SemaType.cpp revision c176c0af307cfcd6cd9d9069ac7fb29d8da1d4bf
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/SmallPtrSet.h"
24using namespace clang;
25
26/// \brief Perform adjustment on the parameter type of a function.
27///
28/// This routine adjusts the given parameter type @p T to the actual
29/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
30/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
31QualType Sema::adjustParameterType(QualType T) {
32  // C99 6.7.5.3p7:
33  if (T->isArrayType()) {
34    // C99 6.7.5.3p7:
35    //   A declaration of a parameter as "array of type" shall be
36    //   adjusted to "qualified pointer to type", where the type
37    //   qualifiers (if any) are those specified within the [ and ] of
38    //   the array type derivation.
39    return Context.getArrayDecayedType(T);
40  } else if (T->isFunctionType())
41    // C99 6.7.5.3p8:
42    //   A declaration of a parameter as "function returning type"
43    //   shall be adjusted to "pointer to function returning type", as
44    //   in 6.3.2.1.
45    return Context.getPointerType(T);
46
47  return T;
48}
49
50/// \brief Convert the specified declspec to the appropriate type
51/// object.
52/// \param DS  the declaration specifiers
53/// \param DeclLoc The location of the declarator identifier or invalid if none.
54/// \param SourceTy QualType representing the type as written in source form.
55/// \returns The type described by the declaration specifiers.  This function
56/// never returns null.
57QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS,
58                                     SourceLocation DeclLoc,
59                                     bool &isInvalid, QualType &SourceTy) {
60  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
61  // checking.
62  QualType Result;
63  SourceTy = Result;
64
65  switch (DS.getTypeSpecType()) {
66  case DeclSpec::TST_void:
67    Result = Context.VoidTy;
68    break;
69  case DeclSpec::TST_char:
70    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
71      Result = Context.CharTy;
72    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
73      Result = Context.SignedCharTy;
74    else {
75      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
76             "Unknown TSS value");
77      Result = Context.UnsignedCharTy;
78    }
79    break;
80  case DeclSpec::TST_wchar:
81    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
82      Result = Context.WCharTy;
83    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
84      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
85        << DS.getSpecifierName(DS.getTypeSpecType());
86      Result = Context.getSignedWCharType();
87    } else {
88      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
89        "Unknown TSS value");
90      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
91        << DS.getSpecifierName(DS.getTypeSpecType());
92      Result = Context.getUnsignedWCharType();
93    }
94    break;
95  case DeclSpec::TST_char16:
96      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
97        "Unknown TSS value");
98      Result = Context.Char16Ty;
99    break;
100  case DeclSpec::TST_char32:
101      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
102        "Unknown TSS value");
103      Result = Context.Char32Ty;
104    break;
105  case DeclSpec::TST_unspecified:
106    // "<proto1,proto2>" is an objc qualified ID with a missing id.
107    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
108      SourceTy = Context.getObjCProtocolListType(QualType(),
109                                                 (ObjCProtocolDecl**)PQ,
110                                                 DS.getNumProtocolQualifiers());
111      Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
112                                                (ObjCProtocolDecl**)PQ,
113                                                DS.getNumProtocolQualifiers());
114      break;
115    }
116
117    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
118    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
119    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
120    // Note that the one exception to this is function definitions, which are
121    // allowed to be completely missing a declspec.  This is handled in the
122    // parser already though by it pretending to have seen an 'int' in this
123    // case.
124    if (getLangOptions().ImplicitInt) {
125      // In C89 mode, we only warn if there is a completely missing declspec
126      // when one is not allowed.
127      if (DS.isEmpty()) {
128        if (DeclLoc.isInvalid())
129          DeclLoc = DS.getSourceRange().getBegin();
130        Diag(DeclLoc, diag::ext_missing_declspec)
131          << DS.getSourceRange()
132        << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
133                                                 "int");
134      }
135    } else if (!DS.hasTypeSpecifier()) {
136      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
137      // "At least one type specifier shall be given in the declaration
138      // specifiers in each declaration, and in the specifier-qualifier list in
139      // each struct declaration and type name."
140      // FIXME: Does Microsoft really have the implicit int extension in C++?
141      if (DeclLoc.isInvalid())
142        DeclLoc = DS.getSourceRange().getBegin();
143
144      if (getLangOptions().CPlusPlus && !getLangOptions().Microsoft) {
145        Diag(DeclLoc, diag::err_missing_type_specifier)
146          << DS.getSourceRange();
147
148        // When this occurs in C++ code, often something is very broken with the
149        // value being declared, poison it as invalid so we don't get chains of
150        // errors.
151        isInvalid = true;
152      } else {
153        Diag(DeclLoc, diag::ext_missing_type_specifier)
154          << DS.getSourceRange();
155      }
156    }
157
158    // FALL THROUGH.
159  case DeclSpec::TST_int: {
160    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
161      switch (DS.getTypeSpecWidth()) {
162      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
163      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
164      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
165      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
166      }
167    } else {
168      switch (DS.getTypeSpecWidth()) {
169      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
170      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
171      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
172      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
173      }
174    }
175    break;
176  }
177  case DeclSpec::TST_float: Result = Context.FloatTy; break;
178  case DeclSpec::TST_double:
179    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
180      Result = Context.LongDoubleTy;
181    else
182      Result = Context.DoubleTy;
183    break;
184  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
185  case DeclSpec::TST_decimal32:    // _Decimal32
186  case DeclSpec::TST_decimal64:    // _Decimal64
187  case DeclSpec::TST_decimal128:   // _Decimal128
188    Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
189    Result = Context.IntTy;
190    isInvalid = true;
191    break;
192  case DeclSpec::TST_class:
193  case DeclSpec::TST_enum:
194  case DeclSpec::TST_union:
195  case DeclSpec::TST_struct: {
196    Decl *D = static_cast<Decl *>(DS.getTypeRep());
197    if (!D) {
198      // This can happen in C++ with ambiguous lookups.
199      Result = Context.IntTy;
200      isInvalid = true;
201      break;
202    }
203
204    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
205           DS.getTypeSpecSign() == 0 &&
206           "Can't handle qualifiers on typedef names yet!");
207    // TypeQuals handled by caller.
208    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
209
210    // In C++, make an ElaboratedType.
211    if (getLangOptions().CPlusPlus) {
212      TagDecl::TagKind Tag
213        = TagDecl::getTagKindForTypeSpec(DS.getTypeSpecType());
214      Result = Context.getElaboratedType(Result, Tag);
215    }
216
217    if (D->isInvalidDecl())
218      isInvalid = true;
219    break;
220  }
221  case DeclSpec::TST_typename: {
222    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
223           DS.getTypeSpecSign() == 0 &&
224           "Can't handle qualifiers on typedef names yet!");
225    Result = GetTypeFromParser(DS.getTypeRep());
226
227    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
228      SourceTy = Context.getObjCProtocolListType(Result,
229                                                 (ObjCProtocolDecl**)PQ,
230                                                 DS.getNumProtocolQualifiers());
231      if (const ObjCInterfaceType *
232            Interface = Result->getAs<ObjCInterfaceType>()) {
233        // It would be nice if protocol qualifiers were only stored with the
234        // ObjCObjectPointerType. Unfortunately, this isn't possible due
235        // to the following typedef idiom (which is uncommon, but allowed):
236        //
237        // typedef Foo<P> T;
238        // static void func() {
239        //   Foo<P> *yy;
240        //   T *zz;
241        // }
242        Result = Context.getObjCInterfaceType(Interface->getDecl(),
243                                              (ObjCProtocolDecl**)PQ,
244                                              DS.getNumProtocolQualifiers());
245      } else if (Result->isObjCIdType())
246        // id<protocol-list>
247        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
248                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
249      else if (Result->isObjCClassType()) {
250        if (DeclLoc.isInvalid())
251          DeclLoc = DS.getSourceRange().getBegin();
252        // Class<protocol-list>
253        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinClassTy,
254                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
255      } else {
256        if (DeclLoc.isInvalid())
257          DeclLoc = DS.getSourceRange().getBegin();
258        Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
259          << DS.getSourceRange();
260        isInvalid = true;
261      }
262    }
263
264    // If this is a reference to an invalid typedef, propagate the invalidity.
