SemaType.cpp revision b7165589b2eafc4b48d09a5914e21604ae580256
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeLocVisitor.h"
24#include "clang/Basic/OpenCL.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Parse/ParseDiagnostic.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/DelayedDiagnostic.h"
31#include "clang/Sema/Lookup.h"
32#include "clang/Sema/ScopeInfo.h"
33#include "clang/Sema/Template.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SmallString.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "TypeLocBuilder.h"
38
39using namespace clang;
40
41enum TypeDiagSelector {
42  TDS_Function,
43  TDS_Pointer,
44  TDS_ObjCObjOrBlock
45};
46
47/// isOmittedBlockReturnType - Return true if this declarator is missing a
48/// return type because this is a omitted return type on a block literal.
49static bool isOmittedBlockReturnType(const Declarator &D) {
50  if (D.getContext() != Declarator::BlockLiteralContext ||
51      D.getDeclSpec().hasTypeSpecifier())
52    return false;
53
54  if (D.getNumTypeObjects() == 0)
55    return true;   // ^{ ... }
56
57  if (D.getNumTypeObjects() == 1 &&
58      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
59    return true;   // ^(int X, float Y) { ... }
60
61  return false;
62}
63
64/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
65/// doesn't apply to the given type.
66static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
67                                     QualType type) {
68  TypeDiagSelector WhichType;
69  bool useExpansionLoc = true;
70  switch (attr.getKind()) {
71  case AttributeList::AT_ObjCGC:        WhichType = TDS_Pointer; break;
72  case AttributeList::AT_ObjCOwnership: WhichType = TDS_ObjCObjOrBlock; break;
73  default:
74    // Assume everything else was a function attribute.
75    WhichType = TDS_Function;
76    useExpansionLoc = false;
77    break;
78  }
79
80  SourceLocation loc = attr.getLoc();
81  StringRef name = attr.getName()->getName();
82
83  // The GC attributes are usually written with macros;  special-case them.
84  IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident : 0;
85  if (useExpansionLoc && loc.isMacroID() && II) {
86    if (II->isStr("strong")) {
87      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
88    } else if (II->isStr("weak")) {
89      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
90    }
91  }
92
93  S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
94    << type;
95}
96
97// objc_gc applies to Objective-C pointers or, otherwise, to the
98// smallest available pointer type (i.e. 'void*' in 'void**').
99#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
100    case AttributeList::AT_ObjCGC: \
101    case AttributeList::AT_ObjCOwnership
102
103// Function type attributes.
104#define FUNCTION_TYPE_ATTRS_CASELIST \
105    case AttributeList::AT_NoReturn: \
106    case AttributeList::AT_CDecl: \
107    case AttributeList::AT_FastCall: \
108    case AttributeList::AT_StdCall: \
109    case AttributeList::AT_ThisCall: \
110    case AttributeList::AT_Pascal: \
111    case AttributeList::AT_MSABI: \
112    case AttributeList::AT_SysVABI: \
113    case AttributeList::AT_Regparm: \
114    case AttributeList::AT_Pcs: \
115    case AttributeList::AT_PnaclCall: \
116    case AttributeList::AT_IntelOclBicc
117
118// Microsoft-specific type qualifiers.
119#define MS_TYPE_ATTRS_CASELIST  \
120    case AttributeList::AT_Ptr32: \
121    case AttributeList::AT_Ptr64: \
122    case AttributeList::AT_SPtr: \
123    case AttributeList::AT_UPtr
124
125namespace {
126  /// An object which stores processing state for the entire
127  /// GetTypeForDeclarator process.
128  class TypeProcessingState {
129    Sema &sema;
130
131    /// The declarator being processed.
132    Declarator &declarator;
133
134    /// The index of the declarator chunk we're currently processing.
135    /// May be the total number of valid chunks, indicating the
136    /// DeclSpec.
137    unsigned chunkIndex;
138
139    /// Whether there are non-trivial modifications to the decl spec.
140    bool trivial;
141
142    /// Whether we saved the attributes in the decl spec.
143    bool hasSavedAttrs;
144
145    /// The original set of attributes on the DeclSpec.
146    SmallVector<AttributeList*, 2> savedAttrs;
147
148    /// A list of attributes to diagnose the uselessness of when the
149    /// processing is complete.
150    SmallVector<AttributeList*, 2> ignoredTypeAttrs;
151
152  public:
153    TypeProcessingState(Sema &sema, Declarator &declarator)
154      : sema(sema), declarator(declarator),
155        chunkIndex(declarator.getNumTypeObjects()),
156        trivial(true), hasSavedAttrs(false) {}
157
158    Sema &getSema() const {
159      return sema;
160    }
161
162    Declarator &getDeclarator() const {
163      return declarator;
164    }
165
166    bool isProcessingDeclSpec() const {
167      return chunkIndex == declarator.getNumTypeObjects();
168    }
169
170    unsigned getCurrentChunkIndex() const {
171      return chunkIndex;
172    }
173
174    void setCurrentChunkIndex(unsigned idx) {
175      assert(idx <= declarator.getNumTypeObjects());
176      chunkIndex = idx;
177    }
178
179    AttributeList *&getCurrentAttrListRef() const {
180      if (isProcessingDeclSpec())
181        return getMutableDeclSpec().getAttributes().getListRef();
182      return declarator.getTypeObject(chunkIndex).getAttrListRef();
183    }
184
185    /// Save the current set of attributes on the DeclSpec.
186    void saveDeclSpecAttrs() {
187      // Don't try to save them multiple times.
188      if (hasSavedAttrs) return;
189
190      DeclSpec &spec = getMutableDeclSpec();
191      for (AttributeList *attr = spec.getAttributes().getList(); attr;
192             attr = attr->getNext())
193        savedAttrs.push_back(attr);
194      trivial &= savedAttrs.empty();
195      hasSavedAttrs = true;
196    }
197
198    /// Record that we had nowhere to put the given type attribute.
199    /// We will diagnose such attributes later.
200    void addIgnoredTypeAttr(AttributeList &attr) {
201      ignoredTypeAttrs.push_back(&attr);
202    }
203
204    /// Diagnose all the ignored type attributes, given that the
205    /// declarator worked out to the given type.
206    void diagnoseIgnoredTypeAttrs(QualType type) const {
207      for (SmallVectorImpl<AttributeList*>::const_iterator
208             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
209           i != e; ++i)
210        diagnoseBadTypeAttribute(getSema(), **i, type);
211    }
212
213    ~TypeProcessingState() {
214      if (trivial) return;
215
216      restoreDeclSpecAttrs();
217    }
218
219  private:
220    DeclSpec &getMutableDeclSpec() const {
221      return const_cast<DeclSpec&>(declarator.getDeclSpec());
222    }
223
224    void restoreDeclSpecAttrs() {
225      assert(hasSavedAttrs);
226
227      if (savedAttrs.empty()) {
228        getMutableDeclSpec().getAttributes().set(0);
229        return;
230      }
231
232      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
233      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
234        savedAttrs[i]->setNext(savedAttrs[i+1]);
235      savedAttrs.back()->setNext(0);
236    }
237  };
238
239  /// Basically std::pair except that we really want to avoid an
240  /// implicit operator= for safety concerns.  It's also a minor
241  /// link-time optimization for this to be a private type.
242  struct AttrAndList {
243    /// The attribute.
244    AttributeList &first;
245
246    /// The head of the list the attribute is currently in.
247    AttributeList *&second;
248
249    AttrAndList(AttributeList &attr, AttributeList *&head)
250      : first(attr), second(head) {}
251  };
252}
253
254namespace llvm {
255  template <> struct isPodLike<AttrAndList> {
256    static const bool value = true;
257  };
258}
259
260static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
261  attr.setNext(head);
262  head = &attr;
263}
264
265static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
266  if (head == &attr) {
267    head = attr.getNext();
268    return;
269  }
270
271  AttributeList *cur = head;
272  while (true) {
273    assert(cur && cur->getNext() && "ran out of attrs?");
274    if (cur->getNext() == &attr) {
275      cur->setNext(attr.getNext());
276      return;
277    }
278    cur = cur->getNext();
279  }
280}
281
282static void moveAttrFromListToList(AttributeList &attr,
283                                   AttributeList *&fromList,
284                                   AttributeList *&toList) {
285  spliceAttrOutOfList(attr, fromList);
286  spliceAttrIntoList(attr, toList);
287}
288
289/// The location of a type attribute.
290enum TypeAttrLocation {
291  /// The attribute is in the decl-specifier-seq.
292  TAL_DeclSpec,
293  /// The attribute is part of a DeclaratorChunk.
294  TAL_DeclChunk,
295  /// The attribute is immediately after the declaration's name.
296  TAL_DeclName
297};
298
299static void processTypeAttrs(TypeProcessingState &state,
300                             QualType &type, TypeAttrLocation TAL,
301                             AttributeList *attrs);
302
303static bool handleFunctionTypeAttr(TypeProcessingState &state,
304                                   AttributeList &attr,
305                                   QualType &type);
306
307static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
308                                             AttributeList &attr,
309                                             QualType &type);
310
311static bool handleObjCGCTypeAttr(TypeProcessingState &state,
312                                 AttributeList &attr, QualType &type);
313
314static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
315                                       AttributeList &attr, QualType &type);
316
317static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
318                                      AttributeList &attr, QualType &type) {
319  if (attr.getKind() == AttributeList::AT_ObjCGC)
320    return handleObjCGCTypeAttr(state, attr, type);
321  assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
322  return handleObjCOwnershipTypeAttr(state, attr, type);
323}
324
325/// Given the index of a declarator chunk, check whether that chunk
326/// directly specifies the return type of a function and, if so, find
327/// an appropriate place for it.
328///
329/// \param i - a notional index which the search will start
330///   immediately inside
331static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
332                                                unsigned i) {
333  assert(i <= declarator.getNumTypeObjects());
334
335  DeclaratorChunk *result = 0;
336
337  // First, look inwards past parens for a function declarator.
338  for (; i != 0; --i) {
339    DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
340    switch (fnChunk.Kind) {
341    case DeclaratorChunk::Paren:
342      continue;
343
344    // If we find anything except a function, bail out.
345    case DeclaratorChunk::Pointer:
346    case DeclaratorChunk::BlockPointer:
347    case DeclaratorChunk::Array:
348    case DeclaratorChunk::Reference:
349    case DeclaratorChunk::MemberPointer:
350      return result;
351
352    // If we do find a function declarator, scan inwards from that,
353    // looking for a block-pointer declarator.
354    case DeclaratorChunk::Function:
355      for (--i; i != 0; --i) {
356        DeclaratorChunk &blockChunk = declarator.getTypeObject(i-1);
357        switch (blockChunk.Kind) {
358        case DeclaratorChunk::Paren:
359        case DeclaratorChunk::Pointer:
360        case DeclaratorChunk::Array:
361        case DeclaratorChunk::Function:
362        case DeclaratorChunk::Reference:
363        case DeclaratorChunk::MemberPointer:
364          continue;
365        case DeclaratorChunk::BlockPointer:
366          result = &blockChunk;
367          goto continue_outer;
368        }
369        llvm_unreachable("bad declarator chunk kind");
370      }
371
372      // If we run out of declarators doing that, we're done.
373      return result;
374    }
375    llvm_unreachable("bad declarator chunk kind");
376
377    // Okay, reconsider from our new point.
378  continue_outer: ;
379  }
380
381  // Ran out of chunks, bail out.
382  return result;
383}
384
385/// Given that an objc_gc attribute was written somewhere on a
386/// declaration *other* than on the declarator itself (for which, use
387/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
388/// didn't apply in whatever position it was written in, try to move
389/// it to a more appropriate position.
390static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
391                                          AttributeList &attr,
392                                          QualType type) {
393  Declarator &declarator = state.getDeclarator();
394
395  // Move it to the outermost normal or block pointer declarator.
396  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
397    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
398    switch (chunk.Kind) {
399    case DeclaratorChunk::Pointer:
400    case DeclaratorChunk::BlockPointer: {
401      // But don't move an ARC ownership attribute to the return type
402      // of a block.
403      DeclaratorChunk *destChunk = 0;
404      if (state.isProcessingDeclSpec() &&
405          attr.getKind() == AttributeList::AT_ObjCOwnership)
406        destChunk = maybeMovePastReturnType(declarator, i - 1);
407      if (!destChunk) destChunk = &chunk;
408
409      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
410                             destChunk->getAttrListRef());
411      return;
412    }
413
414    case DeclaratorChunk::Paren:
415    case DeclaratorChunk::Array:
416      continue;
417
418    // We may be starting at the return type of a block.
419    case DeclaratorChunk::Function:
420      if (state.isProcessingDeclSpec() &&
421          attr.getKind() == AttributeList::AT_ObjCOwnership) {
422        if (DeclaratorChunk *dest = maybeMovePastReturnType(declarator, i)) {
423          moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
424                                 dest->getAttrListRef());
425          return;
426        }
427      }
428      goto error;
429
430    // Don't walk through these.
431    case DeclaratorChunk::Reference:
432    case DeclaratorChunk::MemberPointer:
433      goto error;
434    }
435  }
436 error:
437
438  diagnoseBadTypeAttribute(state.getSema(), attr, type);
439}
440
441/// Distribute an objc_gc type attribute that was written on the
442/// declarator.
443static void
444distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
445                                            AttributeList &attr,
446                                            QualType &declSpecType) {
447  Declarator &declarator = state.getDeclarator();
448
449  // objc_gc goes on the innermost pointer to something that's not a
450  // pointer.
451  unsigned innermost = -1U;
452  bool considerDeclSpec = true;
453  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
454    DeclaratorChunk &chunk = declarator.getTypeObject(i);
455    switch (chunk.Kind) {
456    case DeclaratorChunk::Pointer:
457    case DeclaratorChunk::BlockPointer:
458      innermost = i;
459      continue;
460
461    case DeclaratorChunk::Reference:
462    case DeclaratorChunk::MemberPointer:
463    case DeclaratorChunk::Paren:
464    case DeclaratorChunk::Array:
465      continue;
466
467    case DeclaratorChunk::Function:
468      considerDeclSpec = false;
469      goto done;
470    }
471  }
472 done:
473
474  // That might actually be the decl spec if we weren't blocked by
475  // anything in the declarator.
476  if (considerDeclSpec) {
477    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
478      // Splice the attribute into the decl spec.  Prevents the
479      // attribute from being applied multiple times and gives
480      // the source-location-filler something to work with.
481      state.saveDeclSpecAttrs();
482      moveAttrFromListToList(attr, declarator.getAttrListRef(),
483               declarator.getMutableDeclSpec().getAttributes().getListRef());
484      return;
485    }
486  }
487
488  // Otherwise, if we found an appropriate chunk, splice the attribute
489  // into it.
490  if (innermost != -1U) {
491    moveAttrFromListToList(attr, declarator.getAttrListRef(),
492                       declarator.getTypeObject(innermost).getAttrListRef());
493    return;
494  }
495
496  // Otherwise, diagnose when we're done building the type.
497  spliceAttrOutOfList(attr, declarator.getAttrListRef());
498  state.addIgnoredTypeAttr(attr);
499}
500
501/// A function type attribute was written somewhere in a declaration
502/// *other* than on the declarator itself or in the decl spec.  Given
503/// that it didn't apply in whatever position it was written in, try
504/// to move it to a more appropriate position.
505static void distributeFunctionTypeAttr(TypeProcessingState &state,
506                                       AttributeList &attr,
507                                       QualType type) {
508  Declarator &declarator = state.getDeclarator();
509
510  // Try to push the attribute from the return type of a function to
511  // the function itself.
512  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
513    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
514    switch (chunk.Kind) {
515    case DeclaratorChunk::Function:
516      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
517                             chunk.getAttrListRef());
518      return;
519
520    case DeclaratorChunk::Paren:
521    case DeclaratorChunk::Pointer:
522    case DeclaratorChunk::BlockPointer:
523    case DeclaratorChunk::Array:
524    case DeclaratorChunk::Reference:
525    case DeclaratorChunk::MemberPointer:
526      continue;
527    }
528  }
529
530  diagnoseBadTypeAttribute(state.getSema(), attr, type);
531}
532
533/// Try to distribute a function type attribute to the innermost
534/// function chunk or type.  Returns true if the attribute was
535/// distributed, false if no location was found.
536static bool
537distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
538                                      AttributeList &attr,
539                                      AttributeList *&attrList,
540                                      QualType &declSpecType) {
541  Declarator &declarator = state.getDeclarator();
542
543  // Put it on the innermost function chunk, if there is one.
544  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
545    DeclaratorChunk &chunk = declarator.getTypeObject(i);
546    if (chunk.Kind != DeclaratorChunk::Function) continue;
547
548    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
549    return true;
550  }
551
552  return handleFunctionTypeAttr(state, attr, declSpecType);
553}
554
555/// A function type attribute was written in the decl spec.  Try to
556/// apply it somewhere.
557static void
558distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
559                                       AttributeList &attr,
560                                       QualType &declSpecType) {
561  state.saveDeclSpecAttrs();
562
563  // C++11 attributes before the decl specifiers actually appertain to
564  // the declarators. Move them straight there. We don't support the
565  // 'put them wherever you like' semantics we allow for GNU attributes.
566  if (attr.isCXX11Attribute()) {
567    moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
568                           state.getDeclarator().getAttrListRef());
569    return;
570  }
571
572  // Try to distribute to the innermost.
573  if (distributeFunctionTypeAttrToInnermost(state, attr,
574                                            state.getCurrentAttrListRef(),
575                                            declSpecType))
576    return;
577
578  // If that failed, diagnose the bad attribute when the declarator is
579  // fully built.
580  state.addIgnoredTypeAttr(attr);
581}
582
583/// A function type attribute was written on the declarator.  Try to
584/// apply it somewhere.
585static void
586distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
587                                         AttributeList &attr,
588                                         QualType &declSpecType) {
589  Declarator &declarator = state.getDeclarator();
590
591  // Try to distribute to the innermost.
592  if (distributeFunctionTypeAttrToInnermost(state, attr,
593                                            declarator.getAttrListRef(),
594                                            declSpecType))
595    return;
596
597  // If that failed, diagnose the bad attribute when the declarator is
598  // fully built.
599  spliceAttrOutOfList(attr, declarator.getAttrListRef());
600  state.addIgnoredTypeAttr(attr);
601}
602
603/// \brief Given that there are attributes written on the declarator
604/// itself, try to distribute any type attributes to the appropriate
605/// declarator chunk.
606///
607/// These are attributes like the following:
608///   int f ATTR;
609///   int (f ATTR)();
610/// but not necessarily this:
611///   int f() ATTR;
612static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
613                                              QualType &declSpecType) {
614  // Collect all the type attributes from the declarator itself.
615  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
616  AttributeList *attr = state.getDeclarator().getAttributes();
617  AttributeList *next;
618  do {
619    next = attr->getNext();
620
621    // Do not distribute C++11 attributes. They have strict rules for what
622    // they appertain to.
623    if (attr->isCXX11Attribute())
624      continue;
625
626    switch (attr->getKind()) {
627    OBJC_POINTER_TYPE_ATTRS_CASELIST:
628      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
629      break;
630
631    case AttributeList::AT_NSReturnsRetained:
632      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
633        break;
634      // fallthrough
635
636    FUNCTION_TYPE_ATTRS_CASELIST:
637      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
638      break;
639
640    MS_TYPE_ATTRS_CASELIST:
641      // Microsoft type attributes cannot go after the declarator-id.
642      continue;
643
644    default:
645      break;
646    }
647  } while ((attr = next));
648}
649
650/// Add a synthetic '()' to a block-literal declarator if it is
651/// required, given the return type.
652static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
653                                          QualType declSpecType) {
654  Declarator &declarator = state.getDeclarator();
655
656  // First, check whether the declarator would produce a function,
657  // i.e. whether the innermost semantic chunk is a function.
658  if (declarator.isFunctionDeclarator()) {
659    // If so, make that declarator a prototyped declarator.
660    declarator.getFunctionTypeInfo().hasPrototype = true;
661    return;
662  }
663
664  // If there are any type objects, the type as written won't name a
665  // function, regardless of the decl spec type.  This is because a
666  // block signature declarator is always an abstract-declarator, and
667  // abstract-declarators can't just be parentheses chunks.  Therefore
668  // we need to build a function chunk unless there are no type
669  // objects and the decl spec type is a function.
670  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
671    return;
672
673  // Note that there *are* cases with invalid declarators where
674  // declarators consist solely of parentheses.  In general, these
675  // occur only in failed efforts to make function declarators, so
676  // faking up the function chunk is still the right thing to do.
677
678  // Otherwise, we need to fake up a function declarator.
679  SourceLocation loc = declarator.getLocStart();
680
681  // ...and *prepend* it to the declarator.
682  SourceLocation NoLoc;
683  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
684                             /*HasProto=*/true,
685                             /*IsAmbiguous=*/false,
686                             /*LParenLoc=*/NoLoc,
687                             /*ArgInfo=*/0,
688                             /*NumArgs=*/0,
689                             /*EllipsisLoc=*/NoLoc,
690                             /*RParenLoc=*/NoLoc,
691                             /*TypeQuals=*/0,
692                             /*RefQualifierIsLvalueRef=*/true,
693                             /*RefQualifierLoc=*/NoLoc,
694                             /*ConstQualifierLoc=*/NoLoc,
695                             /*VolatileQualifierLoc=*/NoLoc,
696                             /*MutableLoc=*/NoLoc,
697                             EST_None,
698                             /*ESpecLoc=*/NoLoc,
699                             /*Exceptions=*/0,
700                             /*ExceptionRanges=*/0,
701                             /*NumExceptions=*/0,
702                             /*NoexceptExpr=*/0,
703                             loc, loc, declarator));
704
705  // For consistency, make sure the state still has us as processing
706  // the decl spec.
707  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
708  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
709}
710
711/// \brief Convert the specified declspec to the appropriate type
712/// object.
713/// \param state Specifies the declarator containing the declaration specifier
714/// to be converted, along with other associated processing state.
715/// \returns The type described by the declaration specifiers.  This function
716/// never returns null.
717static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
718  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
719  // checking.
720
721  Sema &S = state.getSema();
722  Declarator &declarator = state.getDeclarator();
723  const DeclSpec &DS = declarator.getDeclSpec();
724  SourceLocation DeclLoc = declarator.getIdentifierLoc();
725  if (DeclLoc.isInvalid())
726    DeclLoc = DS.getLocStart();
727
728  ASTContext &Context = S.Context;
729
730  QualType Result;
731  switch (DS.getTypeSpecType()) {
732  case DeclSpec::TST_void:
733    Result = Context.VoidTy;
734    break;
735  case DeclSpec::TST_char:
736    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
737      Result = Context.CharTy;
738    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
739      Result = Context.SignedCharTy;
740    else {
741      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
742             "Unknown TSS value");
743      Result = Context.UnsignedCharTy;
744    }
745    break;
746  case DeclSpec::TST_wchar:
747    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
748      Result = Context.WCharTy;
749    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
750      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
751        << DS.getSpecifierName(DS.getTypeSpecType());
752      Result = Context.getSignedWCharType();
753    } else {
754      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
755        "Unknown TSS value");
756      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
757        << DS.getSpecifierName(DS.getTypeSpecType());
758      Result = Context.getUnsignedWCharType();
759    }
760    break;
761  case DeclSpec::TST_char16:
762      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
763        "Unknown TSS value");
764      Result = Context.Char16Ty;
765    break;
766  case DeclSpec::TST_char32:
767      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
768        "Unknown TSS value");
769      Result = Context.Char32Ty;
770    break;
771  case DeclSpec::TST_unspecified:
772    // "<proto1,proto2>" is an objc qualified ID with a missing id.
