SemaType.cpp revision a95d75769edae299816ec7fd9bbcdf1ef617c5c9
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/Parse/DeclSpec.h"
22#include "llvm/ADT/SmallPtrSet.h"
23using namespace clang;
24
25/// \brief Perform adjustment on the parameter type of a function.
26///
27/// This routine adjusts the given parameter type @p T to the actual
28/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
29/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
30QualType Sema::adjustParameterType(QualType T) {
31  // C99 6.7.5.3p7:
32  if (T->isArrayType()) {
33    // C99 6.7.5.3p7:
34    //   A declaration of a parameter as "array of type" shall be
35    //   adjusted to "qualified pointer to type", where the type
36    //   qualifiers (if any) are those specified within the [ and ] of
37    //   the array type derivation.
38    return Context.getArrayDecayedType(T);
39  } else if (T->isFunctionType())
40    // C99 6.7.5.3p8:
41    //   A declaration of a parameter as "function returning type"
42    //   shall be adjusted to "pointer to function returning type", as
43    //   in 6.3.2.1.
44    return Context.getPointerType(T);
45
46  return T;
47}
48
49/// \brief Convert the specified declspec to the appropriate type
50/// object.
51/// \param DS  the declaration specifiers
52/// \param DeclLoc The location of the declarator identifier or invalid if none.
53/// \returns The type described by the declaration specifiers.  This function
54/// never returns null.
55QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS,
56                                     SourceLocation DeclLoc,
57                                     bool &isInvalid) {
58  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
59  // checking.
60  QualType Result;
61
62  switch (DS.getTypeSpecType()) {
63  case DeclSpec::TST_void:
64    Result = Context.VoidTy;
65    break;
66  case DeclSpec::TST_char:
67    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
68      Result = Context.CharTy;
69    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
70      Result = Context.SignedCharTy;
71    else {
72      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
73             "Unknown TSS value");
74      Result = Context.UnsignedCharTy;
75    }
76    break;
77  case DeclSpec::TST_wchar:
78    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
79      Result = Context.WCharTy;
80    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
81      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
82        << DS.getSpecifierName(DS.getTypeSpecType());
83      Result = Context.getSignedWCharType();
84    } else {
85      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
86        "Unknown TSS value");
87      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
88        << DS.getSpecifierName(DS.getTypeSpecType());
89      Result = Context.getUnsignedWCharType();
90    }
91    break;
92  case DeclSpec::TST_char16:
93      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
94        "Unknown TSS value");
95      Result = Context.Char16Ty;
96    break;
97  case DeclSpec::TST_char32:
98      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
99        "Unknown TSS value");
100      Result = Context.Char32Ty;
101    break;
102  case DeclSpec::TST_unspecified:
103    // "<proto1,proto2>" is an objc qualified ID with a missing id.
104    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
105      Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
106                                                (ObjCProtocolDecl**)PQ,
107                                                DS.getNumProtocolQualifiers());
108      break;
109    }
110
111    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
112    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
113    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
114    // Note that the one exception to this is function definitions, which are
115    // allowed to be completely missing a declspec.  This is handled in the
116    // parser already though by it pretending to have seen an 'int' in this
117    // case.
118    if (getLangOptions().ImplicitInt) {
119      // In C89 mode, we only warn if there is a completely missing declspec
120      // when one is not allowed.
121      if (DS.isEmpty()) {
122        if (DeclLoc.isInvalid())
123          DeclLoc = DS.getSourceRange().getBegin();
124        Diag(DeclLoc, diag::ext_missing_declspec)
125          << DS.getSourceRange()
126        << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
127                                                 "int");
128      }
129    } else if (!DS.hasTypeSpecifier()) {
130      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
131      // "At least one type specifier shall be given in the declaration
132      // specifiers in each declaration, and in the specifier-qualifier list in
133      // each struct declaration and type name."
134      // FIXME: Does Microsoft really have the implicit int extension in C++?
135      if (DeclLoc.isInvalid())
136        DeclLoc = DS.getSourceRange().getBegin();
137
138      if (getLangOptions().CPlusPlus && !getLangOptions().Microsoft) {
139        Diag(DeclLoc, diag::err_missing_type_specifier)
140          << DS.getSourceRange();
141
142        // When this occurs in C++ code, often something is very broken with the
143        // value being declared, poison it as invalid so we don't get chains of
144        // errors.
145        isInvalid = true;
146      } else {
147        Diag(DeclLoc, diag::ext_missing_type_specifier)
148          << DS.getSourceRange();
149      }
150    }
151
152    // FALL THROUGH.
153  case DeclSpec::TST_int: {
154    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
155      switch (DS.getTypeSpecWidth()) {
156      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
157      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
158      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
159      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
160      }
161    } else {
162      switch (DS.getTypeSpecWidth()) {
163      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
164      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
165      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
166      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
167      }
168    }
169    break;
170  }
171  case DeclSpec::TST_float: Result = Context.FloatTy; break;
172  case DeclSpec::TST_double:
173    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
174      Result = Context.LongDoubleTy;
175    else
176      Result = Context.DoubleTy;
177    break;
178  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
179  case DeclSpec::TST_decimal32:    // _Decimal32
180  case DeclSpec::TST_decimal64:    // _Decimal64
181  case DeclSpec::TST_decimal128:   // _Decimal128
182    Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
183    Result = Context.IntTy;
184    isInvalid = true;
185    break;
186  case DeclSpec::TST_class:
187  case DeclSpec::TST_enum:
188  case DeclSpec::TST_union:
189  case DeclSpec::TST_struct: {
190    Decl *D = static_cast<Decl *>(DS.getTypeRep());
191    assert(D && "Didn't get a decl for a class/enum/union/struct?");
192    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
193           DS.getTypeSpecSign() == 0 &&
194           "Can't handle qualifiers on typedef names yet!");
195    // TypeQuals handled by caller.
196    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
197
198    if (D->isInvalidDecl())
199      isInvalid = true;
200    break;
201  }
202  case DeclSpec::TST_typename: {
203    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
204           DS.getTypeSpecSign() == 0 &&
205           "Can't handle qualifiers on typedef names yet!");
206    Result = GetTypeFromParser(DS.getTypeRep());
207
208    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
209      if (const ObjCInterfaceType *Interface = Result->getAsObjCInterfaceType())
210        // It would be nice if protocol qualifiers were only stored with the
211        // ObjCObjectPointerType. Unfortunately, this isn't possible due
212        // to the following typedef idiom (which is uncommon, but allowed):
213        //
214        // typedef Foo<P> T;
215        // static void func() {
216        //   Foo<P> *yy;
217        //   T *zz;
218        // }
219        Result = Context.getObjCInterfaceType(Interface->getDecl(),
220                                              (ObjCProtocolDecl**)PQ,
221                                              DS.getNumProtocolQualifiers());
222      else if (Result->isObjCIdType())
223        // id<protocol-list>
224        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
225                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
226      else if (Result->isObjCClassType()) {
227        if (DeclLoc.isInvalid())
228          DeclLoc = DS.getSourceRange().getBegin();
229        // Class<protocol-list>
230        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinClassTy,
231                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
232      } else {
233        if (DeclLoc.isInvalid())
234          DeclLoc = DS.getSourceRange().getBegin();
235        Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
236          << DS.getSourceRange();
237        isInvalid = true;
238      }
239    }
240
241    // If this is a reference to an invalid typedef, propagate the invalidity.
242    if (TypedefType *TDT = dyn_cast<TypedefType>(Result))
243      if (TDT->getDecl()->isInvalidDecl())
244        isInvalid = true;
245
246    // TypeQuals handled by caller.
247    break;
248  }
249  case DeclSpec::TST_typeofType:
250    // FIXME: Preserve type source info.
251    Result = GetTypeFromParser(DS.getTypeRep());
252    assert(!Result.isNull() && "Didn't get a type for typeof?");
253    // TypeQuals handled by caller.
254    Result = Context.getTypeOfType(Result);
255    break;
256  case DeclSpec::TST_typeofExpr: {
257    Expr *E = static_cast<Expr *>(DS.getTypeRep());
258    assert(E && "Didn't get an expression for typeof?");
259    // TypeQuals handled by caller.
