SemaType.cpp revision ca5c4c9bfeb4b1ac645b04723c0319b0fc96073e
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/ScopeInfo.h"
15#include "clang/Sema/SemaInternal.h"
16#include "clang/Sema/Template.h"
17#include "clang/Basic/OpenCL.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTMutationListener.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/TypeLoc.h"
24#include "clang/AST/TypeLocVisitor.h"
25#include "clang/AST/Expr.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Parse/ParseDiagnostic.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/DelayedDiagnostic.h"
32#include "clang/Sema/Lookup.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/Support/ErrorHandling.h"
35using namespace clang;
36
37/// isOmittedBlockReturnType - Return true if this declarator is missing a
38/// return type because this is a omitted return type on a block literal.
39static bool isOmittedBlockReturnType(const Declarator &D) {
40  if (D.getContext() != Declarator::BlockLiteralContext ||
41      D.getDeclSpec().hasTypeSpecifier())
42    return false;
43
44  if (D.getNumTypeObjects() == 0)
45    return true;   // ^{ ... }
46
47  if (D.getNumTypeObjects() == 1 &&
48      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
49    return true;   // ^(int X, float Y) { ... }
50
51  return false;
52}
53
54/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
55/// doesn't apply to the given type.
56static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
57                                     QualType type) {
58  bool useExpansionLoc = false;
59
60  unsigned diagID = 0;
61  switch (attr.getKind()) {
62  case AttributeList::AT_ObjCGC:
63    diagID = diag::warn_pointer_attribute_wrong_type;
64    useExpansionLoc = true;
65    break;
66
67  case AttributeList::AT_ObjCOwnership:
68    diagID = diag::warn_objc_object_attribute_wrong_type;
69    useExpansionLoc = true;
70    break;
71
72  default:
73    // Assume everything else was a function attribute.
74    diagID = diag::warn_function_attribute_wrong_type;
75    break;
76  }
77
78  SourceLocation loc = attr.getLoc();
79  StringRef name = attr.getName()->getName();
80
81  // The GC attributes are usually written with macros;  special-case them.
82  if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
83    if (attr.getParameterName()->isStr("strong")) {
84      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
85    } else if (attr.getParameterName()->isStr("weak")) {
86      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
87    }
88  }
89
90  S.Diag(loc, diagID) << name << type;
91}
92
93// objc_gc applies to Objective-C pointers or, otherwise, to the
94// smallest available pointer type (i.e. 'void*' in 'void**').
95#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
96    case AttributeList::AT_ObjCGC: \
97    case AttributeList::AT_ObjCOwnership
98
99// Function type attributes.
100#define FUNCTION_TYPE_ATTRS_CASELIST \
101    case AttributeList::AT_NoReturn: \
102    case AttributeList::AT_CDecl: \
103    case AttributeList::AT_FastCall: \
104    case AttributeList::AT_StdCall: \
105    case AttributeList::AT_ThisCall: \
106    case AttributeList::AT_Pascal: \
107    case AttributeList::AT_Regparm: \
108    case AttributeList::AT_Pcs \
109
110namespace {
111  /// An object which stores processing state for the entire
112  /// GetTypeForDeclarator process.
113  class TypeProcessingState {
114    Sema &sema;
115
116    /// The declarator being processed.
117    Declarator &declarator;
118
119    /// The index of the declarator chunk we're currently processing.
120    /// May be the total number of valid chunks, indicating the
121    /// DeclSpec.
122    unsigned chunkIndex;
123
124    /// Whether there are non-trivial modifications to the decl spec.
125    bool trivial;
126
127    /// Whether we saved the attributes in the decl spec.
128    bool hasSavedAttrs;
129
130    /// The original set of attributes on the DeclSpec.
131    SmallVector<AttributeList*, 2> savedAttrs;
132
133    /// A list of attributes to diagnose the uselessness of when the
134    /// processing is complete.