773    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
774      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
775                                         (ObjCProtocolDecl*const*)PQ,
776                                         DS.getNumProtocolQualifiers());
777      Result = Context.getObjCObjectPointerType(Result);
778      break;
779    }
780
781    // If this is a missing declspec in a block literal return context, then it
782    // is inferred from the return statements inside the block.
783    // The declspec is always missing in a lambda expr context; it is either
784    // specified with a trailing return type or inferred.
785    if (declarator.getContext() == Declarator::LambdaExprContext ||
786        isOmittedBlockReturnType(declarator)) {
787      Result = Context.DependentTy;
788      break;
789    }
790
791    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
792    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
793    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
794    // Note that the one exception to this is function definitions, which are
795    // allowed to be completely missing a declspec.  This is handled in the
796    // parser already though by it pretending to have seen an 'int' in this
797    // case.
798    if (S.getLangOpts().ImplicitInt) {
799      // In C89 mode, we only warn if there is a completely missing declspec
800      // when one is not allowed.
801      if (DS.isEmpty()) {
802        S.Diag(DeclLoc, diag::ext_missing_declspec)
803          << DS.getSourceRange()
804        << FixItHint::CreateInsertion(DS.getLocStart(), "int");
805      }
806    } else if (!DS.hasTypeSpecifier()) {
807      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
808      // "At least one type specifier shall be given in the declaration
809      // specifiers in each declaration, and in the specifier-qualifier list in
810      // each struct declaration and type name."
811      if (S.getLangOpts().CPlusPlus) {
812        S.Diag(DeclLoc, diag::err_missing_type_specifier)
813          << DS.getSourceRange();
814
815        // When this occurs in C++ code, often something is very broken with the
816        // value being declared, poison it as invalid so we don't get chains of
817        // errors.
818        declarator.setInvalidType(true);
819      } else {
820        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
821          << DS.getSourceRange();
822      }
823    }
824
825    // FALL THROUGH.
826  case DeclSpec::TST_int: {
827    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
828      switch (DS.getTypeSpecWidth()) {
829      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
830      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
831      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
832      case DeclSpec::TSW_longlong:
833        Result = Context.LongLongTy;
834
835        // 'long long' is a C99 or C++11 feature.
836        if (!S.getLangOpts().C99) {
837          if (S.getLangOpts().CPlusPlus)
838            S.Diag(DS.getTypeSpecWidthLoc(),
839                   S.getLangOpts().CPlusPlus11 ?
840                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
841          else
842            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
843        }
844        break;
845      }
846    } else {
847      switch (DS.getTypeSpecWidth()) {
848      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
849      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
850      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
851      case DeclSpec::TSW_longlong:
852        Result = Context.UnsignedLongLongTy;
853
854        // 'long long' is a C99 or C++11 feature.
855        if (!S.getLangOpts().C99) {
856          if (S.getLangOpts().CPlusPlus)
857            S.Diag(DS.getTypeSpecWidthLoc(),
858                   S.getLangOpts().CPlusPlus11 ?
859                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
860          else
861            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
862        }
863        break;
864      }
865    }
866    break;
867  }
868  case DeclSpec::TST_int128:
869    if (!S.PP.getTargetInfo().hasInt128Type())
870      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_int128_unsupported);
871    if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
872      Result = Context.UnsignedInt128Ty;
873    else
874      Result = Context.Int128Ty;
875    break;
876  case DeclSpec::TST_half: Result = Context.HalfTy; break;
877  case DeclSpec::TST_float: Result = Context.FloatTy; break;
878  case DeclSpec::TST_double:
879    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
880      Result = Context.LongDoubleTy;
881    else
882      Result = Context.DoubleTy;
883
884    if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
885      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
886      declarator.setInvalidType(true);
887    }
888    break;
889  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
890  case DeclSpec::TST_decimal32:    // _Decimal32
891  case DeclSpec::TST_decimal64:    // _Decimal64
892  case DeclSpec::TST_decimal128:   // _Decimal128
893    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
894    Result = Context.IntTy;
895    declarator.setInvalidType(true);
896    break;
897  case DeclSpec::TST_class:
898  case DeclSpec::TST_enum:
899  case DeclSpec::TST_union:
900  case DeclSpec::TST_struct:
901  case DeclSpec::TST_interface: {
902    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
903    if (!D) {
904      // This can happen in C++ with ambiguous lookups.
905      Result = Context.IntTy;
906      declarator.setInvalidType(true);
907      break;
908    }
909
910    // If the type is deprecated or unavailable, diagnose it.
911    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
912
913    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
914           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
915
916    // TypeQuals handled by caller.
917    Result = Context.getTypeDeclType(D);
918
919    // In both C and C++, make an ElaboratedType.
920    ElaboratedTypeKeyword Keyword
921      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
922    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
923    break;
924  }
925  case DeclSpec::TST_typename: {
926    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
927           DS.getTypeSpecSign() == 0 &&
928           "Can't handle qualifiers on typedef names yet!");
929    Result = S.GetTypeFromParser(DS.getRepAsType());
930    if (Result.isNull())
931      declarator.setInvalidType(true);
932    else if (DeclSpec::ProtocolQualifierListTy PQ
933               = DS.getProtocolQualifiers()) {
934      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
935        // Silently drop any existing protocol qualifiers.
936        // TODO: determine whether that's the right thing to do.
937        if (ObjT->getNumProtocols())
938          Result = ObjT->getBaseType();
939
940        if (DS.getNumProtocolQualifiers())
941          Result = Context.getObjCObjectType(Result,
942                                             (ObjCProtocolDecl*const*) PQ,
943                                             DS.getNumProtocolQualifiers());
944      } else if (Result->isObjCIdType()) {
945        // id<protocol-list>
946        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
947                                           (ObjCProtocolDecl*const*) PQ,
948                                           DS.getNumProtocolQualifiers());
949        Result = Context.getObjCObjectPointerType(Result);
950      } else if (Result->isObjCClassType()) {
951        // Class<protocol-list>
952        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
953                                           (ObjCProtocolDecl*const*) PQ,
954                                           DS.getNumProtocolQualifiers());
955        Result = Context.getObjCObjectPointerType(Result);
956      } else {
957        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
958          << DS.getSourceRange();
959        declarator.setInvalidType(true);
960      }
961    }
962
963    // TypeQuals handled by caller.
964    break;
965  }
966  case DeclSpec::TST_typeofType:
967    // FIXME: Preserve type source info.
968    Result = S.GetTypeFromParser(DS.getRepAsType());
969    assert(!Result.isNull() && "Didn't get a type for typeof?");
970    if (!Result->isDependentType())
971      if (const TagType *TT = Result->getAs<TagType>())
972        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
973    // TypeQuals handled by caller.
974    Result = Context.getTypeOfType(Result);
975    break;
976  case DeclSpec::TST_typeofExpr: {
977    Expr *E = DS.getRepAsExpr();
978    assert(E && "Didn't get an expression for typeof?");
979    // TypeQuals handled by caller.
980    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
981    if (Result.isNull()) {
982      Result = Context.IntTy;
983      declarator.setInvalidType(true);
984    }
985    break;
986  }
987  case DeclSpec::TST_decltype: {
988    Expr *E = DS.getRepAsExpr();
989    assert(E && "Didn't get an expression for decltype?");
990    // TypeQuals handled by caller.
991    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
992    if (Result.isNull()) {
993      Result = Context.IntTy;
994      declarator.setInvalidType(true);
995    }
996    break;
997  }
998  case DeclSpec::TST_underlyingType:
999    Result = S.GetTypeFromParser(DS.getRepAsType());
1000    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
1001    Result = S.BuildUnaryTransformType(Result,
1002                                       UnaryTransformType::EnumUnderlyingType,
1003                                       DS.getTypeSpecTypeLoc());
1004    if (Result.isNull()) {
1005      Result = Context.IntTy;
1006      declarator.setInvalidType(true);
1007    }
1008    break;
1009
1010  case DeclSpec::TST_auto:
1011    // TypeQuals handled by caller.
1012    Result = Context.getAutoType(QualType(), /*decltype(auto)*/false);
1013    break;
1014
1015  case DeclSpec::TST_decltype_auto:
1016    Result = Context.getAutoType(QualType(), /*decltype(auto)*/true);
1017    break;
1018
1019  case DeclSpec::TST_unknown_anytype:
1020    Result = Context.UnknownAnyTy;
1021    break;
1022
1023  case DeclSpec::TST_atomic:
1024    Result = S.GetTypeFromParser(DS.getRepAsType());
1025    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1026    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1027    if (Result.isNull()) {
1028      Result = Context.IntTy;
1029      declarator.setInvalidType(true);
1030    }
1031    break;
1032
1033  case DeclSpec::TST_image1d_t:
1034    Result = Context.OCLImage1dTy;
1035    break;
1036
1037  case DeclSpec::TST_image1d_array_t:
1038    Result = Context.OCLImage1dArrayTy;
1039    break;
1040
1041  case DeclSpec::TST_image1d_buffer_t:
1042    Result = Context.OCLImage1dBufferTy;
1043    break;
1044
1045  case DeclSpec::TST_image2d_t:
1046    Result = Context.OCLImage2dTy;
1047    break;
1048
1049  case DeclSpec::TST_image2d_array_t:
1050    Result = Context.OCLImage2dArrayTy;
1051    break;
1052
1053  case DeclSpec::TST_image3d_t:
1054    Result = Context.OCLImage3dTy;
1055    break;
1056
1057  case DeclSpec::TST_sampler_t:
1058    Result = Context.OCLSamplerTy;
1059    break;
1060
1061  case DeclSpec::TST_event_t:
1062    Result = Context.OCLEventTy;
1063    break;
1064
1065  case DeclSpec::TST_error:
1066    Result = Context.IntTy;
1067    declarator.setInvalidType(true);
1068    break;
1069  }
1070
1071  // Handle complex types.
1072  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1073    if (S.getLangOpts().Freestanding)
1074      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1075    Result = Context.getComplexType(Result);
1076  } else if (DS.isTypeAltiVecVector()) {
1077    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1078    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1079    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1080    if (DS.isTypeAltiVecPixel())
1081      VecKind = VectorType::AltiVecPixel;
1082    else if (DS.isTypeAltiVecBool())
1083      VecKind = VectorType::AltiVecBool;
1084    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1085  }
1086
1087  // FIXME: Imaginary.
1088  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1089    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1090
1091  // Before we process any type attributes, synthesize a block literal
1092  // function declarator if necessary.
1093  if (declarator.getContext() == Declarator::BlockLiteralContext)
1094    maybeSynthesizeBlockSignature(state, Result);
1095
1096  // Apply any type attributes from the decl spec.  This may cause the
1097  // list of type attributes to be temporarily saved while the type
1098  // attributes are pushed around.
1099  if (AttributeList *attrs = DS.getAttributes().getList())
1100    processTypeAttrs(state, Result, TAL_DeclSpec, attrs);
1101
1102  // Apply const/volatile/restrict qualifiers to T.
1103  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1104
1105    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
1106    // of a function type includes any type qualifiers, the behavior is
1107    // undefined."
1108    if (Result->isFunctionType() && TypeQuals) {
1109      if (TypeQuals & DeclSpec::TQ_const)
1110        S.Diag(DS.getConstSpecLoc(), diag::warn_typecheck_function_qualifiers)
1111          << Result << DS.getSourceRange();
1112      else if (TypeQuals & DeclSpec::TQ_volatile)
1113        S.Diag(DS.getVolatileSpecLoc(), diag::warn_typecheck_function_qualifiers)
1114          << Result << DS.getSourceRange();
1115      else {
1116        assert((TypeQuals & (DeclSpec::TQ_restrict | DeclSpec::TQ_atomic)) &&
1117               "Has CVRA quals but not C, V, R, or A?");
1118        // No diagnostic; we'll diagnose 'restrict' or '_Atomic' applied to a
1119        // function type later, in BuildQualifiedType.
1120      }
1121    }
1122
1123    // C++ [dcl.ref]p1:
1124    //   Cv-qualified references are ill-formed except when the
1125    //   cv-qualifiers are introduced through the use of a typedef
1126    //   (7.1.3) or of a template type argument (14.3), in which
1127    //   case the cv-qualifiers are ignored.
1128    // FIXME: Shouldn't we be checking SCS_typedef here?
1129    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1130        TypeQuals && Result->isReferenceType()) {
1131      TypeQuals &= ~DeclSpec::TQ_const;
1132      TypeQuals &= ~DeclSpec::TQ_volatile;
1133      TypeQuals &= ~DeclSpec::TQ_atomic;
1134    }
1135
1136    // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1137    // than once in the same specifier-list or qualifier-list, either directly
1138    // or via one or more typedefs."
1139    if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1140        && TypeQuals & Result.getCVRQualifiers()) {
1141      if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1142        S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1143          << "const";
1144      }
1145
1146      if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1147        S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1148          << "volatile";
1149      }
1150
1151      // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1152      // produce a warning in this case.
1153    }
1154
1155    QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1156
1157    // If adding qualifiers fails, just use the unqualified type.
1158    if (Qualified.isNull())
1159      declarator.setInvalidType(true);
1160    else
1161      Result = Qualified;
1162  }
1163
1164  return Result;
1165}
1166
1167static std::string getPrintableNameForEntity(DeclarationName Entity) {
1168  if (Entity)
1169    return Entity.getAsString();
1170
1171  return "type name";
1172}
1173
1174QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1175                                  Qualifiers Qs, const DeclSpec *DS) {
1176  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1177  // object or incomplete types shall not be restrict-qualified."
1178  if (Qs.hasRestrict()) {
1179    unsigned DiagID = 0;
1180    QualType ProblemTy;
1181
1182    if (T->isAnyPointerType() || T->isReferenceType() ||
1183        T->isMemberPointerType()) {
1184      QualType EltTy;
1185      if (T->isObjCObjectPointerType())
1186        EltTy = T;
1187      else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1188        EltTy = PTy->getPointeeType();
1189      else
1190        EltTy = T->getPointeeType();
1191
1192      // If we have a pointer or reference, the pointee must have an object
1193      // incomplete type.
1194      if (!EltTy->isIncompleteOrObjectType()) {
1195        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1196        ProblemTy = EltTy;
1197      }
1198    } else if (!T->isDependentType()) {
1199      DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1200      ProblemTy = T;
1201    }
1202
1203    if (DiagID) {
1204      Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1205      Qs.removeRestrict();
1206    }
1207  }
1208
1209  return Context.getQualifiedType(T, Qs);
1210}
1211
1212QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1213                                  unsigned CVRA, const DeclSpec *DS) {
1214  // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic.
1215  unsigned CVR = CVRA & ~DeclSpec::TQ_atomic;
1216
1217  // C11 6.7.3/5:
1218  //   If the same qualifier appears more than once in the same
1219  //   specifier-qualifier-list, either directly or via one or more typedefs,
1220  //   the behavior is the same as if it appeared only once.
1221  //
1222  // It's not specified what happens when the _Atomic qualifier is applied to
1223  // a type specified with the _Atomic specifier, but we assume that this
1224  // should be treated as if the _Atomic qualifier appeared multiple times.
1225  if (CVRA & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1226    // C11 6.7.3/5:
1227    //   If other qualifiers appear along with the _Atomic qualifier in a
1228    //   specifier-qualifier-list, the resulting type is the so-qualified
1229    //   atomic type.
1230    //
1231    // Don't need to worry about array types here, since _Atomic can't be
1232    // applied to such types.
1233    SplitQualType Split = T.getSplitUnqualifiedType();
1234    T = BuildAtomicType(QualType(Split.Ty, 0),
1235                        DS ? DS->getAtomicSpecLoc() : Loc);
1236    if (T.isNull())
1237      return T;
1238    Split.Quals.addCVRQualifiers(CVR);
1239    return BuildQualifiedType(T, Loc, Split.Quals);
1240  }
1241
1242  return BuildQualifiedType(T, Loc, Qualifiers::fromCVRMask(CVR), DS);
1243}
1244
1245/// \brief Build a paren type including \p T.
1246QualType Sema::BuildParenType(QualType T) {
1247  return Context.getParenType(T);
1248}
1249
1250/// Given that we're building a pointer or reference to the given
1251static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1252                                           SourceLocation loc,
1253                                           bool isReference) {
1254  // Bail out if retention is unrequired or already specified.
1255  if (!type->isObjCLifetimeType() ||
1256      type.getObjCLifetime() != Qualifiers::OCL_None)
1257    return type;
1258
1259  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1260
1261  // If the object type is const-qualified, we can safely use
1262  // __unsafe_unretained.  This is safe (because there are no read
1263  // barriers), and it'll be safe to coerce anything but __weak* to
1264  // the resulting type.
1265  if (type.isConstQualified()) {
1266    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1267
1268  // Otherwise, check whether the static type does not require
1269  // retaining.  This currently only triggers for Class (possibly
1270  // protocol-qualifed, and arrays thereof).
1271  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1272    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1273
1274  // If we are in an unevaluated context, like sizeof, skip adding a
1275  // qualification.
1276  } else if (S.isUnevaluatedContext()) {
1277    return type;
1278
1279  // If that failed, give an error and recover using __strong.  __strong
1280  // is the option most likely to prevent spurious second-order diagnostics,
1281  // like when binding a reference to a field.
1282  } else {
1283    // These types can show up in private ivars in system headers, so
1284    // we need this to not be an error in those cases.  Instead we
1285    // want to delay.
1286    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1287      S.DelayedDiagnostics.add(
1288          sema::DelayedDiagnostic::makeForbiddenType(loc,
1289              diag::err_arc_indirect_no_ownership, type, isReference));
1290    } else {
1291      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1292    }
1293    implicitLifetime = Qualifiers::OCL_Strong;
1294  }
1295  assert(implicitLifetime && "didn't infer any lifetime!");
1296
1297  Qualifiers qs;
1298  qs.addObjCLifetime(implicitLifetime);
1299  return S.Context.getQualifiedType(type, qs);
1300}
1301
1302/// \brief Build a pointer type.
1303///
1304/// \param T The type to which we'll be building a pointer.
1305///
1306/// \param Loc The location of the entity whose type involves this
1307/// pointer type or, if there is no such entity, the location of the
1308/// type that will have pointer type.
1309///
1310/// \param Entity The name of the entity that involves the pointer
1311/// type, if known.
1312///
1313/// \returns A suitable pointer type, if there are no
1314/// errors. Otherwise, returns a NULL type.
1315QualType Sema::BuildPointerType(QualType T,
1316                                SourceLocation Loc, DeclarationName Entity) {
1317  if (T->isReferenceType()) {
1318    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1319    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1320      << getPrintableNameForEntity(Entity) << T;
1321    return QualType();
1322  }
1323
1324  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1325
1326  // In ARC, it is forbidden to build pointers to unqualified pointers.
1327  if (getLangOpts().ObjCAutoRefCount)
1328    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1329
1330  // Build the pointer type.
1331  return Context.getPointerType(T);
1332}
1333
1334/// \brief Build a reference type.
1335///
1336/// \param T The type to which we'll be building a reference.
1337///
1338/// \param Loc The location of the entity whose type involves this
1339/// reference type or, if there is no such entity, the location of the
1340/// type that will have reference type.
1341///
1342/// \param Entity The name of the entity that involves the reference
1343/// type, if known.
1344///
1345/// \returns A suitable reference type, if there are no
1346/// errors. Otherwise, returns a NULL type.
1347QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1348                                  SourceLocation Loc,
1349                                  DeclarationName Entity) {
1350  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1351         "Unresolved overloaded function type");
1352
1353  // C++0x [dcl.ref]p6:
1354  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1355  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1356  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1357  //   the type "lvalue reference to T", while an attempt to create the type
1358  //   "rvalue reference to cv TR" creates the type TR.
1359  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1360
1361  // C++ [dcl.ref]p4: There shall be no references to references.
1362  //
1363  // According to C++ DR 106, references to references are only
1364  // diagnosed when they are written directly (e.g., "int & &"),
1365  // but not when they happen via a typedef:
1366  //
1367  //   typedef int& intref;
1368  //   typedef intref& intref2;
1369  //
1370  // Parser::ParseDeclaratorInternal diagnoses the case where
1371  // references are written directly; here, we handle the
1372  // collapsing of references-to-references as described in C++0x.
1373  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1374
1375  // C++ [dcl.ref]p1:
1376  //   A declarator that specifies the type "reference to cv void"
1377  //   is ill-formed.
1378  if (T->isVoidType()) {
1379    Diag(Loc, diag::err_reference_to_void);
1380    return QualType();
1381  }
1382
1383  // In ARC, it is forbidden to build references to unqualified pointers.
1384  if (getLangOpts().ObjCAutoRefCount)
1385    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1386
1387  // Handle restrict on references.
1388  if (LValueRef)
1389    return Context.getLValueReferenceType(T, SpelledAsLValue);
1390  return Context.getRValueReferenceType(T);
1391}
1392
1393/// Check whether the specified array size makes the array type a VLA.  If so,
1394/// return true, if not, return the size of the array in SizeVal.
1395static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1396  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1397  // (like gnu99, but not c99) accept any evaluatable value as an extension.
1398  class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1399  public:
1400    VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
1401
1402    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1403    }
1404
1405    virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) {
1406      S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
1407    }
1408  } Diagnoser;
1409
1410  return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
1411                                           S.LangOpts.GNUMode).isInvalid();
1412}
1413
1414
1415/// \brief Build an array type.
1416///
1417/// \param T The type of each element in the array.
1418///
1419/// \param ASM C99 array size modifier (e.g., '*', 'static').
1420///
1421/// \param ArraySize Expression describing the size of the array.
1422///
1423/// \param Brackets The range from the opening '[' to the closing ']'.
1424///
1425/// \param Entity The name of the entity that involves the array
1426/// type, if known.
1427///
1428/// \returns A suitable array type, if there are no errors. Otherwise,
1429/// returns a NULL type.
1430QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1431                              Expr *ArraySize, unsigned Quals,
1432                              SourceRange Brackets, DeclarationName Entity) {
1433
1434  SourceLocation Loc = Brackets.getBegin();
1435  if (getLangOpts().CPlusPlus) {
1436    // C++ [dcl.array]p1:
1437    //   T is called the array element type; this type shall not be a reference
1438    //   type, the (possibly cv-qualified) type void, a function type or an
1439    //   abstract class type.
1440    //
1441    // C++ [dcl.array]p3:
1442    //   When several "array of" specifications are adjacent, [...] only the
1443    //   first of the constant expressions that specify the bounds of the arrays
1444    //   may be omitted.
1445    //
1446    // Note: function types are handled in the common path with C.