260    Result = Context.getTypeOfExprType(E);
261    break;
262  }
263  case DeclSpec::TST_decltype: {
264    Expr *E = static_cast<Expr *>(DS.getTypeRep());
265    assert(E && "Didn't get an expression for decltype?");
266    // TypeQuals handled by caller.
267    Result = BuildDecltypeType(E);
268    if (Result.isNull()) {
269      Result = Context.IntTy;
270      isInvalid = true;
271    }
272    break;
273  }
274  case DeclSpec::TST_auto: {
275    // TypeQuals handled by caller.
276    Result = Context.UndeducedAutoTy;
277    break;
278  }
279
280  case DeclSpec::TST_error:
281    Result = Context.IntTy;
282    isInvalid = true;
283    break;
284  }
285
286  // Handle complex types.
287  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
288    if (getLangOptions().Freestanding)
289      Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
290    Result = Context.getComplexType(Result);
291  }
292
293  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
294         "FIXME: imaginary types not supported yet!");
295
296  // See if there are any attributes on the declspec that apply to the type (as
297  // opposed to the decl).
298  if (const AttributeList *AL = DS.getAttributes())
299    ProcessTypeAttributeList(Result, AL);
300
301  // Apply const/volatile/restrict qualifiers to T.
302  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
303
304    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
305    // or incomplete types shall not be restrict-qualified."  C++ also allows
306    // restrict-qualified references.
307    if (TypeQuals & QualType::Restrict) {
308      if (Result->isPointerType() || Result->isReferenceType()) {
309        QualType EltTy = Result->isPointerType() ?
310          Result->getAs<PointerType>()->getPointeeType() :
311          Result->getAs<ReferenceType>()->getPointeeType();
312
313        // If we have a pointer or reference, the pointee must have an object
314        // incomplete type.
315        if (!EltTy->isIncompleteOrObjectType()) {
316          Diag(DS.getRestrictSpecLoc(),
317               diag::err_typecheck_invalid_restrict_invalid_pointee)
318            << EltTy << DS.getSourceRange();
319          TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
320        }
321      } else {
322        Diag(DS.getRestrictSpecLoc(),
323             diag::err_typecheck_invalid_restrict_not_pointer)
324          << Result << DS.getSourceRange();
325        TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
326      }
327    }
328
329    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
330    // of a function type includes any type qualifiers, the behavior is
331    // undefined."
332    if (Result->isFunctionType() && TypeQuals) {
333      // Get some location to point at, either the C or V location.
334      SourceLocation Loc;
335      if (TypeQuals & QualType::Const)
336        Loc = DS.getConstSpecLoc();
337      else {
338        assert((TypeQuals & QualType::Volatile) &&
339               "Has CV quals but not C or V?");
340        Loc = DS.getVolatileSpecLoc();
341      }
342      Diag(Loc, diag::warn_typecheck_function_qualifiers)
343        << Result << DS.getSourceRange();
344    }
345
346    // C++ [dcl.ref]p1:
347    //   Cv-qualified references are ill-formed except when the
348    //   cv-qualifiers are introduced through the use of a typedef
349    //   (7.1.3) or of a template type argument (14.3), in which
350    //   case the cv-qualifiers are ignored.
351    // FIXME: Shouldn't we be checking SCS_typedef here?
352    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
353        TypeQuals && Result->isReferenceType()) {
354      TypeQuals &= ~QualType::Const;
355      TypeQuals &= ~QualType::Volatile;
356    }
357
358    Result = Result.getQualifiedType(TypeQuals);
359  }
360  return Result;
361}
362
363static std::string getPrintableNameForEntity(DeclarationName Entity) {
364  if (Entity)
365    return Entity.getAsString();
366
367  return "type name";
368}
369
370/// \brief Build a pointer type.
371///
372/// \param T The type to which we'll be building a pointer.
373///
374/// \param Quals The cvr-qualifiers to be applied to the pointer type.
375///
376/// \param Loc The location of the entity whose type involves this
377/// pointer type or, if there is no such entity, the location of the
378/// type that will have pointer type.
379///
380/// \param Entity The name of the entity that involves the pointer
381/// type, if known.
382///
383/// \returns A suitable pointer type, if there are no
384/// errors. Otherwise, returns a NULL type.
385QualType Sema::BuildPointerType(QualType T, unsigned Quals,
386                                SourceLocation Loc, DeclarationName Entity) {
387  if (T->isReferenceType()) {
388    // C++ 8.3.2p4: There shall be no ... pointers to references ...
389    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
390      << getPrintableNameForEntity(Entity);
391    return QualType();
392  }
393
394  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
395  // object or incomplete types shall not be restrict-qualified."
396  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
397    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
398      << T;
399    Quals &= ~QualType::Restrict;
400  }
401
402  // Build the pointer type.
403  return Context.getPointerType(T).getQualifiedType(Quals);
404}
405
406/// \brief Build a reference type.
407///
408/// \param T The type to which we'll be building a reference.
409///
410/// \param Quals The cvr-qualifiers to be applied to the reference type.
411///
412/// \param Loc The location of the entity whose type involves this
413/// reference type or, if there is no such entity, the location of the
414/// type that will have reference type.
415///
416/// \param Entity The name of the entity that involves the reference
417/// type, if known.
418///
419/// \returns A suitable reference type, if there are no
420/// errors. Otherwise, returns a NULL type.
421QualType Sema::BuildReferenceType(QualType T, bool LValueRef, unsigned Quals,
422                                  SourceLocation Loc, DeclarationName Entity) {
423  if (LValueRef) {
424    if (const RValueReferenceType *R = T->getAs<RValueReferenceType>()) {
425      // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
426      //   reference to a type T, and attempt to create the type "lvalue
427      //   reference to cv TD" creates the type "lvalue reference to T".
428      // We use the qualifiers (restrict or none) of the original reference,
429      // not the new ones. This is consistent with GCC.
430      return Context.getLValueReferenceType(R->getPointeeType()).
431               getQualifiedType(T.getCVRQualifiers());
432    }
433  }
434  if (T->isReferenceType()) {
435    // C++ [dcl.ref]p4: There shall be no references to references.
436    //
437    // According to C++ DR 106, references to references are only
438    // diagnosed when they are written directly (e.g., "int & &"),
439    // but not when they happen via a typedef:
440    //
441    //   typedef int& intref;
442    //   typedef intref& intref2;
443    //
444    // Parser::ParserDeclaratorInternal diagnoses the case where
445    // references are written directly; here, we handle the
446    // collapsing of references-to-references as described in C++
447    // DR 106 and amended by C++ DR 540.
448    return T;
449  }
450
451  // C++ [dcl.ref]p1:
452  //   A declarator that specifies the type "reference to cv void"
453  //   is ill-formed.
454  if (T->isVoidType()) {
455    Diag(Loc, diag::err_reference_to_void);
456    return QualType();
457  }
458
459  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
460  // object or incomplete types shall not be restrict-qualified."
461  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
462    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
463      << T;
464    Quals &= ~QualType::Restrict;
465  }
466
467  // C++ [dcl.ref]p1:
468  //   [...] Cv-qualified references are ill-formed except when the
469  //   cv-qualifiers are introduced through the use of a typedef
470  //   (7.1.3) or of a template type argument (14.3), in which case
471  //   the cv-qualifiers are ignored.
472  //
473  // We diagnose extraneous cv-qualifiers for the non-typedef,
474  // non-template type argument case within the parser. Here, we just
475  // ignore any extraneous cv-qualifiers.
476  Quals &= ~QualType::Const;
477  Quals &= ~QualType::Volatile;
478
479  // Handle restrict on references.
480  if (LValueRef)
481    return Context.getLValueReferenceType(T).getQualifiedType(Quals);
482  return Context.getRValueReferenceType(T).getQualifiedType(Quals);
483}
484
485/// \brief Build an array type.
486///
487/// \param T The type of each element in the array.
488///
489/// \param ASM C99 array size modifier (e.g., '*', 'static').
490///
491/// \param ArraySize Expression describing the size of the array.
492///
493/// \param Quals The cvr-qualifiers to be applied to the array's
494/// element type.
495///
496/// \param Loc The location of the entity whose type involves this
497/// array type or, if there is no such entity, the location of the
498/// type that will have array type.
499///
500/// \param Entity The name of the entity that involves the array
501/// type, if known.
502///
503/// \returns A suitable array type, if there are no errors. Otherwise,
504/// returns a NULL type.
505QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
506                              Expr *ArraySize, unsigned Quals,
507                              SourceRange Brackets, DeclarationName Entity) {
508  SourceLocation Loc = Brackets.getBegin();
509  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
510  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
511  if (RequireCompleteType(Loc, T,
512                             diag::err_illegal_decl_array_incomplete_type))
513    return QualType();
514
515  if (T->isFunctionType()) {
516    Diag(Loc, diag::err_illegal_decl_array_of_functions)
517      << getPrintableNameForEntity(Entity);
518    return QualType();
519  }
520
521  // C++ 8.3.2p4: There shall be no ... arrays of references ...
522  if (T->isReferenceType()) {
523    Diag(Loc, diag::err_illegal_decl_array_of_references)
524      << getPrintableNameForEntity(Entity);
525    return QualType();
526  }
527
528  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
529    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
530      << getPrintableNameForEntity(Entity);
531    return QualType();
532  }
533
534  if (const RecordType *EltTy = T->getAs<RecordType>()) {
535    // If the element type is a struct or union that contains a variadic
536    // array, accept it as a GNU extension: C99 6.7.2.1p2.
537    if (EltTy->getDecl()->hasFlexibleArrayMember())
538      Diag(Loc, diag::ext_flexible_array_in_array) << T;
539  } else if (T->isObjCInterfaceType()) {
540    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
541    return QualType();
542  }
543
544  // C99 6.7.5.2p1: The size expression shall have integer type.
545  if (ArraySize && !ArraySize->isTypeDependent() &&
546      !ArraySize->getType()->isIntegerType()) {
547    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
548      << ArraySize->getType() << ArraySize->getSourceRange();
549    ArraySize->Destroy(Context);
550    return QualType();
551  }
552  llvm::APSInt ConstVal(32);
553  if (!ArraySize) {
554    if (ASM == ArrayType::Star)
555      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
556    else
557      T = Context.getIncompleteArrayType(T, ASM, Quals);
558  } else if (ArraySize->isValueDependent()) {
559    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
560  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
561             (!T->isDependentType() && !T->isConstantSizeType())) {
562    // Per C99, a variable array is an array with either a non-constant
563    // size or an element type that has a non-constant-size
564    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
565  } else {
566    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
567    // have a value greater than zero.
568    if (ConstVal.isSigned()) {
569      if (ConstVal.isNegative()) {
570        Diag(ArraySize->getLocStart(),
571             diag::err_typecheck_negative_array_size)
572          << ArraySize->getSourceRange();
573        return QualType();
574      } else if (ConstVal == 0) {
575        // GCC accepts zero sized static arrays.
576        Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
577          << ArraySize->getSourceRange();
578      }
579    }
580    T = Context.getConstantArrayWithExprType(T, ConstVal, ArraySize,
581                                             ASM, Quals, Brackets);
582  }
583  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
584  if (!getLangOptions().C99) {
585    if (ArraySize && !ArraySize->isTypeDependent() &&
586        !ArraySize->isValueDependent() &&
587        !ArraySize->isIntegerConstantExpr(Context))
588      Diag(Loc, diag::ext_vla);
589    else if (ASM != ArrayType::Normal || Quals != 0)
590      Diag(Loc, diag::ext_c99_array_usage);
591  }
592
593  return T;
594}
595
596/// \brief Build an ext-vector type.
597///
598/// Run the required checks for the extended vector type.
599QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
600                                  SourceLocation AttrLoc) {
601
602  Expr *Arg = (Expr *)ArraySize.get();
603
604  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
605  // in conjunction with complex types (pointers, arrays, functions, etc.).
606  if (!T->isDependentType() &&
607      !T->isIntegerType() && !T->isRealFloatingType()) {
608    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
609    return QualType();
610  }
611
612  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
613    llvm::APSInt vecSize(32);
614    if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
615      Diag(AttrLoc, diag::err_attribute_argument_not_int)
616      << "ext_vector_type" << Arg->getSourceRange();
617      return QualType();
618    }
619
620    // unlike gcc's vector_size attribute, the size is specified as the
621    // number of elements, not the number of bytes.
622    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
623
624    if (vectorSize == 0) {
625      Diag(AttrLoc, diag::err_attribute_zero_size)
626      << Arg->getSourceRange();
627      return QualType();
628    }
629
630    if (!T->isDependentType())
631      return Context.getExtVectorType(T, vectorSize);
632  }
633
634  return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
635                                                AttrLoc);
636}
637
638/// \brief Build a function type.
639///
640/// This routine checks the function type according to C++ rules and
641/// under the assumption that the result type and parameter types have
642/// just been instantiated from a template. It therefore duplicates
643/// some of the behavior of GetTypeForDeclarator, but in a much
644/// simpler form that is only suitable for this narrow use case.
645///
646/// \param T The return type of the function.
647///
648/// \param ParamTypes The parameter types of the function. This array
649/// will be modified to account for adjustments to the types of the
650/// function parameters.
651///
652/// \param NumParamTypes The number of parameter types in ParamTypes.
653///
654/// \param Variadic Whether this is a variadic function type.
655///
656/// \param Quals The cvr-qualifiers to be applied to the function type.
657///
658/// \param Loc The location of the entity whose type involves this
659/// function type or, if there is no such entity, the location of the
660/// type that will have function type.
661///
662/// \param Entity The name of the entity that involves the function
663/// type, if known.
664///
665/// \returns A suitable function type, if there are no
666/// errors. Otherwise, returns a NULL type.
667QualType Sema::BuildFunctionType(QualType T,
668                                 QualType *ParamTypes,
669                                 unsigned NumParamTypes,
670                                 bool Variadic, unsigned Quals,
671                                 SourceLocation Loc, DeclarationName Entity) {
672  if (T->isArrayType() || T->isFunctionType()) {
673    Diag(Loc, diag::err_func_returning_array_function) << T;
674    return QualType();
675  }
676
677  bool Invalid = false;
678  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
679    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
680    if (ParamType->isVoidType()) {
681      Diag(Loc, diag::err_param_with_void_type);
682      Invalid = true;
683    }
684
685    ParamTypes[Idx] = ParamType;
686  }
687
688  if (Invalid)
689    return QualType();
690
691  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
692                                 Quals);
693}
694
695/// \brief Build a member pointer type \c T Class::*.
696///
697/// \param T the type to which the member pointer refers.
698/// \param Class the class type into which the member pointer points.
699/// \param Quals Qualifiers applied to the member pointer type
700/// \param Loc the location where this type begins
701/// \param Entity the name of the entity that will have this member pointer type
702///
703/// \returns a member pointer type, if successful, or a NULL type if there was
704/// an error.
705QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
706                                      unsigned Quals, SourceLocation Loc,
707                                      DeclarationName Entity) {
708  // Verify that we're not building a pointer to pointer to function with
709  // exception specification.
710  if (CheckDistantExceptionSpec(T)) {
711    Diag(Loc, diag::err_distant_exception_spec);
712
713    // FIXME: If we're doing this as part of template instantiation,
714    // we should return immediately.
715
716    // Build the type anyway, but use the canonical type so that the
717    // exception specifiers are stripped off.
718    T = Context.getCanonicalType(T);
719  }
720
721  // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
722  //   with reference type, or "cv void."
723  if (T->isReferenceType()) {
724    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
725      << (Entity? Entity.getAsString() : "type name");
726    return QualType();
727  }
728
729  if (T->isVoidType()) {
730    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
731      << (Entity? Entity.getAsString() : "type name");
732    return QualType();
733  }
734
735  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
736  // object or incomplete types shall not be restrict-qualified."
737  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
738    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
739      << T;
740
741    // FIXME: If we're doing this as part of template instantiation,
742    // we should return immediately.
743    Quals &= ~QualType::Restrict;
744  }
745
746  if (!Class->isDependentType() && !Class->isRecordType()) {
747    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
748    return QualType();
749  }
750
751  return Context.getMemberPointerType(T, Class.getTypePtr())
752           .getQualifiedType(Quals);
753}
754
755/// \brief Build a block pointer type.
756///
757/// \param T The type to which we'll be building a block pointer.
758///
759/// \param Quals The cvr-qualifiers to be applied to the block pointer type.
