SemaType.cpp revision b775100fea6d8955149897dae1adca50ca471d17
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeLocVisitor.h"
24#include "clang/Basic/OpenCL.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Parse/ParseDiagnostic.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/DelayedDiagnostic.h"
31#include "clang/Sema/Lookup.h"
32#include "clang/Sema/ScopeInfo.h"
33#include "clang/Sema/Template.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SmallString.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "TypeLocBuilder.h"
38
39using namespace clang;
40
41enum TypeDiagSelector {
42  TDS_Function,
43  TDS_Pointer,
44  TDS_ObjCObjOrBlock
45};
46
47/// isOmittedBlockReturnType - Return true if this declarator is missing a
48/// return type because this is a omitted return type on a block literal.
49static bool isOmittedBlockReturnType(const Declarator &D) {
50  if (D.getContext() != Declarator::BlockLiteralContext ||
51      D.getDeclSpec().hasTypeSpecifier())
52    return false;
53
54  if (D.getNumTypeObjects() == 0)
55    return true;   // ^{ ... }
56
57  if (D.getNumTypeObjects() == 1 &&
58      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
59    return true;   // ^(int X, float Y) { ... }
60
61  return false;
62}
63
64/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
65/// doesn't apply to the given type.
66static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
67                                     QualType type) {
68  TypeDiagSelector WhichType;
69  bool useExpansionLoc = true;
70  switch (attr.getKind()) {
71  case AttributeList::AT_ObjCGC:        WhichType = TDS_Pointer; break;
72  case AttributeList::AT_ObjCOwnership: WhichType = TDS_ObjCObjOrBlock; break;
73  default:
74    // Assume everything else was a function attribute.
75    WhichType = TDS_Function;
76    useExpansionLoc = false;
77    break;
78  }
79
80  SourceLocation loc = attr.getLoc();
81  StringRef name = attr.getName()->getName();
82
83  // The GC attributes are usually written with macros;  special-case them.
84  if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
85    if (attr.getParameterName()->isStr("strong")) {
86      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
87    } else if (attr.getParameterName()->isStr("weak")) {
88      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
89    }
90  }
91
92  S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
93    << type;
94}
95
96// objc_gc applies to Objective-C pointers or, otherwise, to the
97// smallest available pointer type (i.e. 'void*' in 'void**').
98#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
99    case AttributeList::AT_ObjCGC: \
100    case AttributeList::AT_ObjCOwnership
101
102// Function type attributes.
103#define FUNCTION_TYPE_ATTRS_CASELIST \
104    case AttributeList::AT_NoReturn: \
105    case AttributeList::AT_CDecl: \
106    case AttributeList::AT_FastCall: \
107    case AttributeList::AT_StdCall: \
108    case AttributeList::AT_ThisCall: \
109    case AttributeList::AT_Pascal: \
110    case AttributeList::AT_Regparm: \
111    case AttributeList::AT_Pcs: \
112    case AttributeList::AT_PnaclCall: \
113    case AttributeList::AT_IntelOclBicc
114
115// Microsoft-specific type qualifiers.
116#define MS_TYPE_ATTRS_CASELIST  \
117    case AttributeList::AT_Ptr32: \
118    case AttributeList::AT_Ptr64: \
119    case AttributeList::AT_SPtr: \
120    case AttributeList::AT_UPtr
121
122namespace {
123  /// An object which stores processing state for the entire
124  /// GetTypeForDeclarator process.
125  class TypeProcessingState {
126    Sema &sema;
127
128    /// The declarator being processed.
129    Declarator &declarator;
130
131    /// The index of the declarator chunk we're currently processing.
132    /// May be the total number of valid chunks, indicating the
133    /// DeclSpec.
134    unsigned chunkIndex;
135
136    /// Whether there are non-trivial modifications to the decl spec.
137    bool trivial;
138
139    /// Whether we saved the attributes in the decl spec.
140    bool hasSavedAttrs;
141
142    /// The original set of attributes on the DeclSpec.
143    SmallVector<AttributeList*, 2> savedAttrs;
144
145    /// A list of attributes to diagnose the uselessness of when the
146    /// processing is complete.
147    SmallVector<AttributeList*, 2> ignoredTypeAttrs;
148
149  public:
150    TypeProcessingState(Sema &sema, Declarator &declarator)
151      : sema(sema), declarator(declarator),
152        chunkIndex(declarator.getNumTypeObjects()),
153        trivial(true), hasSavedAttrs(false) {}
154
155    Sema &getSema() const {
156      return sema;
157    }
158
159    Declarator &getDeclarator() const {
160      return declarator;
161    }
162
163    bool isProcessingDeclSpec() const {
164      return chunkIndex == declarator.getNumTypeObjects();
165    }
166
167    unsigned getCurrentChunkIndex() const {
168      return chunkIndex;
169    }
170
171    void setCurrentChunkIndex(unsigned idx) {
172      assert(idx <= declarator.getNumTypeObjects());
173      chunkIndex = idx;
174    }
175
176    AttributeList *&getCurrentAttrListRef() const {
177      if (isProcessingDeclSpec())
178        return getMutableDeclSpec().getAttributes().getListRef();
179      return declarator.getTypeObject(chunkIndex).getAttrListRef();
180    }
181
182    /// Save the current set of attributes on the DeclSpec.
183    void saveDeclSpecAttrs() {
184      // Don't try to save them multiple times.
185      if (hasSavedAttrs) return;
186
187      DeclSpec &spec = getMutableDeclSpec();
188      for (AttributeList *attr = spec.getAttributes().getList(); attr;
189             attr = attr->getNext())
190        savedAttrs.push_back(attr);
191      trivial &= savedAttrs.empty();
192      hasSavedAttrs = true;
193    }
194
195    /// Record that we had nowhere to put the given type attribute.
196    /// We will diagnose such attributes later.
197    void addIgnoredTypeAttr(AttributeList &attr) {
198      ignoredTypeAttrs.push_back(&attr);
199    }
200
201    /// Diagnose all the ignored type attributes, given that the
202    /// declarator worked out to the given type.
203    void diagnoseIgnoredTypeAttrs(QualType type) const {
204      for (SmallVectorImpl<AttributeList*>::const_iterator
205             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
206           i != e; ++i)
207        diagnoseBadTypeAttribute(getSema(), **i, type);
208    }
209
210    ~TypeProcessingState() {
211      if (trivial) return;
212
213      restoreDeclSpecAttrs();
214    }
215
216  private:
217    DeclSpec &getMutableDeclSpec() const {
218      return const_cast<DeclSpec&>(declarator.getDeclSpec());
219    }
220
221    void restoreDeclSpecAttrs() {
222      assert(hasSavedAttrs);
223
224      if (savedAttrs.empty()) {
225        getMutableDeclSpec().getAttributes().set(0);
226        return;
227      }
228
229      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
230      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
231        savedAttrs[i]->setNext(savedAttrs[i+1]);
232      savedAttrs.back()->setNext(0);
233    }
234  };
235
236  /// Basically std::pair except that we really want to avoid an
237  /// implicit operator= for safety concerns.  It's also a minor
238  /// link-time optimization for this to be a private type.
239  struct AttrAndList {
240    /// The attribute.
241    AttributeList &first;
242
243    /// The head of the list the attribute is currently in.
244    AttributeList *&second;
245
246    AttrAndList(AttributeList &attr, AttributeList *&head)
247      : first(attr), second(head) {}
248  };
249}
250
251namespace llvm {
252  template <> struct isPodLike<AttrAndList> {
253    static const bool value = true;
254  };
255}
256
257static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
258  attr.setNext(head);
259  head = &attr;
260}
261
262static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
263  if (head == &attr) {
264    head = attr.getNext();
265    return;
266  }
267
268  AttributeList *cur = head;
269  while (true) {
270    assert(cur && cur->getNext() && "ran out of attrs?");
271    if (cur->getNext() == &attr) {
272      cur->setNext(attr.getNext());
273      return;
274    }
275    cur = cur->getNext();
276  }
277}
278
279static void moveAttrFromListToList(AttributeList &attr,
280                                   AttributeList *&fromList,
281                                   AttributeList *&toList) {
282  spliceAttrOutOfList(attr, fromList);
283  spliceAttrIntoList(attr, toList);
284}
285
286/// The location of a type attribute.
287enum TypeAttrLocation {
288  /// The attribute is in the decl-specifier-seq.
289  TAL_DeclSpec,
290  /// The attribute is part of a DeclaratorChunk.
291  TAL_DeclChunk,
292  /// The attribute is immediately after the declaration's name.
293  TAL_DeclName
294};
295
296static void processTypeAttrs(TypeProcessingState &state,
297                             QualType &type, TypeAttrLocation TAL,
298                             AttributeList *attrs);
299
300static bool handleFunctionTypeAttr(TypeProcessingState &state,
301                                   AttributeList &attr,
302                                   QualType &type);
303
304static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
305                                             AttributeList &attr,
306                                             QualType &type);
307
308static bool handleObjCGCTypeAttr(TypeProcessingState &state,
309                                 AttributeList &attr, QualType &type);
310
311static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
312                                       AttributeList &attr, QualType &type);
313
314static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
315                                      AttributeList &attr, QualType &type) {
316  if (attr.getKind() == AttributeList::AT_ObjCGC)
317    return handleObjCGCTypeAttr(state, attr, type);
318  assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
319  return handleObjCOwnershipTypeAttr(state, attr, type);
320}
321
322/// Given the index of a declarator chunk, check whether that chunk
323/// directly specifies the return type of a function and, if so, find
324/// an appropriate place for it.
325///
326/// \param i - a notional index which the search will start
327///   immediately inside
328static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
329                                                unsigned i) {
330  assert(i <= declarator.getNumTypeObjects());
331
332  DeclaratorChunk *result = 0;
333
334  // First, look inwards past parens for a function declarator.
335  for (; i != 0; --i) {
336    DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
337    switch (fnChunk.Kind) {
338    case DeclaratorChunk::Paren:
339      continue;
340
341    // If we find anything except a function, bail out.
342    case DeclaratorChunk::Pointer:
343    case DeclaratorChunk::BlockPointer:
344    case DeclaratorChunk::Array:
345    case DeclaratorChunk::Reference:
346    case DeclaratorChunk::MemberPointer:
347      return result;
348
349    // If we do find a function declarator, scan inwards from that,
350    // looking for a block-pointer declarator.
351    case DeclaratorChunk::Function:
352      for (--i; i != 0; --i) {
353        DeclaratorChunk &blockChunk = declarator.getTypeObject(i-1);
354        switch (blockChunk.Kind) {
355        case DeclaratorChunk::Paren:
356        case DeclaratorChunk::Pointer:
357        case DeclaratorChunk::Array:
358        case DeclaratorChunk::Function:
359        case DeclaratorChunk::Reference:
360        case DeclaratorChunk::MemberPointer:
361          continue;
362        case DeclaratorChunk::BlockPointer:
363          result = &blockChunk;
364          goto continue_outer;
365        }
366        llvm_unreachable("bad declarator chunk kind");
367      }
368
369      // If we run out of declarators doing that, we're done.
370      return result;
371    }
372    llvm_unreachable("bad declarator chunk kind");
373
374    // Okay, reconsider from our new point.
375  continue_outer: ;
376  }
377
378  // Ran out of chunks, bail out.
379  return result;
380}
381
382/// Given that an objc_gc attribute was written somewhere on a
383/// declaration *other* than on the declarator itself (for which, use
384/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
385/// didn't apply in whatever position it was written in, try to move
386/// it to a more appropriate position.
387static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
388                                          AttributeList &attr,
389                                          QualType type) {
390  Declarator &declarator = state.getDeclarator();
391
392  // Move it to the outermost normal or block pointer declarator.
393  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
394    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
395    switch (chunk.Kind) {
396    case DeclaratorChunk::Pointer:
397    case DeclaratorChunk::BlockPointer: {
398      // But don't move an ARC ownership attribute to the return type
399      // of a block.
400      DeclaratorChunk *destChunk = 0;
401      if (state.isProcessingDeclSpec() &&
402          attr.getKind() == AttributeList::AT_ObjCOwnership)
403        destChunk = maybeMovePastReturnType(declarator, i - 1);
404      if (!destChunk) destChunk = &chunk;
405
406      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
407                             destChunk->getAttrListRef());
408      return;
409    }
410
411    case DeclaratorChunk::Paren:
412    case DeclaratorChunk::Array:
413      continue;
414
415    // We may be starting at the return type of a block.
416    case DeclaratorChunk::Function:
417      if (state.isProcessingDeclSpec() &&
418          attr.getKind() == AttributeList::AT_ObjCOwnership) {
419        if (DeclaratorChunk *dest = maybeMovePastReturnType(declarator, i)) {
420          moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
421                                 dest->getAttrListRef());
422          return;
423        }
424      }
425      goto error;
426
427    // Don't walk through these.
428    case DeclaratorChunk::Reference:
429    case DeclaratorChunk::MemberPointer:
430      goto error;
431    }
432  }
433 error:
434
435  diagnoseBadTypeAttribute(state.getSema(), attr, type);
436}
437
438/// Distribute an objc_gc type attribute that was written on the
439/// declarator.
440static void
441distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
442                                            AttributeList &attr,
443                                            QualType &declSpecType) {
444  Declarator &declarator = state.getDeclarator();
445
446  // objc_gc goes on the innermost pointer to something that's not a
447  // pointer.
448  unsigned innermost = -1U;
449  bool considerDeclSpec = true;
450  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
451    DeclaratorChunk &chunk = declarator.getTypeObject(i);
452    switch (chunk.Kind) {
453    case DeclaratorChunk::Pointer:
454    case DeclaratorChunk::BlockPointer:
455      innermost = i;
456      continue;
457
458    case DeclaratorChunk::Reference:
459    case DeclaratorChunk::MemberPointer:
460    case DeclaratorChunk::Paren:
461    case DeclaratorChunk::Array:
462      continue;
463
464    case DeclaratorChunk::Function:
465      considerDeclSpec = false;
466      goto done;
467    }
468  }
469 done:
470
471  // That might actually be the decl spec if we weren't blocked by
472  // anything in the declarator.
473  if (considerDeclSpec) {
474    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
475      // Splice the attribute into the decl spec.  Prevents the
476      // attribute from being applied multiple times and gives
477      // the source-location-filler something to work with.
478      state.saveDeclSpecAttrs();
479      moveAttrFromListToList(attr, declarator.getAttrListRef(),
480               declarator.getMutableDeclSpec().getAttributes().getListRef());
481      return;
482    }
483  }
484
485  // Otherwise, if we found an appropriate chunk, splice the attribute
486  // into it.
487  if (innermost != -1U) {
488    moveAttrFromListToList(attr, declarator.getAttrListRef(),
489                       declarator.getTypeObject(innermost).getAttrListRef());
490    return;
491  }
492
493  // Otherwise, diagnose when we're done building the type.
494  spliceAttrOutOfList(attr, declarator.getAttrListRef());
495  state.addIgnoredTypeAttr(attr);
496}
497
498/// A function type attribute was written somewhere in a declaration
499/// *other* than on the declarator itself or in the decl spec.  Given
500/// that it didn't apply in whatever position it was written in, try
501/// to move it to a more appropriate position.
502static void distributeFunctionTypeAttr(TypeProcessingState &state,
503                                       AttributeList &attr,
504                                       QualType type) {
505  Declarator &declarator = state.getDeclarator();
506
507  // Try to push the attribute from the return type of a function to
508  // the function itself.
509  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
510    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
511    switch (chunk.Kind) {
512    case DeclaratorChunk::Function:
513      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
514                             chunk.getAttrListRef());
515      return;
516
517    case DeclaratorChunk::Paren:
518    case DeclaratorChunk::Pointer:
519    case DeclaratorChunk::BlockPointer:
520    case DeclaratorChunk::Array:
521    case DeclaratorChunk::Reference:
522    case DeclaratorChunk::MemberPointer:
523      continue;
524    }
525  }
526
527  diagnoseBadTypeAttribute(state.getSema(), attr, type);
528}
529
530/// Try to distribute a function type attribute to the innermost
531/// function chunk or type.  Returns true if the attribute was
532/// distributed, false if no location was found.
533static bool
534distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
535                                      AttributeList &attr,
536                                      AttributeList *&attrList,
537                                      QualType &declSpecType) {
538  Declarator &declarator = state.getDeclarator();
539
540  // Put it on the innermost function chunk, if there is one.
541  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
542    DeclaratorChunk &chunk = declarator.getTypeObject(i);
543    if (chunk.Kind != DeclaratorChunk::Function) continue;
544
545    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
546    return true;
547  }
548
549  return handleFunctionTypeAttr(state, attr, declSpecType);
550}
551
552/// A function type attribute was written in the decl spec.  Try to
553/// apply it somewhere.
554static void
555distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
556                                       AttributeList &attr,
557                                       QualType &declSpecType) {
558  state.saveDeclSpecAttrs();
559
560  // C++11 attributes before the decl specifiers actually appertain to
561  // the declarators. Move them straight there. We don't support the
562  // 'put them wherever you like' semantics we allow for GNU attributes.
563  if (attr.isCXX11Attribute()) {
564    moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
565                           state.getDeclarator().getAttrListRef());
566    return;
567  }
568
569  // Try to distribute to the innermost.
570  if (distributeFunctionTypeAttrToInnermost(state, attr,
571                                            state.getCurrentAttrListRef(),
572                                            declSpecType))
573    return;
574
575  // If that failed, diagnose the bad attribute when the declarator is
576  // fully built.
577  state.addIgnoredTypeAttr(attr);
578}
579
580/// A function type attribute was written on the declarator.  Try to
581/// apply it somewhere.
582static void
583distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
584                                         AttributeList &attr,
585                                         QualType &declSpecType) {
586  Declarator &declarator = state.getDeclarator();
587
588  // Try to distribute to the innermost.
589  if (distributeFunctionTypeAttrToInnermost(state, attr,
590                                            declarator.getAttrListRef(),
591                                            declSpecType))
592    return;
593
594  // If that failed, diagnose the bad attribute when the declarator is
595  // fully built.
596  spliceAttrOutOfList(attr, declarator.getAttrListRef());
597  state.addIgnoredTypeAttr(attr);
598}
599
600/// \brief Given that there are attributes written on the declarator
601/// itself, try to distribute any type attributes to the appropriate
602/// declarator chunk.
603///
604/// These are attributes like the following:
605///   int f ATTR;
606///   int (f ATTR)();
607/// but not necessarily this:
608///   int f() ATTR;
609static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
610                                              QualType &declSpecType) {
611  // Collect all the type attributes from the declarator itself.
612  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
613  AttributeList *attr = state.getDeclarator().getAttributes();
614  AttributeList *next;
615  do {
616    next = attr->getNext();
617
618    // Do not distribute C++11 attributes. They have strict rules for what
619    // they appertain to.
620    if (attr->isCXX11Attribute())
621      continue;
622
623    switch (attr->getKind()) {
624    OBJC_POINTER_TYPE_ATTRS_CASELIST:
625      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
626      break;
627
628    case AttributeList::AT_NSReturnsRetained:
629      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
630        break;
631      // fallthrough
632
633    FUNCTION_TYPE_ATTRS_CASELIST:
634      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
635      break;
636
637    MS_TYPE_ATTRS_CASELIST:
638      // Microsoft type attributes cannot go after the declarator-id.
639      continue;
640
641    default:
642      break;
643    }
644  } while ((attr = next));
645}
646
647/// Add a synthetic '()' to a block-literal declarator if it is
648/// required, given the return type.
649static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
650                                          QualType declSpecType) {
651  Declarator &declarator = state.getDeclarator();
652
653  // First, check whether the declarator would produce a function,
654  // i.e. whether the innermost semantic chunk is a function.
655  if (declarator.isFunctionDeclarator()) {
656    // If so, make that declarator a prototyped declarator.
657    declarator.getFunctionTypeInfo().hasPrototype = true;
658    return;
659  }
660
661  // If there are any type objects, the type as written won't name a
662  // function, regardless of the decl spec type.  This is because a
663  // block signature declarator is always an abstract-declarator, and
664  // abstract-declarators can't just be parentheses chunks.  Therefore
665  // we need to build a function chunk unless there are no type
666  // objects and the decl spec type is a function.
667  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
668    return;
669
670  // Note that there *are* cases with invalid declarators where
671  // declarators consist solely of parentheses.  In general, these
672  // occur only in failed efforts to make function declarators, so
673  // faking up the function chunk is still the right thing to do.
674
675  // Otherwise, we need to fake up a function declarator.
676  SourceLocation loc = declarator.getLocStart();
677
678  // ...and *prepend* it to the declarator.
679  SourceLocation NoLoc;
680  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
681                             /*HasProto=*/true,
682                             /*IsAmbiguous=*/false,
683                             /*LParenLoc=*/NoLoc,
684                             /*ArgInfo=*/0,
685                             /*NumArgs=*/0,
686                             /*EllipsisLoc=*/NoLoc,
687                             /*RParenLoc=*/NoLoc,
688                             /*TypeQuals=*/0,
689                             /*RefQualifierIsLvalueRef=*/true,
690                             /*RefQualifierLoc=*/NoLoc,
691                             /*ConstQualifierLoc=*/NoLoc,
692                             /*VolatileQualifierLoc=*/NoLoc,
693                             /*MutableLoc=*/NoLoc,
694                             EST_None,
695                             /*ESpecLoc=*/NoLoc,
696                             /*Exceptions=*/0,
697                             /*ExceptionRanges=*/0,
698                             /*NumExceptions=*/0,
699                             /*NoexceptExpr=*/0,
700                             loc, loc, declarator));
701
702  // For consistency, make sure the state still has us as processing
703  // the decl spec.
704  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
705  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
706}
707
708/// \brief Convert the specified declspec to the appropriate type
709/// object.
710/// \param state Specifies the declarator containing the declaration specifier
711/// to be converted, along with other associated processing state.
712/// \returns The type described by the declaration specifiers.  This function
713/// never returns null.
714static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
715  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
716  // checking.
