SemaType.cpp revision ab452ba8323d1985e08bade2bced588cddf2cc28
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/Parse/DeclSpec.h"
20using namespace clang;
21
22/// \brief Perform adjustment on the parameter type of a function.
23///
24/// This routine adjusts the given parameter type @p T to the actual
25/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
26/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
27QualType Sema::adjustParameterType(QualType T) {
28  // C99 6.7.5.3p7:
29  if (T->isArrayType()) {
30    // C99 6.7.5.3p7:
31    //   A declaration of a parameter as "array of type" shall be
32    //   adjusted to "qualified pointer to type", where the type
33    //   qualifiers (if any) are those specified within the [ and ] of
34    //   the array type derivation.
35    return Context.getArrayDecayedType(T);
36  } else if (T->isFunctionType())
37    // C99 6.7.5.3p8:
38    //   A declaration of a parameter as "function returning type"
39    //   shall be adjusted to "pointer to function returning type", as
40    //   in 6.3.2.1.
41    return Context.getPointerType(T);
42
43  return T;
44}
45
46/// \brief Convert the specified declspec to the appropriate type
47/// object.
48/// \param DS  the declaration specifiers
49/// \returns The type described by the declaration specifiers, or NULL
50/// if there was an error.
51QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS) {
52  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
53  // checking.
54  QualType Result;
55
56  switch (DS.getTypeSpecType()) {
57  case DeclSpec::TST_void:
58    Result = Context.VoidTy;
59    break;
60  case DeclSpec::TST_char:
61    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
62      Result = Context.CharTy;
63    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
64      Result = Context.SignedCharTy;
65    else {
66      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
67             "Unknown TSS value");
68      Result = Context.UnsignedCharTy;
69    }
70    break;
71  case DeclSpec::TST_wchar:
72    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
73      Result = Context.WCharTy;
74    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
75      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
76        << DS.getSpecifierName(DS.getTypeSpecType());
77      Result = Context.getSignedWCharType();
78    } else {
79      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
80        "Unknown TSS value");
81      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
82        << DS.getSpecifierName(DS.getTypeSpecType());
83      Result = Context.getUnsignedWCharType();
84    }
85    break;
86  case DeclSpec::TST_unspecified:
87    // "<proto1,proto2>" is an objc qualified ID with a missing id.
88    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
89      Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
90                                              DS.getNumProtocolQualifiers());
91      break;
92    }
93
94    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
95    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
96    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
97    // Note that the one exception to this is function definitions, which are
98    // allowed to be completely missing a declspec.  This is handled in the
99    // parser already though by it pretending to have seen an 'int' in this
100    // case.
101    if (getLangOptions().ImplicitInt) {
102      // In C89 mode, we only warn if there is a completely missing declspec
103      // when one is not allowed.
104      if (DS.isEmpty())
105        Diag(DS.getSourceRange().getBegin(), diag::warn_missing_declspec)
106        << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
107                                                 "int");
108    } else if (!DS.hasTypeSpecifier()) {
109      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
110      // "At least one type specifier shall be given in the declaration
111      // specifiers in each declaration, and in the specifier-qualifier list in
112      // each struct declaration and type name."
113      // FIXME: Does Microsoft really have the implicit int extension in C++?
114      unsigned DK = getLangOptions().CPlusPlus && !getLangOptions().Microsoft?
115          diag::err_missing_type_specifier
116        : diag::warn_missing_type_specifier;
117      Diag(DS.getSourceRange().getBegin(), DK)
118        << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
119                                                 "int");
120    }
121
122    // FALL THROUGH.
123  case DeclSpec::TST_int: {
124    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
125      switch (DS.getTypeSpecWidth()) {
126      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
127      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
128      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
129      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
130      }
131    } else {
132      switch (DS.getTypeSpecWidth()) {
133      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
134      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
135      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
136      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
137      }
138    }
139    break;
140  }
141  case DeclSpec::TST_float: Result = Context.FloatTy; break;
142  case DeclSpec::TST_double:
143    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
144      Result = Context.LongDoubleTy;
145    else
146      Result = Context.DoubleTy;
147    break;
148  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
149  case DeclSpec::TST_decimal32:    // _Decimal32
150  case DeclSpec::TST_decimal64:    // _Decimal64
151  case DeclSpec::TST_decimal128:   // _Decimal128
152    assert(0 && "FIXME: GNU decimal extensions not supported yet!");
153  case DeclSpec::TST_class:
154  case DeclSpec::TST_enum:
155  case DeclSpec::TST_union:
156  case DeclSpec::TST_struct: {
157    Decl *D = static_cast<Decl *>(DS.getTypeRep());
158    assert(D && "Didn't get a decl for a class/enum/union/struct?");
159    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
160           DS.getTypeSpecSign() == 0 &&
161           "Can't handle qualifiers on typedef names yet!");
162    // TypeQuals handled by caller.