760///
761/// \param Loc The location of the entity whose type involves this
762/// block pointer type or, if there is no such entity, the location of the
763/// type that will have block pointer type.
764///
765/// \param Entity The name of the entity that involves the block pointer
766/// type, if known.
767///
768/// \returns A suitable block pointer type, if there are no
769/// errors. Otherwise, returns a NULL type.
770QualType Sema::BuildBlockPointerType(QualType T, unsigned Quals,
771                                     SourceLocation Loc,
772                                     DeclarationName Entity) {
773  if (!T.getTypePtr()->isFunctionType()) {
774    Diag(Loc, diag::err_nonfunction_block_type);
775    return QualType();
776  }
777
778  return Context.getBlockPointerType(T).getQualifiedType(Quals);
779}
780
781QualType Sema::GetTypeFromParser(TypeTy *Ty, DeclaratorInfo **DInfo) {
782  QualType QT = QualType::getFromOpaquePtr(Ty);
783  DeclaratorInfo *DI = 0;
784  if (LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
785    QT = LIT->getType();
786    DI = LIT->getDeclaratorInfo();
787  }
788
789  if (DInfo) *DInfo = DI;
790  return QT;
791}
792
793/// GetTypeForDeclarator - Convert the type for the specified
794/// declarator to Type instances. Skip the outermost Skip type
795/// objects.
796///
797/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
798/// owns the declaration of a type (e.g., the definition of a struct
799/// type), then *OwnedDecl will receive the owned declaration.
800QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
801                                    DeclaratorInfo **DInfo, unsigned Skip,
802                                    TagDecl **OwnedDecl) {
803  bool OmittedReturnType = false;
804
805  if (D.getContext() == Declarator::BlockLiteralContext
806      && Skip == 0
807      && !D.getDeclSpec().hasTypeSpecifier()
808      && (D.getNumTypeObjects() == 0
809          || (D.getNumTypeObjects() == 1
810              && D.getTypeObject(0).Kind == DeclaratorChunk::Function)))
811    OmittedReturnType = true;
812
813  // long long is a C99 feature.
814  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
815      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
816    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
817
818  // Determine the type of the declarator. Not all forms of declarator
819  // have a type.
820  QualType T;
821  switch (D.getKind()) {
822  case Declarator::DK_Abstract:
823  case Declarator::DK_Normal:
824  case Declarator::DK_Operator: {
825    const DeclSpec &DS = D.getDeclSpec();
826    if (OmittedReturnType) {
827      // We default to a dependent type initially.  Can be modified by
828      // the first return statement.
829      T = Context.DependentTy;
830    } else {
831      bool isInvalid = false;
832      T = ConvertDeclSpecToType(DS, D.getIdentifierLoc(), isInvalid);
833      if (isInvalid)
834        D.setInvalidType(true);
835      else if (OwnedDecl && DS.isTypeSpecOwned())
836        *OwnedDecl = cast<TagDecl>((Decl *)DS.getTypeRep());
837    }
838    break;
839  }
840
841  case Declarator::DK_Constructor:
842  case Declarator::DK_Destructor:
843  case Declarator::DK_Conversion:
844    // Constructors and destructors don't have return types. Use
845    // "void" instead. Conversion operators will check their return
846    // types separately.
847    T = Context.VoidTy;
848    break;
849  }
850
851  if (T == Context.UndeducedAutoTy) {
852    int Error = -1;
853
854    switch (D.getContext()) {
855    case Declarator::KNRTypeListContext:
856      assert(0 && "K&R type lists aren't allowed in C++");
857      break;
858    case Declarator::PrototypeContext:
859      Error = 0; // Function prototype
860      break;
861    case Declarator::MemberContext:
862      switch (cast<TagDecl>(CurContext)->getTagKind()) {
863      case TagDecl::TK_enum: assert(0 && "unhandled tag kind"); break;
864      case TagDecl::TK_struct: Error = 1; /* Struct member */ break;
865      case TagDecl::TK_union:  Error = 2; /* Union member */ break;
866      case TagDecl::TK_class:  Error = 3; /* Class member */ break;
867      }
868      break;
869    case Declarator::CXXCatchContext:
870      Error = 4; // Exception declaration
871      break;
872    case Declarator::TemplateParamContext:
873      Error = 5; // Template parameter
874      break;
875    case Declarator::BlockLiteralContext:
876      Error = 6;  // Block literal
877      break;
878    case Declarator::FileContext:
879    case Declarator::BlockContext:
880    case Declarator::ForContext:
881    case Declarator::ConditionContext:
882    case Declarator::TypeNameContext:
883      break;
884    }
885
886    if (Error != -1) {
887      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
888        << Error;
889      T = Context.IntTy;
890      D.setInvalidType(true);
891    }
892  }
893
894  // The name we're declaring, if any.
895  DeclarationName Name;
896  if (D.getIdentifier())
897    Name = D.getIdentifier();
898
899  bool ShouldBuildInfo = DInfo != 0;
900  // The QualType referring to the type as written in source code. We can't use
901  // T because it can change due to semantic analysis.
902  QualType SourceTy = T;
903
904  // Walk the DeclTypeInfo, building the recursive type as we go.
905  // DeclTypeInfos are ordered from the identifier out, which is
906  // opposite of what we want :).
907  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
908    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1+Skip);
909    switch (DeclType.Kind) {
910    default: assert(0 && "Unknown decltype!");
911    case DeclaratorChunk::BlockPointer:
912      if (ShouldBuildInfo) {
913        if (SourceTy->isFunctionType())
914          SourceTy = Context.getBlockPointerType(SourceTy)
915                                      .getQualifiedType(DeclType.Cls.TypeQuals);
916        else
917          // If not function type Context::getBlockPointerType asserts,
918          // so just give up.
919          ShouldBuildInfo = false;
920      }
921
922      // If blocks are disabled, emit an error.
923      if (!LangOpts.Blocks)
924        Diag(DeclType.Loc, diag::err_blocks_disable);
925
926      T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(),
927                                Name);
928      break;
929    case DeclaratorChunk::Pointer:
930      //FIXME: Use ObjCObjectPointer for info when appropriate.
931      if (ShouldBuildInfo)
932        SourceTy = Context.getPointerType(SourceTy)
933                                      .getQualifiedType(DeclType.Ptr.TypeQuals);
934      // Verify that we're not building a pointer to pointer to function with
935      // exception specification.
936      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
937        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
938        D.setInvalidType(true);
939        // Build the type anyway.
940      }
941      if (getLangOptions().ObjC1 && T->isObjCInterfaceType()) {
942        const ObjCInterfaceType *OIT = T->getAsObjCInterfaceType();
943        T = Context.getObjCObjectPointerType(T,
944                                         (ObjCProtocolDecl **)OIT->qual_begin(),
945                                         OIT->getNumProtocols());
946        break;
947      }
948      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
949      break;
950    case DeclaratorChunk::Reference:
951      if (ShouldBuildInfo) {
952        if (DeclType.Ref.LValueRef)
953          SourceTy = Context.getLValueReferenceType(SourceTy);
954        else
955          SourceTy = Context.getRValueReferenceType(SourceTy);
956        unsigned Quals = DeclType.Ref.HasRestrict ? QualType::Restrict : 0;
957        SourceTy = SourceTy.getQualifiedType(Quals);
958      }
959
960      // Verify that we're not building a reference to pointer to function with
961      // exception specification.
962      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
963        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
964        D.setInvalidType(true);
965        // Build the type anyway.
966      }
967      T = BuildReferenceType(T, DeclType.Ref.LValueRef,
968                             DeclType.Ref.HasRestrict ? QualType::Restrict : 0,
969                             DeclType.Loc, Name);
970      break;
971    case DeclaratorChunk::Array: {
972      if (ShouldBuildInfo)
973        // We just need to get an array type, the exact type doesn't matter.
974        SourceTy = Context.getIncompleteArrayType(SourceTy, ArrayType::Normal,
975                                                DeclType.Arr.TypeQuals);
976
977      // Verify that we're not building an array of pointers to function with
978      // exception specification.
979      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
980        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
981        D.setInvalidType(true);
982        // Build the type anyway.