135    SmallVector<AttributeList*, 2> ignoredTypeAttrs;
136
137  public:
138    TypeProcessingState(Sema &sema, Declarator &declarator)
139      : sema(sema), declarator(declarator),
140        chunkIndex(declarator.getNumTypeObjects()),
141        trivial(true), hasSavedAttrs(false) {}
142
143    Sema &getSema() const {
144      return sema;
145    }
146
147    Declarator &getDeclarator() const {
148      return declarator;
149    }
150
151    unsigned getCurrentChunkIndex() const {
152      return chunkIndex;
153    }
154
155    void setCurrentChunkIndex(unsigned idx) {
156      assert(idx <= declarator.getNumTypeObjects());
157      chunkIndex = idx;
158    }
159
160    AttributeList *&getCurrentAttrListRef() const {
161      assert(chunkIndex <= declarator.getNumTypeObjects());
162      if (chunkIndex == declarator.getNumTypeObjects())
163        return getMutableDeclSpec().getAttributes().getListRef();
164      return declarator.getTypeObject(chunkIndex).getAttrListRef();
165    }
166
167    /// Save the current set of attributes on the DeclSpec.
168    void saveDeclSpecAttrs() {
169      // Don't try to save them multiple times.
170      if (hasSavedAttrs) return;
171
172      DeclSpec &spec = getMutableDeclSpec();
173      for (AttributeList *attr = spec.getAttributes().getList(); attr;
174             attr = attr->getNext())
175        savedAttrs.push_back(attr);
176      trivial &= savedAttrs.empty();
177      hasSavedAttrs = true;
178    }
179
180    /// Record that we had nowhere to put the given type attribute.
181    /// We will diagnose such attributes later.
182    void addIgnoredTypeAttr(AttributeList &attr) {
183      ignoredTypeAttrs.push_back(&attr);
184    }
185
186    /// Diagnose all the ignored type attributes, given that the
187    /// declarator worked out to the given type.
188    void diagnoseIgnoredTypeAttrs(QualType type) const {
189      for (SmallVectorImpl<AttributeList*>::const_iterator
190             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
191           i != e; ++i)
192        diagnoseBadTypeAttribute(getSema(), **i, type);
193    }
194
195    ~TypeProcessingState() {
196      if (trivial) return;
197
198      restoreDeclSpecAttrs();
199    }
200
201  private:
202    DeclSpec &getMutableDeclSpec() const {
203      return const_cast<DeclSpec&>(declarator.getDeclSpec());
204    }
205
206    void restoreDeclSpecAttrs() {
207      assert(hasSavedAttrs);
208
209      if (savedAttrs.empty()) {
210        getMutableDeclSpec().getAttributes().set(0);
211        return;
212      }
213
214      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
215      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
216        savedAttrs[i]->setNext(savedAttrs[i+1]);
217      savedAttrs.back()->setNext(0);
218    }
219  };
220
221  /// Basically std::pair except that we really want to avoid an
222  /// implicit operator= for safety concerns.  It's also a minor
223  /// link-time optimization for this to be a private type.
224  struct AttrAndList {
225    /// The attribute.
226    AttributeList &first;
227
228    /// The head of the list the attribute is currently in.
229    AttributeList *&second;
230
231    AttrAndList(AttributeList &attr, AttributeList *&head)
232      : first(attr), second(head) {}
233  };
234}
235
236namespace llvm {
237  template <> struct isPodLike<AttrAndList> {
238    static const bool value = true;
239  };
240}
241
242static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
243  attr.setNext(head);
244  head = &attr;
245}
246
247static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
248  if (head == &attr) {
249    head = attr.getNext();
250    return;
251  }
252
253  AttributeList *cur = head;
254  while (true) {
255    assert(cur && cur->getNext() && "ran out of attrs?");
256    if (cur->getNext() == &attr) {
257      cur->setNext(attr.getNext());
258      return;
259    }
260    cur = cur->getNext();
261  }
262}
263
264static void moveAttrFromListToList(AttributeList &attr,
265                                   AttributeList *&fromList,
266                                   AttributeList *&toList) {
267  spliceAttrOutOfList(attr, fromList);
268  spliceAttrIntoList(attr, toList);
269}
270
271static void processTypeAttrs(TypeProcessingState &state,
272                             QualType &type, bool isDeclSpec,
273                             AttributeList *attrs);
274
275static bool handleFunctionTypeAttr(TypeProcessingState &state,
276                                   AttributeList &attr,
277                                   QualType &type);
278
279static bool handleObjCGCTypeAttr(TypeProcessingState &state,
280                                 AttributeList &attr, QualType &type);
281
282static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
283                                       AttributeList &attr, QualType &type);
284
285static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
286                                      AttributeList &attr, QualType &type) {
287  if (attr.getKind() == AttributeList::AT_ObjCGC)
288    return handleObjCGCTypeAttr(state, attr, type);
289  assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
290  return handleObjCOwnershipTypeAttr(state, attr, type);
291}
292
293/// Given that an objc_gc attribute was written somewhere on a
294/// declaration *other* than on the declarator itself (for which, use
295/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
296/// didn't apply in whatever position it was written in, try to move
297/// it to a more appropriate position.
