SemaType.cpp revision c030d6bf6779cb68995b7ece3948f87ddce045c8
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/TypeLocVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26using namespace clang;
27
28/// \brief Perform adjustment on the parameter type of a function.
29///
30/// This routine adjusts the given parameter type @p T to the actual
31/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
32/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
33QualType Sema::adjustParameterType(QualType T) {
34  // C99 6.7.5.3p7:
35  //   A declaration of a parameter as "array of type" shall be
36  //   adjusted to "qualified pointer to type", where the type
37  //   qualifiers (if any) are those specified within the [ and ] of
38  //   the array type derivation.
39  if (T->isArrayType())
40    return Context.getArrayDecayedType(T);
41
42  // C99 6.7.5.3p8:
43  //   A declaration of a parameter as "function returning type"
44  //   shall be adjusted to "pointer to function returning type", as
45  //   in 6.3.2.1.
46  if (T->isFunctionType())
47    return Context.getPointerType(T);
48
49  return T;
50}
51
52
53
54/// isOmittedBlockReturnType - Return true if this declarator is missing a
55/// return type because this is a omitted return type on a block literal.
56static bool isOmittedBlockReturnType(const Declarator &D) {
57  if (D.getContext() != Declarator::BlockLiteralContext ||
58      D.getDeclSpec().hasTypeSpecifier())
59    return false;
60
61  if (D.getNumTypeObjects() == 0)
62    return true;   // ^{ ... }
63
64  if (D.getNumTypeObjects() == 1 &&
65      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
66    return true;   // ^(int X, float Y) { ... }
67
68  return false;
69}
70
71typedef std::pair<const AttributeList*,QualType> DelayedAttribute;
72typedef llvm::SmallVectorImpl<DelayedAttribute> DelayedAttributeSet;
73
74static void ProcessTypeAttributeList(Sema &S, QualType &Type,
75                                     bool IsDeclSpec,
76                                     const AttributeList *Attrs,
77                                     DelayedAttributeSet &DelayedFnAttrs);
78static bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr);
79
80static void ProcessDelayedFnAttrs(Sema &S, QualType &Type,
81                                  DelayedAttributeSet &Attrs) {
82  for (DelayedAttributeSet::iterator I = Attrs.begin(),
83         E = Attrs.end(); I != E; ++I)
84    if (ProcessFnAttr(S, Type, *I->first))
85      S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
86        << I->first->getName() << I->second;
87  Attrs.clear();
88}
89
90static void DiagnoseDelayedFnAttrs(Sema &S, DelayedAttributeSet &Attrs) {
91  for (DelayedAttributeSet::iterator I = Attrs.begin(),
92         E = Attrs.end(); I != E; ++I) {
93    S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
94      << I->first->getName() << I->second;
95  }
96  Attrs.clear();
97}
98
99/// \brief Convert the specified declspec to the appropriate type
100/// object.
101/// \param D  the declarator containing the declaration specifier.
102/// \returns The type described by the declaration specifiers.  This function
103/// never returns null.
104static QualType ConvertDeclSpecToType(Sema &TheSema,
105                                      Declarator &TheDeclarator,
106                                      DelayedAttributeSet &Delayed) {
107  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
108  // checking.
109  const DeclSpec &DS = TheDeclarator.getDeclSpec();
110  SourceLocation DeclLoc = TheDeclarator.getIdentifierLoc();
111  if (DeclLoc.isInvalid())
112    DeclLoc = DS.getSourceRange().getBegin();
113
114  ASTContext &Context = TheSema.Context;
115
116  QualType Result;
117  switch (DS.getTypeSpecType()) {
118  case DeclSpec::TST_void:
119    Result = Context.VoidTy;
120    break;
121  case DeclSpec::TST_char:
122    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
123      Result = Context.CharTy;
124    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
125      Result = Context.SignedCharTy;
126    else {
127      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
128             "Unknown TSS value");
129      Result = Context.UnsignedCharTy;
130    }
131    break;
132  case DeclSpec::TST_wchar:
133    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
134      Result = Context.WCharTy;
135    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
136      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
137        << DS.getSpecifierName(DS.getTypeSpecType());
138      Result = Context.getSignedWCharType();
139    } else {
140      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
141        "Unknown TSS value");
142      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
143        << DS.getSpecifierName(DS.getTypeSpecType());
144      Result = Context.getUnsignedWCharType();
145    }
146    break;
147  case DeclSpec::TST_char16:
148      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
149        "Unknown TSS value");
150      Result = Context.Char16Ty;
151    break;
152  case DeclSpec::TST_char32:
153      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
154        "Unknown TSS value");
155      Result = Context.Char32Ty;
156    break;
157  case DeclSpec::TST_unspecified:
158    // "<proto1,proto2>" is an objc qualified ID with a missing id.
159    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
160      Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
161                                                (ObjCProtocolDecl**)PQ,
162                                                DS.getNumProtocolQualifiers());
163      break;
164    }
165
166    // If this is a missing declspec in a block literal return context, then it
167    // is inferred from the return statements inside the block.
168    if (isOmittedBlockReturnType(TheDeclarator)) {
169      Result = Context.DependentTy;
170      break;
171    }
172
173    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
174    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
175    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
176    // Note that the one exception to this is function definitions, which are
177    // allowed to be completely missing a declspec.  This is handled in the
178    // parser already though by it pretending to have seen an 'int' in this
179    // case.
180    if (TheSema.getLangOptions().ImplicitInt) {
181      // In C89 mode, we only warn if there is a completely missing declspec
182      // when one is not allowed.
183      if (DS.isEmpty()) {
184        TheSema.Diag(DeclLoc, diag::ext_missing_declspec)
185          << DS.getSourceRange()
186        << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
187                                                 "int");
188      }
189    } else if (!DS.hasTypeSpecifier()) {
190      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
191      // "At least one type specifier shall be given in the declaration
192      // specifiers in each declaration, and in the specifier-qualifier list in
193      // each struct declaration and type name."
194      // FIXME: Does Microsoft really have the implicit int extension in C++?
195      if (TheSema.getLangOptions().CPlusPlus &&
196          !TheSema.getLangOptions().Microsoft) {
197        TheSema.Diag(DeclLoc, diag::err_missing_type_specifier)
198          << DS.getSourceRange();
199
200        // When this occurs in C++ code, often something is very broken with the
201        // value being declared, poison it as invalid so we don't get chains of
202        // errors.
203        TheDeclarator.setInvalidType(true);
204      } else {
205        TheSema.Diag(DeclLoc, diag::ext_missing_type_specifier)
206          << DS.getSourceRange();
207      }
208    }
209
210    // FALL THROUGH.
211  case DeclSpec::TST_int: {
212    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
213      switch (DS.getTypeSpecWidth()) {
214      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
215      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
216      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
217      case DeclSpec::TSW_longlong:
218        Result = Context.LongLongTy;
219
220        // long long is a C99 feature.
221        if (!TheSema.getLangOptions().C99 &&
222            !TheSema.getLangOptions().CPlusPlus0x)
223          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
224        break;
225      }
226    } else {
227      switch (DS.getTypeSpecWidth()) {
228      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
229      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
230      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
231      case DeclSpec::TSW_longlong:
232        Result = Context.UnsignedLongLongTy;
233
234        // long long is a C99 feature.
235        if (!TheSema.getLangOptions().C99 &&
236            !TheSema.getLangOptions().CPlusPlus0x)
237          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
238        break;
239      }
240    }
241    break;
242  }
243  case DeclSpec::TST_float: Result = Context.FloatTy; break;
244  case DeclSpec::TST_double:
245    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
246      Result = Context.LongDoubleTy;
247    else
248      Result = Context.DoubleTy;
249    break;
250  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
251  case DeclSpec::TST_decimal32:    // _Decimal32
252  case DeclSpec::TST_decimal64:    // _Decimal64
253  case DeclSpec::TST_decimal128:   // _Decimal128
254    TheSema.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
255    Result = Context.IntTy;
256    TheDeclarator.setInvalidType(true);
257    break;
258  case DeclSpec::TST_class:
259  case DeclSpec::TST_enum:
260  case DeclSpec::TST_union:
261  case DeclSpec::TST_struct: {
262    TypeDecl *D
263      = dyn_cast_or_null<TypeDecl>(static_cast<Decl *>(DS.getTypeRep()));
264    if (!D) {
265      // This can happen in C++ with ambiguous lookups.
266      Result = Context.IntTy;
267      TheDeclarator.setInvalidType(true);
268      break;
269    }
270
271    // If the type is deprecated or unavailable, diagnose it.
