SemaType.cpp revision af40776922bc5c28e740adb0342faa09f35b0068
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/TypeLocVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26using namespace clang;
27
28/// \brief Perform adjustment on the parameter type of a function.
29///
30/// This routine adjusts the given parameter type @p T to the actual
31/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
32/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
33QualType Sema::adjustParameterType(QualType T) {
34  // C99 6.7.5.3p7:
35  //   A declaration of a parameter as "array of type" shall be
36  //   adjusted to "qualified pointer to type", where the type
37  //   qualifiers (if any) are those specified within the [ and ] of
38  //   the array type derivation.
39  if (T->isArrayType())
40    return Context.getArrayDecayedType(T);
41
42  // C99 6.7.5.3p8:
43  //   A declaration of a parameter as "function returning type"
44  //   shall be adjusted to "pointer to function returning type", as
45  //   in 6.3.2.1.
46  if (T->isFunctionType())
47    return Context.getPointerType(T);
48
49  return T;
50}
51
52
53
54/// isOmittedBlockReturnType - Return true if this declarator is missing a
55/// return type because this is a omitted return type on a block literal.
56static bool isOmittedBlockReturnType(const Declarator &D) {
57  if (D.getContext() != Declarator::BlockLiteralContext ||
58      D.getDeclSpec().hasTypeSpecifier())
59    return false;
60
61  if (D.getNumTypeObjects() == 0)
62    return true;   // ^{ ... }
63
64  if (D.getNumTypeObjects() == 1 &&
65      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
66    return true;   // ^(int X, float Y) { ... }
67
68  return false;
69}
70
71/// \brief Convert the specified declspec to the appropriate type
72/// object.
73/// \param D  the declarator containing the declaration specifier.
74/// \returns The type described by the declaration specifiers.  This function
75/// never returns null.
76static QualType ConvertDeclSpecToType(Declarator &TheDeclarator, Sema &TheSema){
77  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
78  // checking.
79  const DeclSpec &DS = TheDeclarator.getDeclSpec();
80  SourceLocation DeclLoc = TheDeclarator.getIdentifierLoc();
81  if (DeclLoc.isInvalid())
82    DeclLoc = DS.getSourceRange().getBegin();
83
84  ASTContext &Context = TheSema.Context;
85
86  QualType Result;
87  switch (DS.getTypeSpecType()) {
88  case DeclSpec::TST_void:
89    Result = Context.VoidTy;
90    break;
91  case DeclSpec::TST_char:
92    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
93      Result = Context.CharTy;
94    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
95      Result = Context.SignedCharTy;
96    else {
97      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
98             "Unknown TSS value");
99      Result = Context.UnsignedCharTy;
100    }
101    break;
102  case DeclSpec::TST_wchar:
103    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
104      Result = Context.WCharTy;
105    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
106      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
107        << DS.getSpecifierName(DS.getTypeSpecType());
108      Result = Context.getSignedWCharType();
109    } else {
110      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
111        "Unknown TSS value");
112      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
113        << DS.getSpecifierName(DS.getTypeSpecType());
114      Result = Context.getUnsignedWCharType();
115    }
116    break;
117  case DeclSpec::TST_char16:
118      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
119        "Unknown TSS value");
120      Result = Context.Char16Ty;
121    break;
122  case DeclSpec::TST_char32:
123      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
124        "Unknown TSS value");
125      Result = Context.Char32Ty;
126    break;
127  case DeclSpec::TST_unspecified:
128    // "<proto1,proto2>" is an objc qualified ID with a missing id.
129    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
130      Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
131                                                (ObjCProtocolDecl**)PQ,
132                                                DS.getNumProtocolQualifiers());
133      break;
134    }
135
136    // If this is a missing declspec in a block literal return context, then it
137    // is inferred from the return statements inside the block.
138    if (isOmittedBlockReturnType(TheDeclarator)) {
139      Result = Context.DependentTy;
140      break;
141    }
142
143    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
144    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
145    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
146    // Note that the one exception to this is function definitions, which are
147    // allowed to be completely missing a declspec.  This is handled in the
148    // parser already though by it pretending to have seen an 'int' in this
149    // case.
150    if (TheSema.getLangOptions().ImplicitInt) {
151      // In C89 mode, we only warn if there is a completely missing declspec
152      // when one is not allowed.
153      if (DS.isEmpty()) {
154        TheSema.Diag(DeclLoc, diag::ext_missing_declspec)
155          << DS.getSourceRange()
156        << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
157                                                 "int");
158      }
159    } else if (!DS.hasTypeSpecifier()) {
160      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
161      // "At least one type specifier shall be given in the declaration
162      // specifiers in each declaration, and in the specifier-qualifier list in
163      // each struct declaration and type name."
164      // FIXME: Does Microsoft really have the implicit int extension in C++?
165      if (TheSema.getLangOptions().CPlusPlus &&
166          !TheSema.getLangOptions().Microsoft) {
167        TheSema.Diag(DeclLoc, diag::err_missing_type_specifier)
168          << DS.getSourceRange();
169
170        // When this occurs in C++ code, often something is very broken with the
171        // value being declared, poison it as invalid so we don't get chains of
172        // errors.
173        TheDeclarator.setInvalidType(true);
174      } else {
175        TheSema.Diag(DeclLoc, diag::ext_missing_type_specifier)
176          << DS.getSourceRange();
177      }
178    }
179
180    // FALL THROUGH.
181  case DeclSpec::TST_int: {
182    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
183      switch (DS.getTypeSpecWidth()) {
184      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
185      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
186      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
187      case DeclSpec::TSW_longlong:
188        Result = Context.LongLongTy;
189
190        // long long is a C99 feature.
191        if (!TheSema.getLangOptions().C99 &&
192            !TheSema.getLangOptions().CPlusPlus0x)
193          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
194        break;
195      }
196    } else {
197      switch (DS.getTypeSpecWidth()) {
198      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
199      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
200      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
201      case DeclSpec::TSW_longlong:
202        Result = Context.UnsignedLongLongTy;
203
204        // long long is a C99 feature.
205        if (!TheSema.getLangOptions().C99 &&
206            !TheSema.getLangOptions().CPlusPlus0x)
207          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
208        break;
209      }
210    }
211    break;
212  }
213  case DeclSpec::TST_float: Result = Context.FloatTy; break;
214  case DeclSpec::TST_double:
215    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
216      Result = Context.LongDoubleTy;
217    else
218      Result = Context.DoubleTy;
219    break;
220  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
221  case DeclSpec::TST_decimal32:    // _Decimal32
222  case DeclSpec::TST_decimal64:    // _Decimal64
223  case DeclSpec::TST_decimal128:   // _Decimal128
224    TheSema.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
225    Result = Context.IntTy;
226    TheDeclarator.setInvalidType(true);
227    break;
228  case DeclSpec::TST_class:
229  case DeclSpec::TST_enum:
230  case DeclSpec::TST_union:
231  case DeclSpec::TST_struct: {
232    TypeDecl *D
233      = dyn_cast_or_null<TypeDecl>(static_cast<Decl *>(DS.getTypeRep()));
234    if (!D) {
235      // This can happen in C++ with ambiguous lookups.
236      Result = Context.IntTy;
237      TheDeclarator.setInvalidType(true);
238      break;
239    }
240
241    // If the type is deprecated or unavailable, diagnose it.
242    TheSema.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeLoc());
243
244    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
245           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
246
247    // TypeQuals handled by caller.
248    Result = Context.getTypeDeclType(D);
249
250    // In C++, make an ElaboratedType.