163    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
164    break;
165  }
166  case DeclSpec::TST_typename: {
167    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
168           DS.getTypeSpecSign() == 0 &&
169           "Can't handle qualifiers on typedef names yet!");
170    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
171
172    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
173      // FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so
174      // we have this "hack" for now...
175      if (const ObjCInterfaceType *Interface = Result->getAsObjCInterfaceType())
176        Result = Context.getObjCQualifiedInterfaceType(Interface->getDecl(),
177                                                       (ObjCProtocolDecl**)PQ,
178                                               DS.getNumProtocolQualifiers());
179      else if (Result == Context.getObjCIdType())
180        // id<protocol-list>
181        Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
182                                                DS.getNumProtocolQualifiers());
183      else if (Result == Context.getObjCClassType())
184        // Class<protocol-list>
185        Diag(DS.getSourceRange().getBegin(),
186             diag::err_qualified_class_unsupported) << DS.getSourceRange();
187      else
188        Diag(DS.getSourceRange().getBegin(),
189             diag::err_invalid_protocol_qualifiers) << DS.getSourceRange();
190    }
191    // TypeQuals handled by caller.
192    break;
193  }
194  case DeclSpec::TST_typeofType:
195    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
196    assert(!Result.isNull() && "Didn't get a type for typeof?");
197    // TypeQuals handled by caller.
198    Result = Context.getTypeOfType(Result);
199    break;
200  case DeclSpec::TST_typeofExpr: {
201    Expr *E = static_cast<Expr *>(DS.getTypeRep());
202    assert(E && "Didn't get an expression for typeof?");
203    // TypeQuals handled by caller.
204    Result = Context.getTypeOfExprType(E);
205    break;
206  }
207  case DeclSpec::TST_error:
208    return QualType();
209  }
210
211  // Handle complex types.
212  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
213    if (getLangOptions().Freestanding)
214      Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
215    Result = Context.getComplexType(Result);
216  }
217
218  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
219         "FIXME: imaginary types not supported yet!");
220
221  // See if there are any attributes on the declspec that apply to the type (as
222  // opposed to the decl).
223  if (const AttributeList *AL = DS.getAttributes())
224    ProcessTypeAttributeList(Result, AL);
225
226  // Apply const/volatile/restrict qualifiers to T.
227  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
228
229    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
230    // or incomplete types shall not be restrict-qualified."  C++ also allows
231    // restrict-qualified references.
232    if (TypeQuals & QualType::Restrict) {
233      if (Result->isPointerType() || Result->isReferenceType()) {
234        QualType EltTy = Result->isPointerType() ?
235          Result->getAsPointerType()->getPointeeType() :
236          Result->getAsReferenceType()->getPointeeType();
237
238        // If we have a pointer or reference, the pointee must have an object
239        // incomplete type.
240        if (!EltTy->isIncompleteOrObjectType()) {
241          Diag(DS.getRestrictSpecLoc(),
242               diag::err_typecheck_invalid_restrict_invalid_pointee)
243            << EltTy << DS.getSourceRange();
244          TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
245        }
246      } else {
247        Diag(DS.getRestrictSpecLoc(),
248             diag::err_typecheck_invalid_restrict_not_pointer)
249          << Result << DS.getSourceRange();
250        TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
251      }
252    }
253
254    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
255    // of a function type includes any type qualifiers, the behavior is
256    // undefined."
257    if (Result->isFunctionType() && TypeQuals) {
258      // Get some location to point at, either the C or V location.
259      SourceLocation Loc;
260      if (TypeQuals & QualType::Const)
261        Loc = DS.getConstSpecLoc();
262      else {
263        assert((TypeQuals & QualType::Volatile) &&
264               "Has CV quals but not C or V?");
265        Loc = DS.getVolatileSpecLoc();
266      }
267      Diag(Loc, diag::warn_typecheck_function_qualifiers)
268        << Result << DS.getSourceRange();
269    }
270
271    // C++ [dcl.ref]p1:
272    //   Cv-qualified references are ill-formed except when the
273    //   cv-qualifiers are introduced through the use of a typedef
274    //   (7.1.3) or of a template type argument (14.3), in which
275    //   case the cv-qualifiers are ignored.
276    // FIXME: Shouldn't we be checking SCS_typedef here?
277    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
278        TypeQuals && Result->isReferenceType()) {
279      TypeQuals &= ~QualType::Const;
280      TypeQuals &= ~QualType::Volatile;
281    }
282
283    Result = Result.getQualifiedType(TypeQuals);
284  }
285  return Result;
286}
287
288static std::string getPrintableNameForEntity(DeclarationName Entity) {
289  if (Entity)
290    return Entity.getAsString();
291
292  return "type name";
293}
294
295/// \brief Build a pointer type.
296///
297/// \param T The type to which we'll be building a pointer.
298///
299/// \param Quals The cvr-qualifiers to be applied to the pointer type.