272    TheSema.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeLoc());
273
274    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
275           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
276
277    // TypeQuals handled by caller.
278    Result = Context.getTypeDeclType(D);
279
280    // In C++, make an ElaboratedType.
281    if (TheSema.getLangOptions().CPlusPlus) {
282      TagDecl::TagKind Tag
283        = TagDecl::getTagKindForTypeSpec(DS.getTypeSpecType());
284      Result = Context.getElaboratedType(Result, Tag);
285    }
286
287    if (D->isInvalidDecl())
288      TheDeclarator.setInvalidType(true);
289    break;
290  }
291  case DeclSpec::TST_typename: {
292    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
293           DS.getTypeSpecSign() == 0 &&
294           "Can't handle qualifiers on typedef names yet!");
295    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
296
297    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
298      if (const ObjCInterfaceType *
299            Interface = Result->getAs<ObjCInterfaceType>()) {
300        // It would be nice if protocol qualifiers were only stored with the
301        // ObjCObjectPointerType. Unfortunately, this isn't possible due
302        // to the following typedef idiom (which is uncommon, but allowed):
303        //
304        // typedef Foo<P> T;
305        // static void func() {
306        //   Foo<P> *yy;
307        //   T *zz;
308        // }
309        Result = Context.getObjCInterfaceType(Interface->getDecl(),
310                                              (ObjCProtocolDecl**)PQ,
311                                              DS.getNumProtocolQualifiers());
312      } else if (Result->isObjCIdType())
313        // id<protocol-list>
314        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
315                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
316      else if (Result->isObjCClassType()) {
317        // Class<protocol-list>
318        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinClassTy,
319                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
320      } else {
321        TheSema.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
322          << DS.getSourceRange();
323        TheDeclarator.setInvalidType(true);
324      }
325    }
326
327    // TypeQuals handled by caller.
328    break;
329  }
330  case DeclSpec::TST_typeofType:
331    // FIXME: Preserve type source info.
332    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
333    assert(!Result.isNull() && "Didn't get a type for typeof?");
334    // TypeQuals handled by caller.
335    Result = Context.getTypeOfType(Result);
336    break;
337  case DeclSpec::TST_typeofExpr: {
338    Expr *E = static_cast<Expr *>(DS.getTypeRep());
339    assert(E && "Didn't get an expression for typeof?");
340    // TypeQuals handled by caller.
341    Result = TheSema.BuildTypeofExprType(E);
342    if (Result.isNull()) {
343      Result = Context.IntTy;
344      TheDeclarator.setInvalidType(true);
345    }
346    break;
347  }
348  case DeclSpec::TST_decltype: {
349    Expr *E = static_cast<Expr *>(DS.getTypeRep());
350    assert(E && "Didn't get an expression for decltype?");
351    // TypeQuals handled by caller.
352    Result = TheSema.BuildDecltypeType(E);
353    if (Result.isNull()) {
354      Result = Context.IntTy;
355      TheDeclarator.setInvalidType(true);
356    }
357    break;
358  }
359  case DeclSpec::TST_auto: {
360    // TypeQuals handled by caller.
361    Result = Context.UndeducedAutoTy;
362    break;
363  }
364
365  case DeclSpec::TST_error:
366    Result = Context.IntTy;
367    TheDeclarator.setInvalidType(true);
368    break;
369  }
370
371  // Handle complex types.
372  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
373    if (TheSema.getLangOptions().Freestanding)
374      TheSema.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
375    Result = Context.getComplexType(Result);
376  } else if (DS.isTypeAltiVecVector()) {
377    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
378    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
379    Result = Context.getVectorType(Result, 128/typeSize, true,
380      DS.isTypeAltiVecPixel());
381  }
382
383  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
384         "FIXME: imaginary types not supported yet!");
385
386  // See if there are any attributes on the declspec that apply to the type (as
387  // opposed to the decl).
388  if (const AttributeList *AL = DS.getAttributes())
389    ProcessTypeAttributeList(TheSema, Result, true, AL, Delayed);
390
391  // Apply const/volatile/restrict qualifiers to T.
392  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
393
394    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
395    // or incomplete types shall not be restrict-qualified."  C++ also allows
396    // restrict-qualified references.
397    if (TypeQuals & DeclSpec::TQ_restrict) {
398      if (Result->isAnyPointerType() || Result->isReferenceType()) {
399        QualType EltTy;
400        if (Result->isObjCObjectPointerType())
401          EltTy = Result;
402        else
403          EltTy = Result->isPointerType() ?
404                    Result->getAs<PointerType>()->getPointeeType() :
405                    Result->getAs<ReferenceType>()->getPointeeType();
406
407        // If we have a pointer or reference, the pointee must have an object
408        // incomplete type.
409        if (!EltTy->isIncompleteOrObjectType()) {
410          TheSema.Diag(DS.getRestrictSpecLoc(),
411               diag::err_typecheck_invalid_restrict_invalid_pointee)
412            << EltTy << DS.getSourceRange();
413          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
414        }
415      } else {
416        TheSema.Diag(DS.getRestrictSpecLoc(),
417             diag::err_typecheck_invalid_restrict_not_pointer)
418          << Result << DS.getSourceRange();
419        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
420      }
421    }
422
423    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
424    // of a function type includes any type qualifiers, the behavior is
425    // undefined."
426    if (Result->isFunctionType() && TypeQuals) {
427      // Get some location to point at, either the C or V location.
428      SourceLocation Loc;
429      if (TypeQuals & DeclSpec::TQ_const)
430        Loc = DS.getConstSpecLoc();
431      else if (TypeQuals & DeclSpec::TQ_volatile)
432        Loc = DS.getVolatileSpecLoc();
433      else {
434        assert((TypeQuals & DeclSpec::TQ_restrict) &&
435               "Has CVR quals but not C, V, or R?");
436        Loc = DS.getRestrictSpecLoc();
437      }
438      TheSema.Diag(Loc, diag::warn_typecheck_function_qualifiers)
439        << Result << DS.getSourceRange();
440    }
441
442    // C++ [dcl.ref]p1:
443    //   Cv-qualified references are ill-formed except when the
444    //   cv-qualifiers are introduced through the use of a typedef
445    //   (7.1.3) or of a template type argument (14.3), in which
446    //   case the cv-qualifiers are ignored.
447    // FIXME: Shouldn't we be checking SCS_typedef here?
448    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
449        TypeQuals && Result->isReferenceType()) {
450      TypeQuals &= ~DeclSpec::TQ_const;
451      TypeQuals &= ~DeclSpec::TQ_volatile;
452    }
453
454    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
455    Result = Context.getQualifiedType(Result, Quals);
456  }
457
458  return Result;
459}
460
461static std::string getPrintableNameForEntity(DeclarationName Entity) {
462  if (Entity)
463    return Entity.getAsString();
464
465  return "type name";
466}
467
468/// \brief Build a pointer type.
469///
470/// \param T The type to which we'll be building a pointer.
471///
472/// \param Quals The cvr-qualifiers to be applied to the pointer type.
473///
474/// \param Loc The location of the entity whose type involves this
475/// pointer type or, if there is no such entity, the location of the
476/// type that will have pointer type.
477///
478/// \param Entity The name of the entity that involves the pointer
479/// type, if known.
480///
481/// \returns A suitable pointer type, if there are no
482/// errors. Otherwise, returns a NULL type.
483QualType Sema::BuildPointerType(QualType T, unsigned Quals,
484                                SourceLocation Loc, DeclarationName Entity) {
485  if (T->isReferenceType()) {
486    // C++ 8.3.2p4: There shall be no ... pointers to references ...
487    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
488      << getPrintableNameForEntity(Entity) << T;
489    return QualType();
490  }
491
492  Qualifiers Qs = Qualifiers::fromCVRMask(Quals);
493
494  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
495  // object or incomplete types shall not be restrict-qualified."
496  if (Qs.hasRestrict() && !T->isIncompleteOrObjectType()) {
497    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
498      << T;
499    Qs.removeRestrict();
500  }
501
502  // Build the pointer type.
503  return Context.getQualifiedType(Context.getPointerType(T), Qs);
504}
505
506/// \brief Build a reference type.
507///
508/// \param T The type to which we'll be building a reference.
509///
510/// \param CVR The cvr-qualifiers to be applied to the reference type.
511///
512/// \param Loc The location of the entity whose type involves this
513/// reference type or, if there is no such entity, the location of the
514/// type that will have reference type.
515///
516/// \param Entity The name of the entity that involves the reference
517/// type, if known.
