DeclaratorChunk::Function);
1582      TL.setLParenLoc(Chunk.Loc);
1583      TL.setRParenLoc(Chunk.EndLoc);
1584
1585      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
1586      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
1587        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
1588        TL.setArg(tpi++, Param);
1589      }
1590      // FIXME: exception specs
1591    }
1592
1593    void VisitTypeLoc(TypeLoc TL) {
1594      llvm_unreachable("unsupported TypeLoc kind in declarator!");
1595    }
1596  };
1597}
1598
1599/// \brief Create and instantiate a TypeSourceInfo with type source information.
1600///
1601/// \param T QualType referring to the type as written in source code.
1602///
1603/// \param ReturnTypeInfo For declarators whose return type does not show
1604/// up in the normal place in the declaration specifiers (such as a C++
1605/// conversion function), this pointer will refer to a type source information
1606/// for that return type.
1607TypeSourceInfo *
1608Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
1609                                     TypeSourceInfo *ReturnTypeInfo) {
1610  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
1611  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
1612
1613  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1614    DeclaratorLocFiller(D.getTypeObject(i)).Visit(CurrTL);
1615    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
1616  }
1617
1618  TypeSpecLocFiller(D.getDeclSpec()).Visit(CurrTL);
1619
1620  // We have source information for the return type that was not in the
1621  // declaration specifiers; copy that information into the current type
1622  // location so that it will be retained. This occurs, for example, with
1623  // a C++ conversion function, where the return type occurs within the
1624  // declarator-id rather than in the declaration specifiers.
1625  if (ReturnTypeInfo && D.getDeclSpec().getTypeSpecType() == TST_unspecified) {
1626    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
1627    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
1628    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
1629  }
1630
1631  return TInfo;
1632}
1633
1634/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
1635QualType Sema::CreateLocInfoType(QualType T, TypeSourceInfo *TInfo) {
1636  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
1637  // and Sema during declaration parsing. Try deallocating/caching them when
1638  // it's appropriate, instead of allocating them and keeping them around.
1639  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), 8);
1640  new (LocT) LocInfoType(T, TInfo);
1641  assert(LocT->getTypeClass() != T->getTypeClass() &&
1642         "LocInfoType's TypeClass conflicts with an existing Type class");
1643  return QualType(LocT, 0);
1644}
1645
1646void LocInfoType::getAsStringInternal(std::string &Str,
1647                                      const PrintingPolicy &Policy) const {
1648  assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
1649         " was used directly instead of getting the QualType through"
1650         " GetTypeFromParser");
1651}
1652
1653/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
1654/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
1655/// they point to and return true. If T1 and T2 aren't pointer types
1656/// or pointer-to-member types, or if they are not similar at this
1657/// level, returns false and leaves T1 and T2 unchanged. Top-level
1658/// qualifiers on T1 and T2 are ignored. This function will typically
1659/// be called in a loop that successively "unwraps" pointer and
1660/// pointer-to-member types to compare them at each level.
1661bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
1662  const PointerType *T1PtrType = T1->getAs<PointerType>(),
1663                    *T2PtrType = T2->getAs<PointerType>();
1664  if (T1PtrType && T2PtrType) {
1665    T1 = T1PtrType->getPointeeType();
1666    T2 = T2PtrType->getPointeeType();
1667    return true;
1668  }
1669
1670  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
1671                          *T2MPType = T2->getAs<MemberPointerType>();
1672  if (T1MPType && T2MPType &&
1673      Context.getCanonicalType(T1MPType->getClass()) ==
1674      Context.getCanonicalType(T2MPType->getClass())) {
1675    T1 = T1MPType->getPointeeType();
1676    T2 = T2MPType->getPointeeType();
1677    return true;
1678  }
1679
1680  if (getLangOptions().ObjC1) {
1681    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
1682                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
1683    if (T1OPType && T2OPType) {
1684      T1 = T1OPType->getPointeeType();
1685      T2 = T2OPType->getPointeeType();
1686      return true;
1687    }
1688  }
1689  return false;
1690}
1691
1692Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1693  // C99 6.7.6: Type names have no identifier.  This is already validated by
1694  // the parser.
1695  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1696
1697  TypeSourceInfo *TInfo = 0;
1698  TagDecl *OwnedTag = 0;
1699  QualType T = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
1700  if (D.isInvalidType())
1701    return true;
1702
1703  if (getLangOptions().CPlusPlus) {
1704    // Check that there are no default arguments (C++ only).