300///
301/// \param Loc The location of the entity whose type involves this
302/// pointer type or, if there is no such entity, the location of the
303/// type that will have pointer type.
304///
305/// \param Entity The name of the entity that involves the pointer
306/// type, if known.
307///
308/// \returns A suitable pointer type, if there are no
309/// errors. Otherwise, returns a NULL type.
310QualType Sema::BuildPointerType(QualType T, unsigned Quals,
311                                SourceLocation Loc, DeclarationName Entity) {
312  if (T->isReferenceType()) {
313    // C++ 8.3.2p4: There shall be no ... pointers to references ...
314    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
315      << getPrintableNameForEntity(Entity);
316    return QualType();
317  }
318
319  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
320  // object or incomplete types shall not be restrict-qualified."
321  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
322    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
323      << T;
324    Quals &= ~QualType::Restrict;
325  }
326
327  // Build the pointer type.
328  return Context.getPointerType(T).getQualifiedType(Quals);
329}
330
331/// \brief Build a reference type.
332///
333/// \param T The type to which we'll be building a reference.
334///
335/// \param Quals The cvr-qualifiers to be applied to the reference type.
336///
337/// \param Loc The location of the entity whose type involves this
338/// reference type or, if there is no such entity, the location of the
339/// type that will have reference type.
340///
341/// \param Entity The name of the entity that involves the reference
342/// type, if known.
343///
344/// \returns A suitable reference type, if there are no
345/// errors. Otherwise, returns a NULL type.
346QualType Sema::BuildReferenceType(QualType T, bool LValueRef, unsigned Quals,
347                                  SourceLocation Loc, DeclarationName Entity) {
348  if (LValueRef) {
349    if (const RValueReferenceType *R = T->getAsRValueReferenceType()) {
350      // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
351      //   reference to a type T, and attempt to create the type "lvalue
352      //   reference to cv TD" creates the type "lvalue reference to T".
353      // We use the qualifiers (restrict or none) of the original reference,
354      // not the new ones. This is consistent with GCC.
355      return Context.getLValueReferenceType(R->getPointeeType()).
356               getQualifiedType(T.getCVRQualifiers());
357    }
358  }
359  if (T->isReferenceType()) {
360    // C++ [dcl.ref]p4: There shall be no references to references.
361    //
362    // According to C++ DR 106, references to references are only
363    // diagnosed when they are written directly (e.g., "int & &"),
364    // but not when they happen via a typedef:
365    //
366    //   typedef int& intref;
367    //   typedef intref& intref2;
368    //
369    // Parser::ParserDeclaratorInternal diagnoses the case where
370    // references are written directly; here, we handle the
371    // collapsing of references-to-references as described in C++
372    // DR 106 and amended by C++ DR 540.
373    return T;
374  }
375
376  // C++ [dcl.ref]p1:
377  //   A declarator that specifies the type “reference to cv void”
378  //   is ill-formed.
379  if (T->isVoidType()) {
380    Diag(Loc, diag::err_reference_to_void);
381    return QualType();
382  }
383
384  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
385  // object or incomplete types shall not be restrict-qualified."
386  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
387    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
388      << T;
389    Quals &= ~QualType::Restrict;
390  }
391
392  // C++ [dcl.ref]p1:
393  //   [...] Cv-qualified references are ill-formed except when the
394  //   cv-qualifiers are introduced through the use of a typedef
395  //   (7.1.3) or of a template type argument (14.3), in which case
396  //   the cv-qualifiers are ignored.
397  //
398  // We diagnose extraneous cv-qualifiers for the non-typedef,
399  // non-template type argument case within the parser. Here, we just
400  // ignore any extraneous cv-qualifiers.
401  Quals &= ~QualType::Const;
402  Quals &= ~QualType::Volatile;
403
404  // Handle restrict on references.
405  if (LValueRef)
406    return Context.getLValueReferenceType(T).getQualifiedType(Quals);
407  return Context.getRValueReferenceType(T).getQualifiedType(Quals);
408}
409
410/// \brief Build an array type.
411///
412/// \param T The type of each element in the array.
413///
414/// \param ASM C99 array size modifier (e.g., '*', 'static').
415///
416/// \param ArraySize Expression describing the size of the array.
417///
418/// \param Quals The cvr-qualifiers to be applied to the array's
419/// element type.
420///
421/// \param Loc The location of the entity whose type involves this
422/// array type or, if there is no such entity, the location of the
423/// type that will have array type.
424///
425/// \param Entity The name of the entity that involves the array
426/// type, if known.
427///
428/// \returns A suitable array type, if there are no errors. Otherwise,
429/// returns a NULL type.
430QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
431                              Expr *ArraySize, unsigned Quals,
432                              SourceLocation Loc, DeclarationName Entity) {
433  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
434  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
435  if (RequireCompleteType(Loc, T,
436                             diag::err_illegal_decl_array_incomplete_type))
437    return QualType();
438
439  if (T->isFunctionType()) {
440    Diag(Loc, diag::err_illegal_decl_array_of_functions)
441      << getPrintableNameForEntity(Entity);
442    return QualType();
443  }
444
445  // C++ 8.3.2p4: There shall be no ... arrays of references ...
446  if (T->isReferenceType()) {
447    Diag(Loc, diag::err_illegal_decl_array_of_references)
448      << getPrintableNameForEntity(Entity);
449    return QualType();
450  }
451
452  if (const RecordType *EltTy = T->getAsRecordType()) {
453    // If the element type is a struct or union that contains a variadic
454    // array, accept it as a GNU extension: C99 6.7.2.1p2.
455    if (EltTy->getDecl()->hasFlexibleArrayMember())
456      Diag(Loc, diag::ext_flexible_array_in_array) << T;
457  } else if (T->isObjCInterfaceType()) {
458    Diag(Loc, diag::warn_objc_array_of_interfaces) << T;
459  }
460
461  // C99 6.7.5.2p1: The size expression shall have integer type.
462  if (ArraySize && !ArraySize->isTypeDependent() &&
463      !ArraySize->getType()->isIntegerType()) {
464    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
465      << ArraySize->getType() << ArraySize->getSourceRange();
466    ArraySize->Destroy(Context);
467    return QualType();
468  }
469  llvm::APSInt ConstVal(32);
470  if (!ArraySize) {
471    T = Context.getIncompleteArrayType(T, ASM, Quals);
472  } else if (ArraySize->isValueDependent()) {
473    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals);
474  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
475             (!T->isDependentType() && !T->isConstantSizeType())) {
476    // Per C99, a variable array is an array with either a non-constant
477    // size or an element type that has a non-constant-size
478    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals);
479  } else {
480    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
481    // have a value greater than zero.
482    if (ConstVal.isSigned()) {
483      if (ConstVal.isNegative()) {
484        Diag(ArraySize->getLocStart(),
485             diag::err_typecheck_negative_array_size)
486          << ArraySize->getSourceRange();
487        return QualType();
488      } else if (ConstVal == 0) {
489        // GCC accepts zero sized static arrays.
490        Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
491          << ArraySize->getSourceRange();
492      }
493    }
494    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
495  }
496  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
497  if (!getLangOptions().C99) {
498    if (ArraySize && !ArraySize->isTypeDependent() &&
499        !ArraySize->isValueDependent() &&
500        !ArraySize->isIntegerConstantExpr(Context))
501      Diag(Loc, diag::ext_vla);
502    else if (ASM != ArrayType::Normal || Quals != 0)
503      Diag(Loc, diag::ext_c99_array_usage);
504  }
505
506  return T;
507}
508
509/// \brief Build a function type.
510///
511/// This routine checks the function type according to C++ rules and
512/// under the assumption that the result type and parameter types have
513/// just been instantiated from a template. It therefore duplicates
514/// some of the behavior of GetTypeForDeclarator, but in a much
515/// simpler form that is only suitable for this narrow use case.
516///
517/// \param T The return type of the function.
518///
519/// \param ParamTypes The parameter types of the function. This array
520/// will be modified to account for adjustments to the types of the
521/// function parameters.
522///
523/// \param NumParamTypes The number of parameter types in ParamTypes.
524///
525/// \param Variadic Whether this is a variadic function type.
526///
527/// \param Quals The cvr-qualifiers to be applied to the function type.
528///
529/// \param Loc The location of the entity whose type involves this
530/// function type or, if there is no such entity, the location of the
531/// type that will have function type.
532///
533/// \param Entity The name of the entity that involves the function
534/// type, if known.
535///
536/// \returns A suitable function type, if there are no
537/// errors. Otherwise, returns a NULL type.
538QualType Sema::BuildFunctionType(QualType T,
539                                 QualType *ParamTypes,
540                                 unsigned NumParamTypes,
541                                 bool Variadic, unsigned Quals,
542                                 SourceLocation Loc, DeclarationName Entity) {
543  if (T->isArrayType() || T->isFunctionType()) {
544    Diag(Loc, diag::err_func_returning_array_function) << T;
545    return QualType();
546  }
547
548  bool Invalid = false;
549  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
550    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
551    if (ParamType->isVoidType()) {
552      Diag(Loc, diag::err_param_with_void_type);
553      Invalid = true;
554    }
555
556    ParamTypes[Idx] = ParamType;
557  }
558
559  if (Invalid)
560    return QualType();
561
562  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
563                                 Quals);
564}
565
566/// GetTypeForDeclarator - Convert the type for the specified
567/// declarator to Type instances. Skip the outermost Skip type
568/// objects.
569QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S, unsigned Skip) {
570  bool OmittedReturnType = false;
571
572  if (D.getContext() == Declarator::BlockLiteralContext
573      && Skip == 0
574      && !D.getDeclSpec().hasTypeSpecifier()
575      && (D.getNumTypeObjects() == 0
576          || (D.getNumTypeObjects() == 1
577              && D.getTypeObject(0).Kind == DeclaratorChunk::Function)))
578    OmittedReturnType = true;
579
580  // long long is a C99 feature.
581  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
582      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
583    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
584
585  // Determine the type of the declarator. Not all forms of declarator
586  // have a type.
587  QualType T;
588  switch (D.getKind()) {
589  case Declarator::DK_Abstract:
590  case Declarator::DK_Normal:
591  case Declarator::DK_Operator: {
592    const DeclSpec& DS = D.getDeclSpec();
593    if (OmittedReturnType)
594      // We default to a dependent type initially.  Can be modified by
595      // the first return statement.
596      T = Context.DependentTy;
597    else {
598      T = ConvertDeclSpecToType(DS);
599      if (T.isNull())
600        return T;
601    }
602    break;
603  }
604
605  case Declarator::DK_Constructor:
606  case Declarator::DK_Destructor:
607  case Declarator::DK_Conversion:
608    // Constructors and destructors don't have return types. Use
609    // "void" instead. Conversion operators will check their return
610    // types separately.
611    T = Context.VoidTy;
612    break;
613  }
614
615  // The name we're declaring, if any.
616  DeclarationName Name;
617  if (D.getIdentifier())
618    Name = D.getIdentifier();
619
620  // Walk the DeclTypeInfo, building the recursive type as we go.
621  // DeclTypeInfos are ordered from the identifier out, which is
622  // opposite of what we want :).
623  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
624    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1+Skip);
625    switch (DeclType.Kind) {
626    default: assert(0 && "Unknown decltype!");
627    case DeclaratorChunk::BlockPointer:
628      if (DeclType.Cls.TypeQuals)
629        Diag(D.getIdentifierLoc(), diag::err_qualified_block_pointer_type);
630      if (!T.getTypePtr()->isFunctionType())
631        Diag(D.getIdentifierLoc(), diag::err_nonfunction_block_type);
632      else
633        T = Context.getBlockPointerType(T);
634      break;
635    case DeclaratorChunk::Pointer:
636      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
637      break;
638    case DeclaratorChunk::Reference:
639      T = BuildReferenceType(T, DeclType.Ref.LValueRef,
640                             DeclType.Ref.HasRestrict ? QualType::Restrict : 0,
641                             DeclType.Loc, Name);
642      break;
643    case DeclaratorChunk::Array: {
644      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
645      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
646      ArrayType::ArraySizeModifier ASM;
647      if (ATI.isStar)
648        ASM = ArrayType::Star;
649      else if (ATI.hasStatic)
650        ASM = ArrayType::Static;
651      else
652        ASM = ArrayType::Normal;
653      T = BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals, DeclType.Loc, Name);
654      break;
655    }
656    case DeclaratorChunk::Function: {
657      // If the function declarator has a prototype (i.e. it is not () and
658      // does not have a K&R-style identifier list), then the arguments are part
659      // of the type, otherwise the argument list is ().
660      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
661
662      // C99 6.7.5.3p1: The return type may not be a function or array type.
663      if (T->isArrayType() || T->isFunctionType()) {
664        Diag(DeclType.Loc, diag::err_func_returning_array_function) << T;
665        T = Context.IntTy;
666        D.setInvalidType(true);
667      }
668
669      if (FTI.NumArgs == 0) {
670        if (getLangOptions().CPlusPlus) {
671          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
672          // function takes no arguments.
673          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic,FTI.TypeQuals);
674        } else if (FTI.isVariadic) {
675          // We allow a zero-parameter variadic function in C if the
676          // function is marked with the "overloadable"
677          // attribute. Scan for this attribute now.
678          bool Overloadable = false;
679          for (const AttributeList *Attrs = D.getAttributes();
680               Attrs; Attrs = Attrs->getNext()) {
681            if (Attrs->getKind() == AttributeList::AT_overloadable) {
682              Overloadable = true;
683              break;
684            }
685          }
686
687          if (!Overloadable)
688            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
689          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0);
690        } else {
691          // Simple void foo(), where the incoming T is the result type.
692          T = Context.getFunctionNoProtoType(T);
693        }
694      } else if (FTI.ArgInfo[0].Param == 0) {
695        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
696        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
697      } else {
698        // Otherwise, we have a function with an argument list that is
699        // potentially variadic.
700        llvm::SmallVector<QualType, 16> ArgTys;
701
702        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
703          ParmVarDecl *Param = (ParmVarDecl *)FTI.ArgInfo[i].Param;
704          QualType ArgTy = Param->getType();
705          assert(!ArgTy.isNull() && "Couldn't parse type?");
706
707          // Adjust the parameter type.