717
718  Sema &S = state.getSema();
719  Declarator &declarator = state.getDeclarator();
720  const DeclSpec &DS = declarator.getDeclSpec();
721  SourceLocation DeclLoc = declarator.getIdentifierLoc();
722  if (DeclLoc.isInvalid())
723    DeclLoc = DS.getLocStart();
724
725  ASTContext &Context = S.Context;
726
727  QualType Result;
728  switch (DS.getTypeSpecType()) {
729  case DeclSpec::TST_void:
730    Result = Context.VoidTy;
731    break;
732  case DeclSpec::TST_char:
733    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
734      Result = Context.CharTy;
735    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
736      Result = Context.SignedCharTy;
737    else {
738      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
739             "Unknown TSS value");
740      Result = Context.UnsignedCharTy;
741    }
742    break;
743  case DeclSpec::TST_wchar:
744    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
745      Result = Context.WCharTy;
746    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
747      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
748        << DS.getSpecifierName(DS.getTypeSpecType());
749      Result = Context.getSignedWCharType();
750    } else {
751      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
752        "Unknown TSS value");
753      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
754        << DS.getSpecifierName(DS.getTypeSpecType());
755      Result = Context.getUnsignedWCharType();
756    }
757    break;
758  case DeclSpec::TST_char16:
759      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
760        "Unknown TSS value");
761      Result = Context.Char16Ty;
762    break;
763  case DeclSpec::TST_char32:
764      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
765        "Unknown TSS value");
766      Result = Context.Char32Ty;
767    break;
768  case DeclSpec::TST_unspecified:
769    // "<proto1,proto2>" is an objc qualified ID with a missing id.
770    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
771      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
772                                         (ObjCProtocolDecl*const*)PQ,
773                                         DS.getNumProtocolQualifiers());
774      Result = Context.getObjCObjectPointerType(Result);
775      break;
776    }
777
778    // If this is a missing declspec in a block literal return context, then it
779    // is inferred from the return statements inside the block.
780    // The declspec is always missing in a lambda expr context; it is either
781    // specified with a trailing return type or inferred.
782    if (declarator.getContext() == Declarator::LambdaExprContext ||
783        isOmittedBlockReturnType(declarator)) {
784      Result = Context.DependentTy;
785      break;
786    }
787
788    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
789    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
790    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
791    // Note that the one exception to this is function definitions, which are
792    // allowed to be completely missing a declspec.  This is handled in the
793    // parser already though by it pretending to have seen an 'int' in this
794    // case.
795    if (S.getLangOpts().ImplicitInt) {
796      // In C89 mode, we only warn if there is a completely missing declspec
797      // when one is not allowed.
798      if (DS.isEmpty()) {
799        S.Diag(DeclLoc, diag::ext_missing_declspec)
800          << DS.getSourceRange()
801        << FixItHint::CreateInsertion(DS.getLocStart(), "int");
802      }
803    } else if (!DS.hasTypeSpecifier()) {
804      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
805      // "At least one type specifier shall be given in the declaration
806      // specifiers in each declaration, and in the specifier-qualifier list in
807      // each struct declaration and type name."
808      if (S.getLangOpts().CPlusPlus) {
809        S.Diag(DeclLoc, diag::err_missing_type_specifier)
810          << DS.getSourceRange();
811
812        // When this occurs in C++ code, often something is very broken with the
813        // value being declared, poison it as invalid so we don't get chains of
814        // errors.
815        declarator.setInvalidType(true);
816      } else {
817        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
818          << DS.getSourceRange();
819      }
820    }
821
822    // FALL THROUGH.
823  case DeclSpec::TST_int: {
824    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
825      switch (DS.getTypeSpecWidth()) {
826      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
827      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
828      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
829      case DeclSpec::TSW_longlong:
830        Result = Context.LongLongTy;
831
832        // 'long long' is a C99 or C++11 feature.
833        if (!S.getLangOpts().C99) {
834          if (S.getLangOpts().CPlusPlus)
835            S.Diag(DS.getTypeSpecWidthLoc(),
836                   S.getLangOpts().CPlusPlus11 ?
837                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
838          else
839            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
840        }
841        break;
842      }
843    } else {
844      switch (DS.getTypeSpecWidth()) {
845      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
846      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
847      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
848      case DeclSpec::TSW_longlong:
849        Result = Context.UnsignedLongLongTy;
850
851        // 'long long' is a C99 or C++11 feature.
852        if (!S.getLangOpts().C99) {
853          if (S.getLangOpts().CPlusPlus)
854            S.Diag(DS.getTypeSpecWidthLoc(),
855                   S.getLangOpts().CPlusPlus11 ?
856                   diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
857          else
858            S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
859        }
860        break;
861      }
862    }
863    break;
864  }
865  case DeclSpec::TST_int128:
866    if (!S.PP.getTargetInfo().hasInt128Type())
867      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_int128_unsupported);
868    if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
869      Result = Context.UnsignedInt128Ty;
870    else
871      Result = Context.Int128Ty;
872    break;
873  case DeclSpec::TST_half: Result = Context.HalfTy; break;
874  case DeclSpec::TST_float: Result = Context.FloatTy; break;
875  case DeclSpec::TST_double:
876    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
877      Result = Context.LongDoubleTy;
878    else
879      Result = Context.DoubleTy;
880
881    if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
882      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
883      declarator.setInvalidType(true);
884    }
885    break;
886  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
887  case DeclSpec::TST_decimal32:    // _Decimal32
888  case DeclSpec::TST_decimal64:    // _Decimal64
889  case DeclSpec::TST_decimal128:   // _Decimal128
890    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
891    Result = Context.IntTy;
892    declarator.setInvalidType(true);
893    break;
894  case DeclSpec::TST_class:
895  case DeclSpec::TST_enum:
896  case DeclSpec::TST_union:
897  case DeclSpec::TST_struct:
898  case DeclSpec::TST_interface: {
899    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
900    if (!D) {
901      // This can happen in C++ with ambiguous lookups.
902      Result = Context.IntTy;
903      declarator.setInvalidType(true);
904      break;
905    }
906
907    // If the type is deprecated or unavailable, diagnose it.
908    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
909
910    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
911           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
912
913    // TypeQuals handled by caller.
914    Result = Context.getTypeDeclType(D);
915
916    // In both C and C++, make an ElaboratedType.
917    ElaboratedTypeKeyword Keyword
918      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
919    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
920    break;
921  }
922  case DeclSpec::TST_typename: {
923    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
924           DS.getTypeSpecSign() == 0 &&
925           "Can't handle qualifiers on typedef names yet!");
926    Result = S.GetTypeFromParser(DS.getRepAsType());
927    if (Result.isNull())
928      declarator.setInvalidType(true);
929    else if (DeclSpec::ProtocolQualifierListTy PQ
930               = DS.getProtocolQualifiers()) {
931      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
932        // Silently drop any existing protocol qualifiers.
933        // TODO: determine whether that's the right thing to do.
934        if (ObjT->getNumProtocols())
935          Result = ObjT->getBaseType();
936
937        if (DS.getNumProtocolQualifiers())
938          Result = Context.getObjCObjectType(Result,
939                                             (ObjCProtocolDecl*const*) PQ,
940                                             DS.getNumProtocolQualifiers());
941      } else if (Result->isObjCIdType()) {
942        // id<protocol-list>
943        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
944                                           (ObjCProtocolDecl*const*) PQ,
945                                           DS.getNumProtocolQualifiers());
946        Result = Context.getObjCObjectPointerType(Result);
947      } else if (Result->isObjCClassType()) {
948        // Class<protocol-list>
949        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
950                                           (ObjCProtocolDecl*const*) PQ,
951                                           DS.getNumProtocolQualifiers());
952        Result = Context.getObjCObjectPointerType(Result);
953      } else {
954        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
955          << DS.getSourceRange();
956        declarator.setInvalidType(true);
957      }
958    }
959
960    // TypeQuals handled by caller.
961    break;
962  }
963  case DeclSpec::TST_typeofType:
964    // FIXME: Preserve type source info.
965    Result = S.GetTypeFromParser(DS.getRepAsType());
966    assert(!Result.isNull() && "Didn't get a type for typeof?");
967    if (!Result->isDependentType())
968      if (const TagType *TT = Result->getAs<TagType>())
969        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
970    // TypeQuals handled by caller.
971    Result = Context.getTypeOfType(Result);
972    break;
973  case DeclSpec::TST_typeofExpr: {
974    Expr *E = DS.getRepAsExpr();
975    assert(E && "Didn't get an expression for typeof?");
976    // TypeQuals handled by caller.
977    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
978    if (Result.isNull()) {
979      Result = Context.IntTy;
980      declarator.setInvalidType(true);
981    }
982    break;
983  }
984  case DeclSpec::TST_decltype: {
985    Expr *E = DS.getRepAsExpr();
986    assert(E && "Didn't get an expression for decltype?");
987    // TypeQuals handled by caller.
988    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
989    if (Result.isNull()) {
990      Result = Context.IntTy;
991      declarator.setInvalidType(true);
992    }
993    break;
994  }
995  case DeclSpec::TST_underlyingType:
996    Result = S.GetTypeFromParser(DS.getRepAsType());
997    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
998    Result = S.BuildUnaryTransformType(Result,
999                                       UnaryTransformType::EnumUnderlyingType,
1000                                       DS.getTypeSpecTypeLoc());
1001    if (Result.isNull()) {
1002      Result = Context.IntTy;
1003      declarator.setInvalidType(true);
1004    }
1005    break;
1006
1007  case DeclSpec::TST_auto:
1008    // TypeQuals handled by caller.
1009    Result = Context.getAutoType(QualType(), /*decltype(auto)*/false);
1010    break;
1011
1012  case DeclSpec::TST_decltype_auto:
1013    Result = Context.getAutoType(QualType(), /*decltype(auto)*/true);
1014    break;
1015
1016  case DeclSpec::TST_unknown_anytype:
1017    Result = Context.UnknownAnyTy;
1018    break;
1019
1020  case DeclSpec::TST_atomic:
1021    Result = S.GetTypeFromParser(DS.getRepAsType());
1022    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1023    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1024    if (Result.isNull()) {
1025      Result = Context.IntTy;
1026      declarator.setInvalidType(true);
1027    }
1028    break;
1029
1030  case DeclSpec::TST_image1d_t:
1031    Result = Context.OCLImage1dTy;
1032    break;
1033
1034  case DeclSpec::TST_image1d_array_t:
1035    Result = Context.OCLImage1dArrayTy;
1036    break;
1037
1038  case DeclSpec::TST_image1d_buffer_t:
1039    Result = Context.OCLImage1dBufferTy;
1040    break;
1041
1042  case DeclSpec::TST_image2d_t:
1043    Result = Context.OCLImage2dTy;
1044    break;
1045
1046  case DeclSpec::TST_image2d_array_t:
1047    Result = Context.OCLImage2dArrayTy;
1048    break;
1049
1050  case DeclSpec::TST_image3d_t:
1051    Result = Context.OCLImage3dTy;
1052    break;
1053
1054  case DeclSpec::TST_sampler_t:
1055    Result = Context.OCLSamplerTy;
1056    break;
1057
1058  case DeclSpec::TST_event_t:
1059    Result = Context.OCLEventTy;
1060    break;
1061
1062  case DeclSpec::TST_error:
1063    Result = Context.IntTy;
1064    declarator.setInvalidType(true);
1065    break;
1066  }
1067
1068  // Handle complex types.
1069  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1070    if (S.getLangOpts().Freestanding)
1071      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1072    Result = Context.getComplexType(Result);
1073  } else if (DS.isTypeAltiVecVector()) {
1074    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1075    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1076    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1077    if (DS.isTypeAltiVecPixel())
1078      VecKind = VectorType::AltiVecPixel;
1079    else if (DS.isTypeAltiVecBool())
1080      VecKind = VectorType::AltiVecBool;
1081    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1082  }
1083
1084  // FIXME: Imaginary.
1085  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1086    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1087
1088  // Before we process any type attributes, synthesize a block literal
1089  // function declarator if necessary.
1090  if (declarator.getContext() == Declarator::BlockLiteralContext)
1091    maybeSynthesizeBlockSignature(state, Result);
1092
1093  // Apply any type attributes from the decl spec.  This may cause the
1094  // list of type attributes to be temporarily saved while the type
1095  // attributes are pushed around.
1096  if (AttributeList *attrs = DS.getAttributes().getList())
1097    processTypeAttrs(state, Result, TAL_DeclSpec, attrs);
1098
1099  // Apply const/volatile/restrict qualifiers to T.
1100  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1101
1102    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
1103    // of a function type includes any type qualifiers, the behavior is
1104    // undefined."
1105    if (Result->isFunctionType() && TypeQuals) {
1106      if (TypeQuals & DeclSpec::TQ_const)
1107        S.Diag(DS.getConstSpecLoc(), diag::warn_typecheck_function_qualifiers)
1108          << Result << DS.getSourceRange();
1109      else if (TypeQuals & DeclSpec::TQ_volatile)
1110        S.Diag(DS.getVolatileSpecLoc(), diag::warn_typecheck_function_qualifiers)
1111          << Result << DS.getSourceRange();
1112      else {
1113        assert((TypeQuals & (DeclSpec::TQ_restrict | DeclSpec::TQ_atomic)) &&
1114               "Has CVRA quals but not C, V, R, or A?");
1115        // No diagnostic; we'll diagnose 'restrict' or '_Atomic' applied to a
1116        // function type later, in BuildQualifiedType.
1117      }
1118    }
1119
1120    // C++ [dcl.ref]p1:
1121    //   Cv-qualified references are ill-formed except when the
1122    //   cv-qualifiers are introduced through the use of a typedef
1123    //   (7.1.3) or of a template type argument (14.3), in which
1124    //   case the cv-qualifiers are ignored.
1125    // FIXME: Shouldn't we be checking SCS_typedef here?
1126    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1127        TypeQuals && Result->isReferenceType()) {
1128      TypeQuals &= ~DeclSpec::TQ_const;
1129      TypeQuals &= ~DeclSpec::TQ_volatile;
1130      TypeQuals &= ~DeclSpec::TQ_atomic;
1131    }
1132
1133    // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1134    // than once in the same specifier-list or qualifier-list, either directly
1135    // or via one or more typedefs."
1136    if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1137        && TypeQuals & Result.getCVRQualifiers()) {
1138      if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1139        S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1140          << "const";
1141      }
1142
1143      if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1144        S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1145          << "volatile";
1146      }
1147
1148      // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1149      // produce a warning in this case.
1150    }
1151
1152    QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1153
1154    // If adding qualifiers fails, just use the unqualified type.
1155    if (Qualified.isNull())
1156      declarator.setInvalidType(true);
1157    else
1158      Result = Qualified;
1159  }
1160
1161  return Result;
1162}
1163
1164static std::string getPrintableNameForEntity(DeclarationName Entity) {
1165  if (Entity)
1166    return Entity.getAsString();
1167
1168  return "type name";
1169}
1170
1171QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1172                                  Qualifiers Qs, const DeclSpec *DS) {
1173  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1174  // object or incomplete types shall not be restrict-qualified."
1175  if (Qs.hasRestrict()) {
1176    unsigned DiagID = 0;
1177    QualType ProblemTy;
1178
1179    if (T->isAnyPointerType() || T->isReferenceType() ||
1180        T->isMemberPointerType()) {
1181      QualType EltTy;
1182      if (T->isObjCObjectPointerType())
1183        EltTy = T;
1184      else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1185        EltTy = PTy->getPointeeType();
1186      else
1187        EltTy = T->getPointeeType();
1188
1189      // If we have a pointer or reference, the pointee must have an object
1190      // incomplete type.
1191      if (!EltTy->isIncompleteOrObjectType()) {
1192        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1193        ProblemTy = EltTy;
1194      }
1195    } else if (!T->isDependentType()) {
1196      DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1197      ProblemTy = T;
1198    }
1199
1200    if (DiagID) {
1201      Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1202      Qs.removeRestrict();
1203    }
1204  }
1205
1206  return Context.getQualifiedType(T, Qs);
1207}
1208
1209QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1210                                  unsigned CVRA, const DeclSpec *DS) {
1211  // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic.
1212  unsigned CVR = CVRA & ~DeclSpec::TQ_atomic;
1213
1214  // C11 6.7.3/5:
1215  //   If the same qualifier appears more than once in the same
1216  //   specifier-qualifier-list, either directly or via one or more typedefs,
1217  //   the behavior is the same as if it appeared only once.
1218  //
1219  // It's not specified what happens when the _Atomic qualifier is applied to
1220  // a type specified with the _Atomic specifier, but we assume that this
1221  // should be treated as if the _Atomic qualifier appeared multiple times.
1222  if (CVRA & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1223    // C11 6.7.3/5:
1224    //   If other qualifiers appear along with the _Atomic qualifier in a
1225    //   specifier-qualifier-list, the resulting type is the so-qualified
1226    //   atomic type.
1227    //
1228    // Don't need to worry about array types here, since _Atomic can't be
1229    // applied to such types.
1230    SplitQualType Split = T.getSplitUnqualifiedType();
1231    T = BuildAtomicType(QualType(Split.Ty, 0),
1232                        DS ? DS->getAtomicSpecLoc() : Loc);
1233    if (T.isNull())
1234      return T;
1235    Split.Quals.addCVRQualifiers(CVR);
1236    return BuildQualifiedType(T, Loc, Split.Quals);
1237  }
1238
1239  return BuildQualifiedType(T, Loc, Qualifiers::fromCVRMask(CVR), DS);
1240}
1241
1242/// \brief Build a paren type including \p T.
1243QualType Sema::BuildParenType(QualType T) {
1244  return Context.getParenType(T);
1245}
1246
1247/// Given that we're building a pointer or reference to the given
1248static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1249                                           SourceLocation loc,
1250                                           bool isReference) {
1251  // Bail out if retention is unrequired or already specified.
1252  if (!type->isObjCLifetimeType() ||
1253      type.getObjCLifetime() != Qualifiers::OCL_None)
1254    return type;
1255
1256  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1257
1258  // If the object type is const-qualified, we can safely use
1259  // __unsafe_unretained.  This is safe (because there are no read
1260  // barriers), and it'll be safe to coerce anything but __weak* to
1261  // the resulting type.
1262  if (type.isConstQualified()) {
1263    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1264
1265  // Otherwise, check whether the static type does not require
1266  // retaining.  This currently only triggers for Class (possibly
1267  // protocol-qualifed, and arrays thereof).
1268  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1269    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1270
1271  // If we are in an unevaluated context, like sizeof, skip adding a
1272  // qualification.
1273  } else if (S.isUnevaluatedContext()) {
1274    return type;
1275
1276  // If that failed, give an error and recover using __strong.  __strong
1277  // is the option most likely to prevent spurious second-order diagnostics,
1278  // like when binding a reference to a field.
1279  } else {
1280    // These types can show up in private ivars in system headers, so
1281    // we need this to not be an error in those cases.  Instead we
1282    // want to delay.
1283    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1284      S.DelayedDiagnostics.add(
1285          sema::DelayedDiagnostic::makeForbiddenType(loc,
1286              diag::err_arc_indirect_no_ownership, type, isReference));
1287    } else {
1288      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1289    }
1290    implicitLifetime = Qualifiers::OCL_Strong;
1291  }
1292  assert(implicitLifetime && "didn't infer any lifetime!");
1293
1294  Qualifiers qs;
1295  qs.addObjCLifetime(implicitLifetime);
1296  return S.Context.getQualifiedType(type, qs);
1297}
1298
1299/// \brief Build a pointer type.
1300///
1301/// \param T The type to which we'll be building a pointer.
1302///
1303/// \param Loc The location of the entity whose type involves this
1304/// pointer type or, if there is no such entity, the location of the
1305/// type that will have pointer type.
1306///
1307/// \param Entity The name of the entity that involves the pointer
1308/// type, if known.
1309///
1310/// \returns A suitable pointer type, if there are no
1311/// errors. Otherwise, returns a NULL type.
1312QualType Sema::BuildPointerType(QualType T,
1313                                SourceLocation Loc, DeclarationName Entity) {
1314  if (T->isReferenceType()) {
1315    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1316    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1317      << getPrintableNameForEntity(Entity) << T;
1318    return QualType();
1319  }
1320
1321  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1322
1323  // In ARC, it is forbidden to build pointers to unqualified pointers.
1324  if (getLangOpts().ObjCAutoRefCount)
1325    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1326
1327  // Build the pointer type.
1328  return Context.getPointerType(T);
1329}
1330
1331/// \brief Build a reference type.
1332///
1333/// \param T The type to which we'll be building a reference.
1334///
1335/// \param Loc The location of the entity whose type involves this
1336/// reference type or, if there is no such entity, the location of the
1337/// type that will have reference type.
1338///
1339/// \param Entity The name of the entity that involves the reference
1340/// type, if known.
1341///
1342/// \returns A suitable reference type, if there are no
1343/// errors. Otherwise, returns a NULL type.
1344QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1345                                  SourceLocation Loc,
1346                                  DeclarationName Entity) {
1347  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1348         "Unresolved overloaded function type");
1349
1350  // C++0x [dcl.ref]p6:
1351  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1352  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1353  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1354  //   the type "lvalue reference to T", while an attempt to create the type
1355  //   "rvalue reference to cv TR" creates the type TR.
1356  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1357
1358  // C++ [dcl.ref]p4: There shall be no references to references.
1359  //
1360  // According to C++ DR 106, references to references are only
1361  // diagnosed when they are written directly (e.g., "int & &"),
1362  // but not when they happen via a typedef:
1363  //
1364  //   typedef int& intref;
1365  //   typedef intref& intref2;
1366  //
1367  // Parser::ParseDeclaratorInternal diagnoses the case where
1368  // references are written directly; here, we handle the
1369  // collapsing of references-to-references as described in C++0x.
1370  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1371
1372  // C++ [dcl.ref]p1:
1373  //   A declarator that specifies the type "reference to cv void"
1374  //   is ill-formed.
1375  if (T->isVoidType()) {
1376    Diag(Loc, diag::err_reference_to_void);
1377    return QualType();
1378  }
1379
1380  // In ARC, it is forbidden to build references to unqualified pointers.
1381  if (getLangOpts().ObjCAutoRefCount)
1382    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1383
1384  // Handle restrict on references.
1385  if (LValueRef)
1386    return Context.getLValueReferenceType(T, SpelledAsLValue);
1387  return Context.getRValueReferenceType(T);
1388}
1389
1390/// Check whether the specified array size makes the array type a VLA.  If so,
1391/// return true, if not, return the size of the array in SizeVal.
1392static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1393  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1394  // (like gnu99, but not c99) accept any evaluatable value as an extension.
1395  class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1396  public:
1397    VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
1398
1399    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1400    }
1401
1402    virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) {
1403      S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
1404    }
1405  } Diagnoser;
1406
1407  return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
1408                                           S.LangOpts.GNUMode).isInvalid();
1409}
1410
1411
1412/// \brief Build an array type.