265    if (TypedefType *TDT = dyn_cast<TypedefType>(Result))
266      if (TDT->getDecl()->isInvalidDecl())
267        isInvalid = true;
268
269    // TypeQuals handled by caller.
270    break;
271  }
272  case DeclSpec::TST_typeofType:
273    // FIXME: Preserve type source info.
274    Result = GetTypeFromParser(DS.getTypeRep());
275    assert(!Result.isNull() && "Didn't get a type for typeof?");
276    // TypeQuals handled by caller.
277    Result = Context.getTypeOfType(Result);
278    break;
279  case DeclSpec::TST_typeofExpr: {
280    Expr *E = static_cast<Expr *>(DS.getTypeRep());
281    assert(E && "Didn't get an expression for typeof?");
282    // TypeQuals handled by caller.
283    Result = Context.getTypeOfExprType(E);
284    break;
285  }
286  case DeclSpec::TST_decltype: {
287    Expr *E = static_cast<Expr *>(DS.getTypeRep());
288    assert(E && "Didn't get an expression for decltype?");
289    // TypeQuals handled by caller.
290    Result = BuildDecltypeType(E);
291    if (Result.isNull()) {
292      Result = Context.IntTy;
293      isInvalid = true;
294    }
295    break;
296  }
297  case DeclSpec::TST_auto: {
298    // TypeQuals handled by caller.
299    Result = Context.UndeducedAutoTy;
300    break;
301  }
302
303  case DeclSpec::TST_error:
304    Result = Context.IntTy;
305    isInvalid = true;
306    break;
307  }
308
309  // Handle complex types.
310  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
311    if (getLangOptions().Freestanding)
312      Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
313    Result = Context.getComplexType(Result);
314  }
315
316  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
317         "FIXME: imaginary types not supported yet!");
318
319  // See if there are any attributes on the declspec that apply to the type (as
320  // opposed to the decl).
321  if (const AttributeList *AL = DS.getAttributes())
322    ProcessTypeAttributeList(Result, AL);
323
324  // Apply const/volatile/restrict qualifiers to T.
325  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
326
327    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
328    // or incomplete types shall not be restrict-qualified."  C++ also allows
329    // restrict-qualified references.
330    if (TypeQuals & DeclSpec::TQ_restrict) {
331      if (Result->isPointerType() || Result->isReferenceType()) {
332        QualType EltTy = Result->isPointerType() ?
333          Result->getAs<PointerType>()->getPointeeType() :
334          Result->getAs<ReferenceType>()->getPointeeType();
335
336        // If we have a pointer or reference, the pointee must have an object
337        // incomplete type.
338        if (!EltTy->isIncompleteOrObjectType()) {
339          Diag(DS.getRestrictSpecLoc(),
340               diag::err_typecheck_invalid_restrict_invalid_pointee)
341            << EltTy << DS.getSourceRange();
342          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
343        }
344      } else {
345        Diag(DS.getRestrictSpecLoc(),
346             diag::err_typecheck_invalid_restrict_not_pointer)
347          << Result << DS.getSourceRange();
348        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
349      }
350    }
351
352    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
353    // of a function type includes any type qualifiers, the behavior is
354    // undefined."
355    if (Result->isFunctionType() && TypeQuals) {
356      // Get some location to point at, either the C or V location.
357      SourceLocation Loc;
358      if (TypeQuals & DeclSpec::TQ_const)
359        Loc = DS.getConstSpecLoc();
360      else if (TypeQuals & DeclSpec::TQ_volatile)
361        Loc = DS.getVolatileSpecLoc();
362      else {
363        assert((TypeQuals & DeclSpec::TQ_restrict) &&
364               "Has CVR quals but not C, V, or R?");
365        Loc = DS.getRestrictSpecLoc();
366      }
367      Diag(Loc, diag::warn_typecheck_function_qualifiers)
368        << Result << DS.getSourceRange();
369    }
370
371    // C++ [dcl.ref]p1:
372    //   Cv-qualified references are ill-formed except when the
373    //   cv-qualifiers are introduced through the use of a typedef
374    //   (7.1.3) or of a template type argument (14.3), in which
375    //   case the cv-qualifiers are ignored.
376    // FIXME: Shouldn't we be checking SCS_typedef here?
377    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
378        TypeQuals && Result->isReferenceType()) {
379      TypeQuals &= ~DeclSpec::TQ_const;
380      TypeQuals &= ~DeclSpec::TQ_volatile;
381    }
382
383    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
384    Result = Context.getQualifiedType(Result, Quals);
385  }
386
387  if (SourceTy.isNull())
388    SourceTy = Result;
389  return Result;
390}
391
392static std::string getPrintableNameForEntity(DeclarationName Entity) {
393  if (Entity)
394    return Entity.getAsString();
395
396  return "type name";
397}
398
399/// \brief Build a pointer type.
400///
401/// \param T The type to which we'll be building a pointer.
402///
403/// \param Quals The cvr-qualifiers to be applied to the pointer type.
404///
405/// \param Loc The location of the entity whose type involves this
406/// pointer type or, if there is no such entity, the location of the
407/// type that will have pointer type.
408///
409/// \param Entity The name of the entity that involves the pointer
410/// type, if known.
411///
412/// \returns A suitable pointer type, if there are no
413/// errors. Otherwise, returns a NULL type.
414QualType Sema::BuildPointerType(QualType T, unsigned Quals,
415                                SourceLocation Loc, DeclarationName Entity) {
416  if (T->isReferenceType()) {
417    // C++ 8.3.2p4: There shall be no ... pointers to references ...
418    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
419      << getPrintableNameForEntity(Entity);
420    return QualType();
421  }
422
423  Qualifiers Qs = Qualifiers::fromCVRMask(Quals);
424
425  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
426  // object or incomplete types shall not be restrict-qualified."
427  if (Qs.hasRestrict() && !T->isIncompleteOrObjectType()) {
428    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
429      << T;
430    Qs.removeRestrict();
431  }
432
433  // Build the pointer type.
434  return Context.getQualifiedType(Context.getPointerType(T), Qs);
435}
436
437/// \brief Build a reference type.
438///
439/// \param T The type to which we'll be building a reference.
440///
441/// \param CVR The cvr-qualifiers to be applied to the reference type.
442///
443/// \param Loc The location of the entity whose type involves this
444/// reference type or, if there is no such entity, the location of the
445/// type that will have reference type.
446///
447/// \param Entity The name of the entity that involves the reference
448/// type, if known.
449///
450/// \returns A suitable reference type, if there are no
451/// errors. Otherwise, returns a NULL type.
452QualType Sema::BuildReferenceType(QualType T, bool LValueRef, unsigned CVR,
453                                  SourceLocation Loc, DeclarationName Entity) {
454  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
455  if (LValueRef) {
456    if (const RValueReferenceType *R = T->getAs<RValueReferenceType>()) {
457      // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
458      //   reference to a type T, and attempt to create the type "lvalue
459      //   reference to cv TD" creates the type "lvalue reference to T".
460      // We use the qualifiers (restrict or none) of the original reference,
461      // not the new ones. This is consistent with GCC.