983      }
984      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
985      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
986      ArrayType::ArraySizeModifier ASM;
987      if (ATI.isStar)
988        ASM = ArrayType::Star;
989      else if (ATI.hasStatic)
990        ASM = ArrayType::Static;
991      else
992        ASM = ArrayType::Normal;
993      if (ASM == ArrayType::Star &&
994          D.getContext() != Declarator::PrototypeContext) {
995        // FIXME: This check isn't quite right: it allows star in prototypes
996        // for function definitions, and disallows some edge cases detailed
997        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
998        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
999        ASM = ArrayType::Normal;
1000        D.setInvalidType(true);
1001      }
1002      T = BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
1003                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
1004      break;
1005    }
1006    case DeclaratorChunk::Function: {
1007      if (ShouldBuildInfo) {
1008        const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1009        llvm::SmallVector<QualType, 16> ArgTys;
1010
1011        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1012          ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
1013          if (Param)
1014            ArgTys.push_back(Param->getType());
1015        }
1016        SourceTy = Context.getFunctionType(SourceTy, ArgTys.data(),
1017                                           ArgTys.size(),
1018                                           FTI.isVariadic, FTI.TypeQuals);
1019      }
1020
1021      // If the function declarator has a prototype (i.e. it is not () and
1022      // does not have a K&R-style identifier list), then the arguments are part
1023      // of the type, otherwise the argument list is ().
1024      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1025
1026      // C99 6.7.5.3p1: The return type may not be a function or array type.
1027      if (T->isArrayType() || T->isFunctionType()) {
1028        Diag(DeclType.Loc, diag::err_func_returning_array_function) << T;
1029        T = Context.IntTy;
1030        D.setInvalidType(true);
1031      }
1032
1033      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
1034        // C++ [dcl.fct]p6:
1035        //   Types shall not be defined in return or parameter types.
1036        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
1037        if (Tag->isDefinition())
1038          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
1039            << Context.getTypeDeclType(Tag);
1040      }
1041
1042      // Exception specs are not allowed in typedefs. Complain, but add it
1043      // anyway.
1044      if (FTI.hasExceptionSpec &&
1045          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1046        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
1047
1048      if (FTI.NumArgs == 0) {
1049        if (getLangOptions().CPlusPlus) {
1050          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
1051          // function takes no arguments.
1052          llvm::SmallVector<QualType, 4> Exceptions;
1053          Exceptions.reserve(FTI.NumExceptions);
1054          for(unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1055            // FIXME: Preserve type source info.
1056            QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1057            // Check that the type is valid for an exception spec, and drop it
1058            // if not.
1059            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1060              Exceptions.push_back(ET);
1061          }
1062          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
1063                                      FTI.hasExceptionSpec,
1064                                      FTI.hasAnyExceptionSpec,
1065                                      Exceptions.size(), Exceptions.data());
1066        } else if (FTI.isVariadic) {
1067          // We allow a zero-parameter variadic function in C if the
1068          // function is marked with the "overloadable"
1069          // attribute. Scan for this attribute now.
1070          bool Overloadable = false;
1071          for (const AttributeList *Attrs = D.getAttributes();
1072               Attrs; Attrs = Attrs->getNext()) {
1073            if (Attrs->getKind() == AttributeList::AT_overloadable) {
1074              Overloadable = true;
1075              break;
1076            }
1077          }
1078
1079          if (!Overloadable)
1080            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
1081          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0);
1082        } else {
1083          // Simple void foo(), where the incoming T is the result type.
1084          T = Context.getFunctionNoProtoType(T);
1085        }
1086      } else if (FTI.ArgInfo[0].Param == 0) {
1087        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
1088        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
1089      } else {
1090        // Otherwise, we have a function with an argument list that is
1091        // potentially variadic.
1092        llvm::SmallVector<QualType, 16> ArgTys;
1093
1094        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1095          ParmVarDecl *Param =
1096            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
1097          QualType ArgTy = Param->getType();
1098          assert(!ArgTy.isNull() && "Couldn't parse type?");
1099
1100          // Adjust the parameter type.
1101          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1102
1103          // Look for 'void'.  void is allowed only as a single argument to a
1104          // function with no other parameters (C99 6.7.5.3p10).  We record
1105          // int(void) as a FunctionProtoType with an empty argument list.
1106          if (ArgTy->isVoidType()) {
1107            // If this is something like 'float(int, void)', reject it.  'void'
1108            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1109            // have arguments of incomplete type.
1110            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1111              Diag(DeclType.Loc, diag::err_void_only_param);
1112              ArgTy = Context.IntTy;
1113              Param->setType(ArgTy);
1114            } else if (FTI.ArgInfo[i].Ident) {
1115              // Reject, but continue to parse 'int(void abc)'.
1116              Diag(FTI.ArgInfo[i].IdentLoc,
1117                   diag::err_param_with_void_type);
1118              ArgTy = Context.IntTy;
1119              Param->setType(ArgTy);
1120            } else {
1121              // Reject, but continue to parse 'float(const void)'.
1122              if (ArgTy.getCVRQualifiers())
1123                Diag(DeclType.Loc, diag::err_void_param_qualified);
1124
1125              // Do not add 'void' to the ArgTys list.
1126              break;
1127            }
1128          } else if (!FTI.hasPrototype) {
1129            if (ArgTy->isPromotableIntegerType()) {
1130              ArgTy = Context.getPromotedIntegerType(ArgTy);
1131            } else if (const BuiltinType* BTy = ArgTy->getAsBuiltinType()) {
1132              if (BTy->getKind() == BuiltinType::Float)
1133                ArgTy = Context.DoubleTy;
1134            }
1135          }
1136
1137          ArgTys.push_back(ArgTy);
1138        }
1139
1140        llvm::SmallVector<QualType, 4> Exceptions;
1141        Exceptions.reserve(FTI.NumExceptions);
1142        for(unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1143          // FIXME: Preserve type source info.
1144          QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1145          // Check that the type is valid for an exception spec, and drop it if
1146          // not.
1147          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1148            Exceptions.push_back(ET);
1149        }
1150
1151        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
1152                                    FTI.isVariadic, FTI.TypeQuals,
1153                                    FTI.hasExceptionSpec,
1154                                    FTI.hasAnyExceptionSpec,
1155                                    Exceptions.size(), Exceptions.data());
1156      }
1157      break;
1158    }
1159    case DeclaratorChunk::MemberPointer:
1160      // Verify that we're not building a pointer to pointer to function with
1161      // exception specification.
1162      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1163        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1164        D.setInvalidType(true);
1165        // Build the type anyway.
1166      }
1167      // The scope spec must refer to a class, or be dependent.
1168      QualType ClsType;
1169      if (isDependentScopeSpecifier(DeclType.Mem.Scope())) {
1170        NestedNameSpecifier *NNS
1171          = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
1172        assert(NNS->getAsType() && "Nested-name-specifier must name a type");
1173        ClsType = QualType(NNS->getAsType(), 0);
1174      } else if (CXXRecordDecl *RD
1175                   = dyn_cast_or_null<CXXRecordDecl>(
1176                                    computeDeclContext(DeclType.Mem.Scope()))) {
1177        ClsType = Context.getTagDeclType(RD);
1178      } else {
1179        Diag(DeclType.Mem.Scope().getBeginLoc(),
1180             diag::err_illegal_decl_mempointer_in_nonclass)
1181          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1182          << DeclType.Mem.Scope().getRange();
1183        D.setInvalidType(true);
1184      }
1185
1186      if (ShouldBuildInfo) {
1187        QualType cls = !ClsType.isNull() ? ClsType : Context.IntTy;
1188        SourceTy = Context.getMemberPointerType(SourceTy, cls.getTypePtr())
1189                                      .getQualifiedType(DeclType.Mem.TypeQuals);
1190      }
1191
1192      if (!ClsType.isNull())
1193        T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals,
1194                                   DeclType.Loc, D.getIdentifier());
1195      if (T.isNull()) {
1196        T = Context.IntTy;
1197        D.setInvalidType(true);
1198      }
1199      break;
1200    }
1201
1202    if (T.isNull()) {
1203      D.setInvalidType(true);
1204      T = Context.IntTy;
1205    }
1206
1207    // See if there are any attributes on this declarator chunk.
