SemaType.cpp revision b17120c5d87b1b078891071188b89ec4fe6857bf
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/Expr.h"
20#include "clang/Parse/DeclSpec.h"
21#include "llvm/ADT/SmallPtrSet.h"
22using namespace clang;
23
24/// \brief Perform adjustment on the parameter type of a function.
25///
26/// This routine adjusts the given parameter type @p T to the actual
27/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
28/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
29QualType Sema::adjustParameterType(QualType T) {
30  // C99 6.7.5.3p7:
31  if (T->isArrayType()) {
32    // C99 6.7.5.3p7:
33    //   A declaration of a parameter as "array of type" shall be
34    //   adjusted to "qualified pointer to type", where the type
35    //   qualifiers (if any) are those specified within the [ and ] of
36    //   the array type derivation.
37    return Context.getArrayDecayedType(T);
38  } else if (T->isFunctionType())
39    // C99 6.7.5.3p8:
40    //   A declaration of a parameter as "function returning type"
41    //   shall be adjusted to "pointer to function returning type", as
42    //   in 6.3.2.1.
43    return Context.getPointerType(T);
44
45  return T;
46}
47
48/// \brief Convert the specified declspec to the appropriate type
49/// object.
50/// \param DS  the declaration specifiers
51/// \param DeclLoc The location of the declarator identifier or invalid if none.
52/// \returns The type described by the declaration specifiers.  This function
53/// never returns null.
54QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS,
55                                     SourceLocation DeclLoc,
56                                     bool &isInvalid) {
57  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
58  // checking.
59  QualType Result;
60
61  switch (DS.getTypeSpecType()) {
62  case DeclSpec::TST_void:
63    Result = Context.VoidTy;
64    break;
65  case DeclSpec::TST_char:
66    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
67      Result = Context.CharTy;
68    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
69      Result = Context.SignedCharTy;
70    else {
71      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
72             "Unknown TSS value");
73      Result = Context.UnsignedCharTy;
74    }
75    break;
76  case DeclSpec::TST_wchar:
77    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
78      Result = Context.WCharTy;
79    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
80      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
81        << DS.getSpecifierName(DS.getTypeSpecType());
82      Result = Context.getSignedWCharType();
83    } else {
84      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
85        "Unknown TSS value");
86      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
87        << DS.getSpecifierName(DS.getTypeSpecType());
88      Result = Context.getUnsignedWCharType();
89    }
90    break;
91  case DeclSpec::TST_char16:
92      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
93        "Unknown TSS value");
94      Result = Context.Char16Ty;
95    break;
96  case DeclSpec::TST_char32:
97      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
98        "Unknown TSS value");
99      Result = Context.Char32Ty;
100    break;
101  case DeclSpec::TST_unspecified:
102    // "<proto1,proto2>" is an objc qualified ID with a missing id.
103    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
104      Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
105                                                (ObjCProtocolDecl**)PQ,
106                                                DS.getNumProtocolQualifiers());
107      break;
108    }
109
110    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
111    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
112    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
113    // Note that the one exception to this is function definitions, which are
114    // allowed to be completely missing a declspec.  This is handled in the
115    // parser already though by it pretending to have seen an 'int' in this
116    // case.
117    if (getLangOptions().ImplicitInt) {
118      // In C89 mode, we only warn if there is a completely missing declspec
119      // when one is not allowed.
120      if (DS.isEmpty()) {
121        if (DeclLoc.isInvalid())
122          DeclLoc = DS.getSourceRange().getBegin();
123        Diag(DeclLoc, diag::ext_missing_declspec)
124          << DS.getSourceRange()
125        << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
126                                                 "int");
127      }
128    } else if (!DS.hasTypeSpecifier()) {
129      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
130      // "At least one type specifier shall be given in the declaration
131      // specifiers in each declaration, and in the specifier-qualifier list in
132      // each struct declaration and type name."
133      // FIXME: Does Microsoft really have the implicit int extension in C++?
134      if (DeclLoc.isInvalid())
135        DeclLoc = DS.getSourceRange().getBegin();
136
137      if (getLangOptions().CPlusPlus && !getLangOptions().Microsoft) {
138        Diag(DeclLoc, diag::err_missing_type_specifier)
139          << DS.getSourceRange();
140
141        // When this occurs in C++ code, often something is very broken with the
142        // value being declared, poison it as invalid so we don't get chains of
143        // errors.
144        isInvalid = true;
145      } else {
146        Diag(DeclLoc, diag::ext_missing_type_specifier)
147          << DS.getSourceRange();
148      }
149    }
150
151    // FALL THROUGH.
152  case DeclSpec::TST_int: {
153    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
154      switch (DS.getTypeSpecWidth()) {
155      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
156      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
157      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
158      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
159      }
160    } else {
161      switch (DS.getTypeSpecWidth()) {
162      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
163      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
164      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
165      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
166      }
167    }
168    break;
169  }
170  case DeclSpec::TST_float: Result = Context.FloatTy; break;
171  case DeclSpec::TST_double:
172    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
173      Result = Context.LongDoubleTy;
174    else
175      Result = Context.DoubleTy;
176    break;
177  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
178  case DeclSpec::TST_decimal32:    // _Decimal32
179  case DeclSpec::TST_decimal64:    // _Decimal64
180  case DeclSpec::TST_decimal128:   // _Decimal128
181    Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
182    Result = Context.IntTy;
183    isInvalid = true;
184    break;
185  case DeclSpec::TST_class:
186  case DeclSpec::TST_enum:
187  case DeclSpec::TST_union:
188  case DeclSpec::TST_struct: {
189    Decl *D = static_cast<Decl *>(DS.getTypeRep());
190    assert(D && "Didn't get a decl for a class/enum/union/struct?");
191    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
192           DS.getTypeSpecSign() == 0 &&
193           "Can't handle qualifiers on typedef names yet!");
194    // TypeQuals handled by caller.
195    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
196
197    if (D->isInvalidDecl())
198      isInvalid = true;
199    break;
200  }
201  case DeclSpec::TST_typename: {
202    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
203           DS.getTypeSpecSign() == 0 &&
204           "Can't handle qualifiers on typedef names yet!");
205    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
206
207    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
208      if (const ObjCInterfaceType *Interface = Result->getAsObjCInterfaceType())
209        // It would be nice if protocol qualifiers were only stored with the
210        // ObjCObjectPointerType. Unfortunately, this isn't possible due
211        // to the following typedef idiom (which is uncommon, but allowed):
212        //
213        // typedef Foo<P> T;
214        // static void func() {
215        //   Foo<P> *yy;
216        //   T *zz;
217        // }
218        Result = Context.getObjCInterfaceType(Interface->getDecl(),
219                                              (ObjCProtocolDecl**)PQ,
220                                              DS.getNumProtocolQualifiers());
221      else if (Result->isObjCIdType())
222        // id<protocol-list>
223        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
224                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
225      else if (Result->isObjCClassType()) {
226        if (DeclLoc.isInvalid())
227          DeclLoc = DS.getSourceRange().getBegin();
228        // Class<protocol-list>
229        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinClassTy,
230                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
231      } else {
232        if (DeclLoc.isInvalid())
233          DeclLoc = DS.getSourceRange().getBegin();
234        Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
235          << DS.getSourceRange();
236        isInvalid = true;
237      }
238    }
239
240    // If this is a reference to an invalid typedef, propagate the invalidity.