1413///
1414/// \param T The type of each element in the array.
1415///
1416/// \param ASM C99 array size modifier (e.g., '*', 'static').
1417///
1418/// \param ArraySize Expression describing the size of the array.
1419///
1420/// \param Brackets The range from the opening '[' to the closing ']'.
1421///
1422/// \param Entity The name of the entity that involves the array
1423/// type, if known.
1424///
1425/// \returns A suitable array type, if there are no errors. Otherwise,
1426/// returns a NULL type.
1427QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1428                              Expr *ArraySize, unsigned Quals,
1429                              SourceRange Brackets, DeclarationName Entity) {
1430
1431  SourceLocation Loc = Brackets.getBegin();
1432  if (getLangOpts().CPlusPlus) {
1433    // C++ [dcl.array]p1:
1434    //   T is called the array element type; this type shall not be a reference
1435    //   type, the (possibly cv-qualified) type void, a function type or an
1436    //   abstract class type.
1437    //
1438    // C++ [dcl.array]p3:
1439    //   When several "array of" specifications are adjacent, [...] only the
1440    //   first of the constant expressions that specify the bounds of the arrays
1441    //   may be omitted.
1442    //
1443    // Note: function types are handled in the common path with C.
1444    if (T->isReferenceType()) {
1445      Diag(Loc, diag::err_illegal_decl_array_of_references)
1446      << getPrintableNameForEntity(Entity) << T;
1447      return QualType();
1448    }
1449
1450    if (T->isVoidType() || T->isIncompleteArrayType()) {
1451      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1452      return QualType();
1453    }
1454
1455    if (RequireNonAbstractType(Brackets.getBegin(), T,
1456                               diag::err_array_of_abstract_type))
1457      return QualType();
1458
1459  } else {
1460    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1461    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1462    if (RequireCompleteType(Loc, T,
1463                            diag::err_illegal_decl_array_incomplete_type))
1464      return QualType();
1465  }
1466
1467  if (T->isFunctionType()) {
1468    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1469      << getPrintableNameForEntity(Entity) << T;
1470    return QualType();
1471  }
1472
1473  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1474    // If the element type is a struct or union that contains a variadic
1475    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1476    if (EltTy->getDecl()->hasFlexibleArrayMember())
1477      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1478  } else if (T->isObjCObjectType()) {
1479    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1480    return QualType();
1481  }
1482
1483  // Do placeholder conversions on the array size expression.
1484  if (ArraySize && ArraySize->hasPlaceholderType()) {
1485    ExprResult Result = CheckPlaceholderExpr(ArraySize);
1486    if (Result.isInvalid()) return QualType();
1487    ArraySize = Result.take();
1488  }
1489
1490  // Do lvalue-to-rvalue conversions on the array size expression.
1491  if (ArraySize && !ArraySize->isRValue()) {
1492    ExprResult Result = DefaultLvalueConversion(ArraySize);
1493    if (Result.isInvalid())
1494      return QualType();
1495
1496    ArraySize = Result.take();
1497  }
1498
1499  // C99 6.7.5.2p1: The size expression shall have integer type.
1500  // C++11 allows contextual conversions to such types.
1501  if (!getLangOpts().CPlusPlus11 &&
1502      ArraySize && !ArraySize->isTypeDependent() &&
1503      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1504    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1505      << ArraySize->getType() << ArraySize->getSourceRange();
1506    return QualType();
1507  }
1508
1509  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1510  if (!ArraySize) {
1511    if (ASM == ArrayType::Star)
1512      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1513    else
1514      T = Context.getIncompleteArrayType(T, ASM, Quals);
1515  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1516    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1517  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
1518              !T->isConstantSizeType()) ||
1519             isArraySizeVLA(*this, ArraySize, ConstVal)) {
1520    // Even in C++11, don't allow contextual conversions in the array bound
1521    // of a VLA.
1522    if (getLangOpts().CPlusPlus11 &&
1523        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1524      Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1525        << ArraySize->getType() << ArraySize->getSourceRange();
1526      return QualType();
1527    }
1528
1529    // C99: an array with an element type that has a non-constant-size is a VLA.
1530    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1531    // that we can fold to a non-zero positive value as an extension.
1532    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1533  } else {
1534    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1535    // have a value greater than zero.
1536    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1537      if (Entity)
1538        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1539          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1540      else
1541        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1542          << ArraySize->getSourceRange();
1543      return QualType();
1544    }
1545    if (ConstVal == 0) {
1546      // GCC accepts zero sized static arrays. We allow them when
1547      // we're not in a SFINAE context.
1548      Diag(ArraySize->getLocStart(),
1549           isSFINAEContext()? diag::err_typecheck_zero_array_size
1550                            : diag::ext_typecheck_zero_array_size)
1551        << ArraySize->getSourceRange();
1552
1553      if (ASM == ArrayType::Static) {
1554        Diag(ArraySize->getLocStart(),
1555             diag::warn_typecheck_zero_static_array_size)
1556          << ArraySize->getSourceRange();
1557        ASM = ArrayType::Normal;
1558      }
1559    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1560               !T->isIncompleteType()) {
1561      // Is the array too large?
1562      unsigned ActiveSizeBits
1563        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1564      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1565        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1566          << ConstVal.toString(10)
1567          << ArraySize->getSourceRange();
1568        return QualType();
1569      }
1570    }
1571
1572    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1573  }
1574
1575  // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
1576  if (getLangOpts().OpenCL && T->isVariableArrayType()) {
1577    Diag(Loc, diag::err_opencl_vla);
1578    return QualType();
1579  }
1580  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1581  if (!getLangOpts().C99) {
1582    if (T->isVariableArrayType()) {
1583      // Prohibit the use of non-POD types in VLAs.
1584      // FIXME: C++1y allows this.
1585      QualType BaseT = Context.getBaseElementType(T);
1586      if (!T->isDependentType() &&
1587          !BaseT.isPODType(Context) &&
1588          !BaseT->isObjCLifetimeType()) {
1589        Diag(Loc, diag::err_vla_non_pod)
1590          << BaseT;
1591        return QualType();
1592      }
1593      // Prohibit the use of VLAs during template argument deduction.
1594      else if (isSFINAEContext()) {
1595        Diag(Loc, diag::err_vla_in_sfinae);
1596        return QualType();
1597      }
1598      // Just extwarn about VLAs.
1599      else
1600        Diag(Loc, getLangOpts().CPlusPlus1y
1601                      ? diag::warn_cxx11_compat_array_of_runtime_bound
1602                      : diag::ext_vla);
1603    } else if (ASM != ArrayType::Normal || Quals != 0)
1604      Diag(Loc,
1605           getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
1606                                     : diag::ext_c99_array_usage) << ASM;
1607  }
1608
1609  if (T->isVariableArrayType()) {
1610    // Warn about VLAs for -Wvla.
1611    Diag(Loc, diag::warn_vla_used);
1612  }
1613
1614  return T;
1615}
1616
1617/// \brief Build an ext-vector type.
1618///
1619/// Run the required checks for the extended vector type.
1620QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1621                                  SourceLocation AttrLoc) {
1622  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1623  // in conjunction with complex types (pointers, arrays, functions, etc.).
1624  if (!T->isDependentType() &&
1625      !T->isIntegerType() && !T->isRealFloatingType()) {
1626    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1627    return QualType();
1628  }
1629
1630  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1631    llvm::APSInt vecSize(32);
1632    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1633      Diag(AttrLoc, diag::err_attribute_argument_not_int)
1634        << "ext_vector_type" << ArraySize->getSourceRange();
1635      return QualType();
1636    }
1637
1638    // unlike gcc's vector_size attribute, the size is specified as the
1639    // number of elements, not the number of bytes.
1640    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1641
1642    if (vectorSize == 0) {
1643      Diag(AttrLoc, diag::err_attribute_zero_size)
1644      << ArraySize->getSourceRange();
1645      return QualType();
1646    }
1647
1648    return Context.getExtVectorType(T, vectorSize);
1649  }
1650
1651  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1652}
1653
1654bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
1655  if (T->isArrayType() || T->isFunctionType()) {
1656    Diag(Loc, diag::err_func_returning_array_function)
1657      << T->isFunctionType() << T;
1658    return true;
1659  }
1660
1661  // Functions cannot return half FP.
1662  if (T->isHalfType()) {
1663    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1664      FixItHint::CreateInsertion(Loc, "*");
1665    return true;
1666  }
1667
1668  // Methods cannot return interface types. All ObjC objects are
1669  // passed by reference.
1670  if (T->isObjCObjectType()) {
1671    Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) << 0 << T;
1672    return 0;
1673  }
1674
1675  return false;
1676}
1677
1678QualType Sema::BuildFunctionType(QualType T,
1679                                 llvm::MutableArrayRef<QualType> ParamTypes,
1680                                 SourceLocation Loc, DeclarationName Entity,
1681                                 const FunctionProtoType::ExtProtoInfo &EPI) {
1682  bool Invalid = false;
1683
1684  Invalid |= CheckFunctionReturnType(T, Loc);
1685
1686  for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
1687    // FIXME: Loc is too inprecise here, should use proper locations for args.
1688    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1689    if (ParamType->isVoidType()) {
1690      Diag(Loc, diag::err_param_with_void_type);
1691      Invalid = true;
1692    } else if (ParamType->isHalfType()) {
1693      // Disallow half FP arguments.
1694      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1695        FixItHint::CreateInsertion(Loc, "*");
1696      Invalid = true;
1697    }
1698
1699    ParamTypes[Idx] = ParamType;
1700  }
1701
1702  if (Invalid)
1703    return QualType();
1704
1705  return Context.getFunctionType(T, ParamTypes, EPI);
1706}
1707
1708/// \brief Build a member pointer type \c T Class::*.
1709///
1710/// \param T the type to which the member pointer refers.
1711/// \param Class the class type into which the member pointer points.
1712/// \param Loc the location where this type begins
1713/// \param Entity the name of the entity that will have this member pointer type
1714///
1715/// \returns a member pointer type, if successful, or a NULL type if there was
1716/// an error.
1717QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1718                                      SourceLocation Loc,
1719                                      DeclarationName Entity) {
1720  // Verify that we're not building a pointer to pointer to function with
1721  // exception specification.
1722  if (CheckDistantExceptionSpec(T)) {
1723    Diag(Loc, diag::err_distant_exception_spec);
1724
1725    // FIXME: If we're doing this as part of template instantiation,
1726    // we should return immediately.
1727
1728    // Build the type anyway, but use the canonical type so that the
1729    // exception specifiers are stripped off.
1730    T = Context.getCanonicalType(T);
1731  }
1732
1733  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1734  //   with reference type, or "cv void."
1735  if (T->isReferenceType()) {
1736    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1737      << (Entity? Entity.getAsString() : "type name") << T;
1738    return QualType();
1739  }
1740
1741  if (T->isVoidType()) {
1742    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1743      << (Entity? Entity.getAsString() : "type name");
1744    return QualType();
1745  }
1746
1747  if (!Class->isDependentType() && !Class->isRecordType()) {
1748    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1749    return QualType();
1750  }
1751
1752  // C++ allows the class type in a member pointer to be an incomplete type.
1753  // In the Microsoft ABI, the size of the member pointer can vary
1754  // according to the class type, which means that we really need a
1755  // complete type if possible, which means we need to instantiate templates.
1756  //
1757  // If template instantiation fails or the type is just incomplete, we have to
1758  // add an extra slot to the member pointer.  Yes, this does cause problems
1759  // when passing pointers between TUs that disagree about the size.
1760  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1761    CXXRecordDecl *RD = Class->getAsCXXRecordDecl();
1762    if (RD && !RD->hasAttr<MSInheritanceAttr>()) {
1763      // Lock in the inheritance model on the first use of a member pointer.
1764      // Otherwise we may disagree about the size at different points in the TU.
1765      // FIXME: MSVC picks a model on the first use that needs to know the size,
1766      // rather than on the first mention of the type, e.g. typedefs.
1767      if (RequireCompleteType(Loc, Class, 0) && !RD->isBeingDefined()) {
1768        // We know it doesn't have an attribute and it's incomplete, so use the
1769        // unspecified inheritance model.  If we're in the record body, we can
1770        // figure out the inheritance model.
1771        for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
1772             E = RD->redecls_end(); I != E; ++I) {
1773          I->addAttr(::new (Context) UnspecifiedInheritanceAttr(
1774              RD->getSourceRange(), Context));
1775        }
1776      }
1777    }
1778  }
1779
1780  return Context.getMemberPointerType(T, Class.getTypePtr());
1781}
1782
1783/// \brief Build a block pointer type.
1784///
1785/// \param T The type to which we'll be building a block pointer.
1786///
1787/// \param Loc The source location, used for diagnostics.
1788///
1789/// \param Entity The name of the entity that involves the block pointer
1790/// type, if known.
1791///
1792/// \returns A suitable block pointer type, if there are no
1793/// errors. Otherwise, returns a NULL type.
1794QualType Sema::BuildBlockPointerType(QualType T,
1795                                     SourceLocation Loc,
1796                                     DeclarationName Entity) {
1797  if (!T->isFunctionType()) {
1798    Diag(Loc, diag::err_nonfunction_block_type);
1799    return QualType();
1800  }
1801
1802  return Context.getBlockPointerType(T);
1803}
1804
1805QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1806  QualType QT = Ty.get();
1807  if (QT.isNull()) {
1808    if (TInfo) *TInfo = 0;
1809    return QualType();
1810  }
1811
1812  TypeSourceInfo *DI = 0;
1813  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1814    QT = LIT->getType();
1815    DI = LIT->getTypeSourceInfo();
1816  }
1817
1818  if (TInfo) *TInfo = DI;
1819  return QT;
1820}
1821
1822static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1823                                            Qualifiers::ObjCLifetime ownership,
1824                                            unsigned chunkIndex);
1825
1826/// Given that this is the declaration of a parameter under ARC,
1827/// attempt to infer attributes and such for pointer-to-whatever
1828/// types.
1829static void inferARCWriteback(TypeProcessingState &state,
1830                              QualType &declSpecType) {
1831  Sema &S = state.getSema();
1832  Declarator &declarator = state.getDeclarator();
1833
1834  // TODO: should we care about decl qualifiers?
1835
1836  // Check whether the declarator has the expected form.  We walk
1837  // from the inside out in order to make the block logic work.
1838  unsigned outermostPointerIndex = 0;
1839  bool isBlockPointer = false;
1840  unsigned numPointers = 0;
1841  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1842    unsigned chunkIndex = i;
1843    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1844    switch (chunk.Kind) {
1845    case DeclaratorChunk::Paren:
1846      // Ignore parens.
1847      break;
1848
1849    case DeclaratorChunk::Reference:
1850    case DeclaratorChunk::Pointer:
1851      // Count the number of pointers.  Treat references
1852      // interchangeably as pointers; if they're mis-ordered, normal
1853      // type building will discover that.
1854      outermostPointerIndex = chunkIndex;
1855      numPointers++;
1856      break;
1857
1858    case DeclaratorChunk::BlockPointer:
1859      // If we have a pointer to block pointer, that's an acceptable
1860      // indirect reference; anything else is not an application of
1861      // the rules.
1862      if (numPointers != 1) return;
1863      numPointers++;
1864      outermostPointerIndex = chunkIndex;
1865      isBlockPointer = true;
1866
1867      // We don't care about pointer structure in return values here.
1868      goto done;
1869
1870    case DeclaratorChunk::Array: // suppress if written (id[])?
1871    case DeclaratorChunk::Function:
1872    case DeclaratorChunk::MemberPointer:
1873      return;
1874    }
1875  }
1876 done:
1877
1878  // If we have *one* pointer, then we want to throw the qualifier on
1879  // the declaration-specifiers, which means that it needs to be a
1880  // retainable object type.
1881  if (numPointers == 1) {
1882    // If it's not a retainable object type, the rule doesn't apply.
1883    if (!declSpecType->isObjCRetainableType()) return;
1884
1885    // If it already has lifetime, don't do anything.
1886    if (declSpecType.getObjCLifetime()) return;
1887
1888    // Otherwise, modify the type in-place.
1889    Qualifiers qs;
1890
1891    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1892      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1893    else
1894      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1895    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1896
1897  // If we have *two* pointers, then we want to throw the qualifier on
1898  // the outermost pointer.
1899  } else if (numPointers == 2) {
1900    // If we don't have a block pointer, we need to check whether the
1901    // declaration-specifiers gave us something that will turn into a
1902    // retainable object pointer after we slap the first pointer on it.
1903    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1904      return;
1905
1906    // Look for an explicit lifetime attribute there.
1907    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1908    if (chunk.Kind != DeclaratorChunk::Pointer &&
1909        chunk.Kind != DeclaratorChunk::BlockPointer)
1910      return;
1911    for (const AttributeList *attr = chunk.getAttrs(); attr;
1912           attr = attr->getNext())
1913      if (attr->getKind() == AttributeList::AT_ObjCOwnership)
1914        return;
1915
1916    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1917                                          outermostPointerIndex);
1918
1919  // Any other number of pointers/references does not trigger the rule.
1920  } else return;
1921
1922  // TODO: mark whether we did this inference?
1923}
1924
1925static void diagnoseIgnoredQualifiers(
1926    Sema &S, unsigned Quals,
1927    SourceLocation FallbackLoc,
1928    SourceLocation ConstQualLoc = SourceLocation(),
1929    SourceLocation VolatileQualLoc = SourceLocation(),
1930    SourceLocation RestrictQualLoc = SourceLocation(),
1931    SourceLocation AtomicQualLoc = SourceLocation()) {
1932  if (!Quals)
1933    return;
1934
1935  const SourceManager &SM = S.getSourceManager();
1936
1937  struct Qual {
1938    unsigned Mask;
1939    const char *Name;
1940    SourceLocation Loc;
1941  } const QualKinds[4] = {
1942    { DeclSpec::TQ_const, "const", ConstQualLoc },
1943    { DeclSpec::TQ_volatile, "volatile", VolatileQualLoc },
1944    { DeclSpec::TQ_restrict, "restrict", RestrictQualLoc },
1945    { DeclSpec::TQ_atomic, "_Atomic", AtomicQualLoc }
1946  };
1947
1948  llvm::SmallString<32> QualStr;
1949  unsigned NumQuals = 0;
1950  SourceLocation Loc;
1951  FixItHint FixIts[4];
1952
1953  // Build a string naming the redundant qualifiers.
1954  for (unsigned I = 0; I != 4; ++I) {
1955    if (Quals & QualKinds[I].Mask) {
1956      if (!QualStr.empty()) QualStr += ' ';
1957      QualStr += QualKinds[I].Name;
1958
1959      // If we have a location for the qualifier, offer a fixit.
1960      SourceLocation QualLoc = QualKinds[I].Loc;
1961      if (!QualLoc.isInvalid()) {
1962        FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
1963        if (Loc.isInvalid() || SM.isBeforeInTranslationUnit(QualLoc, Loc))
1964          Loc = QualLoc;
1965      }
1966
1967      ++NumQuals;
1968    }
1969  }
1970
1971  S.Diag(Loc.isInvalid() ? FallbackLoc : Loc, diag::warn_qual_return_type)
1972    << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
1973}
1974
1975// Diagnose pointless type qualifiers on the return type of a function.
1976static void diagnoseIgnoredFunctionQualifiers(Sema &S, QualType RetTy,
1977                                              Declarator &D,
1978                                              unsigned FunctionChunkIndex) {
1979  if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
1980    // FIXME: TypeSourceInfo doesn't preserve location information for
1981    // qualifiers.
1982    diagnoseIgnoredQualifiers(S, RetTy.getLocalCVRQualifiers(),
1983                              D.getIdentifierLoc());
1984    return;
1985  }
1986
1987  for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
1988                End = D.getNumTypeObjects();
1989       OuterChunkIndex != End; ++OuterChunkIndex) {
1990    DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
1991    switch (OuterChunk.Kind) {
1992    case DeclaratorChunk::Paren:
1993      continue;
1994
1995    case DeclaratorChunk::Pointer: {
1996      DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
1997      diagnoseIgnoredQualifiers(
1998          S, PTI.TypeQuals,
1999          SourceLocation(),
2000          SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2001          SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2002          SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2003          SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc));
2004      return;
2005    }
2006
2007    case DeclaratorChunk::Function:
2008    case DeclaratorChunk::BlockPointer:
2009    case DeclaratorChunk::Reference:
2010    case DeclaratorChunk::Array:
2011    case DeclaratorChunk::MemberPointer:
2012      // FIXME: We can't currently provide an accurate source location and a
2013      // fix-it hint for these.
2014      unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2015      diagnoseIgnoredQualifiers(S, RetTy.getCVRQualifiers() | AtomicQual,
2016                                D.getIdentifierLoc());
2017      return;
2018    }
2019
2020    llvm_unreachable("unknown declarator chunk kind");
2021  }
2022
2023  // If the qualifiers come from a conversion function type, don't diagnose
2024  // them -- they're not necessarily redundant, since such a conversion
2025  // operator can be explicitly called as "x.operator const int()".
2026  if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
2027    return;
2028
2029  // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2030  // which are present there.
2031  diagnoseIgnoredQualifiers(S, D.getDeclSpec().getTypeQualifiers(),
2032                            D.getIdentifierLoc(),
2033                            D.getDeclSpec().getConstSpecLoc(),
2034                            D.getDeclSpec().getVolatileSpecLoc(),
2035                            D.getDeclSpec().getRestrictSpecLoc(),
2036                            D.getDeclSpec().getAtomicSpecLoc());
2037}
2038
2039static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
2040                                             TypeSourceInfo *&ReturnTypeInfo) {
2041  Sema &SemaRef = state.getSema();
2042  Declarator &D = state.getDeclarator();
2043  QualType T;
2044  ReturnTypeInfo = 0;
2045
2046  // The TagDecl owned by the DeclSpec.
2047  TagDecl *OwnedTagDecl = 0;
2048
2049  bool ContainsPlaceholderType = false;
2050
2051  switch (D.getName().getKind()) {
2052  case UnqualifiedId::IK_ImplicitSelfParam:
2053  case UnqualifiedId::IK_OperatorFunctionId:
2054  case UnqualifiedId::IK_Identifier:
2055  case UnqualifiedId::IK_LiteralOperatorId:
2056  case UnqualifiedId::IK_TemplateId:
2057    T = ConvertDeclSpecToType(state);
2058    ContainsPlaceholderType = D.getDeclSpec().containsPlaceholderType();
2059
2060    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
2061      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2062      // Owned declaration is embedded in declarator.