1447    if (T->isReferenceType()) {
1448      Diag(Loc, diag::err_illegal_decl_array_of_references)
1449      << getPrintableNameForEntity(Entity) << T;
1450      return QualType();
1451    }
1452
1453    if (T->isVoidType() || T->isIncompleteArrayType()) {
1454      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1455      return QualType();
1456    }
1457
1458    if (RequireNonAbstractType(Brackets.getBegin(), T,
1459                               diag::err_array_of_abstract_type))
1460      return QualType();
1461
1462  } else {
1463    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1464    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1465    if (RequireCompleteType(Loc, T,
1466                            diag::err_illegal_decl_array_incomplete_type))
1467      return QualType();
1468  }
1469
1470  if (T->isFunctionType()) {
1471    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1472      << getPrintableNameForEntity(Entity) << T;
1473    return QualType();
1474  }
1475
1476  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1477    // If the element type is a struct or union that contains a variadic
1478    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1479    if (EltTy->getDecl()->hasFlexibleArrayMember())
1480      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1481  } else if (T->isObjCObjectType()) {
1482    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1483    return QualType();
1484  }
1485
1486  // Do placeholder conversions on the array size expression.
1487  if (ArraySize && ArraySize->hasPlaceholderType()) {
1488    ExprResult Result = CheckPlaceholderExpr(ArraySize);
1489    if (Result.isInvalid()) return QualType();
1490    ArraySize = Result.take();
1491  }
1492
1493  // Do lvalue-to-rvalue conversions on the array size expression.
1494  if (ArraySize && !ArraySize->isRValue()) {
1495    ExprResult Result = DefaultLvalueConversion(ArraySize);
1496    if (Result.isInvalid())
1497      return QualType();
1498
1499    ArraySize = Result.take();
1500  }
1501
1502  // C99 6.7.5.2p1: The size expression shall have integer type.
1503  // C++11 allows contextual conversions to such types.
1504  if (!getLangOpts().CPlusPlus11 &&
1505      ArraySize && !ArraySize->isTypeDependent() &&
1506      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1507    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1508      << ArraySize->getType() << ArraySize->getSourceRange();
1509    return QualType();
1510  }
1511
1512  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1513  if (!ArraySize) {
1514    if (ASM == ArrayType::Star)
1515      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1516    else
1517      T = Context.getIncompleteArrayType(T, ASM, Quals);
1518  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1519    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1520  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
1521              !T->isConstantSizeType()) ||
1522             isArraySizeVLA(*this, ArraySize, ConstVal)) {
1523    // Even in C++11, don't allow contextual conversions in the array bound
1524    // of a VLA.
1525    if (getLangOpts().CPlusPlus11 &&
1526        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1527      Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1528        << ArraySize->getType() << ArraySize->getSourceRange();
1529      return QualType();
1530    }
1531
1532    // C99: an array with an element type that has a non-constant-size is a VLA.
1533    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1534    // that we can fold to a non-zero positive value as an extension.
1535    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1536  } else {
1537    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1538    // have a value greater than zero.
1539    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1540      if (Entity)
1541        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1542          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1543      else
1544        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1545          << ArraySize->getSourceRange();
1546      return QualType();
1547    }
1548    if (ConstVal == 0) {
1549      // GCC accepts zero sized static arrays. We allow them when
1550      // we're not in a SFINAE context.
1551      Diag(ArraySize->getLocStart(),
1552           isSFINAEContext()? diag::err_typecheck_zero_array_size
1553                            : diag::ext_typecheck_zero_array_size)
1554        << ArraySize->getSourceRange();
1555
1556      if (ASM == ArrayType::Static) {
1557        Diag(ArraySize->getLocStart(),
1558             diag::warn_typecheck_zero_static_array_size)
1559          << ArraySize->getSourceRange();
1560        ASM = ArrayType::Normal;
1561      }
1562    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1563               !T->isIncompleteType()) {
1564      // Is the array too large?
1565      unsigned ActiveSizeBits
1566        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1567      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1568        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1569          << ConstVal.toString(10)
1570          << ArraySize->getSourceRange();
1571        return QualType();
1572      }
1573    }
1574
1575    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1576  }
1577
1578  // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
1579  if (getLangOpts().OpenCL && T->isVariableArrayType()) {
1580    Diag(Loc, diag::err_opencl_vla);
1581    return QualType();
1582  }
1583  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1584  if (!getLangOpts().C99) {
1585    if (T->isVariableArrayType()) {
1586      // Prohibit the use of non-POD types in VLAs.
1587      // FIXME: C++1y allows this.
1588      QualType BaseT = Context.getBaseElementType(T);
1589      if (!T->isDependentType() &&
1590          !BaseT.isPODType(Context) &&
1591          !BaseT->isObjCLifetimeType()) {
1592        Diag(Loc, diag::err_vla_non_pod)
1593          << BaseT;
1594        return QualType();
1595      }
1596      // Prohibit the use of VLAs during template argument deduction.
1597      else if (isSFINAEContext()) {
1598        Diag(Loc, diag::err_vla_in_sfinae);
1599        return QualType();
1600      }
1601      // Just extwarn about VLAs.
1602      else
1603        Diag(Loc, getLangOpts().CPlusPlus1y
1604                      ? diag::warn_cxx11_compat_array_of_runtime_bound
1605                      : diag::ext_vla);
1606    } else if (ASM != ArrayType::Normal || Quals != 0)
1607      Diag(Loc,
1608           getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
1609                                     : diag::ext_c99_array_usage) << ASM;
1610  }
1611
1612  if (T->isVariableArrayType()) {
1613    // Warn about VLAs for -Wvla.
1614    Diag(Loc, diag::warn_vla_used);
1615  }
1616
1617  return T;
1618}
1619
1620/// \brief Build an ext-vector type.
1621///
1622/// Run the required checks for the extended vector type.
1623QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1624                                  SourceLocation AttrLoc) {
1625  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1626  // in conjunction with complex types (pointers, arrays, functions, etc.).
1627  if (!T->isDependentType() &&
1628      !T->isIntegerType() && !T->isRealFloatingType()) {
1629    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1630    return QualType();
1631  }
1632
1633  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1634    llvm::APSInt vecSize(32);
1635    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1636      Diag(AttrLoc, diag::err_attribute_argument_type)
1637        << "ext_vector_type" << AANT_ArgumentIntegerConstant
1638        << ArraySize->getSourceRange();
1639      return QualType();
1640    }
1641
1642    // unlike gcc's vector_size attribute, the size is specified as the
1643    // number of elements, not the number of bytes.
1644    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1645
1646    if (vectorSize == 0) {
1647      Diag(AttrLoc, diag::err_attribute_zero_size)
1648      << ArraySize->getSourceRange();
1649      return QualType();
1650    }
1651
1652    if (VectorType::isVectorSizeTooLarge(vectorSize)) {
1653      Diag(AttrLoc, diag::err_attribute_size_too_large)
1654        << ArraySize->getSourceRange();
1655      return QualType();
1656    }
1657
1658    return Context.getExtVectorType(T, vectorSize);
1659  }
1660
1661  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1662}
1663
1664bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
1665  if (T->isArrayType() || T->isFunctionType()) {
1666    Diag(Loc, diag::err_func_returning_array_function)
1667      << T->isFunctionType() << T;
1668    return true;
1669  }
1670
1671  // Functions cannot return half FP.
1672  if (T->isHalfType()) {
1673    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1674      FixItHint::CreateInsertion(Loc, "*");
1675    return true;
1676  }
1677
1678  // Methods cannot return interface types. All ObjC objects are
1679  // passed by reference.
1680  if (T->isObjCObjectType()) {
1681    Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) << 0 << T;
1682    return 0;
1683  }
1684
1685  return false;
1686}
1687
1688QualType Sema::BuildFunctionType(QualType T,
1689                                 llvm::MutableArrayRef<QualType> ParamTypes,
1690                                 SourceLocation Loc, DeclarationName Entity,
1691                                 const FunctionProtoType::ExtProtoInfo &EPI) {
1692  bool Invalid = false;
1693
1694  Invalid |= CheckFunctionReturnType(T, Loc);
1695
1696  for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
1697    // FIXME: Loc is too inprecise here, should use proper locations for args.
1698    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1699    if (ParamType->isVoidType()) {
1700      Diag(Loc, diag::err_param_with_void_type);
1701      Invalid = true;
1702    } else if (ParamType->isHalfType()) {
1703      // Disallow half FP arguments.
1704      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1705        FixItHint::CreateInsertion(Loc, "*");
1706      Invalid = true;
1707    }
1708
1709    ParamTypes[Idx] = ParamType;
1710  }
1711
1712  if (Invalid)
1713    return QualType();
1714
1715  return Context.getFunctionType(T, ParamTypes, EPI);
1716}
1717
1718/// \brief Build a member pointer type \c T Class::*.
1719///
1720/// \param T the type to which the member pointer refers.
1721/// \param Class the class type into which the member pointer points.
1722/// \param Loc the location where this type begins
1723/// \param Entity the name of the entity that will have this member pointer type
1724///
1725/// \returns a member pointer type, if successful, or a NULL type if there was
1726/// an error.
1727QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1728                                      SourceLocation Loc,
1729                                      DeclarationName Entity) {
1730  // Verify that we're not building a pointer to pointer to function with
1731  // exception specification.
1732  if (CheckDistantExceptionSpec(T)) {
1733    Diag(Loc, diag::err_distant_exception_spec);
1734
1735    // FIXME: If we're doing this as part of template instantiation,
1736    // we should return immediately.
1737
1738    // Build the type anyway, but use the canonical type so that the
1739    // exception specifiers are stripped off.
1740    T = Context.getCanonicalType(T);
1741  }
1742
1743  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1744  //   with reference type, or "cv void."
1745  if (T->isReferenceType()) {
1746    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1747      << (Entity? Entity.getAsString() : "type name") << T;
1748    return QualType();
1749  }
1750
1751  if (T->isVoidType()) {
1752    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1753      << (Entity? Entity.getAsString() : "type name");
1754    return QualType();
1755  }
1756
1757  if (!Class->isDependentType() && !Class->isRecordType()) {
1758    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1759    return QualType();
1760  }
1761
1762  // C++ allows the class type in a member pointer to be an incomplete type.
1763  // In the Microsoft ABI, the size of the member pointer can vary
1764  // according to the class type, which means that we really need a
1765  // complete type if possible, which means we need to instantiate templates.
1766  //
1767  // If template instantiation fails or the type is just incomplete, we have to
1768  // add an extra slot to the member pointer.  Yes, this does cause problems
1769  // when passing pointers between TUs that disagree about the size.
1770  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1771    CXXRecordDecl *RD = Class->getAsCXXRecordDecl();
1772    if (RD && !RD->hasAttr<MSInheritanceAttr>()) {
1773      // Lock in the inheritance model on the first use of a member pointer.
1774      // Otherwise we may disagree about the size at different points in the TU.
1775      // FIXME: MSVC picks a model on the first use that needs to know the size,
1776      // rather than on the first mention of the type, e.g. typedefs.
1777      if (RequireCompleteType(Loc, Class, 0) && !RD->isBeingDefined()) {
1778        // We know it doesn't have an attribute and it's incomplete, so use the
1779        // unspecified inheritance model.  If we're in the record body, we can
1780        // figure out the inheritance model.
1781        for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
1782             E = RD->redecls_end(); I != E; ++I) {
1783          I->addAttr(::new (Context) UnspecifiedInheritanceAttr(
1784              RD->getSourceRange(), Context));
1785        }
1786      }
1787    }
1788  }
1789
1790  // FIXME: Adjust member function pointer calling conventions.
1791
1792  return Context.getMemberPointerType(T, Class.getTypePtr());
1793}
1794
1795/// \brief Build a block pointer type.
1796///
1797/// \param T The type to which we'll be building a block pointer.
1798///
1799/// \param Loc The source location, used for diagnostics.
1800///
1801/// \param Entity The name of the entity that involves the block pointer
1802/// type, if known.
1803///
1804/// \returns A suitable block pointer type, if there are no
1805/// errors. Otherwise, returns a NULL type.
1806QualType Sema::BuildBlockPointerType(QualType T,
1807                                     SourceLocation Loc,
1808                                     DeclarationName Entity) {
1809  if (!T->isFunctionType()) {
1810    Diag(Loc, diag::err_nonfunction_block_type);
1811    return QualType();
1812  }
1813
1814  return Context.getBlockPointerType(T);
1815}
1816
1817QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1818  QualType QT = Ty.get();
1819  if (QT.isNull()) {
1820    if (TInfo) *TInfo = 0;
1821    return QualType();
1822  }
1823
1824  TypeSourceInfo *DI = 0;
1825  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1826    QT = LIT->getType();
1827    DI = LIT->getTypeSourceInfo();
1828  }
1829
1830  if (TInfo) *TInfo = DI;
1831  return QT;
1832}
1833
1834static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1835                                            Qualifiers::ObjCLifetime ownership,
1836                                            unsigned chunkIndex);
1837
1838/// Given that this is the declaration of a parameter under ARC,
1839/// attempt to infer attributes and such for pointer-to-whatever
1840/// types.
1841static void inferARCWriteback(TypeProcessingState &state,
1842                              QualType &declSpecType) {
1843  Sema &S = state.getSema();
1844  Declarator &declarator = state.getDeclarator();
1845
1846  // TODO: should we care about decl qualifiers?
1847
1848  // Check whether the declarator has the expected form.  We walk
1849  // from the inside out in order to make the block logic work.
1850  unsigned outermostPointerIndex = 0;
1851  bool isBlockPointer = false;
1852  unsigned numPointers = 0;
1853  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1854    unsigned chunkIndex = i;
1855    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1856    switch (chunk.Kind) {
1857    case DeclaratorChunk::Paren:
1858      // Ignore parens.
1859      break;
1860
1861    case DeclaratorChunk::Reference:
1862    case DeclaratorChunk::Pointer:
1863      // Count the number of pointers.  Treat references
1864      // interchangeably as pointers; if they're mis-ordered, normal
1865      // type building will discover that.
1866      outermostPointerIndex = chunkIndex;
1867      numPointers++;
1868      break;
1869
1870    case DeclaratorChunk::BlockPointer:
1871      // If we have a pointer to block pointer, that's an acceptable
1872      // indirect reference; anything else is not an application of
1873      // the rules.
1874      if (numPointers != 1) return;
1875      numPointers++;
1876      outermostPointerIndex = chunkIndex;
1877      isBlockPointer = true;
1878
1879      // We don't care about pointer structure in return values here.
1880      goto done;
1881
1882    case DeclaratorChunk::Array: // suppress if written (id[])?
1883    case DeclaratorChunk::Function:
1884    case DeclaratorChunk::MemberPointer:
1885      return;
1886    }
1887  }
1888 done:
1889
1890  // If we have *one* pointer, then we want to throw the qualifier on
1891  // the declaration-specifiers, which means that it needs to be a
1892  // retainable object type.
1893  if (numPointers == 1) {
1894    // If it's not a retainable object type, the rule doesn't apply.
1895    if (!declSpecType->isObjCRetainableType()) return;
1896
1897    // If it already has lifetime, don't do anything.
1898    if (declSpecType.getObjCLifetime()) return;
1899
1900    // Otherwise, modify the type in-place.
1901    Qualifiers qs;
1902
1903    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1904      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1905    else
1906      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1907    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1908
1909  // If we have *two* pointers, then we want to throw the qualifier on
1910  // the outermost pointer.
1911  } else if (numPointers == 2) {
1912    // If we don't have a block pointer, we need to check whether the
1913    // declaration-specifiers gave us something that will turn into a
1914    // retainable object pointer after we slap the first pointer on it.
1915    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1916      return;
1917
1918    // Look for an explicit lifetime attribute there.
1919    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1920    if (chunk.Kind != DeclaratorChunk::Pointer &&
1921        chunk.Kind != DeclaratorChunk::BlockPointer)
1922      return;
1923    for (const AttributeList *attr = chunk.getAttrs(); attr;
1924           attr = attr->getNext())
1925      if (attr->getKind() == AttributeList::AT_ObjCOwnership)
1926        return;
1927
1928    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1929                                          outermostPointerIndex);
1930
1931  // Any other number of pointers/references does not trigger the rule.
1932  } else return;
1933
1934  // TODO: mark whether we did this inference?
1935}
1936
1937static void diagnoseIgnoredQualifiers(
1938    Sema &S, unsigned Quals,
1939    SourceLocation FallbackLoc,
1940    SourceLocation ConstQualLoc = SourceLocation(),
1941    SourceLocation VolatileQualLoc = SourceLocation(),
1942    SourceLocation RestrictQualLoc = SourceLocation(),
1943    SourceLocation AtomicQualLoc = SourceLocation()) {
1944  if (!Quals)
1945    return;
1946
1947  const SourceManager &SM = S.getSourceManager();
1948
1949  struct Qual {
1950    unsigned Mask;
1951    const char *Name;
1952    SourceLocation Loc;
1953  } const QualKinds[4] = {
1954    { DeclSpec::TQ_const, "const", ConstQualLoc },
1955    { DeclSpec::TQ_volatile, "volatile", VolatileQualLoc },
1956    { DeclSpec::TQ_restrict, "restrict", RestrictQualLoc },
1957    { DeclSpec::TQ_atomic, "_Atomic", AtomicQualLoc }
1958  };
1959
1960  SmallString<32> QualStr;
1961  unsigned NumQuals = 0;
1962  SourceLocation Loc;
1963  FixItHint FixIts[4];
1964
1965  // Build a string naming the redundant qualifiers.
1966  for (unsigned I = 0; I != 4; ++I) {
1967    if (Quals & QualKinds[I].Mask) {
1968      if (!QualStr.empty()) QualStr += ' ';
1969      QualStr += QualKinds[I].Name;
1970
1971      // If we have a location for the qualifier, offer a fixit.
1972      SourceLocation QualLoc = QualKinds[I].Loc;
1973      if (!QualLoc.isInvalid()) {
1974        FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
1975        if (Loc.isInvalid() || SM.isBeforeInTranslationUnit(QualLoc, Loc))
1976          Loc = QualLoc;
1977      }
1978
1979      ++NumQuals;
1980    }
1981  }
1982
1983  S.Diag(Loc.isInvalid() ? FallbackLoc : Loc, diag::warn_qual_return_type)
1984    << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
1985}
1986
1987// Diagnose pointless type qualifiers on the return type of a function.
1988static void diagnoseIgnoredFunctionQualifiers(Sema &S, QualType RetTy,
1989                                              Declarator &D,
1990                                              unsigned FunctionChunkIndex) {
1991  if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
1992    // FIXME: TypeSourceInfo doesn't preserve location information for
1993    // qualifiers.
1994    diagnoseIgnoredQualifiers(S, RetTy.getLocalCVRQualifiers(),
1995                              D.getIdentifierLoc());
1996    return;
1997  }
1998
1999  for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2000                End = D.getNumTypeObjects();
2001       OuterChunkIndex != End; ++OuterChunkIndex) {
2002    DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2003    switch (OuterChunk.Kind) {
2004    case DeclaratorChunk::Paren:
2005      continue;
2006
2007    case DeclaratorChunk::Pointer: {
2008      DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2009      diagnoseIgnoredQualifiers(
2010          S, PTI.TypeQuals,
2011          SourceLocation(),
2012          SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2013          SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2014          SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2015          SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc));
2016      return;
2017    }
2018
2019    case DeclaratorChunk::Function:
2020    case DeclaratorChunk::BlockPointer:
2021    case DeclaratorChunk::Reference:
2022    case DeclaratorChunk::Array:
2023    case DeclaratorChunk::MemberPointer:
2024      // FIXME: We can't currently provide an accurate source location and a
2025      // fix-it hint for these.
2026      unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2027      diagnoseIgnoredQualifiers(S, RetTy.getCVRQualifiers() | AtomicQual,
2028                                D.getIdentifierLoc());
2029      return;
2030    }
2031
2032    llvm_unreachable("unknown declarator chunk kind");
2033  }
2034
2035  // If the qualifiers come from a conversion function type, don't diagnose
2036  // them -- they're not necessarily redundant, since such a conversion
2037  // operator can be explicitly called as "x.operator const int()".
2038  if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
2039    return;
2040
2041  // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2042  // which are present there.
2043  diagnoseIgnoredQualifiers(S, D.getDeclSpec().getTypeQualifiers(),
2044                            D.getIdentifierLoc(),
2045                            D.getDeclSpec().getConstSpecLoc(),
2046                            D.getDeclSpec().getVolatileSpecLoc(),
2047                            D.getDeclSpec().getRestrictSpecLoc(),
2048                            D.getDeclSpec().getAtomicSpecLoc());
2049}
2050
2051static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
2052                                             TypeSourceInfo *&ReturnTypeInfo) {
2053  Sema &SemaRef = state.getSema();
2054  Declarator &D = state.getDeclarator();
2055  QualType T;
2056  ReturnTypeInfo = 0;
2057
2058  // The TagDecl owned by the DeclSpec.
2059  TagDecl *OwnedTagDecl = 0;
2060
2061  bool ContainsPlaceholderType = false;
2062
2063  switch (D.getName().getKind()) {
2064  case UnqualifiedId::IK_ImplicitSelfParam:
2065  case UnqualifiedId::IK_OperatorFunctionId:
2066  case UnqualifiedId::IK_Identifier:
2067  case UnqualifiedId::IK_LiteralOperatorId:
2068  case UnqualifiedId::IK_TemplateId:
2069    T = ConvertDeclSpecToType(state);
2070    ContainsPlaceholderType = D.getDeclSpec().containsPlaceholderType();
2071
2072    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
2073      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2074      // Owned declaration is embedded in declarator.
2075      OwnedTagDecl->setEmbeddedInDeclarator(true);
2076    }
2077    break;
2078
2079  case UnqualifiedId::IK_ConstructorName:
2080  case UnqualifiedId::IK_ConstructorTemplateId:
2081  case UnqualifiedId::IK_DestructorName:
2082    // Constructors and destructors don't have return types. Use
2083    // "void" instead.
2084    T = SemaRef.Context.VoidTy;
2085    if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
2086      processTypeAttrs(state, T, TAL_DeclSpec, attrs);
2087    break;
2088
2089  case UnqualifiedId::IK_ConversionFunctionId:
2090    // The result type of a conversion function is the type that it
2091    // converts to.
2092    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
2093                                  &ReturnTypeInfo);
2094    ContainsPlaceholderType = T->getContainedAutoType();
2095    break;
2096  }
2097
2098  if (D.getAttributes())
2099    distributeTypeAttrsFromDeclarator(state, T);
2100
2101  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
2102  // In C++11, a function declarator using 'auto' must have a trailing return
2103  // type (this is checked later) and we can skip this. In other languages
2104  // using auto, we need to check regardless.