241    if (TypedefType *TDT = dyn_cast<TypedefType>(Result))
242      if (TDT->getDecl()->isInvalidDecl())
243        isInvalid = true;
244
245    // TypeQuals handled by caller.
246    break;
247  }
248  case DeclSpec::TST_typeofType:
249    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
250    assert(!Result.isNull() && "Didn't get a type for typeof?");
251    // TypeQuals handled by caller.
252    Result = Context.getTypeOfType(Result);
253    break;
254  case DeclSpec::TST_typeofExpr: {
255    Expr *E = static_cast<Expr *>(DS.getTypeRep());
256    assert(E && "Didn't get an expression for typeof?");
257    // TypeQuals handled by caller.
258    Result = Context.getTypeOfExprType(E);
259    break;
260  }
261  case DeclSpec::TST_decltype: {
262    Expr *E = static_cast<Expr *>(DS.getTypeRep());
263    assert(E && "Didn't get an expression for decltype?");
264    // TypeQuals handled by caller.
265    Result = BuildDecltypeType(E);
266    if (Result.isNull()) {
267      Result = Context.IntTy;
268      isInvalid = true;
269    }
270    break;
271  }
272  case DeclSpec::TST_auto: {
273    // TypeQuals handled by caller.
274    Result = Context.UndeducedAutoTy;
275    break;
276  }
277
278  case DeclSpec::TST_error:
279    Result = Context.IntTy;
280    isInvalid = true;
281    break;
282  }
283
284  // Handle complex types.
285  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
286    if (getLangOptions().Freestanding)
287      Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
288    Result = Context.getComplexType(Result);
289  }
290
291  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
292         "FIXME: imaginary types not supported yet!");
293
294  // See if there are any attributes on the declspec that apply to the type (as
295  // opposed to the decl).
296  if (const AttributeList *AL = DS.getAttributes())
297    ProcessTypeAttributeList(Result, AL);
298
299  // Apply const/volatile/restrict qualifiers to T.
300  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
301
302    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
303    // or incomplete types shall not be restrict-qualified."  C++ also allows
304    // restrict-qualified references.
305    if (TypeQuals & QualType::Restrict) {
306      if (Result->isPointerType() || Result->isReferenceType()) {
307        QualType EltTy = Result->isPointerType() ?
308          Result->getAs<PointerType>()->getPointeeType() :
309          Result->getAs<ReferenceType>()->getPointeeType();
310
311        // If we have a pointer or reference, the pointee must have an object
312        // incomplete type.
313        if (!EltTy->isIncompleteOrObjectType()) {
314          Diag(DS.getRestrictSpecLoc(),
315               diag::err_typecheck_invalid_restrict_invalid_pointee)
316            << EltTy << DS.getSourceRange();
317          TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
318        }
319      } else {
320        Diag(DS.getRestrictSpecLoc(),
321             diag::err_typecheck_invalid_restrict_not_pointer)
322          << Result << DS.getSourceRange();
323        TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
324      }
325    }
326
327    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
328    // of a function type includes any type qualifiers, the behavior is
329    // undefined."
330    if (Result->isFunctionType() && TypeQuals) {
331      // Get some location to point at, either the C or V location.
332      SourceLocation Loc;
333      if (TypeQuals & QualType::Const)
334        Loc = DS.getConstSpecLoc();
335      else {
336        assert((TypeQuals & QualType::Volatile) &&
337               "Has CV quals but not C or V?");
338        Loc = DS.getVolatileSpecLoc();
339      }
340      Diag(Loc, diag::warn_typecheck_function_qualifiers)
341        << Result << DS.getSourceRange();
342    }
343
344    // C++ [dcl.ref]p1:
345    //   Cv-qualified references are ill-formed except when the
346    //   cv-qualifiers are introduced through the use of a typedef
347    //   (7.1.3) or of a template type argument (14.3), in which
348    //   case the cv-qualifiers are ignored.
349    // FIXME: Shouldn't we be checking SCS_typedef here?
350    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
351        TypeQuals && Result->isReferenceType()) {
352      TypeQuals &= ~QualType::Const;
353      TypeQuals &= ~QualType::Volatile;
354    }
355
356    Result = Result.getQualifiedType(TypeQuals);
357  }
358  return Result;
359}
360
361static std::string getPrintableNameForEntity(DeclarationName Entity) {
362  if (Entity)
363    return Entity.getAsString();
364
365  return "type name";
366}
367
368/// \brief Build a pointer type.
369///
370/// \param T The type to which we'll be building a pointer.
371///
372/// \param Quals The cvr-qualifiers to be applied to the pointer type.
373///
374/// \param Loc The location of the entity whose type involves this
375/// pointer type or, if there is no such entity, the location of the
376/// type that will have pointer type.
377///
378/// \param Entity The name of the entity that involves the pointer
379/// type, if known.
380///
381/// \returns A suitable pointer type, if there are no
382/// errors. Otherwise, returns a NULL type.
383QualType Sema::BuildPointerType(QualType T, unsigned Quals,
384                                SourceLocation Loc, DeclarationName Entity) {
385  if (T->isReferenceType()) {
386    // C++ 8.3.2p4: There shall be no ... pointers to references ...
387    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
388      << getPrintableNameForEntity(Entity);
389    return QualType();
390  }
391
392  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
393  // object or incomplete types shall not be restrict-qualified."
394  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
395    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
396      << T;
397    Quals &= ~QualType::Restrict;
398  }
399
400  // Build the pointer type.
401  return Context.getPointerType(T).getQualifiedType(Quals);
402}
403
404/// \brief Build a reference type.
405///
406/// \param T The type to which we'll be building a reference.
407///
408/// \param Quals The cvr-qualifiers to be applied to the reference type.
409///
410/// \param Loc The location of the entity whose type involves this
411/// reference type or, if there is no such entity, the location of the
412/// type that will have reference type.
413///
414/// \param Entity The name of the entity that involves the reference
415/// type, if known.
416///
417/// \returns A suitable reference type, if there are no
418/// errors. Otherwise, returns a NULL type.
419QualType Sema::BuildReferenceType(QualType T, bool LValueRef, unsigned Quals,
420                                  SourceLocation Loc, DeclarationName Entity) {
421  if (LValueRef) {
422    if (const RValueReferenceType *R = T->getAs<RValueReferenceType>()) {
423      // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
424      //   reference to a type T, and attempt to create the type "lvalue
425      //   reference to cv TD" creates the type "lvalue reference to T".
426      // We use the qualifiers (restrict or none) of the original reference,
427      // not the new ones. This is consistent with GCC.
428      return Context.getLValueReferenceType(R->getPointeeType()).
429               getQualifiedType(T.getCVRQualifiers());
430    }
431  }
432  if (T->isReferenceType()) {
433    // C++ [dcl.ref]p4: There shall be no references to references.
434    //
435    // According to C++ DR 106, references to references are only
436    // diagnosed when they are written directly (e.g., "int & &"),
437    // but not when they happen via a typedef:
438    //
439    //   typedef int& intref;
440    //   typedef intref& intref2;
441    //
442    // Parser::ParserDeclaratorInternal diagnoses the case where
443    // references are written directly; here, we handle the
444    // collapsing of references-to-references as described in C++
445    // DR 106 and amended by C++ DR 540.
446    return T;
447  }
448
449  // C++ [dcl.ref]p1:
450  //   A declarator that specifies the type "reference to cv void"
451  //   is ill-formed.