708          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
709
710          // Look for 'void'.  void is allowed only as a single argument to a
711          // function with no other parameters (C99 6.7.5.3p10).  We record
712          // int(void) as a FunctionProtoType with an empty argument list.
713          if (ArgTy->isVoidType()) {
714            // If this is something like 'float(int, void)', reject it.  'void'
715            // is an incomplete type (C99 6.2.5p19) and function decls cannot
716            // have arguments of incomplete type.
717            if (FTI.NumArgs != 1 || FTI.isVariadic) {
718              Diag(DeclType.Loc, diag::err_void_only_param);
719              ArgTy = Context.IntTy;
720              Param->setType(ArgTy);
721            } else if (FTI.ArgInfo[i].Ident) {
722              // Reject, but continue to parse 'int(void abc)'.
723              Diag(FTI.ArgInfo[i].IdentLoc,
724                   diag::err_param_with_void_type);
725              ArgTy = Context.IntTy;
726              Param->setType(ArgTy);
727            } else {
728              // Reject, but continue to parse 'float(const void)'.
729              if (ArgTy.getCVRQualifiers())
730                Diag(DeclType.Loc, diag::err_void_param_qualified);
731
732              // Do not add 'void' to the ArgTys list.
733              break;
734            }
735          } else if (!FTI.hasPrototype) {
736            if (ArgTy->isPromotableIntegerType()) {
737              ArgTy = Context.IntTy;
738            } else if (const BuiltinType* BTy = ArgTy->getAsBuiltinType()) {
739              if (BTy->getKind() == BuiltinType::Float)
740                ArgTy = Context.DoubleTy;
741            }
742          }
743
744          ArgTys.push_back(ArgTy);
745        }
746        T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
747                                    FTI.isVariadic, FTI.TypeQuals);
748      }
749      break;
750    }
751    case DeclaratorChunk::MemberPointer:
752      // The scope spec must refer to a class, or be dependent.
753      DeclContext *DC = computeDeclContext(DeclType.Mem.Scope());
754      QualType ClsType;
755      // FIXME: Extend for dependent types when it's actually supported.
756      // See ActOnCXXNestedNameSpecifier.
757      if (CXXRecordDecl *RD = dyn_cast_or_null<CXXRecordDecl>(DC)) {
758        ClsType = Context.getTagDeclType(RD);
759      } else {
760        if (DC) {
761          Diag(DeclType.Mem.Scope().getBeginLoc(),
762               diag::err_illegal_decl_mempointer_in_nonclass)
763            << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
764            << DeclType.Mem.Scope().getRange();
765        }
766        D.setInvalidType(true);
767        ClsType = Context.IntTy;
768      }
769
770      // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
771      //   with reference type, or "cv void."
772      if (T->isReferenceType()) {
773        Diag(DeclType.Loc, diag::err_illegal_decl_pointer_to_reference)
774          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
775        D.setInvalidType(true);
776        T = Context.IntTy;
777      }
778      if (T->isVoidType()) {
779        Diag(DeclType.Loc, diag::err_illegal_decl_mempointer_to_void)
780          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
781        T = Context.IntTy;
782      }
783
784      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
785      // object or incomplete types shall not be restrict-qualified."
786      if ((DeclType.Mem.TypeQuals & QualType::Restrict) &&
787          !T->isIncompleteOrObjectType()) {
788        Diag(DeclType.Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
789          << T;
790        DeclType.Mem.TypeQuals &= ~QualType::Restrict;
791      }
792
793      T = Context.getMemberPointerType(T, ClsType.getTypePtr()).
794                    getQualifiedType(DeclType.Mem.TypeQuals);
795
796      break;
797    }
798
799    if (T.isNull()) {
800      D.setInvalidType(true);
801      T = Context.IntTy;
802    }
803
804    // See if there are any attributes on this declarator chunk.
805    if (const AttributeList *AL = DeclType.getAttrs())
806      ProcessTypeAttributeList(T, AL);
807  }
808
809  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
810    const FunctionProtoType *FnTy = T->getAsFunctionProtoType();
811    assert(FnTy && "Why oh why is there not a FunctionProtoType here ?");
812
813    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
814    // for a nonstatic member function, the function type to which a pointer
815    // to member refers, or the top-level function type of a function typedef
816    // declaration.
817    if (FnTy->getTypeQuals() != 0 &&
818        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
819        ((D.getContext() != Declarator::MemberContext &&
820          (!D.getCXXScopeSpec().isSet() ||
821           !computeDeclContext(D.getCXXScopeSpec())->isRecord())) ||
822         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
823      if (D.isFunctionDeclarator())
824        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
825      else
826        Diag(D.getIdentifierLoc(),
827             diag::err_invalid_qualified_typedef_function_type_use);
828
829      // Strip the cv-quals from the type.
830      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
831                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
832    }
833  }
834
835  // If there were any type attributes applied to the decl itself (not the
836  // type, apply the type attribute to the type!)