2063      OwnedTagDecl->setEmbeddedInDeclarator(true);
2064    }
2065    break;
2066
2067  case UnqualifiedId::IK_ConstructorName:
2068  case UnqualifiedId::IK_ConstructorTemplateId:
2069  case UnqualifiedId::IK_DestructorName:
2070    // Constructors and destructors don't have return types. Use
2071    // "void" instead.
2072    T = SemaRef.Context.VoidTy;
2073    if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
2074      processTypeAttrs(state, T, TAL_DeclSpec, attrs);
2075    break;
2076
2077  case UnqualifiedId::IK_ConversionFunctionId:
2078    // The result type of a conversion function is the type that it
2079    // converts to.
2080    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
2081                                  &ReturnTypeInfo);
2082    ContainsPlaceholderType = T->getContainedAutoType();
2083    break;
2084  }
2085
2086  if (D.getAttributes())
2087    distributeTypeAttrsFromDeclarator(state, T);
2088
2089  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
2090  // In C++11, a function declarator using 'auto' must have a trailing return
2091  // type (this is checked later) and we can skip this. In other languages
2092  // using auto, we need to check regardless.
2093  if (ContainsPlaceholderType &&
2094      (!SemaRef.getLangOpts().CPlusPlus11 || !D.isFunctionDeclarator())) {
2095    int Error = -1;
2096
2097    switch (D.getContext()) {
2098    case Declarator::KNRTypeListContext:
2099      llvm_unreachable("K&R type lists aren't allowed in C++");
2100    case Declarator::LambdaExprContext:
2101      llvm_unreachable("Can't specify a type specifier in lambda grammar");
2102    case Declarator::ObjCParameterContext:
2103    case Declarator::ObjCResultContext:
2104    case Declarator::PrototypeContext:
2105      Error = 0; // Function prototype
2106      break;
2107    case Declarator::MemberContext:
2108      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
2109        break;
2110      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
2111      case TTK_Enum: llvm_unreachable("unhandled tag kind");
2112      case TTK_Struct: Error = 1; /* Struct member */ break;
2113      case TTK_Union:  Error = 2; /* Union member */ break;
2114      case TTK_Class:  Error = 3; /* Class member */ break;
2115      case TTK_Interface: Error = 4; /* Interface member */ break;
2116      }
2117      break;
2118    case Declarator::CXXCatchContext:
2119    case Declarator::ObjCCatchContext:
2120      Error = 5; // Exception declaration
2121      break;
2122    case Declarator::TemplateParamContext:
2123      Error = 6; // Template parameter
2124      break;
2125    case Declarator::BlockLiteralContext:
2126      Error = 7; // Block literal
2127      break;
2128    case Declarator::TemplateTypeArgContext:
2129      Error = 8; // Template type argument
2130      break;
2131    case Declarator::AliasDeclContext:
2132    case Declarator::AliasTemplateContext:
2133      Error = 10; // Type alias
2134      break;
2135    case Declarator::TrailingReturnContext:
2136      if (!SemaRef.getLangOpts().CPlusPlus1y)
2137        Error = 11; // Function return type
2138      break;
2139    case Declarator::ConversionIdContext:
2140      if (!SemaRef.getLangOpts().CPlusPlus1y)
2141        Error = 12; // conversion-type-id
2142      break;
2143    case Declarator::TypeNameContext:
2144      Error = 13; // Generic
2145      break;
2146    case Declarator::FileContext:
2147    case Declarator::BlockContext:
2148    case Declarator::ForContext:
2149    case Declarator::ConditionContext:
2150    case Declarator::CXXNewContext:
2151      break;
2152    }
2153
2154    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2155      Error = 9;
2156
2157    // In Objective-C it is an error to use 'auto' on a function declarator.
2158    if (D.isFunctionDeclarator())
2159      Error = 11;
2160
2161    // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
2162    // contains a trailing return type. That is only legal at the outermost
2163    // level. Check all declarator chunks (outermost first) anyway, to give
2164    // better diagnostics.
2165    if (SemaRef.getLangOpts().CPlusPlus11 && Error != -1) {
2166      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2167        unsigned chunkIndex = e - i - 1;
2168        state.setCurrentChunkIndex(chunkIndex);
2169        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2170        if (DeclType.Kind == DeclaratorChunk::Function) {
2171          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2172          if (FTI.hasTrailingReturnType()) {
2173            Error = -1;
2174            break;
2175          }
2176        }
2177      }
2178    }
2179
2180    SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
2181    if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
2182      AutoRange = D.getName().getSourceRange();
2183
2184    if (Error != -1) {
2185      SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
2186        << Error << AutoRange;
2187      T = SemaRef.Context.IntTy;
2188      D.setInvalidType(true);
2189    } else
2190      SemaRef.Diag(AutoRange.getBegin(),
2191                   diag::warn_cxx98_compat_auto_type_specifier)
2192        << AutoRange;
2193  }
2194
2195  if (SemaRef.getLangOpts().CPlusPlus &&
2196      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
2197    // Check the contexts where C++ forbids the declaration of a new class
2198    // or enumeration in a type-specifier-seq.
2199    switch (D.getContext()) {
2200    case Declarator::TrailingReturnContext:
2201      // Class and enumeration definitions are syntactically not allowed in
2202      // trailing return types.
2203      llvm_unreachable("parser should not have allowed this");
2204      break;
2205    case Declarator::FileContext:
2206    case Declarator::MemberContext:
2207    case Declarator::BlockContext:
2208    case Declarator::ForContext:
2209    case Declarator::BlockLiteralContext:
2210    case Declarator::LambdaExprContext:
2211      // C++11 [dcl.type]p3:
2212      //   A type-specifier-seq shall not define a class or enumeration unless
2213      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
2214      //   the declaration of a template-declaration.
2215    case Declarator::AliasDeclContext:
2216      break;
2217    case Declarator::AliasTemplateContext:
2218      SemaRef.Diag(OwnedTagDecl->getLocation(),
2219             diag::err_type_defined_in_alias_template)
2220        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2221      D.setInvalidType(true);
2222      break;
2223    case Declarator::TypeNameContext:
2224    case Declarator::ConversionIdContext:
2225    case Declarator::TemplateParamContext:
2226    case Declarator::CXXNewContext:
2227    case Declarator::CXXCatchContext:
2228    case Declarator::ObjCCatchContext:
2229    case Declarator::TemplateTypeArgContext:
2230      SemaRef.Diag(OwnedTagDecl->getLocation(),
2231             diag::err_type_defined_in_type_specifier)
2232        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2233      D.setInvalidType(true);
2234      break;
2235    case Declarator::PrototypeContext:
2236    case Declarator::ObjCParameterContext:
2237    case Declarator::ObjCResultContext:
2238    case Declarator::KNRTypeListContext:
2239      // C++ [dcl.fct]p6:
2240      //   Types shall not be defined in return or parameter types.
2241      SemaRef.Diag(OwnedTagDecl->getLocation(),
2242                   diag::err_type_defined_in_param_type)
2243        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2244      D.setInvalidType(true);
2245      break;
2246    case Declarator::ConditionContext:
2247      // C++ 6.4p2:
2248      // The type-specifier-seq shall not contain typedef and shall not declare
2249      // a new class or enumeration.
2250      SemaRef.Diag(OwnedTagDecl->getLocation(),
2251                   diag::err_type_defined_in_condition);
2252      D.setInvalidType(true);
2253      break;
2254    }
2255  }
2256
2257  return T;
2258}
2259
2260static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
2261  std::string Quals =
2262    Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
2263
2264  switch (FnTy->getRefQualifier()) {
2265  case RQ_None:
2266    break;
2267
2268  case RQ_LValue:
2269    if (!Quals.empty())
2270      Quals += ' ';
2271    Quals += '&';
2272    break;
2273
2274  case RQ_RValue:
2275    if (!Quals.empty())
2276      Quals += ' ';
2277    Quals += "&&";
2278    break;
2279  }
2280
2281  return Quals;
2282}
2283
2284/// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
2285/// can be contained within the declarator chunk DeclType, and produce an
2286/// appropriate diagnostic if not.
2287static void checkQualifiedFunction(Sema &S, QualType T,
2288                                   DeclaratorChunk &DeclType) {
2289  // C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
2290  // cv-qualifier or a ref-qualifier can only appear at the topmost level
2291  // of a type.
2292  int DiagKind = -1;
2293  switch (DeclType.Kind) {
2294  case DeclaratorChunk::Paren:
2295  case DeclaratorChunk::MemberPointer:
2296    // These cases are permitted.
2297    return;
2298  case DeclaratorChunk::Array:
2299  case DeclaratorChunk::Function:
2300    // These cases don't allow function types at all; no need to diagnose the
2301    // qualifiers separately.
2302    return;
2303  case DeclaratorChunk::BlockPointer:
2304    DiagKind = 0;
2305    break;
2306  case DeclaratorChunk::Pointer:
2307    DiagKind = 1;
2308    break;
2309  case DeclaratorChunk::Reference:
2310    DiagKind = 2;
2311    break;
2312  }
2313
2314  assert(DiagKind != -1);
2315  S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
2316    << DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
2317    << getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
2318}
2319
2320/// Produce an approprioate diagnostic for an ambiguity between a function
2321/// declarator and a C++ direct-initializer.
2322static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
2323                                       DeclaratorChunk &DeclType, QualType RT) {
2324  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2325  assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
2326
2327  // If the return type is void there is no ambiguity.
2328  if (RT->isVoidType())
2329    return;
2330
2331  // An initializer for a non-class type can have at most one argument.
2332  if (!RT->isRecordType() && FTI.NumArgs > 1)
2333    return;
2334
2335  // An initializer for a reference must have exactly one argument.
2336  if (RT->isReferenceType() && FTI.NumArgs != 1)
2337    return;
2338
2339  // Only warn if this declarator is declaring a function at block scope, and
2340  // doesn't have a storage class (such as 'extern') specified.
2341  if (!D.isFunctionDeclarator() ||
2342      D.getFunctionDefinitionKind() != FDK_Declaration ||
2343      !S.CurContext->isFunctionOrMethod() ||
2344      D.getDeclSpec().getStorageClassSpec()
2345        != DeclSpec::SCS_unspecified)
2346    return;
2347
2348  // Inside a condition, a direct initializer is not permitted. We allow one to
2349  // be parsed in order to give better diagnostics in condition parsing.
2350  if (D.getContext() == Declarator::ConditionContext)
2351    return;
2352
2353  SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
2354
2355  S.Diag(DeclType.Loc,
2356         FTI.NumArgs ? diag::warn_parens_disambiguated_as_function_declaration
2357                     : diag::warn_empty_parens_are_function_decl)
2358    << ParenRange;
2359
2360  // If the declaration looks like:
2361  //   T var1,
2362  //   f();
2363  // and name lookup finds a function named 'f', then the ',' was
2364  // probably intended to be a ';'.
2365  if (!D.isFirstDeclarator() && D.getIdentifier()) {
2366    FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
2367    FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
2368    if (Comma.getFileID() != Name.getFileID() ||
2369        Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
2370      LookupResult Result(S, D.getIdentifier(), SourceLocation(),
2371                          Sema::LookupOrdinaryName);
2372      if (S.LookupName(Result, S.getCurScope()))
2373        S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
2374          << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
2375          << D.getIdentifier();
2376    }
2377  }
2378
2379  if (FTI.NumArgs > 0) {
2380    // For a declaration with parameters, eg. "T var(T());", suggest adding parens
2381    // around the first parameter to turn the declaration into a variable
2382    // declaration.
2383    SourceRange Range = FTI.ArgInfo[0].Param->getSourceRange();
2384    SourceLocation B = Range.getBegin();
2385    SourceLocation E = S.PP.getLocForEndOfToken(Range.getEnd());
2386    // FIXME: Maybe we should suggest adding braces instead of parens
2387    // in C++11 for classes that don't have an initializer_list constructor.
2388    S.Diag(B, diag::note_additional_parens_for_variable_declaration)
2389      << FixItHint::CreateInsertion(B, "(")
2390      << FixItHint::CreateInsertion(E, ")");
2391  } else {
2392    // For a declaration without parameters, eg. "T var();", suggest replacing the
2393    // parens with an initializer to turn the declaration into a variable
2394    // declaration.
2395    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
2396
2397    // Empty parens mean value-initialization, and no parens mean
2398    // default initialization. These are equivalent if the default
2399    // constructor is user-provided or if zero-initialization is a
2400    // no-op.
2401    if (RD && RD->hasDefinition() &&
2402        (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
2403      S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
2404        << FixItHint::CreateRemoval(ParenRange);
2405    else {
2406      std::string Init = S.getFixItZeroInitializerForType(RT);
2407      if (Init.empty() && S.LangOpts.CPlusPlus11)
2408        Init = "{}";
2409      if (!Init.empty())
2410        S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
2411          << FixItHint::CreateReplacement(ParenRange, Init);
2412    }
2413  }
2414}
2415
2416static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
2417                                                QualType declSpecType,
2418                                                TypeSourceInfo *TInfo) {
2419
2420  QualType T = declSpecType;
2421  Declarator &D = state.getDeclarator();
2422  Sema &S = state.getSema();
2423  ASTContext &Context = S.Context;
2424  const LangOptions &LangOpts = S.getLangOpts();
2425
2426  // The name we're declaring, if any.
2427  DeclarationName Name;
2428  if (D.getIdentifier())
2429    Name = D.getIdentifier();
2430
2431  // Does this declaration declare a typedef-name?
2432  bool IsTypedefName =
2433    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2434    D.getContext() == Declarator::AliasDeclContext ||
2435    D.getContext() == Declarator::AliasTemplateContext;
2436
2437  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2438  bool IsQualifiedFunction = T->isFunctionProtoType() &&
2439      (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
2440       T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
2441
2442  // If T is 'decltype(auto)', the only declarators we can have are parens
2443  // and at most one function declarator if this is a function declaration.
2444  if (const AutoType *AT = T->getAs<AutoType>()) {
2445    if (AT->isDecltypeAuto()) {
2446      for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2447        unsigned Index = E - I - 1;
2448        DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
2449        unsigned DiagId = diag::err_decltype_auto_compound_type;
2450        unsigned DiagKind = 0;
2451        switch (DeclChunk.Kind) {
2452        case DeclaratorChunk::Paren:
2453          continue;
2454        case DeclaratorChunk::Function: {
2455          unsigned FnIndex;
2456          if (D.isFunctionDeclarationContext() &&
2457              D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
2458            continue;
2459          DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
2460          break;
2461        }
2462        case DeclaratorChunk::Pointer:
2463        case DeclaratorChunk::BlockPointer:
2464        case DeclaratorChunk::MemberPointer:
2465          DiagKind = 0;
2466          break;
2467        case DeclaratorChunk::Reference:
2468          DiagKind = 1;
2469          break;
2470        case DeclaratorChunk::Array:
2471          DiagKind = 2;
2472          break;
2473        }
2474
2475        S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
2476        D.setInvalidType(true);
2477        break;
2478      }
2479    }
2480  }
2481
2482  // Walk the DeclTypeInfo, building the recursive type as we go.
2483  // DeclTypeInfos are ordered from the identifier out, which is
2484  // opposite of what we want :).
2485  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2486    unsigned chunkIndex = e - i - 1;
2487    state.setCurrentChunkIndex(chunkIndex);
2488    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2489    if (IsQualifiedFunction) {
2490      checkQualifiedFunction(S, T, DeclType);
2491      IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
2492    }
2493    switch (DeclType.Kind) {
2494    case DeclaratorChunk::Paren:
2495      T = S.BuildParenType(T);
2496      break;
2497    case DeclaratorChunk::BlockPointer:
2498      // If blocks are disabled, emit an error.
2499      if (!LangOpts.Blocks)
2500        S.Diag(DeclType.Loc, diag::err_blocks_disable);
2501
2502      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
2503      if (DeclType.Cls.TypeQuals)
2504        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
2505      break;
2506    case DeclaratorChunk::Pointer:
2507      // Verify that we're not building a pointer to pointer to function with
2508      // exception specification.
2509      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2510        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2511        D.setInvalidType(true);
2512        // Build the type anyway.
2513      }
2514      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
2515        T = Context.getObjCObjectPointerType(T);
2516        if (DeclType.Ptr.TypeQuals)
2517          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2518        break;
2519      }
2520      T = S.BuildPointerType(T, DeclType.Loc, Name);
2521      if (DeclType.Ptr.TypeQuals)
2522        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2523
2524      break;
2525    case DeclaratorChunk::Reference: {
2526      // Verify that we're not building a reference to pointer to function with
2527      // exception specification.
2528      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2529        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2530        D.setInvalidType(true);
2531        // Build the type anyway.
2532      }
2533      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2534
2535      Qualifiers Quals;
2536      if (DeclType.Ref.HasRestrict)
2537        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2538      break;
2539    }
2540    case DeclaratorChunk::Array: {
2541      // Verify that we're not building an array of pointers to function with
2542      // exception specification.
2543      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2544        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2545        D.setInvalidType(true);
2546        // Build the type anyway.
2547      }
2548      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2549      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2550      ArrayType::ArraySizeModifier ASM;
2551      if (ATI.isStar)
2552        ASM = ArrayType::Star;
2553      else if (ATI.hasStatic)
2554        ASM = ArrayType::Static;
2555      else
2556        ASM = ArrayType::Normal;
2557      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2558        // FIXME: This check isn't quite right: it allows star in prototypes
2559        // for function definitions, and disallows some edge cases detailed
2560        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2561        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2562        ASM = ArrayType::Normal;
2563        D.setInvalidType(true);
2564      }
2565
2566      // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
2567      // shall appear only in a declaration of a function parameter with an
2568      // array type, ...
2569      if (ASM == ArrayType::Static || ATI.TypeQuals) {
2570        if (!(D.isPrototypeContext() ||
2571              D.getContext() == Declarator::KNRTypeListContext)) {
2572          S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
2573              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2574          // Remove the 'static' and the type qualifiers.
2575          if (ASM == ArrayType::Static)
2576            ASM = ArrayType::Normal;
2577          ATI.TypeQuals = 0;
2578          D.setInvalidType(true);
2579        }
2580
2581        // C99 6.7.5.2p1: ... and then only in the outermost array type
2582        // derivation.
2583        unsigned x = chunkIndex;
2584        while (x != 0) {
2585          // Walk outwards along the declarator chunks.
2586          x--;
2587          const DeclaratorChunk &DC = D.getTypeObject(x);
2588          switch (DC.Kind) {
2589          case DeclaratorChunk::Paren:
2590            continue;
2591          case DeclaratorChunk::Array:
2592          case DeclaratorChunk::Pointer:
2593          case DeclaratorChunk::Reference:
2594          case DeclaratorChunk::MemberPointer:
2595            S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
2596              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2597            if (ASM == ArrayType::Static)
2598              ASM = ArrayType::Normal;
2599            ATI.TypeQuals = 0;
2600            D.setInvalidType(true);
2601            break;
2602          case DeclaratorChunk::Function:
2603          case DeclaratorChunk::BlockPointer:
2604            // These are invalid anyway, so just ignore.
2605            break;
2606          }
2607        }
2608      }
2609
2610      if (const AutoType *AT = T->getContainedAutoType()) {
2611        // We've already diagnosed this for decltype(auto).
2612        if (!AT->isDecltypeAuto())
2613          S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
2614            << getPrintableNameForEntity(Name) << T;
2615        T = QualType();
2616        break;
2617      }
2618
2619      T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2620                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2621      break;
2622    }
2623    case DeclaratorChunk::Function: {
2624      // If the function declarator has a prototype (i.e. it is not () and
2625      // does not have a K&R-style identifier list), then the arguments are part
2626      // of the type, otherwise the argument list is ().
2627      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2628      IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
2629
2630      // Check for auto functions and trailing return type and adjust the
2631      // return type accordingly.
2632      if (!D.isInvalidType()) {
2633        // trailing-return-type is only required if we're declaring a function,
2634        // and not, for instance, a pointer to a function.
2635        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2636            !FTI.hasTrailingReturnType() && chunkIndex == 0 &&
2637            !S.getLangOpts().CPlusPlus1y) {
2638          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2639               diag::err_auto_missing_trailing_return);
2640          T = Context.IntTy;
2641          D.setInvalidType(true);
2642        } else if (FTI.hasTrailingReturnType()) {
2643          // T must be exactly 'auto' at this point. See CWG issue 681.
2644          if (isa<ParenType>(T)) {
2645            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2646                 diag::err_trailing_return_in_parens)
2647              << T << D.getDeclSpec().getSourceRange();
2648            D.setInvalidType(true);
2649          } else if (D.getContext() != Declarator::LambdaExprContext &&
2650                     (T.hasQualifiers() || !isa<AutoType>(T) ||
2651                      cast<AutoType>(T)->isDecltypeAuto())) {
2652            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2653                 diag::err_trailing_return_without_auto)
2654              << T << D.getDeclSpec().getSourceRange();
2655            D.setInvalidType(true);
2656          }
2657          T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
2658          if (T.isNull()) {
2659            // An error occurred parsing the trailing return type.
2660            T = Context.IntTy;
2661            D.setInvalidType(true);
2662          }
2663        }
2664      }
2665
2666      // C99 6.7.5.3p1: The return type may not be a function or array type.
2667      // For conversion functions, we'll diagnose this particular error later.
2668      if ((T->isArrayType() || T->isFunctionType()) &&
2669          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2670        unsigned diagID = diag::err_func_returning_array_function;
2671        // Last processing chunk in block context means this function chunk
2672        // represents the block.
2673        if (chunkIndex == 0 &&
2674            D.getContext() == Declarator::BlockLiteralContext)
2675          diagID = diag::err_block_returning_array_function;
2676        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2677        T = Context.IntTy;
2678        D.setInvalidType(true);
2679      }
2680
2681      // Do not allow returning half FP value.
2682      // FIXME: This really should be in BuildFunctionType.
2683      if (T->isHalfType()) {
2684        if (S.getLangOpts().OpenCL) {
2685          if (!S.getOpenCLOptions().cl_khr_fp16) {
2686            S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
2687            D.setInvalidType(true);
2688          }
2689        } else {
2690          S.Diag(D.getIdentifierLoc(),
2691            diag::err_parameters_retval_cannot_have_fp16_type) << 1;
2692          D.setInvalidType(true);
2693        }
2694      }
2695
2696      // Methods cannot return interface types. All ObjC objects are
2697      // passed by reference.