2105  if (ContainsPlaceholderType &&
2106      (!SemaRef.getLangOpts().CPlusPlus11 || !D.isFunctionDeclarator())) {
2107    int Error = -1;
2108
2109    switch (D.getContext()) {
2110    case Declarator::KNRTypeListContext:
2111      llvm_unreachable("K&R type lists aren't allowed in C++");
2112    case Declarator::LambdaExprContext:
2113      llvm_unreachable("Can't specify a type specifier in lambda grammar");
2114    case Declarator::ObjCParameterContext:
2115    case Declarator::ObjCResultContext:
2116    case Declarator::PrototypeContext:
2117      Error = 0; // Function prototype
2118      break;
2119    case Declarator::MemberContext:
2120      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
2121        break;
2122      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
2123      case TTK_Enum: llvm_unreachable("unhandled tag kind");
2124      case TTK_Struct: Error = 1; /* Struct member */ break;
2125      case TTK_Union:  Error = 2; /* Union member */ break;
2126      case TTK_Class:  Error = 3; /* Class member */ break;
2127      case TTK_Interface: Error = 4; /* Interface member */ break;
2128      }
2129      break;
2130    case Declarator::CXXCatchContext:
2131    case Declarator::ObjCCatchContext:
2132      Error = 5; // Exception declaration
2133      break;
2134    case Declarator::TemplateParamContext:
2135      Error = 6; // Template parameter
2136      break;
2137    case Declarator::BlockLiteralContext:
2138      Error = 7; // Block literal
2139      break;
2140    case Declarator::TemplateTypeArgContext:
2141      Error = 8; // Template type argument
2142      break;
2143    case Declarator::AliasDeclContext:
2144    case Declarator::AliasTemplateContext:
2145      Error = 10; // Type alias
2146      break;
2147    case Declarator::TrailingReturnContext:
2148      if (!SemaRef.getLangOpts().CPlusPlus1y)
2149        Error = 11; // Function return type
2150      break;
2151    case Declarator::ConversionIdContext:
2152      if (!SemaRef.getLangOpts().CPlusPlus1y)
2153        Error = 12; // conversion-type-id
2154      break;
2155    case Declarator::TypeNameContext:
2156      Error = 13; // Generic
2157      break;
2158    case Declarator::FileContext:
2159    case Declarator::BlockContext:
2160    case Declarator::ForContext:
2161    case Declarator::ConditionContext:
2162    case Declarator::CXXNewContext:
2163      break;
2164    }
2165
2166    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2167      Error = 9;
2168
2169    // In Objective-C it is an error to use 'auto' on a function declarator.
2170    if (D.isFunctionDeclarator())
2171      Error = 11;
2172
2173    // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
2174    // contains a trailing return type. That is only legal at the outermost
2175    // level. Check all declarator chunks (outermost first) anyway, to give
2176    // better diagnostics.
2177    if (SemaRef.getLangOpts().CPlusPlus11 && Error != -1) {
2178      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2179        unsigned chunkIndex = e - i - 1;
2180        state.setCurrentChunkIndex(chunkIndex);
2181        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2182        if (DeclType.Kind == DeclaratorChunk::Function) {
2183          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2184          if (FTI.hasTrailingReturnType()) {
2185            Error = -1;
2186            break;
2187          }
2188        }
2189      }
2190    }
2191
2192    SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
2193    if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
2194      AutoRange = D.getName().getSourceRange();
2195
2196    if (Error != -1) {
2197      SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
2198        << Error << AutoRange;
2199      T = SemaRef.Context.IntTy;
2200      D.setInvalidType(true);
2201    } else
2202      SemaRef.Diag(AutoRange.getBegin(),
2203                   diag::warn_cxx98_compat_auto_type_specifier)
2204        << AutoRange;
2205  }
2206
2207  if (SemaRef.getLangOpts().CPlusPlus &&
2208      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
2209    // Check the contexts where C++ forbids the declaration of a new class
2210    // or enumeration in a type-specifier-seq.
2211    switch (D.getContext()) {
2212    case Declarator::TrailingReturnContext:
2213      // Class and enumeration definitions are syntactically not allowed in
2214      // trailing return types.
2215      llvm_unreachable("parser should not have allowed this");
2216      break;
2217    case Declarator::FileContext:
2218    case Declarator::MemberContext:
2219    case Declarator::BlockContext:
2220    case Declarator::ForContext:
2221    case Declarator::BlockLiteralContext:
2222    case Declarator::LambdaExprContext:
2223      // C++11 [dcl.type]p3:
2224      //   A type-specifier-seq shall not define a class or enumeration unless
2225      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
2226      //   the declaration of a template-declaration.
2227    case Declarator::AliasDeclContext:
2228      break;
2229    case Declarator::AliasTemplateContext:
2230      SemaRef.Diag(OwnedTagDecl->getLocation(),
2231             diag::err_type_defined_in_alias_template)
2232        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2233      D.setInvalidType(true);
2234      break;
2235    case Declarator::TypeNameContext:
2236    case Declarator::ConversionIdContext:
2237    case Declarator::TemplateParamContext:
2238    case Declarator::CXXNewContext:
2239    case Declarator::CXXCatchContext:
2240    case Declarator::ObjCCatchContext:
2241    case Declarator::TemplateTypeArgContext:
2242      SemaRef.Diag(OwnedTagDecl->getLocation(),
2243             diag::err_type_defined_in_type_specifier)
2244        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2245      D.setInvalidType(true);
2246      break;
2247    case Declarator::PrototypeContext:
2248    case Declarator::ObjCParameterContext:
2249    case Declarator::ObjCResultContext:
2250    case Declarator::KNRTypeListContext:
2251      // C++ [dcl.fct]p6:
2252      //   Types shall not be defined in return or parameter types.
2253      SemaRef.Diag(OwnedTagDecl->getLocation(),
2254                   diag::err_type_defined_in_param_type)
2255        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2256      D.setInvalidType(true);
2257      break;
2258    case Declarator::ConditionContext:
2259      // C++ 6.4p2:
2260      // The type-specifier-seq shall not contain typedef and shall not declare
2261      // a new class or enumeration.
2262      SemaRef.Diag(OwnedTagDecl->getLocation(),
2263                   diag::err_type_defined_in_condition);
2264      D.setInvalidType(true);
2265      break;
2266    }
2267  }
2268
2269  return T;
2270}
2271
2272static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
2273  std::string Quals =
2274    Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
2275
2276  switch (FnTy->getRefQualifier()) {
2277  case RQ_None:
2278    break;
2279
2280  case RQ_LValue:
2281    if (!Quals.empty())
2282      Quals += ' ';
2283    Quals += '&';
2284    break;
2285
2286  case RQ_RValue:
2287    if (!Quals.empty())
2288      Quals += ' ';
2289    Quals += "&&";
2290    break;
2291  }
2292
2293  return Quals;
2294}
2295
2296/// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
2297/// can be contained within the declarator chunk DeclType, and produce an
2298/// appropriate diagnostic if not.
2299static void checkQualifiedFunction(Sema &S, QualType T,
2300                                   DeclaratorChunk &DeclType) {
2301  // C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
2302  // cv-qualifier or a ref-qualifier can only appear at the topmost level
2303  // of a type.
2304  int DiagKind = -1;
2305  switch (DeclType.Kind) {
2306  case DeclaratorChunk::Paren:
2307  case DeclaratorChunk::MemberPointer:
2308    // These cases are permitted.
2309    return;
2310  case DeclaratorChunk::Array:
2311  case DeclaratorChunk::Function:
2312    // These cases don't allow function types at all; no need to diagnose the
2313    // qualifiers separately.
2314    return;
2315  case DeclaratorChunk::BlockPointer:
2316    DiagKind = 0;
2317    break;
2318  case DeclaratorChunk::Pointer:
2319    DiagKind = 1;
2320    break;
2321  case DeclaratorChunk::Reference:
2322    DiagKind = 2;
2323    break;
2324  }
2325
2326  assert(DiagKind != -1);
2327  S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
2328    << DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
2329    << getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
2330}
2331
2332/// Produce an approprioate diagnostic for an ambiguity between a function
2333/// declarator and a C++ direct-initializer.
2334static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
2335                                       DeclaratorChunk &DeclType, QualType RT) {
2336  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2337  assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
2338
2339  // If the return type is void there is no ambiguity.
2340  if (RT->isVoidType())
2341    return;
2342
2343  // An initializer for a non-class type can have at most one argument.
2344  if (!RT->isRecordType() && FTI.NumArgs > 1)
2345    return;
2346
2347  // An initializer for a reference must have exactly one argument.
2348  if (RT->isReferenceType() && FTI.NumArgs != 1)
2349    return;
2350
2351  // Only warn if this declarator is declaring a function at block scope, and
2352  // doesn't have a storage class (such as 'extern') specified.
2353  if (!D.isFunctionDeclarator() ||
2354      D.getFunctionDefinitionKind() != FDK_Declaration ||
2355      !S.CurContext->isFunctionOrMethod() ||
2356      D.getDeclSpec().getStorageClassSpec()
2357        != DeclSpec::SCS_unspecified)
2358    return;
2359
2360  // Inside a condition, a direct initializer is not permitted. We allow one to
2361  // be parsed in order to give better diagnostics in condition parsing.
2362  if (D.getContext() == Declarator::ConditionContext)
2363    return;
2364
2365  SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
2366
2367  S.Diag(DeclType.Loc,
2368         FTI.NumArgs ? diag::warn_parens_disambiguated_as_function_declaration
2369                     : diag::warn_empty_parens_are_function_decl)
2370    << ParenRange;
2371
2372  // If the declaration looks like:
2373  //   T var1,
2374  //   f();
2375  // and name lookup finds a function named 'f', then the ',' was
2376  // probably intended to be a ';'.
2377  if (!D.isFirstDeclarator() && D.getIdentifier()) {
2378    FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
2379    FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
2380    if (Comma.getFileID() != Name.getFileID() ||
2381        Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
2382      LookupResult Result(S, D.getIdentifier(), SourceLocation(),
2383                          Sema::LookupOrdinaryName);
2384      if (S.LookupName(Result, S.getCurScope()))
2385        S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
2386          << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
2387          << D.getIdentifier();
2388    }
2389  }
2390
2391  if (FTI.NumArgs > 0) {
2392    // For a declaration with parameters, eg. "T var(T());", suggest adding parens
2393    // around the first parameter to turn the declaration into a variable
2394    // declaration.
2395    SourceRange Range = FTI.ArgInfo[0].Param->getSourceRange();
2396    SourceLocation B = Range.getBegin();
2397    SourceLocation E = S.PP.getLocForEndOfToken(Range.getEnd());
2398    // FIXME: Maybe we should suggest adding braces instead of parens
2399    // in C++11 for classes that don't have an initializer_list constructor.
2400    S.Diag(B, diag::note_additional_parens_for_variable_declaration)
2401      << FixItHint::CreateInsertion(B, "(")
2402      << FixItHint::CreateInsertion(E, ")");
2403  } else {
2404    // For a declaration without parameters, eg. "T var();", suggest replacing the
2405    // parens with an initializer to turn the declaration into a variable
2406    // declaration.
2407    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
2408
2409    // Empty parens mean value-initialization, and no parens mean
2410    // default initialization. These are equivalent if the default
2411    // constructor is user-provided or if zero-initialization is a
2412    // no-op.
2413    if (RD && RD->hasDefinition() &&
2414        (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
2415      S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
2416        << FixItHint::CreateRemoval(ParenRange);
2417    else {
2418      std::string Init = S.getFixItZeroInitializerForType(RT);
2419      if (Init.empty() && S.LangOpts.CPlusPlus11)
2420        Init = "{}";
2421      if (!Init.empty())
2422        S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
2423          << FixItHint::CreateReplacement(ParenRange, Init);
2424    }
2425  }
2426}
2427
2428/// Helper for figuring out the default CC for a function declarator type.  If
2429/// this is the outermost chunk, then we can determine the CC from the
2430/// declarator context.  If not, then this could be either a member function
2431/// type or normal function type.
2432static CallingConv
2433getCCForDeclaratorChunk(Sema &S, Declarator &D,
2434                        const DeclaratorChunk::FunctionTypeInfo &FTI,
2435                        unsigned ChunkIndex) {
2436  assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
2437
2438  bool IsCXXInstanceMethod = false;
2439
2440  if (S.getLangOpts().CPlusPlus) {
2441    // Look inwards through parentheses to see if this chunk will form a
2442    // member pointer type or if we're the declarator.  Any type attributes
2443    // between here and there will override the CC we choose here.
2444    unsigned I = ChunkIndex;
2445    bool FoundNonParen = false;
2446    while (I && !FoundNonParen) {
2447      --I;
2448      if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
2449        FoundNonParen = true;
2450    }
2451
2452    if (FoundNonParen) {
2453      // If we're not the declarator, we're a regular function type unless we're
2454      // in a member pointer.
2455      IsCXXInstanceMethod =
2456          D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
2457    } else {
2458      // We're the innermost decl chunk, so must be a function declarator.
2459      assert(D.isFunctionDeclarator());
2460
2461      // If we're inside a record, we're declaring a method, but it could be
2462      // static.
2463      IsCXXInstanceMethod =
2464          (D.getContext() == Declarator::MemberContext &&
2465           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
2466           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static &&
2467           !D.getDeclSpec().isFriendSpecified());
2468    }
2469  }
2470
2471  return S.Context.getDefaultCallingConvention(FTI.isVariadic,
2472                                               IsCXXInstanceMethod);
2473}
2474
2475static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
2476                                                QualType declSpecType,
2477                                                TypeSourceInfo *TInfo) {
2478
2479  QualType T = declSpecType;
2480  Declarator &D = state.getDeclarator();
2481  Sema &S = state.getSema();
2482  ASTContext &Context = S.Context;
2483  const LangOptions &LangOpts = S.getLangOpts();
2484
2485  // The name we're declaring, if any.
2486  DeclarationName Name;
2487  if (D.getIdentifier())
2488    Name = D.getIdentifier();
2489
2490  // Does this declaration declare a typedef-name?
2491  bool IsTypedefName =
2492    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2493    D.getContext() == Declarator::AliasDeclContext ||
2494    D.getContext() == Declarator::AliasTemplateContext;
2495
2496  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2497  bool IsQualifiedFunction = T->isFunctionProtoType() &&
2498      (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
2499       T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
2500
2501  // If T is 'decltype(auto)', the only declarators we can have are parens
2502  // and at most one function declarator if this is a function declaration.
2503  if (const AutoType *AT = T->getAs<AutoType>()) {
2504    if (AT->isDecltypeAuto()) {
2505      for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2506        unsigned Index = E - I - 1;
2507        DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
2508        unsigned DiagId = diag::err_decltype_auto_compound_type;
2509        unsigned DiagKind = 0;
2510        switch (DeclChunk.Kind) {
2511        case DeclaratorChunk::Paren:
2512          continue;
2513        case DeclaratorChunk::Function: {
2514          unsigned FnIndex;
2515          if (D.isFunctionDeclarationContext() &&
2516              D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
2517            continue;
2518          DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
2519          break;
2520        }
2521        case DeclaratorChunk::Pointer:
2522        case DeclaratorChunk::BlockPointer:
2523        case DeclaratorChunk::MemberPointer:
2524          DiagKind = 0;
2525          break;
2526        case DeclaratorChunk::Reference:
2527          DiagKind = 1;
2528          break;
2529        case DeclaratorChunk::Array:
2530          DiagKind = 2;
2531          break;
2532        }
2533
2534        S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
2535        D.setInvalidType(true);
2536        break;
2537      }
2538    }
2539  }
2540
2541  // Walk the DeclTypeInfo, building the recursive type as we go.
2542  // DeclTypeInfos are ordered from the identifier out, which is
2543  // opposite of what we want :).
2544  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2545    unsigned chunkIndex = e - i - 1;
2546    state.setCurrentChunkIndex(chunkIndex);
2547    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2548    if (IsQualifiedFunction) {
2549      checkQualifiedFunction(S, T, DeclType);
2550      IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
2551    }
2552    switch (DeclType.Kind) {
2553    case DeclaratorChunk::Paren:
2554      T = S.BuildParenType(T);
2555      break;
2556    case DeclaratorChunk::BlockPointer:
2557      // If blocks are disabled, emit an error.
2558      if (!LangOpts.Blocks)
2559        S.Diag(DeclType.Loc, diag::err_blocks_disable);
2560
2561      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
2562      if (DeclType.Cls.TypeQuals)
2563        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
2564      break;
2565    case DeclaratorChunk::Pointer:
2566      // Verify that we're not building a pointer to pointer to function with
2567      // exception specification.
2568      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2569        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2570        D.setInvalidType(true);
2571        // Build the type anyway.
2572      }
2573      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
2574        T = Context.getObjCObjectPointerType(T);
2575        if (DeclType.Ptr.TypeQuals)
2576          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2577        break;
2578      }
2579      T = S.BuildPointerType(T, DeclType.Loc, Name);
2580      if (DeclType.Ptr.TypeQuals)
2581        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2582
2583      break;
2584    case DeclaratorChunk::Reference: {
2585      // Verify that we're not building a reference to pointer to function with
2586      // exception specification.
2587      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2588        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2589        D.setInvalidType(true);
2590        // Build the type anyway.
2591      }
2592      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2593
2594      Qualifiers Quals;
2595      if (DeclType.Ref.HasRestrict)
2596        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2597      break;
2598    }
2599    case DeclaratorChunk::Array: {
2600      // Verify that we're not building an array of pointers to function with
2601      // exception specification.
2602      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2603        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2604        D.setInvalidType(true);
2605        // Build the type anyway.
2606      }
2607      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2608      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2609      ArrayType::ArraySizeModifier ASM;
2610      if (ATI.isStar)
2611        ASM = ArrayType::Star;
2612      else if (ATI.hasStatic)
2613        ASM = ArrayType::Static;
2614      else
2615        ASM = ArrayType::Normal;
2616      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2617        // FIXME: This check isn't quite right: it allows star in prototypes
2618        // for function definitions, and disallows some edge cases detailed
2619        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2620        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2621        ASM = ArrayType::Normal;
2622        D.setInvalidType(true);
2623      }
2624
2625      // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
2626      // shall appear only in a declaration of a function parameter with an
2627      // array type, ...
2628      if (ASM == ArrayType::Static || ATI.TypeQuals) {
2629        if (!(D.isPrototypeContext() ||
2630              D.getContext() == Declarator::KNRTypeListContext)) {
2631          S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
2632              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2633          // Remove the 'static' and the type qualifiers.
2634          if (ASM == ArrayType::Static)
2635            ASM = ArrayType::Normal;
2636          ATI.TypeQuals = 0;
2637          D.setInvalidType(true);
2638        }
2639
2640        // C99 6.7.5.2p1: ... and then only in the outermost array type
2641        // derivation.
2642        unsigned x = chunkIndex;
2643        while (x != 0) {
2644          // Walk outwards along the declarator chunks.
2645          x--;
2646          const DeclaratorChunk &DC = D.getTypeObject(x);
2647          switch (DC.Kind) {
2648          case DeclaratorChunk::Paren:
2649            continue;
2650          case DeclaratorChunk::Array:
2651          case DeclaratorChunk::Pointer:
2652          case DeclaratorChunk::Reference:
2653          case DeclaratorChunk::MemberPointer:
2654            S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
2655              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2656            if (ASM == ArrayType::Static)
2657              ASM = ArrayType::Normal;
2658            ATI.TypeQuals = 0;
2659            D.setInvalidType(true);
2660            break;
2661          case DeclaratorChunk::Function:
2662          case DeclaratorChunk::BlockPointer:
2663            // These are invalid anyway, so just ignore.
2664            break;
2665          }
2666        }
2667      }
2668
2669      if (const AutoType *AT = T->getContainedAutoType()) {
2670        // We've already diagnosed this for decltype(auto).
2671        if (!AT->isDecltypeAuto())
2672          S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
2673            << getPrintableNameForEntity(Name) << T;
2674        T = QualType();
2675        break;
2676      }
2677
2678      T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2679                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2680      break;
2681    }
2682    case DeclaratorChunk::Function: {
2683      // If the function declarator has a prototype (i.e. it is not () and
2684      // does not have a K&R-style identifier list), then the arguments are part
2685      // of the type, otherwise the argument list is ().
2686      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2687      IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
2688
2689      // Check for auto functions and trailing return type and adjust the
2690      // return type accordingly.
2691      if (!D.isInvalidType()) {
2692        // trailing-return-type is only required if we're declaring a function,
2693        // and not, for instance, a pointer to a function.
2694        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2695            !FTI.hasTrailingReturnType() && chunkIndex == 0 &&
2696            !S.getLangOpts().CPlusPlus1y) {
2697          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2698               diag::err_auto_missing_trailing_return);
2699          T = Context.IntTy;
2700          D.setInvalidType(true);
2701        } else if (FTI.hasTrailingReturnType()) {
2702          // T must be exactly 'auto' at this point. See CWG issue 681.
2703          if (isa<ParenType>(T)) {
2704            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2705                 diag::err_trailing_return_in_parens)
2706              << T << D.getDeclSpec().getSourceRange();
2707            D.setInvalidType(true);
2708          } else if (D.getContext() != Declarator::LambdaExprContext &&
2709                     (T.hasQualifiers() || !isa<AutoType>(T) ||
2710                      cast<AutoType>(T)->isDecltypeAuto())) {
2711            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2712                 diag::err_trailing_return_without_auto)
2713              << T << D.getDeclSpec().getSourceRange();
2714            D.setInvalidType(true);
2715          }
2716          T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
2717          if (T.isNull()) {
2718            // An error occurred parsing the trailing return type.
2719            T = Context.IntTy;
2720            D.setInvalidType(true);
2721          }
2722        }
2723      }
2724
2725      // C99 6.7.5.3p1: The return type may not be a function or array type.
2726      // For conversion functions, we'll diagnose this particular error later.
2727      if ((T->isArrayType() || T->isFunctionType()) &&
2728          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2729        unsigned diagID = diag::err_func_returning_array_function;
2730        // Last processing chunk in block context means this function chunk
2731        // represents the block.
2732        if (chunkIndex == 0 &&
2733            D.getContext() == Declarator::BlockLiteralContext)
2734          diagID = diag::err_block_returning_array_function;
2735        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2736        T = Context.IntTy;
2737        D.setInvalidType(true);
2738      }
2739
2740      // Do not allow returning half FP value.
2741      // FIXME: This really should be in BuildFunctionType.
2742      if (T->isHalfType()) {
2743        if (S.getLangOpts().OpenCL) {
2744          if (!S.getOpenCLOptions().cl_khr_fp16) {
2745            S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
2746            D.setInvalidType(true);
2747          }
2748        } else {
2749          S.Diag(D.getIdentifierLoc(),
2750            diag::err_parameters_retval_cannot_have_fp16_type) << 1;
2751          D.setInvalidType(true);
2752        }
2753      }
2754
2755      // Methods cannot return interface types. All ObjC objects are
2756      // passed by reference.
2757      if (T->isObjCObjectType()) {
2758        SourceLocation DiagLoc, FixitLoc;
2759        if (TInfo) {
2760          DiagLoc = TInfo->getTypeLoc().getLocStart();
2761          FixitLoc = S.PP.getLocForEndOfToken(TInfo->getTypeLoc().getLocEnd());
2762        } else {
2763          DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
2764          FixitLoc = S.PP.getLocForEndOfToken(D.getDeclSpec().getLocEnd());
2765        }
2766        S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
2767          << 0 << T
2768          << FixItHint::CreateInsertion(FixitLoc, "*");
2769
2770        T = Context.getObjCObjectPointerType(T);
2771        if (TInfo) {
2772          TypeLocBuilder TLB;
2773          TLB.pushFullCopy(TInfo->getTypeLoc());
2774          ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
2775          TLoc.setStarLoc(FixitLoc);
2776          TInfo = TLB.getTypeSourceInfo(Context, T);
2777        }
2778
2779        D.setInvalidType(true);
2780      }
2781
2782      // cv-qualifiers on return types are pointless except when the type is a
2783      // class type in C++.