1705    CheckExtraCXXDefaultArguments(D);
1706
1707    // C++0x [dcl.type]p3:
1708    //   A type-specifier-seq shall not define a class or enumeration
1709    //   unless it appears in the type-id of an alias-declaration
1710    //   (7.1.3).
1711    if (OwnedTag && OwnedTag->isDefinition())
1712      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1713        << Context.getTypeDeclType(OwnedTag);
1714  }
1715
1716  if (TInfo)
1717    T = CreateLocInfoType(T, TInfo);
1718
1719  return T.getAsOpaquePtr();
1720}
1721
1722
1723
1724//===----------------------------------------------------------------------===//
1725// Type Attribute Processing
1726//===----------------------------------------------------------------------===//
1727
1728/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1729/// specified type.  The attribute contains 1 argument, the id of the address
1730/// space for the type.
1731static void HandleAddressSpaceTypeAttribute(QualType &Type,
1732                                            const AttributeList &Attr, Sema &S){
1733
1734  // If this type is already address space qualified, reject it.
1735  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1736  // for two or more different address spaces."
1737  if (Type.getAddressSpace()) {
1738    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1739    Attr.setInvalid();
1740    return;
1741  }
1742
1743  // Check the attribute arguments.
1744  if (Attr.getNumArgs() != 1) {
1745    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1746    Attr.setInvalid();
1747    return;
1748  }
1749  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1750  llvm::APSInt addrSpace(32);
1751  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
1752      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1753    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1754      << ASArgExpr->getSourceRange();
1755    Attr.setInvalid();
1756    return;
1757  }
1758
1759  // Bounds checking.
1760  if (addrSpace.isSigned()) {
1761    if (addrSpace.isNegative()) {
1762      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
1763        << ASArgExpr->getSourceRange();
1764      Attr.setInvalid();
1765      return;
1766    }
1767    addrSpace.setIsSigned(false);
1768  }
1769  llvm::APSInt max(addrSpace.getBitWidth());
1770  max = Qualifiers::MaxAddressSpace;
1771  if (addrSpace > max) {
1772    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
1773      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
1774    Attr.setInvalid();
1775    return;
1776  }
1777
1778  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1779  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1780}
1781
1782/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1783/// specified type.  The attribute contains 1 argument, weak or strong.
1784static void HandleObjCGCTypeAttribute(QualType &Type,
1785                                      const AttributeList &Attr, Sema &S) {
1786  if (Type.getObjCGCAttr() != Qualifiers::GCNone) {
1787    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1788    Attr.setInvalid();
1789    return;
1790  }
1791
1792  // Check the attribute arguments.
1793  if (!Attr.getParameterName()) {
1794    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1795      << "objc_gc" << 1;
1796    Attr.setInvalid();
1797    return;
1798  }
1799  Qualifiers::GC GCAttr;
1800  if (Attr.getNumArgs() != 0) {
1801    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1802    Attr.setInvalid();
1803    return;
1804  }
1805  if (Attr.getParameterName()->isStr("weak"))
1806    GCAttr = Qualifiers::Weak;
1807  else if (Attr.getParameterName()->isStr("strong"))
1808    GCAttr = Qualifiers::Strong;
1809  else {
1810    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1811      << "objc_gc" << Attr.getParameterName();
1812    Attr.setInvalid();
1813    return;
1814  }
1815
1816  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1817}
1818
1819/// Process an individual function attribute.  Returns true if the
1820/// attribute does not make sense to apply to this type.
1821bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr) {
1822  if (Attr.getKind() == AttributeList::AT_noreturn) {
1823    // Complain immediately if the arg count is wrong.
1824    if (Attr.getNumArgs() != 0) {
1825      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1826      Attr.setInvalid();
1827      return false;
1828    }
1829
1830    // Delay if this is not a function or pointer to block.
1831    if (!Type->isFunctionPointerType()
1832        && !Type->isBlockPointerType()
1833        && !Type->isFunctionType())
1834      return true;
1835
1836    // Otherwise we can process right away.
1837    Type = S.Context.getNoReturnType(Type);
1838    return false;
1839  }
1840
1841  if (Attr.getKind() == AttributeList::AT_regparm) {
1842    // The warning is emitted elsewhere
1843    if (Attr.getNumArgs() != 1) {
1844      return false;
1845    }
1846
1847    // Delay if this is not a function or pointer to block.