251    if (TheSema.getLangOptions().CPlusPlus) {
252      TagDecl::TagKind Tag
253        = TagDecl::getTagKindForTypeSpec(DS.getTypeSpecType());
254      Result = Context.getElaboratedType(Result, Tag);
255    }
256
257    if (D->isInvalidDecl())
258      TheDeclarator.setInvalidType(true);
259    break;
260  }
261  case DeclSpec::TST_typename: {
262    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
263           DS.getTypeSpecSign() == 0 &&
264           "Can't handle qualifiers on typedef names yet!");
265    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
266
267    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
268      if (const ObjCInterfaceType *
269            Interface = Result->getAs<ObjCInterfaceType>()) {
270        // It would be nice if protocol qualifiers were only stored with the
271        // ObjCObjectPointerType. Unfortunately, this isn't possible due
272        // to the following typedef idiom (which is uncommon, but allowed):
273        //
274        // typedef Foo<P> T;
275        // static void func() {
276        //   Foo<P> *yy;
277        //   T *zz;
278        // }
279        Result = Context.getObjCInterfaceType(Interface->getDecl(),
280                                              (ObjCProtocolDecl**)PQ,
281                                              DS.getNumProtocolQualifiers());
282      } else if (Result->isObjCIdType())
283        // id<protocol-list>
284        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
285                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
286      else if (Result->isObjCClassType()) {
287        // Class<protocol-list>
288        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinClassTy,
289                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
290      } else {
291        TheSema.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
292          << DS.getSourceRange();
293        TheDeclarator.setInvalidType(true);
294      }
295    }
296
297    // TypeQuals handled by caller.
298    break;
299  }
300  case DeclSpec::TST_typeofType:
301    // FIXME: Preserve type source info.
302    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
303    assert(!Result.isNull() && "Didn't get a type for typeof?");
304    // TypeQuals handled by caller.
305    Result = Context.getTypeOfType(Result);
306    break;
307  case DeclSpec::TST_typeofExpr: {
308    Expr *E = static_cast<Expr *>(DS.getTypeRep());
309    assert(E && "Didn't get an expression for typeof?");
310    // TypeQuals handled by caller.
311    Result = TheSema.BuildTypeofExprType(E);
312    if (Result.isNull()) {
313      Result = Context.IntTy;
314      TheDeclarator.setInvalidType(true);
315    }
316    break;
317  }
318  case DeclSpec::TST_decltype: {
319    Expr *E = static_cast<Expr *>(DS.getTypeRep());
320    assert(E && "Didn't get an expression for decltype?");
321    // TypeQuals handled by caller.
322    Result = TheSema.BuildDecltypeType(E);
323    if (Result.isNull()) {
324      Result = Context.IntTy;
325      TheDeclarator.setInvalidType(true);
326    }
327    break;
328  }
329  case DeclSpec::TST_auto: {
330    // TypeQuals handled by caller.
331    Result = Context.UndeducedAutoTy;
332    break;
333  }
334
335  case DeclSpec::TST_error:
336    Result = Context.IntTy;
337    TheDeclarator.setInvalidType(true);
338    break;
339  }
340
341  // Handle complex types.
342  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
343    if (TheSema.getLangOptions().Freestanding)
344      TheSema.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
345    Result = Context.getComplexType(Result);
346  }
347
348  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
349         "FIXME: imaginary types not supported yet!");
350
351  // See if there are any attributes on the declspec that apply to the type (as
352  // opposed to the decl).
353  if (const AttributeList *AL = DS.getAttributes())
354    TheSema.ProcessTypeAttributeList(Result, AL);
355
356  // Apply const/volatile/restrict qualifiers to T.
357  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
358
359    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
360    // or incomplete types shall not be restrict-qualified."  C++ also allows
361    // restrict-qualified references.
362    if (TypeQuals & DeclSpec::TQ_restrict) {
363      if (Result->isAnyPointerType() || Result->isReferenceType()) {
364        QualType EltTy;
365        if (Result->isObjCObjectPointerType())
366          EltTy = Result;
367        else
368          EltTy = Result->isPointerType() ?
369                    Result->getAs<PointerType>()->getPointeeType() :
370                    Result->getAs<ReferenceType>()->getPointeeType();
371
372        // If we have a pointer or reference, the pointee must have an object
373        // incomplete type.
374        if (!EltTy->isIncompleteOrObjectType()) {
375          TheSema.Diag(DS.getRestrictSpecLoc(),
376               diag::err_typecheck_invalid_restrict_invalid_pointee)
377            << EltTy << DS.getSourceRange();
378          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
379        }
380      } else {
381        TheSema.Diag(DS.getRestrictSpecLoc(),
382             diag::err_typecheck_invalid_restrict_not_pointer)
383          << Result << DS.getSourceRange();
384        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
385      }
386    }
387
388    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
389    // of a function type includes any type qualifiers, the behavior is
390    // undefined."
391    if (Result->isFunctionType() && TypeQuals) {
392      // Get some location to point at, either the C or V location.
393      SourceLocation Loc;
394      if (TypeQuals & DeclSpec::TQ_const)
395        Loc = DS.getConstSpecLoc();
396      else if (TypeQuals & DeclSpec::TQ_volatile)
397        Loc = DS.getVolatileSpecLoc();
398      else {
399        assert((TypeQuals & DeclSpec::TQ_restrict) &&
400               "Has CVR quals but not C, V, or R?");
401        Loc = DS.getRestrictSpecLoc();
402      }
403      TheSema.Diag(Loc, diag::warn_typecheck_function_qualifiers)
404        << Result << DS.getSourceRange();
405    }
406
407    // C++ [dcl.ref]p1:
408    //   Cv-qualified references are ill-formed except when the
409    //   cv-qualifiers are introduced through the use of a typedef
410    //   (7.1.3) or of a template type argument (14.3), in which
411    //   case the cv-qualifiers are ignored.
412    // FIXME: Shouldn't we be checking SCS_typedef here?
413    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
414        TypeQuals && Result->isReferenceType()) {
415      TypeQuals &= ~DeclSpec::TQ_const;
416      TypeQuals &= ~DeclSpec::TQ_volatile;
417    }
418
419    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
420    Result = Context.getQualifiedType(Result, Quals);
421  }
422
423  return Result;
424}
425
426static std::string getPrintableNameForEntity(DeclarationName Entity) {
427  if (Entity)
428    return Entity.getAsString();
429
430  return "type name";
431}
432
433/// \brief Build a pointer type.
434///
435/// \param T The type to which we'll be building a pointer.
436///
437/// \param Quals The cvr-qualifiers to be applied to the pointer type.
438///
439/// \param Loc The location of the entity whose type involves this
440/// pointer type or, if there is no such entity, the location of the
441/// type that will have pointer type.
442///
443/// \param Entity The name of the entity that involves the pointer
444/// type, if known.
445///
446/// \returns A suitable pointer type, if there are no
447/// errors. Otherwise, returns a NULL type.
448QualType Sema::BuildPointerType(QualType T, unsigned Quals,
449                                SourceLocation Loc, DeclarationName Entity) {
450  if (T->isReferenceType()) {
451    // C++ 8.3.2p4: There shall be no ... pointers to references ...
452    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
453      << getPrintableNameForEntity(Entity) << T;
454    return QualType();
455  }
456
457  Qualifiers Qs = Qualifiers::fromCVRMask(Quals);
458
459  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
460  // object or incomplete types shall not be restrict-qualified."
461  if (Qs.hasRestrict() && !T->isIncompleteOrObjectType()) {
462    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
463      << T;
464    Qs.removeRestrict();
465  }
466
467  // Build the pointer type.
468  return Context.getQualifiedType(Context.getPointerType(T), Qs);
469}
470
471/// \brief Build a reference type.
472///
473/// \param T The type to which we'll be building a reference.
474///
475/// \param CVR The cvr-qualifiers to be applied to the reference type.