1208    if (const AttributeList *AL = DeclType.getAttrs())
1209      ProcessTypeAttributeList(T, AL);
1210  }
1211
1212  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1213    const FunctionProtoType *FnTy = T->getAsFunctionProtoType();
1214    assert(FnTy && "Why oh why is there not a FunctionProtoType here ?");
1215
1216    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1217    // for a nonstatic member function, the function type to which a pointer
1218    // to member refers, or the top-level function type of a function typedef
1219    // declaration.
1220    if (FnTy->getTypeQuals() != 0 &&
1221        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1222        ((D.getContext() != Declarator::MemberContext &&
1223          (!D.getCXXScopeSpec().isSet() ||
1224           !computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)
1225              ->isRecord())) ||
1226         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1227      if (D.isFunctionDeclarator())
1228        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1229      else
1230        Diag(D.getIdentifierLoc(),
1231             diag::err_invalid_qualified_typedef_function_type_use);
1232
1233      // Strip the cv-quals from the type.
1234      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1235                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
1236    }
1237  }
1238
1239  // If there were any type attributes applied to the decl itself (not the
1240  // type, apply the type attribute to the type!)
1241  if (const AttributeList *Attrs = D.getAttributes())
1242    ProcessTypeAttributeList(T, Attrs);
1243
1244  if (ShouldBuildInfo)
1245    *DInfo = GetDeclaratorInfoForDeclarator(D, SourceTy, Skip);
1246
1247  return T;
1248}
1249
1250/// \brief Create and instantiate a DeclaratorInfo with type source information.
1251///
1252/// \param T QualType referring to the type as written in source code.
1253DeclaratorInfo *
1254Sema::GetDeclaratorInfoForDeclarator(Declarator &D, QualType T, unsigned Skip) {
1255  DeclaratorInfo *DInfo = Context.CreateDeclaratorInfo(T);
1256  TypeLoc CurrTL = DInfo->getTypeLoc();
1257
1258  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
1259    assert(!CurrTL.isNull());
1260
1261    DeclaratorChunk &DeclType = D.getTypeObject(i);
1262    switch (DeclType.Kind) {
1263    default: assert(0 && "Unknown decltype!");
1264    case DeclaratorChunk::BlockPointer: {
1265      BlockPointerLoc &BPL = cast<BlockPointerLoc>(CurrTL);
1266      BPL.setCaretLoc(DeclType.Loc);
1267      break;
1268    }
1269    case DeclaratorChunk::Pointer: {
1270      //FIXME: ObjCObject pointers.
1271      PointerLoc &PL = cast<PointerLoc>(CurrTL);
1272      PL.setStarLoc(DeclType.Loc);
1273      break;
1274    }
1275    case DeclaratorChunk::Reference: {
1276      ReferenceLoc &RL = cast<ReferenceLoc>(CurrTL);
1277      RL.setAmpLoc(DeclType.Loc);
1278      break;
1279    }
1280    case DeclaratorChunk::Array: {
1281      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1282      ArrayLoc &AL = cast<ArrayLoc>(CurrTL);
1283      AL.setLBracketLoc(DeclType.Loc);
1284      AL.setRBracketLoc(DeclType.EndLoc);
1285      AL.setSizeExpr(static_cast<Expr*>(ATI.NumElts));
1286      //FIXME: Star location for [*].
1287      break;
1288    }
1289    case DeclaratorChunk::Function: {
1290      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1291      FunctionLoc &FL = cast<FunctionLoc>(CurrTL);
1292      FL.setLParenLoc(DeclType.Loc);
1293      FL.setRParenLoc(DeclType.EndLoc);
1294      for (unsigned i = 0, e = FTI.NumArgs, tpi = 0; i != e; ++i) {
1295        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
1296        if (Param) {
1297          assert(tpi < FL.getNumArgs());
1298          FL.setArg(tpi++, Param);
1299        }
1300      }
1301      break;
1302      //FIXME: Exception specs.
1303    }
1304    case DeclaratorChunk::MemberPointer: {
1305      MemberPointerLoc &MPL = cast<MemberPointerLoc>(CurrTL);
1306      MPL.setStarLoc(DeclType.Loc);
1307      //FIXME: Class location.
1308      break;
1309    }
1310
1311    }
1312
1313    CurrTL = CurrTL.getNextTypeLoc();
1314  }
1315
1316  if (TypedefLoc *TL = dyn_cast<TypedefLoc>(&CurrTL)) {
1317    TL->setNameLoc(D.getDeclSpec().getTypeSpecTypeLoc());
1318  } else {
1319    //FIXME: Other typespecs.
1320    DefaultTypeSpecLoc &DTL = cast<DefaultTypeSpecLoc>(CurrTL);
1321    DTL.setStartLoc(D.getDeclSpec().getTypeSpecTypeLoc());
1322  }
1323
1324  return DInfo;
1325}
1326
1327/// \brief Create a LocInfoType to hold the given QualType and DeclaratorInfo.
1328QualType Sema::CreateLocInfoType(QualType T, DeclaratorInfo *DInfo) {
1329  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
1330  // and Sema during declaration parsing. Try deallocating/caching them when
1331  // it's appropriate, instead of allocating them and keeping them around.
1332  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), 8);
1333  new (LocT) LocInfoType(T, DInfo);
1334  assert(LocT->getTypeClass() != T->getTypeClass() &&
1335         "LocInfoType's TypeClass conflicts with an existing Type class");
1336  return QualType(LocT, 0);
1337}
1338
1339void LocInfoType::getAsStringInternal(std::string &Str,
1340                                      const PrintingPolicy &Policy) const {
1341  assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
1342         " was used directly instead of getting the QualType through"
1343         " GetTypeFromParser");
1344}
1345
1346/// CheckSpecifiedExceptionType - Check if the given type is valid in an
1347/// exception specification. Incomplete types, or pointers to incomplete types
1348/// other than void are not allowed.
1349bool Sema::CheckSpecifiedExceptionType(QualType T, const SourceRange &Range) {
1350  // FIXME: This may not correctly work with the fix for core issue 437,
1351  // where a class's own type is considered complete within its body.
1352
1353  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
1354  //   an incomplete type.
1355  if (T->isIncompleteType())
1356    return Diag(Range.getBegin(), diag::err_incomplete_in_exception_spec)
1357      << Range << T << /*direct*/0;
1358
1359  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
1360  //   an incomplete type a pointer or reference to an incomplete type, other
1361  //   than (cv) void*.
1362  int kind;
1363  if (const PointerType* IT = T->getAs<PointerType>()) {
1364    T = IT->getPointeeType();
1365    kind = 1;
1366  } else if (const ReferenceType* IT = T->getAs<ReferenceType>()) {
1367    T = IT->getPointeeType();
1368    kind = 2;
1369  } else
1370    return false;
1371
1372  if (T->isIncompleteType() && !T->isVoidType())
1373    return Diag(Range.getBegin(), diag::err_incomplete_in_exception_spec)
1374      << Range << T << /*indirect*/kind;
1375
1376  return false;
1377}
1378
1379/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
1380/// to member to a function with an exception specification. This means that
1381/// it is invalid to add another level of indirection.
1382bool Sema::CheckDistantExceptionSpec(QualType T) {
1383  if (const PointerType *PT = T->getAs<PointerType>())
1384    T = PT->getPointeeType();
1385  else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
1386    T = PT->getPointeeType();
1387  else
1388    return false;
1389
1390  const FunctionProtoType *FnT = T->getAsFunctionProtoType();
1391  if (!FnT)
1392    return false;
1393
1394  return FnT->hasExceptionSpec();
1395}
1396
1397/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
1398/// exception specifications. Exception specifications are equivalent if
1399/// they allow exactly the same set of exception types. It does not matter how
1400/// that is achieved. See C++ [except.spec]p2.
1401bool Sema::CheckEquivalentExceptionSpec(
1402    const FunctionProtoType *Old, SourceLocation OldLoc,
1403    const FunctionProtoType *New, SourceLocation NewLoc) {
1404  bool OldAny = !Old->hasExceptionSpec() || Old->hasAnyExceptionSpec();
1405  bool NewAny = !New->hasExceptionSpec() || New->hasAnyExceptionSpec();
1406  if (OldAny && NewAny)
1407    return false;
1408  if (OldAny || NewAny) {
1409    Diag(NewLoc, diag::err_mismatched_exception_spec);
1410    Diag(OldLoc, diag::note_previous_declaration);
1411    return true;
1412  }
1413
1414  bool Success = true;
1415  // Both have a definite exception spec. Collect the first set, then compare
1416  // to the second.