1848    if (!Type->isFunctionPointerType()
1849        && !Type->isBlockPointerType()
1850        && !Type->isFunctionType())
1851      return true;
1852
1853    // Otherwise we can process right away.
1854    Expr *NumParamsExpr = static_cast<Expr *>(Attr.getArg(0));
1855    llvm::APSInt NumParams(32);
1856
1857    // The warning is emitted elsewhere
1858    if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() ||
1859        !NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context))
1860      return false;
1861
1862    Type = S.Context.getRegParmType(Type, NumParams.getZExtValue());
1863    return false;
1864  }
1865
1866  // Otherwise, a calling convention.
1867  if (Attr.getNumArgs() != 0) {
1868    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1869    Attr.setInvalid();
1870    return false;
1871  }
1872
1873  QualType T = Type;
1874  if (const PointerType *PT = Type->getAs<PointerType>())
1875    T = PT->getPointeeType();
1876  const FunctionType *Fn = T->getAs<FunctionType>();
1877
1878  // Delay if the type didn't work out to a function.
1879  if (!Fn) return true;
1880
1881  // TODO: diagnose uses of these conventions on the wrong target.
1882  CallingConv CC;
1883  switch (Attr.getKind()) {
1884  case AttributeList::AT_cdecl: CC = CC_C; break;
1885  case AttributeList::AT_fastcall: CC = CC_X86FastCall; break;
1886  case AttributeList::AT_stdcall: CC = CC_X86StdCall; break;
1887  case AttributeList::AT_thiscall: CC = CC_X86ThisCall; break;
1888  default: llvm_unreachable("unexpected attribute kind"); return false;
1889  }
1890
1891  CallingConv CCOld = Fn->getCallConv();
1892  if (S.Context.getCanonicalCallConv(CC) ==
1893      S.Context.getCanonicalCallConv(CCOld)) {
1894    Attr.setInvalid();
1895    return false;
1896  }
1897
1898  if (CCOld != CC_Default) {
1899    // Should we diagnose reapplications of the same convention?
1900    S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
1901      << FunctionType::getNameForCallConv(CC)
1902      << FunctionType::getNameForCallConv(CCOld);
1903    Attr.setInvalid();
1904    return false;
1905  }
1906
1907  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
1908  if (CC == CC_X86FastCall) {
1909    if (isa<FunctionNoProtoType>(Fn)) {
1910      S.Diag(Attr.getLoc(), diag::err_cconv_knr)
1911        << FunctionType::getNameForCallConv(CC);
1912      Attr.setInvalid();
1913      return false;
1914    }
1915
1916    const FunctionProtoType *FnP = cast<FunctionProtoType>(Fn);
1917    if (FnP->isVariadic()) {
1918      S.Diag(Attr.getLoc(), diag::err_cconv_varargs)
1919        << FunctionType::getNameForCallConv(CC);
1920      Attr.setInvalid();
1921      return false;
1922    }
1923  }
1924
1925  Type = S.Context.getCallConvType(Type, CC);
1926  return false;
1927}
1928
1929/// HandleVectorSizeAttribute - this attribute is only applicable to integral
1930/// and float scalars, although arrays, pointers, and function return values are
1931/// allowed in conjunction with this construct. Aggregates with this attribute
1932/// are invalid, even if they are of the same size as a corresponding scalar.
1933/// The raw attribute should contain precisely 1 argument, the vector size for
1934/// the variable, measured in bytes. If curType and rawAttr are well formed,
1935/// this routine will return a new vector type.
1936static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr, Sema &S) {
1937  // Check the attribute arugments.
1938  if (Attr.getNumArgs() != 1) {
1939    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1940    Attr.setInvalid();
1941    return;
1942  }
1943  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
1944  llvm::APSInt vecSize(32);
1945  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
1946      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
1947    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
1948      << "vector_size" << sizeExpr->getSourceRange();
1949    Attr.setInvalid();
1950    return;
1951  }
1952  // the base type must be integer or float, and can't already be a vector.
1953  if (CurType->isVectorType() ||
1954      (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
1955    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
1956    Attr.setInvalid();
1957    return;
1958  }
1959  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
1960  // vecSize is specified in bytes - convert to bits.