476///
477/// \param Loc The location of the entity whose type involves this
478/// reference type or, if there is no such entity, the location of the
479/// type that will have reference type.
480///
481/// \param Entity The name of the entity that involves the reference
482/// type, if known.
483///
484/// \returns A suitable reference type, if there are no
485/// errors. Otherwise, returns a NULL type.
486QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
487                                  unsigned CVR, SourceLocation Loc,
488                                  DeclarationName Entity) {
489  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
490
491  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
492
493  // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
494  //   reference to a type T, and attempt to create the type "lvalue
495  //   reference to cv TD" creates the type "lvalue reference to T".
496  // We use the qualifiers (restrict or none) of the original reference,
497  // not the new ones. This is consistent with GCC.
498
499  // C++ [dcl.ref]p4: There shall be no references to references.
500  //
501  // According to C++ DR 106, references to references are only
502  // diagnosed when they are written directly (e.g., "int & &"),
503  // but not when they happen via a typedef:
504  //
505  //   typedef int& intref;
506  //   typedef intref& intref2;
507  //
508  // Parser::ParseDeclaratorInternal diagnoses the case where
509  // references are written directly; here, we handle the
510  // collapsing of references-to-references as described in C++
511  // DR 106 and amended by C++ DR 540.
512
513  // C++ [dcl.ref]p1:
514  //   A declarator that specifies the type "reference to cv void"
515  //   is ill-formed.
516  if (T->isVoidType()) {
517    Diag(Loc, diag::err_reference_to_void);
518    return QualType();
519  }
520
521  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
522  // object or incomplete types shall not be restrict-qualified."
523  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
524    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
525      << T;
526    Quals.removeRestrict();
527  }
528
529  // C++ [dcl.ref]p1:
530  //   [...] Cv-qualified references are ill-formed except when the
531  //   cv-qualifiers are introduced through the use of a typedef
532  //   (7.1.3) or of a template type argument (14.3), in which case
533  //   the cv-qualifiers are ignored.
534  //
535  // We diagnose extraneous cv-qualifiers for the non-typedef,
536  // non-template type argument case within the parser. Here, we just
537  // ignore any extraneous cv-qualifiers.
538  Quals.removeConst();
539  Quals.removeVolatile();
540
541  // Handle restrict on references.
542  if (LValueRef)
543    return Context.getQualifiedType(
544               Context.getLValueReferenceType(T, SpelledAsLValue), Quals);
545  return Context.getQualifiedType(Context.getRValueReferenceType(T), Quals);
546}
547
548/// \brief Build an array type.
549///
550/// \param T The type of each element in the array.
551///
552/// \param ASM C99 array size modifier (e.g., '*', 'static').
553///
554/// \param ArraySize Expression describing the size of the array.
555///
556/// \param Quals The cvr-qualifiers to be applied to the array's
557/// element type.
558///
559/// \param Loc The location of the entity whose type involves this
560/// array type or, if there is no such entity, the location of the
561/// type that will have array type.
562///
563/// \param Entity The name of the entity that involves the array
564/// type, if known.
565///
566/// \returns A suitable array type, if there are no errors. Otherwise,
567/// returns a NULL type.
568QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
569                              Expr *ArraySize, unsigned Quals,
570                              SourceRange Brackets, DeclarationName Entity) {
571
572  SourceLocation Loc = Brackets.getBegin();
573  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
574  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
575  // Not in C++, though. There we only dislike void.
576  if (getLangOptions().CPlusPlus) {
577    if (T->isVoidType()) {
578      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
579      return QualType();
580    }
581  } else {
582    if (RequireCompleteType(Loc, T,
583                            diag::err_illegal_decl_array_incomplete_type))
584      return QualType();
585  }
586
587  if (T->isFunctionType()) {
588    Diag(Loc, diag::err_illegal_decl_array_of_functions)
589      << getPrintableNameForEntity(Entity) << T;
590    return QualType();
591  }
592
593  // C++ 8.3.2p4: There shall be no ... arrays of references ...
594  if (T->isReferenceType()) {
595    Diag(Loc, diag::err_illegal_decl_array_of_references)
596      << getPrintableNameForEntity(Entity) << T;
597    return QualType();
598  }
599
600  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
601    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
602      << getPrintableNameForEntity(Entity);
603    return QualType();
604  }
605
606  if (const RecordType *EltTy = T->getAs<RecordType>()) {
607    // If the element type is a struct or union that contains a variadic
608    // array, accept it as a GNU extension: C99 6.7.2.1p2.
609    if (EltTy->getDecl()->hasFlexibleArrayMember())
610      Diag(Loc, diag::ext_flexible_array_in_array) << T;
611  } else if (T->isObjCInterfaceType()) {
612    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
613    return QualType();
614  }
615
616  // C99 6.7.5.2p1: The size expression shall have integer type.
617  if (ArraySize && !ArraySize->isTypeDependent() &&
618      !ArraySize->getType()->isIntegerType()) {
619    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
620      << ArraySize->getType() << ArraySize->getSourceRange();
621    ArraySize->Destroy(Context);
622    return QualType();
623  }
624  llvm::APSInt ConstVal(32);
625  if (!ArraySize) {
626    if (ASM == ArrayType::Star)
627      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
628    else
629      T = Context.getIncompleteArrayType(T, ASM, Quals);
630  } else if (ArraySize->isValueDependent()) {
631    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
632  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
633             (!T->isDependentType() && !T->isIncompleteType() &&
634              !T->isConstantSizeType())) {
635    // Per C99, a variable array is an array with either a non-constant
636    // size or an element type that has a non-constant-size
637    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
638  } else {
639    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
640    // have a value greater than zero.
641    if (ConstVal.isSigned() && ConstVal.isNegative()) {
642      Diag(ArraySize->getLocStart(),
643           diag::err_typecheck_negative_array_size)
644        << ArraySize->getSourceRange();
645      return QualType();
646    }
647    if (ConstVal == 0) {
648      // GCC accepts zero sized static arrays.
649      Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
650        << ArraySize->getSourceRange();
651    }
652    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
653  }
654  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
655  if (!getLangOptions().C99) {
656    if (ArraySize && !ArraySize->isTypeDependent() &&
657        !ArraySize->isValueDependent() &&
658        !ArraySize->isIntegerConstantExpr(Context))
659      Diag(Loc, getLangOptions().CPlusPlus? diag::err_vla_cxx : diag::ext_vla);
660    else if (ASM != ArrayType::Normal || Quals != 0)
661      Diag(Loc,
662           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
663                                     : diag::ext_c99_array_usage);
664  }
665
666  return T;
667}
668
669/// \brief Build an ext-vector type.
670///
671/// Run the required checks for the extended vector type.
672QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
673                                  SourceLocation AttrLoc) {
674
675  Expr *Arg = (Expr *)ArraySize.get();
676
677  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
678  // in conjunction with complex types (pointers, arrays, functions, etc.).
679  if (!T->isDependentType() &&
680      !T->isIntegerType() && !T->isRealFloatingType()) {
681    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
682    return QualType();
683  }
684
685  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
686    llvm::APSInt vecSize(32);
687    if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
688      Diag(AttrLoc, diag::err_attribute_argument_not_int)
689      << "ext_vector_type" << Arg->getSourceRange();
690      return QualType();
691    }
692
693    // unlike gcc's vector_size attribute, the size is specified as the
694    // number of elements, not the number of bytes.
695    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
696
697    if (vectorSize == 0) {
698      Diag(AttrLoc, diag::err_attribute_zero_size)
699      << Arg->getSourceRange();
700      return QualType();
701    }
702
703    if (!T->isDependentType())
704      return Context.getExtVectorType(T, vectorSize);
705  }
706
707  return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
708                                                AttrLoc);
709}
710
711/// \brief Build a function type.