452  if (T->isVoidType()) {
453    Diag(Loc, diag::err_reference_to_void);
454    return QualType();
455  }
456
457  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
458  // object or incomplete types shall not be restrict-qualified."
459  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
460    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
461      << T;
462    Quals &= ~QualType::Restrict;
463  }
464
465  // C++ [dcl.ref]p1:
466  //   [...] Cv-qualified references are ill-formed except when the
467  //   cv-qualifiers are introduced through the use of a typedef
468  //   (7.1.3) or of a template type argument (14.3), in which case
469  //   the cv-qualifiers are ignored.
470  //
471  // We diagnose extraneous cv-qualifiers for the non-typedef,
472  // non-template type argument case within the parser. Here, we just
473  // ignore any extraneous cv-qualifiers.
474  Quals &= ~QualType::Const;
475  Quals &= ~QualType::Volatile;
476
477  // Handle restrict on references.
478  if (LValueRef)
479    return Context.getLValueReferenceType(T).getQualifiedType(Quals);
480  return Context.getRValueReferenceType(T).getQualifiedType(Quals);
481}
482
483/// \brief Build an array type.
484///
485/// \param T The type of each element in the array.
486///
487/// \param ASM C99 array size modifier (e.g., '*', 'static').
488///
489/// \param ArraySize Expression describing the size of the array.
490///
491/// \param Quals The cvr-qualifiers to be applied to the array's
492/// element type.
493///
494/// \param Loc The location of the entity whose type involves this
495/// array type or, if there is no such entity, the location of the
496/// type that will have array type.
497///
498/// \param Entity The name of the entity that involves the array
499/// type, if known.
500///
501/// \returns A suitable array type, if there are no errors. Otherwise,
502/// returns a NULL type.
503QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
504                              Expr *ArraySize, unsigned Quals,
505                              SourceRange Brackets, DeclarationName Entity) {
506  SourceLocation Loc = Brackets.getBegin();
507  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
508  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
509  if (RequireCompleteType(Loc, T,
510                             diag::err_illegal_decl_array_incomplete_type))
511    return QualType();
512
513  if (T->isFunctionType()) {
514    Diag(Loc, diag::err_illegal_decl_array_of_functions)
515      << getPrintableNameForEntity(Entity);
516    return QualType();
517  }
518
519  // C++ 8.3.2p4: There shall be no ... arrays of references ...
520  if (T->isReferenceType()) {
521    Diag(Loc, diag::err_illegal_decl_array_of_references)
522      << getPrintableNameForEntity(Entity);
523    return QualType();
524  }
525
526  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
527    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
528      << getPrintableNameForEntity(Entity);
529    return QualType();
530  }
531
532  if (const RecordType *EltTy = T->getAs<RecordType>()) {
533    // If the element type is a struct or union that contains a variadic
534    // array, accept it as a GNU extension: C99 6.7.2.1p2.
535    if (EltTy->getDecl()->hasFlexibleArrayMember())
536      Diag(Loc, diag::ext_flexible_array_in_array) << T;
537  } else if (T->isObjCInterfaceType()) {
538    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
539    return QualType();
540  }
541
542  // C99 6.7.5.2p1: The size expression shall have integer type.
543  if (ArraySize && !ArraySize->isTypeDependent() &&
544      !ArraySize->getType()->isIntegerType()) {
545    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
546      << ArraySize->getType() << ArraySize->getSourceRange();
547    ArraySize->Destroy(Context);
548    return QualType();
549  }
550  llvm::APSInt ConstVal(32);
551  if (!ArraySize) {
552    if (ASM == ArrayType::Star)
553      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
554    else
555      T = Context.getIncompleteArrayType(T, ASM, Quals);
556  } else if (ArraySize->isValueDependent()) {
557    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
558  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
559             (!T->isDependentType() && !T->isConstantSizeType())) {
560    // Per C99, a variable array is an array with either a non-constant
561    // size or an element type that has a non-constant-size
562    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
563  } else {
564    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
565    // have a value greater than zero.
566    if (ConstVal.isSigned()) {
567      if (ConstVal.isNegative()) {
568        Diag(ArraySize->getLocStart(),
569             diag::err_typecheck_negative_array_size)
570          << ArraySize->getSourceRange();
571        return QualType();
572      } else if (ConstVal == 0) {
573        // GCC accepts zero sized static arrays.
574        Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
575          << ArraySize->getSourceRange();
576      }
577    }
578    T = Context.getConstantArrayWithExprType(T, ConstVal, ArraySize,
579                                             ASM, Quals, Brackets);
580  }
581  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
582  if (!getLangOptions().C99) {
583    if (ArraySize && !ArraySize->isTypeDependent() &&
584        !ArraySize->isValueDependent() &&
585        !ArraySize->isIntegerConstantExpr(Context))
586      Diag(Loc, diag::ext_vla);
587    else if (ASM != ArrayType::Normal || Quals != 0)
588      Diag(Loc, diag::ext_c99_array_usage);
589  }
590
591  return T;
592}
593
594/// \brief Build an ext-vector type.
595///
596/// Run the required checks for the extended vector type.
597QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
598                                  SourceLocation AttrLoc) {
599
600  Expr *Arg = (Expr *)ArraySize.get();
601
602  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
603  // in conjunction with complex types (pointers, arrays, functions, etc.).
604  if (!T->isDependentType() &&
605      !T->isIntegerType() && !T->isRealFloatingType()) {
606    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
607    return QualType();
608  }
609
610  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
611    llvm::APSInt vecSize(32);
612    if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
613      Diag(AttrLoc, diag::err_attribute_argument_not_int)
614      << "ext_vector_type" << Arg->getSourceRange();
615      return QualType();
616    }
617
618    // unlike gcc's vector_size attribute, the size is specified as the
619    // number of elements, not the number of bytes.
620    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
621
622    if (vectorSize == 0) {
623      Diag(AttrLoc, diag::err_attribute_zero_size)
624      << Arg->getSourceRange();
625      return QualType();
626    }
627
628    if (!T->isDependentType())
629      return Context.getExtVectorType(T, vectorSize);
630  }
631
632  return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
633                                                AttrLoc);
634}
635
636/// \brief Build a function type.
637///
638/// This routine checks the function type according to C++ rules and
639/// under the assumption that the result type and parameter types have
640/// just been instantiated from a template. It therefore duplicates
641/// some of the behavior of GetTypeForDeclarator, but in a much
642/// simpler form that is only suitable for this narrow use case.
643///
644/// \param T The return type of the function.
645///
646/// \param ParamTypes The parameter types of the function. This array
647/// will be modified to account for adjustments to the types of the
648/// function parameters.
649///
650/// \param NumParamTypes The number of parameter types in ParamTypes.
651///
652/// \param Variadic Whether this is a variadic function type.
653///
654/// \param Quals The cvr-qualifiers to be applied to the function type.
655///
656/// \param Loc The location of the entity whose type involves this
657/// function type or, if there is no such entity, the location of the
658/// type that will have function type.
659///
660/// \param Entity The name of the entity that involves the function
661/// type, if known.
662///
663/// \returns A suitable function type, if there are no
664/// errors. Otherwise, returns a NULL type.