462      QualType LVRT = Context.getLValueReferenceType(R->getPointeeType());
463      return Context.getQualifiedType(LVRT, T.getQualifiers());
464    }
465  }
466  if (T->isReferenceType()) {
467    // C++ [dcl.ref]p4: There shall be no references to references.
468    //
469    // According to C++ DR 106, references to references are only
470    // diagnosed when they are written directly (e.g., "int & &"),
471    // but not when they happen via a typedef:
472    //
473    //   typedef int& intref;
474    //   typedef intref& intref2;
475    //
476    // Parser::ParseDeclaratorInternal diagnoses the case where
477    // references are written directly; here, we handle the
478    // collapsing of references-to-references as described in C++
479    // DR 106 and amended by C++ DR 540.
480    return T;
481  }
482
483  // C++ [dcl.ref]p1:
484  //   A declarator that specifies the type "reference to cv void"
485  //   is ill-formed.
486  if (T->isVoidType()) {
487    Diag(Loc, diag::err_reference_to_void);
488    return QualType();
489  }
490
491  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
492  // object or incomplete types shall not be restrict-qualified."
493  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
494    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
495      << T;
496    Quals.removeRestrict();
497  }
498
499  // C++ [dcl.ref]p1:
500  //   [...] Cv-qualified references are ill-formed except when the
501  //   cv-qualifiers are introduced through the use of a typedef
502  //   (7.1.3) or of a template type argument (14.3), in which case
503  //   the cv-qualifiers are ignored.
504  //
505  // We diagnose extraneous cv-qualifiers for the non-typedef,
506  // non-template type argument case within the parser. Here, we just
507  // ignore any extraneous cv-qualifiers.
508  Quals.removeConst();
509  Quals.removeVolatile();
510
511  // Handle restrict on references.
512  if (LValueRef)
513    return Context.getQualifiedType(Context.getLValueReferenceType(T), Quals);
514  return Context.getQualifiedType(Context.getRValueReferenceType(T), Quals);
515}
516
517/// \brief Build an array type.
518///
519/// \param T The type of each element in the array.
520///
521/// \param ASM C99 array size modifier (e.g., '*', 'static').
522///
523/// \param ArraySize Expression describing the size of the array.
524///
525/// \param Quals The cvr-qualifiers to be applied to the array's
526/// element type.
527///
528/// \param Loc The location of the entity whose type involves this
529/// array type or, if there is no such entity, the location of the
530/// type that will have array type.
531///
532/// \param Entity The name of the entity that involves the array
533/// type, if known.
534///
535/// \returns A suitable array type, if there are no errors. Otherwise,
536/// returns a NULL type.
537QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
538                              Expr *ArraySize, unsigned Quals,
539                              SourceRange Brackets, DeclarationName Entity) {
540
541  SourceLocation Loc = Brackets.getBegin();
542  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
543  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
544  if (RequireCompleteType(Loc, T,
545                             diag::err_illegal_decl_array_incomplete_type))
546    return QualType();
547
548  if (T->isFunctionType()) {
549    Diag(Loc, diag::err_illegal_decl_array_of_functions)
550      << getPrintableNameForEntity(Entity);
551    return QualType();
552  }
553
554  // C++ 8.3.2p4: There shall be no ... arrays of references ...
555  if (T->isReferenceType()) {
556    Diag(Loc, diag::err_illegal_decl_array_of_references)
557      << getPrintableNameForEntity(Entity);
558    return QualType();
559  }
560
561  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
562    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
563      << getPrintableNameForEntity(Entity);
564    return QualType();
565  }
566
567  if (const RecordType *EltTy = T->getAs<RecordType>()) {
568    // If the element type is a struct or union that contains a variadic
569    // array, accept it as a GNU extension: C99 6.7.2.1p2.
570    if (EltTy->getDecl()->hasFlexibleArrayMember())
571      Diag(Loc, diag::ext_flexible_array_in_array) << T;
572  } else if (T->isObjCInterfaceType()) {
573    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
574    return QualType();
575  }
576
577  // C99 6.7.5.2p1: The size expression shall have integer type.
578  if (ArraySize && !ArraySize->isTypeDependent() &&
579      !ArraySize->getType()->isIntegerType()) {
580    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
581      << ArraySize->getType() << ArraySize->getSourceRange();
582    ArraySize->Destroy(Context);
583    return QualType();
584  }
585  llvm::APSInt ConstVal(32);
586  if (!ArraySize) {
587    if (ASM == ArrayType::Star)
588      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
589    else
590      T = Context.getIncompleteArrayType(T, ASM, Quals);
591  } else if (ArraySize->isValueDependent()) {
592    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
593  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
594             (!T->isDependentType() && !T->isConstantSizeType())) {
595    // Per C99, a variable array is an array with either a non-constant
596    // size or an element type that has a non-constant-size
597    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
598  } else {
599    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
600    // have a value greater than zero.
601    if (ConstVal.isSigned()) {
602      if (ConstVal.isNegative()) {
603        Diag(ArraySize->getLocStart(),
604             diag::err_typecheck_negative_array_size)
605          << ArraySize->getSourceRange();
606        return QualType();
607      } else if (ConstVal == 0) {
608        // GCC accepts zero sized static arrays.
609        Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
610          << ArraySize->getSourceRange();
611      }
612    }
613    T = Context.getConstantArrayWithExprType(T, ConstVal, ArraySize,
614                                             ASM, Quals, Brackets);
615  }
616  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
617  if (!getLangOptions().C99) {
618    if (ArraySize && !ArraySize->isTypeDependent() &&
619        !ArraySize->isValueDependent() &&
620        !ArraySize->isIntegerConstantExpr(Context))
621      Diag(Loc, getLangOptions().CPlusPlus? diag::err_vla_cxx : diag::ext_vla);
622    else if (ASM != ArrayType::Normal || Quals != 0)
623      Diag(Loc,
624           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
625                                     : diag::ext_c99_array_usage);
626  }
627
628  return T;
629}
630
631/// \brief Build an ext-vector type.
632///
633/// Run the required checks for the extended vector type.
634QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
635                                  SourceLocation AttrLoc) {
636
637  Expr *Arg = (Expr *)ArraySize.get();
638
639  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
640  // in conjunction with complex types (pointers, arrays, functions, etc.).
641  if (!T->isDependentType() &&
642      !T->isIntegerType() && !T->isRealFloatingType()) {
643    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
644    return QualType();
645  }
646
647  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
648    llvm::APSInt vecSize(32);
649    if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
650      Diag(AttrLoc, diag::err_attribute_argument_not_int)
651      << "ext_vector_type" << Arg->getSourceRange();
652      return QualType();
653    }
654
655    // unlike gcc's vector_size attribute, the size is specified as the
656    // number of elements, not the number of bytes.
657    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
658
659    if (vectorSize == 0) {
660      Diag(AttrLoc, diag::err_attribute_zero_size)
661      << Arg->getSourceRange();
662      return QualType();
663    }
664
665    if (!T->isDependentType())
666      return Context.getExtVectorType(T, vectorSize);
667  }
668
669  return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
670                                                AttrLoc);
671}
672
673/// \brief Build a function type.
674///
675/// This routine checks the function type according to C++ rules and
676/// under the assumption that the result type and parameter types have
677/// just been instantiated from a template. It therefore duplicates
678/// some of the behavior of GetTypeForDeclarator, but in a much
679/// simpler form that is only suitable for this narrow use case.
680///
681/// \param T The return type of the function.
682///
683/// \param ParamTypes The parameter types of the function. This array
684/// will be modified to account for adjustments to the types of the
685/// function parameters.
686///
687/// \param NumParamTypes The number of parameter types in ParamTypes.