712///
713/// This routine checks the function type according to C++ rules and
714/// under the assumption that the result type and parameter types have
715/// just been instantiated from a template. It therefore duplicates
716/// some of the behavior of GetTypeForDeclarator, but in a much
717/// simpler form that is only suitable for this narrow use case.
718///
719/// \param T The return type of the function.
720///
721/// \param ParamTypes The parameter types of the function. This array
722/// will be modified to account for adjustments to the types of the
723/// function parameters.
724///
725/// \param NumParamTypes The number of parameter types in ParamTypes.
726///
727/// \param Variadic Whether this is a variadic function type.
728///
729/// \param Quals The cvr-qualifiers to be applied to the function type.
730///
731/// \param Loc The location of the entity whose type involves this
732/// function type or, if there is no such entity, the location of the
733/// type that will have function type.
734///
735/// \param Entity The name of the entity that involves the function
736/// type, if known.
737///
738/// \returns A suitable function type, if there are no
739/// errors. Otherwise, returns a NULL type.
740QualType Sema::BuildFunctionType(QualType T,
741                                 QualType *ParamTypes,
742                                 unsigned NumParamTypes,
743                                 bool Variadic, unsigned Quals,
744                                 SourceLocation Loc, DeclarationName Entity) {
745  if (T->isArrayType() || T->isFunctionType()) {
746    Diag(Loc, diag::err_func_returning_array_function)
747      << T->isFunctionType() << T;
748    return QualType();
749  }
750
751  bool Invalid = false;
752  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
753    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
754    if (ParamType->isVoidType()) {
755      Diag(Loc, diag::err_param_with_void_type);
756      Invalid = true;
757    }
758
759    ParamTypes[Idx] = ParamType;
760  }
761
762  if (Invalid)
763    return QualType();
764
765  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
766                                 Quals);
767}
768
769/// \brief Build a member pointer type \c T Class::*.
770///
771/// \param T the type to which the member pointer refers.
772/// \param Class the class type into which the member pointer points.
773/// \param CVR Qualifiers applied to the member pointer type
774/// \param Loc the location where this type begins
775/// \param Entity the name of the entity that will have this member pointer type
776///
777/// \returns a member pointer type, if successful, or a NULL type if there was
778/// an error.
779QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
780                                      unsigned CVR, SourceLocation Loc,
781                                      DeclarationName Entity) {
782  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
783
784  // Verify that we're not building a pointer to pointer to function with
785  // exception specification.
786  if (CheckDistantExceptionSpec(T)) {
787    Diag(Loc, diag::err_distant_exception_spec);
788
789    // FIXME: If we're doing this as part of template instantiation,
790    // we should return immediately.
791
792    // Build the type anyway, but use the canonical type so that the
793    // exception specifiers are stripped off.
794    T = Context.getCanonicalType(T);
795  }
796
797  // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
798  //   with reference type, or "cv void."
799  if (T->isReferenceType()) {
800    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
801      << (Entity? Entity.getAsString() : "type name") << T;
802    return QualType();
803  }
804
805  if (T->isVoidType()) {
806    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
807      << (Entity? Entity.getAsString() : "type name");
808    return QualType();
809  }
810
811  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
812  // object or incomplete types shall not be restrict-qualified."
813  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
814    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
815      << T;
816
817    // FIXME: If we're doing this as part of template instantiation,
818    // we should return immediately.
819    Quals.removeRestrict();
820  }
821
822  if (!Class->isDependentType() && !Class->isRecordType()) {
823    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
824    return QualType();
825  }
826
827  return Context.getQualifiedType(
828           Context.getMemberPointerType(T, Class.getTypePtr()), Quals);
829}
830
831/// \brief Build a block pointer type.
832///
833/// \param T The type to which we'll be building a block pointer.
834///
835/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
836///
837/// \param Loc The location of the entity whose type involves this
838/// block pointer type or, if there is no such entity, the location of the
839/// type that will have block pointer type.
840///
841/// \param Entity The name of the entity that involves the block pointer
842/// type, if known.
843///
844/// \returns A suitable block pointer type, if there are no
845/// errors. Otherwise, returns a NULL type.
846QualType Sema::BuildBlockPointerType(QualType T, unsigned CVR,
847                                     SourceLocation Loc,
848                                     DeclarationName Entity) {
849  if (!T->isFunctionType()) {
850    Diag(Loc, diag::err_nonfunction_block_type);
851    return QualType();
852  }
853
854  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
855  return Context.getQualifiedType(Context.getBlockPointerType(T), Quals);
856}
857
858QualType Sema::GetTypeFromParser(TypeTy *Ty, TypeSourceInfo **TInfo) {
859  QualType QT = QualType::getFromOpaquePtr(Ty);
860  if (QT.isNull()) {
861    if (TInfo) *TInfo = 0;
862    return QualType();
863  }
864
865  TypeSourceInfo *DI = 0;
866  if (LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
867    QT = LIT->getType();
868    DI = LIT->getTypeSourceInfo();
869  }
870
871  if (TInfo) *TInfo = DI;
872  return QT;
873}
874
875/// GetTypeForDeclarator - Convert the type for the specified
876/// declarator to Type instances.
877///
878/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
879/// owns the declaration of a type (e.g., the definition of a struct
880/// type), then *OwnedDecl will receive the owned declaration.
881QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
882                                    TypeSourceInfo **TInfo,
883                                    TagDecl **OwnedDecl) {
884  // Determine the type of the declarator. Not all forms of declarator
885  // have a type.
886  QualType T;
887
888  switch (D.getName().getKind()) {
889  case UnqualifiedId::IK_Identifier:
890  case UnqualifiedId::IK_OperatorFunctionId:
891  case UnqualifiedId::IK_LiteralOperatorId:
892  case UnqualifiedId::IK_TemplateId:
893    T = ConvertDeclSpecToType(D, *this);
894
895    if (!D.isInvalidType() && OwnedDecl && D.getDeclSpec().isTypeSpecOwned())
896      *OwnedDecl = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
897    break;
898
899  case UnqualifiedId::IK_ConstructorName:
900  case UnqualifiedId::IK_DestructorName:
901    // Constructors and destructors don't have return types. Use
902    // "void" instead.
903    T = Context.VoidTy;
904    break;
905
906  case UnqualifiedId::IK_ConversionFunctionId:
907    // The result type of a conversion function is the type that it
908    // converts to.
909    T = GetTypeFromParser(D.getName().ConversionFunctionId);
910    break;
911  }
912
913  if (T.isNull())
914    return T;
915
916  if (T == Context.UndeducedAutoTy) {
917    int Error = -1;
918
919    switch (D.getContext()) {
920    case Declarator::KNRTypeListContext:
921      assert(0 && "K&R type lists aren't allowed in C++");
922      break;
923    case Declarator::PrototypeContext:
924      Error = 0; // Function prototype
925      break;
926    case Declarator::MemberContext:
927      switch (cast<TagDecl>(CurContext)->getTagKind()) {
928      case TagDecl::TK_enum: assert(0 && "unhandled tag kind"); break;
929      case TagDecl::TK_struct: Error = 1; /* Struct member */ break;
930      case TagDecl::TK_union:  Error = 2; /* Union member */ break;
931      case TagDecl::TK_class:  Error = 3; /* Class member */ break;
932      }
933      break;
934    case Declarator::CXXCatchContext:
935      Error = 4; // Exception declaration
936      break;
937    case Declarator::TemplateParamContext:
938      Error = 5; // Template parameter
939      break;
940    case Declarator::BlockLiteralContext:
941      Error = 6;  // Block literal
942      break;
943    case Declarator::FileContext:
944    case Declarator::BlockContext:
945    case Declarator::ForContext:
946    case Declarator::ConditionContext:
947    case Declarator::TypeNameContext:
948      break;
949    }
950
951    if (Error != -1) {
952      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
953        << Error;
954      T = Context.IntTy;
955      D.setInvalidType(true);
956    }
957  }
958
959  // The name we're declaring, if any.