518///
519/// \returns A suitable reference type, if there are no
520/// errors. Otherwise, returns a NULL type.
521QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
522                                  unsigned CVR, SourceLocation Loc,
523                                  DeclarationName Entity) {
524  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
525
526  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
527
528  // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
529  //   reference to a type T, and attempt to create the type "lvalue
530  //   reference to cv TD" creates the type "lvalue reference to T".
531  // We use the qualifiers (restrict or none) of the original reference,
532  // not the new ones. This is consistent with GCC.
533
534  // C++ [dcl.ref]p4: There shall be no references to references.
535  //
536  // According to C++ DR 106, references to references are only
537  // diagnosed when they are written directly (e.g., "int & &"),
538  // but not when they happen via a typedef:
539  //
540  //   typedef int& intref;
541  //   typedef intref& intref2;
542  //
543  // Parser::ParseDeclaratorInternal diagnoses the case where
544  // references are written directly; here, we handle the
545  // collapsing of references-to-references as described in C++
546  // DR 106 and amended by C++ DR 540.
547
548  // C++ [dcl.ref]p1:
549  //   A declarator that specifies the type "reference to cv void"
550  //   is ill-formed.
551  if (T->isVoidType()) {
552    Diag(Loc, diag::err_reference_to_void);
553    return QualType();
554  }
555
556  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
557  // object or incomplete types shall not be restrict-qualified."
558  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
559    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
560      << T;
561    Quals.removeRestrict();
562  }
563
564  // C++ [dcl.ref]p1:
565  //   [...] Cv-qualified references are ill-formed except when the
566  //   cv-qualifiers are introduced through the use of a typedef
567  //   (7.1.3) or of a template type argument (14.3), in which case
568  //   the cv-qualifiers are ignored.
569  //
570  // We diagnose extraneous cv-qualifiers for the non-typedef,
571  // non-template type argument case within the parser. Here, we just
572  // ignore any extraneous cv-qualifiers.
573  Quals.removeConst();
574  Quals.removeVolatile();
575
576  // Handle restrict on references.
577  if (LValueRef)
578    return Context.getQualifiedType(
579               Context.getLValueReferenceType(T, SpelledAsLValue), Quals);
580  return Context.getQualifiedType(Context.getRValueReferenceType(T), Quals);
581}
582
583/// \brief Build an array type.
584///
585/// \param T The type of each element in the array.
586///
587/// \param ASM C99 array size modifier (e.g., '*', 'static').
588///
589/// \param ArraySize Expression describing the size of the array.
590///
591/// \param Quals The cvr-qualifiers to be applied to the array's
592/// element type.
593///
594/// \param Loc The location of the entity whose type involves this
595/// array type or, if there is no such entity, the location of the
596/// type that will have array type.
597///
598/// \param Entity The name of the entity that involves the array
599/// type, if known.
600///
601/// \returns A suitable array type, if there are no errors. Otherwise,
602/// returns a NULL type.
603QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
604                              Expr *ArraySize, unsigned Quals,
605                              SourceRange Brackets, DeclarationName Entity) {
606
607  SourceLocation Loc = Brackets.getBegin();
608  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
609  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
610  // Not in C++, though. There we only dislike void.
611  if (getLangOptions().CPlusPlus) {
612    if (T->isVoidType()) {
613      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
614      return QualType();
615    }
616  } else {
617    if (RequireCompleteType(Loc, T,
618                            diag::err_illegal_decl_array_incomplete_type))
619      return QualType();
620  }
621
622  if (T->isFunctionType()) {
623    Diag(Loc, diag::err_illegal_decl_array_of_functions)
624      << getPrintableNameForEntity(Entity) << T;
625    return QualType();
626  }
627
628  // C++ 8.3.2p4: There shall be no ... arrays of references ...
629  if (T->isReferenceType()) {
630    Diag(Loc, diag::err_illegal_decl_array_of_references)
631      << getPrintableNameForEntity(Entity) << T;
632    return QualType();
633  }
634
635  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
636    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
637      << getPrintableNameForEntity(Entity);
638    return QualType();
639  }
640
641  if (const RecordType *EltTy = T->getAs<RecordType>()) {
642    // If the element type is a struct or union that contains a variadic
643    // array, accept it as a GNU extension: C99 6.7.2.1p2.
644    if (EltTy->getDecl()->hasFlexibleArrayMember())
645      Diag(Loc, diag::ext_flexible_array_in_array) << T;
646  } else if (T->isObjCInterfaceType()) {
647    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
648    return QualType();
649  }
650
651  // C99 6.7.5.2p1: The size expression shall have integer type.
652  if (ArraySize && !ArraySize->isTypeDependent() &&
653      !ArraySize->getType()->isIntegerType()) {
654    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
655      << ArraySize->getType() << ArraySize->getSourceRange();
656    ArraySize->Destroy(Context);
657    return QualType();
658  }
659  llvm::APSInt ConstVal(32);
660  if (!ArraySize) {
661    if (ASM == ArrayType::Star)
662      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
663    else
664      T = Context.getIncompleteArrayType(T, ASM, Quals);
665  } else if (ArraySize->isValueDependent()) {
666    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
667  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
668             (!T->isDependentType() && !T->isIncompleteType() &&
669              !T->isConstantSizeType())) {
670    // Per C99, a variable array is an array with either a non-constant
671    // size or an element type that has a non-constant-size
672    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
673  } else {
674    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
675    // have a value greater than zero.
676    if (ConstVal.isSigned() && ConstVal.isNegative()) {
677      Diag(ArraySize->getLocStart(),
678           diag::err_typecheck_negative_array_size)
679        << ArraySize->getSourceRange();
680      return QualType();
681    }
682    if (ConstVal == 0) {
683      // GCC accepts zero sized static arrays.
684      Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
685        << ArraySize->getSourceRange();
686    }
687    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
688  }
689  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
690  if (!getLangOptions().C99) {
691    if (ArraySize && !ArraySize->isTypeDependent() &&
692        !ArraySize->isValueDependent() &&
693        !ArraySize->isIntegerConstantExpr(Context))
694      Diag(Loc, getLangOptions().CPlusPlus? diag::err_vla_cxx : diag::ext_vla);
695    else if (ASM != ArrayType::Normal || Quals != 0)
696      Diag(Loc,
697           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
698                                     : diag::ext_c99_array_usage);
699  }
700
701  return T;
702}
703
704/// \brief Build an ext-vector type.
705///
706/// Run the required checks for the extended vector type.
707QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
708                                  SourceLocation AttrLoc) {
709
710  Expr *Arg = (Expr *)ArraySize.get();
711
712  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
713  // in conjunction with complex types (pointers, arrays, functions, etc.).
714  if (!T->isDependentType() &&
715      !T->isIntegerType() && !T->isRealFloatingType()) {
716    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
717    return QualType();
718  }
719
720  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
721    llvm::APSInt vecSize(32);
722    if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
723      Diag(AttrLoc, diag::err_attribute_argument_not_int)
724      << "ext_vector_type" << Arg->getSourceRange();
725      return QualType();
726    }
727
728    // unlike gcc's vector_size attribute, the size is specified as the
729    // number of elements, not the number of bytes.
730    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
731
732    if (vectorSize == 0) {
733      Diag(AttrLoc, diag::err_attribute_zero_size)
734      << Arg->getSourceRange();
735      return QualType();
736    }
737
738    if (!T->isDependentType())
739      return Context.getExtVectorType(T, vectorSize);
740  }
741
742  return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
743                                                AttrLoc);
744}
745
746/// \brief Build a function type.
747///
748/// This routine checks the function type according to C++ rules and
749/// under the assumption that the result type and parameter types have
750/// just been instantiated from a template. It therefore duplicates
751/// some of the behavior of GetTypeForDeclarator, but in a much
752/// simpler form that is only suitable for this narrow use case.
753///
754/// \param T The return type of the function.
755///
756/// \param ParamTypes The parameter types of the function. This array
757/// will be modified to account for adjustments to the types of the
758/// function parameters.
759///
760/// \param NumParamTypes The number of parameter types in ParamTypes.
761///
762/// \param Variadic Whether this is a variadic function type.
763///
764/// \param Quals The cvr-qualifiers to be applied to the function type.
765///
766/// \param Loc The location of the entity whose type involves this
767/// function type or, if there is no such entity, the location of the
768/// type that will have function type.
769///
770/// \param Entity The name of the entity that involves the function
771/// type, if known.
772///
773/// \returns A suitable function type, if there are no
774/// errors. Otherwise, returns a NULL type.