2784      if ((T.getCVRQualifiers() || T->isAtomicType()) &&
2785          !(S.getLangOpts().CPlusPlus &&
2786            (T->isDependentType() || T->isRecordType())))
2787        diagnoseIgnoredFunctionQualifiers(S, T, D, chunkIndex);
2788
2789      // Objective-C ARC ownership qualifiers are ignored on the function
2790      // return type (by type canonicalization). Complain if this attribute
2791      // was written here.
2792      if (T.getQualifiers().hasObjCLifetime()) {
2793        SourceLocation AttrLoc;
2794        if (chunkIndex + 1 < D.getNumTypeObjects()) {
2795          DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2796          for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
2797               Attr; Attr = Attr->getNext()) {
2798            if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
2799              AttrLoc = Attr->getLoc();
2800              break;
2801            }
2802          }
2803        }
2804        if (AttrLoc.isInvalid()) {
2805          for (const AttributeList *Attr
2806                 = D.getDeclSpec().getAttributes().getList();
2807               Attr; Attr = Attr->getNext()) {
2808            if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
2809              AttrLoc = Attr->getLoc();
2810              break;
2811            }
2812          }
2813        }
2814
2815        if (AttrLoc.isValid()) {
2816          // The ownership attributes are almost always written via
2817          // the predefined
2818          // __strong/__weak/__autoreleasing/__unsafe_unretained.
2819          if (AttrLoc.isMacroID())
2820            AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
2821
2822          S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
2823            << T.getQualifiers().getObjCLifetime();
2824        }
2825      }
2826
2827      if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2828        // C++ [dcl.fct]p6:
2829        //   Types shall not be defined in return or parameter types.
2830        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2831        if (Tag->isCompleteDefinition())
2832          S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2833            << Context.getTypeDeclType(Tag);
2834      }
2835
2836      // Exception specs are not allowed in typedefs. Complain, but add it
2837      // anyway.
2838      if (IsTypedefName && FTI.getExceptionSpecType())
2839        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2840          << (D.getContext() == Declarator::AliasDeclContext ||
2841              D.getContext() == Declarator::AliasTemplateContext);
2842
2843      // If we see "T var();" or "T var(T());" at block scope, it is probably
2844      // an attempt to initialize a variable, not a function declaration.
2845      if (FTI.isAmbiguous)
2846        warnAboutAmbiguousFunction(S, D, DeclType, T);
2847
2848      FunctionType::ExtInfo EI(getCCForDeclaratorChunk(S, D, FTI, chunkIndex));
2849
2850      if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2851        // Simple void foo(), where the incoming T is the result type.
2852        T = Context.getFunctionNoProtoType(T, EI);
2853      } else {
2854        // We allow a zero-parameter variadic function in C if the
2855        // function is marked with the "overloadable" attribute. Scan
2856        // for this attribute now.
2857        if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2858          bool Overloadable = false;
2859          for (const AttributeList *Attrs = D.getAttributes();
2860               Attrs; Attrs = Attrs->getNext()) {
2861            if (Attrs->getKind() == AttributeList::AT_Overloadable) {
2862              Overloadable = true;
2863              break;
2864            }
2865          }
2866
2867          if (!Overloadable)
2868            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2869        }
2870
2871        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2872          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2873          // definition.
2874          S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2875          D.setInvalidType(true);
2876          // Recover by creating a K&R-style function type.
2877          T = Context.getFunctionNoProtoType(T, EI);
2878          break;
2879        }
2880
2881        FunctionProtoType::ExtProtoInfo EPI;
2882        EPI.ExtInfo = EI;
2883        EPI.Variadic = FTI.isVariadic;
2884        EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
2885        EPI.TypeQuals = FTI.TypeQuals;
2886        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2887                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2888                    : RQ_RValue;
2889
2890        // Otherwise, we have a function with an argument list that is
2891        // potentially variadic.
2892        SmallVector<QualType, 16> ArgTys;
2893        ArgTys.reserve(FTI.NumArgs);
2894
2895        SmallVector<bool, 16> ConsumedArguments;
2896        ConsumedArguments.reserve(FTI.NumArgs);
2897        bool HasAnyConsumedArguments = false;
2898
2899        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2900          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2901          QualType ArgTy = Param->getType();
2902          assert(!ArgTy.isNull() && "Couldn't parse type?");
2903
2904          // Look for 'void'.  void is allowed only as a single argument to a
2905          // function with no other parameters (C99 6.7.5.3p10).  We record
2906          // int(void) as a FunctionProtoType with an empty argument list.
2907          if (ArgTy->isVoidType()) {
2908            // If this is something like 'float(int, void)', reject it.  'void'
2909            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2910            // have arguments of incomplete type.
2911            if (FTI.NumArgs != 1 || FTI.isVariadic) {
2912              S.Diag(DeclType.Loc, diag::err_void_only_param);
2913              ArgTy = Context.IntTy;
2914              Param->setType(ArgTy);
2915            } else if (FTI.ArgInfo[i].Ident) {
2916              // Reject, but continue to parse 'int(void abc)'.
2917              S.Diag(FTI.ArgInfo[i].IdentLoc,
2918                   diag::err_param_with_void_type);
2919              ArgTy = Context.IntTy;
2920              Param->setType(ArgTy);
2921            } else {
2922              // Reject, but continue to parse 'float(const void)'.
2923              if (ArgTy.hasQualifiers())
2924                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2925
2926              // Do not add 'void' to the ArgTys list.
2927              break;
2928            }
2929          } else if (ArgTy->isHalfType()) {
2930            // Disallow half FP arguments.
2931            // FIXME: This really should be in BuildFunctionType.
2932            if (S.getLangOpts().OpenCL) {
2933              if (!S.getOpenCLOptions().cl_khr_fp16) {
2934                S.Diag(Param->getLocation(),
2935                  diag::err_opencl_half_argument) << ArgTy;
2936                D.setInvalidType();
2937                Param->setInvalidDecl();
2938              }
2939            } else {
2940              S.Diag(Param->getLocation(),
2941                diag::err_parameters_retval_cannot_have_fp16_type) << 0;
2942              D.setInvalidType();
2943            }
2944          } else if (!FTI.hasPrototype) {
2945            if (ArgTy->isPromotableIntegerType()) {
2946              ArgTy = Context.getPromotedIntegerType(ArgTy);
2947              Param->setKNRPromoted(true);
2948            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2949              if (BTy->getKind() == BuiltinType::Float) {
2950                ArgTy = Context.DoubleTy;
2951                Param->setKNRPromoted(true);
2952              }
2953            }
2954          }
2955
2956          if (LangOpts.ObjCAutoRefCount) {
2957            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2958            ConsumedArguments.push_back(Consumed);
2959            HasAnyConsumedArguments |= Consumed;
2960          }
2961
2962          ArgTys.push_back(ArgTy);
2963        }
2964
2965        if (HasAnyConsumedArguments)
2966          EPI.ConsumedArguments = ConsumedArguments.data();
2967
2968        SmallVector<QualType, 4> Exceptions;
2969        SmallVector<ParsedType, 2> DynamicExceptions;
2970        SmallVector<SourceRange, 2> DynamicExceptionRanges;
2971        Expr *NoexceptExpr = 0;
2972
2973        if (FTI.getExceptionSpecType() == EST_Dynamic) {
2974          // FIXME: It's rather inefficient to have to split into two vectors
2975          // here.
2976          unsigned N = FTI.NumExceptions;
2977          DynamicExceptions.reserve(N);
2978          DynamicExceptionRanges.reserve(N);
2979          for (unsigned I = 0; I != N; ++I) {
2980            DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
2981            DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
2982          }
2983        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2984          NoexceptExpr = FTI.NoexceptExpr;
2985        }
2986
2987        S.checkExceptionSpecification(FTI.getExceptionSpecType(),
2988                                      DynamicExceptions,
2989                                      DynamicExceptionRanges,
2990                                      NoexceptExpr,
2991                                      Exceptions,
2992                                      EPI);
2993
2994        T = Context.getFunctionType(T, ArgTys, EPI);
2995      }
2996
2997      break;
2998    }
2999    case DeclaratorChunk::MemberPointer:
3000      // The scope spec must refer to a class, or be dependent.
3001      CXXScopeSpec &SS = DeclType.Mem.Scope();
3002      QualType ClsType;
3003      if (SS.isInvalid()) {
3004        // Avoid emitting extra errors if we already errored on the scope.
3005        D.setInvalidType(true);
3006      } else if (S.isDependentScopeSpecifier(SS) ||
3007                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
3008        NestedNameSpecifier *NNS
3009          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3010        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
3011        switch (NNS->getKind()) {
3012        case NestedNameSpecifier::Identifier:
3013          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
3014                                                 NNS->getAsIdentifier());
3015          break;
3016
3017        case NestedNameSpecifier::Namespace:
3018        case NestedNameSpecifier::NamespaceAlias:
3019        case NestedNameSpecifier::Global:
3020          llvm_unreachable("Nested-name-specifier must name a type");
3021
3022        case NestedNameSpecifier::TypeSpec:
3023        case NestedNameSpecifier::TypeSpecWithTemplate:
3024          ClsType = QualType(NNS->getAsType(), 0);
3025          // Note: if the NNS has a prefix and ClsType is a nondependent
3026          // TemplateSpecializationType, then the NNS prefix is NOT included
3027          // in ClsType; hence we wrap ClsType into an ElaboratedType.
3028          // NOTE: in particular, no wrap occurs if ClsType already is an
3029          // Elaborated, DependentName, or DependentTemplateSpecialization.
3030          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
3031            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
3032          break;
3033        }
3034      } else {
3035        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
3036             diag::err_illegal_decl_mempointer_in_nonclass)
3037          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
3038          << DeclType.Mem.Scope().getRange();
3039        D.setInvalidType(true);
3040      }
3041
3042      if (!ClsType.isNull())
3043        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
3044      if (T.isNull()) {
3045        T = Context.IntTy;
3046        D.setInvalidType(true);
3047      } else if (DeclType.Mem.TypeQuals) {
3048        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
3049      }
3050      break;
3051    }
3052
3053    if (T.isNull()) {
3054      D.setInvalidType(true);
3055      T = Context.IntTy;
3056    }
3057
3058    // See if there are any attributes on this declarator chunk.
3059    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
3060      processTypeAttrs(state, T, TAL_DeclChunk, attrs);
3061  }
3062
3063  if (LangOpts.CPlusPlus && T->isFunctionType()) {
3064    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
3065    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
3066
3067    // C++ 8.3.5p4:
3068    //   A cv-qualifier-seq shall only be part of the function type
3069    //   for a nonstatic member function, the function type to which a pointer
3070    //   to member refers, or the top-level function type of a function typedef
3071    //   declaration.
3072    //
3073    // Core issue 547 also allows cv-qualifiers on function types that are
3074    // top-level template type arguments.
3075    bool FreeFunction;
3076    if (!D.getCXXScopeSpec().isSet()) {
3077      FreeFunction = ((D.getContext() != Declarator::MemberContext &&
3078                       D.getContext() != Declarator::LambdaExprContext) ||
3079                      D.getDeclSpec().isFriendSpecified());
3080    } else {
3081      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
3082      FreeFunction = (DC && !DC->isRecord());
3083    }
3084
3085    // C++11 [dcl.fct]p6 (w/DR1417):
3086    // An attempt to specify a function type with a cv-qualifier-seq or a
3087    // ref-qualifier (including by typedef-name) is ill-formed unless it is:
3088    //  - the function type for a non-static member function,
3089    //  - the function type to which a pointer to member refers,
3090    //  - the top-level function type of a function typedef declaration or
3091    //    alias-declaration,
3092    //  - the type-id in the default argument of a type-parameter, or
3093    //  - the type-id of a template-argument for a type-parameter
3094    if (IsQualifiedFunction &&
3095        !(!FreeFunction &&
3096          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
3097        !IsTypedefName &&
3098        D.getContext() != Declarator::TemplateTypeArgContext) {
3099      SourceLocation Loc = D.getLocStart();
3100      SourceRange RemovalRange;
3101      unsigned I;
3102      if (D.isFunctionDeclarator(I)) {
3103        SmallVector<SourceLocation, 4> RemovalLocs;
3104        const DeclaratorChunk &Chunk = D.getTypeObject(I);
3105        assert(Chunk.Kind == DeclaratorChunk::Function);
3106        if (Chunk.Fun.hasRefQualifier())
3107          RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
3108        if (Chunk.Fun.TypeQuals & Qualifiers::Const)
3109          RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
3110        if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
3111          RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
3112        // FIXME: We do not track the location of the __restrict qualifier.
3113        //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
3114        //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
3115        if (!RemovalLocs.empty()) {
3116          std::sort(RemovalLocs.begin(), RemovalLocs.end(),
3117                    BeforeThanCompare<SourceLocation>(S.getSourceManager()));
3118          RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
3119          Loc = RemovalLocs.front();
3120        }
3121      }
3122
3123      S.Diag(Loc, diag::err_invalid_qualified_function_type)
3124        << FreeFunction << D.isFunctionDeclarator() << T
3125        << getFunctionQualifiersAsString(FnTy)
3126        << FixItHint::CreateRemoval(RemovalRange);
3127
3128      // Strip the cv-qualifiers and ref-qualifiers from the type.
3129      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
3130      EPI.TypeQuals = 0;
3131      EPI.RefQualifier = RQ_None;
3132
3133      T = Context.getFunctionType(FnTy->getResultType(), FnTy->getArgTypes(),
3134                                  EPI);
3135      // Rebuild any parens around the identifier in the function type.
3136      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3137        if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
3138          break;
3139        T = S.BuildParenType(T);
3140      }
3141    }
3142  }
3143
3144  // Apply any undistributed attributes from the declarator.
3145  if (!T.isNull())
3146    if (AttributeList *attrs = D.getAttributes())
3147      processTypeAttrs(state, T, TAL_DeclName, attrs);
3148
3149  // Diagnose any ignored type attributes.
3150  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
3151
3152  // C++0x [dcl.constexpr]p9:
3153  //  A constexpr specifier used in an object declaration declares the object
3154  //  as const.
3155  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
3156    T.addConst();
3157  }
3158
3159  // If there was an ellipsis in the declarator, the declaration declares a
3160  // parameter pack whose type may be a pack expansion type.
3161  if (D.hasEllipsis() && !T.isNull()) {
3162    // C++0x [dcl.fct]p13:
3163    //   A declarator-id or abstract-declarator containing an ellipsis shall
3164    //   only be used in a parameter-declaration. Such a parameter-declaration
3165    //   is a parameter pack (14.5.3). [...]
3166    switch (D.getContext()) {
3167    case Declarator::PrototypeContext:
3168      // C++0x [dcl.fct]p13:
3169      //   [...] When it is part of a parameter-declaration-clause, the
3170      //   parameter pack is a function parameter pack (14.5.3). The type T
3171      //   of the declarator-id of the function parameter pack shall contain
3172      //   a template parameter pack; each template parameter pack in T is
3173      //   expanded by the function parameter pack.
3174      //
3175      // We represent function parameter packs as function parameters whose
3176      // type is a pack expansion.
3177      if (!T->containsUnexpandedParameterPack()) {
3178        S.Diag(D.getEllipsisLoc(),
3179             diag::err_function_parameter_pack_without_parameter_packs)
3180          << T <<  D.getSourceRange();
3181        D.setEllipsisLoc(SourceLocation());
3182      } else {
3183        T = Context.getPackExpansionType(T, None);
3184      }
3185      break;
3186
3187    case Declarator::TemplateParamContext:
3188      // C++0x [temp.param]p15:
3189      //   If a template-parameter is a [...] is a parameter-declaration that
3190      //   declares a parameter pack (8.3.5), then the template-parameter is a
3191      //   template parameter pack (14.5.3).
3192      //
3193      // Note: core issue 778 clarifies that, if there are any unexpanded
3194      // parameter packs in the type of the non-type template parameter, then
3195      // it expands those parameter packs.
3196      if (T->containsUnexpandedParameterPack())
3197        T = Context.getPackExpansionType(T, None);
3198      else
3199        S.Diag(D.getEllipsisLoc(),
3200               LangOpts.CPlusPlus11
3201                 ? diag::warn_cxx98_compat_variadic_templates
3202                 : diag::ext_variadic_templates);
3203      break;
3204
3205    case Declarator::FileContext:
3206    case Declarator::KNRTypeListContext:
3207    case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
3208    case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
3209    case Declarator::TypeNameContext:
3210    case Declarator::CXXNewContext:
3211    case Declarator::AliasDeclContext:
3212    case Declarator::AliasTemplateContext:
3213    case Declarator::MemberContext:
3214    case Declarator::BlockContext:
3215    case Declarator::ForContext:
3216    case Declarator::ConditionContext:
3217    case Declarator::CXXCatchContext:
3218    case Declarator::ObjCCatchContext:
3219    case Declarator::BlockLiteralContext:
3220    case Declarator::LambdaExprContext:
3221    case Declarator::ConversionIdContext:
3222    case Declarator::TrailingReturnContext:
3223    case Declarator::TemplateTypeArgContext:
3224      // FIXME: We may want to allow parameter packs in block-literal contexts
3225      // in the future.
3226      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
3227      D.setEllipsisLoc(SourceLocation());
3228      break;
3229    }
3230  }
3231
3232  if (T.isNull())
3233    return Context.getNullTypeSourceInfo();
3234  else if (D.isInvalidType())
3235    return Context.getTrivialTypeSourceInfo(T);
3236
3237  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
3238}
3239
3240/// GetTypeForDeclarator - Convert the type for the specified
3241/// declarator to Type instances.
3242///
3243/// The result of this call will never be null, but the associated
3244/// type may be a null type if there's an unrecoverable error.
3245TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
3246  // Determine the type of the declarator. Not all forms of declarator
3247  // have a type.
3248
3249  TypeProcessingState state(*this, D);
3250
3251  TypeSourceInfo *ReturnTypeInfo = 0;
3252  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
3253  if (T.isNull())
3254    return Context.getNullTypeSourceInfo();
3255
3256  if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
3257    inferARCWriteback(state, T);
3258
3259  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
3260}
3261
3262static void transferARCOwnershipToDeclSpec(Sema &S,
3263                                           QualType &declSpecTy,
3264                                           Qualifiers::ObjCLifetime ownership) {
3265  if (declSpecTy->isObjCRetainableType() &&
3266      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
3267    Qualifiers qs;
3268    qs.addObjCLifetime(ownership);
3269    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
3270  }
3271}
3272
3273static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
3274                                            Qualifiers::ObjCLifetime ownership,
3275                                            unsigned chunkIndex) {
3276  Sema &S = state.getSema();
3277  Declarator &D = state.getDeclarator();
3278
3279  // Look for an explicit lifetime attribute.
3280  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
3281  for (const AttributeList *attr = chunk.getAttrs(); attr;
3282         attr = attr->getNext())
3283    if (attr->getKind() == AttributeList::AT_ObjCOwnership)
3284      return;
3285
3286  const char *attrStr = 0;
3287  switch (ownership) {
3288  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
3289  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
3290  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
3291  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
3292  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
3293  }
3294
3295  IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
3296  Arg->Ident = &S.Context.Idents.get(attrStr);
3297  Arg->Loc = SourceLocation();
3298
3299  ArgsUnion Args(Arg);
3300
3301  // If there wasn't one, add one (with an invalid source location
3302  // so that we don't make an AttributedType for it).
3303  AttributeList *attr = D.getAttributePool()
3304    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
3305            /*scope*/ 0, SourceLocation(),
3306            /*args*/ &Args, 1, AttributeList::AS_GNU);
3307  spliceAttrIntoList(*attr, chunk.getAttrListRef());
3308
3309  // TODO: mark whether we did this inference?
3310}
3311
3312/// \brief Used for transferring ownership in casts resulting in l-values.
3313static void transferARCOwnership(TypeProcessingState &state,
3314                                 QualType &declSpecTy,
3315                                 Qualifiers::ObjCLifetime ownership) {
3316  Sema &S = state.getSema();
3317  Declarator &D = state.getDeclarator();
3318
3319  int inner = -1;
3320  bool hasIndirection = false;
3321  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3322    DeclaratorChunk &chunk = D.getTypeObject(i);
3323    switch (chunk.Kind) {
3324    case DeclaratorChunk::Paren:
3325      // Ignore parens.
3326      break;
3327
3328    case DeclaratorChunk::Array:
3329    case DeclaratorChunk::Reference:
3330    case DeclaratorChunk::Pointer:
3331      if (inner != -1)
3332        hasIndirection = true;
3333      inner = i;
3334      break;
3335
3336    case DeclaratorChunk::BlockPointer:
3337      if (inner != -1)
3338        transferARCOwnershipToDeclaratorChunk(state, ownership, i);
3339      return;
3340
3341    case DeclaratorChunk::Function:
3342    case DeclaratorChunk::MemberPointer:
3343      return;
3344    }
3345  }
3346
3347  if (inner == -1)
3348    return;
3349
3350  DeclaratorChunk &chunk = D.getTypeObject(inner);
3351  if (chunk.Kind == DeclaratorChunk::Pointer) {
3352    if (declSpecTy->isObjCRetainableType())
3353      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
3354    if (declSpecTy->isObjCObjectType() && hasIndirection)
3355      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
3356  } else {
3357    assert(chunk.Kind == DeclaratorChunk::Array ||
3358           chunk.Kind == DeclaratorChunk::Reference);
3359    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
3360  }
3361}
3362
3363TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
3364  TypeProcessingState state(*this, D);
3365
3366  TypeSourceInfo *ReturnTypeInfo = 0;
3367  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
3368  if (declSpecTy.isNull())
3369    return Context.getNullTypeSourceInfo();
3370
3371  if (getLangOpts().ObjCAutoRefCount) {
3372    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
3373    if (ownership != Qualifiers::OCL_None)
3374      transferARCOwnership(state, declSpecTy, ownership);
3375  }
3376
3377  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
3378}
3379
3380/// Map an AttributedType::Kind to an AttributeList::Kind.