688///
689/// \param Variadic Whether this is a variadic function type.
690///
691/// \param Quals The cvr-qualifiers to be applied to the function type.
692///
693/// \param Loc The location of the entity whose type involves this
694/// function type or, if there is no such entity, the location of the
695/// type that will have function type.
696///
697/// \param Entity The name of the entity that involves the function
698/// type, if known.
699///
700/// \returns A suitable function type, if there are no
701/// errors. Otherwise, returns a NULL type.
702QualType Sema::BuildFunctionType(QualType T,
703                                 QualType *ParamTypes,
704                                 unsigned NumParamTypes,
705                                 bool Variadic, unsigned Quals,
706                                 SourceLocation Loc, DeclarationName Entity) {
707  if (T->isArrayType() || T->isFunctionType()) {
708    Diag(Loc, diag::err_func_returning_array_function) << T;
709    return QualType();
710  }
711
712  bool Invalid = false;
713  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
714    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
715    if (ParamType->isVoidType()) {
716      Diag(Loc, diag::err_param_with_void_type);
717      Invalid = true;
718    }
719
720    ParamTypes[Idx] = adjustFunctionParamType(ParamType);
721  }
722
723  if (Invalid)
724    return QualType();
725
726  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
727                                 Quals);
728}
729
730/// \brief Build a member pointer type \c T Class::*.
731///
732/// \param T the type to which the member pointer refers.
733/// \param Class the class type into which the member pointer points.
734/// \param CVR Qualifiers applied to the member pointer type
735/// \param Loc the location where this type begins
736/// \param Entity the name of the entity that will have this member pointer type
737///
738/// \returns a member pointer type, if successful, or a NULL type if there was
739/// an error.
740QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
741                                      unsigned CVR, SourceLocation Loc,
742                                      DeclarationName Entity) {
743  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
744
745  // Verify that we're not building a pointer to pointer to function with
746  // exception specification.
747  if (CheckDistantExceptionSpec(T)) {
748    Diag(Loc, diag::err_distant_exception_spec);
749
750    // FIXME: If we're doing this as part of template instantiation,
751    // we should return immediately.
752
753    // Build the type anyway, but use the canonical type so that the
754    // exception specifiers are stripped off.
755    T = Context.getCanonicalType(T);
756  }
757
758  // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
759  //   with reference type, or "cv void."
760  if (T->isReferenceType()) {
761    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
762      << (Entity? Entity.getAsString() : "type name");
763    return QualType();
764  }
765
766  if (T->isVoidType()) {
767    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
768      << (Entity? Entity.getAsString() : "type name");
769    return QualType();
770  }
771
772  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
773  // object or incomplete types shall not be restrict-qualified."
774  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
775    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
776      << T;
777
778    // FIXME: If we're doing this as part of template instantiation,
779    // we should return immediately.
780    Quals.removeRestrict();
781  }
782
783  if (!Class->isDependentType() && !Class->isRecordType()) {
784    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
785    return QualType();
786  }
787
788  return Context.getQualifiedType(
789           Context.getMemberPointerType(T, Class.getTypePtr()), Quals);
790}
791
792/// \brief Build a block pointer type.
793///
794/// \param T The type to which we'll be building a block pointer.
795///
796/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
797///
798/// \param Loc The location of the entity whose type involves this
799/// block pointer type or, if there is no such entity, the location of the
800/// type that will have block pointer type.
801///
802/// \param Entity The name of the entity that involves the block pointer
803/// type, if known.
804///
805/// \returns A suitable block pointer type, if there are no
806/// errors. Otherwise, returns a NULL type.
807QualType Sema::BuildBlockPointerType(QualType T, unsigned CVR,
808                                     SourceLocation Loc,
809                                     DeclarationName Entity) {
810  if (!T->isFunctionType()) {
811    Diag(Loc, diag::err_nonfunction_block_type);
812    return QualType();
813  }
814
815  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
816  return Context.getQualifiedType(Context.getBlockPointerType(T), Quals);
817}
818
819QualType Sema::GetTypeFromParser(TypeTy *Ty, DeclaratorInfo **DInfo) {
820  QualType QT = QualType::getFromOpaquePtr(Ty);
821  DeclaratorInfo *DI = 0;
822  if (LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
823    QT = LIT->getType();
824    DI = LIT->getDeclaratorInfo();
825  }
826
827  if (DInfo) *DInfo = DI;
828  return QT;
829}
830
831/// GetTypeForDeclarator - Convert the type for the specified
832/// declarator to Type instances. Skip the outermost Skip type
833/// objects.
834///
835/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
836/// owns the declaration of a type (e.g., the definition of a struct
837/// type), then *OwnedDecl will receive the owned declaration.
838QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
839                                    DeclaratorInfo **DInfo, unsigned Skip,
840                                    TagDecl **OwnedDecl) {
841  bool OmittedReturnType = false;
842
843  if (D.getContext() == Declarator::BlockLiteralContext
844      && Skip == 0
845      && !D.getDeclSpec().hasTypeSpecifier()
846      && (D.getNumTypeObjects() == 0
847          || (D.getNumTypeObjects() == 1
848              && D.getTypeObject(0).Kind == DeclaratorChunk::Function)))
849    OmittedReturnType = true;
850
851  // long long is a C99 feature.
852  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
853      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
854    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
855
856  // Determine the type of the declarator. Not all forms of declarator
857  // have a type.
858  QualType T;
859  // The QualType referring to the type as written in source code. We can't use
860  // T because it can change due to semantic analysis.
861  QualType SourceTy;
862
863  switch (D.getKind()) {
864  case Declarator::DK_Abstract:
865  case Declarator::DK_Normal:
866  case Declarator::DK_Operator:
867  case Declarator::DK_TemplateId: {
868    const DeclSpec &DS = D.getDeclSpec();
869    if (OmittedReturnType) {
870      // We default to a dependent type initially.  Can be modified by
871      // the first return statement.
872      T = Context.DependentTy;
873    } else {
874      bool isInvalid = false;
875      T = ConvertDeclSpecToType(DS, D.getIdentifierLoc(), isInvalid, SourceTy);
876      if (isInvalid)
877        D.setInvalidType(true);
878      else if (OwnedDecl && DS.isTypeSpecOwned())
879        *OwnedDecl = cast<TagDecl>((Decl *)DS.getTypeRep());
880    }
881    break;
882  }
883
884  case Declarator::DK_Constructor:
885  case Declarator::DK_Destructor:
886  case Declarator::DK_Conversion:
887    // Constructors and destructors don't have return types. Use
888    // "void" instead. Conversion operators will check their return
889    // types separately.
890    T = Context.VoidTy;
891    break;
892  }
893
894  if (SourceTy.isNull())
895    SourceTy = T;
896
897  if (T == Context.UndeducedAutoTy) {
898    int Error = -1;
899
900    switch (D.getContext()) {
901    case Declarator::KNRTypeListContext:
902      assert(0 && "K&R type lists aren't allowed in C++");
903      break;
904    case Declarator::PrototypeContext:
905      Error = 0; // Function prototype
906      break;
907    case Declarator::MemberContext:
908      switch (cast<TagDecl>(CurContext)->getTagKind()) {
909      case TagDecl::TK_enum: assert(0 && "unhandled tag kind"); break;
910      case TagDecl::TK_struct: Error = 1; /* Struct member */ break;
911      case TagDecl::TK_union:  Error = 2; /* Union member */ break;
912      case TagDecl::TK_class:  Error = 3; /* Class member */ break;
913      }
914      break;
915    case Declarator::CXXCatchContext:
916      Error = 4; // Exception declaration
917      break;
918    case Declarator::TemplateParamContext:
919      Error = 5; // Template parameter
920      break;
921    case Declarator::BlockLiteralContext:
922      Error = 6;  // Block literal
923      break;
924    case Declarator::FileContext:
925    case Declarator::BlockContext:
926    case Declarator::ForContext:
927    case Declarator::ConditionContext:
928    case Declarator::TypeNameContext:
929      break;
930    }
931
932    if (Error != -1) {
933      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
934        << Error;
935      T = Context.IntTy;
936      D.setInvalidType(true);
937    }
938  }
939
940  // The name we're declaring, if any.
