SemaType.cpp revision b219cfc4d75f0a03630b7c4509ef791b7e97b2c8
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Template.h"
16#include "clang/Basic/OpenCL.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeLocVisitor.h"
24#include "clang/AST/Expr.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/DelayedDiagnostic.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/Support/ErrorHandling.h"
32using namespace clang;
33
34/// isOmittedBlockReturnType - Return true if this declarator is missing a
35/// return type because this is a omitted return type on a block literal.
36static bool isOmittedBlockReturnType(const Declarator &D) {
37  if (D.getContext() != Declarator::BlockLiteralContext ||
38      D.getDeclSpec().hasTypeSpecifier())
39    return false;
40
41  if (D.getNumTypeObjects() == 0)
42    return true;   // ^{ ... }
43
44  if (D.getNumTypeObjects() == 1 &&
45      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
46    return true;   // ^(int X, float Y) { ... }
47
48  return false;
49}
50
51/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
52/// doesn't apply to the given type.
53static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
54                                     QualType type) {
55  bool useExpansionLoc = false;
56
57  unsigned diagID = 0;
58  switch (attr.getKind()) {
59  case AttributeList::AT_objc_gc:
60    diagID = diag::warn_pointer_attribute_wrong_type;
61    useExpansionLoc = true;
62    break;
63
64  case AttributeList::AT_objc_ownership:
65    diagID = diag::warn_objc_object_attribute_wrong_type;
66    useExpansionLoc = true;
67    break;
68
69  default:
70    // Assume everything else was a function attribute.
71    diagID = diag::warn_function_attribute_wrong_type;
72    break;
73  }
74
75  SourceLocation loc = attr.getLoc();
76  StringRef name = attr.getName()->getName();
77
78  // The GC attributes are usually written with macros;  special-case them.
79  if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
80    if (attr.getParameterName()->isStr("strong")) {
81      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
82    } else if (attr.getParameterName()->isStr("weak")) {
83      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
84    }
85  }
86
87  S.Diag(loc, diagID) << name << type;
88}
89
90// objc_gc applies to Objective-C pointers or, otherwise, to the
91// smallest available pointer type (i.e. 'void*' in 'void**').
92#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
93    case AttributeList::AT_objc_gc: \
94    case AttributeList::AT_objc_ownership
95
96// Function type attributes.
97#define FUNCTION_TYPE_ATTRS_CASELIST \
98    case AttributeList::AT_noreturn: \
99    case AttributeList::AT_cdecl: \
100    case AttributeList::AT_fastcall: \
101    case AttributeList::AT_stdcall: \
102    case AttributeList::AT_thiscall: \
103    case AttributeList::AT_pascal: \
104    case AttributeList::AT_regparm: \
105    case AttributeList::AT_pcs \
106
107namespace {
108  /// An object which stores processing state for the entire
109  /// GetTypeForDeclarator process.
110  class TypeProcessingState {
111    Sema &sema;
112
113    /// The declarator being processed.
114    Declarator &declarator;
115
116    /// The index of the declarator chunk we're currently processing.
117    /// May be the total number of valid chunks, indicating the
118    /// DeclSpec.
119    unsigned chunkIndex;
120
121    /// Whether there are non-trivial modifications to the decl spec.
122    bool trivial;
123
124    /// Whether we saved the attributes in the decl spec.
125    bool hasSavedAttrs;
126
127    /// The original set of attributes on the DeclSpec.
128    SmallVector<AttributeList*, 2> savedAttrs;
129
130    /// A list of attributes to diagnose the uselessness of when the
131    /// processing is complete.
132    SmallVector<AttributeList*, 2> ignoredTypeAttrs;
133
134  public:
135    TypeProcessingState(Sema &sema, Declarator &declarator)
136      : sema(sema), declarator(declarator),
137        chunkIndex(declarator.getNumTypeObjects()),
138        trivial(true), hasSavedAttrs(false) {}
139
140    Sema &getSema() const {
141      return sema;
142    }
143
144    Declarator &getDeclarator() const {
145      return declarator;
146    }
147
148    unsigned getCurrentChunkIndex() const {
149      return chunkIndex;
150    }
151
152    void setCurrentChunkIndex(unsigned idx) {
153      assert(idx <= declarator.getNumTypeObjects());
154      chunkIndex = idx;
155    }
156
157    AttributeList *&getCurrentAttrListRef() const {
158      assert(chunkIndex <= declarator.getNumTypeObjects());
159      if (chunkIndex == declarator.getNumTypeObjects())
160        return getMutableDeclSpec().getAttributes().getListRef();
161      return declarator.getTypeObject(chunkIndex).getAttrListRef();
162    }
163
164    /// Save the current set of attributes on the DeclSpec.
165    void saveDeclSpecAttrs() {
166      // Don't try to save them multiple times.
167      if (hasSavedAttrs) return;
168
169      DeclSpec &spec = getMutableDeclSpec();
170      for (AttributeList *attr = spec.getAttributes().getList(); attr;
171             attr = attr->getNext())
172        savedAttrs.push_back(attr);
173      trivial &= savedAttrs.empty();
174      hasSavedAttrs = true;
175    }
176
177    /// Record that we had nowhere to put the given type attribute.
178    /// We will diagnose such attributes later.
179    void addIgnoredTypeAttr(AttributeList &attr) {
180      ignoredTypeAttrs.push_back(&attr);
181    }
182
183    /// Diagnose all the ignored type attributes, given that the
184    /// declarator worked out to the given type.
185    void diagnoseIgnoredTypeAttrs(QualType type) const {
186      for (SmallVectorImpl<AttributeList*>::const_iterator
187             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
188           i != e; ++i)
189        diagnoseBadTypeAttribute(getSema(), **i, type);
190    }
191
192    ~TypeProcessingState() {
193      if (trivial) return;
194
195      restoreDeclSpecAttrs();
196    }
197
198  private:
199    DeclSpec &getMutableDeclSpec() const {
200      return const_cast<DeclSpec&>(declarator.getDeclSpec());
201    }
202
203    void restoreDeclSpecAttrs() {
204      assert(hasSavedAttrs);
205
206      if (savedAttrs.empty()) {
207        getMutableDeclSpec().getAttributes().set(0);
208        return;
209      }
210
211      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
212      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
213        savedAttrs[i]->setNext(savedAttrs[i+1]);
214      savedAttrs.back()->setNext(0);
215    }
216  };
217
218  /// Basically std::pair except that we really want to avoid an
219  /// implicit operator= for safety concerns.  It's also a minor
220  /// link-time optimization for this to be a private type.
221  struct AttrAndList {
222    /// The attribute.
223    AttributeList &first;
224
225    /// The head of the list the attribute is currently in.
226    AttributeList *&second;
227
228    AttrAndList(AttributeList &attr, AttributeList *&head)
229      : first(attr), second(head) {}
230  };
231}
232
233namespace llvm {
234  template <> struct isPodLike<AttrAndList> {
235    static const bool value = true;
236  };
237}
238
239static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
240  attr.setNext(head);
241  head = &attr;
242}
243
244static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
245  if (head == &attr) {
246    head = attr.getNext();
247    return;
248  }
249
250  AttributeList *cur = head;
251  while (true) {
252    assert(cur && cur->getNext() && "ran out of attrs?");
253    if (cur->getNext() == &attr) {
254      cur->setNext(attr.getNext());
255      return;
256    }
257    cur = cur->getNext();
258  }
259}
260
261static void moveAttrFromListToList(AttributeList &attr,
262                                   AttributeList *&fromList,
263                                   AttributeList *&toList) {
264  spliceAttrOutOfList(attr, fromList);
265  spliceAttrIntoList(attr, toList);
266}
267
268static void processTypeAttrs(TypeProcessingState &state,
269                             QualType &type, bool isDeclSpec,
270                             AttributeList *attrs);
271
272static bool handleFunctionTypeAttr(TypeProcessingState &state,
273                                   AttributeList &attr,
274                                   QualType &type);
275
276static bool handleObjCGCTypeAttr(TypeProcessingState &state,
277                                 AttributeList &attr, QualType &type);
278
279static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
280                                       AttributeList &attr, QualType &type);
281
282static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
283                                      AttributeList &attr, QualType &type) {
284  if (attr.getKind() == AttributeList::AT_objc_gc)
285    return handleObjCGCTypeAttr(state, attr, type);
286  assert(attr.getKind() == AttributeList::AT_objc_ownership);
287  return handleObjCOwnershipTypeAttr(state, attr, type);
288}
289
290/// Given that an objc_gc attribute was written somewhere on a
291/// declaration *other* than on the declarator itself (for which, use
292/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
293/// didn't apply in whatever position it was written in, try to move
294/// it to a more appropriate position.
295static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
296                                          AttributeList &attr,
297                                          QualType type) {
298  Declarator &declarator = state.getDeclarator();
299  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
300    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
301    switch (chunk.Kind) {
302    case DeclaratorChunk::Pointer:
303    case DeclaratorChunk::BlockPointer:
304      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
305                             chunk.getAttrListRef());
306      return;
307
308    case DeclaratorChunk::Paren:
309    case DeclaratorChunk::Array:
310      continue;
311
312    // Don't walk through these.
313    case DeclaratorChunk::Reference:
314    case DeclaratorChunk::Function:
315    case DeclaratorChunk::MemberPointer:
316      goto error;
317    }
318  }
319 error:
320
321  diagnoseBadTypeAttribute(state.getSema(), attr, type);
322}
323
324/// Distribute an objc_gc type attribute that was written on the
325/// declarator.
326static void
327distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
328                                            AttributeList &attr,
329                                            QualType &declSpecType) {
330  Declarator &declarator = state.getDeclarator();
331
332  // objc_gc goes on the innermost pointer to something that's not a
333  // pointer.
334  unsigned innermost = -1U;
335  bool considerDeclSpec = true;
336  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = declarator.getTypeObject(i);
338    switch (chunk.Kind) {
339    case DeclaratorChunk::Pointer:
340    case DeclaratorChunk::BlockPointer:
341      innermost = i;
342      continue;
343
344    case DeclaratorChunk::Reference:
345    case DeclaratorChunk::MemberPointer:
346    case DeclaratorChunk::Paren:
347    case DeclaratorChunk::Array:
348      continue;
349
350    case DeclaratorChunk::Function:
351      considerDeclSpec = false;
352      goto done;
353    }
354  }
355 done:
356
357  // That might actually be the decl spec if we weren't blocked by
358  // anything in the declarator.
359  if (considerDeclSpec) {
360    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
361      // Splice the attribute into the decl spec.  Prevents the
362      // attribute from being applied multiple times and gives
363      // the source-location-filler something to work with.
364      state.saveDeclSpecAttrs();
365      moveAttrFromListToList(attr, declarator.getAttrListRef(),
366               declarator.getMutableDeclSpec().getAttributes().getListRef());
367      return;
368    }
369  }
370
371  // Otherwise, if we found an appropriate chunk, splice the attribute
372  // into it.
373  if (innermost != -1U) {
374    moveAttrFromListToList(attr, declarator.getAttrListRef(),
375                       declarator.getTypeObject(innermost).getAttrListRef());
376    return;
377  }
378
379  // Otherwise, diagnose when we're done building the type.
380  spliceAttrOutOfList(attr, declarator.getAttrListRef());
381  state.addIgnoredTypeAttr(attr);
382}
383
384/// A function type attribute was written somewhere in a declaration
385/// *other* than on the declarator itself or in the decl spec.  Given
386/// that it didn't apply in whatever position it was written in, try
387/// to move it to a more appropriate position.
388static void distributeFunctionTypeAttr(TypeProcessingState &state,
389                                       AttributeList &attr,
390                                       QualType type) {
391  Declarator &declarator = state.getDeclarator();
392
393  // Try to push the attribute from the return type of a function to
394  // the function itself.
395  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
396    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
397    switch (chunk.Kind) {
398    case DeclaratorChunk::Function:
399      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
400                             chunk.getAttrListRef());
401      return;
402
403    case DeclaratorChunk::Paren:
404    case DeclaratorChunk::Pointer:
405    case DeclaratorChunk::BlockPointer:
406    case DeclaratorChunk::Array:
407    case DeclaratorChunk::Reference:
408    case DeclaratorChunk::MemberPointer:
409      continue;
410    }
411  }
412
413  diagnoseBadTypeAttribute(state.getSema(), attr, type);
414}
415
416/// Try to distribute a function type attribute to the innermost
417/// function chunk or type.  Returns true if the attribute was
418/// distributed, false if no location was found.
419static bool
420distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
421                                      AttributeList &attr,
422                                      AttributeList *&attrList,
423                                      QualType &declSpecType) {
424  Declarator &declarator = state.getDeclarator();
425
426  // Put it on the innermost function chunk, if there is one.
427  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
428    DeclaratorChunk &chunk = declarator.getTypeObject(i);
429    if (chunk.Kind != DeclaratorChunk::Function) continue;
430
431    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
432    return true;
433  }
434
435  if (handleFunctionTypeAttr(state, attr, declSpecType)) {
436    spliceAttrOutOfList(attr, attrList);
437    return true;
438  }
439
440  return false;
441}
442
443/// A function type attribute was written in the decl spec.  Try to
444/// apply it somewhere.
445static void
446distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
447                                       AttributeList &attr,
448                                       QualType &declSpecType) {
449  state.saveDeclSpecAttrs();
450
451  // Try to distribute to the innermost.
452  if (distributeFunctionTypeAttrToInnermost(state, attr,
453                                            state.getCurrentAttrListRef(),
454                                            declSpecType))
455    return;
456
457  // If that failed, diagnose the bad attribute when the declarator is
458  // fully built.
459  state.addIgnoredTypeAttr(attr);
460}
461
462/// A function type attribute was written on the declarator.  Try to
463/// apply it somewhere.
464static void
465distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
466                                         AttributeList &attr,
467                                         QualType &declSpecType) {
468  Declarator &declarator = state.getDeclarator();
469
470  // Try to distribute to the innermost.
471  if (distributeFunctionTypeAttrToInnermost(state, attr,
472                                            declarator.getAttrListRef(),
473                                            declSpecType))
474    return;
475
476  // If that failed, diagnose the bad attribute when the declarator is
477  // fully built.
478  spliceAttrOutOfList(attr, declarator.getAttrListRef());
479  state.addIgnoredTypeAttr(attr);
480}
481
482/// \brief Given that there are attributes written on the declarator
483/// itself, try to distribute any type attributes to the appropriate
484/// declarator chunk.
485///
486/// These are attributes like the following:
487///   int f ATTR;
488///   int (f ATTR)();
489/// but not necessarily this:
490///   int f() ATTR;
491static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
492                                              QualType &declSpecType) {
493  // Collect all the type attributes from the declarator itself.
494  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
495  AttributeList *attr = state.getDeclarator().getAttributes();
496  AttributeList *next;
497  do {
498    next = attr->getNext();
499
500    switch (attr->getKind()) {
501    OBJC_POINTER_TYPE_ATTRS_CASELIST:
502      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
503      break;
504
505    case AttributeList::AT_ns_returns_retained:
506      if (!state.getSema().getLangOptions().ObjCAutoRefCount)
507        break;
508      // fallthrough
509
510    FUNCTION_TYPE_ATTRS_CASELIST:
511      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
512      break;
513
514    default:
515      break;
516    }
517  } while ((attr = next));
518}
519
520/// Add a synthetic '()' to a block-literal declarator if it is
521/// required, given the return type.
522static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
523                                          QualType declSpecType) {
524  Declarator &declarator = state.getDeclarator();
525
526  // First, check whether the declarator would produce a function,
527  // i.e. whether the innermost semantic chunk is a function.
528  if (declarator.isFunctionDeclarator()) {
529    // If so, make that declarator a prototyped declarator.
530    declarator.getFunctionTypeInfo().hasPrototype = true;
531    return;
532  }
533
534  // If there are any type objects, the type as written won't name a
535  // function, regardless of the decl spec type.  This is because a
536  // block signature declarator is always an abstract-declarator, and
537  // abstract-declarators can't just be parentheses chunks.  Therefore
538  // we need to build a function chunk unless there are no type
539  // objects and the decl spec type is a function.
540  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
541    return;
542
543  // Note that there *are* cases with invalid declarators where
544  // declarators consist solely of parentheses.  In general, these
545  // occur only in failed efforts to make function declarators, so
546  // faking up the function chunk is still the right thing to do.
547
548  // Otherwise, we need to fake up a function declarator.
549  SourceLocation loc = declarator.getSourceRange().getBegin();
550
551  // ...and *prepend* it to the declarator.
552  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
553                             /*proto*/ true,
554                             /*variadic*/ false, SourceLocation(),
555                             /*args*/ 0, 0,
556                             /*type quals*/ 0,
557                             /*ref-qualifier*/true, SourceLocation(),
558                             /*mutable qualifier*/SourceLocation(),
559                             /*EH*/ EST_None, SourceLocation(), 0, 0, 0, 0,
560                             /*parens*/ loc, loc,
561                             declarator));
562
563  // For consistency, make sure the state still has us as processing
564  // the decl spec.