298static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
299                                          AttributeList &attr,
300                                          QualType type) {
301  Declarator &declarator = state.getDeclarator();
302  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
303    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
304    switch (chunk.Kind) {
305    case DeclaratorChunk::Pointer:
306    case DeclaratorChunk::BlockPointer:
307      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
308                             chunk.getAttrListRef());
309      return;
310
311    case DeclaratorChunk::Paren:
312    case DeclaratorChunk::Array:
313      continue;
314
315    // Don't walk through these.
316    case DeclaratorChunk::Reference:
317    case DeclaratorChunk::Function:
318    case DeclaratorChunk::MemberPointer:
319      goto error;
320    }
321  }
322 error:
323
324  diagnoseBadTypeAttribute(state.getSema(), attr, type);
325}
326
327/// Distribute an objc_gc type attribute that was written on the
328/// declarator.
329static void
330distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
331                                            AttributeList &attr,
332                                            QualType &declSpecType) {
333  Declarator &declarator = state.getDeclarator();
334
335  // objc_gc goes on the innermost pointer to something that's not a
336  // pointer.
337  unsigned innermost = -1U;
338  bool considerDeclSpec = true;
339  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
340    DeclaratorChunk &chunk = declarator.getTypeObject(i);
341    switch (chunk.Kind) {
342    case DeclaratorChunk::Pointer:
343    case DeclaratorChunk::BlockPointer:
344      innermost = i;
345      continue;
346
347    case DeclaratorChunk::Reference:
348    case DeclaratorChunk::MemberPointer:
349    case DeclaratorChunk::Paren:
350    case DeclaratorChunk::Array:
351      continue;
352
353    case DeclaratorChunk::Function:
354      considerDeclSpec = false;
355      goto done;
356    }
357  }
358 done:
359
360  // That might actually be the decl spec if we weren't blocked by
361  // anything in the declarator.
362  if (considerDeclSpec) {
363    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
364      // Splice the attribute into the decl spec.  Prevents the
365      // attribute from being applied multiple times and gives
366      // the source-location-filler something to work with.
367      state.saveDeclSpecAttrs();
368      moveAttrFromListToList(attr, declarator.getAttrListRef(),
369               declarator.getMutableDeclSpec().getAttributes().getListRef());
370      return;
371    }
372  }
373
374  // Otherwise, if we found an appropriate chunk, splice the attribute
375  // into it.
376  if (innermost != -1U) {
377    moveAttrFromListToList(attr, declarator.getAttrListRef(),
378                       declarator.getTypeObject(innermost).getAttrListRef());
379    return;
380  }
381
382  // Otherwise, diagnose when we're done building the type.
383  spliceAttrOutOfList(attr, declarator.getAttrListRef());
384  state.addIgnoredTypeAttr(attr);
385}
386
387/// A function type attribute was written somewhere in a declaration
388/// *other* than on the declarator itself or in the decl spec.  Given
389/// that it didn't apply in whatever position it was written in, try
390/// to move it to a more appropriate position.
391static void distributeFunctionTypeAttr(TypeProcessingState &state,
392                                       AttributeList &attr,
393                                       QualType type) {
394  Declarator &declarator = state.getDeclarator();
395
396  // Try to push the attribute from the return type of a function to
397  // the function itself.
398  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
399    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
400    switch (chunk.Kind) {
401    case DeclaratorChunk::Function:
402      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
403                             chunk.getAttrListRef());
404      return;
405
406    case DeclaratorChunk::Paren:
407    case DeclaratorChunk::Pointer:
408    case DeclaratorChunk::BlockPointer:
409    case DeclaratorChunk::Array:
410    case DeclaratorChunk::Reference:
411    case DeclaratorChunk::MemberPointer:
412      continue;
413    }
414  }
415
416  diagnoseBadTypeAttribute(state.getSema(), attr, type);
417}
418
419/// Try to distribute a function type attribute to the innermost
420/// function chunk or type.  Returns true if the attribute was
421/// distributed, false if no location was found.