775QualType Sema::BuildFunctionType(QualType T,
776                                 QualType *ParamTypes,
777                                 unsigned NumParamTypes,
778                                 bool Variadic, unsigned Quals,
779                                 SourceLocation Loc, DeclarationName Entity) {
780  if (T->isArrayType() || T->isFunctionType()) {
781    Diag(Loc, diag::err_func_returning_array_function)
782      << T->isFunctionType() << T;
783    return QualType();
784  }
785
786  bool Invalid = false;
787  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
788    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
789    if (ParamType->isVoidType()) {
790      Diag(Loc, diag::err_param_with_void_type);
791      Invalid = true;
792    }
793
794    ParamTypes[Idx] = ParamType;
795  }
796
797  if (Invalid)
798    return QualType();
799
800  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
801                                 Quals, false, false, 0, 0, false, CC_Default);
802}
803
804/// \brief Build a member pointer type \c T Class::*.
805///
806/// \param T the type to which the member pointer refers.
807/// \param Class the class type into which the member pointer points.
808/// \param CVR Qualifiers applied to the member pointer type
809/// \param Loc the location where this type begins
810/// \param Entity the name of the entity that will have this member pointer type
811///
812/// \returns a member pointer type, if successful, or a NULL type if there was
813/// an error.
814QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
815                                      unsigned CVR, SourceLocation Loc,
816                                      DeclarationName Entity) {
817  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
818
819  // Verify that we're not building a pointer to pointer to function with
820  // exception specification.
821  if (CheckDistantExceptionSpec(T)) {
822    Diag(Loc, diag::err_distant_exception_spec);
823
824    // FIXME: If we're doing this as part of template instantiation,
825    // we should return immediately.
826
827    // Build the type anyway, but use the canonical type so that the
828    // exception specifiers are stripped off.
829    T = Context.getCanonicalType(T);
830  }
831
832  // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
833  //   with reference type, or "cv void."
834  if (T->isReferenceType()) {
835    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
836      << (Entity? Entity.getAsString() : "type name") << T;
837    return QualType();
838  }
839
840  if (T->isVoidType()) {
841    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
842      << (Entity? Entity.getAsString() : "type name");
843    return QualType();
844  }
845
846  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
847  // object or incomplete types shall not be restrict-qualified."
848  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
849    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
850      << T;
851
852    // FIXME: If we're doing this as part of template instantiation,
853    // we should return immediately.
854    Quals.removeRestrict();
855  }
856
857  if (!Class->isDependentType() && !Class->isRecordType()) {
858    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
859    return QualType();
860  }
861
862  return Context.getQualifiedType(
863           Context.getMemberPointerType(T, Class.getTypePtr()), Quals);
864}
865
866/// \brief Build a block pointer type.
867///
868/// \param T The type to which we'll be building a block pointer.
869///
870/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
871///
872/// \param Loc The location of the entity whose type involves this
873/// block pointer type or, if there is no such entity, the location of the
874/// type that will have block pointer type.
875///
876/// \param Entity The name of the entity that involves the block pointer
877/// type, if known.
878///
879/// \returns A suitable block pointer type, if there are no
880/// errors. Otherwise, returns a NULL type.
881QualType Sema::BuildBlockPointerType(QualType T, unsigned CVR,
882                                     SourceLocation Loc,
883                                     DeclarationName Entity) {
884  if (!T->isFunctionType()) {
885    Diag(Loc, diag::err_nonfunction_block_type);
886    return QualType();
887  }
888
889  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
890  return Context.getQualifiedType(Context.getBlockPointerType(T), Quals);
891}
892
893QualType Sema::GetTypeFromParser(TypeTy *Ty, TypeSourceInfo **TInfo) {
894  QualType QT = QualType::getFromOpaquePtr(Ty);
895  if (QT.isNull()) {
896    if (TInfo) *TInfo = 0;
897    return QualType();
898  }
899
900  TypeSourceInfo *DI = 0;
901  if (LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
902    QT = LIT->getType();
903    DI = LIT->getTypeSourceInfo();
904  }
905
906  if (TInfo) *TInfo = DI;
907  return QT;
908}
909
910/// GetTypeForDeclarator - Convert the type for the specified
911/// declarator to Type instances.
912///
913/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
914/// owns the declaration of a type (e.g., the definition of a struct
915/// type), then *OwnedDecl will receive the owned declaration.
916QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
917                                    TypeSourceInfo **TInfo,
918                                    TagDecl **OwnedDecl) {
919  // Determine the type of the declarator. Not all forms of declarator
920  // have a type.
921  QualType T;
922
923  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromDeclSpec;
924
925  switch (D.getName().getKind()) {
926  case UnqualifiedId::IK_Identifier:
927  case UnqualifiedId::IK_OperatorFunctionId:
928  case UnqualifiedId::IK_LiteralOperatorId:
929  case UnqualifiedId::IK_TemplateId:
930    T = ConvertDeclSpecToType(*this, D, FnAttrsFromDeclSpec);
931
932    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
933      TagDecl* Owned = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
934      // Owned is embedded if it was defined here, or if it is the
935      // very first (i.e., canonical) declaration of this tag type.
936      Owned->setEmbeddedInDeclarator(Owned->isDefinition() ||
937                                     Owned->isCanonicalDecl());
938      if (OwnedDecl) *OwnedDecl = Owned;
939    }
940    break;
941
942  case UnqualifiedId::IK_ConstructorName:
943  case UnqualifiedId::IK_ConstructorTemplateId:
944  case UnqualifiedId::IK_DestructorName:
945    // Constructors and destructors don't have return types. Use
946    // "void" instead.
947    T = Context.VoidTy;
948    break;
949
950  case UnqualifiedId::IK_ConversionFunctionId:
951    // The result type of a conversion function is the type that it
952    // converts to.
953    T = GetTypeFromParser(D.getName().ConversionFunctionId);
954    break;
955  }
956
957  if (T.isNull())
958    return T;
959
960  if (T == Context.UndeducedAutoTy) {
961    int Error = -1;
962
963    switch (D.getContext()) {
964    case Declarator::KNRTypeListContext:
965      assert(0 && "K&R type lists aren't allowed in C++");
966      break;
967    case Declarator::PrototypeContext:
968      Error = 0; // Function prototype
969      break;
970    case Declarator::MemberContext:
971      switch (cast<TagDecl>(CurContext)->getTagKind()) {
972      case TagDecl::TK_enum: assert(0 && "unhandled tag kind"); break;
973      case TagDecl::TK_struct: Error = 1; /* Struct member */ break;
974      case TagDecl::TK_union:  Error = 2; /* Union member */ break;
975      case TagDecl::TK_class:  Error = 3; /* Class member */ break;
976      }
977      break;
978    case Declarator::CXXCatchContext:
979      Error = 4; // Exception declaration
980      break;
981    case Declarator::TemplateParamContext:
982      Error = 5; // Template parameter
983      break;
984    case Declarator::BlockLiteralContext:
985      Error = 6;  // Block literal
986      break;
987    case Declarator::FileContext:
988    case Declarator::BlockContext:
989    case Declarator::ForContext:
990    case Declarator::ConditionContext:
991    case Declarator::TypeNameContext:
992      break;
993    }
994
995    if (Error != -1) {
996      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
997        << Error;
998      T = Context.IntTy;
999      D.setInvalidType(true);
1000    }
1001  }
1002
1003  // The name we're declaring, if any.
1004  DeclarationName Name;
1005  if (D.getIdentifier())
1006    Name = D.getIdentifier();
1007
1008  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromPreviousChunk;
1009
1010  // Walk the DeclTypeInfo, building the recursive type as we go.
1011  // DeclTypeInfos are ordered from the identifier out, which is
1012  // opposite of what we want :).
1013  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1014    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
1015    switch (DeclType.Kind) {
1016    default: assert(0 && "Unknown decltype!");
1017    case DeclaratorChunk::BlockPointer:
1018      // If blocks are disabled, emit an error.
1019      if (!LangOpts.Blocks)
1020        Diag(DeclType.Loc, diag::err_blocks_disable);
1021
1022      T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(),
1023                                Name);
1024      break;
1025    case DeclaratorChunk::Pointer:
1026      // Verify that we're not building a pointer to pointer to function with
1027      // exception specification.
1028      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1029        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1030        D.setInvalidType(true);
1031        // Build the type anyway.