1961  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
1962
1963  // the vector size needs to be an integral multiple of the type size.
1964  if (vectorSize % typeSize) {
1965    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
1966      << sizeExpr->getSourceRange();
1967    Attr.setInvalid();
1968    return;
1969  }
1970  if (vectorSize == 0) {
1971    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
1972      << sizeExpr->getSourceRange();
1973    Attr.setInvalid();
1974    return;
1975  }
1976
1977  // Success! Instantiate the vector type, the number of elements is > 0, and
1978  // not required to be a power of 2, unlike GCC.
1979  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize, false, false);
1980}
1981
1982void ProcessTypeAttributeList(Sema &S, QualType &Result,
1983                              bool IsDeclSpec, const AttributeList *AL,
1984                              DelayedAttributeSet &FnAttrs) {
1985  // Scan through and apply attributes to this type where it makes sense.  Some
1986  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1987  // type, but others can be present in the type specifiers even though they
1988  // apply to the decl.  Here we apply type attributes and ignore the rest.
1989  for (; AL; AL = AL->getNext()) {
1990    // Skip attributes that were marked to be invalid.
1991    if (AL->isInvalid())
1992      continue;
1993
1994    // If this is an attribute we can handle, do so now,
1995    // otherwise, add it to the FnAttrs list for rechaining.
1996    switch (AL->getKind()) {
1997    default: break;
1998
1999    case AttributeList::AT_address_space:
2000      HandleAddressSpaceTypeAttribute(Result, *AL, S);
2001      break;
2002    case AttributeList::AT_objc_gc:
2003      HandleObjCGCTypeAttribute(Result, *AL, S);
2004      break;
2005    case AttributeList::AT_vector_size:
2006      HandleVectorSizeAttr(Result, *AL, S);
2007      break;
2008
2009    case AttributeList::AT_noreturn:
2010    case AttributeList::AT_cdecl:
2011    case AttributeList::AT_fastcall:
2012    case AttributeList::AT_stdcall:
2013    case AttributeList::AT_thiscall:
2014    case AttributeList::AT_regparm:
2015      // Don't process these on the DeclSpec.
2016      if (IsDeclSpec ||
2017          ProcessFnAttr(S, Result, *AL))
2018        FnAttrs.push_back(DelayedAttribute(AL, Result));
2019      break;
2020    }
2021  }
2022}
2023
2024/// @brief Ensure that the type T is a complete type.
2025///
2026/// This routine checks whether the type @p T is complete in any
2027/// context where a complete type is required. If @p T is a complete
2028/// type, returns false. If @p T is a class template specialization,
2029/// this routine then attempts to perform class template
2030/// instantiation. If instantiation fails, or if @p T is incomplete
2031/// and cannot be completed, issues the diagnostic @p diag (giving it
2032/// the type @p T) and returns true.
2033///
2034/// @param Loc  The location in the source that the incomplete type
2035/// diagnostic should refer to.
2036///
2037/// @param T  The type that this routine is examining for completeness.
2038///
2039/// @param PD The partial diagnostic that will be printed out if T is not a
2040/// complete type.
2041///
2042/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
2043/// @c false otherwise.
2044bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2045                               const PartialDiagnostic &PD,
2046                               std::pair<SourceLocation,
2047                                         PartialDiagnostic> Note) {
2048  unsigned diag = PD.getDiagID();
2049
2050  // FIXME: Add this assertion to make sure we always get instantiation points.
2051  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
2052  // FIXME: Add this assertion to help us flush out problems with
2053  // checking for dependent types and type-dependent expressions.
2054  //
2055  //  assert(!T->isDependentType() &&
2056  //         "Can't ask whether a dependent type is complete");
2057
2058  // If we have a complete type, we're done.
2059  if (!T->isIncompleteType())
2060    return false;
2061
2062  // If we have a class template specialization or a class member of a
2063  // class template specialization, or an array with known size of such,
2064  // try to instantiate it.
2065  QualType MaybeTemplate = T;
2066  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
2067    MaybeTemplate = Array->getElementType();
2068  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
2069    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
2070          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
2071      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
2072        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
2073                                                      TSK_ImplicitInstantiation,
2074                                                      /*Complain=*/diag != 0);
2075    } else if (CXXRecordDecl *Rec
2076                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
2077      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
2078        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
2079        assert(MSInfo && "Missing member specialization information?");
2080        // This record was instantiated from a class within a template.