2698      if (T->isObjCObjectType()) {
2699        SourceLocation DiagLoc, FixitLoc;
2700        if (TInfo) {
2701          DiagLoc = TInfo->getTypeLoc().getLocStart();
2702          FixitLoc = S.PP.getLocForEndOfToken(TInfo->getTypeLoc().getLocEnd());
2703        } else {
2704          DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
2705          FixitLoc = S.PP.getLocForEndOfToken(D.getDeclSpec().getLocEnd());
2706        }
2707        S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
2708          << 0 << T
2709          << FixItHint::CreateInsertion(FixitLoc, "*");
2710
2711        T = Context.getObjCObjectPointerType(T);
2712        if (TInfo) {
2713          TypeLocBuilder TLB;
2714          TLB.pushFullCopy(TInfo->getTypeLoc());
2715          ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
2716          TLoc.setStarLoc(FixitLoc);
2717          TInfo = TLB.getTypeSourceInfo(Context, T);
2718        }
2719
2720        D.setInvalidType(true);
2721      }
2722
2723      // cv-qualifiers on return types are pointless except when the type is a
2724      // class type in C++.
2725      if ((T.getCVRQualifiers() || T->isAtomicType()) &&
2726          !(S.getLangOpts().CPlusPlus &&
2727            (T->isDependentType() || T->isRecordType())))
2728        diagnoseIgnoredFunctionQualifiers(S, T, D, chunkIndex);
2729
2730      // Objective-C ARC ownership qualifiers are ignored on the function
2731      // return type (by type canonicalization). Complain if this attribute
2732      // was written here.
2733      if (T.getQualifiers().hasObjCLifetime()) {
2734        SourceLocation AttrLoc;
2735        if (chunkIndex + 1 < D.getNumTypeObjects()) {
2736          DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2737          for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
2738               Attr; Attr = Attr->getNext()) {
2739            if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
2740              AttrLoc = Attr->getLoc();
2741              break;
2742            }
2743          }
2744        }
2745        if (AttrLoc.isInvalid()) {
2746          for (const AttributeList *Attr
2747                 = D.getDeclSpec().getAttributes().getList();
2748               Attr; Attr = Attr->getNext()) {
2749            if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
2750              AttrLoc = Attr->getLoc();
2751              break;
2752            }
2753          }
2754        }
2755
2756        if (AttrLoc.isValid()) {
2757          // The ownership attributes are almost always written via
2758          // the predefined
2759          // __strong/__weak/__autoreleasing/__unsafe_unretained.
2760          if (AttrLoc.isMacroID())
2761            AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
2762
2763          S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
2764            << T.getQualifiers().getObjCLifetime();
2765        }
2766      }
2767
2768      if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2769        // C++ [dcl.fct]p6:
2770        //   Types shall not be defined in return or parameter types.
2771        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2772        if (Tag->isCompleteDefinition())
2773          S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2774            << Context.getTypeDeclType(Tag);
2775      }
2776
2777      // Exception specs are not allowed in typedefs. Complain, but add it
2778      // anyway.
2779      if (IsTypedefName && FTI.getExceptionSpecType())
2780        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2781          << (D.getContext() == Declarator::AliasDeclContext ||
2782              D.getContext() == Declarator::AliasTemplateContext);
2783
2784      // If we see "T var();" or "T var(T());" at block scope, it is probably
2785      // an attempt to initialize a variable, not a function declaration.
2786      if (FTI.isAmbiguous)
2787        warnAboutAmbiguousFunction(S, D, DeclType, T);
2788
2789      if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2790        // Simple void foo(), where the incoming T is the result type.
2791        T = Context.getFunctionNoProtoType(T);
2792      } else {
2793        // We allow a zero-parameter variadic function in C if the
2794        // function is marked with the "overloadable" attribute. Scan
2795        // for this attribute now.
2796        if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2797          bool Overloadable = false;
2798          for (const AttributeList *Attrs = D.getAttributes();
2799               Attrs; Attrs = Attrs->getNext()) {
2800            if (Attrs->getKind() == AttributeList::AT_Overloadable) {
2801              Overloadable = true;
2802              break;
2803            }
2804          }
2805
2806          if (!Overloadable)
2807            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2808        }
2809
2810        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2811          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2812          // definition.
2813          S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2814          D.setInvalidType(true);
2815          // Recover by creating a K&R-style function type.
2816          T = Context.getFunctionNoProtoType(T);
2817          break;
2818        }
2819
2820        FunctionProtoType::ExtProtoInfo EPI;
2821        EPI.Variadic = FTI.isVariadic;
2822        EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
2823        EPI.TypeQuals = FTI.TypeQuals;
2824        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2825                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2826                    : RQ_RValue;
2827
2828        // Otherwise, we have a function with an argument list that is
2829        // potentially variadic.
2830        SmallVector<QualType, 16> ArgTys;
2831        ArgTys.reserve(FTI.NumArgs);
2832
2833        SmallVector<bool, 16> ConsumedArguments;
2834        ConsumedArguments.reserve(FTI.NumArgs);
2835        bool HasAnyConsumedArguments = false;
2836
2837        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2838          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2839          QualType ArgTy = Param->getType();
2840          assert(!ArgTy.isNull() && "Couldn't parse type?");
2841
2842          // Look for 'void'.  void is allowed only as a single argument to a
2843          // function with no other parameters (C99 6.7.5.3p10).  We record
2844          // int(void) as a FunctionProtoType with an empty argument list.
2845          if (ArgTy->isVoidType()) {
2846            // If this is something like 'float(int, void)', reject it.  'void'
2847            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2848            // have arguments of incomplete type.
2849            if (FTI.NumArgs != 1 || FTI.isVariadic) {
2850              S.Diag(DeclType.Loc, diag::err_void_only_param);
2851              ArgTy = Context.IntTy;
2852              Param->setType(ArgTy);
2853            } else if (FTI.ArgInfo[i].Ident) {
2854              // Reject, but continue to parse 'int(void abc)'.
2855              S.Diag(FTI.ArgInfo[i].IdentLoc,
2856                   diag::err_param_with_void_type);
2857              ArgTy = Context.IntTy;
2858              Param->setType(ArgTy);
2859            } else {
2860              // Reject, but continue to parse 'float(const void)'.
2861              if (ArgTy.hasQualifiers())
2862                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2863
2864              // Do not add 'void' to the ArgTys list.
2865              break;
2866            }
2867          } else if (ArgTy->isHalfType()) {
2868            // Disallow half FP arguments.
2869            // FIXME: This really should be in BuildFunctionType.
2870            if (S.getLangOpts().OpenCL) {
2871              if (!S.getOpenCLOptions().cl_khr_fp16) {
2872                S.Diag(Param->getLocation(),
2873                  diag::err_opencl_half_argument) << ArgTy;
2874                D.setInvalidType();
2875                Param->setInvalidDecl();
2876              }
2877            } else {
2878              S.Diag(Param->getLocation(),
2879                diag::err_parameters_retval_cannot_have_fp16_type) << 0;
2880              D.setInvalidType();
2881            }
2882          } else if (!FTI.hasPrototype) {
2883            if (ArgTy->isPromotableIntegerType()) {
2884              ArgTy = Context.getPromotedIntegerType(ArgTy);
2885              Param->setKNRPromoted(true);
2886            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2887              if (BTy->getKind() == BuiltinType::Float) {
2888                ArgTy = Context.DoubleTy;
2889                Param->setKNRPromoted(true);
2890              }
2891            }
2892          }
2893
2894          if (LangOpts.ObjCAutoRefCount) {
2895            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2896            ConsumedArguments.push_back(Consumed);
2897            HasAnyConsumedArguments |= Consumed;
2898          }
2899
2900          ArgTys.push_back(ArgTy);
2901        }
2902
2903        if (HasAnyConsumedArguments)
2904          EPI.ConsumedArguments = ConsumedArguments.data();
2905
2906        SmallVector<QualType, 4> Exceptions;
2907        SmallVector<ParsedType, 2> DynamicExceptions;
2908        SmallVector<SourceRange, 2> DynamicExceptionRanges;
2909        Expr *NoexceptExpr = 0;
2910
2911        if (FTI.getExceptionSpecType() == EST_Dynamic) {
2912          // FIXME: It's rather inefficient to have to split into two vectors
2913          // here.
2914          unsigned N = FTI.NumExceptions;
2915          DynamicExceptions.reserve(N);
2916          DynamicExceptionRanges.reserve(N);
2917          for (unsigned I = 0; I != N; ++I) {
2918            DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
2919            DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
2920          }
2921        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2922          NoexceptExpr = FTI.NoexceptExpr;
2923        }
2924
2925        S.checkExceptionSpecification(FTI.getExceptionSpecType(),
2926                                      DynamicExceptions,
2927                                      DynamicExceptionRanges,
2928                                      NoexceptExpr,
2929                                      Exceptions,
2930                                      EPI);
2931
2932        T = Context.getFunctionType(T, ArgTys, EPI);
2933      }
2934
2935      break;
2936    }
2937    case DeclaratorChunk::MemberPointer:
2938      // The scope spec must refer to a class, or be dependent.
2939      CXXScopeSpec &SS = DeclType.Mem.Scope();
2940      QualType ClsType;
2941      if (SS.isInvalid()) {
2942        // Avoid emitting extra errors if we already errored on the scope.
2943        D.setInvalidType(true);
2944      } else if (S.isDependentScopeSpecifier(SS) ||
2945                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
2946        NestedNameSpecifier *NNS
2947          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2948        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
2949        switch (NNS->getKind()) {
2950        case NestedNameSpecifier::Identifier:
2951          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
2952                                                 NNS->getAsIdentifier());
2953          break;
2954
2955        case NestedNameSpecifier::Namespace:
2956        case NestedNameSpecifier::NamespaceAlias:
2957        case NestedNameSpecifier::Global:
2958          llvm_unreachable("Nested-name-specifier must name a type");
2959
2960        case NestedNameSpecifier::TypeSpec:
2961        case NestedNameSpecifier::TypeSpecWithTemplate:
2962          ClsType = QualType(NNS->getAsType(), 0);
2963          // Note: if the NNS has a prefix and ClsType is a nondependent
2964          // TemplateSpecializationType, then the NNS prefix is NOT included
2965          // in ClsType; hence we wrap ClsType into an ElaboratedType.
2966          // NOTE: in particular, no wrap occurs if ClsType already is an
2967          // Elaborated, DependentName, or DependentTemplateSpecialization.
2968          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
2969            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
2970          break;
2971        }
2972      } else {
2973        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
2974             diag::err_illegal_decl_mempointer_in_nonclass)
2975          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
2976          << DeclType.Mem.Scope().getRange();
2977        D.setInvalidType(true);
2978      }
2979
2980      if (!ClsType.isNull())
2981        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
2982      if (T.isNull()) {
2983        T = Context.IntTy;
2984        D.setInvalidType(true);
2985      } else if (DeclType.Mem.TypeQuals) {
2986        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
2987      }
2988      break;
2989    }
2990
2991    if (T.isNull()) {
2992      D.setInvalidType(true);
2993      T = Context.IntTy;
2994    }
2995
2996    // See if there are any attributes on this declarator chunk.
2997    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
2998      processTypeAttrs(state, T, TAL_DeclChunk, attrs);
2999  }
3000
3001  if (LangOpts.CPlusPlus && T->isFunctionType()) {
3002    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
3003    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
3004
3005    // C++ 8.3.5p4:
3006    //   A cv-qualifier-seq shall only be part of the function type
3007    //   for a nonstatic member function, the function type to which a pointer
3008    //   to member refers, or the top-level function type of a function typedef
3009    //   declaration.
3010    //
3011    // Core issue 547 also allows cv-qualifiers on function types that are
3012    // top-level template type arguments.
3013    bool FreeFunction;
3014    if (!D.getCXXScopeSpec().isSet()) {
3015      FreeFunction = ((D.getContext() != Declarator::MemberContext &&
3016                       D.getContext() != Declarator::LambdaExprContext) ||
3017                      D.getDeclSpec().isFriendSpecified());
3018    } else {
3019      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
3020      FreeFunction = (DC && !DC->isRecord());
3021    }
3022
3023    // C++11 [dcl.fct]p6 (w/DR1417):
3024    // An attempt to specify a function type with a cv-qualifier-seq or a
3025    // ref-qualifier (including by typedef-name) is ill-formed unless it is:
3026    //  - the function type for a non-static member function,
3027    //  - the function type to which a pointer to member refers,
3028    //  - the top-level function type of a function typedef declaration or
3029    //    alias-declaration,
3030    //  - the type-id in the default argument of a type-parameter, or
3031    //  - the type-id of a template-argument for a type-parameter
3032    if (IsQualifiedFunction &&
3033        !(!FreeFunction &&
3034          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
3035        !IsTypedefName &&
3036        D.getContext() != Declarator::TemplateTypeArgContext) {
3037      SourceLocation Loc = D.getLocStart();
3038      SourceRange RemovalRange;
3039      unsigned I;
3040      if (D.isFunctionDeclarator(I)) {
3041        SmallVector<SourceLocation, 4> RemovalLocs;
3042        const DeclaratorChunk &Chunk = D.getTypeObject(I);
3043        assert(Chunk.Kind == DeclaratorChunk::Function);
3044        if (Chunk.Fun.hasRefQualifier())
3045          RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
3046        if (Chunk.Fun.TypeQuals & Qualifiers::Const)
3047          RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
3048        if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
3049          RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
3050        // FIXME: We do not track the location of the __restrict qualifier.
3051        //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
3052        //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
3053        if (!RemovalLocs.empty()) {
3054          std::sort(RemovalLocs.begin(), RemovalLocs.end(),
3055                    BeforeThanCompare<SourceLocation>(S.getSourceManager()));
3056          RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
3057          Loc = RemovalLocs.front();
3058        }
3059      }
3060
3061      S.Diag(Loc, diag::err_invalid_qualified_function_type)
3062        << FreeFunction << D.isFunctionDeclarator() << T
3063        << getFunctionQualifiersAsString(FnTy)
3064        << FixItHint::CreateRemoval(RemovalRange);
3065
3066      // Strip the cv-qualifiers and ref-qualifiers from the type.
3067      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
3068      EPI.TypeQuals = 0;
3069      EPI.RefQualifier = RQ_None;
3070
3071      T = Context.getFunctionType(FnTy->getResultType(), FnTy->getArgTypes(),
3072                                  EPI);
3073      // Rebuild any parens around the identifier in the function type.
3074      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3075        if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
3076          break;
3077        T = S.BuildParenType(T);
3078      }
3079    }
3080  }
3081
3082  // Apply any undistributed attributes from the declarator.
3083  if (!T.isNull())
3084    if (AttributeList *attrs = D.getAttributes())
3085      processTypeAttrs(state, T, TAL_DeclName, attrs);
3086
3087  // Diagnose any ignored type attributes.
3088  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
3089
3090  // C++0x [dcl.constexpr]p9:
3091  //  A constexpr specifier used in an object declaration declares the object
3092  //  as const.
3093  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
3094    T.addConst();
3095  }
3096
3097  // If there was an ellipsis in the declarator, the declaration declares a
3098  // parameter pack whose type may be a pack expansion type.
3099  if (D.hasEllipsis() && !T.isNull()) {
3100    // C++0x [dcl.fct]p13:
3101    //   A declarator-id or abstract-declarator containing an ellipsis shall
3102    //   only be used in a parameter-declaration. Such a parameter-declaration
3103    //   is a parameter pack (14.5.3). [...]
3104    switch (D.getContext()) {
3105    case Declarator::PrototypeContext:
3106      // C++0x [dcl.fct]p13:
3107      //   [...] When it is part of a parameter-declaration-clause, the
3108      //   parameter pack is a function parameter pack (14.5.3). The type T
3109      //   of the declarator-id of the function parameter pack shall contain
3110      //   a template parameter pack; each template parameter pack in T is
3111      //   expanded by the function parameter pack.
3112      //
3113      // We represent function parameter packs as function parameters whose
3114      // type is a pack expansion.
3115      if (!T->containsUnexpandedParameterPack()) {
3116        S.Diag(D.getEllipsisLoc(),
3117             diag::err_function_parameter_pack_without_parameter_packs)
3118          << T <<  D.getSourceRange();
3119        D.setEllipsisLoc(SourceLocation());
3120      } else {
3121        T = Context.getPackExpansionType(T, None);
3122      }
3123      break;
3124
3125    case Declarator::TemplateParamContext:
3126      // C++0x [temp.param]p15:
3127      //   If a template-parameter is a [...] is a parameter-declaration that
3128      //   declares a parameter pack (8.3.5), then the template-parameter is a
3129      //   template parameter pack (14.5.3).
3130      //
3131      // Note: core issue 778 clarifies that, if there are any unexpanded
3132      // parameter packs in the type of the non-type template parameter, then
3133      // it expands those parameter packs.
3134      if (T->containsUnexpandedParameterPack())
3135        T = Context.getPackExpansionType(T, None);
3136      else
3137        S.Diag(D.getEllipsisLoc(),
3138               LangOpts.CPlusPlus11
3139                 ? diag::warn_cxx98_compat_variadic_templates
3140                 : diag::ext_variadic_templates);
3141      break;
3142
3143    case Declarator::FileContext:
3144    case Declarator::KNRTypeListContext:
3145    case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
3146    case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
3147    case Declarator::TypeNameContext:
3148    case Declarator::CXXNewContext:
3149    case Declarator::AliasDeclContext:
3150    case Declarator::AliasTemplateContext:
3151    case Declarator::MemberContext:
3152    case Declarator::BlockContext:
3153    case Declarator::ForContext:
3154    case Declarator::ConditionContext:
3155    case Declarator::CXXCatchContext:
3156    case Declarator::ObjCCatchContext:
3157    case Declarator::BlockLiteralContext:
3158    case Declarator::LambdaExprContext:
3159    case Declarator::ConversionIdContext:
3160    case Declarator::TrailingReturnContext:
3161    case Declarator::TemplateTypeArgContext:
3162      // FIXME: We may want to allow parameter packs in block-literal contexts
3163      // in the future.
3164      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
3165      D.setEllipsisLoc(SourceLocation());
3166      break;
3167    }
3168  }
3169
3170  if (T.isNull())
3171    return Context.getNullTypeSourceInfo();
3172  else if (D.isInvalidType())
3173    return Context.getTrivialTypeSourceInfo(T);
3174
3175  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
3176}
3177
3178/// GetTypeForDeclarator - Convert the type for the specified
3179/// declarator to Type instances.
3180///
3181/// The result of this call will never be null, but the associated
3182/// type may be a null type if there's an unrecoverable error.
3183TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
3184  // Determine the type of the declarator. Not all forms of declarator
3185  // have a type.
3186
3187  TypeProcessingState state(*this, D);
3188
3189  TypeSourceInfo *ReturnTypeInfo = 0;
3190  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
3191  if (T.isNull())
3192    return Context.getNullTypeSourceInfo();
3193
3194  if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
3195    inferARCWriteback(state, T);
3196
3197  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
3198}
3199
3200static void transferARCOwnershipToDeclSpec(Sema &S,
3201                                           QualType &declSpecTy,
3202                                           Qualifiers::ObjCLifetime ownership) {
3203  if (declSpecTy->isObjCRetainableType() &&
3204      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
3205    Qualifiers qs;
3206    qs.addObjCLifetime(ownership);
3207    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
3208  }
3209}
3210
3211static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
3212                                            Qualifiers::ObjCLifetime ownership,
3213                                            unsigned chunkIndex) {
3214  Sema &S = state.getSema();
3215  Declarator &D = state.getDeclarator();
3216
3217  // Look for an explicit lifetime attribute.
3218  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
3219  for (const AttributeList *attr = chunk.getAttrs(); attr;
3220         attr = attr->getNext())
3221    if (attr->getKind() == AttributeList::AT_ObjCOwnership)
3222      return;
3223
3224  const char *attrStr = 0;
3225  switch (ownership) {
3226  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
3227  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
3228  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
3229  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
3230  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
3231  }
3232
3233  // If there wasn't one, add one (with an invalid source location
3234  // so that we don't make an AttributedType for it).
3235  AttributeList *attr = D.getAttributePool()
3236    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
3237            /*scope*/ 0, SourceLocation(),
3238            &S.Context.Idents.get(attrStr), SourceLocation(),
3239            /*args*/ 0, 0, AttributeList::AS_GNU);
3240  spliceAttrIntoList(*attr, chunk.getAttrListRef());
3241
3242  // TODO: mark whether we did this inference?
3243}
3244
3245/// \brief Used for transferring ownership in casts resulting in l-values.
3246static void transferARCOwnership(TypeProcessingState &state,
3247                                 QualType &declSpecTy,
3248                                 Qualifiers::ObjCLifetime ownership) {
3249  Sema &S = state.getSema();
3250  Declarator &D = state.getDeclarator();
3251
3252  int inner = -1;
3253  bool hasIndirection = false;
3254  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3255    DeclaratorChunk &chunk = D.getTypeObject(i);
3256    switch (chunk.Kind) {
3257    case DeclaratorChunk::Paren:
3258      // Ignore parens.
3259      break;
3260
3261    case DeclaratorChunk::Array:
3262    case DeclaratorChunk::Reference:
3263    case DeclaratorChunk::Pointer:
3264      if (inner != -1)
3265        hasIndirection = true;
3266      inner = i;
3267      break;
3268
3269    case DeclaratorChunk::BlockPointer:
3270      if (inner != -1)
3271        transferARCOwnershipToDeclaratorChunk(state, ownership, i);
3272      return;
3273
3274    case DeclaratorChunk::Function:
3275    case DeclaratorChunk::MemberPointer:
3276      return;
3277    }
3278  }
3279
3280  if (inner == -1)
3281    return;
3282
3283  DeclaratorChunk &chunk = D.getTypeObject(inner);
3284  if (chunk.Kind == DeclaratorChunk::Pointer) {
3285    if (declSpecTy->isObjCRetainableType())
3286      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
3287    if (declSpecTy->isObjCObjectType() && hasIndirection)
3288      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
3289  } else {
3290    assert(chunk.Kind == DeclaratorChunk::Array ||
3291           chunk.Kind == DeclaratorChunk::Reference);
3292    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
3293  }
3294}
3295
3296TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
3297  TypeProcessingState state(*this, D);
3298
3299  TypeSourceInfo *ReturnTypeInfo = 0;
3300  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
3301  if (declSpecTy.isNull())
3302    return Context.getNullTypeSourceInfo();
3303
3304  if (getLangOpts().ObjCAutoRefCount) {
3305    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
3306    if (ownership != Qualifiers::OCL_None)
3307      transferARCOwnership(state, declSpecTy, ownership);
3308  }
3309
3310  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
3311}
3312
3313/// Map an AttributedType::Kind to an AttributeList::Kind.