1032      }
1033      if (getLangOptions().ObjC1 && T->isObjCInterfaceType()) {
1034        const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>();
1035        T = Context.getObjCObjectPointerType(T,
1036                                         (ObjCProtocolDecl **)OIT->qual_begin(),
1037                                         OIT->getNumProtocols());
1038        break;
1039      }
1040      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
1041      break;
1042    case DeclaratorChunk::Reference: {
1043      Qualifiers Quals;
1044      if (DeclType.Ref.HasRestrict) Quals.addRestrict();
1045
1046      // Verify that we're not building a reference to pointer to function with
1047      // exception specification.
1048      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1049        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1050        D.setInvalidType(true);
1051        // Build the type anyway.
1052      }
1053      T = BuildReferenceType(T, DeclType.Ref.LValueRef, Quals,
1054                             DeclType.Loc, Name);
1055      break;
1056    }
1057    case DeclaratorChunk::Array: {
1058      // Verify that we're not building an array of pointers to function with
1059      // exception specification.
1060      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1061        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1062        D.setInvalidType(true);
1063        // Build the type anyway.
1064      }
1065      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1066      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
1067      ArrayType::ArraySizeModifier ASM;
1068      if (ATI.isStar)
1069        ASM = ArrayType::Star;
1070      else if (ATI.hasStatic)
1071        ASM = ArrayType::Static;
1072      else
1073        ASM = ArrayType::Normal;
1074      if (ASM == ArrayType::Star &&
1075          D.getContext() != Declarator::PrototypeContext) {
1076        // FIXME: This check isn't quite right: it allows star in prototypes
1077        // for function definitions, and disallows some edge cases detailed
1078        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
1079        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
1080        ASM = ArrayType::Normal;
1081        D.setInvalidType(true);
1082      }
1083      T = BuildArrayType(T, ASM, ArraySize,
1084                         Qualifiers::fromCVRMask(ATI.TypeQuals),
1085                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
1086      break;
1087    }
1088    case DeclaratorChunk::Function: {
1089      // If the function declarator has a prototype (i.e. it is not () and
1090      // does not have a K&R-style identifier list), then the arguments are part
1091      // of the type, otherwise the argument list is ().
1092      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1093
1094      // C99 6.7.5.3p1: The return type may not be a function or array type.
1095      // For conversion functions, we'll diagnose this particular error later.
1096      if ((T->isArrayType() || T->isFunctionType()) &&
1097          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
1098        Diag(DeclType.Loc, diag::err_func_returning_array_function)
1099          << T->isFunctionType() << T;
1100        T = Context.IntTy;
1101        D.setInvalidType(true);
1102      }
1103
1104      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
1105        // C++ [dcl.fct]p6:
1106        //   Types shall not be defined in return or parameter types.
1107        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
1108        if (Tag->isDefinition())
1109          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
1110            << Context.getTypeDeclType(Tag);
1111      }
1112
1113      // Exception specs are not allowed in typedefs. Complain, but add it
1114      // anyway.
1115      if (FTI.hasExceptionSpec &&
1116          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1117        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
1118
1119      if (FTI.NumArgs == 0) {
1120        if (getLangOptions().CPlusPlus) {
1121          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
1122          // function takes no arguments.
1123          llvm::SmallVector<QualType, 4> Exceptions;
1124          Exceptions.reserve(FTI.NumExceptions);
1125          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1126            // FIXME: Preserve type source info.
1127            QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1128            // Check that the type is valid for an exception spec, and drop it
1129            // if not.
1130            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1131              Exceptions.push_back(ET);
1132          }
1133          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
1134                                      FTI.hasExceptionSpec,
1135                                      FTI.hasAnyExceptionSpec,
1136                                      Exceptions.size(), Exceptions.data(),
1137                                      false, CC_Default);
1138        } else if (FTI.isVariadic) {
1139          // We allow a zero-parameter variadic function in C if the
1140          // function is marked with the "overloadable"
1141          // attribute. Scan for this attribute now.
1142          bool Overloadable = false;
1143          for (const AttributeList *Attrs = D.getAttributes();
1144               Attrs; Attrs = Attrs->getNext()) {
1145            if (Attrs->getKind() == AttributeList::AT_overloadable) {
1146              Overloadable = true;
1147              break;
1148            }
1149          }
1150
1151          if (!Overloadable)
1152            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
1153          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0,
1154                                      false, false, 0, 0, false, CC_Default);
1155        } else {
1156          // Simple void foo(), where the incoming T is the result type.
1157          T = Context.getFunctionNoProtoType(T);
1158        }
1159      } else if (FTI.ArgInfo[0].Param == 0) {
1160        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
1161        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
1162        D.setInvalidType(true);
1163      } else {
1164        // Otherwise, we have a function with an argument list that is
1165        // potentially variadic.
1166        llvm::SmallVector<QualType, 16> ArgTys;
1167
1168        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1169          ParmVarDecl *Param =
1170            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
1171          QualType ArgTy = Param->getType();
1172          assert(!ArgTy.isNull() && "Couldn't parse type?");
1173
1174          // Adjust the parameter type.
1175          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1176
1177          // Look for 'void'.  void is allowed only as a single argument to a
1178          // function with no other parameters (C99 6.7.5.3p10).  We record
1179          // int(void) as a FunctionProtoType with an empty argument list.
1180          if (ArgTy->isVoidType()) {
1181            // If this is something like 'float(int, void)', reject it.  'void'
1182            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1183            // have arguments of incomplete type.
1184            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1185              Diag(DeclType.Loc, diag::err_void_only_param);
1186              ArgTy = Context.IntTy;
1187              Param->setType(ArgTy);
1188            } else if (FTI.ArgInfo[i].Ident) {
1189              // Reject, but continue to parse 'int(void abc)'.
1190              Diag(FTI.ArgInfo[i].IdentLoc,
1191                   diag::err_param_with_void_type);
1192              ArgTy = Context.IntTy;
1193              Param->setType(ArgTy);
1194            } else {
1195              // Reject, but continue to parse 'float(const void)'.
1196              if (ArgTy.hasQualifiers())
1197                Diag(DeclType.Loc, diag::err_void_param_qualified);
1198
1199              // Do not add 'void' to the ArgTys list.
1200              break;
1201            }
1202          } else if (!FTI.hasPrototype) {
1203            if (ArgTy->isPromotableIntegerType()) {
1204              ArgTy = Context.getPromotedIntegerType(ArgTy);
1205            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
1206              if (BTy->getKind() == BuiltinType::Float)
1207                ArgTy = Context.DoubleTy;
1208            }
1209          }
1210
1211          ArgTys.push_back(ArgTy);
1212        }
1213
1214        llvm::SmallVector<QualType, 4> Exceptions;
1215        Exceptions.reserve(FTI.NumExceptions);
1216        for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1217          // FIXME: Preserve type source info.
1218          QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1219          // Check that the type is valid for an exception spec, and drop it if
1220          // not.
1221          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1222            Exceptions.push_back(ET);
1223        }
1224
1225        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
1226                                    FTI.isVariadic, FTI.TypeQuals,
1227                                    FTI.hasExceptionSpec,
1228                                    FTI.hasAnyExceptionSpec,
1229                                    Exceptions.size(), Exceptions.data(),
1230                                    false, CC_Default);
1231      }
1232
1233      // For GCC compatibility, we allow attributes that apply only to
1234      // function types to be placed on a function's return type
1235      // instead (as long as that type doesn't happen to be function
1236      // or function-pointer itself).
1237      ProcessDelayedFnAttrs(*this, T, FnAttrsFromPreviousChunk);
1238
1239      break;
1240    }
1241    case DeclaratorChunk::MemberPointer:
1242      // Verify that we're not building a pointer to pointer to function with
1243      // exception specification.
1244      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1245        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1246        D.setInvalidType(true);
1247        // Build the type anyway.
1248      }
1249      // The scope spec must refer to a class, or be dependent.