941  DeclarationName Name;
942  if (D.getIdentifier())
943    Name = D.getIdentifier();
944
945  bool ShouldBuildInfo = DInfo != 0;
946
947  // Walk the DeclTypeInfo, building the recursive type as we go.
948  // DeclTypeInfos are ordered from the identifier out, which is
949  // opposite of what we want :).
950  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
951    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1+Skip);
952    switch (DeclType.Kind) {
953    default: assert(0 && "Unknown decltype!");
954    case DeclaratorChunk::BlockPointer:
955      if (ShouldBuildInfo) {
956        if (SourceTy->isFunctionType())
957          SourceTy
958            = Context.getQualifiedType(Context.getBlockPointerType(SourceTy),
959                             Qualifiers::fromCVRMask(DeclType.Cls.TypeQuals));
960        else
961          // If not function type Context::getBlockPointerType asserts,
962          // so just give up.
963          ShouldBuildInfo = false;
964      }
965
966      // If blocks are disabled, emit an error.
967      if (!LangOpts.Blocks)
968        Diag(DeclType.Loc, diag::err_blocks_disable);
969
970      T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(),
971                                Name);
972      break;
973    case DeclaratorChunk::Pointer:
974      //FIXME: Use ObjCObjectPointer for info when appropriate.
975      if (ShouldBuildInfo)
976        SourceTy = Context.getQualifiedType(Context.getPointerType(SourceTy),
977                             Qualifiers::fromCVRMask(DeclType.Ptr.TypeQuals));
978      // Verify that we're not building a pointer to pointer to function with
979      // exception specification.
980      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
981        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
982        D.setInvalidType(true);
983        // Build the type anyway.
984      }
985      if (getLangOptions().ObjC1 && T->isObjCInterfaceType()) {
986        const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>();
987        T = Context.getObjCObjectPointerType(T,
988                                         (ObjCProtocolDecl **)OIT->qual_begin(),
989                                         OIT->getNumProtocols());
990        break;
991      }
992      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
993      break;
994    case DeclaratorChunk::Reference: {
995      Qualifiers Quals;
996      if (DeclType.Ref.HasRestrict) Quals.addRestrict();
997
998      if (ShouldBuildInfo) {
999        if (DeclType.Ref.LValueRef)
1000          SourceTy = Context.getLValueReferenceType(SourceTy);
1001        else
1002          SourceTy = Context.getRValueReferenceType(SourceTy);
1003        SourceTy = Context.getQualifiedType(SourceTy, Quals);
1004      }
1005
1006      // Verify that we're not building a reference to pointer to function with
1007      // exception specification.
1008      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1009        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1010        D.setInvalidType(true);
1011        // Build the type anyway.
1012      }
1013      T = BuildReferenceType(T, DeclType.Ref.LValueRef, Quals,
1014                             DeclType.Loc, Name);
1015      break;
1016    }
1017    case DeclaratorChunk::Array: {
1018      if (ShouldBuildInfo)
1019        // We just need to get an array type, the exact type doesn't matter.
1020        SourceTy = Context.getIncompleteArrayType(SourceTy, ArrayType::Normal,
1021                                                  DeclType.Arr.TypeQuals);
1022
1023      // Verify that we're not building an array of pointers to function with
1024      // exception specification.
1025      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1026        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1027        D.setInvalidType(true);
1028        // Build the type anyway.
1029      }
1030      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1031      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
1032      ArrayType::ArraySizeModifier ASM;
1033      if (ATI.isStar)
1034        ASM = ArrayType::Star;
1035      else if (ATI.hasStatic)
1036        ASM = ArrayType::Static;
1037      else
1038        ASM = ArrayType::Normal;
1039      if (ASM == ArrayType::Star &&
1040          D.getContext() != Declarator::PrototypeContext) {
1041        // FIXME: This check isn't quite right: it allows star in prototypes
1042        // for function definitions, and disallows some edge cases detailed
1043        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
1044        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
1045        ASM = ArrayType::Normal;
1046        D.setInvalidType(true);
1047      }
1048      T = BuildArrayType(T, ASM, ArraySize,
1049                         Qualifiers::fromCVRMask(ATI.TypeQuals),
1050                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
1051      break;
1052    }
1053    case DeclaratorChunk::Function: {
1054      if (ShouldBuildInfo) {
1055        const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1056        llvm::SmallVector<QualType, 16> ArgTys;
1057
1058        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1059          ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
1060          if (Param) {
1061            QualType ArgTy = adjustFunctionParamType(Param->getType());
1062
1063            ArgTys.push_back(ArgTy);
1064          }
1065        }
1066        SourceTy = Context.getFunctionType(SourceTy, ArgTys.data(),
1067                                           ArgTys.size(),
1068                                           FTI.isVariadic,
1069                                           FTI.TypeQuals);
1070      }
1071
1072      // If the function declarator has a prototype (i.e. it is not () and
1073      // does not have a K&R-style identifier list), then the arguments are part
1074      // of the type, otherwise the argument list is ().
1075      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1076
1077      // C99 6.7.5.3p1: The return type may not be a function or array type.
1078      if (T->isArrayType() || T->isFunctionType()) {
1079        Diag(DeclType.Loc, diag::err_func_returning_array_function) << T;
1080        T = Context.IntTy;
1081        D.setInvalidType(true);
1082      }
1083
1084      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
1085        // C++ [dcl.fct]p6:
1086        //   Types shall not be defined in return or parameter types.
1087        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
1088        if (Tag->isDefinition())
1089          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
1090            << Context.getTypeDeclType(Tag);
1091      }
1092
1093      // Exception specs are not allowed in typedefs. Complain, but add it
1094      // anyway.
1095      if (FTI.hasExceptionSpec &&
1096          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1097        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
1098
1099      if (FTI.NumArgs == 0) {
1100        if (getLangOptions().CPlusPlus) {
1101          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
1102          // function takes no arguments.
1103          llvm::SmallVector<QualType, 4> Exceptions;
1104          Exceptions.reserve(FTI.NumExceptions);
1105          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1106            // FIXME: Preserve type source info.
1107            QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1108            // Check that the type is valid for an exception spec, and drop it
1109            // if not.
1110            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1111              Exceptions.push_back(ET);
1112          }
1113          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
1114                                      FTI.hasExceptionSpec,
1115                                      FTI.hasAnyExceptionSpec,
1116                                      Exceptions.size(), Exceptions.data());
1117        } else if (FTI.isVariadic) {
1118          // We allow a zero-parameter variadic function in C if the
1119          // function is marked with the "overloadable"
1120          // attribute. Scan for this attribute now.
1121          bool Overloadable = false;
1122          for (const AttributeList *Attrs = D.getAttributes();
1123               Attrs; Attrs = Attrs->getNext()) {
1124            if (Attrs->getKind() == AttributeList::AT_overloadable) {
1125              Overloadable = true;
1126              break;
1127            }
1128          }
1129
1130          if (!Overloadable)
1131            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
1132          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0);
1133        } else {
1134          // Simple void foo(), where the incoming T is the result type.