3314static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
3315  switch (kind) {
3316  case AttributedType::attr_address_space:
3317    return AttributeList::AT_AddressSpace;
3318  case AttributedType::attr_regparm:
3319    return AttributeList::AT_Regparm;
3320  case AttributedType::attr_vector_size:
3321    return AttributeList::AT_VectorSize;
3322  case AttributedType::attr_neon_vector_type:
3323    return AttributeList::AT_NeonVectorType;
3324  case AttributedType::attr_neon_polyvector_type:
3325    return AttributeList::AT_NeonPolyVectorType;
3326  case AttributedType::attr_objc_gc:
3327    return AttributeList::AT_ObjCGC;
3328  case AttributedType::attr_objc_ownership:
3329    return AttributeList::AT_ObjCOwnership;
3330  case AttributedType::attr_noreturn:
3331    return AttributeList::AT_NoReturn;
3332  case AttributedType::attr_cdecl:
3333    return AttributeList::AT_CDecl;
3334  case AttributedType::attr_fastcall:
3335    return AttributeList::AT_FastCall;
3336  case AttributedType::attr_stdcall:
3337    return AttributeList::AT_StdCall;
3338  case AttributedType::attr_thiscall:
3339    return AttributeList::AT_ThisCall;
3340  case AttributedType::attr_pascal:
3341    return AttributeList::AT_Pascal;
3342  case AttributedType::attr_pcs:
3343  case AttributedType::attr_pcs_vfp:
3344    return AttributeList::AT_Pcs;
3345  case AttributedType::attr_pnaclcall:
3346    return AttributeList::AT_PnaclCall;
3347  case AttributedType::attr_inteloclbicc:
3348    return AttributeList::AT_IntelOclBicc;
3349  case AttributedType::attr_ptr32:
3350    return AttributeList::AT_Ptr32;
3351  case AttributedType::attr_ptr64:
3352    return AttributeList::AT_Ptr64;
3353  case AttributedType::attr_sptr:
3354    return AttributeList::AT_SPtr;
3355  case AttributedType::attr_uptr:
3356    return AttributeList::AT_UPtr;
3357  }
3358  llvm_unreachable("unexpected attribute kind!");
3359}
3360
3361static void fillAttributedTypeLoc(AttributedTypeLoc TL,
3362                                  const AttributeList *attrs) {
3363  AttributedType::Kind kind = TL.getAttrKind();
3364
3365  assert(attrs && "no type attributes in the expected location!");
3366  AttributeList::Kind parsedKind = getAttrListKind(kind);
3367  while (attrs->getKind() != parsedKind) {
3368    attrs = attrs->getNext();
3369    assert(attrs && "no matching attribute in expected location!");
3370  }
3371
3372  TL.setAttrNameLoc(attrs->getLoc());
3373  if (TL.hasAttrExprOperand())
3374    TL.setAttrExprOperand(attrs->getArg(0));
3375  else if (TL.hasAttrEnumOperand())
3376    TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
3377
3378  // FIXME: preserve this information to here.
3379  if (TL.hasAttrOperand())
3380    TL.setAttrOperandParensRange(SourceRange());
3381}
3382
3383namespace {
3384  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
3385    ASTContext &Context;
3386    const DeclSpec &DS;
3387
3388  public:
3389    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
3390      : Context(Context), DS(DS) {}
3391
3392    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3393      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
3394      Visit(TL.getModifiedLoc());
3395    }
3396    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3397      Visit(TL.getUnqualifiedLoc());
3398    }
3399    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
3400      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3401    }
3402    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
3403      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3404      // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
3405      // addition field. What we have is good enough for dispay of location
3406      // of 'fixit' on interface name.
3407      TL.setNameEndLoc(DS.getLocEnd());
3408    }
3409    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
3410      // Handle the base type, which might not have been written explicitly.
3411      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
3412        TL.setHasBaseTypeAsWritten(false);
3413        TL.getBaseLoc().initialize(Context, SourceLocation());
3414      } else {
3415        TL.setHasBaseTypeAsWritten(true);
3416        Visit(TL.getBaseLoc());
3417      }
3418
3419      // Protocol qualifiers.
3420      if (DS.getProtocolQualifiers()) {
3421        assert(TL.getNumProtocols() > 0);
3422        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
3423        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
3424        TL.setRAngleLoc(DS.getSourceRange().getEnd());
3425        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
3426          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
3427      } else {
3428        assert(TL.getNumProtocols() == 0);
3429        TL.setLAngleLoc(SourceLocation());
3430        TL.setRAngleLoc(SourceLocation());
3431      }
3432    }
3433    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3434      TL.setStarLoc(SourceLocation());
3435      Visit(TL.getPointeeLoc());
3436    }
3437    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
3438      TypeSourceInfo *TInfo = 0;
3439      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3440
3441      // If we got no declarator info from previous Sema routines,
3442      // just fill with the typespec loc.
3443      if (!TInfo) {
3444        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
3445        return;
3446      }
3447
3448      TypeLoc OldTL = TInfo->getTypeLoc();
3449      if (TInfo->getType()->getAs<ElaboratedType>()) {
3450        ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
3451        TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
3452            .castAs<TemplateSpecializationTypeLoc>();
3453        TL.copy(NamedTL);
3454      } else {
3455        TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
3456        assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
3457      }
3458
3459    }
3460    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
3461      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
3462      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3463      TL.setParensRange(DS.getTypeofParensRange());
3464    }
3465    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
3466      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
3467      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3468      TL.setParensRange(DS.getTypeofParensRange());
3469      assert(DS.getRepAsType());
3470      TypeSourceInfo *TInfo = 0;
3471      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3472      TL.setUnderlyingTInfo(TInfo);
3473    }
3474    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
3475      // FIXME: This holds only because we only have one unary transform.
3476      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
3477      TL.setKWLoc(DS.getTypeSpecTypeLoc());
3478      TL.setParensRange(DS.getTypeofParensRange());
3479      assert(DS.getRepAsType());
3480      TypeSourceInfo *TInfo = 0;
3481      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3482      TL.setUnderlyingTInfo(TInfo);
3483    }
3484    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
3485      // By default, use the source location of the type specifier.
3486      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
3487      if (TL.needsExtraLocalData()) {
3488        // Set info for the written builtin specifiers.
3489        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
3490        // Try to have a meaningful source location.
3491        if (TL.getWrittenSignSpec() != TSS_unspecified)
3492          // Sign spec loc overrides the others (e.g., 'unsigned long').
3493          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
3494        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
3495          // Width spec loc overrides type spec loc (e.g., 'short int').
3496          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
3497      }
3498    }
3499    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
3500      ElaboratedTypeKeyword Keyword
3501        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
3502      if (DS.getTypeSpecType() == TST_typename) {
3503        TypeSourceInfo *TInfo = 0;
3504        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3505        if (TInfo) {
3506          TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
3507          return;
3508        }
3509      }
3510      TL.setElaboratedKeywordLoc(Keyword != ETK_None
3511                                 ? DS.getTypeSpecTypeLoc()
3512                                 : SourceLocation());
3513      const CXXScopeSpec& SS = DS.getTypeSpecScope();
3514      TL.setQualifierLoc(SS.getWithLocInContext(Context));
3515      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
3516    }
3517    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
3518      assert(DS.getTypeSpecType() == TST_typename);
3519      TypeSourceInfo *TInfo = 0;
3520      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3521      assert(TInfo);
3522      TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
3523    }
3524    void VisitDependentTemplateSpecializationTypeLoc(
3525                                 DependentTemplateSpecializationTypeLoc TL) {
3526      assert(DS.getTypeSpecType() == TST_typename);
3527      TypeSourceInfo *TInfo = 0;
3528      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3529      assert(TInfo);
3530      TL.copy(
3531          TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
3532    }
3533    void VisitTagTypeLoc(TagTypeLoc TL) {
3534      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
3535    }
3536    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
3537      // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
3538      // or an _Atomic qualifier.
3539      if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
3540        TL.setKWLoc(DS.getTypeSpecTypeLoc());
3541        TL.setParensRange(DS.getTypeofParensRange());
3542
3543        TypeSourceInfo *TInfo = 0;
3544        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3545        assert(TInfo);
3546        TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
3547      } else {
3548        TL.setKWLoc(DS.getAtomicSpecLoc());
3549        // No parens, to indicate this was spelled as an _Atomic qualifier.
3550        TL.setParensRange(SourceRange());
3551        Visit(TL.getValueLoc());
3552      }
3553    }
3554
3555    void VisitTypeLoc(TypeLoc TL) {
3556      // FIXME: add other typespec types and change this to an assert.
3557      TL.initialize(Context, DS.getTypeSpecTypeLoc());
3558    }
3559  };
3560
3561  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
3562    ASTContext &Context;
3563    const DeclaratorChunk &Chunk;
3564
3565  public:
3566    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
3567      : Context(Context), Chunk(Chunk) {}
3568
3569    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3570      llvm_unreachable("qualified type locs not expected here!");
3571    }
3572    void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
3573      llvm_unreachable("decayed type locs not expected here!");
3574    }
3575
3576    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3577      fillAttributedTypeLoc(TL, Chunk.getAttrs());
3578    }
3579    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
3580      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3581      TL.setCaretLoc(Chunk.Loc);
3582    }
3583    void VisitPointerTypeLoc(PointerTypeLoc TL) {
3584      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3585      TL.setStarLoc(Chunk.Loc);
3586    }
3587    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3588      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3589      TL.setStarLoc(Chunk.Loc);
3590    }
3591    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3592      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3593      const CXXScopeSpec& SS = Chunk.Mem.Scope();
3594      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3595
3596      const Type* ClsTy = TL.getClass();
3597      QualType ClsQT = QualType(ClsTy, 0);
3598      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3599      // Now copy source location info into the type loc component.
3600      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3601      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3602      case NestedNameSpecifier::Identifier:
3603        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3604        {
3605          DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
3606          DNTLoc.setElaboratedKeywordLoc(SourceLocation());
3607          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3608          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3609        }
3610        break;
3611
3612      case NestedNameSpecifier::TypeSpec:
3613      case NestedNameSpecifier::TypeSpecWithTemplate:
3614        if (isa<ElaboratedType>(ClsTy)) {
3615          ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
3616          ETLoc.setElaboratedKeywordLoc(SourceLocation());
3617          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3618          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3619          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3620        } else {
3621          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3622        }
3623        break;
3624
3625      case NestedNameSpecifier::Namespace:
3626      case NestedNameSpecifier::NamespaceAlias:
3627      case NestedNameSpecifier::Global:
3628        llvm_unreachable("Nested-name-specifier must name a type");
3629      }
3630
3631      // Finally fill in MemberPointerLocInfo fields.
3632      TL.setStarLoc(Chunk.Loc);
3633      TL.setClassTInfo(ClsTInfo);
3634    }
3635    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3636      assert(Chunk.Kind == DeclaratorChunk::Reference);
3637      // 'Amp' is misleading: this might have been originally
3638      /// spelled with AmpAmp.
3639      TL.setAmpLoc(Chunk.Loc);
3640    }
3641    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3642      assert(Chunk.Kind == DeclaratorChunk::Reference);
3643      assert(!Chunk.Ref.LValueRef);
3644      TL.setAmpAmpLoc(Chunk.Loc);
3645    }
3646    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3647      assert(Chunk.Kind == DeclaratorChunk::Array);
3648      TL.setLBracketLoc(Chunk.Loc);
3649      TL.setRBracketLoc(Chunk.EndLoc);
3650      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3651    }
3652    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3653      assert(Chunk.Kind == DeclaratorChunk::Function);
3654      TL.setLocalRangeBegin(Chunk.Loc);
3655      TL.setLocalRangeEnd(Chunk.EndLoc);
3656
3657      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3658      TL.setLParenLoc(FTI.getLParenLoc());
3659      TL.setRParenLoc(FTI.getRParenLoc());
3660      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
3661        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3662        TL.setArg(tpi++, Param);
3663      }
3664      // FIXME: exception specs
3665    }
3666    void VisitParenTypeLoc(ParenTypeLoc TL) {
3667      assert(Chunk.Kind == DeclaratorChunk::Paren);
3668      TL.setLParenLoc(Chunk.Loc);
3669      TL.setRParenLoc(Chunk.EndLoc);
3670    }
3671
3672    void VisitTypeLoc(TypeLoc TL) {
3673      llvm_unreachable("unsupported TypeLoc kind in declarator!");
3674    }
3675  };
3676}
3677
3678static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
3679  SourceLocation Loc;
3680  switch (Chunk.Kind) {
3681  case DeclaratorChunk::Function:
3682  case DeclaratorChunk::Array:
3683  case DeclaratorChunk::Paren:
3684    llvm_unreachable("cannot be _Atomic qualified");
3685
3686  case DeclaratorChunk::Pointer:
3687    Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
3688    break;
3689
3690  case DeclaratorChunk::BlockPointer:
3691  case DeclaratorChunk::Reference:
3692  case DeclaratorChunk::MemberPointer:
3693    // FIXME: Provide a source location for the _Atomic keyword.
3694    break;
3695  }
3696
3697  ATL.setKWLoc(Loc);
3698  ATL.setParensRange(SourceRange());
3699}
3700
3701/// \brief Create and instantiate a TypeSourceInfo with type source information.
3702///
3703/// \param T QualType referring to the type as written in source code.
3704///
3705/// \param ReturnTypeInfo For declarators whose return type does not show
3706/// up in the normal place in the declaration specifiers (such as a C++
3707/// conversion function), this pointer will refer to a type source information
3708/// for that return type.
3709TypeSourceInfo *
3710Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3711                                     TypeSourceInfo *ReturnTypeInfo) {
3712  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3713  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3714
3715  // Handle parameter packs whose type is a pack expansion.
3716  if (isa<PackExpansionType>(T)) {
3717    CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
3718    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3719  }
3720
3721  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3722    // An AtomicTypeLoc might be produced by an atomic qualifier in this
3723    // declarator chunk.
3724    if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
3725      fillAtomicQualLoc(ATL, D.getTypeObject(i));
3726      CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
3727    }
3728
3729    while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
3730      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3731      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3732    }
3733
3734    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3735    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3736  }
3737
3738  // If we have different source information for the return type, use
3739  // that.  This really only applies to C++ conversion functions.
3740  if (ReturnTypeInfo) {
3741    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3742    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3743    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3744  } else {
3745    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3746  }
3747
3748  return TInfo;
3749}
3750
3751/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3752ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3753  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3754  // and Sema during declaration parsing. Try deallocating/caching them when
3755  // it's appropriate, instead of allocating them and keeping them around.
3756  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3757                                                       TypeAlignment);
3758  new (LocT) LocInfoType(T, TInfo);
3759  assert(LocT->getTypeClass() != T->getTypeClass() &&
3760         "LocInfoType's TypeClass conflicts with an existing Type class");
3761  return ParsedType::make(QualType(LocT, 0));
3762}
3763
3764void LocInfoType::getAsStringInternal(std::string &Str,
3765                                      const PrintingPolicy &Policy) const {
3766  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3767         " was used directly instead of getting the QualType through"
3768         " GetTypeFromParser");
3769}
3770
3771TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3772  // C99 6.7.6: Type names have no identifier.  This is already validated by
3773  // the parser.
3774  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3775
3776  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3777  QualType T = TInfo->getType();
3778  if (D.isInvalidType())
3779    return true;
3780
3781  // Make sure there are no unused decl attributes on the declarator.
3782  // We don't want to do this for ObjC parameters because we're going
3783  // to apply them to the actual parameter declaration.
3784  // Likewise, we don't want to do this for alias declarations, because
3785  // we are actually going to build a declaration from this eventually.
3786  if (D.getContext() != Declarator::ObjCParameterContext &&
3787      D.getContext() != Declarator::AliasDeclContext &&
3788      D.getContext() != Declarator::AliasTemplateContext)
3789    checkUnusedDeclAttributes(D);
3790
3791  if (getLangOpts().CPlusPlus) {
3792    // Check that there are no default arguments (C++ only).
3793    CheckExtraCXXDefaultArguments(D);
3794  }
3795
3796  return CreateParsedType(T, TInfo);
3797}
3798
3799ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3800  QualType T = Context.getObjCInstanceType();
3801  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3802  return CreateParsedType(T, TInfo);
3803}
3804
3805
3806//===----------------------------------------------------------------------===//
3807// Type Attribute Processing
3808//===----------------------------------------------------------------------===//
3809
3810/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3811/// specified type.  The attribute contains 1 argument, the id of the address
3812/// space for the type.
3813static void HandleAddressSpaceTypeAttribute(QualType &Type,
3814                                            const AttributeList &Attr, Sema &S){
3815
3816  // If this type is already address space qualified, reject it.
3817  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3818  // qualifiers for two or more different address spaces."
3819  if (Type.getAddressSpace()) {
3820    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3821    Attr.setInvalid();
3822    return;
3823  }
3824
3825  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3826  // qualified by an address-space qualifier."
3827  if (Type->isFunctionType()) {
3828    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3829    Attr.setInvalid();
3830    return;
3831  }
3832
3833  // Check the attribute arguments.
3834  if (Attr.getNumArgs() != 1) {
3835    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
3836      << Attr.getName() << 1;
3837    Attr.setInvalid();
3838    return;
3839  }
3840  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
3841  llvm::APSInt addrSpace(32);
3842  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3843      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3844    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3845      << Attr.getName()->getName() << ASArgExpr->getSourceRange();
3846    Attr.setInvalid();
3847    return;
3848  }
3849
3850  // Bounds checking.
3851  if (addrSpace.isSigned()) {
3852    if (addrSpace.isNegative()) {
3853      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3854        << ASArgExpr->getSourceRange();
3855      Attr.setInvalid();
3856      return;
3857    }
3858    addrSpace.setIsSigned(false);
3859  }
3860  llvm::APSInt max(addrSpace.getBitWidth());
3861  max = Qualifiers::MaxAddressSpace;
3862  if (addrSpace > max) {
3863    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3864      << int(Qualifiers::MaxAddressSpace) << ASArgExpr->getSourceRange();
3865    Attr.setInvalid();
3866    return;
3867  }
3868
3869  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3870  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3871}
3872
3873/// Does this type have a "direct" ownership qualifier?  That is,
3874/// is it written like "__strong id", as opposed to something like
3875/// "typeof(foo)", where that happens to be strong?
3876static bool hasDirectOwnershipQualifier(QualType type) {
3877  // Fast path: no qualifier at all.
3878  assert(type.getQualifiers().hasObjCLifetime());
3879
3880  while (true) {
3881    // __strong id
3882    if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
3883      if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
3884        return true;
3885
3886      type = attr->getModifiedType();
3887
3888    // X *__strong (...)
3889    } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
3890      type = paren->getInnerType();
3891
3892    // That's it for things we want to complain about.  In particular,
3893    // we do not want to look through typedefs, typeof(expr),
3894    // typeof(type), or any other way that the type is somehow
3895    // abstracted.
3896    } else {
3897
3898      return false;
3899    }
3900  }
3901}
3902
3903/// handleObjCOwnershipTypeAttr - Process an objc_ownership
3904/// attribute on the specified type.
3905///
3906/// Returns 'true' if the attribute was handled.
3907static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
3908                                       AttributeList &attr,
3909                                       QualType &type) {
3910  bool NonObjCPointer = false;
3911
3912  if (!type->isDependentType() && !type->isUndeducedType()) {
3913    if (const PointerType *ptr = type->getAs<PointerType>()) {
3914      QualType pointee = ptr->getPointeeType();
3915      if (pointee->isObjCRetainableType() || pointee->isPointerType())
3916        return false;
3917      // It is important not to lose the source info that there was an attribute
3918      // applied to non-objc pointer. We will create an attributed type but
3919      // its type will be the same as the original type.
3920      NonObjCPointer = true;
3921    } else if (!type->isObjCRetainableType()) {
3922      return false;
3923    }
3924
3925    // Don't accept an ownership attribute in the declspec if it would
3926    // just be the return type of a block pointer.
3927    if (state.isProcessingDeclSpec()) {
3928      Declarator &D = state.getDeclarator();
3929      if (maybeMovePastReturnType(D, D.getNumTypeObjects()))
3930        return false;
3931    }
3932  }
3933
3934  Sema &S = state.getSema();
3935  SourceLocation AttrLoc = attr.getLoc();
3936  if (AttrLoc.isMacroID())
3937    AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
3938
3939  if (!attr.getParameterName()) {
3940    S.Diag(AttrLoc, diag::err_attribute_argument_n_type)
3941      << attr.getName() << 1 << 2 /*string*/;
3942    attr.setInvalid();
3943    return true;
3944  }
3945
3946  // Consume lifetime attributes without further comment outside of
3947  // ARC mode.
3948  if (!S.getLangOpts().ObjCAutoRefCount)
3949    return true;
3950
3951  Qualifiers::ObjCLifetime lifetime;
3952  if (attr.getParameterName()->isStr("none"))
3953    lifetime = Qualifiers::OCL_ExplicitNone;
3954  else if (attr.getParameterName()->isStr("strong"))
3955    lifetime = Qualifiers::OCL_Strong;
3956  else if (attr.getParameterName()->isStr("weak"))
3957    lifetime = Qualifiers::OCL_Weak;
3958  else if (attr.getParameterName()->isStr("autoreleasing"))
3959    lifetime = Qualifiers::OCL_Autoreleasing;
3960  else {
3961    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
3962      << "objc_ownership" << attr.getParameterName();
3963    attr.setInvalid();
3964    return true;
3965  }
3966
3967  SplitQualType underlyingType = type.split();
3968
3969  // Check for redundant/conflicting ownership qualifiers.
3970  if (Qualifiers::ObjCLifetime previousLifetime
3971        = type.getQualifiers().getObjCLifetime()) {
3972    // If it's written directly, that's an error.
3973    if (hasDirectOwnershipQualifier(type)) {
3974      S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
3975        << type;
3976      return true;
3977    }
3978
3979    // Otherwise, if the qualifiers actually conflict, pull sugar off
3980    // until we reach a type that is directly qualified.
3981    if (previousLifetime != lifetime) {
3982      // This should always terminate: the canonical type is
3983      // qualified, so some bit of sugar must be hiding it.