565  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
566  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
567}
568
569/// \brief Convert the specified declspec to the appropriate type
570/// object.
571/// \param D  the declarator containing the declaration specifier.
572/// \returns The type described by the declaration specifiers.  This function
573/// never returns null.
574static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
575  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
576  // checking.
577
578  Sema &S = state.getSema();
579  Declarator &declarator = state.getDeclarator();
580  const DeclSpec &DS = declarator.getDeclSpec();
581  SourceLocation DeclLoc = declarator.getIdentifierLoc();
582  if (DeclLoc.isInvalid())
583    DeclLoc = DS.getSourceRange().getBegin();
584
585  ASTContext &Context = S.Context;
586
587  QualType Result;
588  switch (DS.getTypeSpecType()) {
589  case DeclSpec::TST_void:
590    Result = Context.VoidTy;
591    break;
592  case DeclSpec::TST_char:
593    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
594      Result = Context.CharTy;
595    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
596      Result = Context.SignedCharTy;
597    else {
598      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
599             "Unknown TSS value");
600      Result = Context.UnsignedCharTy;
601    }
602    break;
603  case DeclSpec::TST_wchar:
604    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
605      Result = Context.WCharTy;
606    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
607      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
608        << DS.getSpecifierName(DS.getTypeSpecType());
609      Result = Context.getSignedWCharType();
610    } else {
611      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
612        "Unknown TSS value");
613      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
614        << DS.getSpecifierName(DS.getTypeSpecType());
615      Result = Context.getUnsignedWCharType();
616    }
617    break;
618  case DeclSpec::TST_char16:
619      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
620        "Unknown TSS value");
621      Result = Context.Char16Ty;
622    break;
623  case DeclSpec::TST_char32:
624      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
625        "Unknown TSS value");
626      Result = Context.Char32Ty;
627    break;
628  case DeclSpec::TST_unspecified:
629    // "<proto1,proto2>" is an objc qualified ID with a missing id.
630    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
631      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
632                                         (ObjCProtocolDecl**)PQ,
633                                         DS.getNumProtocolQualifiers());
634      Result = Context.getObjCObjectPointerType(Result);
635      break;
636    }
637
638    // If this is a missing declspec in a block literal return context, then it
639    // is inferred from the return statements inside the block.
640    if (isOmittedBlockReturnType(declarator)) {
641      Result = Context.DependentTy;
642      break;
643    }
644
645    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
646    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
647    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
648    // Note that the one exception to this is function definitions, which are
649    // allowed to be completely missing a declspec.  This is handled in the
650    // parser already though by it pretending to have seen an 'int' in this
651    // case.
652    if (S.getLangOptions().ImplicitInt) {
653      // In C89 mode, we only warn if there is a completely missing declspec
654      // when one is not allowed.
655      if (DS.isEmpty()) {
656        S.Diag(DeclLoc, diag::ext_missing_declspec)
657          << DS.getSourceRange()
658        << FixItHint::CreateInsertion(DS.getSourceRange().getBegin(), "int");
659      }
660    } else if (!DS.hasTypeSpecifier()) {
661      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
662      // "At least one type specifier shall be given in the declaration
663      // specifiers in each declaration, and in the specifier-qualifier list in
664      // each struct declaration and type name."
665      // FIXME: Does Microsoft really have the implicit int extension in C++?
666      if (S.getLangOptions().CPlusPlus &&
667          !S.getLangOptions().MicrosoftExt) {
668        S.Diag(DeclLoc, diag::err_missing_type_specifier)
669          << DS.getSourceRange();
670
671        // When this occurs in C++ code, often something is very broken with the
672        // value being declared, poison it as invalid so we don't get chains of
673        // errors.
674        declarator.setInvalidType(true);
675      } else {
676        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
677          << DS.getSourceRange();
678      }
679    }
680
681    // FALL THROUGH.
682  case DeclSpec::TST_int: {
683    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
684      switch (DS.getTypeSpecWidth()) {
685      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
686      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
687      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
688      case DeclSpec::TSW_longlong:
689        Result = Context.LongLongTy;
690
691        // long long is a C99 feature.
692        if (!S.getLangOptions().C99 &&
693            !S.getLangOptions().CPlusPlus0x)
694          S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
695        break;
696      }
697    } else {
698      switch (DS.getTypeSpecWidth()) {
699      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
700      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
701      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
702      case DeclSpec::TSW_longlong:
703        Result = Context.UnsignedLongLongTy;
704
705        // long long is a C99 feature.
706        if (!S.getLangOptions().C99 &&
707            !S.getLangOptions().CPlusPlus0x)
708          S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
709        break;
710      }
711    }
712    break;
713  }
714  case DeclSpec::TST_float: Result = Context.FloatTy; break;
715  case DeclSpec::TST_double:
716    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
717      Result = Context.LongDoubleTy;
718    else
719      Result = Context.DoubleTy;
720
721    if (S.getLangOptions().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
722      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
723      declarator.setInvalidType(true);
724    }
725    break;
726  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
727  case DeclSpec::TST_decimal32:    // _Decimal32
728  case DeclSpec::TST_decimal64:    // _Decimal64
729  case DeclSpec::TST_decimal128:   // _Decimal128
730    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
731    Result = Context.IntTy;
732    declarator.setInvalidType(true);
733    break;
734  case DeclSpec::TST_class:
735  case DeclSpec::TST_enum:
736  case DeclSpec::TST_union:
737  case DeclSpec::TST_struct: {
738    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
739    if (!D) {
740      // This can happen in C++ with ambiguous lookups.
741      Result = Context.IntTy;
742      declarator.setInvalidType(true);
743      break;
744    }
745
746    // If the type is deprecated or unavailable, diagnose it.
747    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
748
749    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
750           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
751
752    // TypeQuals handled by caller.
753    Result = Context.getTypeDeclType(D);
754
755    // In both C and C++, make an ElaboratedType.
756    ElaboratedTypeKeyword Keyword
757      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
758    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
759
760    if (D->isInvalidDecl())
761      declarator.setInvalidType(true);
762    break;
763  }
764  case DeclSpec::TST_typename: {
765    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
766           DS.getTypeSpecSign() == 0 &&
767           "Can't handle qualifiers on typedef names yet!");
768    Result = S.GetTypeFromParser(DS.getRepAsType());
769    if (Result.isNull())
770      declarator.setInvalidType(true);
771    else if (DeclSpec::ProtocolQualifierListTy PQ
772               = DS.getProtocolQualifiers()) {
773      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
774        // Silently drop any existing protocol qualifiers.
775        // TODO: determine whether that's the right thing to do.
776        if (ObjT->getNumProtocols())
777          Result = ObjT->getBaseType();
778
779        if (DS.getNumProtocolQualifiers())
780          Result = Context.getObjCObjectType(Result,
781                                             (ObjCProtocolDecl**) PQ,
782                                             DS.getNumProtocolQualifiers());
783      } else if (Result->isObjCIdType()) {
784        // id<protocol-list>
785        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
786                                           (ObjCProtocolDecl**) PQ,
787                                           DS.getNumProtocolQualifiers());
788        Result = Context.getObjCObjectPointerType(Result);
789      } else if (Result->isObjCClassType()) {
790        // Class<protocol-list>
791        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
792                                           (ObjCProtocolDecl**) PQ,
793                                           DS.getNumProtocolQualifiers());
794        Result = Context.getObjCObjectPointerType(Result);
795      } else {
796        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
797          << DS.getSourceRange();
798        declarator.setInvalidType(true);
799      }
800    }
801
802    // TypeQuals handled by caller.
803    break;
804  }
805  case DeclSpec::TST_typeofType:
806    // FIXME: Preserve type source info.
807    Result = S.GetTypeFromParser(DS.getRepAsType());
808    assert(!Result.isNull() && "Didn't get a type for typeof?");
809    if (!Result->isDependentType())
810      if (const TagType *TT = Result->getAs<TagType>())
811        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
812    // TypeQuals handled by caller.
813    Result = Context.getTypeOfType(Result);
814    break;
815  case DeclSpec::TST_typeofExpr: {
816    Expr *E = DS.getRepAsExpr();
817    assert(E && "Didn't get an expression for typeof?");
818    // TypeQuals handled by caller.
819    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
820    if (Result.isNull()) {
821      Result = Context.IntTy;
822      declarator.setInvalidType(true);
823    }
824    break;
825  }
826  case DeclSpec::TST_decltype: {
827    Expr *E = DS.getRepAsExpr();
828    assert(E && "Didn't get an expression for decltype?");
829    // TypeQuals handled by caller.
830    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
831    if (Result.isNull()) {
832      Result = Context.IntTy;
833      declarator.setInvalidType(true);
834    }
835    break;
836  }
837  case DeclSpec::TST_underlyingType:
838    Result = S.GetTypeFromParser(DS.getRepAsType());
839    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
840    Result = S.BuildUnaryTransformType(Result,
841                                       UnaryTransformType::EnumUnderlyingType,
842                                       DS.getTypeSpecTypeLoc());
843    if (Result.isNull()) {
844      Result = Context.IntTy;
845      declarator.setInvalidType(true);
846    }
847    break;
848
849  case DeclSpec::TST_auto: {
850    // TypeQuals handled by caller.
851    Result = Context.getAutoType(QualType());
852    break;
853  }
854
855  case DeclSpec::TST_unknown_anytype:
856    Result = Context.UnknownAnyTy;
857    break;
858
859  case DeclSpec::TST_error:
860    Result = Context.IntTy;
861    declarator.setInvalidType(true);
862    break;
863  }
864
865  // Handle complex types.
866  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
867    if (S.getLangOptions().Freestanding)
868      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
869    Result = Context.getComplexType(Result);
870  } else if (DS.isTypeAltiVecVector()) {
871    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
872    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
873    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
874    if (DS.isTypeAltiVecPixel())
875      VecKind = VectorType::AltiVecPixel;
876    else if (DS.isTypeAltiVecBool())
877      VecKind = VectorType::AltiVecBool;
878    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
879  }
880
881  // FIXME: Imaginary.
882  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
883    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
884
885  // Before we process any type attributes, synthesize a block literal
886  // function declarator if necessary.
887  if (declarator.getContext() == Declarator::BlockLiteralContext)
888    maybeSynthesizeBlockSignature(state, Result);
889
890  // Apply any type attributes from the decl spec.  This may cause the
891  // list of type attributes to be temporarily saved while the type
892  // attributes are pushed around.
893  if (AttributeList *attrs = DS.getAttributes().getList())
894    processTypeAttrs(state, Result, true, attrs);
895
896  // Apply const/volatile/restrict qualifiers to T.
897  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
898
899    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
900    // or incomplete types shall not be restrict-qualified."  C++ also allows
901    // restrict-qualified references.
902    if (TypeQuals & DeclSpec::TQ_restrict) {
903      if (Result->isAnyPointerType() || Result->isReferenceType()) {
904        QualType EltTy;
905        if (Result->isObjCObjectPointerType())
906          EltTy = Result;
907        else
908          EltTy = Result->isPointerType() ?
909                    Result->getAs<PointerType>()->getPointeeType() :
910                    Result->getAs<ReferenceType>()->getPointeeType();
911
912        // If we have a pointer or reference, the pointee must have an object
913        // incomplete type.
914        if (!EltTy->isIncompleteOrObjectType()) {
915          S.Diag(DS.getRestrictSpecLoc(),
916               diag::err_typecheck_invalid_restrict_invalid_pointee)
917            << EltTy << DS.getSourceRange();
918          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
919        }
920      } else {
921        S.Diag(DS.getRestrictSpecLoc(),
922               diag::err_typecheck_invalid_restrict_not_pointer)
923          << Result << DS.getSourceRange();
924        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
925      }
926    }
927
928    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
929    // of a function type includes any type qualifiers, the behavior is
930    // undefined."
931    if (Result->isFunctionType() && TypeQuals) {
932      // Get some location to point at, either the C or V location.
933      SourceLocation Loc;
934      if (TypeQuals & DeclSpec::TQ_const)
935        Loc = DS.getConstSpecLoc();
936      else if (TypeQuals & DeclSpec::TQ_volatile)
937        Loc = DS.getVolatileSpecLoc();
938      else {
939        assert((TypeQuals & DeclSpec::TQ_restrict) &&
940               "Has CVR quals but not C, V, or R?");
941        Loc = DS.getRestrictSpecLoc();
942      }
943      S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
944        << Result << DS.getSourceRange();
945    }
946
947    // C++ [dcl.ref]p1:
948    //   Cv-qualified references are ill-formed except when the
949    //   cv-qualifiers are introduced through the use of a typedef
950    //   (7.1.3) or of a template type argument (14.3), in which
951    //   case the cv-qualifiers are ignored.
952    // FIXME: Shouldn't we be checking SCS_typedef here?
953    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
954        TypeQuals && Result->isReferenceType()) {
955      TypeQuals &= ~DeclSpec::TQ_const;
956      TypeQuals &= ~DeclSpec::TQ_volatile;
957    }
958
959    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
960    Result = Context.getQualifiedType(Result, Quals);
961  }
962
963  return Result;
964}
965
966static std::string getPrintableNameForEntity(DeclarationName Entity) {
967  if (Entity)
968    return Entity.getAsString();
969
970  return "type name";
971}
972
973QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
974                                  Qualifiers Qs) {
975  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
976  // object or incomplete types shall not be restrict-qualified."
977  if (Qs.hasRestrict()) {
978    unsigned DiagID = 0;
979    QualType ProblemTy;
980
981    const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
982    if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
983      if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
984        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
985        ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
986      }
987    } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
988      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
989        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
990        ProblemTy = T->getAs<PointerType>()->getPointeeType();
991      }
992    } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
993      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
994        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
995        ProblemTy = T->getAs<PointerType>()->getPointeeType();
996      }
997    } else if (!Ty->isDependentType()) {
998      // FIXME: this deserves a proper diagnostic
999      DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1000      ProblemTy = T;
1001    }
1002
1003    if (DiagID) {
1004      Diag(Loc, DiagID) << ProblemTy;
1005      Qs.removeRestrict();
1006    }
1007  }
1008
1009  return Context.getQualifiedType(T, Qs);
1010}
1011
1012/// \brief Build a paren type including \p T.
1013QualType Sema::BuildParenType(QualType T) {
1014  return Context.getParenType(T);
1015}
1016
1017/// Given that we're building a pointer or reference to the given
1018static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1019                                           SourceLocation loc,
1020                                           bool isReference) {
1021  // Bail out if retention is unrequired or already specified.
1022  if (!type->isObjCLifetimeType() ||
1023      type.getObjCLifetime() != Qualifiers::OCL_None)
1024    return type;
1025
1026  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1027
1028  // If the object type is const-qualified, we can safely use
1029  // __unsafe_unretained.  This is safe (because there are no read
1030  // barriers), and it'll be safe to coerce anything but __weak* to
1031  // the resulting type.
1032  if (type.isConstQualified()) {
1033    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1034
1035  // Otherwise, check whether the static type does not require
1036  // retaining.  This currently only triggers for Class (possibly
1037  // protocol-qualifed, and arrays thereof).
1038  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1039    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1040
1041  // If we are in an unevaluated context, like sizeof, assume ExplicitNone and
1042  // don't give error.
1043  } else if (S.ExprEvalContexts.back().Context == Sema::Unevaluated) {
1044    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1045
1046  // If that failed, give an error and recover using __autoreleasing.
1047  } else {
1048    // These types can show up in private ivars in system headers, so
1049    // we need this to not be an error in those cases.  Instead we
1050    // want to delay.
1051    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1052      S.DelayedDiagnostics.add(
1053          sema::DelayedDiagnostic::makeForbiddenType(loc,
1054              diag::err_arc_indirect_no_ownership, type, isReference));
1055    } else {
1056      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1057    }
1058    implicitLifetime = Qualifiers::OCL_Autoreleasing;
1059  }
1060  assert(implicitLifetime && "didn't infer any lifetime!");
1061
1062  Qualifiers qs;
1063  qs.addObjCLifetime(implicitLifetime);
1064  return S.Context.getQualifiedType(type, qs);
1065}
1066
1067/// \brief Build a pointer type.
1068///
1069/// \param T The type to which we'll be building a pointer.
1070///
1071/// \param Loc The location of the entity whose type involves this
1072/// pointer type or, if there is no such entity, the location of the
1073/// type that will have pointer type.
1074///
1075/// \param Entity The name of the entity that involves the pointer
1076/// type, if known.
1077///
1078/// \returns A suitable pointer type, if there are no
1079/// errors. Otherwise, returns a NULL type.
1080QualType Sema::BuildPointerType(QualType T,
1081                                SourceLocation Loc, DeclarationName Entity) {
1082  if (T->isReferenceType()) {
1083    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1084    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1085      << getPrintableNameForEntity(Entity) << T;
1086    return QualType();
1087  }
1088
1089  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1090
1091  // In ARC, it is forbidden to build pointers to unqualified pointers.