1135          T = Context.getFunctionNoProtoType(T);
1136        }
1137      } else if (FTI.ArgInfo[0].Param == 0) {
1138        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
1139        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
1140      } else {
1141        // Otherwise, we have a function with an argument list that is
1142        // potentially variadic.
1143        llvm::SmallVector<QualType, 16> ArgTys;
1144
1145        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1146          ParmVarDecl *Param =
1147            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
1148          QualType ArgTy = Param->getType();
1149          assert(!ArgTy.isNull() && "Couldn't parse type?");
1150
1151          // Adjust the parameter type.
1152          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1153
1154          // Look for 'void'.  void is allowed only as a single argument to a
1155          // function with no other parameters (C99 6.7.5.3p10).  We record
1156          // int(void) as a FunctionProtoType with an empty argument list.
1157          if (ArgTy->isVoidType()) {
1158            // If this is something like 'float(int, void)', reject it.  'void'
1159            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1160            // have arguments of incomplete type.
1161            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1162              Diag(DeclType.Loc, diag::err_void_only_param);
1163              ArgTy = Context.IntTy;
1164              Param->setType(ArgTy);
1165            } else if (FTI.ArgInfo[i].Ident) {
1166              // Reject, but continue to parse 'int(void abc)'.
1167              Diag(FTI.ArgInfo[i].IdentLoc,
1168                   diag::err_param_with_void_type);
1169              ArgTy = Context.IntTy;
1170              Param->setType(ArgTy);
1171            } else {
1172              // Reject, but continue to parse 'float(const void)'.
1173              if (ArgTy.hasQualifiers())
1174                Diag(DeclType.Loc, diag::err_void_param_qualified);
1175
1176              // Do not add 'void' to the ArgTys list.
1177              break;
1178            }
1179          } else if (!FTI.hasPrototype) {
1180            if (ArgTy->isPromotableIntegerType()) {
1181              ArgTy = Context.getPromotedIntegerType(ArgTy);
1182            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
1183              if (BTy->getKind() == BuiltinType::Float)
1184                ArgTy = Context.DoubleTy;
1185            }
1186          }
1187
1188          ArgTys.push_back(adjustFunctionParamType(ArgTy));
1189        }
1190
1191        llvm::SmallVector<QualType, 4> Exceptions;
1192        Exceptions.reserve(FTI.NumExceptions);
1193        for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1194          // FIXME: Preserve type source info.
1195          QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1196          // Check that the type is valid for an exception spec, and drop it if
1197          // not.
1198          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1199            Exceptions.push_back(ET);
1200        }
1201
1202        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
1203                                    FTI.isVariadic, FTI.TypeQuals,
1204                                    FTI.hasExceptionSpec,
1205                                    FTI.hasAnyExceptionSpec,
1206                                    Exceptions.size(), Exceptions.data());
1207      }
1208      break;
1209    }
1210    case DeclaratorChunk::MemberPointer:
1211      // Verify that we're not building a pointer to pointer to function with
1212      // exception specification.
1213      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1214        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1215        D.setInvalidType(true);
1216        // Build the type anyway.
1217      }
1218      // The scope spec must refer to a class, or be dependent.
1219      QualType ClsType;
1220      if (isDependentScopeSpecifier(DeclType.Mem.Scope())) {
1221        NestedNameSpecifier *NNS
1222          = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
1223        assert(NNS->getAsType() && "Nested-name-specifier must name a type");
1224        ClsType = QualType(NNS->getAsType(), 0);
1225      } else if (CXXRecordDecl *RD
1226                   = dyn_cast_or_null<CXXRecordDecl>(
1227                                    computeDeclContext(DeclType.Mem.Scope()))) {
1228        ClsType = Context.getTagDeclType(RD);
1229      } else {
1230        Diag(DeclType.Mem.Scope().getBeginLoc(),
1231             diag::err_illegal_decl_mempointer_in_nonclass)
1232          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1233          << DeclType.Mem.Scope().getRange();
1234        D.setInvalidType(true);
1235      }
1236
1237      if (ShouldBuildInfo) {
1238        QualType cls = !ClsType.isNull() ? ClsType : Context.IntTy;
1239        SourceTy = Context.getQualifiedType(
1240                      Context.getMemberPointerType(SourceTy, cls.getTypePtr()),
1241                      Qualifiers::fromCVRMask(DeclType.Mem.TypeQuals));
1242      }
1243
1244      if (!ClsType.isNull())
1245        T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals,
1246                                   DeclType.Loc, D.getIdentifier());
1247      if (T.isNull()) {
1248        T = Context.IntTy;
1249        D.setInvalidType(true);
1250      }
1251      break;
1252    }
1253
1254    if (T.isNull()) {
1255      D.setInvalidType(true);
1256      T = Context.IntTy;
1257    }
1258
1259    // See if there are any attributes on this declarator chunk.
1260    if (const AttributeList *AL = DeclType.getAttrs())
1261      ProcessTypeAttributeList(T, AL);
1262  }
1263
1264  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1265    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
1266    assert(FnTy && "Why oh why is there not a FunctionProtoType here ?");
1267
1268    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1269    // for a nonstatic member function, the function type to which a pointer
1270    // to member refers, or the top-level function type of a function typedef
1271    // declaration.
1272    if (FnTy->getTypeQuals() != 0 &&
1273        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1274        ((D.getContext() != Declarator::MemberContext &&
1275          (!D.getCXXScopeSpec().isSet() ||
1276           !computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)
1277              ->isRecord())) ||
1278         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1279      if (D.isFunctionDeclarator())
1280        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1281      else
1282        Diag(D.getIdentifierLoc(),
1283             diag::err_invalid_qualified_typedef_function_type_use);
1284
1285      // Strip the cv-quals from the type.
1286      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1287                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
1288    }
1289  }
1290
1291  // If there were any type attributes applied to the decl itself (not the
1292  // type, apply the type attribute to the type!)
1293  if (const AttributeList *Attrs = D.getAttributes())
1294    ProcessTypeAttributeList(T, Attrs);
1295
1296  if (ShouldBuildInfo)
1297    *DInfo = GetDeclaratorInfoForDeclarator(D, SourceTy, Skip);
1298
1299  return T;
1300}
1301
1302static void FillTypeSpecLoc(TypeLoc TSL, const DeclSpec &DS) {
1303  if (TSL.isNull()) return;
1304
1305  if (TypedefLoc *TL = dyn_cast<TypedefLoc>(&TSL)) {
1306    TL->setNameLoc(DS.getTypeSpecTypeLoc());
1307
1308  } else if (ObjCInterfaceLoc *TL = dyn_cast<ObjCInterfaceLoc>(&TSL)) {
1309    TL->setNameLoc(DS.getTypeSpecTypeLoc());
1310
1311  } else if (ObjCProtocolListLoc *PLL = dyn_cast<ObjCProtocolListLoc>(&TSL)) {
1312    assert(PLL->getNumProtocols() == DS.getNumProtocolQualifiers());
1313    PLL->setLAngleLoc(DS.getProtocolLAngleLoc());
1314    PLL->setRAngleLoc(DS.getSourceRange().getEnd());
1315    for (unsigned i = 0; i != DS.getNumProtocolQualifiers(); ++i)
1316      PLL->setProtocolLoc(i, DS.getProtocolLocs()[i]);
1317    FillTypeSpecLoc(PLL->getBaseTypeLoc(), DS);
1318
1319  } else {
1320    //FIXME: Other typespecs.
1321    DefaultTypeSpecLoc &DTL = cast<DefaultTypeSpecLoc>(TSL);
1322    DTL.setStartLoc(DS.getSourceRange().getBegin());
1323  }
1324}
1325
1326/// \brief Create and instantiate a DeclaratorInfo with type source information.
1327///
1328/// \param T QualType referring to the type as written in source code.