1250      QualType ClsType;
1251      if (isDependentScopeSpecifier(DeclType.Mem.Scope())
1252            || dyn_cast_or_null<CXXRecordDecl>(
1253                                   computeDeclContext(DeclType.Mem.Scope()))) {
1254        NestedNameSpecifier *NNS
1255          = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
1256        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
1257        switch (NNS->getKind()) {
1258        case NestedNameSpecifier::Identifier:
1259          ClsType = Context.getTypenameType(NNSPrefix, NNS->getAsIdentifier());
1260          break;
1261
1262        case NestedNameSpecifier::Namespace:
1263        case NestedNameSpecifier::Global:
1264          llvm_unreachable("Nested-name-specifier must name a type");
1265          break;
1266
1267        case NestedNameSpecifier::TypeSpec:
1268        case NestedNameSpecifier::TypeSpecWithTemplate:
1269          ClsType = QualType(NNS->getAsType(), 0);
1270          if (NNSPrefix)
1271            ClsType = Context.getQualifiedNameType(NNSPrefix, ClsType);
1272          break;
1273        }
1274      } else {
1275        Diag(DeclType.Mem.Scope().getBeginLoc(),
1276             diag::err_illegal_decl_mempointer_in_nonclass)
1277          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1278          << DeclType.Mem.Scope().getRange();
1279        D.setInvalidType(true);
1280      }
1281
1282      if (!ClsType.isNull())
1283        T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals,
1284                                   DeclType.Loc, D.getIdentifier());
1285      if (T.isNull()) {
1286        T = Context.IntTy;
1287        D.setInvalidType(true);
1288      }
1289      break;
1290    }
1291
1292    if (T.isNull()) {
1293      D.setInvalidType(true);
1294      T = Context.IntTy;
1295    }
1296
1297    DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);
1298
1299    // See if there are any attributes on this declarator chunk.
1300    if (const AttributeList *AL = DeclType.getAttrs())
1301      ProcessTypeAttributeList(*this, T, false, AL, FnAttrsFromPreviousChunk);
1302  }
1303
1304  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1305    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
1306    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
1307
1308    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1309    // for a nonstatic member function, the function type to which a pointer
1310    // to member refers, or the top-level function type of a function typedef
1311    // declaration.
1312    if (FnTy->getTypeQuals() != 0 &&
1313        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1314        ((D.getContext() != Declarator::MemberContext &&
1315          (!D.getCXXScopeSpec().isSet() ||
1316           !computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)
1317              ->isRecord())) ||
1318         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1319      if (D.isFunctionDeclarator())
1320        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1321      else
1322        Diag(D.getIdentifierLoc(),
1323             diag::err_invalid_qualified_typedef_function_type_use);
1324
1325      // Strip the cv-quals from the type.
1326      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1327                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0,
1328                                  false, false, 0, 0, false, CC_Default);
1329    }
1330  }
1331
1332  // Process any function attributes we might have delayed from the
1333  // declaration-specifiers.
1334  ProcessDelayedFnAttrs(*this, T, FnAttrsFromDeclSpec);
1335
1336  // If there were any type attributes applied to the decl itself, not
1337  // the type, apply them to the result type.  But don't do this for
1338  // block-literal expressions, which are parsed wierdly.
1339  if (D.getContext() != Declarator::BlockLiteralContext)
1340    if (const AttributeList *Attrs = D.getAttributes())
1341      ProcessTypeAttributeList(*this, T, false, Attrs,
1342                               FnAttrsFromPreviousChunk);
1343
1344  DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);
1345
1346  if (TInfo) {
1347    if (D.isInvalidType())
1348      *TInfo = 0;
1349    else
1350      *TInfo = GetTypeSourceInfoForDeclarator(D, T);
1351  }
1352
1353  return T;
1354}
1355
1356namespace {
1357  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
1358    const DeclSpec &DS;
1359
1360  public:
1361    TypeSpecLocFiller(const DeclSpec &DS) : DS(DS) {}
1362
1363    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1364      Visit(TL.getUnqualifiedLoc());
1365    }
1366    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
1367      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1368    }
1369    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
1370      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1371
1372      if (DS.getProtocolQualifiers()) {
1373        assert(TL.getNumProtocols() > 0);
1374        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1375        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1376        TL.setRAngleLoc(DS.getSourceRange().getEnd());
1377        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
1378          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1379      } else {
1380        assert(TL.getNumProtocols() == 0);
1381        TL.setLAngleLoc(SourceLocation());
1382        TL.setRAngleLoc(SourceLocation());
1383      }
1384    }
1385    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1386      assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1387
1388      TL.setStarLoc(SourceLocation());
1389
1390      if (DS.getProtocolQualifiers()) {
1391        assert(TL.getNumProtocols() > 0);
1392        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1393        TL.setHasProtocolsAsWritten(true);
1394        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1395        TL.setRAngleLoc(DS.getSourceRange().getEnd());
1396        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
1397          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1398
1399      } else {
1400        assert(TL.getNumProtocols() == 0);
1401        TL.setHasProtocolsAsWritten(false);
1402        TL.setLAngleLoc(SourceLocation());
1403        TL.setRAngleLoc(SourceLocation());
1404      }
1405
1406      // This might not have been written with an inner type.
1407      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
1408        TL.setHasBaseTypeAsWritten(false);
1409        TL.getBaseTypeLoc().initialize(SourceLocation());
1410      } else {
1411        TL.setHasBaseTypeAsWritten(true);
1412        Visit(TL.getBaseTypeLoc());
1413      }
1414    }
1415    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
1416      TypeSourceInfo *TInfo = 0;
1417      Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1418
1419      // If we got no declarator info from previous Sema routines,
1420      // just fill with the typespec loc.
1421      if (!TInfo) {
1422        TL.initialize(DS.getTypeSpecTypeLoc());
1423        return;
1424      }
1425
1426      TemplateSpecializationTypeLoc OldTL =
1427        cast<TemplateSpecializationTypeLoc>(TInfo->getTypeLoc());
1428      TL.copy(OldTL);
1429    }
1430    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
1431      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
1432      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
1433      TL.setParensRange(DS.getTypeofParensRange());
1434    }
1435    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
1436      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
1437      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
1438      TL.setParensRange(DS.getTypeofParensRange());
1439      assert(DS.getTypeRep());
1440      TypeSourceInfo *TInfo = 0;
1441      Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1442      TL.setUnderlyingTInfo(TInfo);
1443    }
1444    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
1445      // By default, use the source location of the type specifier.
1446      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
1447      if (TL.needsExtraLocalData()) {
1448        // Set info for the written builtin specifiers.
1449        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
1450        // Try to have a meaningful source location.
1451        if (TL.getWrittenSignSpec() != TSS_unspecified)
1452          // Sign spec loc overrides the others (e.g., 'unsigned long').
1453          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
1454        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
1455          // Width spec loc overrides type spec loc (e.g., 'short int').
1456          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
1457      }
1458    }
1459    void VisitTypeLoc(TypeLoc TL) {
1460      // FIXME: add other typespec types and change this to an assert.
1461      TL.initialize(DS.getTypeSpecTypeLoc());
1462    }
1463  };
1464
1465  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
1466    const DeclaratorChunk &Chunk;
1467
1468  public:
1469    DeclaratorLocFiller(const DeclaratorChunk &Chunk) : Chunk(Chunk) {}
1470
1471    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1472      llvm_unreachable("qualified type locs not expected here!");
1473    }
1474
1475    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
1476      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
1477      TL.setCaretLoc(Chunk.Loc);
1478    }
1479    void VisitPointerTypeLoc(PointerTypeLoc TL) {
1480      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1481      TL.setStarLoc(Chunk.Loc);
1482    }
1483    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1484      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1485      TL.setStarLoc(Chunk.Loc);
1486      TL.setHasBaseTypeAsWritten(true);
1487      TL.setHasProtocolsAsWritten(false);
1488      TL.setLAngleLoc(SourceLocation());
1489      TL.setRAngleLoc(SourceLocation());
1490    }
1491    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
1492      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
1493      TL.setStarLoc(Chunk.Loc);
1494      // FIXME: nested name specifier
1495    }
1496    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
1497      assert(Chunk.Kind == DeclaratorChunk::Reference);
1498      // 'Amp' is misleading: this might have been originally
1499      /// spelled with AmpAmp.
1500      TL.setAmpLoc(Chunk.Loc);
1501    }
1502    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
1503      assert(Chunk.Kind == DeclaratorChunk::Reference);
1504      assert(!Chunk.Ref.LValueRef);
1505      TL.setAmpAmpLoc(Chunk.Loc);
1506    }
1507    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
1508      assert(Chunk.Kind == DeclaratorChunk::Array);
1509      TL.setLBracketLoc(Chunk.Loc);
1510      TL.setRBracketLoc(Chunk.EndLoc);
1511      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
1512    }
1513    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
1514      assert(Chunk.Kind == DeclaratorChunk::Function);
1515      TL.setLParenLoc(Chunk.Loc);
1516      TL.setRParenLoc(Chunk.EndLoc);
1517
1518      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
1519      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
1520        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
1521        TL.setArg(tpi++, Param);
1522      }
1523      // FIXME: exception specs
1524    }
1525
1526    void VisitTypeLoc(TypeLoc TL) {
1527      llvm_unreachable("unsupported TypeLoc kind in declarator!");
1528    }
1529  };
1530}
1531
1532/// \brief Create and instantiate a TypeSourceInfo with type source information.