1417  llvm::SmallPtrSet<const Type*, 8> Types;
1418  for (FunctionProtoType::exception_iterator I = Old->exception_begin(),
1419       E = Old->exception_end(); I != E; ++I)
1420    Types.insert(Context.getCanonicalType(*I).getTypePtr());
1421
1422  for (FunctionProtoType::exception_iterator I = New->exception_begin(),
1423       E = New->exception_end(); I != E && Success; ++I)
1424    Success = Types.erase(Context.getCanonicalType(*I).getTypePtr());
1425
1426  Success = Success && Types.empty();
1427
1428  if (Success) {
1429    return false;
1430  }
1431  Diag(NewLoc, diag::err_mismatched_exception_spec);
1432  Diag(OldLoc, diag::note_previous_declaration);
1433  return true;
1434}
1435
1436/// CheckExceptionSpecSubset - Check whether the second function type's
1437/// exception specification is a subset (or equivalent) of the first function
1438/// type. This is used by override and pointer assignment checks.
1439bool Sema::CheckExceptionSpecSubset(unsigned DiagID, unsigned NoteID,
1440    const FunctionProtoType *Superset, SourceLocation SuperLoc,
1441    const FunctionProtoType *Subset, SourceLocation SubLoc)
1442{
1443  // FIXME: As usual, we could be more specific in our error messages, but
1444  // that better waits until we've got types with source locations.
1445
1446  // If superset contains everything, we're done.
1447  if (!Superset->hasExceptionSpec() || Superset->hasAnyExceptionSpec())
1448    return false;
1449
1450  // It does not. If the subset contains everything, we've failed.
1451  if (!Subset->hasExceptionSpec() || Subset->hasAnyExceptionSpec()) {
1452    Diag(SubLoc, DiagID);
1453    Diag(SuperLoc, NoteID);
1454    return true;
1455  }
1456
1457  // Neither contains everything. Do a proper comparison.
1458  for (FunctionProtoType::exception_iterator SubI = Subset->exception_begin(),
1459       SubE = Subset->exception_end(); SubI != SubE; ++SubI) {
1460    // Take one type from the subset.
1461    QualType CanonicalSubT = Context.getCanonicalType(*SubI);
1462    bool SubIsPointer = false;
1463    if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>())
1464      CanonicalSubT = RefTy->getPointeeType();
1465    if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) {
1466      CanonicalSubT = PtrTy->getPointeeType();
1467      SubIsPointer = true;
1468    }
1469    bool SubIsClass = CanonicalSubT->isRecordType();
1470    CanonicalSubT.setCVRQualifiers(0);
1471
1472    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1473                    /*DetectVirtual=*/false);
1474
1475    bool Contained = false;
1476    // Make sure it's in the superset.
1477    for (FunctionProtoType::exception_iterator SuperI =
1478           Superset->exception_begin(), SuperE = Superset->exception_end();
1479         SuperI != SuperE; ++SuperI) {
1480      QualType CanonicalSuperT = Context.getCanonicalType(*SuperI);
1481      // SubT must be SuperT or derived from it, or pointer or reference to
1482      // such types.
1483      if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>())
1484        CanonicalSuperT = RefTy->getPointeeType();
1485      if (SubIsPointer) {
1486        if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>())
1487          CanonicalSuperT = PtrTy->getPointeeType();
1488        else {
1489          continue;
1490        }
1491      }
1492      CanonicalSuperT.setCVRQualifiers(0);
1493      // If the types are the same, move on to the next type in the subset.
1494      if (CanonicalSubT == CanonicalSuperT) {
1495        Contained = true;
1496        break;
1497      }
1498
1499      // Otherwise we need to check the inheritance.
1500      if (!SubIsClass || !CanonicalSuperT->isRecordType())
1501        continue;
1502
1503      Paths.clear();
1504      if (!IsDerivedFrom(CanonicalSubT, CanonicalSuperT, Paths))
1505        continue;
1506
1507      if (Paths.isAmbiguous(CanonicalSuperT))
1508        continue;
1509
1510      if (FindInaccessibleBase(CanonicalSubT, CanonicalSuperT, Paths, true))
1511        continue;
1512
1513      Contained = true;
1514      break;
1515    }
1516    if (!Contained) {
1517      Diag(SubLoc, DiagID);
1518      Diag(SuperLoc, NoteID);
1519      return true;
1520    }
1521  }
1522  // We've run the gauntlet.
1523  return false;
1524}
1525
1526/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
1527/// declarator
1528QualType Sema::ObjCGetTypeForMethodDefinition(DeclPtrTy D) {
1529  ObjCMethodDecl *MDecl = cast<ObjCMethodDecl>(D.getAs<Decl>());
1530  QualType T = MDecl->getResultType();
1531  llvm::SmallVector<QualType, 16> ArgTys;
1532
1533  // Add the first two invisible argument types for self and _cmd.
1534  if (MDecl->isInstanceMethod()) {
1535    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
1536    selfTy = Context.getPointerType(selfTy);
1537    ArgTys.push_back(selfTy);
1538  } else
1539    ArgTys.push_back(Context.getObjCIdType());
1540  ArgTys.push_back(Context.getObjCSelType());
1541
1542  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
1543       E = MDecl->param_end(); PI != E; ++PI) {
1544    QualType ArgTy = (*PI)->getType();
1545    assert(!ArgTy.isNull() && "Couldn't parse type?");
1546    ArgTy = adjustParameterType(ArgTy);
1547    ArgTys.push_back(ArgTy);
1548  }
1549  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
1550                              MDecl->isVariadic(), 0);
1551  return T;
1552}
1553
1554/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
1555/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
1556/// they point to and return true. If T1 and T2 aren't pointer types
1557/// or pointer-to-member types, or if they are not similar at this
1558/// level, returns false and leaves T1 and T2 unchanged. Top-level
1559/// qualifiers on T1 and T2 are ignored. This function will typically
1560/// be called in a loop that successively "unwraps" pointer and
1561/// pointer-to-member types to compare them at each level.
1562bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
1563  const PointerType *T1PtrType = T1->getAs<PointerType>(),
1564                    *T2PtrType = T2->getAs<PointerType>();
1565  if (T1PtrType && T2PtrType) {
1566    T1 = T1PtrType->getPointeeType();
1567    T2 = T2PtrType->getPointeeType();
1568    return true;
1569  }
1570
1571  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
1572                          *T2MPType = T2->getAs<MemberPointerType>();
1573  if (T1MPType && T2MPType &&
1574      Context.getCanonicalType(T1MPType->getClass()) ==
1575      Context.getCanonicalType(T2MPType->getClass())) {
1576    T1 = T1MPType->getPointeeType();
1577    T2 = T2MPType->getPointeeType();
1578    return true;
1579  }
1580  return false;
1581}
1582
1583Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1584  // C99 6.7.6: Type names have no identifier.  This is already validated by
1585  // the parser.
1586  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1587
1588  DeclaratorInfo *DInfo = 0;
1589  TagDecl *OwnedTag = 0;
1590  QualType T = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0, &OwnedTag);
1591  if (D.isInvalidType())
1592    return true;
1593
1594  if (getLangOptions().CPlusPlus) {
1595    // Check that there are no default arguments (C++ only).
1596    CheckExtraCXXDefaultArguments(D);
1597
1598    // C++0x [dcl.type]p3:
1599    //   A type-specifier-seq shall not define a class or enumeration
1600    //   unless it appears in the type-id of an alias-declaration
1601    //   (7.1.3).
1602    if (OwnedTag && OwnedTag->isDefinition())
1603      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1604        << Context.getTypeDeclType(OwnedTag);
1605  }
1606
1607  if (DInfo)
1608    T = CreateLocInfoType(T, DInfo);
1609
1610  return T.getAsOpaquePtr();
1611}
1612
1613
1614
1615//===----------------------------------------------------------------------===//
1616// Type Attribute Processing
1617//===----------------------------------------------------------------------===//
1618
1619/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1620/// specified type.  The attribute contains 1 argument, the id of the address
1621/// space for the type.
1622static void HandleAddressSpaceTypeAttribute(QualType &Type,
1623                                            const AttributeList &Attr, Sema &S){
1624  // If this type is already address space qualified, reject it.