1092  if (getLangOptions().ObjCAutoRefCount)
1093    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1094
1095  // Build the pointer type.
1096  return Context.getPointerType(T);
1097}
1098
1099/// \brief Build a reference type.
1100///
1101/// \param T The type to which we'll be building a reference.
1102///
1103/// \param Loc The location of the entity whose type involves this
1104/// reference type or, if there is no such entity, the location of the
1105/// type that will have reference type.
1106///
1107/// \param Entity The name of the entity that involves the reference
1108/// type, if known.
1109///
1110/// \returns A suitable reference type, if there are no
1111/// errors. Otherwise, returns a NULL type.
1112QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1113                                  SourceLocation Loc,
1114                                  DeclarationName Entity) {
1115  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1116         "Unresolved overloaded function type");
1117
1118  // C++0x [dcl.ref]p6:
1119  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1120  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1121  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1122  //   the type "lvalue reference to T", while an attempt to create the type
1123  //   "rvalue reference to cv TR" creates the type TR.
1124  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1125
1126  // C++ [dcl.ref]p4: There shall be no references to references.
1127  //
1128  // According to C++ DR 106, references to references are only
1129  // diagnosed when they are written directly (e.g., "int & &"),
1130  // but not when they happen via a typedef:
1131  //
1132  //   typedef int& intref;
1133  //   typedef intref& intref2;
1134  //
1135  // Parser::ParseDeclaratorInternal diagnoses the case where
1136  // references are written directly; here, we handle the
1137  // collapsing of references-to-references as described in C++0x.
1138  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1139
1140  // C++ [dcl.ref]p1:
1141  //   A declarator that specifies the type "reference to cv void"
1142  //   is ill-formed.
1143  if (T->isVoidType()) {
1144    Diag(Loc, diag::err_reference_to_void);
1145    return QualType();
1146  }
1147
1148  // In ARC, it is forbidden to build references to unqualified pointers.
1149  if (getLangOptions().ObjCAutoRefCount)
1150    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1151
1152  // Handle restrict on references.
1153  if (LValueRef)
1154    return Context.getLValueReferenceType(T, SpelledAsLValue);
1155  return Context.getRValueReferenceType(T);
1156}
1157
1158/// Check whether the specified array size makes the array type a VLA.  If so,
1159/// return true, if not, return the size of the array in SizeVal.
1160static bool isArraySizeVLA(Expr *ArraySize, llvm::APSInt &SizeVal, Sema &S) {
1161  // If the size is an ICE, it certainly isn't a VLA.
1162  if (ArraySize->isIntegerConstantExpr(SizeVal, S.Context))
1163    return false;
1164
1165  // If we're in a GNU mode (like gnu99, but not c99) accept any evaluatable
1166  // value as an extension.
1167  Expr::EvalResult Result;
1168  if (S.LangOpts.GNUMode && ArraySize->Evaluate(Result, S.Context)) {
1169    if (!Result.hasSideEffects() && Result.Val.isInt()) {
1170      SizeVal = Result.Val.getInt();
1171      S.Diag(ArraySize->getLocStart(), diag::ext_vla_folded_to_constant);
1172      return false;
1173    }
1174  }
1175
1176  return true;
1177}
1178
1179
1180/// \brief Build an array type.
1181///
1182/// \param T The type of each element in the array.
1183///
1184/// \param ASM C99 array size modifier (e.g., '*', 'static').
1185///
1186/// \param ArraySize Expression describing the size of the array.
1187///
1188/// \param Loc The location of the entity whose type involves this
1189/// array type or, if there is no such entity, the location of the
1190/// type that will have array type.
1191///
1192/// \param Entity The name of the entity that involves the array
1193/// type, if known.
1194///
1195/// \returns A suitable array type, if there are no errors. Otherwise,
1196/// returns a NULL type.
1197QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1198                              Expr *ArraySize, unsigned Quals,
1199                              SourceRange Brackets, DeclarationName Entity) {
1200
1201  SourceLocation Loc = Brackets.getBegin();
1202  if (getLangOptions().CPlusPlus) {
1203    // C++ [dcl.array]p1:
1204    //   T is called the array element type; this type shall not be a reference
1205    //   type, the (possibly cv-qualified) type void, a function type or an
1206    //   abstract class type.
1207    //
1208    // Note: function types are handled in the common path with C.
1209    if (T->isReferenceType()) {
1210      Diag(Loc, diag::err_illegal_decl_array_of_references)
1211      << getPrintableNameForEntity(Entity) << T;
1212      return QualType();
1213    }
1214
1215    if (T->isVoidType()) {
1216      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1217      return QualType();
1218    }
1219
1220    if (RequireNonAbstractType(Brackets.getBegin(), T,
1221                               diag::err_array_of_abstract_type))
1222      return QualType();
1223
1224  } else {
1225    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1226    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1227    if (RequireCompleteType(Loc, T,
1228                            diag::err_illegal_decl_array_incomplete_type))
1229      return QualType();
1230  }
1231
1232  if (T->isFunctionType()) {
1233    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1234      << getPrintableNameForEntity(Entity) << T;
1235    return QualType();
1236  }
1237
1238  if (T->getContainedAutoType()) {
1239    Diag(Loc, diag::err_illegal_decl_array_of_auto)
1240      << getPrintableNameForEntity(Entity) << T;
1241    return QualType();
1242  }
1243
1244  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1245    // If the element type is a struct or union that contains a variadic
1246    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1247    if (EltTy->getDecl()->hasFlexibleArrayMember())
1248      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1249  } else if (T->isObjCObjectType()) {
1250    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1251    return QualType();
1252  }
1253
1254  // Do lvalue-to-rvalue conversions on the array size expression.
1255  if (ArraySize && !ArraySize->isRValue()) {
1256    ExprResult Result = DefaultLvalueConversion(ArraySize);
1257    if (Result.isInvalid())
1258      return QualType();
1259
1260    ArraySize = Result.take();
1261  }
1262
1263  // C99 6.7.5.2p1: The size expression shall have integer type.
1264  // TODO: in theory, if we were insane, we could allow contextual
1265  // conversions to integer type here.
1266  if (ArraySize && !ArraySize->isTypeDependent() &&
1267      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1268    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1269      << ArraySize->getType() << ArraySize->getSourceRange();
1270    return QualType();
1271  }
1272  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1273  if (!ArraySize) {
1274    if (ASM == ArrayType::Star)
1275      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1276    else
1277      T = Context.getIncompleteArrayType(T, ASM, Quals);
1278  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1279    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1280  } else if (!T->isDependentType() && !T->isIncompleteType() &&
1281             !T->isConstantSizeType()) {
1282    // C99: an array with an element type that has a non-constant-size is a VLA.
1283    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1284  } else if (isArraySizeVLA(ArraySize, ConstVal, *this)) {
1285    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1286    // that we can fold to a non-zero positive value as an extension.
1287    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1288  } else {
1289    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1290    // have a value greater than zero.
1291    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1292      if (Entity)
1293        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1294          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1295      else
1296        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1297          << ArraySize->getSourceRange();
1298      return QualType();
1299    }
1300    if (ConstVal == 0) {
1301      // GCC accepts zero sized static arrays. We allow them when
1302      // we're not in a SFINAE context.
1303      Diag(ArraySize->getLocStart(),
1304           isSFINAEContext()? diag::err_typecheck_zero_array_size
1305                            : diag::ext_typecheck_zero_array_size)
1306        << ArraySize->getSourceRange();
1307    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1308               !T->isIncompleteType()) {
1309      // Is the array too large?
1310      unsigned ActiveSizeBits
1311        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1312      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1313        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1314          << ConstVal.toString(10)
1315          << ArraySize->getSourceRange();
1316    }
1317
1318    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1319  }
1320  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1321  if (!getLangOptions().C99) {
1322    if (T->isVariableArrayType()) {
1323      // Prohibit the use of non-POD types in VLAs.
1324      QualType BaseT = Context.getBaseElementType(T);
1325      if (!T->isDependentType() &&
1326          !BaseT.isPODType(Context) &&
1327          !BaseT->isObjCLifetimeType()) {
1328        Diag(Loc, diag::err_vla_non_pod)
1329          << BaseT;
1330        return QualType();
1331      }
1332      // Prohibit the use of VLAs during template argument deduction.
1333      else if (isSFINAEContext()) {
1334        Diag(Loc, diag::err_vla_in_sfinae);
1335        return QualType();
1336      }
1337      // Just extwarn about VLAs.
1338      else
1339        Diag(Loc, diag::ext_vla);
1340    } else if (ASM != ArrayType::Normal || Quals != 0)
1341      Diag(Loc,
1342           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
1343                                     : diag::ext_c99_array_usage);
1344  }
1345
1346  return T;
1347}
1348
1349/// \brief Build an ext-vector type.
1350///
1351/// Run the required checks for the extended vector type.
1352QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1353                                  SourceLocation AttrLoc) {
1354  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1355  // in conjunction with complex types (pointers, arrays, functions, etc.).
1356  if (!T->isDependentType() &&
1357      !T->isIntegerType() && !T->isRealFloatingType()) {
1358    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1359    return QualType();
1360  }
1361
1362  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1363    llvm::APSInt vecSize(32);
1364    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1365      Diag(AttrLoc, diag::err_attribute_argument_not_int)
1366        << "ext_vector_type" << ArraySize->getSourceRange();
1367      return QualType();
1368    }
1369
1370    // unlike gcc's vector_size attribute, the size is specified as the
1371    // number of elements, not the number of bytes.
1372    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1373
1374    if (vectorSize == 0) {
1375      Diag(AttrLoc, diag::err_attribute_zero_size)
1376      << ArraySize->getSourceRange();
1377      return QualType();
1378    }
1379
1380    return Context.getExtVectorType(T, vectorSize);
1381  }
1382
1383  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1384}
1385
1386/// \brief Build a function type.
1387///
1388/// This routine checks the function type according to C++ rules and
1389/// under the assumption that the result type and parameter types have
1390/// just been instantiated from a template. It therefore duplicates
1391/// some of the behavior of GetTypeForDeclarator, but in a much
1392/// simpler form that is only suitable for this narrow use case.
1393///
1394/// \param T The return type of the function.
1395///
1396/// \param ParamTypes The parameter types of the function. This array
1397/// will be modified to account for adjustments to the types of the
1398/// function parameters.
1399///
1400/// \param NumParamTypes The number of parameter types in ParamTypes.
1401///
1402/// \param Variadic Whether this is a variadic function type.
1403///
1404/// \param Quals The cvr-qualifiers to be applied to the function type.
1405///
1406/// \param Loc The location of the entity whose type involves this
1407/// function type or, if there is no such entity, the location of the
1408/// type that will have function type.
1409///
1410/// \param Entity The name of the entity that involves the function
1411/// type, if known.
1412///
1413/// \returns A suitable function type, if there are no
1414/// errors. Otherwise, returns a NULL type.
1415QualType Sema::BuildFunctionType(QualType T,
1416                                 QualType *ParamTypes,
1417                                 unsigned NumParamTypes,
1418                                 bool Variadic, unsigned Quals,
1419                                 RefQualifierKind RefQualifier,
1420                                 SourceLocation Loc, DeclarationName Entity,
1421                                 FunctionType::ExtInfo Info) {
1422  if (T->isArrayType() || T->isFunctionType()) {
1423    Diag(Loc, diag::err_func_returning_array_function)
1424      << T->isFunctionType() << T;
1425    return QualType();
1426  }
1427
1428  bool Invalid = false;
1429  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
1430    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1431    if (ParamType->isVoidType()) {
1432      Diag(Loc, diag::err_param_with_void_type);
1433      Invalid = true;
1434    }
1435
1436    ParamTypes[Idx] = ParamType;
1437  }
1438
1439  if (Invalid)
1440    return QualType();
1441
1442  FunctionProtoType::ExtProtoInfo EPI;
1443  EPI.Variadic = Variadic;
1444  EPI.TypeQuals = Quals;
1445  EPI.RefQualifier = RefQualifier;
1446  EPI.ExtInfo = Info;
1447
1448  return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
1449}
1450
1451/// \brief Build a member pointer type \c T Class::*.
1452///
1453/// \param T the type to which the member pointer refers.
1454/// \param Class the class type into which the member pointer points.
1455/// \param CVR Qualifiers applied to the member pointer type
1456/// \param Loc the location where this type begins
1457/// \param Entity the name of the entity that will have this member pointer type
1458///
1459/// \returns a member pointer type, if successful, or a NULL type if there was
1460/// an error.
1461QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1462                                      SourceLocation Loc,
1463                                      DeclarationName Entity) {
1464  // Verify that we're not building a pointer to pointer to function with
1465  // exception specification.
1466  if (CheckDistantExceptionSpec(T)) {
1467    Diag(Loc, diag::err_distant_exception_spec);
1468
1469    // FIXME: If we're doing this as part of template instantiation,
1470    // we should return immediately.
1471
1472    // Build the type anyway, but use the canonical type so that the
1473    // exception specifiers are stripped off.
1474    T = Context.getCanonicalType(T);
1475  }
1476
1477  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1478  //   with reference type, or "cv void."
1479  if (T->isReferenceType()) {
1480    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1481      << (Entity? Entity.getAsString() : "type name") << T;
1482    return QualType();
1483  }
1484
1485  if (T->isVoidType()) {
1486    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1487      << (Entity? Entity.getAsString() : "type name");
1488    return QualType();
1489  }
1490
1491  if (!Class->isDependentType() && !Class->isRecordType()) {
1492    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1493    return QualType();
1494  }
1495
1496  // In the Microsoft ABI, the class is allowed to be an incomplete
1497  // type. In such cases, the compiler makes a worst-case assumption.
1498  // We make no such assumption right now, so emit an error if the
1499  // class isn't a complete type.
1500  if (Context.getTargetInfo().getCXXABI() == CXXABI_Microsoft &&
1501      RequireCompleteType(Loc, Class, diag::err_incomplete_type))
1502    return QualType();
1503
1504  return Context.getMemberPointerType(T, Class.getTypePtr());
1505}
1506
1507/// \brief Build a block pointer type.
1508///
1509/// \param T The type to which we'll be building a block pointer.
1510///
1511/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
1512///
1513/// \param Loc The location of the entity whose type involves this
1514/// block pointer type or, if there is no such entity, the location of the
1515/// type that will have block pointer type.
1516///
1517/// \param Entity The name of the entity that involves the block pointer
1518/// type, if known.
1519///
1520/// \returns A suitable block pointer type, if there are no
1521/// errors. Otherwise, returns a NULL type.
1522QualType Sema::BuildBlockPointerType(QualType T,
1523                                     SourceLocation Loc,
1524                                     DeclarationName Entity) {
1525  if (!T->isFunctionType()) {
1526    Diag(Loc, diag::err_nonfunction_block_type);
1527    return QualType();
1528  }
1529
1530  return Context.getBlockPointerType(T);
1531}
1532
1533QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1534  QualType QT = Ty.get();
1535  if (QT.isNull()) {
1536    if (TInfo) *TInfo = 0;
1537    return QualType();
1538  }
1539
1540  TypeSourceInfo *DI = 0;
1541  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1542    QT = LIT->getType();
1543    DI = LIT->getTypeSourceInfo();
1544  }
1545
1546  if (TInfo) *TInfo = DI;
1547  return QT;
1548}
1549
1550static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1551                                            Qualifiers::ObjCLifetime ownership,
1552                                            unsigned chunkIndex);
1553
1554/// Given that this is the declaration of a parameter under ARC,
1555/// attempt to infer attributes and such for pointer-to-whatever
1556/// types.
1557static void inferARCWriteback(TypeProcessingState &state,
1558                              QualType &declSpecType) {
1559  Sema &S = state.getSema();
1560  Declarator &declarator = state.getDeclarator();
1561
1562  // TODO: should we care about decl qualifiers?
1563
1564  // Check whether the declarator has the expected form.  We walk
1565  // from the inside out in order to make the block logic work.
1566  unsigned outermostPointerIndex = 0;
1567  bool isBlockPointer = false;
1568  unsigned numPointers = 0;
1569  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1570    unsigned chunkIndex = i;
1571    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1572    switch (chunk.Kind) {
1573    case DeclaratorChunk::Paren:
1574      // Ignore parens.
1575      break;
1576
1577    case DeclaratorChunk::Reference:
1578    case DeclaratorChunk::Pointer:
1579      // Count the number of pointers.  Treat references
1580      // interchangeably as pointers; if they're mis-ordered, normal
1581      // type building will discover that.
1582      outermostPointerIndex = chunkIndex;
1583      numPointers++;
1584      break;
1585
1586    case DeclaratorChunk::BlockPointer:
1587      // If we have a pointer to block pointer, that's an acceptable
1588      // indirect reference; anything else is not an application of
1589      // the rules.