665QualType Sema::BuildFunctionType(QualType T,
666                                 QualType *ParamTypes,
667                                 unsigned NumParamTypes,
668                                 bool Variadic, unsigned Quals,
669                                 SourceLocation Loc, DeclarationName Entity) {
670  if (T->isArrayType() || T->isFunctionType()) {
671    Diag(Loc, diag::err_func_returning_array_function) << T;
672    return QualType();
673  }
674
675  bool Invalid = false;
676  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
677    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
678    if (ParamType->isVoidType()) {
679      Diag(Loc, diag::err_param_with_void_type);
680      Invalid = true;
681    }
682
683    ParamTypes[Idx] = ParamType;
684  }
685
686  if (Invalid)
687    return QualType();
688
689  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
690                                 Quals);
691}
692
693/// \brief Build a member pointer type \c T Class::*.
694///
695/// \param T the type to which the member pointer refers.
696/// \param Class the class type into which the member pointer points.
697/// \param Quals Qualifiers applied to the member pointer type
698/// \param Loc the location where this type begins
699/// \param Entity the name of the entity that will have this member pointer type
700///
701/// \returns a member pointer type, if successful, or a NULL type if there was
702/// an error.
703QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
704                                      unsigned Quals, SourceLocation Loc,
705                                      DeclarationName Entity) {
706  // Verify that we're not building a pointer to pointer to function with
707  // exception specification.
708  if (CheckDistantExceptionSpec(T)) {
709    Diag(Loc, diag::err_distant_exception_spec);
710
711    // FIXME: If we're doing this as part of template instantiation,
712    // we should return immediately.
713
714    // Build the type anyway, but use the canonical type so that the
715    // exception specifiers are stripped off.
716    T = Context.getCanonicalType(T);
717  }
718
719  // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
720  //   with reference type, or "cv void."
721  if (T->isReferenceType()) {
722    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
723      << (Entity? Entity.getAsString() : "type name");
724    return QualType();
725  }
726
727  if (T->isVoidType()) {
728    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
729      << (Entity? Entity.getAsString() : "type name");
730    return QualType();
731  }
732
733  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
734  // object or incomplete types shall not be restrict-qualified."
735  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
736    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
737      << T;
738
739    // FIXME: If we're doing this as part of template instantiation,
740    // we should return immediately.
741    Quals &= ~QualType::Restrict;
742  }
743
744  if (!Class->isDependentType() && !Class->isRecordType()) {
745    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
746    return QualType();
747  }
748
749  return Context.getMemberPointerType(T, Class.getTypePtr())
750           .getQualifiedType(Quals);
751}
752
753/// \brief Build a block pointer type.
754///
755/// \param T The type to which we'll be building a block pointer.
756///
757/// \param Quals The cvr-qualifiers to be applied to the block pointer type.
758///
759/// \param Loc The location of the entity whose type involves this
760/// block pointer type or, if there is no such entity, the location of the
761/// type that will have block pointer type.
762///
763/// \param Entity The name of the entity that involves the block pointer
764/// type, if known.
765///
766/// \returns A suitable block pointer type, if there are no
767/// errors. Otherwise, returns a NULL type.
768QualType Sema::BuildBlockPointerType(QualType T, unsigned Quals,
769                                     SourceLocation Loc,
770                                     DeclarationName Entity) {
771  if (!T.getTypePtr()->isFunctionType()) {
772    Diag(Loc, diag::err_nonfunction_block_type);
773    return QualType();
774  }
775
776  return Context.getBlockPointerType(T).getQualifiedType(Quals);
777}
778
779/// GetTypeForDeclarator - Convert the type for the specified
780/// declarator to Type instances. Skip the outermost Skip type
781/// objects.
782///
783/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
784/// owns the declaration of a type (e.g., the definition of a struct
785/// type), then *OwnedDecl will receive the owned declaration.
786QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
787                                    DeclaratorInfo **DInfo, unsigned Skip,
788                                    TagDecl **OwnedDecl) {
789  bool OmittedReturnType = false;
790
791  if (D.getContext() == Declarator::BlockLiteralContext
792      && Skip == 0
793      && !D.getDeclSpec().hasTypeSpecifier()
794      && (D.getNumTypeObjects() == 0
795          || (D.getNumTypeObjects() == 1
796              && D.getTypeObject(0).Kind == DeclaratorChunk::Function)))
797    OmittedReturnType = true;
798
799  // long long is a C99 feature.
800  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
801      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
802    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
803
804  // Determine the type of the declarator. Not all forms of declarator
805  // have a type.
806  QualType T;
807  switch (D.getKind()) {
808  case Declarator::DK_Abstract:
809  case Declarator::DK_Normal:
810  case Declarator::DK_Operator: {
811    const DeclSpec &DS = D.getDeclSpec();
812    if (OmittedReturnType) {
813      // We default to a dependent type initially.  Can be modified by
814      // the first return statement.
815      T = Context.DependentTy;
816    } else {
817      bool isInvalid = false;
818      T = ConvertDeclSpecToType(DS, D.getIdentifierLoc(), isInvalid);
819      if (isInvalid)
820        D.setInvalidType(true);
821      else if (OwnedDecl && DS.isTypeSpecOwned())
822        *OwnedDecl = cast<TagDecl>((Decl *)DS.getTypeRep());
823    }
824    break;
825  }
826
827  case Declarator::DK_Constructor:
828  case Declarator::DK_Destructor:
829  case Declarator::DK_Conversion:
830    // Constructors and destructors don't have return types. Use
831    // "void" instead. Conversion operators will check their return
832    // types separately.
833    T = Context.VoidTy;
834    break;
835  }
836
837  if (T == Context.UndeducedAutoTy) {
838    int Error = -1;
839
840    switch (D.getContext()) {
841    case Declarator::KNRTypeListContext:
842      assert(0 && "K&R type lists aren't allowed in C++");
843      break;
844    case Declarator::PrototypeContext:
845      Error = 0; // Function prototype
846      break;
847    case Declarator::MemberContext:
848      switch (cast<TagDecl>(CurContext)->getTagKind()) {
849      case TagDecl::TK_enum: assert(0 && "unhandled tag kind"); break;
850      case TagDecl::TK_struct: Error = 1; /* Struct member */ break;
851      case TagDecl::TK_union:  Error = 2; /* Union member */ break;
852      case TagDecl::TK_class:  Error = 3; /* Class member */ break;
853      }
854      break;
855    case Declarator::CXXCatchContext:
856      Error = 4; // Exception declaration
857      break;
858    case Declarator::TemplateParamContext:
859      Error = 5; // Template parameter
860      break;
861    case Declarator::BlockLiteralContext:
862      Error = 6;  // Block literal
863      break;
864    case Declarator::FileContext:
865    case Declarator::BlockContext:
866    case Declarator::ForContext:
867    case Declarator::ConditionContext:
868    case Declarator::TypeNameContext:
869      break;
870    }
871
872    if (Error != -1) {
873      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
874        << Error;
875      T = Context.IntTy;
876      D.setInvalidType(true);
877    }
878  }
879
880  // The name we're declaring, if any.
881  DeclarationName Name;
882  if (D.getIdentifier())
883    Name = D.getIdentifier();
884
885  // Walk the DeclTypeInfo, building the recursive type as we go.
886  // DeclTypeInfos are ordered from the identifier out, which is
887  // opposite of what we want :).
888  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
889    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1+Skip);
890    switch (DeclType.Kind) {
891    default: assert(0 && "Unknown decltype!");
892    case DeclaratorChunk::BlockPointer:
893      // If blocks are disabled, emit an error.