3381static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
3382  switch (kind) {
3383  case AttributedType::attr_address_space:
3384    return AttributeList::AT_AddressSpace;
3385  case AttributedType::attr_regparm:
3386    return AttributeList::AT_Regparm;
3387  case AttributedType::attr_vector_size:
3388    return AttributeList::AT_VectorSize;
3389  case AttributedType::attr_neon_vector_type:
3390    return AttributeList::AT_NeonVectorType;
3391  case AttributedType::attr_neon_polyvector_type:
3392    return AttributeList::AT_NeonPolyVectorType;
3393  case AttributedType::attr_objc_gc:
3394    return AttributeList::AT_ObjCGC;
3395  case AttributedType::attr_objc_ownership:
3396    return AttributeList::AT_ObjCOwnership;
3397  case AttributedType::attr_noreturn:
3398    return AttributeList::AT_NoReturn;
3399  case AttributedType::attr_cdecl:
3400    return AttributeList::AT_CDecl;
3401  case AttributedType::attr_fastcall:
3402    return AttributeList::AT_FastCall;
3403  case AttributedType::attr_stdcall:
3404    return AttributeList::AT_StdCall;
3405  case AttributedType::attr_thiscall:
3406    return AttributeList::AT_ThisCall;
3407  case AttributedType::attr_pascal:
3408    return AttributeList::AT_Pascal;
3409  case AttributedType::attr_pcs:
3410  case AttributedType::attr_pcs_vfp:
3411    return AttributeList::AT_Pcs;
3412  case AttributedType::attr_pnaclcall:
3413    return AttributeList::AT_PnaclCall;
3414  case AttributedType::attr_inteloclbicc:
3415    return AttributeList::AT_IntelOclBicc;
3416  case AttributedType::attr_ms_abi:
3417    return AttributeList::AT_MSABI;
3418  case AttributedType::attr_sysv_abi:
3419    return AttributeList::AT_SysVABI;
3420  case AttributedType::attr_ptr32:
3421    return AttributeList::AT_Ptr32;
3422  case AttributedType::attr_ptr64:
3423    return AttributeList::AT_Ptr64;
3424  case AttributedType::attr_sptr:
3425    return AttributeList::AT_SPtr;
3426  case AttributedType::attr_uptr:
3427    return AttributeList::AT_UPtr;
3428  }
3429  llvm_unreachable("unexpected attribute kind!");
3430}
3431
3432static void fillAttributedTypeLoc(AttributedTypeLoc TL,
3433                                  const AttributeList *attrs) {
3434  AttributedType::Kind kind = TL.getAttrKind();
3435
3436  assert(attrs && "no type attributes in the expected location!");
3437  AttributeList::Kind parsedKind = getAttrListKind(kind);
3438  while (attrs->getKind() != parsedKind) {
3439    attrs = attrs->getNext();
3440    assert(attrs && "no matching attribute in expected location!");
3441  }
3442
3443  TL.setAttrNameLoc(attrs->getLoc());
3444  if (TL.hasAttrExprOperand() && attrs->isArgExpr(0))
3445    TL.setAttrExprOperand(attrs->getArgAsExpr(0));
3446  else if (TL.hasAttrEnumOperand() && attrs->isArgIdent(0))
3447    TL.setAttrEnumOperandLoc(attrs->getArgAsIdent(0)->Loc);
3448
3449  // FIXME: preserve this information to here.
3450  if (TL.hasAttrOperand())
3451    TL.setAttrOperandParensRange(SourceRange());
3452}
3453
3454namespace {
3455  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
3456    ASTContext &Context;
3457    const DeclSpec &DS;
3458
3459  public:
3460    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
3461      : Context(Context), DS(DS) {}
3462
3463    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3464      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
3465      Visit(TL.getModifiedLoc());
3466    }
3467    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3468      Visit(TL.getUnqualifiedLoc());
3469    }
3470    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
3471      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3472    }
3473    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
3474      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3475      // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
3476      // addition field. What we have is good enough for dispay of location
3477      // of 'fixit' on interface name.
3478      TL.setNameEndLoc(DS.getLocEnd());
3479    }
3480    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
3481      // Handle the base type, which might not have been written explicitly.
3482      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
3483        TL.setHasBaseTypeAsWritten(false);
3484        TL.getBaseLoc().initialize(Context, SourceLocation());
3485      } else {
3486        TL.setHasBaseTypeAsWritten(true);
3487        Visit(TL.getBaseLoc());
3488      }
3489
3490      // Protocol qualifiers.
3491      if (DS.getProtocolQualifiers()) {
3492        assert(TL.getNumProtocols() > 0);
3493        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
3494        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
3495        TL.setRAngleLoc(DS.getSourceRange().getEnd());
3496        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
3497          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
3498      } else {
3499        assert(TL.getNumProtocols() == 0);
3500        TL.setLAngleLoc(SourceLocation());
3501        TL.setRAngleLoc(SourceLocation());
3502      }
3503    }
3504    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3505      TL.setStarLoc(SourceLocation());
3506      Visit(TL.getPointeeLoc());
3507    }
3508    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
3509      TypeSourceInfo *TInfo = 0;
3510      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3511
3512      // If we got no declarator info from previous Sema routines,
3513      // just fill with the typespec loc.
3514      if (!TInfo) {
3515        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
3516        return;
3517      }
3518
3519      TypeLoc OldTL = TInfo->getTypeLoc();
3520      if (TInfo->getType()->getAs<ElaboratedType>()) {
3521        ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
3522        TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
3523            .castAs<TemplateSpecializationTypeLoc>();
3524        TL.copy(NamedTL);
3525      } else {
3526        TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
3527        assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
3528      }
3529
3530    }
3531    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
3532      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
3533      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3534      TL.setParensRange(DS.getTypeofParensRange());
3535    }
3536    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
3537      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
3538      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3539      TL.setParensRange(DS.getTypeofParensRange());
3540      assert(DS.getRepAsType());
3541      TypeSourceInfo *TInfo = 0;
3542      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3543      TL.setUnderlyingTInfo(TInfo);
3544    }
3545    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
3546      // FIXME: This holds only because we only have one unary transform.
3547      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
3548      TL.setKWLoc(DS.getTypeSpecTypeLoc());
3549      TL.setParensRange(DS.getTypeofParensRange());
3550      assert(DS.getRepAsType());
3551      TypeSourceInfo *TInfo = 0;
3552      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3553      TL.setUnderlyingTInfo(TInfo);
3554    }
3555    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
3556      // By default, use the source location of the type specifier.
3557      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
3558      if (TL.needsExtraLocalData()) {
3559        // Set info for the written builtin specifiers.
3560        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
3561        // Try to have a meaningful source location.
3562        if (TL.getWrittenSignSpec() != TSS_unspecified)
3563          // Sign spec loc overrides the others (e.g., 'unsigned long').
3564          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
3565        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
3566          // Width spec loc overrides type spec loc (e.g., 'short int').
3567          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
3568      }
3569    }
3570    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
3571      ElaboratedTypeKeyword Keyword
3572        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
3573      if (DS.getTypeSpecType() == TST_typename) {
3574        TypeSourceInfo *TInfo = 0;
3575        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3576        if (TInfo) {
3577          TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
3578          return;
3579        }
3580      }
3581      TL.setElaboratedKeywordLoc(Keyword != ETK_None
3582                                 ? DS.getTypeSpecTypeLoc()
3583                                 : SourceLocation());
3584      const CXXScopeSpec& SS = DS.getTypeSpecScope();
3585      TL.setQualifierLoc(SS.getWithLocInContext(Context));
3586      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
3587    }
3588    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
3589      assert(DS.getTypeSpecType() == TST_typename);
3590      TypeSourceInfo *TInfo = 0;
3591      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3592      assert(TInfo);
3593      TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
3594    }
3595    void VisitDependentTemplateSpecializationTypeLoc(
3596                                 DependentTemplateSpecializationTypeLoc TL) {
3597      assert(DS.getTypeSpecType() == TST_typename);
3598      TypeSourceInfo *TInfo = 0;
3599      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3600      assert(TInfo);
3601      TL.copy(
3602          TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
3603    }
3604    void VisitTagTypeLoc(TagTypeLoc TL) {
3605      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
3606    }
3607    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
3608      // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
3609      // or an _Atomic qualifier.
3610      if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
3611        TL.setKWLoc(DS.getTypeSpecTypeLoc());
3612        TL.setParensRange(DS.getTypeofParensRange());
3613
3614        TypeSourceInfo *TInfo = 0;
3615        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3616        assert(TInfo);
3617        TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
3618      } else {
3619        TL.setKWLoc(DS.getAtomicSpecLoc());
3620        // No parens, to indicate this was spelled as an _Atomic qualifier.
3621        TL.setParensRange(SourceRange());
3622        Visit(TL.getValueLoc());
3623      }
3624    }
3625
3626    void VisitTypeLoc(TypeLoc TL) {
3627      // FIXME: add other typespec types and change this to an assert.
3628      TL.initialize(Context, DS.getTypeSpecTypeLoc());
3629    }
3630  };
3631
3632  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
3633    ASTContext &Context;
3634    const DeclaratorChunk &Chunk;
3635
3636  public:
3637    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
3638      : Context(Context), Chunk(Chunk) {}
3639
3640    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3641      llvm_unreachable("qualified type locs not expected here!");
3642    }
3643    void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
3644      llvm_unreachable("decayed type locs not expected here!");
3645    }
3646
3647    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3648      fillAttributedTypeLoc(TL, Chunk.getAttrs());
3649    }
3650    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
3651      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3652      TL.setCaretLoc(Chunk.Loc);
3653    }
3654    void VisitPointerTypeLoc(PointerTypeLoc TL) {
3655      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3656      TL.setStarLoc(Chunk.Loc);
3657    }
3658    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3659      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3660      TL.setStarLoc(Chunk.Loc);
3661    }
3662    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3663      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3664      const CXXScopeSpec& SS = Chunk.Mem.Scope();
3665      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3666
3667      const Type* ClsTy = TL.getClass();
3668      QualType ClsQT = QualType(ClsTy, 0);
3669      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3670      // Now copy source location info into the type loc component.
3671      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3672      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3673      case NestedNameSpecifier::Identifier:
3674        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3675        {
3676          DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
3677          DNTLoc.setElaboratedKeywordLoc(SourceLocation());
3678          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3679          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3680        }
3681        break;
3682
3683      case NestedNameSpecifier::TypeSpec:
3684      case NestedNameSpecifier::TypeSpecWithTemplate:
3685        if (isa<ElaboratedType>(ClsTy)) {
3686          ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
3687          ETLoc.setElaboratedKeywordLoc(SourceLocation());
3688          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3689          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3690          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3691        } else {
3692          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3693        }
3694        break;
3695
3696      case NestedNameSpecifier::Namespace:
3697      case NestedNameSpecifier::NamespaceAlias:
3698      case NestedNameSpecifier::Global:
3699        llvm_unreachable("Nested-name-specifier must name a type");
3700      }
3701
3702      // Finally fill in MemberPointerLocInfo fields.
3703      TL.setStarLoc(Chunk.Loc);
3704      TL.setClassTInfo(ClsTInfo);
3705    }
3706    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3707      assert(Chunk.Kind == DeclaratorChunk::Reference);
3708      // 'Amp' is misleading: this might have been originally
3709      /// spelled with AmpAmp.
3710      TL.setAmpLoc(Chunk.Loc);
3711    }
3712    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3713      assert(Chunk.Kind == DeclaratorChunk::Reference);
3714      assert(!Chunk.Ref.LValueRef);
3715      TL.setAmpAmpLoc(Chunk.Loc);
3716    }
3717    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3718      assert(Chunk.Kind == DeclaratorChunk::Array);
3719      TL.setLBracketLoc(Chunk.Loc);
3720      TL.setRBracketLoc(Chunk.EndLoc);
3721      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3722    }
3723    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3724      assert(Chunk.Kind == DeclaratorChunk::Function);
3725      TL.setLocalRangeBegin(Chunk.Loc);
3726      TL.setLocalRangeEnd(Chunk.EndLoc);
3727
3728      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3729      TL.setLParenLoc(FTI.getLParenLoc());
3730      TL.setRParenLoc(FTI.getRParenLoc());
3731      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
3732        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3733        TL.setArg(tpi++, Param);
3734      }
3735      // FIXME: exception specs
3736    }
3737    void VisitParenTypeLoc(ParenTypeLoc TL) {
3738      assert(Chunk.Kind == DeclaratorChunk::Paren);
3739      TL.setLParenLoc(Chunk.Loc);
3740      TL.setRParenLoc(Chunk.EndLoc);
3741    }
3742
3743    void VisitTypeLoc(TypeLoc TL) {
3744      llvm_unreachable("unsupported TypeLoc kind in declarator!");
3745    }
3746  };
3747}
3748
3749static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
3750  SourceLocation Loc;
3751  switch (Chunk.Kind) {
3752  case DeclaratorChunk::Function:
3753  case DeclaratorChunk::Array:
3754  case DeclaratorChunk::Paren:
3755    llvm_unreachable("cannot be _Atomic qualified");
3756
3757  case DeclaratorChunk::Pointer:
3758    Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
3759    break;
3760
3761  case DeclaratorChunk::BlockPointer:
3762  case DeclaratorChunk::Reference:
3763  case DeclaratorChunk::MemberPointer:
3764    // FIXME: Provide a source location for the _Atomic keyword.
3765    break;
3766  }
3767
3768  ATL.setKWLoc(Loc);
3769  ATL.setParensRange(SourceRange());
3770}
3771
3772/// \brief Create and instantiate a TypeSourceInfo with type source information.
3773///
3774/// \param T QualType referring to the type as written in source code.
3775///
3776/// \param ReturnTypeInfo For declarators whose return type does not show
3777/// up in the normal place in the declaration specifiers (such as a C++
3778/// conversion function), this pointer will refer to a type source information
3779/// for that return type.
3780TypeSourceInfo *
3781Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3782                                     TypeSourceInfo *ReturnTypeInfo) {
3783  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3784  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3785
3786  // Handle parameter packs whose type is a pack expansion.
3787  if (isa<PackExpansionType>(T)) {
3788    CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
3789    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3790  }
3791
3792  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3793    // An AtomicTypeLoc might be produced by an atomic qualifier in this
3794    // declarator chunk.
3795    if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
3796      fillAtomicQualLoc(ATL, D.getTypeObject(i));
3797      CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
3798    }
3799
3800    while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
3801      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3802      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3803    }
3804
3805    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3806    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3807  }
3808
3809  // If we have different source information for the return type, use
3810  // that.  This really only applies to C++ conversion functions.
3811  if (ReturnTypeInfo) {
3812    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3813    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3814    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3815  } else {
3816    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3817  }
3818
3819  return TInfo;
3820}
3821
3822/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3823ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3824  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3825  // and Sema during declaration parsing. Try deallocating/caching them when
3826  // it's appropriate, instead of allocating them and keeping them around.
3827  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3828                                                       TypeAlignment);
3829  new (LocT) LocInfoType(T, TInfo);
3830  assert(LocT->getTypeClass() != T->getTypeClass() &&
3831         "LocInfoType's TypeClass conflicts with an existing Type class");
3832  return ParsedType::make(QualType(LocT, 0));
3833}
3834
3835void LocInfoType::getAsStringInternal(std::string &Str,
3836                                      const PrintingPolicy &Policy) const {
3837  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3838         " was used directly instead of getting the QualType through"
3839         " GetTypeFromParser");
3840}
3841
3842TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3843  // C99 6.7.6: Type names have no identifier.  This is already validated by
3844  // the parser.
3845  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3846
3847  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3848  QualType T = TInfo->getType();
3849  if (D.isInvalidType())
3850    return true;
3851
3852  // Make sure there are no unused decl attributes on the declarator.
3853  // We don't want to do this for ObjC parameters because we're going
3854  // to apply them to the actual parameter declaration.
3855  // Likewise, we don't want to do this for alias declarations, because
3856  // we are actually going to build a declaration from this eventually.
3857  if (D.getContext() != Declarator::ObjCParameterContext &&
3858      D.getContext() != Declarator::AliasDeclContext &&
3859      D.getContext() != Declarator::AliasTemplateContext)
3860    checkUnusedDeclAttributes(D);
3861
3862  if (getLangOpts().CPlusPlus) {
3863    // Check that there are no default arguments (C++ only).
3864    CheckExtraCXXDefaultArguments(D);
3865  }
3866
3867  return CreateParsedType(T, TInfo);
3868}
3869
3870ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3871  QualType T = Context.getObjCInstanceType();
3872  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3873  return CreateParsedType(T, TInfo);
3874}
3875
3876
3877//===----------------------------------------------------------------------===//
3878// Type Attribute Processing
3879//===----------------------------------------------------------------------===//
3880
3881/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3882/// specified type.  The attribute contains 1 argument, the id of the address
3883/// space for the type.
3884static void HandleAddressSpaceTypeAttribute(QualType &Type,
3885                                            const AttributeList &Attr, Sema &S){
3886
3887  // If this type is already address space qualified, reject it.
3888  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3889  // qualifiers for two or more different address spaces."
3890  if (Type.getAddressSpace()) {
3891    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3892    Attr.setInvalid();
3893    return;
3894  }
3895
3896  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3897  // qualified by an address-space qualifier."
3898  if (Type->isFunctionType()) {
3899    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3900    Attr.setInvalid();
3901    return;
3902  }
3903
3904  // Check the attribute arguments.
3905  if (Attr.getNumArgs() != 1) {
3906    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
3907      << Attr.getName() << 1;
3908    Attr.setInvalid();
3909    return;
3910  }
3911  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
3912  llvm::APSInt addrSpace(32);
3913  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3914      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3915    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
3916      << Attr.getName() << AANT_ArgumentIntegerConstant
3917      << ASArgExpr->getSourceRange();
3918    Attr.setInvalid();
3919    return;
3920  }
3921
3922  // Bounds checking.
3923  if (addrSpace.isSigned()) {
3924    if (addrSpace.isNegative()) {
3925      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3926        << ASArgExpr->getSourceRange();
3927      Attr.setInvalid();
3928      return;
3929    }
3930    addrSpace.setIsSigned(false);
3931  }
3932  llvm::APSInt max(addrSpace.getBitWidth());
3933  max = Qualifiers::MaxAddressSpace;
3934  if (addrSpace > max) {
3935    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3936      << int(Qualifiers::MaxAddressSpace) << ASArgExpr->getSourceRange();
3937    Attr.setInvalid();
3938    return;
3939  }
3940
3941  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3942  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3943}
3944
3945/// Does this type have a "direct" ownership qualifier?  That is,
3946/// is it written like "__strong id", as opposed to something like
3947/// "typeof(foo)", where that happens to be strong?
3948static bool hasDirectOwnershipQualifier(QualType type) {
3949  // Fast path: no qualifier at all.
3950  assert(type.getQualifiers().hasObjCLifetime());
3951
3952  while (true) {
3953    // __strong id
3954    if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
3955      if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
3956        return true;
3957
3958      type = attr->getModifiedType();
3959
3960    // X *__strong (...)
3961    } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
3962      type = paren->getInnerType();
3963
3964    // That's it for things we want to complain about.  In particular,
3965    // we do not want to look through typedefs, typeof(expr),
3966    // typeof(type), or any other way that the type is somehow
3967    // abstracted.
3968    } else {
3969
3970      return false;
3971    }
3972  }
3973}
3974
3975/// handleObjCOwnershipTypeAttr - Process an objc_ownership
3976/// attribute on the specified type.
3977///
3978/// Returns 'true' if the attribute was handled.
3979static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
3980                                       AttributeList &attr,
3981                                       QualType &type) {
3982  bool NonObjCPointer = false;
3983
3984  if (!type->isDependentType() && !type->isUndeducedType()) {
3985    if (const PointerType *ptr = type->getAs<PointerType>()) {
3986      QualType pointee = ptr->getPointeeType();
3987      if (pointee->isObjCRetainableType() || pointee->isPointerType())
3988        return false;
3989      // It is important not to lose the source info that there was an attribute
3990      // applied to non-objc pointer. We will create an attributed type but
3991      // its type will be the same as the original type.
3992      NonObjCPointer = true;
3993    } else if (!type->isObjCRetainableType()) {
3994      return false;
3995    }
3996
3997    // Don't accept an ownership attribute in the declspec if it would
3998    // just be the return type of a block pointer.
3999    if (state.isProcessingDeclSpec()) {
4000      Declarator &D = state.getDeclarator();
4001      if (maybeMovePastReturnType(D, D.getNumTypeObjects()))
4002        return false;
4003    }
4004  }
4005
4006  Sema &S = state.getSema();
4007  SourceLocation AttrLoc = attr.getLoc();
4008  if (AttrLoc.isMacroID())
4009    AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
4010
4011  if (!attr.isArgIdent(0)) {
4012    S.Diag(AttrLoc, diag::err_attribute_argument_type)
4013      << attr.getName() << AANT_ArgumentString;
4014    attr.setInvalid();
4015    return true;
4016  }
4017
4018  // Consume lifetime attributes without further comment outside of
4019  // ARC mode.
4020  if (!S.getLangOpts().ObjCAutoRefCount)
4021    return true;
4022
4023  IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
4024  Qualifiers::ObjCLifetime lifetime;
4025  if (II->isStr("none"))
4026    lifetime = Qualifiers::OCL_ExplicitNone;
4027  else if (II->isStr("strong"))
4028    lifetime = Qualifiers::OCL_Strong;
4029  else if (II->isStr("weak"))
4030    lifetime = Qualifiers::OCL_Weak;
4031  else if (II->isStr("autoreleasing"))
4032    lifetime = Qualifiers::OCL_Autoreleasing;
4033  else {
4034    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
4035      << "objc_ownership" << II;
4036    attr.setInvalid();
4037    return true;
4038  }
4039
4040  SplitQualType underlyingType = type.split();
4041
4042  // Check for redundant/conflicting ownership qualifiers.
4043  if (Qualifiers::ObjCLifetime previousLifetime
4044        = type.getQualifiers().getObjCLifetime()) {
4045    // If it's written directly, that's an error.
4046    if (hasDirectOwnershipQualifier(type)) {
4047      S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
4048        << type;
4049      return true;
4050    }
4051
4052    // Otherwise, if the qualifiers actually conflict, pull sugar off
4053    // until we reach a type that is directly qualified.
4054    if (previousLifetime != lifetime) {
4055      // This should always terminate: the canonical type is
4056      // qualified, so some bit of sugar must be hiding it.
4057      while (!underlyingType.Quals.hasObjCLifetime()) {
4058        underlyingType = underlyingType.getSingleStepDesugaredType();
4059      }
4060      underlyingType.Quals.removeObjCLifetime();
4061    }
4062  }
4063
4064  underlyingType.Quals.addObjCLifetime(lifetime);
4065
4066  if (NonObjCPointer) {
4067    StringRef name = attr.getName()->getName();
4068    switch (lifetime) {
4069    case Qualifiers::OCL_None:
4070    case Qualifiers::OCL_ExplicitNone:
4071      break;
4072    case Qualifiers::OCL_Strong: name = "__strong"; break;
4073    case Qualifiers::OCL_Weak: name = "__weak"; break;
4074    case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
4075    }
4076    S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
4077      << TDS_ObjCObjOrBlock << type;
4078  }
4079
4080  QualType origType = type;
4081  if (!NonObjCPointer)
4082    type = S.Context.getQualifiedType(underlyingType);
4083
4084  // If we have a valid source location for the attribute, use an
4085  // AttributedType instead.
4086  if (AttrLoc.isValid())
4087    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
4088                                       origType, type);
4089
4090  // Forbid __weak if the runtime doesn't support it.
4091  if (lifetime == Qualifiers::OCL_Weak &&
4092      !S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {
4093
4094    // Actually, delay this until we know what we're parsing.
4095    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
4096      S.DelayedDiagnostics.add(
4097          sema::DelayedDiagnostic::makeForbiddenType(
4098              S.getSourceManager().getExpansionLoc(AttrLoc),
4099              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
4100    } else {
4101      S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
4102    }
4103
4104    attr.setInvalid();
4105    return true;
4106  }
4107
4108  // Forbid __weak for class objects marked as
4109  // objc_arc_weak_reference_unavailable
4110  if (lifetime == Qualifiers::OCL_Weak) {
4111    if (const ObjCObjectPointerType *ObjT =
4112          type->getAs<ObjCObjectPointerType>()) {
4113      if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
4114        if (Class->isArcWeakrefUnavailable()) {
4115            S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
4116            S.Diag(ObjT->getInterfaceDecl()->getLocation(),
4117                   diag::note_class_declared);
4118        }
4119      }
4120    }
4121  }
4122
4123  return true;
4124}
4125
4126/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
4127/// attribute on the specified type.  Returns true to indicate that
4128/// the attribute was handled, false to indicate that the type does
4129/// not permit the attribute.