1590      if (numPointers != 1) return;
1591      numPointers++;
1592      outermostPointerIndex = chunkIndex;
1593      isBlockPointer = true;
1594
1595      // We don't care about pointer structure in return values here.
1596      goto done;
1597
1598    case DeclaratorChunk::Array: // suppress if written (id[])?
1599    case DeclaratorChunk::Function:
1600    case DeclaratorChunk::MemberPointer:
1601      return;
1602    }
1603  }
1604 done:
1605
1606  // If we have *one* pointer, then we want to throw the qualifier on
1607  // the declaration-specifiers, which means that it needs to be a
1608  // retainable object type.
1609  if (numPointers == 1) {
1610    // If it's not a retainable object type, the rule doesn't apply.
1611    if (!declSpecType->isObjCRetainableType()) return;
1612
1613    // If it already has lifetime, don't do anything.
1614    if (declSpecType.getObjCLifetime()) return;
1615
1616    // Otherwise, modify the type in-place.
1617    Qualifiers qs;
1618
1619    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1620      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1621    else
1622      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1623    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1624
1625  // If we have *two* pointers, then we want to throw the qualifier on
1626  // the outermost pointer.
1627  } else if (numPointers == 2) {
1628    // If we don't have a block pointer, we need to check whether the
1629    // declaration-specifiers gave us something that will turn into a
1630    // retainable object pointer after we slap the first pointer on it.
1631    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1632      return;
1633
1634    // Look for an explicit lifetime attribute there.
1635    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1636    if (chunk.Kind != DeclaratorChunk::Pointer &&
1637        chunk.Kind != DeclaratorChunk::BlockPointer)
1638      return;
1639    for (const AttributeList *attr = chunk.getAttrs(); attr;
1640           attr = attr->getNext())
1641      if (attr->getKind() == AttributeList::AT_objc_ownership)
1642        return;
1643
1644    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1645                                          outermostPointerIndex);
1646
1647  // Any other number of pointers/references does not trigger the rule.
1648  } else return;
1649
1650  // TODO: mark whether we did this inference?
1651}
1652
1653static void DiagnoseIgnoredQualifiers(unsigned Quals,
1654                                      SourceLocation ConstQualLoc,
1655                                      SourceLocation VolatileQualLoc,
1656                                      SourceLocation RestrictQualLoc,
1657                                      Sema& S) {
1658  std::string QualStr;
1659  unsigned NumQuals = 0;
1660  SourceLocation Loc;
1661
1662  FixItHint ConstFixIt;
1663  FixItHint VolatileFixIt;
1664  FixItHint RestrictFixIt;
1665
1666  const SourceManager &SM = S.getSourceManager();
1667
1668  // FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
1669  // find a range and grow it to encompass all the qualifiers, regardless of
1670  // the order in which they textually appear.
1671  if (Quals & Qualifiers::Const) {
1672    ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
1673    QualStr = "const";
1674    ++NumQuals;
1675    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(ConstQualLoc, Loc))
1676      Loc = ConstQualLoc;
1677  }
1678  if (Quals & Qualifiers::Volatile) {
1679    VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
1680    QualStr += (NumQuals == 0 ? "volatile" : " volatile");
1681    ++NumQuals;
1682    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(VolatileQualLoc, Loc))
1683      Loc = VolatileQualLoc;
1684  }
1685  if (Quals & Qualifiers::Restrict) {
1686    RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
1687    QualStr += (NumQuals == 0 ? "restrict" : " restrict");
1688    ++NumQuals;
1689    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(RestrictQualLoc, Loc))
1690      Loc = RestrictQualLoc;
1691  }
1692
1693  assert(NumQuals > 0 && "No known qualifiers?");
1694
1695  S.Diag(Loc, diag::warn_qual_return_type)
1696    << QualStr << NumQuals << ConstFixIt << VolatileFixIt << RestrictFixIt;
1697}
1698
1699static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
1700                                             TypeSourceInfo *&ReturnTypeInfo) {
1701  Sema &SemaRef = state.getSema();
1702  Declarator &D = state.getDeclarator();
1703  QualType T;
1704  ReturnTypeInfo = 0;
1705
1706  // The TagDecl owned by the DeclSpec.
1707  TagDecl *OwnedTagDecl = 0;
1708
1709  switch (D.getName().getKind()) {
1710  case UnqualifiedId::IK_ImplicitSelfParam:
1711  case UnqualifiedId::IK_OperatorFunctionId:
1712  case UnqualifiedId::IK_Identifier:
1713  case UnqualifiedId::IK_LiteralOperatorId:
1714  case UnqualifiedId::IK_TemplateId:
1715    T = ConvertDeclSpecToType(state);
1716
1717    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
1718      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
1719      // Owned declaration is embedded in declarator.
1720      OwnedTagDecl->setEmbeddedInDeclarator(true);
1721    }
1722    break;
1723
1724  case UnqualifiedId::IK_ConstructorName:
1725  case UnqualifiedId::IK_ConstructorTemplateId:
1726  case UnqualifiedId::IK_DestructorName:
1727    // Constructors and destructors don't have return types. Use
1728    // "void" instead.
1729    T = SemaRef.Context.VoidTy;
1730    break;
1731
1732  case UnqualifiedId::IK_ConversionFunctionId:
1733    // The result type of a conversion function is the type that it
1734    // converts to.
1735    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
1736                                  &ReturnTypeInfo);
1737    break;
1738  }
1739
1740  if (D.getAttributes())
1741    distributeTypeAttrsFromDeclarator(state, T);
1742
1743  // C++0x [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
1744  // In C++0x, a function declarator using 'auto' must have a trailing return
1745  // type (this is checked later) and we can skip this. In other languages
1746  // using auto, we need to check regardless.
1747  if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
1748      (!SemaRef.getLangOptions().CPlusPlus0x || !D.isFunctionDeclarator())) {
1749    int Error = -1;
1750
1751    switch (D.getContext()) {
1752    case Declarator::KNRTypeListContext:
1753      llvm_unreachable("K&R type lists aren't allowed in C++");
1754      break;
1755    case Declarator::ObjCPrototypeContext:
1756    case Declarator::PrototypeContext:
1757      Error = 0; // Function prototype
1758      break;
1759    case Declarator::MemberContext:
1760      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
1761        break;
1762      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
1763      case TTK_Enum: llvm_unreachable("unhandled tag kind"); break;
1764      case TTK_Struct: Error = 1; /* Struct member */ break;
1765      case TTK_Union:  Error = 2; /* Union member */ break;
1766      case TTK_Class:  Error = 3; /* Class member */ break;
1767      }
1768      break;
1769    case Declarator::CXXCatchContext:
1770    case Declarator::ObjCCatchContext:
1771      Error = 4; // Exception declaration
1772      break;
1773    case Declarator::TemplateParamContext:
1774      Error = 5; // Template parameter
1775      break;
1776    case Declarator::BlockLiteralContext:
1777      Error = 6; // Block literal
1778      break;
1779    case Declarator::TemplateTypeArgContext:
1780      Error = 7; // Template type argument
1781      break;
1782    case Declarator::AliasDeclContext:
1783    case Declarator::AliasTemplateContext:
1784      Error = 9; // Type alias
1785      break;
1786    case Declarator::TypeNameContext:
1787      Error = 11; // Generic
1788      break;
1789    case Declarator::FileContext:
1790    case Declarator::BlockContext:
1791    case Declarator::ForContext:
1792    case Declarator::ConditionContext:
1793    case Declarator::CXXNewContext:
1794      break;
1795    }
1796
1797    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1798      Error = 8;
1799
1800    // In Objective-C it is an error to use 'auto' on a function declarator.
1801    if (D.isFunctionDeclarator())
1802      Error = 10;
1803
1804    // C++0x [dcl.spec.auto]p2: 'auto' is always fine if the declarator
1805    // contains a trailing return type. That is only legal at the outermost
1806    // level. Check all declarator chunks (outermost first) anyway, to give
1807    // better diagnostics.
1808    if (SemaRef.getLangOptions().CPlusPlus0x && Error != -1) {
1809      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1810        unsigned chunkIndex = e - i - 1;
1811        state.setCurrentChunkIndex(chunkIndex);
1812        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1813        if (DeclType.Kind == DeclaratorChunk::Function) {
1814          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1815          if (FTI.TrailingReturnType) {
1816            Error = -1;
1817            break;
1818          }
1819        }
1820      }
1821    }
1822
1823    if (Error != -1) {
1824      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1825                   diag::err_auto_not_allowed)
1826        << Error;
1827      T = SemaRef.Context.IntTy;
1828      D.setInvalidType(true);
1829    }
1830  }
1831
1832  if (SemaRef.getLangOptions().CPlusPlus &&
1833      OwnedTagDecl && OwnedTagDecl->isDefinition()) {
1834    // Check the contexts where C++ forbids the declaration of a new class
1835    // or enumeration in a type-specifier-seq.
1836    switch (D.getContext()) {
1837    case Declarator::FileContext:
1838    case Declarator::MemberContext:
1839    case Declarator::BlockContext:
1840    case Declarator::ForContext:
1841    case Declarator::BlockLiteralContext:
1842      // C++0x [dcl.type]p3:
1843      //   A type-specifier-seq shall not define a class or enumeration unless
1844      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
1845      //   the declaration of a template-declaration.
1846    case Declarator::AliasDeclContext:
1847      break;
1848    case Declarator::AliasTemplateContext:
1849      SemaRef.Diag(OwnedTagDecl->getLocation(),
1850             diag::err_type_defined_in_alias_template)
1851        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1852      break;
1853    case Declarator::TypeNameContext:
1854    case Declarator::TemplateParamContext:
1855    case Declarator::CXXNewContext:
1856    case Declarator::CXXCatchContext:
1857    case Declarator::ObjCCatchContext:
1858    case Declarator::TemplateTypeArgContext:
1859      SemaRef.Diag(OwnedTagDecl->getLocation(),
1860             diag::err_type_defined_in_type_specifier)
1861        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1862      break;
1863    case Declarator::PrototypeContext:
1864    case Declarator::ObjCPrototypeContext:
1865    case Declarator::KNRTypeListContext:
1866      // C++ [dcl.fct]p6:
1867      //   Types shall not be defined in return or parameter types.
1868      SemaRef.Diag(OwnedTagDecl->getLocation(),
1869                   diag::err_type_defined_in_param_type)
1870        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1871      break;
1872    case Declarator::ConditionContext:
1873      // C++ 6.4p2:
1874      // The type-specifier-seq shall not contain typedef and shall not declare
1875      // a new class or enumeration.
1876      SemaRef.Diag(OwnedTagDecl->getLocation(),
1877                   diag::err_type_defined_in_condition);
1878      break;
1879    }
1880  }
1881
1882  return T;
1883}
1884
1885static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
1886                                                QualType declSpecType,
1887                                                TypeSourceInfo *TInfo) {
1888
1889  QualType T = declSpecType;
1890  Declarator &D = state.getDeclarator();
1891  Sema &S = state.getSema();
1892  ASTContext &Context = S.Context;
1893  const LangOptions &LangOpts = S.getLangOptions();
1894
1895  bool ImplicitlyNoexcept = false;
1896  if (D.getName().getKind() == UnqualifiedId::IK_OperatorFunctionId &&
1897      LangOpts.CPlusPlus0x) {
1898    OverloadedOperatorKind OO = D.getName().OperatorFunctionId.Operator;
1899    /// In C++0x, deallocation functions (normal and array operator delete)
1900    /// are implicitly noexcept.
1901    if (OO == OO_Delete || OO == OO_Array_Delete)
1902      ImplicitlyNoexcept = true;
1903  }
1904
1905  // The name we're declaring, if any.
1906  DeclarationName Name;
1907  if (D.getIdentifier())
1908    Name = D.getIdentifier();
1909
1910  // Does this declaration declare a typedef-name?
1911  bool IsTypedefName =
1912    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
1913    D.getContext() == Declarator::AliasDeclContext ||
1914    D.getContext() == Declarator::AliasTemplateContext;
1915
1916  // Walk the DeclTypeInfo, building the recursive type as we go.
1917  // DeclTypeInfos are ordered from the identifier out, which is
1918  // opposite of what we want :).
1919  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1920    unsigned chunkIndex = e - i - 1;
1921    state.setCurrentChunkIndex(chunkIndex);
1922    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1923    switch (DeclType.Kind) {
1924    default: llvm_unreachable("Unknown decltype!");
1925    case DeclaratorChunk::Paren:
1926      T = S.BuildParenType(T);
1927      break;
1928    case DeclaratorChunk::BlockPointer:
1929      // If blocks are disabled, emit an error.
1930      if (!LangOpts.Blocks)
1931        S.Diag(DeclType.Loc, diag::err_blocks_disable);
1932
1933      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
1934      if (DeclType.Cls.TypeQuals)
1935        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
1936      break;
1937    case DeclaratorChunk::Pointer:
1938      // Verify that we're not building a pointer to pointer to function with
1939      // exception specification.
1940      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
1941        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1942        D.setInvalidType(true);
1943        // Build the type anyway.
1944      }
1945      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
1946        T = Context.getObjCObjectPointerType(T);
1947        if (DeclType.Ptr.TypeQuals)
1948          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
1949        break;
1950      }
1951      T = S.BuildPointerType(T, DeclType.Loc, Name);
1952      if (DeclType.Ptr.TypeQuals)
1953        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
1954
1955      break;
1956    case DeclaratorChunk::Reference: {
1957      // Verify that we're not building a reference to pointer to function with
1958      // exception specification.
1959      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
1960        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1961        D.setInvalidType(true);
1962        // Build the type anyway.
1963      }
1964      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
1965
1966      Qualifiers Quals;
1967      if (DeclType.Ref.HasRestrict)
1968        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
1969      break;
1970    }
1971    case DeclaratorChunk::Array: {
1972      // Verify that we're not building an array of pointers to function with
1973      // exception specification.
1974      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
1975        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1976        D.setInvalidType(true);
1977        // Build the type anyway.
1978      }
1979      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1980      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
1981      ArrayType::ArraySizeModifier ASM;
1982      if (ATI.isStar)
1983        ASM = ArrayType::Star;
1984      else if (ATI.hasStatic)
1985        ASM = ArrayType::Static;
1986      else
1987        ASM = ArrayType::Normal;
1988      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
1989        // FIXME: This check isn't quite right: it allows star in prototypes
1990        // for function definitions, and disallows some edge cases detailed
1991        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
1992        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
1993        ASM = ArrayType::Normal;
1994        D.setInvalidType(true);
1995      }
1996      T = S.BuildArrayType(T, ASM, ArraySize,
1997                           Qualifiers::fromCVRMask(ATI.TypeQuals),
1998                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
1999      break;
2000    }
2001    case DeclaratorChunk::Function: {
2002      // If the function declarator has a prototype (i.e. it is not () and
2003      // does not have a K&R-style identifier list), then the arguments are part
2004      // of the type, otherwise the argument list is ().
2005      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2006
2007      // Check for auto functions and trailing return type and adjust the
2008      // return type accordingly.
2009      if (!D.isInvalidType()) {
2010        // trailing-return-type is only required if we're declaring a function,
2011        // and not, for instance, a pointer to a function.
2012        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2013            !FTI.TrailingReturnType && chunkIndex == 0) {
2014          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2015               diag::err_auto_missing_trailing_return);
2016          T = Context.IntTy;
2017          D.setInvalidType(true);
2018        } else if (FTI.TrailingReturnType) {
2019          // T must be exactly 'auto' at this point. See CWG issue 681.
2020          if (isa<ParenType>(T)) {
2021            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2022                 diag::err_trailing_return_in_parens)
2023              << T << D.getDeclSpec().getSourceRange();
2024            D.setInvalidType(true);
2025          } else if (T.hasQualifiers() || !isa<AutoType>(T)) {
2026            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2027                 diag::err_trailing_return_without_auto)
2028              << T << D.getDeclSpec().getSourceRange();
2029            D.setInvalidType(true);
2030          }
2031
2032          T = S.GetTypeFromParser(
2033            ParsedType::getFromOpaquePtr(FTI.TrailingReturnType),
2034            &TInfo);
2035        }
2036      }
2037
2038      // C99 6.7.5.3p1: The return type may not be a function or array type.
2039      // For conversion functions, we'll diagnose this particular error later.
2040      if ((T->isArrayType() || T->isFunctionType()) &&
2041          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2042        unsigned diagID = diag::err_func_returning_array_function;
2043        // Last processing chunk in block context means this function chunk
2044        // represents the block.
2045        if (chunkIndex == 0 &&
2046            D.getContext() == Declarator::BlockLiteralContext)
2047          diagID = diag::err_block_returning_array_function;
2048        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2049        T = Context.IntTy;
2050        D.setInvalidType(true);
2051      }
2052
2053      // cv-qualifiers on return types are pointless except when the type is a
2054      // class type in C++.