3984      while (!underlyingType.Quals.hasObjCLifetime()) {
3985        underlyingType = underlyingType.getSingleStepDesugaredType();
3986      }
3987      underlyingType.Quals.removeObjCLifetime();
3988    }
3989  }
3990
3991  underlyingType.Quals.addObjCLifetime(lifetime);
3992
3993  if (NonObjCPointer) {
3994    StringRef name = attr.getName()->getName();
3995    switch (lifetime) {
3996    case Qualifiers::OCL_None:
3997    case Qualifiers::OCL_ExplicitNone:
3998      break;
3999    case Qualifiers::OCL_Strong: name = "__strong"; break;
4000    case Qualifiers::OCL_Weak: name = "__weak"; break;
4001    case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
4002    }
4003    S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
4004      << TDS_ObjCObjOrBlock << type;
4005  }
4006
4007  QualType origType = type;
4008  if (!NonObjCPointer)
4009    type = S.Context.getQualifiedType(underlyingType);
4010
4011  // If we have a valid source location for the attribute, use an
4012  // AttributedType instead.
4013  if (AttrLoc.isValid())
4014    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
4015                                       origType, type);
4016
4017  // Forbid __weak if the runtime doesn't support it.
4018  if (lifetime == Qualifiers::OCL_Weak &&
4019      !S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {
4020
4021    // Actually, delay this until we know what we're parsing.
4022    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
4023      S.DelayedDiagnostics.add(
4024          sema::DelayedDiagnostic::makeForbiddenType(
4025              S.getSourceManager().getExpansionLoc(AttrLoc),
4026              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
4027    } else {
4028      S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
4029    }
4030
4031    attr.setInvalid();
4032    return true;
4033  }
4034
4035  // Forbid __weak for class objects marked as
4036  // objc_arc_weak_reference_unavailable
4037  if (lifetime == Qualifiers::OCL_Weak) {
4038    if (const ObjCObjectPointerType *ObjT =
4039          type->getAs<ObjCObjectPointerType>()) {
4040      if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
4041        if (Class->isArcWeakrefUnavailable()) {
4042            S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
4043            S.Diag(ObjT->getInterfaceDecl()->getLocation(),
4044                   diag::note_class_declared);
4045        }
4046      }
4047    }
4048  }
4049
4050  return true;
4051}
4052
4053/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
4054/// attribute on the specified type.  Returns true to indicate that
4055/// the attribute was handled, false to indicate that the type does
4056/// not permit the attribute.
4057static bool handleObjCGCTypeAttr(TypeProcessingState &state,
4058                                 AttributeList &attr,
4059                                 QualType &type) {
4060  Sema &S = state.getSema();
4061
4062  // Delay if this isn't some kind of pointer.
4063  if (!type->isPointerType() &&
4064      !type->isObjCObjectPointerType() &&
4065      !type->isBlockPointerType())
4066    return false;
4067
4068  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
4069    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
4070    attr.setInvalid();
4071    return true;
4072  }
4073
4074  // Check the attribute arguments.
4075  if (!attr.getParameterName()) {
4076    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_type)
4077      << attr.getName() << 1 << 2 /*string*/;
4078    attr.setInvalid();
4079    return true;
4080  }
4081  Qualifiers::GC GCAttr;
4082  if (attr.getNumArgs() != 0) {
4083    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4084      << attr.getName() << 1;
4085    attr.setInvalid();
4086    return true;
4087  }
4088  if (attr.getParameterName()->isStr("weak"))
4089    GCAttr = Qualifiers::Weak;
4090  else if (attr.getParameterName()->isStr("strong"))
4091    GCAttr = Qualifiers::Strong;
4092  else {
4093    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
4094      << "objc_gc" << attr.getParameterName();
4095    attr.setInvalid();
4096    return true;
4097  }
4098
4099  QualType origType = type;
4100  type = S.Context.getObjCGCQualType(origType, GCAttr);
4101
4102  // Make an attributed type to preserve the source information.
4103  if (attr.getLoc().isValid())
4104    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
4105                                       origType, type);
4106
4107  return true;
4108}
4109
4110namespace {
4111  /// A helper class to unwrap a type down to a function for the
4112  /// purposes of applying attributes there.
4113  ///
4114  /// Use:
4115  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
4116  ///   if (unwrapped.isFunctionType()) {
4117  ///     const FunctionType *fn = unwrapped.get();
4118  ///     // change fn somehow
4119  ///     T = unwrapped.wrap(fn);
4120  ///   }
4121  struct FunctionTypeUnwrapper {
4122    enum WrapKind {
4123      Desugar,
4124      Parens,
4125      Pointer,
4126      BlockPointer,
4127      Reference,
4128      MemberPointer
4129    };
4130
4131    QualType Original;
4132    const FunctionType *Fn;
4133    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
4134
4135    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
4136      while (true) {
4137        const Type *Ty = T.getTypePtr();
4138        if (isa<FunctionType>(Ty)) {
4139          Fn = cast<FunctionType>(Ty);
4140          return;
4141        } else if (isa<ParenType>(Ty)) {
4142          T = cast<ParenType>(Ty)->getInnerType();
4143          Stack.push_back(Parens);
4144        } else if (isa<PointerType>(Ty)) {
4145          T = cast<PointerType>(Ty)->getPointeeType();
4146          Stack.push_back(Pointer);
4147        } else if (isa<BlockPointerType>(Ty)) {
4148          T = cast<BlockPointerType>(Ty)->getPointeeType();
4149          Stack.push_back(BlockPointer);
4150        } else if (isa<MemberPointerType>(Ty)) {
4151          T = cast<MemberPointerType>(Ty)->getPointeeType();
4152          Stack.push_back(MemberPointer);
4153        } else if (isa<ReferenceType>(Ty)) {
4154          T = cast<ReferenceType>(Ty)->getPointeeType();
4155          Stack.push_back(Reference);
4156        } else {
4157          const Type *DTy = Ty->getUnqualifiedDesugaredType();
4158          if (Ty == DTy) {
4159            Fn = 0;
4160            return;
4161          }
4162
4163          T = QualType(DTy, 0);
4164          Stack.push_back(Desugar);
4165        }
4166      }
4167    }
4168
4169    bool isFunctionType() const { return (Fn != 0); }
4170    const FunctionType *get() const { return Fn; }
4171
4172    QualType wrap(Sema &S, const FunctionType *New) {
4173      // If T wasn't modified from the unwrapped type, do nothing.
4174      if (New == get()) return Original;
4175
4176      Fn = New;
4177      return wrap(S.Context, Original, 0);
4178    }
4179
4180  private:
4181    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
4182      if (I == Stack.size())
4183        return C.getQualifiedType(Fn, Old.getQualifiers());
4184
4185      // Build up the inner type, applying the qualifiers from the old
4186      // type to the new type.
4187      SplitQualType SplitOld = Old.split();
4188
4189      // As a special case, tail-recurse if there are no qualifiers.
4190      if (SplitOld.Quals.empty())
4191        return wrap(C, SplitOld.Ty, I);
4192      return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
4193    }
4194
4195    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
4196      if (I == Stack.size()) return QualType(Fn, 0);
4197
4198      switch (static_cast<WrapKind>(Stack[I++])) {
4199      case Desugar:
4200        // This is the point at which we potentially lose source
4201        // information.
4202        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
4203
4204      case Parens: {
4205        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
4206        return C.getParenType(New);
4207      }
4208
4209      case Pointer: {
4210        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
4211        return C.getPointerType(New);
4212      }
4213
4214      case BlockPointer: {
4215        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
4216        return C.getBlockPointerType(New);
4217      }
4218
4219      case MemberPointer: {
4220        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
4221        QualType New = wrap(C, OldMPT->getPointeeType(), I);
4222        return C.getMemberPointerType(New, OldMPT->getClass());
4223      }
4224
4225      case Reference: {
4226        const ReferenceType *OldRef = cast<ReferenceType>(Old);
4227        QualType New = wrap(C, OldRef->getPointeeType(), I);
4228        if (isa<LValueReferenceType>(OldRef))
4229          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
4230        else
4231          return C.getRValueReferenceType(New);
4232      }
4233      }
4234
4235      llvm_unreachable("unknown wrapping kind");
4236    }
4237  };
4238}
4239
4240static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
4241                                             AttributeList &Attr,
4242                                             QualType &Type) {
4243  Sema &S = State.getSema();
4244
4245  AttributeList::Kind Kind = Attr.getKind();
4246  QualType Desugared = Type;
4247  const AttributedType *AT = dyn_cast<AttributedType>(Type);
4248  while (AT) {
4249    AttributedType::Kind CurAttrKind = AT->getAttrKind();
4250
4251    // You cannot specify duplicate type attributes, so if the attribute has
4252    // already been applied, flag it.
4253    if (getAttrListKind(CurAttrKind) == Kind) {
4254      S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute_exact)
4255        << Attr.getName();
4256      return true;
4257    }
4258
4259    // You cannot have both __sptr and __uptr on the same type, nor can you
4260    // have __ptr32 and __ptr64.
4261    if ((CurAttrKind == AttributedType::attr_ptr32 &&
4262         Kind == AttributeList::AT_Ptr64) ||
4263        (CurAttrKind == AttributedType::attr_ptr64 &&
4264         Kind == AttributeList::AT_Ptr32)) {
4265      S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
4266        << "'__ptr32'" << "'__ptr64'";
4267      return true;
4268    } else if ((CurAttrKind == AttributedType::attr_sptr &&
4269                Kind == AttributeList::AT_UPtr) ||
4270               (CurAttrKind == AttributedType::attr_uptr &&
4271                Kind == AttributeList::AT_SPtr)) {
4272      S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
4273        << "'__sptr'" << "'__uptr'";
4274      return true;
4275    }
4276
4277    Desugared = AT->getEquivalentType();
4278    AT = dyn_cast<AttributedType>(Desugared);
4279  }
4280
4281  // Pointer type qualifiers can only operate on pointer types, but not
4282  // pointer-to-member types.
4283  if (!isa<PointerType>(Desugared)) {
4284    S.Diag(Attr.getLoc(), Type->isMemberPointerType() ?
4285                          diag::err_attribute_no_member_pointers :
4286                          diag::err_attribute_pointers_only) << Attr.getName();
4287    return true;
4288  }
4289
4290  AttributedType::Kind TAK;
4291  switch (Kind) {
4292  default: llvm_unreachable("Unknown attribute kind");
4293  case AttributeList::AT_Ptr32: TAK = AttributedType::attr_ptr32; break;
4294  case AttributeList::AT_Ptr64: TAK = AttributedType::attr_ptr64; break;
4295  case AttributeList::AT_SPtr: TAK = AttributedType::attr_sptr; break;
4296  case AttributeList::AT_UPtr: TAK = AttributedType::attr_uptr; break;
4297  }
4298
4299  Type = S.Context.getAttributedType(TAK, Type, Type);
4300  return false;
4301}
4302
4303static AttributedType::Kind getCCTypeAttrKind(AttributeList &Attr) {
4304  assert(!Attr.isInvalid());
4305  switch (Attr.getKind()) {
4306  default:
4307    llvm_unreachable("not a calling convention attribute");
4308  case AttributeList::AT_CDecl:
4309    return AttributedType::attr_cdecl;
4310  case AttributeList::AT_FastCall:
4311    return AttributedType::attr_fastcall;
4312  case AttributeList::AT_StdCall:
4313    return AttributedType::attr_stdcall;
4314  case AttributeList::AT_ThisCall:
4315    return AttributedType::attr_thiscall;
4316  case AttributeList::AT_Pascal:
4317    return AttributedType::attr_pascal;
4318  case AttributeList::AT_Pcs: {
4319    // We know attr is valid so it can only have one of two strings args.
4320    StringLiteral *Str = cast<StringLiteral>(Attr.getArg(0));
4321    return llvm::StringSwitch<AttributedType::Kind>(Str->getString())
4322        .Case("aapcs", AttributedType::attr_pcs)
4323        .Case("aapcs-vfp", AttributedType::attr_pcs_vfp);
4324  }
4325  case AttributeList::AT_PnaclCall:
4326    return AttributedType::attr_pnaclcall;
4327  case AttributeList::AT_IntelOclBicc:
4328    return AttributedType::attr_inteloclbicc;
4329  }
4330  llvm_unreachable("unexpected attribute kind!");
4331}
4332
4333/// Process an individual function attribute.  Returns true to
4334/// indicate that the attribute was handled, false if it wasn't.
4335static bool handleFunctionTypeAttr(TypeProcessingState &state,
4336                                   AttributeList &attr,
4337                                   QualType &type) {
4338  Sema &S = state.getSema();
4339
4340  FunctionTypeUnwrapper unwrapped(S, type);
4341
4342  if (attr.getKind() == AttributeList::AT_NoReturn) {
4343    if (S.CheckNoReturnAttr(attr))
4344      return true;
4345
4346    // Delay if this is not a function type.
4347    if (!unwrapped.isFunctionType())
4348      return false;
4349
4350    // Otherwise we can process right away.
4351    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
4352    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4353    return true;
4354  }
4355
4356  // ns_returns_retained is not always a type attribute, but if we got
4357  // here, we're treating it as one right now.
4358  if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
4359    assert(S.getLangOpts().ObjCAutoRefCount &&
4360           "ns_returns_retained treated as type attribute in non-ARC");
4361    if (attr.getNumArgs()) return true;
4362
4363    // Delay if this is not a function type.
4364    if (!unwrapped.isFunctionType())
4365      return false;
4366
4367    FunctionType::ExtInfo EI
4368      = unwrapped.get()->getExtInfo().withProducesResult(true);
4369    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4370    return true;
4371  }
4372
4373  if (attr.getKind() == AttributeList::AT_Regparm) {
4374    unsigned value;
4375    if (S.CheckRegparmAttr(attr, value))
4376      return true;
4377
4378    // Delay if this is not a function type.
4379    if (!unwrapped.isFunctionType())
4380      return false;
4381
4382    // Diagnose regparm with fastcall.
4383    const FunctionType *fn = unwrapped.get();
4384    CallingConv CC = fn->getCallConv();
4385    if (CC == CC_X86FastCall) {
4386      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4387        << FunctionType::getNameForCallConv(CC)
4388        << "regparm";
4389      attr.setInvalid();
4390      return true;
4391    }
4392
4393    FunctionType::ExtInfo EI =
4394      unwrapped.get()->getExtInfo().withRegParm(value);
4395    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4396    return true;
4397  }
4398
4399  // Delay if the type didn't work out to a function.
4400  if (!unwrapped.isFunctionType()) return false;
4401
4402  // Otherwise, a calling convention.
4403  CallingConv CC;
4404  if (S.CheckCallingConvAttr(attr, CC))
4405    return true;
4406
4407  const FunctionType *fn = unwrapped.get();
4408  CallingConv CCOld = fn->getCallConv();
4409  if (S.Context.getCanonicalCallConv(CC) ==
4410      S.Context.getCanonicalCallConv(CCOld)) {
4411    FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
4412    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4413    return true;
4414  }
4415
4416  if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
4417    // Should we diagnose reapplications of the same convention?
4418    S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4419      << FunctionType::getNameForCallConv(CC)
4420      << FunctionType::getNameForCallConv(CCOld);
4421    attr.setInvalid();
4422    return true;
4423  }
4424
4425  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
4426  if (CC == CC_X86FastCall) {
4427    if (isa<FunctionNoProtoType>(fn)) {
4428      S.Diag(attr.getLoc(), diag::err_cconv_knr)
4429        << FunctionType::getNameForCallConv(CC);
4430      attr.setInvalid();
4431      return true;
4432    }
4433
4434    const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
4435    if (FnP->isVariadic()) {
4436      S.Diag(attr.getLoc(), diag::err_cconv_varargs)
4437        << FunctionType::getNameForCallConv(CC);
4438      attr.setInvalid();
4439      return true;
4440    }
4441
4442    // Also diagnose fastcall with regparm.
4443    if (fn->getHasRegParm()) {
4444      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
4445        << "regparm"
4446        << FunctionType::getNameForCallConv(CC);
4447      attr.setInvalid();
4448      return true;
4449    }
4450  }
4451
4452  // Modify the CC from the wrapped function type, wrap it all back, and then
4453  // wrap the whole thing in an AttributedType as written.  The modified type
4454  // might have a different CC if we ignored the attribute.
4455  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
4456  QualType Equivalent =
4457      unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
4458  type = S.Context.getAttributedType(getCCTypeAttrKind(attr), type, Equivalent);
4459  return true;
4460}
4461
4462/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
4463static void HandleOpenCLImageAccessAttribute(QualType& CurType,
4464                                             const AttributeList &Attr,
4465                                             Sema &S) {
4466  // Check the attribute arguments.
4467  if (Attr.getNumArgs() != 1) {
4468    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4469      << Attr.getName() << 1;
4470    Attr.setInvalid();
4471    return;
4472  }
4473  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
4474  llvm::APSInt arg(32);
4475  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
4476      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
4477    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4478      << "opencl_image_access" << sizeExpr->getSourceRange();
4479    Attr.setInvalid();
4480    return;
4481  }
4482  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
4483  switch (iarg) {
4484  case CLIA_read_only:
4485  case CLIA_write_only:
4486  case CLIA_read_write:
4487    // Implemented in a separate patch
4488    break;
4489  default:
4490    // Implemented in a separate patch
4491    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4492      << sizeExpr->getSourceRange();
4493    Attr.setInvalid();
4494    break;
4495  }
4496}
4497
4498/// HandleVectorSizeAttribute - this attribute is only applicable to integral
4499/// and float scalars, although arrays, pointers, and function return values are
4500/// allowed in conjunction with this construct. Aggregates with this attribute
4501/// are invalid, even if they are of the same size as a corresponding scalar.
4502/// The raw attribute should contain precisely 1 argument, the vector size for
4503/// the variable, measured in bytes. If curType and rawAttr are well formed,
4504/// this routine will return a new vector type.
4505static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
4506                                 Sema &S) {
4507  // Check the attribute arguments.
4508  if (Attr.getNumArgs() != 1) {
4509    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4510      << Attr.getName() << 1;
4511    Attr.setInvalid();
4512    return;
4513  }
4514  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
4515  llvm::APSInt vecSize(32);
4516  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
4517      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
4518    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4519      << "vector_size" << sizeExpr->getSourceRange();
4520    Attr.setInvalid();
4521    return;
4522  }
4523  // the base type must be integer or float, and can't already be a vector.
4524  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
4525    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
4526    Attr.setInvalid();
4527    return;
4528  }
4529  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4530  // vecSize is specified in bytes - convert to bits.
4531  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
4532
4533  // the vector size needs to be an integral multiple of the type size.
4534  if (vectorSize % typeSize) {
4535    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4536      << sizeExpr->getSourceRange();
4537    Attr.setInvalid();
4538    return;
4539  }
4540  if (vectorSize == 0) {
4541    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
4542      << sizeExpr->getSourceRange();
4543    Attr.setInvalid();
4544    return;
4545  }
4546
4547  // Success! Instantiate the vector type, the number of elements is > 0, and
4548  // not required to be a power of 2, unlike GCC.
4549  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
4550                                    VectorType::GenericVector);
4551}
4552
4553/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
4554/// a type.
4555static void HandleExtVectorTypeAttr(QualType &CurType,
4556                                    const AttributeList &Attr,
4557                                    Sema &S) {
4558  Expr *sizeExpr;
4559
4560  // Special case where the argument is a template id.
4561  if (Attr.getParameterName()) {
4562    CXXScopeSpec SS;
4563    SourceLocation TemplateKWLoc;
4564    UnqualifiedId id;
4565    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
4566
4567    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
4568                                          id, false, false);
4569    if (Size.isInvalid())
4570      return;
4571
4572    sizeExpr = Size.get();
4573  } else {
4574    // check the attribute arguments.
4575    if (Attr.getNumArgs() != 1) {
4576      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4577        << Attr.getName() << 1;
4578      return;
4579    }
4580    sizeExpr = Attr.getArg(0);
4581  }
4582
4583  // Create the vector type.
4584  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
4585  if (!T.isNull())
4586    CurType = T;
4587}
4588
4589/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
4590/// "neon_polyvector_type" attributes are used to create vector types that
4591/// are mangled according to ARM's ABI.  Otherwise, these types are identical
4592/// to those created with the "vector_size" attribute.  Unlike "vector_size"
4593/// the argument to these Neon attributes is the number of vector elements,
4594/// not the vector size in bytes.  The vector width and element type must
4595/// match one of the standard Neon vector types.
4596static void HandleNeonVectorTypeAttr(QualType& CurType,
4597                                     const AttributeList &Attr, Sema &S,
4598                                     VectorType::VectorKind VecKind,
4599                                     const char *AttrName) {
4600  // Check the attribute arguments.
4601  if (Attr.getNumArgs() != 1) {
4602    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4603      << Attr.getName() << 1;
4604    Attr.setInvalid();
4605    return;
4606  }
4607  // The number of elements must be an ICE.
4608  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
4609  llvm::APSInt numEltsInt(32);
4610  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
4611      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
4612    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4613      << AttrName << numEltsExpr->getSourceRange();
4614    Attr.setInvalid();
4615    return;
4616  }
4617  // Only certain element types are supported for Neon vectors.
4618  const BuiltinType* BTy = CurType->getAs<BuiltinType>();
4619  if (!BTy ||
4620      (VecKind == VectorType::NeonPolyVector &&
4621       BTy->getKind() != BuiltinType::SChar &&
4622       BTy->getKind() != BuiltinType::Short) ||
4623      (BTy->getKind() != BuiltinType::SChar &&
4624       BTy->getKind() != BuiltinType::UChar &&
4625       BTy->getKind() != BuiltinType::Short &&
4626       BTy->getKind() != BuiltinType::UShort &&
4627       BTy->getKind() != BuiltinType::Int &&
4628       BTy->getKind() != BuiltinType::UInt &&
4629       BTy->getKind() != BuiltinType::LongLong &&
4630       BTy->getKind() != BuiltinType::ULongLong &&
4631       BTy->getKind() != BuiltinType::Float)) {
4632    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
4633    Attr.setInvalid();
4634    return;
4635  }
4636  // The total size of the vector must be 64 or 128 bits.
4637  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4638  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
4639  unsigned vecSize = typeSize * numElts;
4640  if (vecSize != 64 && vecSize != 128) {
4641    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
4642    Attr.setInvalid();
4643    return;
4644  }
4645
4646  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
4647}
4648
4649static void processTypeAttrs(TypeProcessingState &state, QualType &type,
4650                             TypeAttrLocation TAL, AttributeList *attrs) {
4651  // Scan through and apply attributes to this type where it makes sense.  Some
4652  // attributes (such as __address_space__, __vector_size__, etc) apply to the
4653  // type, but others can be present in the type specifiers even though they
4654  // apply to the decl.  Here we apply type attributes and ignore the rest.