1625  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1626  // for two or more different address spaces."
1627  if (Type.getAddressSpace()) {
1628    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1629    return;
1630  }
1631
1632  // Check the attribute arguments.
1633  if (Attr.getNumArgs() != 1) {
1634    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1635    return;
1636  }
1637  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1638  llvm::APSInt addrSpace(32);
1639  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1640    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1641      << ASArgExpr->getSourceRange();
1642    return;
1643  }
1644
1645  // Bounds checking.
1646  if (addrSpace.isSigned()) {
1647    if (addrSpace.isNegative()) {
1648      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
1649        << ASArgExpr->getSourceRange();
1650      return;
1651    }
1652    addrSpace.setIsSigned(false);
1653  }
1654  llvm::APSInt max(addrSpace.getBitWidth());
1655  max = QualType::MaxAddressSpace;
1656  if (addrSpace > max) {
1657    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
1658      << QualType::MaxAddressSpace << ASArgExpr->getSourceRange();
1659    return;
1660  }
1661
1662  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1663  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1664}
1665
1666/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1667/// specified type.  The attribute contains 1 argument, weak or strong.
1668static void HandleObjCGCTypeAttribute(QualType &Type,
1669                                      const AttributeList &Attr, Sema &S) {
1670  if (Type.getObjCGCAttr() != QualType::GCNone) {
1671    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1672    return;
1673  }
1674
1675  // Check the attribute arguments.
1676  if (!Attr.getParameterName()) {
1677    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1678      << "objc_gc" << 1;
1679    return;
1680  }
1681  QualType::GCAttrTypes GCAttr;
1682  if (Attr.getNumArgs() != 0) {
1683    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1684    return;
1685  }
1686  if (Attr.getParameterName()->isStr("weak"))
1687    GCAttr = QualType::Weak;
1688  else if (Attr.getParameterName()->isStr("strong"))
1689    GCAttr = QualType::Strong;
1690  else {
1691    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1692      << "objc_gc" << Attr.getParameterName();
1693    return;
1694  }
1695
1696  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1697}
1698
1699/// HandleNoReturnTypeAttribute - Process the noreturn attribute on the
1700/// specified type.  The attribute contains 0 arguments.
1701static void HandleNoReturnTypeAttribute(QualType &Type,
1702                                        const AttributeList &Attr, Sema &S) {
1703  if (Attr.getNumArgs() != 0)
1704    return;
1705
1706  // We only apply this to a pointer to function or a pointer to block.
1707  if (!Type->isFunctionPointerType()
1708      && !Type->isBlockPointerType()
1709      && !Type->isFunctionType())
1710    return;
1711
1712  Type = S.Context.getNoReturnType(Type);
1713}
1714
1715void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
1716  // Scan through and apply attributes to this type where it makes sense.  Some
1717  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1718  // type, but others can be present in the type specifiers even though they
1719  // apply to the decl.  Here we apply type attributes and ignore the rest.
1720  for (; AL; AL = AL->getNext()) {
1721    // If this is an attribute we can handle, do so now, otherwise, add it to
1722    // the LeftOverAttrs list for rechaining.
1723    switch (AL->getKind()) {
1724    default: break;
1725    case AttributeList::AT_address_space:
1726      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
1727      break;
1728    case AttributeList::AT_objc_gc:
1729      HandleObjCGCTypeAttribute(Result, *AL, *this);
1730      break;
1731    case AttributeList::AT_noreturn:
1732      HandleNoReturnTypeAttribute(Result, *AL, *this);
1733      break;
1734    }
1735  }
1736}
1737
1738/// @brief Ensure that the type T is a complete type.
1739///
1740/// This routine checks whether the type @p T is complete in any
1741/// context where a complete type is required. If @p T is a complete
1742/// type, returns false. If @p T is a class template specialization,
1743/// this routine then attempts to perform class template
1744/// instantiation. If instantiation fails, or if @p T is incomplete
1745/// and cannot be completed, issues the diagnostic @p diag (giving it
1746/// the type @p T) and returns true.
1747///
1748/// @param Loc  The location in the source that the incomplete type
1749/// diagnostic should refer to.
1750///
1751/// @param T  The type that this routine is examining for completeness.
1752///
1753/// @param diag The diagnostic value (e.g.,
1754/// @c diag::err_typecheck_decl_incomplete_type) that will be used
1755/// for the error message if @p T is incomplete.
1756///
1757/// @param Range1  An optional range in the source code that will be a
1758/// part of the "incomplete type" error message.
1759///
1760/// @param Range2  An optional range in the source code that will be a
1761/// part of the "incomplete type" error message.
1762///
1763/// @param PrintType If non-NULL, the type that should be printed
1764/// instead of @p T. This parameter should be used when the type that
1765/// we're checking for incompleteness isn't the type that should be
1766/// displayed to the user, e.g., when T is a type and PrintType is a
1767/// pointer to T.
1768///
1769/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1770/// @c false otherwise.
1771bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, unsigned diag,
1772                               SourceRange Range1, SourceRange Range2,
1773                               QualType PrintType) {
1774  // FIXME: Add this assertion to help us flush out problems with
1775  // checking for dependent types and type-dependent expressions.
1776  //
1777  //  assert(!T->isDependentType() &&
1778  //         "Can't ask whether a dependent type is complete");
1779
1780  // If we have a complete type, we're done.
1781  if (!T->isIncompleteType())
1782    return false;
1783
1784  // If we have a class template specialization or a class member of a
1785  // class template specialization, try to instantiate it.
1786  if (const RecordType *Record = T->getAs<RecordType>()) {
1787    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
1788          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
1789      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
1790        // Update the class template specialization's location to
1791        // refer to the point of instantiation.
1792        if (Loc.isValid())
1793          ClassTemplateSpec->setLocation(Loc);
1794        return InstantiateClassTemplateSpecialization(ClassTemplateSpec,
1795                                             /*ExplicitInstantiation=*/false);
1796      }
1797    } else if (CXXRecordDecl *Rec
1798                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
1799      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
1800        // Find the class template specialization that surrounds this
1801        // member class.
1802        ClassTemplateSpecializationDecl *Spec = 0;
1803        for (DeclContext *Parent = Rec->getDeclContext();
1804             Parent && !Spec; Parent = Parent->getParent())
1805          Spec = dyn_cast<ClassTemplateSpecializationDecl>(Parent);
1806        assert(Spec && "Not a member of a class template specialization?");
1807        return InstantiateClass(Loc, Rec, Pattern, Spec->getTemplateArgs(),
1808                                /*ExplicitInstantiation=*/false);
1809      }
1810    }
1811  }
1812
1813  if (PrintType.isNull())
1814    PrintType = T;
1815
1816  // We have an incomplete type. Produce a diagnostic.
1817  Diag(Loc, diag) << PrintType << Range1 << Range2;
1818
1819  // If the type was a forward declaration of a class/struct/union
1820  // type, produce
1821  const TagType *Tag = 0;
1822  if (const RecordType *Record = T->getAs<RecordType>())
1823    Tag = Record;
1824  else if (const EnumType *Enum = T->getAsEnumType())
1825    Tag = Enum;
1826
1827  if (Tag && !Tag->getDecl()->isInvalidDecl())
1828    Diag(Tag->getDecl()->getLocation(),
1829         Tag->isBeingDefined() ? diag::note_type_being_defined
1830                               : diag::note_forward_declaration)
1831        << QualType(Tag, 0);
1832
1833  return true;
1834}
1835
1836/// \brief Retrieve a version of the type 'T' that is qualified by the
1837/// nested-name-specifier contained in SS.
1838QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
1839  if (!SS.isSet() || SS.isInvalid() || T.isNull())
1840    return T;
1841
1842  NestedNameSpecifier *NNS
1843    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1844  return Context.getQualifiedNameType(NNS, T);
1845}
1846
1847QualType Sema::BuildTypeofExprType(Expr *E) {
1848  return Context.getTypeOfExprType(E);
1849}
1850
1851QualType Sema::BuildDecltypeType(Expr *E) {
1852  if (E->getType() == Context.OverloadTy) {
1853    Diag(E->getLocStart(),
1854         diag::err_cannot_determine_declared_type_of_overloaded_function);
1855    return QualType();
1856  }
1857  return Context.getDecltypeType(E);
1858}
1859