2055      if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
2056          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
2057          (!LangOpts.CPlusPlus || !T->isDependentType())) {
2058        assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
2059        DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2060        assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
2061
2062        DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
2063
2064        DiagnoseIgnoredQualifiers(PTI.TypeQuals,
2065            SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2066            SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2067            SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2068            S);
2069
2070      } else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
2071          (!LangOpts.CPlusPlus ||
2072           (!T->isDependentType() && !T->isRecordType()))) {
2073
2074        DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
2075                                  D.getDeclSpec().getConstSpecLoc(),
2076                                  D.getDeclSpec().getVolatileSpecLoc(),
2077                                  D.getDeclSpec().getRestrictSpecLoc(),
2078                                  S);
2079      }
2080
2081      if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2082        // C++ [dcl.fct]p6:
2083        //   Types shall not be defined in return or parameter types.
2084        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2085        if (Tag->isDefinition())
2086          S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2087            << Context.getTypeDeclType(Tag);
2088      }
2089
2090      // Exception specs are not allowed in typedefs. Complain, but add it
2091      // anyway.
2092      if (IsTypedefName && FTI.getExceptionSpecType())
2093        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2094          << (D.getContext() == Declarator::AliasDeclContext ||
2095              D.getContext() == Declarator::AliasTemplateContext);
2096
2097      if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2098        // Simple void foo(), where the incoming T is the result type.
2099        T = Context.getFunctionNoProtoType(T);
2100      } else {
2101        // We allow a zero-parameter variadic function in C if the
2102        // function is marked with the "overloadable" attribute. Scan
2103        // for this attribute now.
2104        if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2105          bool Overloadable = false;
2106          for (const AttributeList *Attrs = D.getAttributes();
2107               Attrs; Attrs = Attrs->getNext()) {
2108            if (Attrs->getKind() == AttributeList::AT_overloadable) {
2109              Overloadable = true;
2110              break;
2111            }
2112          }
2113
2114          if (!Overloadable)
2115            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2116        }
2117
2118        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2119          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2120          // definition.
2121          S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2122          D.setInvalidType(true);
2123          break;
2124        }
2125
2126        FunctionProtoType::ExtProtoInfo EPI;
2127        EPI.Variadic = FTI.isVariadic;
2128        EPI.TypeQuals = FTI.TypeQuals;
2129        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2130                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2131                    : RQ_RValue;
2132
2133        // Otherwise, we have a function with an argument list that is
2134        // potentially variadic.
2135        SmallVector<QualType, 16> ArgTys;
2136        ArgTys.reserve(FTI.NumArgs);
2137
2138        SmallVector<bool, 16> ConsumedArguments;
2139        ConsumedArguments.reserve(FTI.NumArgs);
2140        bool HasAnyConsumedArguments = false;
2141
2142        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2143          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2144          QualType ArgTy = Param->getType();
2145          assert(!ArgTy.isNull() && "Couldn't parse type?");
2146
2147          // Adjust the parameter type.
2148          assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
2149                 "Unadjusted type?");
2150
2151          // Look for 'void'.  void is allowed only as a single argument to a
2152          // function with no other parameters (C99 6.7.5.3p10).  We record
2153          // int(void) as a FunctionProtoType with an empty argument list.
2154          if (ArgTy->isVoidType()) {
2155            // If this is something like 'float(int, void)', reject it.  'void'
2156            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2157            // have arguments of incomplete type.
2158            if (FTI.NumArgs != 1 || FTI.isVariadic) {
2159              S.Diag(DeclType.Loc, diag::err_void_only_param);
2160              ArgTy = Context.IntTy;
2161              Param->setType(ArgTy);
2162            } else if (FTI.ArgInfo[i].Ident) {
2163              // Reject, but continue to parse 'int(void abc)'.
2164              S.Diag(FTI.ArgInfo[i].IdentLoc,
2165                   diag::err_param_with_void_type);
2166              ArgTy = Context.IntTy;
2167              Param->setType(ArgTy);
2168            } else {
2169              // Reject, but continue to parse 'float(const void)'.
2170              if (ArgTy.hasQualifiers())
2171                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2172
2173              // Do not add 'void' to the ArgTys list.
2174              break;
2175            }
2176          } else if (!FTI.hasPrototype) {
2177            if (ArgTy->isPromotableIntegerType()) {
2178              ArgTy = Context.getPromotedIntegerType(ArgTy);
2179              Param->setKNRPromoted(true);
2180            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2181              if (BTy->getKind() == BuiltinType::Float) {
2182                ArgTy = Context.DoubleTy;
2183                Param->setKNRPromoted(true);
2184              }
2185            }
2186          }
2187
2188          if (LangOpts.ObjCAutoRefCount) {
2189            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2190            ConsumedArguments.push_back(Consumed);
2191            HasAnyConsumedArguments |= Consumed;
2192          }
2193
2194          ArgTys.push_back(ArgTy);
2195        }
2196
2197        if (HasAnyConsumedArguments)
2198          EPI.ConsumedArguments = ConsumedArguments.data();
2199
2200        SmallVector<QualType, 4> Exceptions;
2201        EPI.ExceptionSpecType = FTI.getExceptionSpecType();
2202        if (FTI.getExceptionSpecType() == EST_Dynamic) {
2203          Exceptions.reserve(FTI.NumExceptions);
2204          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
2205            // FIXME: Preserve type source info.
2206            QualType ET = S.GetTypeFromParser(FTI.Exceptions[ei].Ty);
2207            // Check that the type is valid for an exception spec, and
2208            // drop it if not.
2209            if (!S.CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
2210              Exceptions.push_back(ET);
2211          }
2212          EPI.NumExceptions = Exceptions.size();
2213          EPI.Exceptions = Exceptions.data();
2214        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2215          // If an error occurred, there's no expression here.
2216          if (Expr *NoexceptExpr = FTI.NoexceptExpr) {
2217            assert((NoexceptExpr->isTypeDependent() ||
2218                    NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
2219                        Context.BoolTy) &&
2220                 "Parser should have made sure that the expression is boolean");
2221            SourceLocation ErrLoc;
2222            llvm::APSInt Dummy;
2223            if (!NoexceptExpr->isValueDependent() &&
2224                !NoexceptExpr->isIntegerConstantExpr(Dummy, Context, &ErrLoc,
2225                                                     /*evaluated*/false))
2226              S.Diag(ErrLoc, diag::err_noexcept_needs_constant_expression)
2227                  << NoexceptExpr->getSourceRange();
2228            else
2229              EPI.NoexceptExpr = NoexceptExpr;
2230          }
2231        } else if (FTI.getExceptionSpecType() == EST_None &&
2232                   ImplicitlyNoexcept && chunkIndex == 0) {
2233          // Only the outermost chunk is marked noexcept, of course.
2234          EPI.ExceptionSpecType = EST_BasicNoexcept;
2235        }
2236
2237        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
2238      }
2239
2240      break;
2241    }
2242    case DeclaratorChunk::MemberPointer:
2243      // The scope spec must refer to a class, or be dependent.
2244      CXXScopeSpec &SS = DeclType.Mem.Scope();
2245      QualType ClsType;
2246      if (SS.isInvalid()) {
2247        // Avoid emitting extra errors if we already errored on the scope.
2248        D.setInvalidType(true);
2249      } else if (S.isDependentScopeSpecifier(SS) ||
2250                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
2251        NestedNameSpecifier *NNS
2252          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2253        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
2254        switch (NNS->getKind()) {
2255        case NestedNameSpecifier::Identifier:
2256          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
2257                                                 NNS->getAsIdentifier());
2258          break;
2259
2260        case NestedNameSpecifier::Namespace:
2261        case NestedNameSpecifier::NamespaceAlias:
2262        case NestedNameSpecifier::Global:
2263          llvm_unreachable("Nested-name-specifier must name a type");
2264          break;
2265
2266        case NestedNameSpecifier::TypeSpec:
2267        case NestedNameSpecifier::TypeSpecWithTemplate:
2268          ClsType = QualType(NNS->getAsType(), 0);
2269          // Note: if the NNS has a prefix and ClsType is a nondependent
2270          // TemplateSpecializationType, then the NNS prefix is NOT included
2271          // in ClsType; hence we wrap ClsType into an ElaboratedType.
2272          // NOTE: in particular, no wrap occurs if ClsType already is an
2273          // Elaborated, DependentName, or DependentTemplateSpecialization.
2274          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
2275            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
2276          break;
2277        }
2278      } else {
2279        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
2280             diag::err_illegal_decl_mempointer_in_nonclass)
2281          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
2282          << DeclType.Mem.Scope().getRange();
2283        D.setInvalidType(true);
2284      }
2285
2286      if (!ClsType.isNull())
2287        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
2288      if (T.isNull()) {
2289        T = Context.IntTy;
2290        D.setInvalidType(true);
2291      } else if (DeclType.Mem.TypeQuals) {
2292        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
2293      }
2294      break;
2295    }
2296
2297    if (T.isNull()) {
2298      D.setInvalidType(true);
2299      T = Context.IntTy;
2300    }
2301
2302    // See if there are any attributes on this declarator chunk.
2303    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
2304      processTypeAttrs(state, T, false, attrs);
2305  }
2306
2307  if (LangOpts.CPlusPlus && T->isFunctionType()) {
2308    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
2309    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
2310
2311    // C++ 8.3.5p4:
2312    //   A cv-qualifier-seq shall only be part of the function type
2313    //   for a nonstatic member function, the function type to which a pointer
2314    //   to member refers, or the top-level function type of a function typedef
2315    //   declaration.
2316    //
2317    // Core issue 547 also allows cv-qualifiers on function types that are
2318    // top-level template type arguments.
2319    bool FreeFunction;
2320    if (!D.getCXXScopeSpec().isSet()) {
2321      FreeFunction = (D.getContext() != Declarator::MemberContext ||
2322                      D.getDeclSpec().isFriendSpecified());
2323    } else {
2324      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
2325      FreeFunction = (DC && !DC->isRecord());
2326    }
2327
2328    // C++0x [dcl.fct]p6:
2329    //   A ref-qualifier shall only be part of the function type for a
2330    //   non-static member function, the function type to which a pointer to
2331    //   member refers, or the top-level function type of a function typedef
2332    //   declaration.
2333    if ((FnTy->getTypeQuals() != 0 || FnTy->getRefQualifier()) &&
2334        !(D.getContext() == Declarator::TemplateTypeArgContext &&
2335          !D.isFunctionDeclarator()) && !IsTypedefName &&
2336        (FreeFunction ||
2337         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
2338      if (D.getContext() == Declarator::TemplateTypeArgContext) {
2339        // Accept qualified function types as template type arguments as a GNU
2340        // extension. This is also the subject of C++ core issue 547.
2341        std::string Quals;
2342        if (FnTy->getTypeQuals() != 0)
2343          Quals = Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
2344
2345        switch (FnTy->getRefQualifier()) {
2346        case RQ_None:
2347          break;
2348
2349        case RQ_LValue:
2350          if (!Quals.empty())
2351            Quals += ' ';
2352          Quals += '&';
2353          break;
2354
2355        case RQ_RValue:
2356          if (!Quals.empty())
2357            Quals += ' ';
2358          Quals += "&&";
2359          break;
2360        }
2361
2362        S.Diag(D.getIdentifierLoc(),
2363             diag::ext_qualified_function_type_template_arg)
2364          << Quals;
2365      } else {
2366        if (FnTy->getTypeQuals() != 0) {
2367          if (D.isFunctionDeclarator())
2368            S.Diag(D.getIdentifierLoc(),
2369                 diag::err_invalid_qualified_function_type);
2370          else
2371            S.Diag(D.getIdentifierLoc(),
2372                 diag::err_invalid_qualified_typedef_function_type_use)
2373              << FreeFunction;
2374        }
2375
2376        if (FnTy->getRefQualifier()) {
2377          if (D.isFunctionDeclarator()) {
2378            SourceLocation Loc = D.getIdentifierLoc();
2379            for (unsigned I = 0, N = D.getNumTypeObjects(); I != N; ++I) {
2380              const DeclaratorChunk &Chunk = D.getTypeObject(N-I-1);
2381              if (Chunk.Kind == DeclaratorChunk::Function &&
2382                  Chunk.Fun.hasRefQualifier()) {
2383                Loc = Chunk.Fun.getRefQualifierLoc();
2384                break;
2385              }
2386            }
2387
2388            S.Diag(Loc, diag::err_invalid_ref_qualifier_function_type)
2389              << (FnTy->getRefQualifier() == RQ_LValue)
2390              << FixItHint::CreateRemoval(Loc);
2391          } else {
2392            S.Diag(D.getIdentifierLoc(),
2393                 diag::err_invalid_ref_qualifier_typedef_function_type_use)
2394              << FreeFunction
2395              << (FnTy->getRefQualifier() == RQ_LValue);
2396          }
2397        }
2398
2399        // Strip the cv-qualifiers and ref-qualifiers from the type.
2400        FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2401        EPI.TypeQuals = 0;
2402        EPI.RefQualifier = RQ_None;
2403
2404        T = Context.getFunctionType(FnTy->getResultType(),
2405                                    FnTy->arg_type_begin(),
2406                                    FnTy->getNumArgs(), EPI);
2407      }
2408    }
2409  }
2410
2411  // Apply any undistributed attributes from the declarator.
2412  if (!T.isNull())
2413    if (AttributeList *attrs = D.getAttributes())
2414      processTypeAttrs(state, T, false, attrs);
2415
2416  // Diagnose any ignored type attributes.
2417  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
2418
2419  // C++0x [dcl.constexpr]p9:
2420  //  A constexpr specifier used in an object declaration declares the object
2421  //  as const.
2422  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
2423    T.addConst();
2424  }
2425
2426  // If there was an ellipsis in the declarator, the declaration declares a
2427  // parameter pack whose type may be a pack expansion type.
2428  if (D.hasEllipsis() && !T.isNull()) {
2429    // C++0x [dcl.fct]p13:
2430    //   A declarator-id or abstract-declarator containing an ellipsis shall
2431    //   only be used in a parameter-declaration. Such a parameter-declaration
2432    //   is a parameter pack (14.5.3). [...]
2433    switch (D.getContext()) {
2434    case Declarator::PrototypeContext:
2435      // C++0x [dcl.fct]p13:
2436      //   [...] When it is part of a parameter-declaration-clause, the
2437      //   parameter pack is a function parameter pack (14.5.3). The type T
2438      //   of the declarator-id of the function parameter pack shall contain
2439      //   a template parameter pack; each template parameter pack in T is
2440      //   expanded by the function parameter pack.
2441      //
2442      // We represent function parameter packs as function parameters whose
2443      // type is a pack expansion.
2444      if (!T->containsUnexpandedParameterPack()) {
2445        S.Diag(D.getEllipsisLoc(),
2446             diag::err_function_parameter_pack_without_parameter_packs)
2447          << T <<  D.getSourceRange();
2448        D.setEllipsisLoc(SourceLocation());
2449      } else {
2450        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2451      }
2452      break;
2453
2454    case Declarator::TemplateParamContext:
2455      // C++0x [temp.param]p15:
2456      //   If a template-parameter is a [...] is a parameter-declaration that
2457      //   declares a parameter pack (8.3.5), then the template-parameter is a
2458      //   template parameter pack (14.5.3).
2459      //
2460      // Note: core issue 778 clarifies that, if there are any unexpanded
2461      // parameter packs in the type of the non-type template parameter, then
2462      // it expands those parameter packs.
2463      if (T->containsUnexpandedParameterPack())
2464        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2465      else if (!LangOpts.CPlusPlus0x)
2466        S.Diag(D.getEllipsisLoc(), diag::ext_variadic_templates);
2467      break;
2468
2469    case Declarator::FileContext:
2470    case Declarator::KNRTypeListContext:
2471    case Declarator::ObjCPrototypeContext: // FIXME: special diagnostic here?
2472    case Declarator::TypeNameContext:
2473    case Declarator::CXXNewContext:
2474    case Declarator::AliasDeclContext:
2475    case Declarator::AliasTemplateContext:
2476    case Declarator::MemberContext:
2477    case Declarator::BlockContext:
2478    case Declarator::ForContext:
2479    case Declarator::ConditionContext:
2480    case Declarator::CXXCatchContext:
2481    case Declarator::ObjCCatchContext:
2482    case Declarator::BlockLiteralContext:
2483    case Declarator::TemplateTypeArgContext:
2484      // FIXME: We may want to allow parameter packs in block-literal contexts
2485      // in the future.
2486      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
2487      D.setEllipsisLoc(SourceLocation());
2488      break;
2489    }
2490  }
2491
2492  if (T.isNull())
2493    return Context.getNullTypeSourceInfo();
2494  else if (D.isInvalidType())
2495    return Context.getTrivialTypeSourceInfo(T);
2496
2497  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
2498}
2499
2500/// GetTypeForDeclarator - Convert the type for the specified
2501/// declarator to Type instances.
2502///
2503/// The result of this call will never be null, but the associated
2504/// type may be a null type if there's an unrecoverable error.