960  DeclarationName Name;
961  if (D.getIdentifier())
962    Name = D.getIdentifier();
963
964  // Walk the DeclTypeInfo, building the recursive type as we go.
965  // DeclTypeInfos are ordered from the identifier out, which is
966  // opposite of what we want :).
967  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
968    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
969    switch (DeclType.Kind) {
970    default: assert(0 && "Unknown decltype!");
971    case DeclaratorChunk::BlockPointer:
972      // If blocks are disabled, emit an error.
973      if (!LangOpts.Blocks)
974        Diag(DeclType.Loc, diag::err_blocks_disable);
975
976      T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(),
977                                Name);
978      break;
979    case DeclaratorChunk::Pointer:
980      // Verify that we're not building a pointer to pointer to function with
981      // exception specification.
982      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
983        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
984        D.setInvalidType(true);
985        // Build the type anyway.
986      }
987      if (getLangOptions().ObjC1 && T->isObjCInterfaceType()) {
988        const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>();
989        T = Context.getObjCObjectPointerType(T,
990                                         (ObjCProtocolDecl **)OIT->qual_begin(),
991                                         OIT->getNumProtocols());
992        break;
993      }
994      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
995      break;
996    case DeclaratorChunk::Reference: {
997      Qualifiers Quals;
998      if (DeclType.Ref.HasRestrict) Quals.addRestrict();
999
1000      // Verify that we're not building a reference to pointer to function with
1001      // exception specification.
1002      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1003        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1004        D.setInvalidType(true);
1005        // Build the type anyway.
1006      }
1007      T = BuildReferenceType(T, DeclType.Ref.LValueRef, Quals,
1008                             DeclType.Loc, Name);
1009      break;
1010    }
1011    case DeclaratorChunk::Array: {
1012      // Verify that we're not building an array of pointers to function with
1013      // exception specification.
1014      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1015        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1016        D.setInvalidType(true);
1017        // Build the type anyway.
1018      }
1019      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1020      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
1021      ArrayType::ArraySizeModifier ASM;
1022      if (ATI.isStar)
1023        ASM = ArrayType::Star;
1024      else if (ATI.hasStatic)
1025        ASM = ArrayType::Static;
1026      else
1027        ASM = ArrayType::Normal;
1028      if (ASM == ArrayType::Star &&
1029          D.getContext() != Declarator::PrototypeContext) {
1030        // FIXME: This check isn't quite right: it allows star in prototypes
1031        // for function definitions, and disallows some edge cases detailed
1032        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
1033        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
1034        ASM = ArrayType::Normal;
1035        D.setInvalidType(true);
1036      }
1037      T = BuildArrayType(T, ASM, ArraySize,
1038                         Qualifiers::fromCVRMask(ATI.TypeQuals),
1039                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
1040      break;
1041    }
1042    case DeclaratorChunk::Function: {
1043      // If the function declarator has a prototype (i.e. it is not () and
1044      // does not have a K&R-style identifier list), then the arguments are part
1045      // of the type, otherwise the argument list is ().
1046      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1047
1048      // C99 6.7.5.3p1: The return type may not be a function or array type.
1049      // For conversion functions, we'll diagnose this particular error later.
1050      if ((T->isArrayType() || T->isFunctionType()) &&
1051          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
1052        Diag(DeclType.Loc, diag::err_func_returning_array_function)
1053          << T->isFunctionType() << T;
1054        T = Context.IntTy;
1055        D.setInvalidType(true);
1056      }
1057
1058      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
1059        // C++ [dcl.fct]p6:
1060        //   Types shall not be defined in return or parameter types.
1061        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
1062        if (Tag->isDefinition())
1063          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
1064            << Context.getTypeDeclType(Tag);
1065      }
1066
1067      // Exception specs are not allowed in typedefs. Complain, but add it
1068      // anyway.
1069      if (FTI.hasExceptionSpec &&
1070          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1071        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
1072
1073      if (FTI.NumArgs == 0) {
1074        if (getLangOptions().CPlusPlus) {
1075          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
1076          // function takes no arguments.
1077          llvm::SmallVector<QualType, 4> Exceptions;
1078          Exceptions.reserve(FTI.NumExceptions);
1079          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1080            // FIXME: Preserve type source info.
1081            QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1082            // Check that the type is valid for an exception spec, and drop it
1083            // if not.
1084            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1085              Exceptions.push_back(ET);
1086          }
1087          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
1088                                      FTI.hasExceptionSpec,
1089                                      FTI.hasAnyExceptionSpec,
1090                                      Exceptions.size(), Exceptions.data());
1091        } else if (FTI.isVariadic) {
1092          // We allow a zero-parameter variadic function in C if the
1093          // function is marked with the "overloadable"
1094          // attribute. Scan for this attribute now.
1095          bool Overloadable = false;
1096          for (const AttributeList *Attrs = D.getAttributes();
1097               Attrs; Attrs = Attrs->getNext()) {
1098            if (Attrs->getKind() == AttributeList::AT_overloadable) {
1099              Overloadable = true;
1100              break;
1101            }
1102          }
1103
1104          if (!Overloadable)
1105            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
1106          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0);
1107        } else {
1108          // Simple void foo(), where the incoming T is the result type.
1109          T = Context.getFunctionNoProtoType(T);
1110        }
1111      } else if (FTI.ArgInfo[0].Param == 0) {
1112        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
1113        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
1114        D.setInvalidType(true);
1115      } else {
1116        // Otherwise, we have a function with an argument list that is
1117        // potentially variadic.
1118        llvm::SmallVector<QualType, 16> ArgTys;
1119
1120        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1121          ParmVarDecl *Param =
1122            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
1123          QualType ArgTy = Param->getType();
1124          assert(!ArgTy.isNull() && "Couldn't parse type?");
1125
1126          // Adjust the parameter type.
1127          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1128
1129          // Look for 'void'.  void is allowed only as a single argument to a
1130          // function with no other parameters (C99 6.7.5.3p10).  We record
1131          // int(void) as a FunctionProtoType with an empty argument list.
1132          if (ArgTy->isVoidType()) {
1133            // If this is something like 'float(int, void)', reject it.  'void'
1134            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1135            // have arguments of incomplete type.
1136            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1137              Diag(DeclType.Loc, diag::err_void_only_param);
1138              ArgTy = Context.IntTy;
1139              Param->setType(ArgTy);
1140            } else if (FTI.ArgInfo[i].Ident) {
1141              // Reject, but continue to parse 'int(void abc)'.
1142              Diag(FTI.ArgInfo[i].IdentLoc,
1143                   diag::err_param_with_void_type);
1144              ArgTy = Context.IntTy;
1145              Param->setType(ArgTy);
1146            } else {
1147              // Reject, but continue to parse 'float(const void)'.
1148              if (ArgTy.hasQualifiers())
1149                Diag(DeclType.Loc, diag::err_void_param_qualified);
1150
1151              // Do not add 'void' to the ArgTys list.
1152              break;
1153            }
1154          } else if (!FTI.hasPrototype) {
1155            if (ArgTy->isPromotableIntegerType()) {
1156              ArgTy = Context.getPromotedIntegerType(ArgTy);
1157            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
1158              if (BTy->getKind() == BuiltinType::Float)
1159                ArgTy = Context.DoubleTy;
1160            }
1161          }
1162
1163          ArgTys.push_back(ArgTy);
1164        }
1165
1166        llvm::SmallVector<QualType, 4> Exceptions;
1167        Exceptions.reserve(FTI.NumExceptions);
1168        for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1169          // FIXME: Preserve type source info.