422static bool
423distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
424                                      AttributeList &attr,
425                                      AttributeList *&attrList,
426                                      QualType &declSpecType) {
427  Declarator &declarator = state.getDeclarator();
428
429  // Put it on the innermost function chunk, if there is one.
430  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
431    DeclaratorChunk &chunk = declarator.getTypeObject(i);
432    if (chunk.Kind != DeclaratorChunk::Function) continue;
433
434    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
435    return true;
436  }
437
438  if (handleFunctionTypeAttr(state, attr, declSpecType)) {
439    spliceAttrOutOfList(attr, attrList);
440    return true;
441  }
442
443  return false;
444}
445
446/// A function type attribute was written in the decl spec.  Try to
447/// apply it somewhere.
448static void
449distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
450                                       AttributeList &attr,
451                                       QualType &declSpecType) {
452  state.saveDeclSpecAttrs();
453
454  // Try to distribute to the innermost.
455  if (distributeFunctionTypeAttrToInnermost(state, attr,
456                                            state.getCurrentAttrListRef(),
457                                            declSpecType))
458    return;
459
460  // If that failed, diagnose the bad attribute when the declarator is
461  // fully built.
462  state.addIgnoredTypeAttr(attr);
463}
464
465/// A function type attribute was written on the declarator.  Try to
466/// apply it somewhere.
467static void
468distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
469                                         AttributeList &attr,
470                                         QualType &declSpecType) {
471  Declarator &declarator = state.getDeclarator();
472
473  // Try to distribute to the innermost.
474  if (distributeFunctionTypeAttrToInnermost(state, attr,
475                                            declarator.getAttrListRef(),
476                                            declSpecType))
477    return;
478
479  // If that failed, diagnose the bad attribute when the declarator is
480  // fully built.
481  spliceAttrOutOfList(attr, declarator.getAttrListRef());
482  state.addIgnoredTypeAttr(attr);
483}
484
485/// \brief Given that there are attributes written on the declarator
486/// itself, try to distribute any type attributes to the appropriate
487/// declarator chunk.
488///
489/// These are attributes like the following:
490///   int f ATTR;
491///   int (f ATTR)();
492/// but not necessarily this:
493///   int f() ATTR;
494static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
495                                              QualType &declSpecType) {
496  // Collect all the type attributes from the declarator itself.
497  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
498  AttributeList *attr = state.getDeclarator().getAttributes();
499  AttributeList *next;
500  do {
501    next = attr->getNext();
502
503    switch (attr->getKind()) {
504    OBJC_POINTER_TYPE_ATTRS_CASELIST:
505      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
506      break;
507
508    case AttributeList::AT_NSReturnsRetained:
509      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
510        break;
511      // fallthrough
512
513    FUNCTION_TYPE_ATTRS_CASELIST:
514      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
515      break;
516
517    default:
518      break;
519    }
520  } while ((attr = next));
521}
522
523/// Add a synthetic '()' to a block-literal declarator if it is
524/// required, given the return type.
525static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
526                                          QualType declSpecType) {
527  Declarator &declarator = state.getDeclarator();
528
529  // First, check whether the declarator would produce a function,
530  // i.e. whether the innermost semantic chunk is a function.
531  if (declarator.isFunctionDeclarator()) {
532    // If so, make that declarator a prototyped declarator.
533    declarator.getFunctionTypeInfo().hasPrototype = true;
534    return;
535  }
536
537  // If there are any type objects, the type as written won't name a
538  // function, regardless of the decl spec type.  This is because a
539  // block signature declarator is always an abstract-declarator, and
540  // abstract-declarators can't just be parentheses chunks.  Therefore
541  // we need to build a function chunk unless there are no type
542  // objects and the decl spec type is a function.
543  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
544    return;
545
546  // Note that there *are* cases with invalid declarators where
547  // declarators consist solely of parentheses.  In general, these
548  // occur only in failed efforts to make function declarators, so
549  // faking up the function chunk is still the right thing to do.