2505TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
2506  // Determine the type of the declarator. Not all forms of declarator
2507  // have a type.
2508
2509  TypeProcessingState state(*this, D);
2510
2511  TypeSourceInfo *ReturnTypeInfo = 0;
2512  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2513  if (T.isNull())
2514    return Context.getNullTypeSourceInfo();
2515
2516  if (D.isPrototypeContext() && getLangOptions().ObjCAutoRefCount)
2517    inferARCWriteback(state, T);
2518
2519  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
2520}
2521
2522static void transferARCOwnershipToDeclSpec(Sema &S,
2523                                           QualType &declSpecTy,
2524                                           Qualifiers::ObjCLifetime ownership) {
2525  if (declSpecTy->isObjCRetainableType() &&
2526      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
2527    Qualifiers qs;
2528    qs.addObjCLifetime(ownership);
2529    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
2530  }
2531}
2532
2533static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2534                                            Qualifiers::ObjCLifetime ownership,
2535                                            unsigned chunkIndex) {
2536  Sema &S = state.getSema();
2537  Declarator &D = state.getDeclarator();
2538
2539  // Look for an explicit lifetime attribute.
2540  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
2541  for (const AttributeList *attr = chunk.getAttrs(); attr;
2542         attr = attr->getNext())
2543    if (attr->getKind() == AttributeList::AT_objc_ownership)
2544      return;
2545
2546  const char *attrStr = 0;
2547  switch (ownership) {
2548  case Qualifiers::OCL_None: llvm_unreachable("no ownership!"); break;
2549  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
2550  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
2551  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
2552  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
2553  }
2554
2555  // If there wasn't one, add one (with an invalid source location
2556  // so that we don't make an AttributedType for it).
2557  AttributeList *attr = D.getAttributePool()
2558    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
2559            /*scope*/ 0, SourceLocation(),
2560            &S.Context.Idents.get(attrStr), SourceLocation(),
2561            /*args*/ 0, 0,
2562            /*declspec*/ false, /*C++0x*/ false);
2563  spliceAttrIntoList(*attr, chunk.getAttrListRef());
2564
2565  // TODO: mark whether we did this inference?
2566}
2567
2568static void transferARCOwnership(TypeProcessingState &state,
2569                                 QualType &declSpecTy,
2570                                 Qualifiers::ObjCLifetime ownership) {
2571  Sema &S = state.getSema();
2572  Declarator &D = state.getDeclarator();
2573
2574  int inner = -1;
2575  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2576    DeclaratorChunk &chunk = D.getTypeObject(i);
2577    switch (chunk.Kind) {
2578    case DeclaratorChunk::Paren:
2579      // Ignore parens.
2580      break;
2581
2582    case DeclaratorChunk::Array:
2583    case DeclaratorChunk::Reference:
2584    case DeclaratorChunk::Pointer:
2585      inner = i;
2586      break;
2587
2588    case DeclaratorChunk::BlockPointer:
2589      return transferARCOwnershipToDeclaratorChunk(state, ownership, i);
2590
2591    case DeclaratorChunk::Function:
2592    case DeclaratorChunk::MemberPointer:
2593      return;
2594    }
2595  }
2596
2597  if (inner == -1)
2598    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2599
2600  DeclaratorChunk &chunk = D.getTypeObject(inner);
2601  if (chunk.Kind == DeclaratorChunk::Pointer) {
2602    if (declSpecTy->isObjCRetainableType())
2603      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2604    if (declSpecTy->isObjCObjectType())
2605      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
2606  } else {
2607    assert(chunk.Kind == DeclaratorChunk::Array ||
2608           chunk.Kind == DeclaratorChunk::Reference);
2609    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2610  }
2611}
2612
2613TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
2614  TypeProcessingState state(*this, D);
2615
2616  TypeSourceInfo *ReturnTypeInfo = 0;
2617  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2618  if (declSpecTy.isNull())
2619    return Context.getNullTypeSourceInfo();
2620
2621  if (getLangOptions().ObjCAutoRefCount) {
2622    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
2623    if (ownership != Qualifiers::OCL_None)
2624      transferARCOwnership(state, declSpecTy, ownership);
2625  }
2626
2627  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
2628}
2629
2630/// Map an AttributedType::Kind to an AttributeList::Kind.
2631static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
2632  switch (kind) {
2633  case AttributedType::attr_address_space:
2634    return AttributeList::AT_address_space;
2635  case AttributedType::attr_regparm:
2636    return AttributeList::AT_regparm;
2637  case AttributedType::attr_vector_size:
2638    return AttributeList::AT_vector_size;
2639  case AttributedType::attr_neon_vector_type:
2640    return AttributeList::AT_neon_vector_type;
2641  case AttributedType::attr_neon_polyvector_type:
2642    return AttributeList::AT_neon_polyvector_type;
2643  case AttributedType::attr_objc_gc:
2644    return AttributeList::AT_objc_gc;
2645  case AttributedType::attr_objc_ownership:
2646    return AttributeList::AT_objc_ownership;
2647  case AttributedType::attr_noreturn:
2648    return AttributeList::AT_noreturn;
2649  case AttributedType::attr_cdecl:
2650    return AttributeList::AT_cdecl;
2651  case AttributedType::attr_fastcall:
2652    return AttributeList::AT_fastcall;
2653  case AttributedType::attr_stdcall:
2654    return AttributeList::AT_stdcall;
2655  case AttributedType::attr_thiscall:
2656    return AttributeList::AT_thiscall;
2657  case AttributedType::attr_pascal:
2658    return AttributeList::AT_pascal;
2659  case AttributedType::attr_pcs:
2660    return AttributeList::AT_pcs;
2661  }
2662  llvm_unreachable("unexpected attribute kind!");
2663  return AttributeList::Kind();
2664}
2665
2666static void fillAttributedTypeLoc(AttributedTypeLoc TL,
2667                                  const AttributeList *attrs) {
2668  AttributedType::Kind kind = TL.getAttrKind();
2669
2670  assert(attrs && "no type attributes in the expected location!");
2671  AttributeList::Kind parsedKind = getAttrListKind(kind);
2672  while (attrs->getKind() != parsedKind) {
2673    attrs = attrs->getNext();
2674    assert(attrs && "no matching attribute in expected location!");
2675  }
2676
2677  TL.setAttrNameLoc(attrs->getLoc());
2678  if (TL.hasAttrExprOperand())
2679    TL.setAttrExprOperand(attrs->getArg(0));
2680  else if (TL.hasAttrEnumOperand())
2681    TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
2682
2683  // FIXME: preserve this information to here.
2684  if (TL.hasAttrOperand())
2685    TL.setAttrOperandParensRange(SourceRange());
2686}
2687
2688namespace {
2689  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
2690    ASTContext &Context;
2691    const DeclSpec &DS;
2692
2693  public:
2694    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
2695      : Context(Context), DS(DS) {}
2696
2697    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
2698      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
2699      Visit(TL.getModifiedLoc());
2700    }
2701    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
2702      Visit(TL.getUnqualifiedLoc());
2703    }
2704    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
2705      TL.setNameLoc(DS.getTypeSpecTypeLoc());
2706    }
2707    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
2708      TL.setNameLoc(DS.getTypeSpecTypeLoc());
2709    }
2710    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
2711      // Handle the base type, which might not have been written explicitly.
2712      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
2713        TL.setHasBaseTypeAsWritten(false);
2714        TL.getBaseLoc().initialize(Context, SourceLocation());
2715      } else {
2716        TL.setHasBaseTypeAsWritten(true);
2717        Visit(TL.getBaseLoc());
2718      }
2719
2720      // Protocol qualifiers.
2721      if (DS.getProtocolQualifiers()) {
2722        assert(TL.getNumProtocols() > 0);
2723        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
2724        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
2725        TL.setRAngleLoc(DS.getSourceRange().getEnd());
2726        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
2727          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
2728      } else {
2729        assert(TL.getNumProtocols() == 0);
2730        TL.setLAngleLoc(SourceLocation());
2731        TL.setRAngleLoc(SourceLocation());
2732      }
2733    }
2734    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
2735      TL.setStarLoc(SourceLocation());
2736      Visit(TL.getPointeeLoc());
2737    }
2738    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
2739      TypeSourceInfo *TInfo = 0;
2740      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2741
2742      // If we got no declarator info from previous Sema routines,
2743      // just fill with the typespec loc.
2744      if (!TInfo) {
2745        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
2746        return;
2747      }
2748
2749      TypeLoc OldTL = TInfo->getTypeLoc();
2750      if (TInfo->getType()->getAs<ElaboratedType>()) {
2751        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
2752        TemplateSpecializationTypeLoc NamedTL =
2753          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
2754        TL.copy(NamedTL);
2755      }
2756      else
2757        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
2758    }
2759    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
2760      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
2761      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2762      TL.setParensRange(DS.getTypeofParensRange());
2763    }
2764    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
2765      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
2766      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2767      TL.setParensRange(DS.getTypeofParensRange());
2768      assert(DS.getRepAsType());
2769      TypeSourceInfo *TInfo = 0;
2770      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2771      TL.setUnderlyingTInfo(TInfo);
2772    }
2773    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
2774      // FIXME: This holds only because we only have one unary transform.
2775      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
2776      TL.setKWLoc(DS.getTypeSpecTypeLoc());
2777      TL.setParensRange(DS.getTypeofParensRange());
2778      assert(DS.getRepAsType());
2779      TypeSourceInfo *TInfo = 0;
2780      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2781      TL.setUnderlyingTInfo(TInfo);
2782    }
2783    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
2784      // By default, use the source location of the type specifier.
2785      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
2786      if (TL.needsExtraLocalData()) {
2787        // Set info for the written builtin specifiers.
2788        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
2789        // Try to have a meaningful source location.
2790        if (TL.getWrittenSignSpec() != TSS_unspecified)
2791          // Sign spec loc overrides the others (e.g., 'unsigned long').
2792          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
2793        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
2794          // Width spec loc overrides type spec loc (e.g., 'short int').
2795          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
2796      }
2797    }
2798    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
2799      ElaboratedTypeKeyword Keyword
2800        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2801      if (DS.getTypeSpecType() == TST_typename) {
2802        TypeSourceInfo *TInfo = 0;
2803        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2804        if (TInfo) {
2805          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
2806          return;
2807        }
2808      }
2809      TL.setKeywordLoc(Keyword != ETK_None
2810                       ? DS.getTypeSpecTypeLoc()
2811                       : SourceLocation());
2812      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2813      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2814      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
2815    }
2816    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
2817      ElaboratedTypeKeyword Keyword
2818        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2819      if (DS.getTypeSpecType() == TST_typename) {
2820        TypeSourceInfo *TInfo = 0;
2821        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2822        if (TInfo) {
2823          TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
2824          return;
2825        }
2826      }
2827      TL.setKeywordLoc(Keyword != ETK_None
2828                       ? DS.getTypeSpecTypeLoc()
2829                       : SourceLocation());
2830      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2831      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2832      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2833    }
2834    void VisitDependentTemplateSpecializationTypeLoc(
2835                                 DependentTemplateSpecializationTypeLoc TL) {
2836      ElaboratedTypeKeyword Keyword
2837        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2838      if (Keyword == ETK_Typename) {
2839        TypeSourceInfo *TInfo = 0;
2840        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2841        if (TInfo) {
2842          TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
2843                    TInfo->getTypeLoc()));
2844          return;
2845        }
2846      }
2847      TL.initializeLocal(Context, SourceLocation());
2848      TL.setKeywordLoc(Keyword != ETK_None
2849                       ? DS.getTypeSpecTypeLoc()
2850                       : SourceLocation());
2851      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2852      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2853      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2854    }
2855    void VisitTagTypeLoc(TagTypeLoc TL) {
2856      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2857    }
2858
2859    void VisitTypeLoc(TypeLoc TL) {
2860      // FIXME: add other typespec types and change this to an assert.
2861      TL.initialize(Context, DS.getTypeSpecTypeLoc());
2862    }
2863  };
2864
2865  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
2866    ASTContext &Context;
2867    const DeclaratorChunk &Chunk;
2868
2869  public:
2870    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
2871      : Context(Context), Chunk(Chunk) {}
2872
2873    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
2874      llvm_unreachable("qualified type locs not expected here!");
2875    }
2876
2877    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
2878      fillAttributedTypeLoc(TL, Chunk.getAttrs());
2879    }
2880    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
2881      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
2882      TL.setCaretLoc(Chunk.Loc);
2883    }
2884    void VisitPointerTypeLoc(PointerTypeLoc TL) {
2885      assert(Chunk.Kind == DeclaratorChunk::Pointer);
2886      TL.setStarLoc(Chunk.Loc);
2887    }
2888    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
2889      assert(Chunk.Kind == DeclaratorChunk::Pointer);
2890      TL.setStarLoc(Chunk.Loc);
2891    }
2892    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
2893      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
2894      const CXXScopeSpec& SS = Chunk.Mem.Scope();
2895      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
2896
2897      const Type* ClsTy = TL.getClass();
2898      QualType ClsQT = QualType(ClsTy, 0);
2899      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
2900      // Now copy source location info into the type loc component.
2901      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
2902      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
2903      case NestedNameSpecifier::Identifier:
2904        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
2905        {
2906          DependentNameTypeLoc DNTLoc = cast<DependentNameTypeLoc>(ClsTL);
2907          DNTLoc.setKeywordLoc(SourceLocation());
2908          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
2909          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
2910        }
2911        break;
2912
2913      case NestedNameSpecifier::TypeSpec:
2914      case NestedNameSpecifier::TypeSpecWithTemplate:
2915        if (isa<ElaboratedType>(ClsTy)) {
2916          ElaboratedTypeLoc ETLoc = *cast<ElaboratedTypeLoc>(&ClsTL);
2917          ETLoc.setKeywordLoc(SourceLocation());
2918          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
2919          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
2920          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
2921        } else {
2922          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
2923        }
2924        break;
2925
2926      case NestedNameSpecifier::Namespace:
2927      case NestedNameSpecifier::NamespaceAlias:
2928      case NestedNameSpecifier::Global:
2929        llvm_unreachable("Nested-name-specifier must name a type");
2930        break;
2931      }
2932
2933      // Finally fill in MemberPointerLocInfo fields.
2934      TL.setStarLoc(Chunk.Loc);
2935      TL.setClassTInfo(ClsTInfo);
2936    }
2937    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
2938      assert(Chunk.Kind == DeclaratorChunk::Reference);
2939      // 'Amp' is misleading: this might have been originally
2940      /// spelled with AmpAmp.
2941      TL.setAmpLoc(Chunk.Loc);
2942    }
2943    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
2944      assert(Chunk.Kind == DeclaratorChunk::Reference);
2945      assert(!Chunk.Ref.LValueRef);
2946      TL.setAmpAmpLoc(Chunk.Loc);
2947    }
2948    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
2949      assert(Chunk.Kind == DeclaratorChunk::Array);
2950      TL.setLBracketLoc(Chunk.Loc);
2951      TL.setRBracketLoc(Chunk.EndLoc);
2952      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
2953    }
2954    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
2955      assert(Chunk.Kind == DeclaratorChunk::Function);
2956      TL.setLocalRangeBegin(Chunk.Loc);
2957      TL.setLocalRangeEnd(Chunk.EndLoc);
2958      TL.setTrailingReturn(!!Chunk.Fun.TrailingReturnType);
2959
2960      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
2961      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
2962        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2963        TL.setArg(tpi++, Param);
2964      }
2965      // FIXME: exception specs
2966    }
2967    void VisitParenTypeLoc(ParenTypeLoc TL) {
2968      assert(Chunk.Kind == DeclaratorChunk::Paren);
2969      TL.setLParenLoc(Chunk.Loc);
2970      TL.setRParenLoc(Chunk.EndLoc);
2971    }
2972
2973    void VisitTypeLoc(TypeLoc TL) {
2974      llvm_unreachable("unsupported TypeLoc kind in declarator!");
2975    }
2976  };
2977}
2978
2979/// \brief Create and instantiate a TypeSourceInfo with type source information.
2980///
2981/// \param T QualType referring to the type as written in source code.
2982///
2983/// \param ReturnTypeInfo For declarators whose return type does not show
2984/// up in the normal place in the declaration specifiers (such as a C++
2985/// conversion function), this pointer will refer to a type source information
2986/// for that return type.
2987TypeSourceInfo *
2988Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
2989                                     TypeSourceInfo *ReturnTypeInfo) {
2990  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
2991  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
2992
2993  // Handle parameter packs whose type is a pack expansion.
2994  if (isa<PackExpansionType>(T)) {
2995    cast<PackExpansionTypeLoc>(CurrTL).setEllipsisLoc(D.getEllipsisLoc());
2996    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
2997  }
2998
2999  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3000    while (isa<AttributedTypeLoc>(CurrTL)) {
3001      AttributedTypeLoc TL = cast<AttributedTypeLoc>(CurrTL);
3002      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3003      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3004    }
3005
3006    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3007    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3008  }
3009
3010  // If we have different source information for the return type, use
3011  // that.  This really only applies to C++ conversion functions.