1329DeclaratorInfo *
1330Sema::GetDeclaratorInfoForDeclarator(Declarator &D, QualType T, unsigned Skip) {
1331  DeclaratorInfo *DInfo = Context.CreateDeclaratorInfo(T);
1332  TypeLoc CurrTL = DInfo->getTypeLoc();
1333
1334  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
1335    assert(!CurrTL.isNull());
1336
1337    DeclaratorChunk &DeclType = D.getTypeObject(i);
1338    switch (DeclType.Kind) {
1339    default: assert(0 && "Unknown decltype!");
1340    case DeclaratorChunk::BlockPointer: {
1341      BlockPointerLoc &BPL = cast<BlockPointerLoc>(CurrTL);
1342      BPL.setCaretLoc(DeclType.Loc);
1343      break;
1344    }
1345    case DeclaratorChunk::Pointer: {
1346      //FIXME: ObjCObject pointers.
1347      PointerLoc &PL = cast<PointerLoc>(CurrTL);
1348      PL.setStarLoc(DeclType.Loc);
1349      break;
1350    }
1351    case DeclaratorChunk::Reference: {
1352      ReferenceLoc &RL = cast<ReferenceLoc>(CurrTL);
1353      RL.setAmpLoc(DeclType.Loc);
1354      break;
1355    }
1356    case DeclaratorChunk::Array: {
1357      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1358      ArrayLoc &AL = cast<ArrayLoc>(CurrTL);
1359      AL.setLBracketLoc(DeclType.Loc);
1360      AL.setRBracketLoc(DeclType.EndLoc);
1361      AL.setSizeExpr(static_cast<Expr*>(ATI.NumElts));
1362      //FIXME: Star location for [*].
1363      break;
1364    }
1365    case DeclaratorChunk::Function: {
1366      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1367      FunctionLoc &FL = cast<FunctionLoc>(CurrTL);
1368      FL.setLParenLoc(DeclType.Loc);
1369      FL.setRParenLoc(DeclType.EndLoc);
1370      for (unsigned i = 0, e = FTI.NumArgs, tpi = 0; i != e; ++i) {
1371        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
1372        if (Param) {
1373          assert(tpi < FL.getNumArgs());
1374          FL.setArg(tpi++, Param);
1375        }
1376      }
1377      break;
1378      //FIXME: Exception specs.
1379    }
1380    case DeclaratorChunk::MemberPointer: {
1381      MemberPointerLoc &MPL = cast<MemberPointerLoc>(CurrTL);
1382      MPL.setStarLoc(DeclType.Loc);
1383      //FIXME: Class location.
1384      break;
1385    }
1386
1387    }
1388
1389    CurrTL = CurrTL.getNextTypeLoc();
1390  }
1391
1392  FillTypeSpecLoc(CurrTL, D.getDeclSpec());
1393
1394  return DInfo;
1395}
1396
1397/// \brief Create a LocInfoType to hold the given QualType and DeclaratorInfo.
1398QualType Sema::CreateLocInfoType(QualType T, DeclaratorInfo *DInfo) {
1399  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
1400  // and Sema during declaration parsing. Try deallocating/caching them when
1401  // it's appropriate, instead of allocating them and keeping them around.
1402  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), 8);
1403  new (LocT) LocInfoType(T, DInfo);
1404  assert(LocT->getTypeClass() != T->getTypeClass() &&
1405         "LocInfoType's TypeClass conflicts with an existing Type class");
1406  return QualType(LocT, 0);
1407}
1408
1409void LocInfoType::getAsStringInternal(std::string &Str,
1410                                      const PrintingPolicy &Policy) const {
1411  assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
1412         " was used directly instead of getting the QualType through"
1413         " GetTypeFromParser");
1414}
1415
1416/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
1417/// declarator
1418QualType Sema::ObjCGetTypeForMethodDefinition(DeclPtrTy D) {
1419  ObjCMethodDecl *MDecl = cast<ObjCMethodDecl>(D.getAs<Decl>());
1420  QualType T = MDecl->getResultType();
1421  llvm::SmallVector<QualType, 16> ArgTys;
1422
1423  // Add the first two invisible argument types for self and _cmd.
1424  if (MDecl->isInstanceMethod()) {
1425    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
1426    selfTy = Context.getPointerType(selfTy);
1427    ArgTys.push_back(selfTy);
1428  } else
1429    ArgTys.push_back(Context.getObjCIdType());
1430  ArgTys.push_back(Context.getObjCSelType());
1431
1432  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
1433       E = MDecl->param_end(); PI != E; ++PI) {
1434    QualType ArgTy = (*PI)->getType();
1435    assert(!ArgTy.isNull() && "Couldn't parse type?");
1436    ArgTy = adjustParameterType(ArgTy);
1437    ArgTys.push_back(ArgTy);
1438  }
1439  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
1440                              MDecl->isVariadic(), 0);
1441  return T;
1442}
1443
1444/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
1445/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
1446/// they point to and return true. If T1 and T2 aren't pointer types
1447/// or pointer-to-member types, or if they are not similar at this
1448/// level, returns false and leaves T1 and T2 unchanged. Top-level
1449/// qualifiers on T1 and T2 are ignored. This function will typically
1450/// be called in a loop that successively "unwraps" pointer and
1451/// pointer-to-member types to compare them at each level.
1452bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
1453  const PointerType *T1PtrType = T1->getAs<PointerType>(),
1454                    *T2PtrType = T2->getAs<PointerType>();
1455  if (T1PtrType && T2PtrType) {
1456    T1 = T1PtrType->getPointeeType();
1457    T2 = T2PtrType->getPointeeType();
1458    return true;
1459  }
1460
1461  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
1462                          *T2MPType = T2->getAs<MemberPointerType>();
1463  if (T1MPType && T2MPType &&
1464      Context.getCanonicalType(T1MPType->getClass()) ==
1465      Context.getCanonicalType(T2MPType->getClass())) {
1466    T1 = T1MPType->getPointeeType();
1467    T2 = T2MPType->getPointeeType();
1468    return true;
1469  }
1470  return false;
1471}
1472
1473Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1474  // C99 6.7.6: Type names have no identifier.  This is already validated by
1475  // the parser.
1476  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1477
1478  DeclaratorInfo *DInfo = 0;
1479  TagDecl *OwnedTag = 0;
1480  QualType T = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0, &OwnedTag);
1481  if (D.isInvalidType())
1482    return true;
1483
1484  if (getLangOptions().CPlusPlus) {
1485    // Check that there are no default arguments (C++ only).
1486    CheckExtraCXXDefaultArguments(D);
1487
1488    // C++0x [dcl.type]p3:
1489    //   A type-specifier-seq shall not define a class or enumeration
1490    //   unless it appears in the type-id of an alias-declaration
1491    //   (7.1.3).
1492    if (OwnedTag && OwnedTag->isDefinition())
1493      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1494        << Context.getTypeDeclType(OwnedTag);
1495  }
1496
1497  if (DInfo)
1498    T = CreateLocInfoType(T, DInfo);
1499
1500  return T.getAsOpaquePtr();
1501}
1502
1503
1504
1505//===----------------------------------------------------------------------===//
1506// Type Attribute Processing
1507//===----------------------------------------------------------------------===//
1508
1509/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1510/// specified type.  The attribute contains 1 argument, the id of the address
1511/// space for the type.
1512static void HandleAddressSpaceTypeAttribute(QualType &Type,
1513                                            const AttributeList &Attr, Sema &S){
1514
1515  // If this type is already address space qualified, reject it.
1516  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1517  // for two or more different address spaces."
1518  if (Type.getAddressSpace()) {
1519    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1520    return;
1521  }
1522
1523  // Check the attribute arguments.