1170          QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1171          // Check that the type is valid for an exception spec, and drop it if
1172          // not.
1173          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1174            Exceptions.push_back(ET);
1175        }
1176
1177        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
1178                                    FTI.isVariadic, FTI.TypeQuals,
1179                                    FTI.hasExceptionSpec,
1180                                    FTI.hasAnyExceptionSpec,
1181                                    Exceptions.size(), Exceptions.data());
1182      }
1183      break;
1184    }
1185    case DeclaratorChunk::MemberPointer:
1186      // Verify that we're not building a pointer to pointer to function with
1187      // exception specification.
1188      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1189        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1190        D.setInvalidType(true);
1191        // Build the type anyway.
1192      }
1193      // The scope spec must refer to a class, or be dependent.
1194      QualType ClsType;
1195      if (isDependentScopeSpecifier(DeclType.Mem.Scope())
1196            || dyn_cast_or_null<CXXRecordDecl>(
1197                                   computeDeclContext(DeclType.Mem.Scope()))) {
1198        NestedNameSpecifier *NNS
1199          = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
1200        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
1201        switch (NNS->getKind()) {
1202        case NestedNameSpecifier::Identifier:
1203          ClsType = Context.getTypenameType(NNSPrefix, NNS->getAsIdentifier());
1204          break;
1205
1206        case NestedNameSpecifier::Namespace:
1207        case NestedNameSpecifier::Global:
1208          llvm_unreachable("Nested-name-specifier must name a type");
1209          break;
1210
1211        case NestedNameSpecifier::TypeSpec:
1212        case NestedNameSpecifier::TypeSpecWithTemplate:
1213          ClsType = QualType(NNS->getAsType(), 0);
1214          if (NNSPrefix)
1215            ClsType = Context.getQualifiedNameType(NNSPrefix, ClsType);
1216          break;
1217        }
1218      } else {
1219        Diag(DeclType.Mem.Scope().getBeginLoc(),
1220             diag::err_illegal_decl_mempointer_in_nonclass)
1221          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1222          << DeclType.Mem.Scope().getRange();
1223        D.setInvalidType(true);
1224      }
1225
1226      if (!ClsType.isNull())
1227        T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals,
1228                                   DeclType.Loc, D.getIdentifier());
1229      if (T.isNull()) {
1230        T = Context.IntTy;
1231        D.setInvalidType(true);
1232      }
1233      break;
1234    }
1235
1236    if (T.isNull()) {
1237      D.setInvalidType(true);
1238      T = Context.IntTy;
1239    }
1240
1241    // See if there are any attributes on this declarator chunk.
1242    if (const AttributeList *AL = DeclType.getAttrs())
1243      ProcessTypeAttributeList(T, AL);
1244  }
1245
1246  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1247    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
1248    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
1249
1250    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1251    // for a nonstatic member function, the function type to which a pointer
1252    // to member refers, or the top-level function type of a function typedef
1253    // declaration.
1254    if (FnTy->getTypeQuals() != 0 &&
1255        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1256        ((D.getContext() != Declarator::MemberContext &&
1257          (!D.getCXXScopeSpec().isSet() ||
1258           !computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)
1259              ->isRecord())) ||
1260         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1261      if (D.isFunctionDeclarator())
1262        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1263      else
1264        Diag(D.getIdentifierLoc(),
1265             diag::err_invalid_qualified_typedef_function_type_use);
1266
1267      // Strip the cv-quals from the type.
1268      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1269                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
1270    }
1271  }
1272
1273  // If there were any type attributes applied to the decl itself (not the
1274  // type, apply the type attribute to the type!)
1275  if (const AttributeList *Attrs = D.getAttributes())
1276    ProcessTypeAttributeList(T, Attrs);
1277
1278  if (TInfo) {
1279    if (D.isInvalidType())
1280      *TInfo = 0;
1281    else
1282      *TInfo = GetTypeSourceInfoForDeclarator(D, T);
1283  }
1284
1285  return T;
1286}
1287
1288namespace {
1289  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
1290    const DeclSpec &DS;
1291
1292  public:
1293    TypeSpecLocFiller(const DeclSpec &DS) : DS(DS) {}
1294
1295    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1296      Visit(TL.getUnqualifiedLoc());
1297    }
1298    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
1299      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1300    }
1301    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
1302      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1303
1304      if (DS.getProtocolQualifiers()) {
1305        assert(TL.getNumProtocols() > 0);
1306        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1307        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1308        TL.setRAngleLoc(DS.getSourceRange().getEnd());
1309        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
1310          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1311      } else {
1312        assert(TL.getNumProtocols() == 0);
1313        TL.setLAngleLoc(SourceLocation());
1314        TL.setRAngleLoc(SourceLocation());
1315      }
1316    }
1317    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1318      assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1319
1320      TL.setStarLoc(SourceLocation());
1321
1322      if (DS.getProtocolQualifiers()) {
1323        assert(TL.getNumProtocols() > 0);
1324        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1325        TL.setHasProtocolsAsWritten(true);
1326        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1327        TL.setRAngleLoc(DS.getSourceRange().getEnd());
1328        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
1329          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1330
1331      } else {
1332        assert(TL.getNumProtocols() == 0);
1333        TL.setHasProtocolsAsWritten(false);
1334        TL.setLAngleLoc(SourceLocation());
1335        TL.setRAngleLoc(SourceLocation());
1336      }
1337
1338      // This might not have been written with an inner type.
1339      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
1340        TL.setHasBaseTypeAsWritten(false);
1341        TL.getBaseTypeLoc().initialize(SourceLocation());
1342      } else {
1343        TL.setHasBaseTypeAsWritten(true);
1344        Visit(TL.getBaseTypeLoc());
1345      }
1346    }
1347    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
1348      TypeSourceInfo *TInfo = 0;
1349      Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1350
1351      // If we got no declarator info from previous Sema routines,
1352      // just fill with the typespec loc.
1353      if (!TInfo) {
1354        TL.initialize(DS.getTypeSpecTypeLoc());
1355        return;
1356      }
1357
1358      TemplateSpecializationTypeLoc OldTL =
1359        cast<TemplateSpecializationTypeLoc>(TInfo->getTypeLoc());
1360      TL.copy(OldTL);
1361    }
1362    void VisitTypeLoc(TypeLoc TL) {
1363      // FIXME: add other typespec types and change this to an assert.
1364      TL.initialize(DS.getTypeSpecTypeLoc());
1365    }
1366  };
1367
1368  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
1369    const DeclaratorChunk &Chunk;
1370
1371  public:
1372    DeclaratorLocFiller(const DeclaratorChunk &Chunk) : Chunk(Chunk) {}
1373
1374    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1375      llvm_unreachable("qualified type locs not expected here!");
1376    }
1377
1378    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
1379      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
1380      TL.setCaretLoc(Chunk.Loc);
1381    }
1382    void VisitPointerTypeLoc(PointerTypeLoc TL) {
1383      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1384      TL.setStarLoc(Chunk.Loc);
1385    }
1386    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1387      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1388      TL.setStarLoc(Chunk.Loc);
1389      TL.setHasBaseTypeAsWritten(true);
1390      TL.setHasProtocolsAsWritten(false);
1391      TL.setLAngleLoc(SourceLocation());
1392      TL.setRAngleLoc(SourceLocation());
1393    }
1394    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
1395      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
1396      TL.setStarLoc(Chunk.Loc);
1397      // FIXME: nested name specifier
1398    }
1399    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
1400      assert(Chunk.Kind == DeclaratorChunk::Reference);
1401      // 'Amp' is misleading: this might have been originally
1402      /// spelled with AmpAmp.