894      if (!LangOpts.Blocks)
895        Diag(DeclType.Loc, diag::err_blocks_disable);
896
897      T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(),
898                                Name);
899      break;
900    case DeclaratorChunk::Pointer:
901      // Verify that we're not building a pointer to pointer to function with
902      // exception specification.
903      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
904        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
905        D.setInvalidType(true);
906        // Build the type anyway.
907      }
908      if (getLangOptions().ObjC1 && T->isObjCInterfaceType()) {
909        const ObjCInterfaceType *OIT = T->getAsObjCInterfaceType();
910        T = Context.getObjCObjectPointerType(T,
911                                         (ObjCProtocolDecl **)OIT->qual_begin(),
912                                         OIT->getNumProtocols());
913        break;
914      }
915      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
916      break;
917    case DeclaratorChunk::Reference:
918      // Verify that we're not building a reference to pointer to function with
919      // exception specification.
920      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
921        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
922        D.setInvalidType(true);
923        // Build the type anyway.
924      }
925      T = BuildReferenceType(T, DeclType.Ref.LValueRef,
926                             DeclType.Ref.HasRestrict ? QualType::Restrict : 0,
927                             DeclType.Loc, Name);
928      break;
929    case DeclaratorChunk::Array: {
930      // Verify that we're not building an array of pointers to function with
931      // exception specification.
932      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
933        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
934        D.setInvalidType(true);
935        // Build the type anyway.
936      }
937      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
938      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
939      ArrayType::ArraySizeModifier ASM;
940      if (ATI.isStar)
941        ASM = ArrayType::Star;
942      else if (ATI.hasStatic)
943        ASM = ArrayType::Static;
944      else
945        ASM = ArrayType::Normal;
946      if (ASM == ArrayType::Star &&
947          D.getContext() != Declarator::PrototypeContext) {
948        // FIXME: This check isn't quite right: it allows star in prototypes
949        // for function definitions, and disallows some edge cases detailed
950        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
951        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
952        ASM = ArrayType::Normal;
953        D.setInvalidType(true);
954      }
955      T = BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
956                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
957      break;
958    }
959    case DeclaratorChunk::Function: {
960      // If the function declarator has a prototype (i.e. it is not () and
961      // does not have a K&R-style identifier list), then the arguments are part
962      // of the type, otherwise the argument list is ().
963      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
964
965      // C99 6.7.5.3p1: The return type may not be a function or array type.
966      if (T->isArrayType() || T->isFunctionType()) {
967        Diag(DeclType.Loc, diag::err_func_returning_array_function) << T;
968        T = Context.IntTy;
969        D.setInvalidType(true);
970      }
971
972      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
973        // C++ [dcl.fct]p6:
974        //   Types shall not be defined in return or parameter types.
975        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
976        if (Tag->isDefinition())
977          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
978            << Context.getTypeDeclType(Tag);
979      }
980
981      // Exception specs are not allowed in typedefs. Complain, but add it
982      // anyway.
983      if (FTI.hasExceptionSpec &&
984          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
985        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
986
987      if (FTI.NumArgs == 0) {
988        if (getLangOptions().CPlusPlus) {
989          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
990          // function takes no arguments.
991          llvm::SmallVector<QualType, 4> Exceptions;
992          Exceptions.reserve(FTI.NumExceptions);
993          for(unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
994            QualType ET = QualType::getFromOpaquePtr(FTI.Exceptions[ei].Ty);
995            // Check that the type is valid for an exception spec, and drop it
996            // if not.
997            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
998              Exceptions.push_back(ET);
999          }
1000          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
1001                                      FTI.hasExceptionSpec,
1002                                      FTI.hasAnyExceptionSpec,
1003                                      Exceptions.size(), Exceptions.data());
1004        } else if (FTI.isVariadic) {
1005          // We allow a zero-parameter variadic function in C if the
1006          // function is marked with the "overloadable"
1007          // attribute. Scan for this attribute now.
1008          bool Overloadable = false;
1009          for (const AttributeList *Attrs = D.getAttributes();
1010               Attrs; Attrs = Attrs->getNext()) {
1011            if (Attrs->getKind() == AttributeList::AT_overloadable) {
1012              Overloadable = true;
1013              break;
1014            }
1015          }
1016
1017          if (!Overloadable)
1018            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
1019          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0);
1020        } else {
1021          // Simple void foo(), where the incoming T is the result type.
1022          T = Context.getFunctionNoProtoType(T);
1023        }
1024      } else if (FTI.ArgInfo[0].Param == 0) {
1025        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
1026        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
1027      } else {
1028        // Otherwise, we have a function with an argument list that is
1029        // potentially variadic.
1030        llvm::SmallVector<QualType, 16> ArgTys;
1031
1032        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1033          ParmVarDecl *Param =
1034            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
1035          QualType ArgTy = Param->getType();
1036          assert(!ArgTy.isNull() && "Couldn't parse type?");
1037
1038          // Adjust the parameter type.
1039          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1040
1041          // Look for 'void'.  void is allowed only as a single argument to a
1042          // function with no other parameters (C99 6.7.5.3p10).  We record
1043          // int(void) as a FunctionProtoType with an empty argument list.
1044          if (ArgTy->isVoidType()) {
1045            // If this is something like 'float(int, void)', reject it.  'void'
1046            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1047            // have arguments of incomplete type.
1048            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1049              Diag(DeclType.Loc, diag::err_void_only_param);
1050              ArgTy = Context.IntTy;
1051              Param->setType(ArgTy);
1052            } else if (FTI.ArgInfo[i].Ident) {
1053              // Reject, but continue to parse 'int(void abc)'.
1054              Diag(FTI.ArgInfo[i].IdentLoc,
1055                   diag::err_param_with_void_type);
1056              ArgTy = Context.IntTy;
1057              Param->setType(ArgTy);
1058            } else {
1059              // Reject, but continue to parse 'float(const void)'.
1060              if (ArgTy.getCVRQualifiers())
1061                Diag(DeclType.Loc, diag::err_void_param_qualified);
1062
1063              // Do not add 'void' to the ArgTys list.
1064              break;
1065            }
1066          } else if (!FTI.hasPrototype) {
1067            if (ArgTy->isPromotableIntegerType()) {
1068              ArgTy = Context.IntTy;
1069            } else if (const BuiltinType* BTy = ArgTy->getAsBuiltinType()) {
1070              if (BTy->getKind() == BuiltinType::Float)
1071                ArgTy = Context.DoubleTy;
1072            }
1073          }
1074
1075          ArgTys.push_back(ArgTy);
1076        }
1077
1078        llvm::SmallVector<QualType, 4> Exceptions;
1079        Exceptions.reserve(FTI.NumExceptions);
1080        for(unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1081          QualType ET = QualType::getFromOpaquePtr(FTI.Exceptions[ei].Ty);
1082          // Check that the type is valid for an exception spec, and drop it if
1083          // not.
1084          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1085            Exceptions.push_back(ET);
1086        }
1087
1088        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
1089                                    FTI.isVariadic, FTI.TypeQuals,
1090                                    FTI.hasExceptionSpec,
1091                                    FTI.hasAnyExceptionSpec,
1092                                    Exceptions.size(), Exceptions.data());
1093      }
1094      break;
1095    }
1096    case DeclaratorChunk::MemberPointer:
1097      // Verify that we're not building a pointer to pointer to function with
1098      // exception specification.