3012  if (ReturnTypeInfo) {
3013    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3014    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3015    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3016  } else {
3017    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3018  }
3019
3020  return TInfo;
3021}
3022
3023/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3024ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3025  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3026  // and Sema during declaration parsing. Try deallocating/caching them when
3027  // it's appropriate, instead of allocating them and keeping them around.
3028  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3029                                                       TypeAlignment);
3030  new (LocT) LocInfoType(T, TInfo);
3031  assert(LocT->getTypeClass() != T->getTypeClass() &&
3032         "LocInfoType's TypeClass conflicts with an existing Type class");
3033  return ParsedType::make(QualType(LocT, 0));
3034}
3035
3036void LocInfoType::getAsStringInternal(std::string &Str,
3037                                      const PrintingPolicy &Policy) const {
3038  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3039         " was used directly instead of getting the QualType through"
3040         " GetTypeFromParser");
3041}
3042
3043TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3044  // C99 6.7.6: Type names have no identifier.  This is already validated by
3045  // the parser.
3046  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3047
3048  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3049  QualType T = TInfo->getType();
3050  if (D.isInvalidType())
3051    return true;
3052
3053  if (getLangOptions().CPlusPlus) {
3054    // Check that there are no default arguments (C++ only).
3055    CheckExtraCXXDefaultArguments(D);
3056  }
3057
3058  return CreateParsedType(T, TInfo);
3059}
3060
3061ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3062  QualType T = Context.getObjCInstanceType();
3063  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3064  return CreateParsedType(T, TInfo);
3065}
3066
3067
3068//===----------------------------------------------------------------------===//
3069// Type Attribute Processing
3070//===----------------------------------------------------------------------===//
3071
3072/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3073/// specified type.  The attribute contains 1 argument, the id of the address
3074/// space for the type.
3075static void HandleAddressSpaceTypeAttribute(QualType &Type,
3076                                            const AttributeList &Attr, Sema &S){
3077
3078  // If this type is already address space qualified, reject it.
3079  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3080  // qualifiers for two or more different address spaces."
3081  if (Type.getAddressSpace()) {
3082    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3083    Attr.setInvalid();
3084    return;
3085  }
3086
3087  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3088  // qualified by an address-space qualifier."
3089  if (Type->isFunctionType()) {
3090    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3091    Attr.setInvalid();
3092    return;
3093  }
3094
3095  // Check the attribute arguments.
3096  if (Attr.getNumArgs() != 1) {
3097    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3098    Attr.setInvalid();
3099    return;
3100  }
3101  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
3102  llvm::APSInt addrSpace(32);
3103  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3104      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3105    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
3106      << ASArgExpr->getSourceRange();
3107    Attr.setInvalid();
3108    return;
3109  }
3110
3111  // Bounds checking.
3112  if (addrSpace.isSigned()) {
3113    if (addrSpace.isNegative()) {
3114      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3115        << ASArgExpr->getSourceRange();
3116      Attr.setInvalid();
3117      return;
3118    }
3119    addrSpace.setIsSigned(false);
3120  }
3121  llvm::APSInt max(addrSpace.getBitWidth());
3122  max = Qualifiers::MaxAddressSpace;
3123  if (addrSpace > max) {
3124    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3125      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
3126    Attr.setInvalid();
3127    return;
3128  }
3129
3130  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3131  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3132}
3133
3134/// handleObjCOwnershipTypeAttr - Process an objc_ownership
3135/// attribute on the specified type.
3136///
3137/// Returns 'true' if the attribute was handled.
3138static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
3139                                       AttributeList &attr,
3140                                       QualType &type) {
3141  if (!type->isObjCRetainableType() && !type->isDependentType())
3142    return false;
3143
3144  Sema &S = state.getSema();
3145
3146  if (type.getQualifiers().getObjCLifetime()) {
3147    S.Diag(attr.getLoc(), diag::err_attr_objc_ownership_redundant)
3148      << type;
3149    return true;
3150  }
3151
3152  if (!attr.getParameterName()) {
3153    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3154      << "objc_ownership" << 1;
3155    attr.setInvalid();
3156    return true;
3157  }
3158
3159  Qualifiers::ObjCLifetime lifetime;
3160  if (attr.getParameterName()->isStr("none"))
3161    lifetime = Qualifiers::OCL_ExplicitNone;
3162  else if (attr.getParameterName()->isStr("strong"))
3163    lifetime = Qualifiers::OCL_Strong;
3164  else if (attr.getParameterName()->isStr("weak"))
3165    lifetime = Qualifiers::OCL_Weak;
3166  else if (attr.getParameterName()->isStr("autoreleasing"))
3167    lifetime = Qualifiers::OCL_Autoreleasing;
3168  else {
3169    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3170      << "objc_ownership" << attr.getParameterName();
3171    attr.setInvalid();
3172    return true;
3173  }
3174
3175  // Consume lifetime attributes without further comment outside of
3176  // ARC mode.
3177  if (!S.getLangOptions().ObjCAutoRefCount)
3178    return true;
3179
3180  Qualifiers qs;
3181  qs.setObjCLifetime(lifetime);
3182  QualType origType = type;
3183  type = S.Context.getQualifiedType(type, qs);
3184
3185  // If we have a valid source location for the attribute, use an
3186  // AttributedType instead.
3187  if (attr.getLoc().isValid())
3188    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
3189                                       origType, type);
3190
3191  // Forbid __weak if the runtime doesn't support it.
3192  if (lifetime == Qualifiers::OCL_Weak &&
3193      !S.getLangOptions().ObjCRuntimeHasWeak) {
3194
3195    // Actually, delay this until we know what we're parsing.
3196    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
3197      S.DelayedDiagnostics.add(
3198          sema::DelayedDiagnostic::makeForbiddenType(attr.getLoc(),
3199              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
3200    } else {
3201      S.Diag(attr.getLoc(), diag::err_arc_weak_no_runtime);
3202    }
3203
3204    attr.setInvalid();
3205    return true;
3206  }
3207
3208  // Forbid __weak for class objects marked as
3209  // objc_arc_weak_reference_unavailable
3210  if (lifetime == Qualifiers::OCL_Weak) {
3211    QualType T = type;
3212    while (const PointerType *ptr = T->getAs<PointerType>())
3213      T = ptr->getPointeeType();
3214    if (const ObjCObjectPointerType *ObjT = T->getAs<ObjCObjectPointerType>()) {
3215      ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl();
3216      if (Class->isArcWeakrefUnavailable()) {
3217          S.Diag(attr.getLoc(), diag::err_arc_unsupported_weak_class);
3218          S.Diag(ObjT->getInterfaceDecl()->getLocation(),
3219                 diag::note_class_declared);
3220      }
3221    }
3222  }
3223
3224  return true;
3225}
3226
3227/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
3228/// attribute on the specified type.  Returns true to indicate that
3229/// the attribute was handled, false to indicate that the type does
3230/// not permit the attribute.
3231static bool handleObjCGCTypeAttr(TypeProcessingState &state,
3232                                 AttributeList &attr,
3233                                 QualType &type) {
3234  Sema &S = state.getSema();
3235
3236  // Delay if this isn't some kind of pointer.
3237  if (!type->isPointerType() &&
3238      !type->isObjCObjectPointerType() &&
3239      !type->isBlockPointerType())
3240    return false;
3241
3242  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
3243    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
3244    attr.setInvalid();
3245    return true;
3246  }
3247
3248  // Check the attribute arguments.
3249  if (!attr.getParameterName()) {
3250    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3251      << "objc_gc" << 1;
3252    attr.setInvalid();
3253    return true;
3254  }
3255  Qualifiers::GC GCAttr;
3256  if (attr.getNumArgs() != 0) {
3257    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3258    attr.setInvalid();
3259    return true;
3260  }
3261  if (attr.getParameterName()->isStr("weak"))
3262    GCAttr = Qualifiers::Weak;
3263  else if (attr.getParameterName()->isStr("strong"))
3264    GCAttr = Qualifiers::Strong;
3265  else {
3266    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3267      << "objc_gc" << attr.getParameterName();
3268    attr.setInvalid();
3269    return true;
3270  }
3271
3272  QualType origType = type;
3273  type = S.Context.getObjCGCQualType(origType, GCAttr);
3274
3275  // Make an attributed type to preserve the source information.
3276  if (attr.getLoc().isValid())
3277    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
3278                                       origType, type);
3279
3280  return true;
3281}
3282
3283namespace {
3284  /// A helper class to unwrap a type down to a function for the
3285  /// purposes of applying attributes there.
3286  ///
3287  /// Use:
3288  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
3289  ///   if (unwrapped.isFunctionType()) {
3290  ///     const FunctionType *fn = unwrapped.get();
3291  ///     // change fn somehow
3292  ///     T = unwrapped.wrap(fn);
3293  ///   }
3294  struct FunctionTypeUnwrapper {
3295    enum WrapKind {
3296      Desugar,
3297      Parens,
3298      Pointer,
3299      BlockPointer,
3300      Reference,
3301      MemberPointer
3302    };
3303
3304    QualType Original;
3305    const FunctionType *Fn;
3306    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
3307
3308    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
3309      while (true) {
3310        const Type *Ty = T.getTypePtr();
3311        if (isa<FunctionType>(Ty)) {
3312          Fn = cast<FunctionType>(Ty);
3313          return;
3314        } else if (isa<ParenType>(Ty)) {
3315          T = cast<ParenType>(Ty)->getInnerType();
3316          Stack.push_back(Parens);
3317        } else if (isa<PointerType>(Ty)) {
3318          T = cast<PointerType>(Ty)->getPointeeType();
3319          Stack.push_back(Pointer);
3320        } else if (isa<BlockPointerType>(Ty)) {
3321          T = cast<BlockPointerType>(Ty)->getPointeeType();
3322          Stack.push_back(BlockPointer);
3323        } else if (isa<MemberPointerType>(Ty)) {
3324          T = cast<MemberPointerType>(Ty)->getPointeeType();
3325          Stack.push_back(MemberPointer);
3326        } else if (isa<ReferenceType>(Ty)) {
3327          T = cast<ReferenceType>(Ty)->getPointeeType();
3328          Stack.push_back(Reference);
3329        } else {
3330          const Type *DTy = Ty->getUnqualifiedDesugaredType();
3331          if (Ty == DTy) {
3332            Fn = 0;
3333            return;
3334          }
3335
3336          T = QualType(DTy, 0);
3337          Stack.push_back(Desugar);
3338        }
3339      }
3340    }
3341
3342    bool isFunctionType() const { return (Fn != 0); }
3343    const FunctionType *get() const { return Fn; }
3344
3345    QualType wrap(Sema &S, const FunctionType *New) {
3346      // If T wasn't modified from the unwrapped type, do nothing.
3347      if (New == get()) return Original;
3348
3349      Fn = New;
3350      return wrap(S.Context, Original, 0);
3351    }
3352
3353  private:
3354    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
3355      if (I == Stack.size())
3356        return C.getQualifiedType(Fn, Old.getQualifiers());
3357
3358      // Build up the inner type, applying the qualifiers from the old
3359      // type to the new type.
3360      SplitQualType SplitOld = Old.split();
3361
3362      // As a special case, tail-recurse if there are no qualifiers.
3363      if (SplitOld.second.empty())
3364        return wrap(C, SplitOld.first, I);
3365      return C.getQualifiedType(wrap(C, SplitOld.first, I), SplitOld.second);
3366    }
3367
3368    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
3369      if (I == Stack.size()) return QualType(Fn, 0);
3370
3371      switch (static_cast<WrapKind>(Stack[I++])) {
3372      case Desugar:
3373        // This is the point at which we potentially lose source
3374        // information.
3375        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
3376
3377      case Parens: {
3378        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
3379        return C.getParenType(New);
3380      }
3381
3382      case Pointer: {
3383        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
3384        return C.getPointerType(New);
3385      }
3386
3387      case BlockPointer: {
3388        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
3389        return C.getBlockPointerType(New);
3390      }
3391
3392      case MemberPointer: {
3393        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
3394        QualType New = wrap(C, OldMPT->getPointeeType(), I);
3395        return C.getMemberPointerType(New, OldMPT->getClass());
3396      }
3397
3398      case Reference: {
3399        const ReferenceType *OldRef = cast<ReferenceType>(Old);
3400        QualType New = wrap(C, OldRef->getPointeeType(), I);
3401        if (isa<LValueReferenceType>(OldRef))
3402          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
3403        else
3404          return C.getRValueReferenceType(New);
3405      }
3406      }
3407
3408      llvm_unreachable("unknown wrapping kind");
3409      return QualType();
3410    }
3411  };
3412}
3413
3414/// Process an individual function attribute.  Returns true to
3415/// indicate that the attribute was handled, false if it wasn't.
3416static bool handleFunctionTypeAttr(TypeProcessingState &state,
3417                                   AttributeList &attr,
3418                                   QualType &type) {
3419  Sema &S = state.getSema();
3420
3421  FunctionTypeUnwrapper unwrapped(S, type);
3422
3423  if (attr.getKind() == AttributeList::AT_noreturn) {
3424    if (S.CheckNoReturnAttr(attr))
3425      return true;
3426
3427    // Delay if this is not a function type.
3428    if (!unwrapped.isFunctionType())
3429      return false;
3430
3431    // Otherwise we can process right away.
3432    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
3433    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3434    return true;
3435  }
3436
3437  // ns_returns_retained is not always a type attribute, but if we got
3438  // here, we're treating it as one right now.
3439  if (attr.getKind() == AttributeList::AT_ns_returns_retained) {
3440    assert(S.getLangOptions().ObjCAutoRefCount &&
3441           "ns_returns_retained treated as type attribute in non-ARC");
3442    if (attr.getNumArgs()) return true;
3443
3444    // Delay if this is not a function type.
3445    if (!unwrapped.isFunctionType())
3446      return false;
3447
3448    FunctionType::ExtInfo EI
3449      = unwrapped.get()->getExtInfo().withProducesResult(true);
3450    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3451    return true;
3452  }
3453
3454  if (attr.getKind() == AttributeList::AT_regparm) {
3455    unsigned value;
3456    if (S.CheckRegparmAttr(attr, value))
3457      return true;
3458
3459    // Delay if this is not a function type.
3460    if (!unwrapped.isFunctionType())
3461      return false;
3462
3463    // Diagnose regparm with fastcall.
3464    const FunctionType *fn = unwrapped.get();
3465    CallingConv CC = fn->getCallConv();
3466    if (CC == CC_X86FastCall) {
3467      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3468        << FunctionType::getNameForCallConv(CC)
3469        << "regparm";
3470      attr.setInvalid();
3471      return true;
3472    }
3473
3474    FunctionType::ExtInfo EI =
3475      unwrapped.get()->getExtInfo().withRegParm(value);
3476    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3477    return true;
3478  }
3479
3480  // Otherwise, a calling convention.
3481  CallingConv CC;
3482  if (S.CheckCallingConvAttr(attr, CC))
3483    return true;
3484
3485  // Delay if the type didn't work out to a function.
3486  if (!unwrapped.isFunctionType()) return false;
3487
3488  const FunctionType *fn = unwrapped.get();
3489  CallingConv CCOld = fn->getCallConv();
3490  if (S.Context.getCanonicalCallConv(CC) ==
3491      S.Context.getCanonicalCallConv(CCOld)) {
3492    FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
3493    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3494    return true;
3495  }
3496
3497  if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
3498    // Should we diagnose reapplications of the same convention?
3499    S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3500      << FunctionType::getNameForCallConv(CC)
3501      << FunctionType::getNameForCallConv(CCOld);
3502    attr.setInvalid();
3503    return true;
3504  }
3505
3506  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
3507  if (CC == CC_X86FastCall) {
3508    if (isa<FunctionNoProtoType>(fn)) {
3509      S.Diag(attr.getLoc(), diag::err_cconv_knr)
3510        << FunctionType::getNameForCallConv(CC);
3511      attr.setInvalid();
3512      return true;
3513    }
3514
3515    const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
3516    if (FnP->isVariadic()) {
3517      S.Diag(attr.getLoc(), diag::err_cconv_varargs)
3518        << FunctionType::getNameForCallConv(CC);
3519      attr.setInvalid();
3520      return true;
3521    }
3522
3523    // Also diagnose fastcall with regparm.
3524    if (fn->getHasRegParm()) {
3525      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3526        << "regparm"
3527        << FunctionType::getNameForCallConv(CC);
3528      attr.setInvalid();
3529      return true;
3530    }
3531  }
3532
3533  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
3534  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3535  return true;
3536}
3537
3538/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
3539static void HandleOpenCLImageAccessAttribute(QualType& CurType,
3540                                             const AttributeList &Attr,
3541                                             Sema &S) {
3542  // Check the attribute arguments.