4130static bool handleObjCGCTypeAttr(TypeProcessingState &state,
4131                                 AttributeList &attr,
4132                                 QualType &type) {
4133  Sema &S = state.getSema();
4134
4135  // Delay if this isn't some kind of pointer.
4136  if (!type->isPointerType() &&
4137      !type->isObjCObjectPointerType() &&
4138      !type->isBlockPointerType())
4139    return false;
4140
4141  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
4142    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
4143    attr.setInvalid();
4144    return true;
4145  }
4146
4147  // Check the attribute arguments.
4148  if (!attr.isArgIdent(0)) {
4149    S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
4150      << attr.getName() << AANT_ArgumentString;
4151    attr.setInvalid();
4152    return true;
4153  }
4154  Qualifiers::GC GCAttr;
4155  if (attr.getNumArgs() > 1) {
4156    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4157      << attr.getName() << 1;
4158    attr.setInvalid();
4159    return true;
4160  }
4161
4162  IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
4163  if (II->isStr("weak"))
4164    GCAttr = Qualifiers::Weak;
4165  else if (II->isStr("strong"))
4166    GCAttr = Qualifiers::Strong;
4167  else {
4168    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
4169      << "objc_gc" << II;
4170    attr.setInvalid();
4171    return true;
4172  }
4173
4174  QualType origType = type;
4175  type = S.Context.getObjCGCQualType(origType, GCAttr);
4176
4177  // Make an attributed type to preserve the source information.
4178  if (attr.getLoc().isValid())
4179    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
4180                                       origType, type);
4181
4182  return true;
4183}
4184
4185namespace {
4186  /// A helper class to unwrap a type down to a function for the
4187  /// purposes of applying attributes there.
4188  ///
4189  /// Use:
4190  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
4191  ///   if (unwrapped.isFunctionType()) {
4192  ///     const FunctionType *fn = unwrapped.get();
4193  ///     // change fn somehow
4194  ///     T = unwrapped.wrap(fn);
4195  ///   }
4196  struct FunctionTypeUnwrapper {
4197    enum WrapKind {
4198      Desugar,
4199      Parens,
4200      Pointer,
4201      BlockPointer,
4202      Reference,
4203      MemberPointer
4204    };
4205
4206    QualType Original;
4207    const FunctionType *Fn;
4208    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
4209
4210    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
4211      while (true) {
4212        const Type *Ty = T.getTypePtr();
4213        if (isa<FunctionType>(Ty)) {
4214          Fn = cast<FunctionType>(Ty);
4215          return;
4216        } else if (isa<ParenType>(Ty)) {
4217          T = cast<ParenType>(Ty)->getInnerType();
4218          Stack.push_back(Parens);
4219        } else if (isa<PointerType>(Ty)) {
4220          T = cast<PointerType>(Ty)->getPointeeType();
4221          Stack.push_back(Pointer);
4222        } else if (isa<BlockPointerType>(Ty)) {
4223          T = cast<BlockPointerType>(Ty)->getPointeeType();
4224          Stack.push_back(BlockPointer);
4225        } else if (isa<MemberPointerType>(Ty)) {
4226          T = cast<MemberPointerType>(Ty)->getPointeeType();
4227          Stack.push_back(MemberPointer);
4228        } else if (isa<ReferenceType>(Ty)) {
4229          T = cast<ReferenceType>(Ty)->getPointeeType();
4230          Stack.push_back(Reference);
4231        } else {
4232          const Type *DTy = Ty->getUnqualifiedDesugaredType();
4233          if (Ty == DTy) {
4234            Fn = 0;
4235            return;
4236          }
4237
4238          T = QualType(DTy, 0);
4239          Stack.push_back(Desugar);
4240        }
4241      }
4242    }
4243
4244    bool isFunctionType() const { return (Fn != 0); }
4245    const FunctionType *get() const { return Fn; }
4246
4247    QualType wrap(Sema &S, const FunctionType *New) {
4248      // If T wasn't modified from the unwrapped type, do nothing.
4249      if (New == get()) return Original;
4250
4251      Fn = New;
4252      return wrap(S.Context, Original, 0);
4253    }
4254
4255  private:
4256    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
4257      if (I == Stack.size())
4258        return C.getQualifiedType(Fn, Old.getQualifiers());
4259
4260      // Build up the inner type, applying the qualifiers from the old
4261      // type to the new type.
4262      SplitQualType SplitOld = Old.split();
4263
4264      // As a special case, tail-recurse if there are no qualifiers.
4265      if (SplitOld.Quals.empty())
4266        return wrap(C, SplitOld.Ty, I);
4267      return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
4268    }
4269
4270    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
4271      if (I == Stack.size()) return QualType(Fn, 0);
4272
4273      switch (static_cast<WrapKind>(Stack[I++])) {
4274      case Desugar:
4275        // This is the point at which we potentially lose source
4276        // information.
4277        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
4278
4279      case Parens: {
4280        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
4281        return C.getParenType(New);
4282      }
4283
4284      case Pointer: {
4285        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
4286        return C.getPointerType(New);
4287      }
4288
4289      case BlockPointer: {
4290        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
4291        return C.getBlockPointerType(New);
4292      }
4293
4294      case MemberPointer: {
4295        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
4296        QualType New = wrap(C, OldMPT->getPointeeType(), I);
4297        return C.getMemberPointerType(New, OldMPT->getClass());
4298      }
4299
4300      case Reference: {
4301        const ReferenceType *OldRef = cast<ReferenceType>(Old);
4302        QualType New = wrap(C, OldRef->getPointeeType(), I);
4303        if (isa<LValueReferenceType>(OldRef))
4304          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
4305        else
4306          return C.getRValueReferenceType(New);
4307      }
4308      }
4309
4310      llvm_unreachable("unknown wrapping kind");
4311    }
4312  };
4313}
4314
4315static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
4316                                             AttributeList &Attr,
4317                                             QualType &Type) {
4318  Sema &S = State.getSema();
4319
4320  AttributeList::Kind Kind = Attr.getKind();
4321  QualType Desugared = Type;
4322  const AttributedType *AT = dyn_cast<AttributedType>(Type);
4323  while (AT) {
4324    AttributedType::Kind CurAttrKind = AT->getAttrKind();
4325
4326    // You cannot specify duplicate type attributes, so if the attribute has
4327    // already been applied, flag it.
4328    if (getAttrListKind(CurAttrKind) == Kind) {
4329      S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute_exact)
4330        << Attr.getName();
4331      return true;
4332    }
4333
4334    // You cannot have both __sptr and __uptr on the same type, nor can you
4335    // have __ptr32 and __ptr64.
4336    if ((CurAttrKind == AttributedType::attr_ptr32 &&
4337         Kind == AttributeList::AT_Ptr64) ||
4338        (CurAttrKind == AttributedType::attr_ptr64 &&
4339         Kind == AttributeList::AT_Ptr32)) {
4340      S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
4341        << "'__ptr32'" << "'__ptr64'";
4342      return true;
4343    } else if ((CurAttrKind == AttributedType::attr_sptr &&
4344                Kind == AttributeList::AT_UPtr) ||
4345               (CurAttrKind == AttributedType::attr_uptr &&
4346                Kind == AttributeList::AT_SPtr)) {
4347      S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
4348        << "'__sptr'" << "'__uptr'";
4349      return true;
4350    }
4351
4352    Desugared = AT->getEquivalentType();
4353    AT = dyn_cast<AttributedType>(Desugared);
4354  }
4355
4356  // Pointer type qualifiers can only operate on pointer types, but not
4357  // pointer-to-member types.
4358  if (!isa<PointerType>(Desugared)) {
4359    S.Diag(Attr.getLoc(), Type->isMemberPointerType() ?
4360                          diag::err_attribute_no_member_pointers :
4361                          diag::err_attribute_pointers_only) << Attr.getName();
4362    return true;
4363  }
4364
4365  AttributedType::Kind TAK;
4366  switch (Kind) {
4367  default: llvm_unreachable("Unknown attribute kind");
4368  case AttributeList::AT_Ptr32: TAK = AttributedType::attr_ptr32; break;
4369  case AttributeList::AT_Ptr64: TAK = AttributedType::attr_ptr64; break;
4370  case AttributeList::AT_SPtr: TAK = AttributedType::attr_sptr; break;
4371  case AttributeList::AT_UPtr: TAK = AttributedType::attr_uptr; break;
4372  }
4373
4374  Type = S.Context.getAttributedType(TAK, Type, Type);
4375  return false;
4376}
4377
4378static AttributedType::Kind getCCTypeAttrKind(AttributeList &Attr) {
4379  assert(!Attr.isInvalid());
4380  switch (Attr.getKind()) {
4381  default:
4382    llvm_unreachable("not a calling convention attribute");
4383  case AttributeList::AT_CDecl:
4384    return AttributedType::attr_cdecl;
4385  case AttributeList::AT_FastCall:
4386    return AttributedType::attr_fastcall;
4387  case AttributeList::AT_StdCall:
4388    return AttributedType::attr_stdcall;
4389  case AttributeList::AT_ThisCall:
4390    return AttributedType::attr_thiscall;
4391  case AttributeList::AT_Pascal:
4392    return AttributedType::attr_pascal;
4393  case AttributeList::AT_Pcs: {
4394    // We know attr is valid so it can only have one of two strings args.
4395    StringLiteral *Str = cast<StringLiteral>(Attr.getArgAsExpr(0));
4396    return llvm::StringSwitch<AttributedType::Kind>(Str->getString())
4397        .Case("aapcs", AttributedType::attr_pcs)
4398        .Case("aapcs-vfp", AttributedType::attr_pcs_vfp);
4399  }
4400  case AttributeList::AT_PnaclCall:
4401    return AttributedType::attr_pnaclcall;
4402  case AttributeList::AT_IntelOclBicc:
4403    return AttributedType::attr_inteloclbicc;
4404  case AttributeList::AT_MSABI:
4405    return AttributedType::attr_ms_abi;
4406  case AttributeList::AT_SysVABI:
4407    return AttributedType::attr_sysv_abi;
4408  }
4409  llvm_unreachable("unexpected attribute kind!");
4410}
4411
4412/// Process an individual function attribute.  Returns true to
4413/// indicate that the attribute was handled, false if it wasn't.
4414static bool handleFunctionTypeAttr(TypeProcessingState &state,
4415                                   AttributeList &attr,
4416                                   QualType &type) {
4417  Sema &S = state.getSema();
4418
4419  FunctionTypeUnwrapper unwrapped(S, type);
4420
4421  if (attr.getKind() == AttributeList::AT_NoReturn) {
4422    if (S.CheckNoReturnAttr(attr))
4423      return true;
4424
4425    // Delay if this is not a function type.
4426    if (!unwrapped.isFunctionType())
4427      return false;
4428
4429    // Otherwise we can process right away.
4430    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
4431    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4432    return true;
4433  }
4434
4435  // ns_returns_retained is not always a type attribute, but if we got
4436  // here, we're treating it as one right now.
4437  if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
4438    assert(S.getLangOpts().ObjCAutoRefCount &&
4439           "ns_returns_retained treated as type attribute in non-ARC");
4440    if (attr.getNumArgs()) return true;
4441
4442    // Delay if this is not a function type.
4443    if (!unwrapped.isFunctionType())
4444      return false;
4445
4446    FunctionType::ExtInfo EI
4447      = unwrapped.get()->getExtInfo().withProducesResult(true);
4448    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4449    return true;
4450  }
4451
4452  if (attr.getKind() == AttributeList::AT_Regparm) {
4453    unsigned value;
4454    if (S.CheckRegparmAttr(attr, value))
4455      return true;
4456
4457    // Delay if this is not a function type.
4458    if (!unwrapped.isFunctionType())
4459      return false;
4460
4461    // Diagnose regparm with fastcall.
4462    const FunctionType *fn = unwrapped.get();
4463    CallingConv CC = fn->getCallConv();
4464    if (CC == CC_X86FastCall) {
4465      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4466        << FunctionType::getNameForCallConv(CC)
4467        << "regparm";
4468      attr.setInvalid();
4469      return true;
4470    }
4471
4472    FunctionType::ExtInfo EI =
4473      unwrapped.get()->getExtInfo().withRegParm(value);
4474    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4475    return true;
4476  }
4477
4478  // Delay if the type didn't work out to a function.
4479  if (!unwrapped.isFunctionType()) return false;
4480
4481  // Otherwise, a calling convention.
4482  CallingConv CC;
4483  if (S.CheckCallingConvAttr(attr, CC))
4484    return true;
4485
4486  const FunctionType *fn = unwrapped.get();
4487  CallingConv CCOld = fn->getCallConv();
4488  AttributedType::Kind CCAttrKind = getCCTypeAttrKind(attr);
4489
4490  if (CCOld != CC) {
4491    // Error out on when there's already an attribute on the type
4492    // and the CCs don't match.
4493    const AttributedType *AT = S.getCallingConvAttributedType(type);
4494    if (AT && AT->getAttrKind() != CCAttrKind) {
4495      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4496        << FunctionType::getNameForCallConv(CC)
4497        << FunctionType::getNameForCallConv(CCOld);
4498      attr.setInvalid();
4499      return true;
4500    }
4501  }
4502
4503  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
4504  if (CC == CC_X86FastCall) {
4505    if (isa<FunctionNoProtoType>(fn)) {
4506      S.Diag(attr.getLoc(), diag::err_cconv_knr)
4507        << FunctionType::getNameForCallConv(CC);
4508      attr.setInvalid();
4509      return true;
4510    }
4511
4512    const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
4513    if (FnP->isVariadic()) {
4514      S.Diag(attr.getLoc(), diag::err_cconv_varargs)
4515        << FunctionType::getNameForCallConv(CC);
4516      attr.setInvalid();
4517      return true;
4518    }
4519
4520    // Also diagnose fastcall with regparm.
4521    if (fn->getHasRegParm()) {
4522      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4523        << "regparm"
4524        << FunctionType::getNameForCallConv(CC);
4525      attr.setInvalid();
4526      return true;
4527    }
4528  }
4529
4530  // Modify the CC from the wrapped function type, wrap it all back, and then
4531  // wrap the whole thing in an AttributedType as written.  The modified type
4532  // might have a different CC if we ignored the attribute.
4533  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
4534  QualType Equivalent =
4535      unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4536  type = S.Context.getAttributedType(CCAttrKind, type, Equivalent);
4537  return true;
4538}
4539
4540void Sema::adjustMemberFunctionCC(QualType &T) {
4541  const FunctionType *FT = T->castAs<FunctionType>();
4542  bool IsVariadic = (isa<FunctionProtoType>(FT) &&
4543                     cast<FunctionProtoType>(FT)->isVariadic());
4544  CallingConv CC = FT->getCallConv();
4545  CallingConv DefaultCC =
4546      Context.getDefaultCallingConvention(IsVariadic, /*IsCXXMethod=*/false);
4547  if (CC != DefaultCC)
4548    return;
4549
4550  // Check if there was an explicit attribute, but only look through parens.
4551  // The intent is to look for an attribute on the current declarator, but not
4552  // one that came from a typedef.
4553  QualType R = T.IgnoreParens();
4554  while (const AttributedType *AT = dyn_cast<AttributedType>(R)) {
4555    if (AT->isCallingConv())
4556      return;
4557    R = AT->getModifiedType().IgnoreParens();
4558  }
4559
4560  // FIXME: This loses sugar.  This should probably be fixed with an implicit
4561  // AttributedType node that adjusts the convention.
4562  CC = Context.getDefaultCallingConvention(IsVariadic, /*IsCXXMethod=*/true);
4563  FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC));
4564  FunctionTypeUnwrapper Unwrapped(*this, T);
4565  T = Unwrapped.wrap(*this, FT);
4566}
4567
4568/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
4569static void HandleOpenCLImageAccessAttribute(QualType& CurType,
4570                                             const AttributeList &Attr,
4571                                             Sema &S) {
4572  // Check the attribute arguments.
4573  if (Attr.getNumArgs() != 1) {
4574    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4575      << Attr.getName() << 1;
4576    Attr.setInvalid();
4577    return;
4578  }
4579  Expr *sizeExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4580  llvm::APSInt arg(32);
4581  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
4582      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
4583    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
4584      << Attr.getName() << AANT_ArgumentIntegerConstant
4585      << sizeExpr->getSourceRange();
4586    Attr.setInvalid();
4587    return;
4588  }
4589  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
4590  switch (iarg) {
4591  case CLIA_read_only:
4592  case CLIA_write_only:
4593  case CLIA_read_write:
4594    // Implemented in a separate patch
4595    break;
4596  default:
4597    // Implemented in a separate patch
4598    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4599      << sizeExpr->getSourceRange();
4600    Attr.setInvalid();
4601    break;
4602  }
4603}
4604
4605/// HandleVectorSizeAttribute - this attribute is only applicable to integral
4606/// and float scalars, although arrays, pointers, and function return values are
4607/// allowed in conjunction with this construct. Aggregates with this attribute
4608/// are invalid, even if they are of the same size as a corresponding scalar.
4609/// The raw attribute should contain precisely 1 argument, the vector size for
4610/// the variable, measured in bytes. If curType and rawAttr are well formed,
4611/// this routine will return a new vector type.
4612static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
4613                                 Sema &S) {
4614  // Check the attribute arguments.
4615  if (Attr.getNumArgs() != 1) {
4616    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4617      << Attr.getName() << 1;
4618    Attr.setInvalid();
4619    return;
4620  }
4621  Expr *sizeExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4622  llvm::APSInt vecSize(32);
4623  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
4624      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
4625    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
4626      << Attr.getName() << AANT_ArgumentIntegerConstant
4627      << sizeExpr->getSourceRange();
4628    Attr.setInvalid();
4629    return;
4630  }
4631  // the base type must be integer or float, and can't already be a vector.
4632  if (!CurType->isBuiltinType() ||
4633      (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
4634    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
4635    Attr.setInvalid();
4636    return;
4637  }
4638  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4639  // vecSize is specified in bytes - convert to bits.
4640  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
4641
4642  // the vector size needs to be an integral multiple of the type size.
4643  if (vectorSize % typeSize) {
4644    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4645      << sizeExpr->getSourceRange();
4646    Attr.setInvalid();
4647    return;
4648  }
4649  if (VectorType::isVectorSizeTooLarge(vectorSize / typeSize)) {
4650    S.Diag(Attr.getLoc(), diag::err_attribute_size_too_large)
4651      << sizeExpr->getSourceRange();
4652    Attr.setInvalid();
4653    return;
4654  }
4655  if (vectorSize == 0) {
4656    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
4657      << sizeExpr->getSourceRange();
4658    Attr.setInvalid();
4659    return;
4660  }
4661
4662  // Success! Instantiate the vector type, the number of elements is > 0, and
4663  // not required to be a power of 2, unlike GCC.
4664  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
4665                                    VectorType::GenericVector);
4666}
4667
4668/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
4669/// a type.
4670static void HandleExtVectorTypeAttr(QualType &CurType,
4671                                    const AttributeList &Attr,
4672                                    Sema &S) {
4673  // check the attribute arguments.
4674  if (Attr.getNumArgs() != 1) {
4675    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4676      << Attr.getName() << 1;
4677    return;
4678  }
4679
4680  Expr *sizeExpr;
4681
4682  // Special case where the argument is a template id.
4683  if (Attr.isArgIdent(0)) {
4684    CXXScopeSpec SS;
4685    SourceLocation TemplateKWLoc;
4686    UnqualifiedId id;
4687    id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
4688
4689    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
4690                                          id, false, false);
4691    if (Size.isInvalid())
4692      return;
4693
4694    sizeExpr = Size.get();
4695  } else {
4696    sizeExpr = Attr.getArgAsExpr(0);
4697  }
4698
4699  // Create the vector type.
4700  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
4701  if (!T.isNull())
4702    CurType = T;
4703}
4704
4705static bool isPermittedNeonBaseType(QualType &Ty,
4706                                    VectorType::VectorKind VecKind,
4707                                    bool IsAArch64) {
4708  const BuiltinType *BTy = Ty->getAs<BuiltinType>();
4709  if (!BTy)
4710    return false;
4711
4712  if (VecKind == VectorType::NeonPolyVector) {
4713    if (IsAArch64) {
4714      // AArch64 polynomial vectors are unsigned
4715      return BTy->getKind() == BuiltinType::UChar ||
4716             BTy->getKind() == BuiltinType::UShort;
4717    } else {
4718      // AArch32 polynomial vector are signed.
4719      return BTy->getKind() == BuiltinType::SChar ||
4720             BTy->getKind() == BuiltinType::Short;
4721    }
4722  }
4723
4724  // Non-polynomial vector types: the usual suspects are allowed, as well as
4725  // float64_t on AArch64.
4726  if (IsAArch64 && BTy->getKind() == BuiltinType::Double)
4727    return true;
4728
4729  return BTy->getKind() == BuiltinType::SChar ||
4730         BTy->getKind() == BuiltinType::UChar ||
4731         BTy->getKind() == BuiltinType::Short ||
4732         BTy->getKind() == BuiltinType::UShort ||
4733         BTy->getKind() == BuiltinType::Int ||
4734         BTy->getKind() == BuiltinType::UInt ||
4735         BTy->getKind() == BuiltinType::LongLong ||
4736         BTy->getKind() == BuiltinType::ULongLong ||
4737         BTy->getKind() == BuiltinType::Float ||
4738         BTy->getKind() == BuiltinType::Half;
4739}
4740
4741/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
4742/// "neon_polyvector_type" attributes are used to create vector types that
4743/// are mangled according to ARM's ABI.  Otherwise, these types are identical
4744/// to those created with the "vector_size" attribute.  Unlike "vector_size"
4745/// the argument to these Neon attributes is the number of vector elements,
4746/// not the vector size in bytes.  The vector width and element type must
4747/// match one of the standard Neon vector types.
4748static void HandleNeonVectorTypeAttr(QualType& CurType,
4749                                     const AttributeList &Attr, Sema &S,
4750                                     VectorType::VectorKind VecKind) {
4751  // Check the attribute arguments.
4752  if (Attr.getNumArgs() != 1) {
4753    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4754      << Attr.getName() << 1;
4755    Attr.setInvalid();
4756    return;
4757  }
4758  // The number of elements must be an ICE.
4759  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4760  llvm::APSInt numEltsInt(32);
4761  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
4762      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
4763    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
4764      << Attr.getName() << AANT_ArgumentIntegerConstant
4765      << numEltsExpr->getSourceRange();
4766    Attr.setInvalid();
4767    return;
4768  }
4769  // Only certain element types are supported for Neon vectors.
4770  llvm::Triple::ArchType Arch =
4771        S.Context.getTargetInfo().getTriple().getArch();
4772  if (!isPermittedNeonBaseType(CurType, VecKind,
4773                               Arch == llvm::Triple::aarch64)) {
4774    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
4775    Attr.setInvalid();
4776    return;
4777  }
4778
4779  // The total size of the vector must be 64 or 128 bits.