1403      TL.setAmpLoc(Chunk.Loc);
1404    }
1405    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
1406      assert(Chunk.Kind == DeclaratorChunk::Reference);
1407      assert(!Chunk.Ref.LValueRef);
1408      TL.setAmpAmpLoc(Chunk.Loc);
1409    }
1410    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
1411      assert(Chunk.Kind == DeclaratorChunk::Array);
1412      TL.setLBracketLoc(Chunk.Loc);
1413      TL.setRBracketLoc(Chunk.EndLoc);
1414      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
1415    }
1416    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
1417      assert(Chunk.Kind == DeclaratorChunk::Function);
1418      TL.setLParenLoc(Chunk.Loc);
1419      TL.setRParenLoc(Chunk.EndLoc);
1420
1421      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
1422      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
1423        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
1424        TL.setArg(tpi++, Param);
1425      }
1426      // FIXME: exception specs
1427    }
1428
1429    void VisitTypeLoc(TypeLoc TL) {
1430      llvm_unreachable("unsupported TypeLoc kind in declarator!");
1431    }
1432  };
1433}
1434
1435/// \brief Create and instantiate a TypeSourceInfo with type source information.
1436///
1437/// \param T QualType referring to the type as written in source code.
1438TypeSourceInfo *
1439Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T) {
1440  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
1441  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
1442
1443  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1444    DeclaratorLocFiller(D.getTypeObject(i)).Visit(CurrTL);
1445    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
1446  }
1447
1448  TypeSpecLocFiller(D.getDeclSpec()).Visit(CurrTL);
1449
1450  return TInfo;
1451}
1452
1453/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
1454QualType Sema::CreateLocInfoType(QualType T, TypeSourceInfo *TInfo) {
1455  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
1456  // and Sema during declaration parsing. Try deallocating/caching them when
1457  // it's appropriate, instead of allocating them and keeping them around.
1458  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), 8);
1459  new (LocT) LocInfoType(T, TInfo);
1460  assert(LocT->getTypeClass() != T->getTypeClass() &&
1461         "LocInfoType's TypeClass conflicts with an existing Type class");
1462  return QualType(LocT, 0);
1463}
1464
1465void LocInfoType::getAsStringInternal(std::string &Str,
1466                                      const PrintingPolicy &Policy) const {
1467  assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
1468         " was used directly instead of getting the QualType through"
1469         " GetTypeFromParser");
1470}
1471
1472/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
1473/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
1474/// they point to and return true. If T1 and T2 aren't pointer types
1475/// or pointer-to-member types, or if they are not similar at this
1476/// level, returns false and leaves T1 and T2 unchanged. Top-level
1477/// qualifiers on T1 and T2 are ignored. This function will typically
1478/// be called in a loop that successively "unwraps" pointer and
1479/// pointer-to-member types to compare them at each level.
1480bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
1481  const PointerType *T1PtrType = T1->getAs<PointerType>(),
1482                    *T2PtrType = T2->getAs<PointerType>();
1483  if (T1PtrType && T2PtrType) {
1484    T1 = T1PtrType->getPointeeType();
1485    T2 = T2PtrType->getPointeeType();
1486    return true;
1487  }
1488
1489  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
1490                          *T2MPType = T2->getAs<MemberPointerType>();
1491  if (T1MPType && T2MPType &&
1492      Context.getCanonicalType(T1MPType->getClass()) ==
1493      Context.getCanonicalType(T2MPType->getClass())) {
1494    T1 = T1MPType->getPointeeType();
1495    T2 = T2MPType->getPointeeType();
1496    return true;
1497  }
1498  return false;
1499}
1500
1501Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1502  // C99 6.7.6: Type names have no identifier.  This is already validated by
1503  // the parser.
1504  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1505
1506  TypeSourceInfo *TInfo = 0;
1507  TagDecl *OwnedTag = 0;
1508  QualType T = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
1509  if (D.isInvalidType())
1510    return true;
1511
1512  if (getLangOptions().CPlusPlus) {
1513    // Check that there are no default arguments (C++ only).
1514    CheckExtraCXXDefaultArguments(D);
1515
1516    // C++0x [dcl.type]p3:
1517    //   A type-specifier-seq shall not define a class or enumeration
1518    //   unless it appears in the type-id of an alias-declaration
1519    //   (7.1.3).
1520    if (OwnedTag && OwnedTag->isDefinition())
1521      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1522        << Context.getTypeDeclType(OwnedTag);
1523  }
1524
1525  if (TInfo)
1526    T = CreateLocInfoType(T, TInfo);
1527
1528  return T.getAsOpaquePtr();
1529}
1530
1531
1532
1533//===----------------------------------------------------------------------===//
1534// Type Attribute Processing
1535//===----------------------------------------------------------------------===//
1536
1537/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1538/// specified type.  The attribute contains 1 argument, the id of the address
1539/// space for the type.
1540static void HandleAddressSpaceTypeAttribute(QualType &Type,
1541                                            const AttributeList &Attr, Sema &S){
1542
1543  // If this type is already address space qualified, reject it.
1544  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1545  // for two or more different address spaces."
1546  if (Type.getAddressSpace()) {
1547    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1548    return;
1549  }
1550
1551  // Check the attribute arguments.
1552  if (Attr.getNumArgs() != 1) {
1553    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1554    return;
1555  }
1556  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1557  llvm::APSInt addrSpace(32);
1558  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1559    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1560      << ASArgExpr->getSourceRange();
1561    return;
1562  }
1563
1564  // Bounds checking.
1565  if (addrSpace.isSigned()) {
1566    if (addrSpace.isNegative()) {
1567      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
1568        << ASArgExpr->getSourceRange();
1569      return;
1570    }
1571    addrSpace.setIsSigned(false);
1572  }
1573  llvm::APSInt max(addrSpace.getBitWidth());
1574  max = Qualifiers::MaxAddressSpace;
1575  if (addrSpace > max) {
1576    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
1577      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
1578    return;
1579  }
1580
1581  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1582  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1583}
1584
1585/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1586/// specified type.  The attribute contains 1 argument, weak or strong.
1587static void HandleObjCGCTypeAttribute(QualType &Type,
1588                                      const AttributeList &Attr, Sema &S) {
1589  if (Type.getObjCGCAttr() != Qualifiers::GCNone) {
1590    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1591    return;
1592  }
1593
1594  // Check the attribute arguments.
1595  if (!Attr.getParameterName()) {
1596    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1597      << "objc_gc" << 1;
1598    return;
1599  }
1600  Qualifiers::GC GCAttr;
1601  if (Attr.getNumArgs() != 0) {
1602    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1603    return;
1604  }
1605  if (Attr.getParameterName()->isStr("weak"))
1606    GCAttr = Qualifiers::Weak;
1607  else if (Attr.getParameterName()->isStr("strong"))
1608    GCAttr = Qualifiers::Strong;
1609  else {
1610    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1611      << "objc_gc" << Attr.getParameterName();
1612    return;
1613  }
1614
1615  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1616}
1617
1618/// HandleNoReturnTypeAttribute - Process the noreturn attribute on the
1619/// specified type.  The attribute contains 0 arguments.
1620static void HandleNoReturnTypeAttribute(QualType &Type,
1621                                        const AttributeList &Attr, Sema &S) {
1622  if (Attr.getNumArgs() != 0)
1623    return;
1624
1625  // We only apply this to a pointer to function or a pointer to block.