3543  if (Attr.getNumArgs() != 1) {
3544    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3545    Attr.setInvalid();
3546    return;
3547  }
3548  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3549  llvm::APSInt arg(32);
3550  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3551      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
3552    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3553      << "opencl_image_access" << sizeExpr->getSourceRange();
3554    Attr.setInvalid();
3555    return;
3556  }
3557  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
3558  switch (iarg) {
3559  case CLIA_read_only:
3560  case CLIA_write_only:
3561  case CLIA_read_write:
3562    // Implemented in a separate patch
3563    break;
3564  default:
3565    // Implemented in a separate patch
3566    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3567      << sizeExpr->getSourceRange();
3568    Attr.setInvalid();
3569    break;
3570  }
3571}
3572
3573/// HandleVectorSizeAttribute - this attribute is only applicable to integral
3574/// and float scalars, although arrays, pointers, and function return values are
3575/// allowed in conjunction with this construct. Aggregates with this attribute
3576/// are invalid, even if they are of the same size as a corresponding scalar.
3577/// The raw attribute should contain precisely 1 argument, the vector size for
3578/// the variable, measured in bytes. If curType and rawAttr are well formed,
3579/// this routine will return a new vector type.
3580static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
3581                                 Sema &S) {
3582  // Check the attribute arguments.
3583  if (Attr.getNumArgs() != 1) {
3584    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3585    Attr.setInvalid();
3586    return;
3587  }
3588  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3589  llvm::APSInt vecSize(32);
3590  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3591      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
3592    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3593      << "vector_size" << sizeExpr->getSourceRange();
3594    Attr.setInvalid();
3595    return;
3596  }
3597  // the base type must be integer or float, and can't already be a vector.
3598  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
3599    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
3600    Attr.setInvalid();
3601    return;
3602  }
3603  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3604  // vecSize is specified in bytes - convert to bits.
3605  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
3606
3607  // the vector size needs to be an integral multiple of the type size.
3608  if (vectorSize % typeSize) {
3609    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3610      << sizeExpr->getSourceRange();
3611    Attr.setInvalid();
3612    return;
3613  }
3614  if (vectorSize == 0) {
3615    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
3616      << sizeExpr->getSourceRange();
3617    Attr.setInvalid();
3618    return;
3619  }
3620
3621  // Success! Instantiate the vector type, the number of elements is > 0, and
3622  // not required to be a power of 2, unlike GCC.
3623  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
3624                                    VectorType::GenericVector);
3625}
3626
3627/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
3628/// a type.
3629static void HandleExtVectorTypeAttr(QualType &CurType,
3630                                    const AttributeList &Attr,
3631                                    Sema &S) {
3632  Expr *sizeExpr;
3633
3634  // Special case where the argument is a template id.
3635  if (Attr.getParameterName()) {
3636    CXXScopeSpec SS;
3637    UnqualifiedId id;
3638    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
3639
3640    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, id, false,
3641                                          false);
3642    if (Size.isInvalid())
3643      return;
3644
3645    sizeExpr = Size.get();
3646  } else {
3647    // check the attribute arguments.
3648    if (Attr.getNumArgs() != 1) {
3649      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3650      return;
3651    }
3652    sizeExpr = Attr.getArg(0);
3653  }
3654
3655  // Create the vector type.
3656  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
3657  if (!T.isNull())
3658    CurType = T;
3659}
3660
3661/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
3662/// "neon_polyvector_type" attributes are used to create vector types that
3663/// are mangled according to ARM's ABI.  Otherwise, these types are identical
3664/// to those created with the "vector_size" attribute.  Unlike "vector_size"
3665/// the argument to these Neon attributes is the number of vector elements,
3666/// not the vector size in bytes.  The vector width and element type must
3667/// match one of the standard Neon vector types.
3668static void HandleNeonVectorTypeAttr(QualType& CurType,
3669                                     const AttributeList &Attr, Sema &S,
3670                                     VectorType::VectorKind VecKind,
3671                                     const char *AttrName) {
3672  // Check the attribute arguments.
3673  if (Attr.getNumArgs() != 1) {
3674    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3675    Attr.setInvalid();
3676    return;
3677  }
3678  // The number of elements must be an ICE.
3679  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
3680  llvm::APSInt numEltsInt(32);
3681  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
3682      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
3683    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3684      << AttrName << numEltsExpr->getSourceRange();
3685    Attr.setInvalid();
3686    return;
3687  }
3688  // Only certain element types are supported for Neon vectors.
3689  const BuiltinType* BTy = CurType->getAs<BuiltinType>();
3690  if (!BTy ||
3691      (VecKind == VectorType::NeonPolyVector &&
3692       BTy->getKind() != BuiltinType::SChar &&
3693       BTy->getKind() != BuiltinType::Short) ||
3694      (BTy->getKind() != BuiltinType::SChar &&
3695       BTy->getKind() != BuiltinType::UChar &&
3696       BTy->getKind() != BuiltinType::Short &&
3697       BTy->getKind() != BuiltinType::UShort &&
3698       BTy->getKind() != BuiltinType::Int &&
3699       BTy->getKind() != BuiltinType::UInt &&
3700       BTy->getKind() != BuiltinType::LongLong &&
3701       BTy->getKind() != BuiltinType::ULongLong &&
3702       BTy->getKind() != BuiltinType::Float)) {
3703    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
3704    Attr.setInvalid();
3705    return;
3706  }
3707  // The total size of the vector must be 64 or 128 bits.
3708  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3709  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
3710  unsigned vecSize = typeSize * numElts;
3711  if (vecSize != 64 && vecSize != 128) {
3712    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
3713    Attr.setInvalid();
3714    return;
3715  }
3716
3717  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
3718}
3719
3720static void processTypeAttrs(TypeProcessingState &state, QualType &type,
3721                             bool isDeclSpec, AttributeList *attrs) {
3722  // Scan through and apply attributes to this type where it makes sense.  Some
3723  // attributes (such as __address_space__, __vector_size__, etc) apply to the
3724  // type, but others can be present in the type specifiers even though they
3725  // apply to the decl.  Here we apply type attributes and ignore the rest.
3726
3727  AttributeList *next;
3728  do {
3729    AttributeList &attr = *attrs;
3730    next = attr.getNext();
3731
3732    // Skip attributes that were marked to be invalid.
3733    if (attr.isInvalid())
3734      continue;
3735
3736    // If this is an attribute we can handle, do so now,
3737    // otherwise, add it to the FnAttrs list for rechaining.
3738    switch (attr.getKind()) {
3739    default: break;
3740
3741    case AttributeList::AT_address_space:
3742      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
3743      break;
3744    OBJC_POINTER_TYPE_ATTRS_CASELIST:
3745      if (!handleObjCPointerTypeAttr(state, attr, type))
3746        distributeObjCPointerTypeAttr(state, attr, type);
3747      break;
3748    case AttributeList::AT_vector_size:
3749      HandleVectorSizeAttr(type, attr, state.getSema());
3750      break;
3751    case AttributeList::AT_ext_vector_type:
3752      if (state.getDeclarator().getDeclSpec().getStorageClassSpec()
3753            != DeclSpec::SCS_typedef)
3754        HandleExtVectorTypeAttr(type, attr, state.getSema());
3755      break;
3756    case AttributeList::AT_neon_vector_type:
3757      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
3758                               VectorType::NeonVector, "neon_vector_type");
3759      break;
3760    case AttributeList::AT_neon_polyvector_type:
3761      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
3762                               VectorType::NeonPolyVector,
3763                               "neon_polyvector_type");
3764      break;
3765    case AttributeList::AT_opencl_image_access:
3766      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
3767      break;
3768
3769    case AttributeList::AT_ns_returns_retained:
3770      if (!state.getSema().getLangOptions().ObjCAutoRefCount)
3771	break;
3772      // fallthrough into the function attrs
3773
3774    FUNCTION_TYPE_ATTRS_CASELIST:
3775      // Never process function type attributes as part of the
3776      // declaration-specifiers.
3777      if (isDeclSpec)
3778        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
3779
3780      // Otherwise, handle the possible delays.
3781      else if (!handleFunctionTypeAttr(state, attr, type))
3782        distributeFunctionTypeAttr(state, attr, type);
3783      break;
3784    }
3785  } while ((attrs = next));
3786}
3787
3788/// \brief Ensure that the type of the given expression is complete.
3789///
3790/// This routine checks whether the expression \p E has a complete type. If the
3791/// expression refers to an instantiable construct, that instantiation is
3792/// performed as needed to complete its type. Furthermore
3793/// Sema::RequireCompleteType is called for the expression's type (or in the
3794/// case of a reference type, the referred-to type).
3795///
3796/// \param E The expression whose type is required to be complete.
3797/// \param PD The partial diagnostic that will be printed out if the type cannot
3798/// be completed.
3799///
3800/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
3801/// otherwise.
3802bool Sema::RequireCompleteExprType(Expr *E, const PartialDiagnostic &PD,
3803                                   std::pair<SourceLocation,
3804                                             PartialDiagnostic> Note) {
3805  QualType T = E->getType();
3806
3807  // Fast path the case where the type is already complete.
3808  if (!T->isIncompleteType())
3809    return false;
3810
3811  // Incomplete array types may be completed by the initializer attached to
3812  // their definitions. For static data members of class templates we need to
3813  // instantiate the definition to get this initializer and complete the type.
3814  if (T->isIncompleteArrayType()) {
3815    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3816      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3817        if (Var->isStaticDataMember() &&
3818            Var->getInstantiatedFromStaticDataMember()) {
3819
3820          MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
3821          assert(MSInfo && "Missing member specialization information?");
3822          if (MSInfo->getTemplateSpecializationKind()
3823                != TSK_ExplicitSpecialization) {
3824            // If we don't already have a point of instantiation, this is it.
3825            if (MSInfo->getPointOfInstantiation().isInvalid()) {
3826              MSInfo->setPointOfInstantiation(E->getLocStart());
3827
3828              // This is a modification of an existing AST node. Notify
3829              // listeners.
3830              if (ASTMutationListener *L = getASTMutationListener())
3831                L->StaticDataMemberInstantiated(Var);
3832            }
3833
3834            InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
3835
3836            // Update the type to the newly instantiated definition's type both
3837            // here and within the expression.
3838            if (VarDecl *Def = Var->getDefinition()) {
3839              DRE->setDecl(Def);
3840              T = Def->getType();
3841              DRE->setType(T);
3842              E->setType(T);
3843            }
3844          }
3845
3846          // We still go on to try to complete the type independently, as it
3847          // may also require instantiations or diagnostics if it remains
3848          // incomplete.
3849        }
3850      }
3851    }
3852  }
3853
3854  // FIXME: Are there other cases which require instantiating something other
3855  // than the type to complete the type of an expression?
3856
3857  // Look through reference types and complete the referred type.
3858  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
3859    T = Ref->getPointeeType();
3860
3861  return RequireCompleteType(E->getExprLoc(), T, PD, Note);
3862}
3863
3864/// @brief Ensure that the type T is a complete type.
3865///
3866/// This routine checks whether the type @p T is complete in any
3867/// context where a complete type is required. If @p T is a complete
3868/// type, returns false. If @p T is a class template specialization,
3869/// this routine then attempts to perform class template
3870/// instantiation. If instantiation fails, or if @p T is incomplete
3871/// and cannot be completed, issues the diagnostic @p diag (giving it
3872/// the type @p T) and returns true.
3873///
3874/// @param Loc  The location in the source that the incomplete type
3875/// diagnostic should refer to.
3876///
3877/// @param T  The type that this routine is examining for completeness.
3878///
3879/// @param PD The partial diagnostic that will be printed out if T is not a
3880/// complete type.
3881///
3882/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
3883/// @c false otherwise.
3884bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
3885                               const PartialDiagnostic &PD,
3886                               std::pair<SourceLocation,
3887                                         PartialDiagnostic> Note) {
3888  unsigned diag = PD.getDiagID();
3889
3890  // FIXME: Add this assertion to make sure we always get instantiation points.
3891  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
3892  // FIXME: Add this assertion to help us flush out problems with
3893  // checking for dependent types and type-dependent expressions.
3894  //
3895  //  assert(!T->isDependentType() &&
3896  //         "Can't ask whether a dependent type is complete");
3897
3898  // If we have a complete type, we're done.
3899  if (!T->isIncompleteType())
3900    return false;
3901
3902  // If we have a class template specialization or a class member of a
3903  // class template specialization, or an array with known size of such,
3904  // try to instantiate it.
3905  QualType MaybeTemplate = T;
3906  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
3907    MaybeTemplate = Array->getElementType();
3908  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
3909    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
3910          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
3911      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
3912        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
3913                                                      TSK_ImplicitInstantiation,
3914                                                      /*Complain=*/diag != 0);
3915    } else if (CXXRecordDecl *Rec
3916                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
3917      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
3918        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
3919        assert(MSInfo && "Missing member specialization information?");
3920        // This record was instantiated from a class within a template.
3921        if (MSInfo->getTemplateSpecializationKind()
3922                                               != TSK_ExplicitSpecialization)
3923          return InstantiateClass(Loc, Rec, Pattern,
3924                                  getTemplateInstantiationArgs(Rec),
3925                                  TSK_ImplicitInstantiation,
3926                                  /*Complain=*/diag != 0);
3927      }
3928    }
3929  }
3930
3931  if (diag == 0)
3932    return true;
3933
3934  const TagType *Tag = T->getAs<TagType>();
3935
3936  // Avoid diagnosing invalid decls as incomplete.
3937  if (Tag && Tag->getDecl()->isInvalidDecl())
3938    return true;
3939
3940  // Give the external AST source a chance to complete the type.
3941  if (Tag && Tag->getDecl()->hasExternalLexicalStorage()) {
3942    Context.getExternalSource()->CompleteType(Tag->getDecl());
3943    if (!Tag->isIncompleteType())
3944      return false;
3945  }
3946
3947  // We have an incomplete type. Produce a diagnostic.
3948  Diag(Loc, PD) << T;
3949
3950  // If we have a note, produce it.
3951  if (!Note.first.isInvalid())
3952    Diag(Note.first, Note.second);
3953
3954  // If the type was a forward declaration of a class/struct/union
3955  // type, produce a note.
3956  if (Tag && !Tag->getDecl()->isInvalidDecl())
3957    Diag(Tag->getDecl()->getLocation(),
3958         Tag->isBeingDefined() ? diag::note_type_being_defined
3959                               : diag::note_forward_declaration)
3960        << QualType(Tag, 0);
3961
3962  return true;
3963}
3964
3965bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
3966                               const PartialDiagnostic &PD) {
3967  return RequireCompleteType(Loc, T, PD,
3968                             std::make_pair(SourceLocation(), PDiag(0)));
3969}
3970
3971bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
3972                               unsigned DiagID) {
3973  return RequireCompleteType(Loc, T, PDiag(DiagID),
3974                             std::make_pair(SourceLocation(), PDiag(0)));
3975}
3976
3977/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
3978/// and qualified by the nested-name-specifier contained in SS.
3979QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
3980                                 const CXXScopeSpec &SS, QualType T) {
3981  if (T.isNull())
3982    return T;
3983  NestedNameSpecifier *NNS;
3984  if (SS.isValid())
3985    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3986  else {
3987    if (Keyword == ETK_None)
3988      return T;
3989    NNS = 0;
3990  }
3991  return Context.getElaboratedType(Keyword, NNS, T);
3992}
3993
3994QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
3995  ExprResult ER = CheckPlaceholderExpr(E);
3996  if (ER.isInvalid()) return QualType();
3997  E = ER.take();
3998
3999  if (!E->isTypeDependent()) {
4000    QualType T = E->getType();
4001    if (const TagType *TT = T->getAs<TagType>())
4002      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
4003  }
4004  return Context.getTypeOfExprType(E);
4005}
4006
4007QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
4008  ExprResult ER = CheckPlaceholderExpr(E);
4009  if (ER.isInvalid()) return QualType();
4010  E = ER.take();
4011
4012  return Context.getDecltypeType(E);
4013}
4014
4015QualType Sema::BuildUnaryTransformType(QualType BaseType,
4016                                       UnaryTransformType::UTTKind UKind,
4017                                       SourceLocation Loc) {
4018  switch (UKind) {
4019  case UnaryTransformType::EnumUnderlyingType:
4020    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
4021      Diag(Loc, diag::err_only_enums_have_underlying_types);
4022      return QualType();
4023    } else {
4024      QualType Underlying = BaseType;
4025      if (!BaseType->isDependentType()) {
4026        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
4027        assert(ED && "EnumType has no EnumDecl");
4028        DiagnoseUseOfDecl(ED, Loc);
4029        Underlying = ED->getIntegerType();
4030      }
4031      assert(!Underlying.isNull());
4032      return Context.getUnaryTransformType(BaseType, Underlying,
4033                                        UnaryTransformType::EnumUnderlyingType);
4034    }
4035  }
4036  llvm_unreachable("unknown unary transform type");
4037}
4038