1524  if (Attr.getNumArgs() != 1) {
1525    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1526    return;
1527  }
1528  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1529  llvm::APSInt addrSpace(32);
1530  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1531    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1532      << ASArgExpr->getSourceRange();
1533    return;
1534  }
1535
1536  // Bounds checking.
1537  if (addrSpace.isSigned()) {
1538    if (addrSpace.isNegative()) {
1539      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
1540        << ASArgExpr->getSourceRange();
1541      return;
1542    }
1543    addrSpace.setIsSigned(false);
1544  }
1545  llvm::APSInt max(addrSpace.getBitWidth());
1546  max = Qualifiers::MaxAddressSpace;
1547  if (addrSpace > max) {
1548    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
1549      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
1550    return;
1551  }
1552
1553  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1554  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1555}
1556
1557/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1558/// specified type.  The attribute contains 1 argument, weak or strong.
1559static void HandleObjCGCTypeAttribute(QualType &Type,
1560                                      const AttributeList &Attr, Sema &S) {
1561  if (Type.getObjCGCAttr() != Qualifiers::GCNone) {
1562    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1563    return;
1564  }
1565
1566  // Check the attribute arguments.
1567  if (!Attr.getParameterName()) {
1568    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1569      << "objc_gc" << 1;
1570    return;
1571  }
1572  Qualifiers::GC GCAttr;
1573  if (Attr.getNumArgs() != 0) {
1574    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1575    return;
1576  }
1577  if (Attr.getParameterName()->isStr("weak"))
1578    GCAttr = Qualifiers::Weak;
1579  else if (Attr.getParameterName()->isStr("strong"))
1580    GCAttr = Qualifiers::Strong;
1581  else {
1582    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1583      << "objc_gc" << Attr.getParameterName();
1584    return;
1585  }
1586
1587  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1588}
1589
1590/// HandleNoReturnTypeAttribute - Process the noreturn attribute on the
1591/// specified type.  The attribute contains 0 arguments.
1592static void HandleNoReturnTypeAttribute(QualType &Type,
1593                                        const AttributeList &Attr, Sema &S) {
1594  if (Attr.getNumArgs() != 0)
1595    return;
1596
1597  // We only apply this to a pointer to function or a pointer to block.
1598  if (!Type->isFunctionPointerType()
1599      && !Type->isBlockPointerType()
1600      && !Type->isFunctionType())
1601    return;
1602
1603  Type = S.Context.getNoReturnType(Type);
1604}
1605
1606void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
1607  // Scan through and apply attributes to this type where it makes sense.  Some
1608  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1609  // type, but others can be present in the type specifiers even though they
1610  // apply to the decl.  Here we apply type attributes and ignore the rest.
1611  for (; AL; AL = AL->getNext()) {
1612    // If this is an attribute we can handle, do so now, otherwise, add it to
1613    // the LeftOverAttrs list for rechaining.
1614    switch (AL->getKind()) {
1615    default: break;
1616    case AttributeList::AT_address_space:
1617      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
1618      break;
1619    case AttributeList::AT_objc_gc:
1620      HandleObjCGCTypeAttribute(Result, *AL, *this);
1621      break;
1622    case AttributeList::AT_noreturn:
1623      HandleNoReturnTypeAttribute(Result, *AL, *this);
1624      break;
1625    }
1626  }
1627}
1628
1629/// @brief Ensure that the type T is a complete type.
1630///
1631/// This routine checks whether the type @p T is complete in any
1632/// context where a complete type is required. If @p T is a complete
1633/// type, returns false. If @p T is a class template specialization,
1634/// this routine then attempts to perform class template
1635/// instantiation. If instantiation fails, or if @p T is incomplete
1636/// and cannot be completed, issues the diagnostic @p diag (giving it
1637/// the type @p T) and returns true.
1638///
1639/// @param Loc  The location in the source that the incomplete type
1640/// diagnostic should refer to.
1641///
1642/// @param T  The type that this routine is examining for completeness.
1643///
1644/// @param PD The partial diagnostic that will be printed out if T is not a
1645/// complete type.
1646///
1647/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1648/// @c false otherwise.
1649bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
1650                               const PartialDiagnostic &PD,
1651                               std::pair<SourceLocation,
1652                                         PartialDiagnostic> Note) {
1653  unsigned diag = PD.getDiagID();
1654
1655  // FIXME: Add this assertion to help us flush out problems with
1656  // checking for dependent types and type-dependent expressions.
1657  //
1658  //  assert(!T->isDependentType() &&
1659  //         "Can't ask whether a dependent type is complete");
1660
1661  // If we have a complete type, we're done.
1662  if (!T->isIncompleteType())
1663    return false;
1664
1665  // If we have a class template specialization or a class member of a
1666  // class template specialization, try to instantiate it.
1667  if (const RecordType *Record = T->getAs<RecordType>()) {
1668    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
1669          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
1670      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
1671        if (Loc.isValid())
1672          ClassTemplateSpec->setPointOfInstantiation(Loc);
1673        return InstantiateClassTemplateSpecialization(ClassTemplateSpec,
1674                                                      TSK_ImplicitInstantiation,
1675                                                      /*Complain=*/diag != 0);
1676      }
1677    } else if (CXXRecordDecl *Rec
1678                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
1679      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
1680        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
1681        assert(MSInfo && "Missing member specialization information?");
1682        // This record was instantiated from a class within a template.
1683        if (MSInfo->getTemplateSpecializationKind()
1684                                               != TSK_ExplicitSpecialization) {
1685          MSInfo->setPointOfInstantiation(Loc);
1686          return InstantiateClass(Loc, Rec, Pattern,
1687                                  getTemplateInstantiationArgs(Rec),
1688                                  TSK_ImplicitInstantiation,
1689                                  /*Complain=*/diag != 0);
1690        }
1691      }
1692    }
1693  }
1694
1695  if (diag == 0)
1696    return true;
1697
1698  // We have an incomplete type. Produce a diagnostic.
1699  Diag(Loc, PD) << T;
1700
1701  // If we have a note, produce it.
1702  if (!Note.first.isInvalid())
1703    Diag(Note.first, Note.second);
1704
1705  // If the type was a forward declaration of a class/struct/union
1706  // type, produce
1707  const TagType *Tag = 0;
1708  if (const RecordType *Record = T->getAs<RecordType>())
1709    Tag = Record;
1710  else if (const EnumType *Enum = T->getAs<EnumType>())
1711    Tag = Enum;
1712
1713  if (Tag && !Tag->getDecl()->isInvalidDecl())
1714    Diag(Tag->getDecl()->getLocation(),
1715         Tag->isBeingDefined() ? diag::note_type_being_defined
1716                               : diag::note_forward_declaration)
1717        << QualType(Tag, 0);
1718
1719  return true;
1720}
1721
1722/// \brief Retrieve a version of the type 'T' that is qualified by the
1723/// nested-name-specifier contained in SS.
1724QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
1725  if (!SS.isSet() || SS.isInvalid() || T.isNull())
1726    return T;
1727
1728  NestedNameSpecifier *NNS
1729    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1730  return Context.getQualifiedNameType(NNS, T);
1731}
1732
1733QualType Sema::BuildTypeofExprType(Expr *E) {
1734  return Context.getTypeOfExprType(E);
1735}
1736
1737QualType Sema::BuildDecltypeType(Expr *E) {
1738  if (E->getType() == Context.OverloadTy) {
1739    Diag(E->getLocStart(),
1740         diag::err_cannot_determine_declared_type_of_overloaded_function);
1741    return QualType();
1742  }
1743  return Context.getDecltypeType(E);
1744}
1745