2081        if (MSInfo->getTemplateSpecializationKind()
2082                                               != TSK_ExplicitSpecialization)
2083          return InstantiateClass(Loc, Rec, Pattern,
2084                                  getTemplateInstantiationArgs(Rec),
2085                                  TSK_ImplicitInstantiation,
2086                                  /*Complain=*/diag != 0);
2087      }
2088    }
2089  }
2090
2091  if (diag == 0)
2092    return true;
2093
2094  const TagType *Tag = 0;
2095  if (const RecordType *Record = T->getAs<RecordType>())
2096    Tag = Record;
2097  else if (const EnumType *Enum = T->getAs<EnumType>())
2098    Tag = Enum;
2099
2100  // Avoid diagnosing invalid decls as incomplete.
2101  if (Tag && Tag->getDecl()->isInvalidDecl())
2102    return true;
2103
2104  // We have an incomplete type. Produce a diagnostic.
2105  Diag(Loc, PD) << T;
2106
2107  // If we have a note, produce it.
2108  if (!Note.first.isInvalid())
2109    Diag(Note.first, Note.second);
2110
2111  // If the type was a forward declaration of a class/struct/union
2112  // type, produce a note.
2113  if (Tag && !Tag->getDecl()->isInvalidDecl())
2114    Diag(Tag->getDecl()->getLocation(),
2115         Tag->isBeingDefined() ? diag::note_type_being_defined
2116                               : diag::note_forward_declaration)
2117        << QualType(Tag, 0);
2118
2119  return true;
2120}
2121
2122bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2123                               const PartialDiagnostic &PD) {
2124  return RequireCompleteType(Loc, T, PD,
2125                             std::make_pair(SourceLocation(), PDiag(0)));
2126}
2127
2128bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2129                               unsigned DiagID) {
2130  return RequireCompleteType(Loc, T, PDiag(DiagID),
2131                             std::make_pair(SourceLocation(), PDiag(0)));
2132}
2133
2134/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
2135/// and qualified by the nested-name-specifier contained in SS.
2136QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
2137                                 const CXXScopeSpec &SS, QualType T) {
2138  if (T.isNull())
2139    return T;
2140  NestedNameSpecifier *NNS;
2141  if (SS.isValid())
2142    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2143  else {
2144    if (Keyword == ETK_None)
2145      return T;
2146    NNS = 0;
2147  }
2148  return Context.getElaboratedType(Keyword, NNS, T);
2149}
2150
2151QualType Sema::BuildTypeofExprType(Expr *E) {
2152  if (E->getType() == Context.OverloadTy) {
2153    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a
2154    // function template specialization wherever deduction cannot occur.
2155    if (FunctionDecl *Specialization
2156        = ResolveSingleFunctionTemplateSpecialization(E)) {
2157      // The access doesn't really matter in this case.
2158      DeclAccessPair Found = DeclAccessPair::make(Specialization,
2159                                                  Specialization->getAccess());
2160      E = FixOverloadedFunctionReference(E, Found, Specialization);
2161      if (!E)
2162        return QualType();
2163    } else {
2164      Diag(E->getLocStart(),
2165           diag::err_cannot_determine_declared_type_of_overloaded_function)
2166        << false << E->getSourceRange();
2167      return QualType();
2168    }
2169  }
2170
2171  return Context.getTypeOfExprType(E);
2172}
2173
2174QualType Sema::BuildDecltypeType(Expr *E) {
2175  if (E->getType() == Context.OverloadTy) {
2176    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a
2177    // function template specialization wherever deduction cannot occur.
2178    if (FunctionDecl *Specialization
2179          = ResolveSingleFunctionTemplateSpecialization(E)) {
2180      // The access doesn't really matter in this case.
2181      DeclAccessPair Found = DeclAccessPair::make(Specialization,
2182                                                  Specialization->getAccess());
2183      E = FixOverloadedFunctionReference(E, Found, Specialization);
2184      if (!E)
2185        return QualType();
2186    } else {
2187      Diag(E->getLocStart(),
2188           diag::err_cannot_determine_declared_type_of_overloaded_function)
2189        << true << E->getSourceRange();
2190      return QualType();
2191    }
2192  }
2193
2194  return Context.getDecltypeType(E);
2195}
2196