4780  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4781  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
4782  unsigned vecSize = typeSize * numElts;
4783  if (vecSize != 64 && vecSize != 128) {
4784    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
4785    Attr.setInvalid();
4786    return;
4787  }
4788
4789  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
4790}
4791
4792static void processTypeAttrs(TypeProcessingState &state, QualType &type,
4793                             TypeAttrLocation TAL, AttributeList *attrs) {
4794  // Scan through and apply attributes to this type where it makes sense.  Some
4795  // attributes (such as __address_space__, __vector_size__, etc) apply to the
4796  // type, but others can be present in the type specifiers even though they
4797  // apply to the decl.  Here we apply type attributes and ignore the rest.
4798
4799  AttributeList *next;
4800  do {
4801    AttributeList &attr = *attrs;
4802    next = attr.getNext();
4803
4804    // Skip attributes that were marked to be invalid.
4805    if (attr.isInvalid())
4806      continue;
4807
4808    if (attr.isCXX11Attribute()) {
4809      // [[gnu::...]] attributes are treated as declaration attributes, so may
4810      // not appertain to a DeclaratorChunk, even if we handle them as type
4811      // attributes.
4812      if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
4813        if (TAL == TAL_DeclChunk) {
4814          state.getSema().Diag(attr.getLoc(),
4815                               diag::warn_cxx11_gnu_attribute_on_type)
4816              << attr.getName();
4817          continue;
4818        }
4819      } else if (TAL != TAL_DeclChunk) {
4820        // Otherwise, only consider type processing for a C++11 attribute if
4821        // it's actually been applied to a type.
4822        continue;
4823      }
4824    }
4825
4826    // If this is an attribute we can handle, do so now,
4827    // otherwise, add it to the FnAttrs list for rechaining.
4828    switch (attr.getKind()) {
4829    default:
4830      // A C++11 attribute on a declarator chunk must appertain to a type.
4831      if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
4832        state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
4833          << attr.getName();
4834        attr.setUsedAsTypeAttr();
4835      }
4836      break;
4837
4838    case AttributeList::UnknownAttribute:
4839      if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
4840        state.getSema().Diag(attr.getLoc(),
4841                             diag::warn_unknown_attribute_ignored)
4842          << attr.getName();
4843      break;
4844
4845    case AttributeList::IgnoredAttribute:
4846      break;
4847
4848    case AttributeList::AT_MayAlias:
4849      // FIXME: This attribute needs to actually be handled, but if we ignore
4850      // it it breaks large amounts of Linux software.
4851      attr.setUsedAsTypeAttr();
4852      break;
4853    case AttributeList::AT_AddressSpace:
4854      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
4855      attr.setUsedAsTypeAttr();
4856      break;
4857    OBJC_POINTER_TYPE_ATTRS_CASELIST:
4858      if (!handleObjCPointerTypeAttr(state, attr, type))
4859        distributeObjCPointerTypeAttr(state, attr, type);
4860      attr.setUsedAsTypeAttr();
4861      break;
4862    case AttributeList::AT_VectorSize:
4863      HandleVectorSizeAttr(type, attr, state.getSema());
4864      attr.setUsedAsTypeAttr();
4865      break;
4866    case AttributeList::AT_ExtVectorType:
4867      HandleExtVectorTypeAttr(type, attr, state.getSema());
4868      attr.setUsedAsTypeAttr();
4869      break;
4870    case AttributeList::AT_NeonVectorType:
4871      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4872                               VectorType::NeonVector);
4873      attr.setUsedAsTypeAttr();
4874      break;
4875    case AttributeList::AT_NeonPolyVectorType:
4876      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4877                               VectorType::NeonPolyVector);
4878      attr.setUsedAsTypeAttr();
4879      break;
4880    case AttributeList::AT_OpenCLImageAccess:
4881      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
4882      attr.setUsedAsTypeAttr();
4883      break;
4884
4885    case AttributeList::AT_Win64:
4886      attr.setUsedAsTypeAttr();
4887      break;
4888    MS_TYPE_ATTRS_CASELIST:
4889      if (!handleMSPointerTypeQualifierAttr(state, attr, type))
4890        attr.setUsedAsTypeAttr();
4891      break;
4892
4893    case AttributeList::AT_NSReturnsRetained:
4894      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
4895        break;
4896      // fallthrough into the function attrs
4897
4898    FUNCTION_TYPE_ATTRS_CASELIST:
4899      attr.setUsedAsTypeAttr();
4900
4901      // Never process function type attributes as part of the
4902      // declaration-specifiers.
4903      if (TAL == TAL_DeclSpec)
4904        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
4905
4906      // Otherwise, handle the possible delays.
4907      else if (!handleFunctionTypeAttr(state, attr, type))
4908        distributeFunctionTypeAttr(state, attr, type);
4909      break;
4910    }
4911  } while ((attrs = next));
4912}
4913
4914/// \brief Ensure that the type of the given expression is complete.
4915///
4916/// This routine checks whether the expression \p E has a complete type. If the
4917/// expression refers to an instantiable construct, that instantiation is
4918/// performed as needed to complete its type. Furthermore
4919/// Sema::RequireCompleteType is called for the expression's type (or in the
4920/// case of a reference type, the referred-to type).
4921///
4922/// \param E The expression whose type is required to be complete.
4923/// \param Diagnoser The object that will emit a diagnostic if the type is
4924/// incomplete.
4925///
4926/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
4927/// otherwise.
4928bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
4929  QualType T = E->getType();
4930
4931  // Fast path the case where the type is already complete.
4932  if (!T->isIncompleteType())
4933    // FIXME: The definition might not be visible.
4934    return false;
4935
4936  // Incomplete array types may be completed by the initializer attached to
4937  // their definitions. For static data members of class templates we need to
4938  // instantiate the definition to get this initializer and complete the type.
4939  if (T->isIncompleteArrayType()) {
4940    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4941      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4942        if (Var->isStaticDataMember() &&
4943            Var->getInstantiatedFromStaticDataMember()) {
4944
4945          MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
4946          assert(MSInfo && "Missing member specialization information?");
4947          if (MSInfo->getTemplateSpecializationKind()
4948                != TSK_ExplicitSpecialization) {
4949            // If we don't already have a point of instantiation, this is it.
4950            if (MSInfo->getPointOfInstantiation().isInvalid()) {
4951              MSInfo->setPointOfInstantiation(E->getLocStart());
4952
4953              // This is a modification of an existing AST node. Notify
4954              // listeners.
4955              if (ASTMutationListener *L = getASTMutationListener())
4956                L->StaticDataMemberInstantiated(Var);
4957            }
4958
4959            InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
4960
4961            // Update the type to the newly instantiated definition's type both
4962            // here and within the expression.
4963            if (VarDecl *Def = Var->getDefinition()) {
4964              DRE->setDecl(Def);
4965              T = Def->getType();
4966              DRE->setType(T);
4967              E->setType(T);
4968            }
4969          }
4970
4971          // We still go on to try to complete the type independently, as it
4972          // may also require instantiations or diagnostics if it remains
4973          // incomplete.
4974        }
4975      }
4976    }
4977  }
4978
4979  // FIXME: Are there other cases which require instantiating something other
4980  // than the type to complete the type of an expression?
4981
4982  // Look through reference types and complete the referred type.
4983  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
4984    T = Ref->getPointeeType();
4985
4986  return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
4987}
4988
4989namespace {
4990  struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
4991    unsigned DiagID;
4992
4993    TypeDiagnoserDiag(unsigned DiagID)
4994      : Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
4995
4996    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
4997      if (Suppressed) return;
4998      S.Diag(Loc, DiagID) << T;
4999    }
5000  };
5001}
5002
5003bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
5004  TypeDiagnoserDiag Diagnoser(DiagID);
5005  return RequireCompleteExprType(E, Diagnoser);
5006}
5007
5008/// @brief Ensure that the type T is a complete type.
5009///
5010/// This routine checks whether the type @p T is complete in any
5011/// context where a complete type is required. If @p T is a complete
5012/// type, returns false. If @p T is a class template specialization,
5013/// this routine then attempts to perform class template
5014/// instantiation. If instantiation fails, or if @p T is incomplete
5015/// and cannot be completed, issues the diagnostic @p diag (giving it
5016/// the type @p T) and returns true.
5017///
5018/// @param Loc  The location in the source that the incomplete type
5019/// diagnostic should refer to.
5020///
5021/// @param T  The type that this routine is examining for completeness.
5022///
5023/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
5024/// @c false otherwise.
5025bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
5026                               TypeDiagnoser &Diagnoser) {
5027  if (RequireCompleteTypeImpl(Loc, T, Diagnoser))
5028    return true;
5029  if (const TagType *Tag = T->getAs<TagType>()) {
5030    if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
5031      Tag->getDecl()->setCompleteDefinitionRequired();
5032      Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
5033    }
5034  }
5035  return false;
5036}
5037
5038/// \brief The implementation of RequireCompleteType
5039bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
5040                                   TypeDiagnoser &Diagnoser) {
5041  // FIXME: Add this assertion to make sure we always get instantiation points.
5042  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
5043  // FIXME: Add this assertion to help us flush out problems with
5044  // checking for dependent types and type-dependent expressions.
5045  //
5046  //  assert(!T->isDependentType() &&
5047  //         "Can't ask whether a dependent type is complete");
5048
5049  // If we have a complete type, we're done.
5050  NamedDecl *Def = 0;
5051  if (!T->isIncompleteType(&Def)) {
5052    // If we know about the definition but it is not visible, complain.
5053    if (!Diagnoser.Suppressed && Def && !LookupResult::isVisible(*this, Def)) {
5054      // Suppress this error outside of a SFINAE context if we've already
5055      // emitted the error once for this type. There's no usefulness in
5056      // repeating the diagnostic.
5057      // FIXME: Add a Fix-It that imports the corresponding module or includes
5058      // the header.
5059      Module *Owner = Def->getOwningModule();
5060      Diag(Loc, diag::err_module_private_definition)
5061        << T << Owner->getFullModuleName();
5062      Diag(Def->getLocation(), diag::note_previous_definition);
5063
5064      if (!isSFINAEContext()) {
5065        // Recover by implicitly importing this module.
5066        createImplicitModuleImport(Loc, Owner);
5067      }
5068    }
5069
5070    return false;
5071  }
5072
5073  // FIXME: If there's an unimported definition of this type in a module (for
5074  // instance, because we forward declared it, then imported the definition),
5075  // import that definition now.
5076  // FIXME: What about other cases where an import extends a redeclaration
5077  // chain for a declaration that can be accessed through a mechanism other
5078  // than name lookup (eg, referenced in a template, or a variable whose type
5079  // could be completed by the module)?
5080
5081  const TagType *Tag = T->getAs<TagType>();
5082  const ObjCInterfaceType *IFace = 0;
5083
5084  if (Tag) {
5085    // Avoid diagnosing invalid decls as incomplete.
5086    if (Tag->getDecl()->isInvalidDecl())
5087      return true;
5088
5089    // Give the external AST source a chance to complete the type.
5090    if (Tag->getDecl()->hasExternalLexicalStorage()) {
5091      Context.getExternalSource()->CompleteType(Tag->getDecl());
5092      if (!Tag->isIncompleteType())
5093        return false;
5094    }
5095  }
5096  else if ((IFace = T->getAs<ObjCInterfaceType>())) {
5097    // Avoid diagnosing invalid decls as incomplete.
5098    if (IFace->getDecl()->isInvalidDecl())
5099      return true;
5100
5101    // Give the external AST source a chance to complete the type.
5102    if (IFace->getDecl()->hasExternalLexicalStorage()) {
5103      Context.getExternalSource()->CompleteType(IFace->getDecl());
5104      if (!IFace->isIncompleteType())
5105        return false;
5106    }
5107  }
5108
5109  // If we have a class template specialization or a class member of a
5110  // class template specialization, or an array with known size of such,
5111  // try to instantiate it.
5112  QualType MaybeTemplate = T;
5113  while (const ConstantArrayType *Array
5114           = Context.getAsConstantArrayType(MaybeTemplate))
5115    MaybeTemplate = Array->getElementType();
5116  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
5117    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
5118          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
5119      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
5120        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
5121                                                      TSK_ImplicitInstantiation,
5122                                            /*Complain=*/!Diagnoser.Suppressed);
5123    } else if (CXXRecordDecl *Rec
5124                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
5125      CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
5126      if (!Rec->isBeingDefined() && Pattern) {
5127        MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
5128        assert(MSI && "Missing member specialization information?");
5129        // This record was instantiated from a class within a template.
5130        if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5131          return InstantiateClass(Loc, Rec, Pattern,
5132                                  getTemplateInstantiationArgs(Rec),
5133                                  TSK_ImplicitInstantiation,
5134                                  /*Complain=*/!Diagnoser.Suppressed);
5135      }
5136    }
5137  }
5138
5139  if (Diagnoser.Suppressed)
5140    return true;
5141
5142  // We have an incomplete type. Produce a diagnostic.
5143  if (Ident___float128 &&
5144      T == Context.getTypeDeclType(Context.getFloat128StubType())) {
5145    Diag(Loc, diag::err_typecheck_decl_incomplete_type___float128);
5146    return true;
5147  }
5148
5149  Diagnoser.diagnose(*this, Loc, T);
5150
5151  // If the type was a forward declaration of a class/struct/union
5152  // type, produce a note.
5153  if (Tag && !Tag->getDecl()->isInvalidDecl())
5154    Diag(Tag->getDecl()->getLocation(),
5155         Tag->isBeingDefined() ? diag::note_type_being_defined
5156                               : diag::note_forward_declaration)
5157      << QualType(Tag, 0);
5158
5159  // If the Objective-C class was a forward declaration, produce a note.
5160  if (IFace && !IFace->getDecl()->isInvalidDecl())
5161    Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
5162
5163  // If we have external information that we can use to suggest a fix,
5164  // produce a note.
5165  if (ExternalSource)
5166    ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
5167
5168  return true;
5169}
5170
5171bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
5172                               unsigned DiagID) {
5173  TypeDiagnoserDiag Diagnoser(DiagID);
5174  return RequireCompleteType(Loc, T, Diagnoser);
5175}
5176
5177/// \brief Get diagnostic %select index for tag kind for
5178/// literal type diagnostic message.
5179/// WARNING: Indexes apply to particular diagnostics only!
5180///
5181/// \returns diagnostic %select index.
5182static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
5183  switch (Tag) {
5184  case TTK_Struct: return 0;
5185  case TTK_Interface: return 1;
5186  case TTK_Class:  return 2;
5187  default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
5188  }
5189}
5190
5191/// @brief Ensure that the type T is a literal type.
5192///
5193/// This routine checks whether the type @p T is a literal type. If @p T is an
5194/// incomplete type, an attempt is made to complete it. If @p T is a literal
5195/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
5196/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
5197/// it the type @p T), along with notes explaining why the type is not a
5198/// literal type, and returns true.
5199///
5200/// @param Loc  The location in the source that the non-literal type
5201/// diagnostic should refer to.
5202///
5203/// @param T  The type that this routine is examining for literalness.
5204///
5205/// @param Diagnoser Emits a diagnostic if T is not a literal type.
5206///
5207/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
5208/// @c false otherwise.
5209bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
5210                              TypeDiagnoser &Diagnoser) {
5211  assert(!T->isDependentType() && "type should not be dependent");
5212
5213  QualType ElemType = Context.getBaseElementType(T);
5214  RequireCompleteType(Loc, ElemType, 0);
5215
5216  if (T->isLiteralType(Context))
5217    return false;
5218
5219  if (Diagnoser.Suppressed)
5220    return true;
5221
5222  Diagnoser.diagnose(*this, Loc, T);
5223
5224  if (T->isVariableArrayType())
5225    return true;
5226
5227  const RecordType *RT = ElemType->getAs<RecordType>();
5228  if (!RT)
5229    return true;
5230
5231  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5232
5233  // A partially-defined class type can't be a literal type, because a literal
5234  // class type must have a trivial destructor (which can't be checked until
5235  // the class definition is complete).
5236  if (!RD->isCompleteDefinition()) {
5237    RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
5238    return true;
5239  }
5240
5241  // If the class has virtual base classes, then it's not an aggregate, and
5242  // cannot have any constexpr constructors or a trivial default constructor,
5243  // so is non-literal. This is better to diagnose than the resulting absence
5244  // of constexpr constructors.
5245  if (RD->getNumVBases()) {
5246    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
5247      << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
5248    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
5249           E = RD->vbases_end(); I != E; ++I)
5250      Diag(I->getLocStart(),
5251           diag::note_constexpr_virtual_base_here) << I->getSourceRange();
5252  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
5253             !RD->hasTrivialDefaultConstructor()) {
5254    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
5255  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
5256    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
5257         E = RD->bases_end(); I != E; ++I) {
5258      if (!I->getType()->isLiteralType(Context)) {
5259        Diag(I->getLocStart(),
5260             diag::note_non_literal_base_class)
5261          << RD << I->getType() << I->getSourceRange();
5262        return true;
5263      }
5264    }
5265    for (CXXRecordDecl::field_iterator I = RD->field_begin(),
5266         E = RD->field_end(); I != E; ++I) {
5267      if (!I->getType()->isLiteralType(Context) ||
5268          I->getType().isVolatileQualified()) {
5269        Diag(I->getLocation(), diag::note_non_literal_field)
5270          << RD << *I << I->getType()
5271          << I->getType().isVolatileQualified();
5272        return true;
5273      }
5274    }
5275  } else if (!RD->hasTrivialDestructor()) {
5276    // All fields and bases are of literal types, so have trivial destructors.
5277    // If this class's destructor is non-trivial it must be user-declared.
5278    CXXDestructorDecl *Dtor = RD->getDestructor();
5279    assert(Dtor && "class has literal fields and bases but no dtor?");
5280    if (!Dtor)
5281      return true;
5282
5283    Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
5284         diag::note_non_literal_user_provided_dtor :
5285         diag::note_non_literal_nontrivial_dtor) << RD;
5286    if (!Dtor->isUserProvided())
5287      SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
5288  }
5289
5290  return true;
5291}
5292
5293bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
5294  TypeDiagnoserDiag Diagnoser(DiagID);
5295  return RequireLiteralType(Loc, T, Diagnoser);
5296}
5297
5298/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
5299/// and qualified by the nested-name-specifier contained in SS.
5300QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
5301                                 const CXXScopeSpec &SS, QualType T) {
5302  if (T.isNull())
5303    return T;
5304  NestedNameSpecifier *NNS;
5305  if (SS.isValid())
5306    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5307  else {
5308    if (Keyword == ETK_None)
5309      return T;
5310    NNS = 0;
5311  }
5312  return Context.getElaboratedType(Keyword, NNS, T);
5313}
5314
5315QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
5316  ExprResult ER = CheckPlaceholderExpr(E);
5317  if (ER.isInvalid()) return QualType();
5318  E = ER.take();
5319
5320  if (!E->isTypeDependent()) {
5321    QualType T = E->getType();
5322    if (const TagType *TT = T->getAs<TagType>())
5323      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
5324  }
5325  return Context.getTypeOfExprType(E);
5326}
5327
5328/// getDecltypeForExpr - Given an expr, will return the decltype for
5329/// that expression, according to the rules in C++11
5330/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
5331static QualType getDecltypeForExpr(Sema &S, Expr *E) {
5332  if (E->isTypeDependent())
5333    return S.Context.DependentTy;
5334
5335  // C++11 [dcl.type.simple]p4:
5336  //   The type denoted by decltype(e) is defined as follows:
5337  //
5338  //     - if e is an unparenthesized id-expression or an unparenthesized class
5339  //       member access (5.2.5), decltype(e) is the type of the entity named
5340  //       by e. If there is no such entity, or if e names a set of overloaded
5341  //       functions, the program is ill-formed;
5342  //
5343  // We apply the same rules for Objective-C ivar and property references.
5344  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
5345    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
5346      return VD->getType();
5347  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5348    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
5349      return FD->getType();
5350  } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
5351    return IR->getDecl()->getType();
5352  } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
5353    if (PR->isExplicitProperty())
5354      return PR->getExplicitProperty()->getType();
5355  }
5356
5357  // C++11 [expr.lambda.prim]p18:
5358  //   Every occurrence of decltype((x)) where x is a possibly
5359  //   parenthesized id-expression that names an entity of automatic
5360  //   storage duration is treated as if x were transformed into an
5361  //   access to a corresponding data member of the closure type that
5362  //   would have been declared if x were an odr-use of the denoted
5363  //   entity.
5364  using namespace sema;
5365  if (S.getCurLambda()) {
5366    if (isa<ParenExpr>(E)) {
5367      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
5368        if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
5369          QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
5370          if (!T.isNull())
5371            return S.Context.getLValueReferenceType(T);
5372        }
5373      }
5374    }
5375  }
5376
5377
5378  // C++11 [dcl.type.simple]p4:
5379  //   [...]
5380  QualType T = E->getType();
5381  switch (E->getValueKind()) {
5382  //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
5383  //       type of e;
5384  case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
5385  //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
5386  //       type of e;
5387  case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
5388  //  - otherwise, decltype(e) is the type of e.
5389  case VK_RValue: break;
5390  }
5391
5392  return T;
5393}
5394
5395QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
5396  ExprResult ER = CheckPlaceholderExpr(E);
5397  if (ER.isInvalid()) return QualType();
5398  E = ER.take();
5399
5400  return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
5401}
5402
5403QualType Sema::BuildUnaryTransformType(QualType BaseType,
5404                                       UnaryTransformType::UTTKind UKind,
5405                                       SourceLocation Loc) {
5406  switch (UKind) {
5407  case UnaryTransformType::EnumUnderlyingType:
5408    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
5409      Diag(Loc, diag::err_only_enums_have_underlying_types);
5410      return QualType();
5411    } else {
5412      QualType Underlying = BaseType;
5413      if (!BaseType->isDependentType()) {
5414        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
5415        assert(ED && "EnumType has no EnumDecl");
5416        DiagnoseUseOfDecl(ED, Loc);
5417        Underlying = ED->getIntegerType();
5418      }
5419      assert(!Underlying.isNull());
5420      return Context.getUnaryTransformType(BaseType, Underlying,
5421                                        UnaryTransformType::EnumUnderlyingType);
5422    }
5423  }
5424  llvm_unreachable("unknown unary transform type");
5425}
5426
5427QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
5428  if (!T->isDependentType()) {
5429    // FIXME: It isn't entirely clear whether incomplete atomic types
5430    // are allowed or not; for simplicity, ban them for the moment.
5431    if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
5432      return QualType();
5433
5434    int DisallowedKind = -1;
5435    if (T->isArrayType())
5436      DisallowedKind = 1;
5437    else if (T->isFunctionType())
5438      DisallowedKind = 2;
5439    else if (T->isReferenceType())
5440      DisallowedKind = 3;
5441    else if (T->isAtomicType())
5442      DisallowedKind = 4;
5443    else if (T.hasQualifiers())
5444      DisallowedKind = 5;
5445    else if (!T.isTriviallyCopyableType(Context))
5446      // Some other non-trivially-copyable type (probably a C++ class)
5447      DisallowedKind = 6;
5448
5449    if (DisallowedKind != -1) {
5450      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
5451      return QualType();
5452    }
5453
5454    // FIXME: Do we need any handling for ARC here?
5455  }
5456
5457  // Build the pointer type.
5458  return Context.getAtomicType(T);
5459}
5460