837  if (const AttributeList *Attrs = D.getAttributes())
838    ProcessTypeAttributeList(T, Attrs);
839
840  return T;
841}
842
843/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
844/// declarator
845QualType Sema::ObjCGetTypeForMethodDefinition(DeclTy *D) {
846  ObjCMethodDecl *MDecl = cast<ObjCMethodDecl>(static_cast<Decl *>(D));
847  QualType T = MDecl->getResultType();
848  llvm::SmallVector<QualType, 16> ArgTys;
849
850  // Add the first two invisible argument types for self and _cmd.
851  if (MDecl->isInstanceMethod()) {
852    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
853    selfTy = Context.getPointerType(selfTy);
854    ArgTys.push_back(selfTy);
855  } else
856    ArgTys.push_back(Context.getObjCIdType());
857  ArgTys.push_back(Context.getObjCSelType());
858
859  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
860       E = MDecl->param_end(); PI != E; ++PI) {
861    QualType ArgTy = (*PI)->getType();
862    assert(!ArgTy.isNull() && "Couldn't parse type?");
863    ArgTy = adjustParameterType(ArgTy);
864    ArgTys.push_back(ArgTy);
865  }
866  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
867                              MDecl->isVariadic(), 0);
868  return T;
869}
870
871/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
872/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
873/// they point to and return true. If T1 and T2 aren't pointer types
874/// or pointer-to-member types, or if they are not similar at this
875/// level, returns false and leaves T1 and T2 unchanged. Top-level
876/// qualifiers on T1 and T2 are ignored. This function will typically
877/// be called in a loop that successively "unwraps" pointer and
878/// pointer-to-member types to compare them at each level.
879bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
880  const PointerType *T1PtrType = T1->getAsPointerType(),
881                    *T2PtrType = T2->getAsPointerType();
882  if (T1PtrType && T2PtrType) {
883    T1 = T1PtrType->getPointeeType();
884    T2 = T2PtrType->getPointeeType();
885    return true;
886  }
887
888  const MemberPointerType *T1MPType = T1->getAsMemberPointerType(),
889                          *T2MPType = T2->getAsMemberPointerType();
890  if (T1MPType && T2MPType &&
891      Context.getCanonicalType(T1MPType->getClass()) ==
892      Context.getCanonicalType(T2MPType->getClass())) {
893    T1 = T1MPType->getPointeeType();
894    T2 = T2MPType->getPointeeType();
895    return true;
896  }
897  return false;
898}
899
900Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
901  // C99 6.7.6: Type names have no identifier.  This is already validated by
902  // the parser.
903  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
904
905  QualType T = GetTypeForDeclarator(D, S);
906  if (T.isNull())
907    return true;
908
909  // Check that there are no default arguments (C++ only).
910  if (getLangOptions().CPlusPlus)
911    CheckExtraCXXDefaultArguments(D);
912
913  return T.getAsOpaquePtr();
914}
915
916
917
918//===----------------------------------------------------------------------===//
919// Type Attribute Processing
920//===----------------------------------------------------------------------===//
921
922/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
923/// specified type.  The attribute contains 1 argument, the id of the address
924/// space for the type.
925static void HandleAddressSpaceTypeAttribute(QualType &Type,
926                                            const AttributeList &Attr, Sema &S){
927  // If this type is already address space qualified, reject it.
928  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
929  // for two or more different address spaces."
930  if (Type.getAddressSpace()) {
931    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
932    return;
933  }
934
935  // Check the attribute arguments.
936  if (Attr.getNumArgs() != 1) {
937    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
938    return;
939  }
940  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
941  llvm::APSInt addrSpace(32);
942  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
943    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
944      << ASArgExpr->getSourceRange();
945    return;
946  }
947
948  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
949  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
950}
951
952/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
953/// specified type.  The attribute contains 1 argument, weak or strong.
954static void HandleObjCGCTypeAttribute(QualType &Type,
955                                      const AttributeList &Attr, Sema &S) {
956  if (Type.getObjCGCAttr() != QualType::GCNone) {
957    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
958    return;
959  }
960
961  // Check the attribute arguments.
962  if (!Attr.getParameterName()) {
963    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
964      << "objc_gc" << 1;
965    return;
966  }
967  QualType::GCAttrTypes GCAttr;
968  if (Attr.getNumArgs() != 0) {
969    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
970    return;
971  }
972  if (Attr.getParameterName()->isStr("weak"))
973    GCAttr = QualType::Weak;
974  else if (Attr.getParameterName()->isStr("strong"))
975    GCAttr = QualType::Strong;
976  else {
977    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
978      << "objc_gc" << Attr.getParameterName();
979    return;
980  }
981
982  Type = S.Context.getObjCGCQualType(Type, GCAttr);
983}
984
985void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
986  // Scan through and apply attributes to this type where it makes sense.  Some
987  // attributes (such as __address_space__, __vector_size__, etc) apply to the
988  // type, but others can be present in the type specifiers even though they
989  // apply to the decl.  Here we apply type attributes and ignore the rest.