4655
4656  AttributeList *next;
4657  do {
4658    AttributeList &attr = *attrs;
4659    next = attr.getNext();
4660
4661    // Skip attributes that were marked to be invalid.
4662    if (attr.isInvalid())
4663      continue;
4664
4665    if (attr.isCXX11Attribute()) {
4666      // [[gnu::...]] attributes are treated as declaration attributes, so may
4667      // not appertain to a DeclaratorChunk, even if we handle them as type
4668      // attributes.
4669      if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
4670        if (TAL == TAL_DeclChunk) {
4671          state.getSema().Diag(attr.getLoc(),
4672                               diag::warn_cxx11_gnu_attribute_on_type)
4673              << attr.getName();
4674          continue;
4675        }
4676      } else if (TAL != TAL_DeclChunk) {
4677        // Otherwise, only consider type processing for a C++11 attribute if
4678        // it's actually been applied to a type.
4679        continue;
4680      }
4681    }
4682
4683    // If this is an attribute we can handle, do so now,
4684    // otherwise, add it to the FnAttrs list for rechaining.
4685    switch (attr.getKind()) {
4686    default:
4687      // A C++11 attribute on a declarator chunk must appertain to a type.
4688      if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
4689        state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
4690          << attr.getName();
4691        attr.setUsedAsTypeAttr();
4692      }
4693      break;
4694
4695    case AttributeList::UnknownAttribute:
4696      if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
4697        state.getSema().Diag(attr.getLoc(),
4698                             diag::warn_unknown_attribute_ignored)
4699          << attr.getName();
4700      break;
4701
4702    case AttributeList::IgnoredAttribute:
4703      break;
4704
4705    case AttributeList::AT_MayAlias:
4706      // FIXME: This attribute needs to actually be handled, but if we ignore
4707      // it it breaks large amounts of Linux software.
4708      attr.setUsedAsTypeAttr();
4709      break;
4710    case AttributeList::AT_AddressSpace:
4711      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
4712      attr.setUsedAsTypeAttr();
4713      break;
4714    OBJC_POINTER_TYPE_ATTRS_CASELIST:
4715      if (!handleObjCPointerTypeAttr(state, attr, type))
4716        distributeObjCPointerTypeAttr(state, attr, type);
4717      attr.setUsedAsTypeAttr();
4718      break;
4719    case AttributeList::AT_VectorSize:
4720      HandleVectorSizeAttr(type, attr, state.getSema());
4721      attr.setUsedAsTypeAttr();
4722      break;
4723    case AttributeList::AT_ExtVectorType:
4724      HandleExtVectorTypeAttr(type, attr, state.getSema());
4725      attr.setUsedAsTypeAttr();
4726      break;
4727    case AttributeList::AT_NeonVectorType:
4728      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4729                               VectorType::NeonVector, "neon_vector_type");
4730      attr.setUsedAsTypeAttr();
4731      break;
4732    case AttributeList::AT_NeonPolyVectorType:
4733      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4734                               VectorType::NeonPolyVector,
4735                               "neon_polyvector_type");
4736      attr.setUsedAsTypeAttr();
4737      break;
4738    case AttributeList::AT_OpenCLImageAccess:
4739      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
4740      attr.setUsedAsTypeAttr();
4741      break;
4742
4743    case AttributeList::AT_Win64:
4744      attr.setUsedAsTypeAttr();
4745      break;
4746    MS_TYPE_ATTRS_CASELIST:
4747      if (!handleMSPointerTypeQualifierAttr(state, attr, type))
4748        attr.setUsedAsTypeAttr();
4749      break;
4750
4751    case AttributeList::AT_NSReturnsRetained:
4752      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
4753        break;
4754      // fallthrough into the function attrs
4755
4756    FUNCTION_TYPE_ATTRS_CASELIST:
4757      attr.setUsedAsTypeAttr();
4758
4759      // Never process function type attributes as part of the
4760      // declaration-specifiers.
4761      if (TAL == TAL_DeclSpec)
4762        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
4763
4764      // Otherwise, handle the possible delays.
4765      else if (!handleFunctionTypeAttr(state, attr, type))
4766        distributeFunctionTypeAttr(state, attr, type);
4767      break;
4768    }
4769  } while ((attrs = next));
4770}
4771
4772/// \brief Ensure that the type of the given expression is complete.
4773///
4774/// This routine checks whether the expression \p E has a complete type. If the
4775/// expression refers to an instantiable construct, that instantiation is
4776/// performed as needed to complete its type. Furthermore
4777/// Sema::RequireCompleteType is called for the expression's type (or in the
4778/// case of a reference type, the referred-to type).
4779///
4780/// \param E The expression whose type is required to be complete.
4781/// \param Diagnoser The object that will emit a diagnostic if the type is
4782/// incomplete.
4783///
4784/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
4785/// otherwise.
4786bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
4787  QualType T = E->getType();
4788
4789  // Fast path the case where the type is already complete.
4790  if (!T->isIncompleteType())
4791    return false;
4792
4793  // Incomplete array types may be completed by the initializer attached to
4794  // their definitions. For static data members of class templates we need to
4795  // instantiate the definition to get this initializer and complete the type.
4796  if (T->isIncompleteArrayType()) {
4797    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4798      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4799        if (Var->isStaticDataMember() &&
4800            Var->getInstantiatedFromStaticDataMember()) {
4801
4802          MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
4803          assert(MSInfo && "Missing member specialization information?");
4804          if (MSInfo->getTemplateSpecializationKind()
4805                != TSK_ExplicitSpecialization) {
4806            // If we don't already have a point of instantiation, this is it.
4807            if (MSInfo->getPointOfInstantiation().isInvalid()) {
4808              MSInfo->setPointOfInstantiation(E->getLocStart());
4809
4810              // This is a modification of an existing AST node. Notify
4811              // listeners.
4812              if (ASTMutationListener *L = getASTMutationListener())
4813                L->StaticDataMemberInstantiated(Var);
4814            }
4815
4816            InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
4817
4818            // Update the type to the newly instantiated definition's type both
4819            // here and within the expression.
4820            if (VarDecl *Def = Var->getDefinition()) {
4821              DRE->setDecl(Def);
4822              T = Def->getType();
4823              DRE->setType(T);
4824              E->setType(T);
4825            }
4826          }
4827
4828          // We still go on to try to complete the type independently, as it
4829          // may also require instantiations or diagnostics if it remains
4830          // incomplete.
4831        }
4832      }
4833    }
4834  }
4835
4836  // FIXME: Are there other cases which require instantiating something other
4837  // than the type to complete the type of an expression?
4838
4839  // Look through reference types and complete the referred type.
4840  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
4841    T = Ref->getPointeeType();
4842
4843  return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
4844}
4845
4846namespace {
4847  struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
4848    unsigned DiagID;
4849
4850    TypeDiagnoserDiag(unsigned DiagID)
4851      : Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
4852
4853    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
4854      if (Suppressed) return;
4855      S.Diag(Loc, DiagID) << T;
4856    }
4857  };
4858}
4859
4860bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
4861  TypeDiagnoserDiag Diagnoser(DiagID);
4862  return RequireCompleteExprType(E, Diagnoser);
4863}
4864
4865/// @brief Ensure that the type T is a complete type.
4866///
4867/// This routine checks whether the type @p T is complete in any
4868/// context where a complete type is required. If @p T is a complete
4869/// type, returns false. If @p T is a class template specialization,
4870/// this routine then attempts to perform class template
4871/// instantiation. If instantiation fails, or if @p T is incomplete
4872/// and cannot be completed, issues the diagnostic @p diag (giving it
4873/// the type @p T) and returns true.
4874///
4875/// @param Loc  The location in the source that the incomplete type
4876/// diagnostic should refer to.
4877///
4878/// @param T  The type that this routine is examining for completeness.
4879///
4880/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
4881/// @c false otherwise.
4882bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4883                               TypeDiagnoser &Diagnoser) {
4884  if (RequireCompleteTypeImpl(Loc, T, Diagnoser))
4885    return true;
4886  if (const TagType *Tag = T->getAs<TagType>()) {
4887    if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
4888      Tag->getDecl()->setCompleteDefinitionRequired();
4889      Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
4890    }
4891  }
4892  return false;
4893}
4894
4895/// \brief The implementation of RequireCompleteType
4896bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
4897                                   TypeDiagnoser &Diagnoser) {
4898  // FIXME: Add this assertion to make sure we always get instantiation points.
4899  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
4900  // FIXME: Add this assertion to help us flush out problems with
4901  // checking for dependent types and type-dependent expressions.
4902  //
4903  //  assert(!T->isDependentType() &&
4904  //         "Can't ask whether a dependent type is complete");
4905
4906  // If we have a complete type, we're done.
4907  NamedDecl *Def = 0;
4908  if (!T->isIncompleteType(&Def)) {
4909    // If we know about the definition but it is not visible, complain.
4910    if (!Diagnoser.Suppressed && Def && !LookupResult::isVisible(*this, Def)) {
4911      // Suppress this error outside of a SFINAE context if we've already
4912      // emitted the error once for this type. There's no usefulness in
4913      // repeating the diagnostic.
4914      // FIXME: Add a Fix-It that imports the corresponding module or includes
4915      // the header.
4916      Module *Owner = Def->getOwningModule();
4917      Diag(Loc, diag::err_module_private_definition)
4918        << T << Owner->getFullModuleName();
4919      Diag(Def->getLocation(), diag::note_previous_definition);
4920
4921      if (!isSFINAEContext()) {
4922        // Recover by implicitly importing this module.
4923        createImplicitModuleImport(Loc, Owner);
4924      }
4925    }
4926
4927    return false;
4928  }
4929
4930  const TagType *Tag = T->getAs<TagType>();
4931  const ObjCInterfaceType *IFace = 0;
4932
4933  if (Tag) {
4934    // Avoid diagnosing invalid decls as incomplete.
4935    if (Tag->getDecl()->isInvalidDecl())
4936      return true;
4937
4938    // Give the external AST source a chance to complete the type.
4939    if (Tag->getDecl()->hasExternalLexicalStorage()) {
4940      Context.getExternalSource()->CompleteType(Tag->getDecl());
4941      if (!Tag->isIncompleteType())
4942        return false;
4943    }
4944  }
4945  else if ((IFace = T->getAs<ObjCInterfaceType>())) {
4946    // Avoid diagnosing invalid decls as incomplete.
4947    if (IFace->getDecl()->isInvalidDecl())
4948      return true;
4949
4950    // Give the external AST source a chance to complete the type.
4951    if (IFace->getDecl()->hasExternalLexicalStorage()) {
4952      Context.getExternalSource()->CompleteType(IFace->getDecl());
4953      if (!IFace->isIncompleteType())
4954        return false;
4955    }
4956  }
4957
4958  // If we have a class template specialization or a class member of a
4959  // class template specialization, or an array with known size of such,
4960  // try to instantiate it.
4961  QualType MaybeTemplate = T;
4962  while (const ConstantArrayType *Array
4963           = Context.getAsConstantArrayType(MaybeTemplate))
4964    MaybeTemplate = Array->getElementType();
4965  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
4966    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
4967          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
4968      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
4969        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
4970                                                      TSK_ImplicitInstantiation,
4971                                            /*Complain=*/!Diagnoser.Suppressed);
4972    } else if (CXXRecordDecl *Rec
4973                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
4974      CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
4975      if (!Rec->isBeingDefined() && Pattern) {
4976        MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
4977        assert(MSI && "Missing member specialization information?");
4978        // This record was instantiated from a class within a template.
4979        if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4980          return InstantiateClass(Loc, Rec, Pattern,
4981                                  getTemplateInstantiationArgs(Rec),
4982                                  TSK_ImplicitInstantiation,
4983                                  /*Complain=*/!Diagnoser.Suppressed);
4984      }
4985    }
4986  }
4987
4988  if (Diagnoser.Suppressed)
4989    return true;
4990
4991  // We have an incomplete type. Produce a diagnostic.
4992  if (Ident___float128 &&
4993      T == Context.getTypeDeclType(Context.getFloat128StubType())) {
4994    Diag(Loc, diag::err_typecheck_decl_incomplete_type___float128);
4995    return true;
4996  }
4997
4998  Diagnoser.diagnose(*this, Loc, T);
4999
5000  // If the type was a forward declaration of a class/struct/union
5001  // type, produce a note.
5002  if (Tag && !Tag->getDecl()->isInvalidDecl())
5003    Diag(Tag->getDecl()->getLocation(),
5004         Tag->isBeingDefined() ? diag::note_type_being_defined
5005                               : diag::note_forward_declaration)
5006      << QualType(Tag, 0);
5007
5008  // If the Objective-C class was a forward declaration, produce a note.
5009  if (IFace && !IFace->getDecl()->isInvalidDecl())
5010    Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
5011
5012  return true;
5013}
5014
5015bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
5016                               unsigned DiagID) {
5017  TypeDiagnoserDiag Diagnoser(DiagID);
5018  return RequireCompleteType(Loc, T, Diagnoser);
5019}
5020
5021/// \brief Get diagnostic %select index for tag kind for
5022/// literal type diagnostic message.
5023/// WARNING: Indexes apply to particular diagnostics only!
5024///
5025/// \returns diagnostic %select index.
5026static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
5027  switch (Tag) {
5028  case TTK_Struct: return 0;
5029  case TTK_Interface: return 1;
5030  case TTK_Class:  return 2;
5031  default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
5032  }
5033}
5034
5035/// @brief Ensure that the type T is a literal type.
5036///
5037/// This routine checks whether the type @p T is a literal type. If @p T is an
5038/// incomplete type, an attempt is made to complete it. If @p T is a literal
5039/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
5040/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
5041/// it the type @p T), along with notes explaining why the type is not a
5042/// literal type, and returns true.
5043///
5044/// @param Loc  The location in the source that the non-literal type
5045/// diagnostic should refer to.
5046///
5047/// @param T  The type that this routine is examining for literalness.
5048///
5049/// @param Diagnoser Emits a diagnostic if T is not a literal type.
5050///
5051/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
5052/// @c false otherwise.
5053bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
5054                              TypeDiagnoser &Diagnoser) {
5055  assert(!T->isDependentType() && "type should not be dependent");
5056
5057  QualType ElemType = Context.getBaseElementType(T);
5058  RequireCompleteType(Loc, ElemType, 0);
5059
5060  if (T->isLiteralType(Context))
5061    return false;
5062
5063  if (Diagnoser.Suppressed)
5064    return true;
5065
5066  Diagnoser.diagnose(*this, Loc, T);
5067
5068  if (T->isVariableArrayType())
5069    return true;
5070
5071  const RecordType *RT = ElemType->getAs<RecordType>();
5072  if (!RT)
5073    return true;
5074
5075  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5076
5077  // A partially-defined class type can't be a literal type, because a literal
5078  // class type must have a trivial destructor (which can't be checked until
5079  // the class definition is complete).
5080  if (!RD->isCompleteDefinition()) {
5081    RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
5082    return true;
5083  }
5084
5085  // If the class has virtual base classes, then it's not an aggregate, and
5086  // cannot have any constexpr constructors or a trivial default constructor,
5087  // so is non-literal. This is better to diagnose than the resulting absence
5088  // of constexpr constructors.
5089  if (RD->getNumVBases()) {
5090    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
5091      << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
5092    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
5093           E = RD->vbases_end(); I != E; ++I)
5094      Diag(I->getLocStart(),
5095           diag::note_constexpr_virtual_base_here) << I->getSourceRange();
5096  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
5097             !RD->hasTrivialDefaultConstructor()) {
5098    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
5099  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
5100    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
5101         E = RD->bases_end(); I != E; ++I) {
5102      if (!I->getType()->isLiteralType(Context)) {
5103        Diag(I->getLocStart(),
5104             diag::note_non_literal_base_class)
5105          << RD << I->getType() << I->getSourceRange();
5106        return true;
5107      }
5108    }
5109    for (CXXRecordDecl::field_iterator I = RD->field_begin(),
5110         E = RD->field_end(); I != E; ++I) {
5111      if (!I->getType()->isLiteralType(Context) ||
5112          I->getType().isVolatileQualified()) {
5113        Diag(I->getLocation(), diag::note_non_literal_field)
5114          << RD << *I << I->getType()
5115          << I->getType().isVolatileQualified();
5116        return true;
5117      }
5118    }
5119  } else if (!RD->hasTrivialDestructor()) {
5120    // All fields and bases are of literal types, so have trivial destructors.
5121    // If this class's destructor is non-trivial it must be user-declared.
5122    CXXDestructorDecl *Dtor = RD->getDestructor();
5123    assert(Dtor && "class has literal fields and bases but no dtor?");
5124    if (!Dtor)
5125      return true;
5126
5127    Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
5128         diag::note_non_literal_user_provided_dtor :
5129         diag::note_non_literal_nontrivial_dtor) << RD;
5130    if (!Dtor->isUserProvided())
5131      SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
5132  }
5133
5134  return true;
5135}
5136
5137bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
5138  TypeDiagnoserDiag Diagnoser(DiagID);
5139  return RequireLiteralType(Loc, T, Diagnoser);
5140}
5141
5142/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
5143/// and qualified by the nested-name-specifier contained in SS.
5144QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
5145                                 const CXXScopeSpec &SS, QualType T) {
5146  if (T.isNull())
5147    return T;
5148  NestedNameSpecifier *NNS;
5149  if (SS.isValid())
5150    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5151  else {
5152    if (Keyword == ETK_None)
5153      return T;
5154    NNS = 0;
5155  }
5156  return Context.getElaboratedType(Keyword, NNS, T);
5157}
5158
5159QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
5160  ExprResult ER = CheckPlaceholderExpr(E);
5161  if (ER.isInvalid()) return QualType();
5162  E = ER.take();
5163
5164  if (!E->isTypeDependent()) {
5165    QualType T = E->getType();
5166    if (const TagType *TT = T->getAs<TagType>())
5167      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
5168  }
5169  return Context.getTypeOfExprType(E);
5170}
5171
5172/// getDecltypeForExpr - Given an expr, will return the decltype for
5173/// that expression, according to the rules in C++11
5174/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
5175static QualType getDecltypeForExpr(Sema &S, Expr *E) {
5176  if (E->isTypeDependent())
5177    return S.Context.DependentTy;
5178
5179  // C++11 [dcl.type.simple]p4:
5180  //   The type denoted by decltype(e) is defined as follows:
5181  //
5182  //     - if e is an unparenthesized id-expression or an unparenthesized class
5183  //       member access (5.2.5), decltype(e) is the type of the entity named
5184  //       by e. If there is no such entity, or if e names a set of overloaded
5185  //       functions, the program is ill-formed;
5186  //
5187  // We apply the same rules for Objective-C ivar and property references.
5188  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
5189    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
5190      return VD->getType();
5191  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5192    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
5193      return FD->getType();
5194  } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
5195    return IR->getDecl()->getType();
5196  } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
5197    if (PR->isExplicitProperty())
5198      return PR->getExplicitProperty()->getType();
5199  }
5200
5201  // C++11 [expr.lambda.prim]p18:
5202  //   Every occurrence of decltype((x)) where x is a possibly
5203  //   parenthesized id-expression that names an entity of automatic
5204  //   storage duration is treated as if x were transformed into an
5205  //   access to a corresponding data member of the closure type that
5206  //   would have been declared if x were an odr-use of the denoted
5207  //   entity.
5208  using namespace sema;
5209  if (S.getCurLambda()) {
5210    if (isa<ParenExpr>(E)) {
5211      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
5212        if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
5213          QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
5214          if (!T.isNull())
5215            return S.Context.getLValueReferenceType(T);
5216        }
5217      }
5218    }
5219  }
5220
5221
5222  // C++11 [dcl.type.simple]p4:
5223  //   [...]
5224  QualType T = E->getType();
5225  switch (E->getValueKind()) {
5226  //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
5227  //       type of e;
5228  case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
5229  //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
5230  //       type of e;
5231  case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
5232  //  - otherwise, decltype(e) is the type of e.
5233  case VK_RValue: break;
5234  }
5235
5236  return T;
5237}
5238
5239QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
5240  ExprResult ER = CheckPlaceholderExpr(E);
5241  if (ER.isInvalid()) return QualType();
5242  E = ER.take();
5243
5244  return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
5245}
5246
5247QualType Sema::BuildUnaryTransformType(QualType BaseType,
5248                                       UnaryTransformType::UTTKind UKind,
5249                                       SourceLocation Loc) {
5250  switch (UKind) {
5251  case UnaryTransformType::EnumUnderlyingType:
5252    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
5253      Diag(Loc, diag::err_only_enums_have_underlying_types);
5254      return QualType();
5255    } else {
5256      QualType Underlying = BaseType;
5257      if (!BaseType->isDependentType()) {
5258        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
5259        assert(ED && "EnumType has no EnumDecl");
5260        DiagnoseUseOfDecl(ED, Loc);
5261        Underlying = ED->getIntegerType();
5262      }
5263      assert(!Underlying.isNull());
5264      return Context.getUnaryTransformType(BaseType, Underlying,
5265                                        UnaryTransformType::EnumUnderlyingType);
5266    }
5267  }
5268  llvm_unreachable("unknown unary transform type");
5269}
5270
5271QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
5272  if (!T->isDependentType()) {
5273    // FIXME: It isn't entirely clear whether incomplete atomic types
5274    // are allowed or not; for simplicity, ban them for the moment.
5275    if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
5276      return QualType();
5277
5278    int DisallowedKind = -1;
5279    if (T->isArrayType())
5280      DisallowedKind = 1;
5281    else if (T->isFunctionType())
5282      DisallowedKind = 2;
5283    else if (T->isReferenceType())
5284      DisallowedKind = 3;
5285    else if (T->isAtomicType())
5286      DisallowedKind = 4;
5287    else if (T.hasQualifiers())
5288      DisallowedKind = 5;
5289    else if (!T.isTriviallyCopyableType(Context))
5290      // Some other non-trivially-copyable type (probably a C++ class)
5291      DisallowedKind = 6;
5292
5293    if (DisallowedKind != -1) {
5294      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
5295      return QualType();
5296    }
5297
5298    // FIXME: Do we need any handling for ARC here?
5299  }
5300
5301  // Build the pointer type.
5302  return Context.getAtomicType(T);
5303}
5304