1533///
1534/// \param T QualType referring to the type as written in source code.
1535TypeSourceInfo *
1536Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T) {
1537  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
1538  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
1539
1540  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1541    DeclaratorLocFiller(D.getTypeObject(i)).Visit(CurrTL);
1542    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
1543  }
1544
1545  TypeSpecLocFiller(D.getDeclSpec()).Visit(CurrTL);
1546
1547  return TInfo;
1548}
1549
1550/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
1551QualType Sema::CreateLocInfoType(QualType T, TypeSourceInfo *TInfo) {
1552  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
1553  // and Sema during declaration parsing. Try deallocating/caching them when
1554  // it's appropriate, instead of allocating them and keeping them around.
1555  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), 8);
1556  new (LocT) LocInfoType(T, TInfo);
1557  assert(LocT->getTypeClass() != T->getTypeClass() &&
1558         "LocInfoType's TypeClass conflicts with an existing Type class");
1559  return QualType(LocT, 0);
1560}
1561
1562void LocInfoType::getAsStringInternal(std::string &Str,
1563                                      const PrintingPolicy &Policy) const {
1564  assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
1565         " was used directly instead of getting the QualType through"
1566         " GetTypeFromParser");
1567}
1568
1569/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
1570/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
1571/// they point to and return true. If T1 and T2 aren't pointer types
1572/// or pointer-to-member types, or if they are not similar at this
1573/// level, returns false and leaves T1 and T2 unchanged. Top-level
1574/// qualifiers on T1 and T2 are ignored. This function will typically
1575/// be called in a loop that successively "unwraps" pointer and
1576/// pointer-to-member types to compare them at each level.
1577bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
1578  const PointerType *T1PtrType = T1->getAs<PointerType>(),
1579                    *T2PtrType = T2->getAs<PointerType>();
1580  if (T1PtrType && T2PtrType) {
1581    T1 = T1PtrType->getPointeeType();
1582    T2 = T2PtrType->getPointeeType();
1583    return true;
1584  }
1585
1586  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
1587                          *T2MPType = T2->getAs<MemberPointerType>();
1588  if (T1MPType && T2MPType &&
1589      Context.getCanonicalType(T1MPType->getClass()) ==
1590      Context.getCanonicalType(T2MPType->getClass())) {
1591    T1 = T1MPType->getPointeeType();
1592    T2 = T2MPType->getPointeeType();
1593    return true;
1594  }
1595  return false;
1596}
1597
1598Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1599  // C99 6.7.6: Type names have no identifier.  This is already validated by
1600  // the parser.
1601  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1602
1603  TypeSourceInfo *TInfo = 0;
1604  TagDecl *OwnedTag = 0;
1605  QualType T = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
1606  if (D.isInvalidType())
1607    return true;
1608
1609  if (getLangOptions().CPlusPlus) {
1610    // Check that there are no default arguments (C++ only).
1611    CheckExtraCXXDefaultArguments(D);
1612
1613    // C++0x [dcl.type]p3:
1614    //   A type-specifier-seq shall not define a class or enumeration
1615    //   unless it appears in the type-id of an alias-declaration
1616    //   (7.1.3).
1617    if (OwnedTag && OwnedTag->isDefinition())
1618      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1619        << Context.getTypeDeclType(OwnedTag);
1620  }
1621
1622  if (TInfo)
1623    T = CreateLocInfoType(T, TInfo);
1624
1625  return T.getAsOpaquePtr();
1626}
1627
1628
1629
1630//===----------------------------------------------------------------------===//
1631// Type Attribute Processing
1632//===----------------------------------------------------------------------===//
1633
1634/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1635/// specified type.  The attribute contains 1 argument, the id of the address
1636/// space for the type.
1637static void HandleAddressSpaceTypeAttribute(QualType &Type,
1638                                            const AttributeList &Attr, Sema &S){
1639
1640  // If this type is already address space qualified, reject it.
1641  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1642  // for two or more different address spaces."
1643  if (Type.getAddressSpace()) {
1644    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1645    return;
1646  }
1647
1648  // Check the attribute arguments.
1649  if (Attr.getNumArgs() != 1) {
1650    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1651    return;
1652  }
1653  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1654  llvm::APSInt addrSpace(32);
1655  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1656    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1657      << ASArgExpr->getSourceRange();
1658    return;
1659  }
1660
1661  // Bounds checking.
1662  if (addrSpace.isSigned()) {
1663    if (addrSpace.isNegative()) {
1664      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
1665        << ASArgExpr->getSourceRange();
1666      return;
1667    }
1668    addrSpace.setIsSigned(false);
1669  }
1670  llvm::APSInt max(addrSpace.getBitWidth());
1671  max = Qualifiers::MaxAddressSpace;
1672  if (addrSpace > max) {
1673    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
1674      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
1675    return;
1676  }
1677
1678  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1679  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1680}
1681
1682/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1683/// specified type.  The attribute contains 1 argument, weak or strong.
1684static void HandleObjCGCTypeAttribute(QualType &Type,
1685                                      const AttributeList &Attr, Sema &S) {
1686  if (Type.getObjCGCAttr() != Qualifiers::GCNone) {
1687    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1688    return;
1689  }
1690
1691  // Check the attribute arguments.
1692  if (!Attr.getParameterName()) {
1693    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1694      << "objc_gc" << 1;
1695    return;
1696  }
1697  Qualifiers::GC GCAttr;
1698  if (Attr.getNumArgs() != 0) {
1699    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1700    return;
1701  }
1702  if (Attr.getParameterName()->isStr("weak"))
1703    GCAttr = Qualifiers::Weak;
1704  else if (Attr.getParameterName()->isStr("strong"))
1705    GCAttr = Qualifiers::Strong;
1706  else {
1707    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1708      << "objc_gc" << Attr.getParameterName();
1709    return;
1710  }
1711
1712  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1713}
1714
1715/// Process an individual function attribute.  Returns true if the
1716/// attribute does not make sense to apply to this type.
1717bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr) {
1718  if (Attr.getKind() == AttributeList::AT_noreturn) {
1719    // Complain immediately if the arg count is wrong.
1720    if (Attr.getNumArgs() != 0) {
1721      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1722      return false;
1723    }
1724
1725    // Delay if this is not a function or pointer to block.
1726    if (!Type->isFunctionPointerType()
1727        && !Type->isBlockPointerType()
1728        && !Type->isFunctionType())
1729      return true;
1730
1731    // Otherwise we can process right away.
1732    Type = S.Context.getNoReturnType(Type);
1733    return false;
1734  }
1735
1736  // Otherwise, a calling convention.
1737  if (Attr.getNumArgs() != 0) {
1738    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1739    return false;
1740  }
1741
1742  QualType T = Type;
1743  if (const PointerType *PT = Type->getAs<PointerType>())
1744    T = PT->getPointeeType();
1745  const FunctionType *Fn = T->getAs<FunctionType>();
1746
1747  // Delay if the type didn't work out to a function.
1748  if (!Fn) return true;
1749
1750  // TODO: diagnose uses of these conventions on the wrong target.
1751  CallingConv CC;
1752  switch (Attr.getKind()) {
1753  case AttributeList::AT_cdecl: CC = CC_C; break;
1754  case AttributeList::AT_fastcall: CC = CC_X86FastCall; break;
1755  case AttributeList::AT_stdcall: CC = CC_X86StdCall; break;
1756  default: llvm_unreachable("unexpected attribute kind"); return false;
1757  }
1758
1759  CallingConv CCOld = Fn->getCallConv();
1760  if (S.Context.getCanonicalCallConv(CC) ==
1761      S.Context.getCanonicalCallConv(CCOld)) return false;
1762
1763  if (CCOld != CC_Default) {
1764    // Should we diagnose reapplications of the same convention?
1765    S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
1766      << FunctionType::getNameForCallConv(CC)
1767      << FunctionType::getNameForCallConv(CCOld);
1768    return false;
1769  }
1770
1771  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
1772  if (CC == CC_X86FastCall) {
1773    if (isa<FunctionNoProtoType>(Fn)) {
1774      S.Diag(Attr.getLoc(), diag::err_cconv_knr)
1775        << FunctionType::getNameForCallConv(CC);
1776      return false;
1777    }
1778
1779    const FunctionProtoType *FnP = cast<FunctionProtoType>(Fn);
1780    if (FnP->isVariadic()) {
1781      S.Diag(Attr.getLoc(), diag::err_cconv_varargs)
1782        << FunctionType::getNameForCallConv(CC);
1783      return false;
1784    }
1785  }
1786
1787  Type = S.Context.getCallConvType(Type, CC);
1788  return false;
1789}
1790
1791/// HandleVectorSizeAttribute - this attribute is only applicable to integral
1792/// and float scalars, although arrays, pointers, and function return values are
1793/// allowed in conjunction with this construct. Aggregates with this attribute
1794/// are invalid, even if they are of the same size as a corresponding scalar.