1099      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1100        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1101        D.setInvalidType(true);
1102        // Build the type anyway.
1103      }
1104      // The scope spec must refer to a class, or be dependent.
1105      QualType ClsType;
1106      if (isDependentScopeSpecifier(DeclType.Mem.Scope())) {
1107        NestedNameSpecifier *NNS
1108          = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
1109        assert(NNS->getAsType() && "Nested-name-specifier must name a type");
1110        ClsType = QualType(NNS->getAsType(), 0);
1111      } else if (CXXRecordDecl *RD
1112                   = dyn_cast_or_null<CXXRecordDecl>(
1113                                    computeDeclContext(DeclType.Mem.Scope()))) {
1114        ClsType = Context.getTagDeclType(RD);
1115      } else {
1116        Diag(DeclType.Mem.Scope().getBeginLoc(),
1117             diag::err_illegal_decl_mempointer_in_nonclass)
1118          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1119          << DeclType.Mem.Scope().getRange();
1120        D.setInvalidType(true);
1121      }
1122
1123      if (!ClsType.isNull())
1124        T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals,
1125                                   DeclType.Loc, D.getIdentifier());
1126      if (T.isNull()) {
1127        T = Context.IntTy;
1128        D.setInvalidType(true);
1129      }
1130      break;
1131    }
1132
1133    if (T.isNull()) {
1134      D.setInvalidType(true);
1135      T = Context.IntTy;
1136    }
1137
1138    // See if there are any attributes on this declarator chunk.
1139    if (const AttributeList *AL = DeclType.getAttrs())
1140      ProcessTypeAttributeList(T, AL);
1141  }
1142
1143  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1144    const FunctionProtoType *FnTy = T->getAsFunctionProtoType();
1145    assert(FnTy && "Why oh why is there not a FunctionProtoType here ?");
1146
1147    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1148    // for a nonstatic member function, the function type to which a pointer
1149    // to member refers, or the top-level function type of a function typedef
1150    // declaration.
1151    if (FnTy->getTypeQuals() != 0 &&
1152        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1153        ((D.getContext() != Declarator::MemberContext &&
1154          (!D.getCXXScopeSpec().isSet() ||
1155           !computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)
1156              ->isRecord())) ||
1157         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1158      if (D.isFunctionDeclarator())
1159        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1160      else
1161        Diag(D.getIdentifierLoc(),
1162             diag::err_invalid_qualified_typedef_function_type_use);
1163
1164      // Strip the cv-quals from the type.
1165      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1166                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
1167    }
1168  }
1169
1170  // If there were any type attributes applied to the decl itself (not the
1171  // type, apply the type attribute to the type!)
1172  if (const AttributeList *Attrs = D.getAttributes())
1173    ProcessTypeAttributeList(T, Attrs);
1174
1175  return T;
1176}
1177
1178/// CheckSpecifiedExceptionType - Check if the given type is valid in an
1179/// exception specification. Incomplete types, or pointers to incomplete types
1180/// other than void are not allowed.
1181bool Sema::CheckSpecifiedExceptionType(QualType T, const SourceRange &Range) {
1182  // FIXME: This may not correctly work with the fix for core issue 437,
1183  // where a class's own type is considered complete within its body.
1184
1185  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
1186  //   an incomplete type.
1187  if (T->isIncompleteType())
1188    return Diag(Range.getBegin(), diag::err_incomplete_in_exception_spec)
1189      << Range << T << /*direct*/0;
1190
1191  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
1192  //   an incomplete type a pointer or reference to an incomplete type, other
1193  //   than (cv) void*.
1194  int kind;
1195  if (const PointerType* IT = T->getAs<PointerType>()) {
1196    T = IT->getPointeeType();
1197    kind = 1;
1198  } else if (const ReferenceType* IT = T->getAs<ReferenceType>()) {
1199    T = IT->getPointeeType();
1200    kind = 2;
1201  } else
1202    return false;
1203
1204  if (T->isIncompleteType() && !T->isVoidType())
1205    return Diag(Range.getBegin(), diag::err_incomplete_in_exception_spec)
1206      << Range << T << /*indirect*/kind;
1207
1208  return false;
1209}
1210
1211/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
1212/// to member to a function with an exception specification. This means that
1213/// it is invalid to add another level of indirection.
1214bool Sema::CheckDistantExceptionSpec(QualType T) {
1215  if (const PointerType *PT = T->getAs<PointerType>())
1216    T = PT->getPointeeType();
1217  else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
1218    T = PT->getPointeeType();
1219  else
1220    return false;
1221
1222  const FunctionProtoType *FnT = T->getAsFunctionProtoType();
1223  if (!FnT)
1224    return false;
1225
1226  return FnT->hasExceptionSpec();
1227}
1228
1229/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
1230/// exception specifications. Exception specifications are equivalent if
1231/// they allow exactly the same set of exception types. It does not matter how
1232/// that is achieved. See C++ [except.spec]p2.
1233bool Sema::CheckEquivalentExceptionSpec(
1234    const FunctionProtoType *Old, SourceLocation OldLoc,
1235    const FunctionProtoType *New, SourceLocation NewLoc) {
1236  bool OldAny = !Old->hasExceptionSpec() || Old->hasAnyExceptionSpec();
1237  bool NewAny = !New->hasExceptionSpec() || New->hasAnyExceptionSpec();
1238  if (OldAny && NewAny)
1239    return false;
1240  if (OldAny || NewAny) {
1241    Diag(NewLoc, diag::err_mismatched_exception_spec);
1242    Diag(OldLoc, diag::note_previous_declaration);
1243    return true;
1244  }
1245
1246  bool Success = true;
1247  // Both have a definite exception spec. Collect the first set, then compare
1248  // to the second.
1249  llvm::SmallPtrSet<const Type*, 8> Types;
1250  for (FunctionProtoType::exception_iterator I = Old->exception_begin(),
1251       E = Old->exception_end(); I != E; ++I)
1252    Types.insert(Context.getCanonicalType(*I).getTypePtr());
1253
1254  for (FunctionProtoType::exception_iterator I = New->exception_begin(),
1255       E = New->exception_end(); I != E && Success; ++I)
1256    Success = Types.erase(Context.getCanonicalType(*I).getTypePtr());
1257
1258  Success = Success && Types.empty();
1259
1260  if (Success) {
1261    return false;
1262  }
1263  Diag(NewLoc, diag::err_mismatched_exception_spec);
1264  Diag(OldLoc, diag::note_previous_declaration);
1265  return true;
1266}
1267
1268/// CheckExceptionSpecSubset - Check whether the second function type's
1269/// exception specification is a subset (or equivalent) of the first function
1270/// type. This is used by override and pointer assignment checks.
1271bool Sema::CheckExceptionSpecSubset(unsigned DiagID, unsigned NoteID,
1272    const FunctionProtoType *Superset, SourceLocation SuperLoc,
1273    const FunctionProtoType *Subset, SourceLocation SubLoc)
1274{
1275  // FIXME: As usual, we could be more specific in our error messages, but
1276  // that better waits until we've got types with source locations.
1277
1278  // If superset contains everything, we're done.
1279  if (!Superset->hasExceptionSpec() || Superset->hasAnyExceptionSpec())
1280    return false;
1281
1282  // It does not. If the subset contains everything, we've failed.