1626  if (!Type->isFunctionPointerType()
1627      && !Type->isBlockPointerType()
1628      && !Type->isFunctionType())
1629    return;
1630
1631  Type = S.Context.getNoReturnType(Type);
1632}
1633
1634/// HandleVectorSizeAttribute - this attribute is only applicable to integral
1635/// and float scalars, although arrays, pointers, and function return values are
1636/// allowed in conjunction with this construct. Aggregates with this attribute
1637/// are invalid, even if they are of the same size as a corresponding scalar.
1638/// The raw attribute should contain precisely 1 argument, the vector size for
1639/// the variable, measured in bytes. If curType and rawAttr are well formed,
1640/// this routine will return a new vector type.
1641static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr, Sema &S) {
1642  // Check the attribute arugments.
1643  if (Attr.getNumArgs() != 1) {
1644    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1645    return;
1646  }
1647  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
1648  llvm::APSInt vecSize(32);
1649  if (!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
1650    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
1651      << "vector_size" << sizeExpr->getSourceRange();
1652    return;
1653  }
1654  // the base type must be integer or float, and can't already be a vector.
1655  if (CurType->isVectorType() ||
1656      (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
1657    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
1658    return;
1659  }
1660  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
1661  // vecSize is specified in bytes - convert to bits.
1662  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
1663
1664  // the vector size needs to be an integral multiple of the type size.
1665  if (vectorSize % typeSize) {
1666    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
1667      << sizeExpr->getSourceRange();
1668    return;
1669  }
1670  if (vectorSize == 0) {
1671    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
1672      << sizeExpr->getSourceRange();
1673    return;
1674  }
1675
1676  // Success! Instantiate the vector type, the number of elements is > 0, and
1677  // not required to be a power of 2, unlike GCC.
1678  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize);
1679}
1680
1681void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
1682  // Scan through and apply attributes to this type where it makes sense.  Some
1683  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1684  // type, but others can be present in the type specifiers even though they
1685  // apply to the decl.  Here we apply type attributes and ignore the rest.
1686  for (; AL; AL = AL->getNext()) {
1687    // If this is an attribute we can handle, do so now, otherwise, add it to
1688    // the LeftOverAttrs list for rechaining.
1689    switch (AL->getKind()) {
1690    default: break;
1691    case AttributeList::AT_address_space:
1692      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
1693      break;
1694    case AttributeList::AT_objc_gc:
1695      HandleObjCGCTypeAttribute(Result, *AL, *this);
1696      break;
1697    case AttributeList::AT_noreturn:
1698      HandleNoReturnTypeAttribute(Result, *AL, *this);
1699      break;
1700    case AttributeList::AT_vector_size:
1701      HandleVectorSizeAttr(Result, *AL, *this);
1702      break;
1703    }
1704  }
1705}
1706
1707/// @brief Ensure that the type T is a complete type.
1708///
1709/// This routine checks whether the type @p T is complete in any
1710/// context where a complete type is required. If @p T is a complete
1711/// type, returns false. If @p T is a class template specialization,
1712/// this routine then attempts to perform class template
1713/// instantiation. If instantiation fails, or if @p T is incomplete
1714/// and cannot be completed, issues the diagnostic @p diag (giving it
1715/// the type @p T) and returns true.
1716///
1717/// @param Loc  The location in the source that the incomplete type
1718/// diagnostic should refer to.
1719///
1720/// @param T  The type that this routine is examining for completeness.
1721///
1722/// @param PD The partial diagnostic that will be printed out if T is not a
1723/// complete type.
1724///
1725/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1726/// @c false otherwise.
1727bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
1728                               const PartialDiagnostic &PD,
1729                               std::pair<SourceLocation,
1730                                         PartialDiagnostic> Note) {
1731  unsigned diag = PD.getDiagID();
1732
1733  // FIXME: Add this assertion to make sure we always get instantiation points.
1734  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
1735  // FIXME: Add this assertion to help us flush out problems with
1736  // checking for dependent types and type-dependent expressions.
1737  //
1738  //  assert(!T->isDependentType() &&
1739  //         "Can't ask whether a dependent type is complete");
1740
1741  // If we have a complete type, we're done.
1742  if (!T->isIncompleteType())
1743    return false;
1744
1745  // If we have a class template specialization or a class member of a
1746  // class template specialization, or an array with known size of such,
1747  // try to instantiate it.
1748  QualType MaybeTemplate = T;
1749  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
1750    MaybeTemplate = Array->getElementType();
1751  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
1752    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
1753          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
1754      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
1755        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
1756                                                      TSK_ImplicitInstantiation,
1757                                                      /*Complain=*/diag != 0);
1758    } else if (CXXRecordDecl *Rec
1759                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
1760      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
1761        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
1762        assert(MSInfo && "Missing member specialization information?");
1763        // This record was instantiated from a class within a template.
1764        if (MSInfo->getTemplateSpecializationKind()
1765                                               != TSK_ExplicitSpecialization)
1766          return InstantiateClass(Loc, Rec, Pattern,
1767                                  getTemplateInstantiationArgs(Rec),
1768                                  TSK_ImplicitInstantiation,
1769                                  /*Complain=*/diag != 0);
1770      }
1771    }
1772  }
1773
1774  if (diag == 0)
1775    return true;
1776
1777  // We have an incomplete type. Produce a diagnostic.
1778  Diag(Loc, PD) << T;
1779
1780  // If we have a note, produce it.
1781  if (!Note.first.isInvalid())
1782    Diag(Note.first, Note.second);
1783
1784  // If the type was a forward declaration of a class/struct/union
1785  // type, produce
1786  const TagType *Tag = 0;
1787  if (const RecordType *Record = T->getAs<RecordType>())
1788    Tag = Record;
1789  else if (const EnumType *Enum = T->getAs<EnumType>())
1790    Tag = Enum;
1791
1792  if (Tag && !Tag->getDecl()->isInvalidDecl())
1793    Diag(Tag->getDecl()->getLocation(),
1794         Tag->isBeingDefined() ? diag::note_type_being_defined
1795                               : diag::note_forward_declaration)
1796        << QualType(Tag, 0);
1797
1798  return true;
1799}
1800
1801/// \brief Retrieve a version of the type 'T' that is qualified by the
1802/// nested-name-specifier contained in SS.
1803QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
1804  if (!SS.isSet() || SS.isInvalid() || T.isNull())
1805    return T;
1806
1807  NestedNameSpecifier *NNS
1808    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1809  return Context.getQualifiedNameType(NNS, T);
1810}
1811
1812QualType Sema::BuildTypeofExprType(Expr *E) {
1813  if (E->getType() == Context.OverloadTy) {
1814    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a
1815    // function template specialization wherever deduction cannot occur.
1816    if (FunctionDecl *Specialization
1817        = ResolveSingleFunctionTemplateSpecialization(E)) {
1818      E = FixOverloadedFunctionReference(E, Specialization);
1819      if (!E)
1820        return QualType();
1821    } else {
1822      Diag(E->getLocStart(),
1823           diag::err_cannot_determine_declared_type_of_overloaded_function)
1824        << false << E->getSourceRange();
1825      return QualType();
1826    }
1827  }
1828
1829  return Context.getTypeOfExprType(E);
1830}
1831
1832QualType Sema::BuildDecltypeType(Expr *E) {
1833  if (E->getType() == Context.OverloadTy) {
1834    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a
1835    // function template specialization wherever deduction cannot occur.
1836    if (FunctionDecl *Specialization
1837          = ResolveSingleFunctionTemplateSpecialization(E)) {
1838      E = FixOverloadedFunctionReference(E, Specialization);
1839      if (!E)
1840        return QualType();
1841    } else {
1842      Diag(E->getLocStart(),
1843           diag::err_cannot_determine_declared_type_of_overloaded_function)
1844        << true << E->getSourceRange();
1845      return QualType();
1846    }
1847  }
1848
1849  return Context.getDecltypeType(E);
1850}
1851