1795/// The raw attribute should contain precisely 1 argument, the vector size for
1796/// the variable, measured in bytes. If curType and rawAttr are well formed,
1797/// this routine will return a new vector type.
1798static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr, Sema &S) {
1799  // Check the attribute arugments.
1800  if (Attr.getNumArgs() != 1) {
1801    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1802    return;
1803  }
1804  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
1805  llvm::APSInt vecSize(32);
1806  if (!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
1807    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
1808      << "vector_size" << sizeExpr->getSourceRange();
1809    return;
1810  }
1811  // the base type must be integer or float, and can't already be a vector.
1812  if (CurType->isVectorType() ||
1813      (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
1814    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
1815    return;
1816  }
1817  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
1818  // vecSize is specified in bytes - convert to bits.
1819  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
1820
1821  // the vector size needs to be an integral multiple of the type size.
1822  if (vectorSize % typeSize) {
1823    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
1824      << sizeExpr->getSourceRange();
1825    return;
1826  }
1827  if (vectorSize == 0) {
1828    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
1829      << sizeExpr->getSourceRange();
1830    return;
1831  }
1832
1833  // Success! Instantiate the vector type, the number of elements is > 0, and
1834  // not required to be a power of 2, unlike GCC.
1835  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize, false, false);
1836}
1837
1838void ProcessTypeAttributeList(Sema &S, QualType &Result,
1839                              bool IsDeclSpec, const AttributeList *AL,
1840                              DelayedAttributeSet &FnAttrs) {
1841  // Scan through and apply attributes to this type where it makes sense.  Some
1842  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1843  // type, but others can be present in the type specifiers even though they
1844  // apply to the decl.  Here we apply type attributes and ignore the rest.
1845  for (; AL; AL = AL->getNext()) {
1846    // If this is an attribute we can handle, do so now, otherwise, add it to
1847    // the LeftOverAttrs list for rechaining.
1848    switch (AL->getKind()) {
1849    default: break;
1850
1851    case AttributeList::AT_address_space:
1852      HandleAddressSpaceTypeAttribute(Result, *AL, S);
1853      break;
1854    case AttributeList::AT_objc_gc:
1855      HandleObjCGCTypeAttribute(Result, *AL, S);
1856      break;
1857    case AttributeList::AT_vector_size:
1858      HandleVectorSizeAttr(Result, *AL, S);
1859      break;
1860
1861    case AttributeList::AT_noreturn:
1862    case AttributeList::AT_cdecl:
1863    case AttributeList::AT_fastcall:
1864    case AttributeList::AT_stdcall:
1865      // Don't process these on the DeclSpec.
1866      if (IsDeclSpec ||
1867          ProcessFnAttr(S, Result, *AL))
1868        FnAttrs.push_back(DelayedAttribute(AL, Result));
1869      break;
1870    }
1871  }
1872}
1873
1874/// @brief Ensure that the type T is a complete type.
1875///
1876/// This routine checks whether the type @p T is complete in any
1877/// context where a complete type is required. If @p T is a complete
1878/// type, returns false. If @p T is a class template specialization,
1879/// this routine then attempts to perform class template
1880/// instantiation. If instantiation fails, or if @p T is incomplete
1881/// and cannot be completed, issues the diagnostic @p diag (giving it
1882/// the type @p T) and returns true.
1883///
1884/// @param Loc  The location in the source that the incomplete type
1885/// diagnostic should refer to.
1886///
1887/// @param T  The type that this routine is examining for completeness.
1888///
1889/// @param PD The partial diagnostic that will be printed out if T is not a
1890/// complete type.
1891///
1892/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1893/// @c false otherwise.
1894bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
1895                               const PartialDiagnostic &PD,
1896                               std::pair<SourceLocation,
1897                                         PartialDiagnostic> Note) {
1898  unsigned diag = PD.getDiagID();
1899
1900  // FIXME: Add this assertion to make sure we always get instantiation points.
1901  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
1902  // FIXME: Add this assertion to help us flush out problems with
1903  // checking for dependent types and type-dependent expressions.
1904  //
1905  //  assert(!T->isDependentType() &&
1906  //         "Can't ask whether a dependent type is complete");
1907
1908  // If we have a complete type, we're done.
1909  if (!T->isIncompleteType())
1910    return false;
1911
1912  // If we have a class template specialization or a class member of a
1913  // class template specialization, or an array with known size of such,
1914  // try to instantiate it.
1915  QualType MaybeTemplate = T;
1916  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
1917    MaybeTemplate = Array->getElementType();
1918  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
1919    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
1920          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
1921      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
1922        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
1923                                                      TSK_ImplicitInstantiation,
1924                                                      /*Complain=*/diag != 0);
1925    } else if (CXXRecordDecl *Rec
1926                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
1927      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
1928        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
1929        assert(MSInfo && "Missing member specialization information?");
1930        // This record was instantiated from a class within a template.
1931        if (MSInfo->getTemplateSpecializationKind()
1932                                               != TSK_ExplicitSpecialization)
1933          return InstantiateClass(Loc, Rec, Pattern,
1934                                  getTemplateInstantiationArgs(Rec),
1935                                  TSK_ImplicitInstantiation,
1936                                  /*Complain=*/diag != 0);
1937      }
1938    }
1939  }
1940
1941  if (diag == 0)
1942    return true;
1943
1944  // We have an incomplete type. Produce a diagnostic.
1945  Diag(Loc, PD) << T;
1946
1947  // If we have a note, produce it.
1948  if (!Note.first.isInvalid())
1949    Diag(Note.first, Note.second);
1950
1951  // If the type was a forward declaration of a class/struct/union
1952  // type, produce
1953  const TagType *Tag = 0;
1954  if (const RecordType *Record = T->getAs<RecordType>())
1955    Tag = Record;
1956  else if (const EnumType *Enum = T->getAs<EnumType>())
1957    Tag = Enum;
1958
1959  if (Tag && !Tag->getDecl()->isInvalidDecl())
1960    Diag(Tag->getDecl()->getLocation(),
1961         Tag->isBeingDefined() ? diag::note_type_being_defined
1962                               : diag::note_forward_declaration)
1963        << QualType(Tag, 0);
1964
1965  return true;
1966}
1967
1968/// \brief Retrieve a version of the type 'T' that is qualified by the
1969/// nested-name-specifier contained in SS.
1970QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
1971  if (!SS.isSet() || SS.isInvalid() || T.isNull())
1972    return T;
1973
1974  NestedNameSpecifier *NNS
1975    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1976  return Context.getQualifiedNameType(NNS, T);
1977}
1978
1979QualType Sema::BuildTypeofExprType(Expr *E) {
1980  if (E->getType() == Context.OverloadTy) {
1981    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a
1982    // function template specialization wherever deduction cannot occur.
1983    if (FunctionDecl *Specialization
1984        = ResolveSingleFunctionTemplateSpecialization(E)) {
1985      E = FixOverloadedFunctionReference(E, Specialization);
1986      if (!E)
1987        return QualType();
1988    } else {
1989      Diag(E->getLocStart(),
1990           diag::err_cannot_determine_declared_type_of_overloaded_function)
1991        << false << E->getSourceRange();
1992      return QualType();
1993    }
1994  }
1995
1996  return Context.getTypeOfExprType(E);
1997}
1998
1999QualType Sema::BuildDecltypeType(Expr *E) {
2000  if (E->getType() == Context.OverloadTy) {
2001    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a
2002    // function template specialization wherever deduction cannot occur.
2003    if (FunctionDecl *Specialization
2004          = ResolveSingleFunctionTemplateSpecialization(E)) {
2005      E = FixOverloadedFunctionReference(E, Specialization);
2006      if (!E)
2007        return QualType();
2008    } else {
2009      Diag(E->getLocStart(),
2010           diag::err_cannot_determine_declared_type_of_overloaded_function)
2011        << true << E->getSourceRange();
2012      return QualType();
2013    }
2014  }
2015
2016  return Context.getDecltypeType(E);
2017}
2018