1283  if (!Subset->hasExceptionSpec() || Subset->hasAnyExceptionSpec()) {
1284    Diag(SubLoc, DiagID);
1285    Diag(SuperLoc, NoteID);
1286    return true;
1287  }
1288
1289  // Neither contains everything. Do a proper comparison.
1290  for (FunctionProtoType::exception_iterator SubI = Subset->exception_begin(),
1291       SubE = Subset->exception_end(); SubI != SubE; ++SubI) {
1292    // Take one type from the subset.
1293    QualType CanonicalSubT = Context.getCanonicalType(*SubI);
1294    bool SubIsPointer = false;
1295    if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>())
1296      CanonicalSubT = RefTy->getPointeeType();
1297    if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) {
1298      CanonicalSubT = PtrTy->getPointeeType();
1299      SubIsPointer = true;
1300    }
1301    bool SubIsClass = CanonicalSubT->isRecordType();
1302    CanonicalSubT.setCVRQualifiers(0);
1303
1304    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1305                    /*DetectVirtual=*/false);
1306
1307    bool Contained = false;
1308    // Make sure it's in the superset.
1309    for (FunctionProtoType::exception_iterator SuperI =
1310           Superset->exception_begin(), SuperE = Superset->exception_end();
1311         SuperI != SuperE; ++SuperI) {
1312      QualType CanonicalSuperT = Context.getCanonicalType(*SuperI);
1313      // SubT must be SuperT or derived from it, or pointer or reference to
1314      // such types.
1315      if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>())
1316        CanonicalSuperT = RefTy->getPointeeType();
1317      if (SubIsPointer) {
1318        if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>())
1319          CanonicalSuperT = PtrTy->getPointeeType();
1320        else {
1321          continue;
1322        }
1323      }
1324      CanonicalSuperT.setCVRQualifiers(0);
1325      // If the types are the same, move on to the next type in the subset.
1326      if (CanonicalSubT == CanonicalSuperT) {
1327        Contained = true;
1328        break;
1329      }
1330
1331      // Otherwise we need to check the inheritance.
1332      if (!SubIsClass || !CanonicalSuperT->isRecordType())
1333        continue;
1334
1335      Paths.clear();
1336      if (!IsDerivedFrom(CanonicalSubT, CanonicalSuperT, Paths))
1337        continue;
1338
1339      if (Paths.isAmbiguous(CanonicalSuperT))
1340        continue;
1341
1342      if (FindInaccessibleBase(CanonicalSubT, CanonicalSuperT, Paths, true))
1343        continue;
1344
1345      Contained = true;
1346      break;
1347    }
1348    if (!Contained) {
1349      Diag(SubLoc, DiagID);
1350      Diag(SuperLoc, NoteID);
1351      return true;
1352    }
1353  }
1354  // We've run the gauntlet.
1355  return false;
1356}
1357
1358/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
1359/// declarator
1360QualType Sema::ObjCGetTypeForMethodDefinition(DeclPtrTy D) {
1361  ObjCMethodDecl *MDecl = cast<ObjCMethodDecl>(D.getAs<Decl>());
1362  QualType T = MDecl->getResultType();
1363  llvm::SmallVector<QualType, 16> ArgTys;
1364
1365  // Add the first two invisible argument types for self and _cmd.
1366  if (MDecl->isInstanceMethod()) {
1367    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
1368    selfTy = Context.getPointerType(selfTy);
1369    ArgTys.push_back(selfTy);
1370  } else
1371    ArgTys.push_back(Context.getObjCIdType());
1372  ArgTys.push_back(Context.getObjCSelType());
1373
1374  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
1375       E = MDecl->param_end(); PI != E; ++PI) {
1376    QualType ArgTy = (*PI)->getType();
1377    assert(!ArgTy.isNull() && "Couldn't parse type?");
1378    ArgTy = adjustParameterType(ArgTy);
1379    ArgTys.push_back(ArgTy);
1380  }
1381  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
1382                              MDecl->isVariadic(), 0);
1383  return T;
1384}
1385
1386/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
1387/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
1388/// they point to and return true. If T1 and T2 aren't pointer types
1389/// or pointer-to-member types, or if they are not similar at this
1390/// level, returns false and leaves T1 and T2 unchanged. Top-level
1391/// qualifiers on T1 and T2 are ignored. This function will typically
1392/// be called in a loop that successively "unwraps" pointer and
1393/// pointer-to-member types to compare them at each level.
1394bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
1395  const PointerType *T1PtrType = T1->getAs<PointerType>(),
1396                    *T2PtrType = T2->getAs<PointerType>();
1397  if (T1PtrType && T2PtrType) {
1398    T1 = T1PtrType->getPointeeType();
1399    T2 = T2PtrType->getPointeeType();
1400    return true;
1401  }
1402
1403  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
1404                          *T2MPType = T2->getAs<MemberPointerType>();
1405  if (T1MPType && T2MPType &&
1406      Context.getCanonicalType(T1MPType->getClass()) ==
1407      Context.getCanonicalType(T2MPType->getClass())) {
1408    T1 = T1MPType->getPointeeType();
1409    T2 = T2MPType->getPointeeType();
1410    return true;
1411  }
1412  return false;
1413}
1414
1415Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1416  // C99 6.7.6: Type names have no identifier.  This is already validated by
1417  // the parser.
1418  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1419
1420  DeclaratorInfo *DInfo = 0;
1421  TagDecl *OwnedTag = 0;
1422  QualType T = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0, &OwnedTag);
1423  if (D.isInvalidType())
1424    return true;
1425
1426  if (getLangOptions().CPlusPlus) {
1427    // Check that there are no default arguments (C++ only).
1428    CheckExtraCXXDefaultArguments(D);
1429
1430    // C++0x [dcl.type]p3:
1431    //   A type-specifier-seq shall not define a class or enumeration
1432    //   unless it appears in the type-id of an alias-declaration
1433    //   (7.1.3).
1434    if (OwnedTag && OwnedTag->isDefinition())
1435      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1436        << Context.getTypeDeclType(OwnedTag);
1437  }
1438
1439  //FIXME: Also pass DeclaratorInfo.
1440  return T.getAsOpaquePtr();
1441}
1442
1443
1444
1445//===----------------------------------------------------------------------===//
1446// Type Attribute Processing
1447//===----------------------------------------------------------------------===//
1448
1449/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1450/// specified type.  The attribute contains 1 argument, the id of the address
1451/// space for the type.
1452static void HandleAddressSpaceTypeAttribute(QualType &Type,
1453                                            const AttributeList &Attr, Sema &S){
1454  // If this type is already address space qualified, reject it.
1455  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1456  // for two or more different address spaces."
1457  if (Type.getAddressSpace()) {
1458    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1459    return;
1460  }
1461
1462  // Check the attribute arguments.
1463  if (Attr.getNumArgs() != 1) {
1464    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1465    return;
1466  }
1467  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1468  llvm::APSInt addrSpace(32);
1469  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1470    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1471      << ASArgExpr->getSourceRange();
1472    return;
1473  }
1474
1475  // Bounds checking.
1476  if (addrSpace.isSigned()) {
1477    if (addrSpace.isNegative()) {
1478      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
1479        << ASArgExpr->getSourceRange();
1480      return;
1481    }
1482    addrSpace.setIsSigned(false);
1483  }
1484  llvm::APSInt max(addrSpace.getBitWidth());
1485  max = QualType::MaxAddressSpace;
1486  if (addrSpace > max) {
1487    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
1488      << QualType::MaxAddressSpace << ASArgExpr->getSourceRange();
1489    return;
1490  }
1491
1492  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1493  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1494}
1495
1496/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1497/// specified type.  The attribute contains 1 argument, weak or strong.