990  for (; AL; AL = AL->getNext()) {
991    // If this is an attribute we can handle, do so now, otherwise, add it to
992    // the LeftOverAttrs list for rechaining.
993    switch (AL->getKind()) {
994    default: break;
995    case AttributeList::AT_address_space:
996      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
997      break;
998    case AttributeList::AT_objc_gc:
999      HandleObjCGCTypeAttribute(Result, *AL, *this);
1000      break;
1001    }
1002  }
1003}
1004
1005/// @brief Ensure that the type T is a complete type.
1006///
1007/// This routine checks whether the type @p T is complete in any
1008/// context where a complete type is required. If @p T is a complete
1009/// type, returns false. If @p T is a class template specialization,
1010/// this routine then attempts to perform class template
1011/// instantiation. If instantiation fails, or if @p T is incomplete
1012/// and cannot be completed, issues the diagnostic @p diag (giving it
1013/// the type @p T) and returns true.
1014///
1015/// @param Loc  The location in the source that the incomplete type
1016/// diagnostic should refer to.
1017///
1018/// @param T  The type that this routine is examining for completeness.
1019///
1020/// @param diag The diagnostic value (e.g.,
1021/// @c diag::err_typecheck_decl_incomplete_type) that will be used
1022/// for the error message if @p T is incomplete.
1023///
1024/// @param Range1  An optional range in the source code that will be a
1025/// part of the "incomplete type" error message.
1026///
1027/// @param Range2  An optional range in the source code that will be a
1028/// part of the "incomplete type" error message.
1029///
1030/// @param PrintType If non-NULL, the type that should be printed
1031/// instead of @p T. This parameter should be used when the type that
1032/// we're checking for incompleteness isn't the type that should be
1033/// displayed to the user, e.g., when T is a type and PrintType is a
1034/// pointer to T.
1035///
1036/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1037/// @c false otherwise.
1038bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, unsigned diag,
1039                                  SourceRange Range1, SourceRange Range2,
1040                                  QualType PrintType) {
1041  // If we have a complete type, we're done.
1042  if (!T->isIncompleteType())
1043    return false;
1044
1045  // If we have a class template specialization or a class member of a
1046  // class template specialization, try to instantiate it.
1047  if (const RecordType *Record = T->getAsRecordType()) {
1048    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
1049          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
1050      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
1051        // Update the class template specialization's location to
1052        // refer to the point of instantiation.
1053        if (Loc.isValid())
1054          ClassTemplateSpec->setLocation(Loc);
1055        return InstantiateClassTemplateSpecialization(ClassTemplateSpec,
1056                                             /*ExplicitInstantiation=*/false);
1057      }
1058    } else if (CXXRecordDecl *Rec
1059                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
1060      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
1061        // Find the class template specialization that surrounds this
1062        // member class.
1063        ClassTemplateSpecializationDecl *Spec = 0;
1064        for (DeclContext *Parent = Rec->getDeclContext();
1065             Parent && !Spec; Parent = Parent->getParent())
1066          Spec = dyn_cast<ClassTemplateSpecializationDecl>(Parent);
1067        assert(Spec && "Not a member of a class template specialization?");
1068        return InstantiateClass(Loc, Rec, Pattern,
1069                                Spec->getTemplateArgs(),
1070                                Spec->getNumTemplateArgs());
1071      }
1072    }
1073  }
1074
1075  if (PrintType.isNull())
1076    PrintType = T;
1077
1078  // We have an incomplete type. Produce a diagnostic.
1079  Diag(Loc, diag) << PrintType << Range1 << Range2;
1080
1081  // If the type was a forward declaration of a class/struct/union
1082  // type, produce
1083  const TagType *Tag = 0;
1084  if (const RecordType *Record = T->getAsRecordType())
1085    Tag = Record;
1086  else if (const EnumType *Enum = T->getAsEnumType())
1087    Tag = Enum;
1088
1089  if (Tag && !Tag->getDecl()->isInvalidDecl())
1090    Diag(Tag->getDecl()->getLocation(),
1091         Tag->isBeingDefined() ? diag::note_type_being_defined
1092                               : diag::note_forward_declaration)
1093        << QualType(Tag, 0);
1094
1095  return true;
1096}
1097
1098/// \brief Retrieve a version of the type 'T' that is qualified by the
1099/// nested-name-specifier contained in SS.
1100QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
1101  if (!SS.isSet() || SS.isInvalid() || T.isNull())
1102    return T;
1103
1104  NestedNameSpecifier *NNS
1105    = static_cast<NestedNameSpecifier *>(SS.getCurrentScopeRep());
1106  return Context.getQualifiedNameType(NNS, T);
1107}
1108