1498static void HandleObjCGCTypeAttribute(QualType &Type,
1499                                      const AttributeList &Attr, Sema &S) {
1500  if (Type.getObjCGCAttr() != QualType::GCNone) {
1501    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1502    return;
1503  }
1504
1505  // Check the attribute arguments.
1506  if (!Attr.getParameterName()) {
1507    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1508      << "objc_gc" << 1;
1509    return;
1510  }
1511  QualType::GCAttrTypes GCAttr;
1512  if (Attr.getNumArgs() != 0) {
1513    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1514    return;
1515  }
1516  if (Attr.getParameterName()->isStr("weak"))
1517    GCAttr = QualType::Weak;
1518  else if (Attr.getParameterName()->isStr("strong"))
1519    GCAttr = QualType::Strong;
1520  else {
1521    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1522      << "objc_gc" << Attr.getParameterName();
1523    return;
1524  }
1525
1526  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1527}
1528
1529/// HandleNoReturnTypeAttribute - Process the noreturn attribute on the
1530/// specified type.  The attribute contains 0 arguments.
1531static void HandleNoReturnTypeAttribute(QualType &Type,
1532                                        const AttributeList &Attr, Sema &S) {
1533  if (Attr.getNumArgs() != 0)
1534    return;
1535
1536  // We only apply this to a pointer to function or a pointer to block.
1537  if (!Type->isFunctionPointerType()
1538      && !Type->isBlockPointerType()
1539      && !Type->isFunctionType())
1540    return;
1541
1542  Type = S.Context.getNoReturnType(Type);
1543}
1544
1545void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
1546  // Scan through and apply attributes to this type where it makes sense.  Some
1547  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1548  // type, but others can be present in the type specifiers even though they
1549  // apply to the decl.  Here we apply type attributes and ignore the rest.
1550  for (; AL; AL = AL->getNext()) {
1551    // If this is an attribute we can handle, do so now, otherwise, add it to
1552    // the LeftOverAttrs list for rechaining.
1553    switch (AL->getKind()) {
1554    default: break;
1555    case AttributeList::AT_address_space:
1556      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
1557      break;
1558    case AttributeList::AT_objc_gc:
1559      HandleObjCGCTypeAttribute(Result, *AL, *this);
1560      break;
1561    case AttributeList::AT_noreturn:
1562      HandleNoReturnTypeAttribute(Result, *AL, *this);
1563      break;
1564    }
1565  }
1566}
1567
1568/// @brief Ensure that the type T is a complete type.
1569///
1570/// This routine checks whether the type @p T is complete in any
1571/// context where a complete type is required. If @p T is a complete
1572/// type, returns false. If @p T is a class template specialization,
1573/// this routine then attempts to perform class template
1574/// instantiation. If instantiation fails, or if @p T is incomplete
1575/// and cannot be completed, issues the diagnostic @p diag (giving it
1576/// the type @p T) and returns true.
1577///
1578/// @param Loc  The location in the source that the incomplete type
1579/// diagnostic should refer to.
1580///
1581/// @param T  The type that this routine is examining for completeness.
1582///
1583/// @param diag The diagnostic value (e.g.,
1584/// @c diag::err_typecheck_decl_incomplete_type) that will be used
1585/// for the error message if @p T is incomplete.
1586///
1587/// @param Range1  An optional range in the source code that will be a
1588/// part of the "incomplete type" error message.
1589///
1590/// @param Range2  An optional range in the source code that will be a
1591/// part of the "incomplete type" error message.
1592///
1593/// @param PrintType If non-NULL, the type that should be printed
1594/// instead of @p T. This parameter should be used when the type that
1595/// we're checking for incompleteness isn't the type that should be
1596/// displayed to the user, e.g., when T is a type and PrintType is a
1597/// pointer to T.
1598///
1599/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1600/// @c false otherwise.
1601bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, unsigned diag,
1602                               SourceRange Range1, SourceRange Range2,
1603                               QualType PrintType) {
1604  // FIXME: Add this assertion to help us flush out problems with
1605  // checking for dependent types and type-dependent expressions.
1606  //
1607  //  assert(!T->isDependentType() &&
1608  //         "Can't ask whether a dependent type is complete");
1609
1610  // If we have a complete type, we're done.
1611  if (!T->isIncompleteType())
1612    return false;
1613
1614  // If we have a class template specialization or a class member of a
1615  // class template specialization, try to instantiate it.
1616  if (const RecordType *Record = T->getAs<RecordType>()) {
1617    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
1618          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
1619      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
1620        // Update the class template specialization's location to
1621        // refer to the point of instantiation.
1622        if (Loc.isValid())
1623          ClassTemplateSpec->setLocation(Loc);
1624        return InstantiateClassTemplateSpecialization(ClassTemplateSpec,
1625                                             /*ExplicitInstantiation=*/false);
1626      }
1627    } else if (CXXRecordDecl *Rec
1628                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
1629      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
1630        // Find the class template specialization that surrounds this
1631        // member class.
1632        ClassTemplateSpecializationDecl *Spec = 0;
1633        for (DeclContext *Parent = Rec->getDeclContext();
1634             Parent && !Spec; Parent = Parent->getParent())
1635          Spec = dyn_cast<ClassTemplateSpecializationDecl>(Parent);
1636        assert(Spec && "Not a member of a class template specialization?");
1637        return InstantiateClass(Loc, Rec, Pattern, Spec->getTemplateArgs(),
1638                                /*ExplicitInstantiation=*/false);
1639      }
1640    }
1641  }
1642
1643  if (PrintType.isNull())
1644    PrintType = T;
1645
1646  // We have an incomplete type. Produce a diagnostic.
1647  Diag(Loc, diag) << PrintType << Range1 << Range2;
1648
1649  // If the type was a forward declaration of a class/struct/union
1650  // type, produce
1651  const TagType *Tag = 0;
1652  if (const RecordType *Record = T->getAs<RecordType>())
1653    Tag = Record;
1654  else if (const EnumType *Enum = T->getAsEnumType())
1655    Tag = Enum;
1656
1657  if (Tag && !Tag->getDecl()->isInvalidDecl())
1658    Diag(Tag->getDecl()->getLocation(),
1659         Tag->isBeingDefined() ? diag::note_type_being_defined
1660                               : diag::note_forward_declaration)
1661        << QualType(Tag, 0);
1662
1663  return true;
1664}
1665
1666/// \brief Retrieve a version of the type 'T' that is qualified by the
1667/// nested-name-specifier contained in SS.
1668QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
1669  if (!SS.isSet() || SS.isInvalid() || T.isNull())
1670    return T;
1671
1672  NestedNameSpecifier *NNS
1673    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1674  return Context.getQualifiedNameType(NNS, T);
1675}
1676
1677QualType Sema::BuildTypeofExprType(Expr *E) {
1678  return Context.getTypeOfExprType(E);
1679}
1680
1681QualType Sema::BuildDecltypeType(Expr *E) {
1682  if (E->getType() == Context.OverloadTy) {
1683    Diag(E->getLocStart(),
1684         diag::err_cannot_determine_declared_type_of_overloaded_function);
1685    return QualType();
1686  }
1687  return Context.getDecltypeType(E);
1688}
1689