550
551  // Otherwise, we need to fake up a function declarator.
552  SourceLocation loc = declarator.getLocStart();
553
554  // ...and *prepend* it to the declarator.
555  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
556                             /*proto*/ true,
557                             /*variadic*/ false,
558                             /*ambiguous*/ false, SourceLocation(),
559                             /*args*/ 0, 0,
560                             /*type quals*/ 0,
561                             /*ref-qualifier*/true, SourceLocation(),
562                             /*const qualifier*/SourceLocation(),
563                             /*volatile qualifier*/SourceLocation(),
564                             /*mutable qualifier*/SourceLocation(),
565                             /*EH*/ EST_None, SourceLocation(), 0, 0, 0, 0,
566                             /*parens*/ loc, loc,
567                             declarator));
568
569  // For consistency, make sure the state still has us as processing
570  // the decl spec.
571  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
572  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
573}
574
575/// \brief Convert the specified declspec to the appropriate type
576/// object.
577/// \param state Specifies the declarator containing the declaration specifier
578/// to be converted, along with other associated processing state.
579/// \returns The type described by the declaration specifiers.  This function
580/// never returns null.
581static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
582  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
583  // checking.
584
585  Sema &S = state.getSema();
586  Declarator &declarator = state.getDeclarator();
587  const DeclSpec &DS = declarator.getDeclSpec();
588  SourceLocation DeclLoc = declarator.getIdentifierLoc();
589  if (DeclLoc.isInvalid())
590    DeclLoc = DS.getLocStart();
591
592  ASTContext &Context = S.Context;
593
594  QualType Result;
595  switch (DS.getTypeSpecType()) {
596  case DeclSpec::TST_void:
597    Result = Context.VoidTy;
598    break;
599  case DeclSpec::TST_char:
600    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
601      Result = Context.CharTy;
602    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
603      Result = Context.SignedCharTy;
604    else {
605      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
606             "Unknown TSS value");
607      Result = Context.UnsignedCharTy;
608    }
609    break;
610  case DeclSpec::TST_wchar:
611    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
612      Result = Context.WCharTy;
613    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
614      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
615        << DS.getSpecifierName(DS.getTypeSpecType());
616      Result = Context.getSignedWCharType();
617    } else {
618      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
619        "Unknown TSS value");
620      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
621        << DS.getSpecifierName(DS.getTypeSpecType());
622      Result = Context.getUnsignedWCharType();
623    }
624    break;
625  case DeclSpec::TST_char16:
626      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
627        "Unknown TSS value");
628      Result = Context.Char16Ty;
629    break;
630  case DeclSpec::TST_char32:
631      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
632        "Unknown TSS value");
633      Result = Context.Char32Ty;
634    break;
635  case DeclSpec::TST_unspecified:
636    // "<proto1,proto2>" is an objc qualified ID with a missing id.
637    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
638      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
639                                         (ObjCProtocolDecl*const*)PQ,
640                                         DS.getNumProtocolQualifiers());
641      Result = Context.getObjCObjectPointerType(Result);
642      break;
643    }
644
645    // If this is a missing declspec in a block literal return context, then it
646    // is inferred from the return statements inside the block.
647    // The declspec is always missing in a lambda expr context; it is either
648    // specified with a trailing return type or inferred.
649    if (declarator.getContext() == Declarator::LambdaExprContext ||
650        isOmittedBlockReturnType(declarator)) {
651      Result = Context.DependentTy;
652      break;
653    }
654
655    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
656    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
657    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
658    // Note that the one exception to this is function definitions, which are
659    // allowed to be completely missing a declspec.  This is handled in the
660    // parser already though by it pretending to have seen an 'int' in this
661    // case.
662    if (S.getLangOpts().ImplicitInt) {
663      // In C89 mode, we only warn if there is a completely missing declspec
664      // when one is not allowed.
665      if (DS.isEmpty()) {
666        S.Diag(DeclLoc, diag::ext_missing_declspec)
667          << DS.getSourceRange()
668        << FixItHint::CreateInsertion(DS.getLocStart(), "int");
669      }
670    } else if (!DS.hasTypeSpecifier()) {
671      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
672      // "At least one type specifier shall be given in the declaration
673      // specifiers in each declaration, and in the specifier-qualifier list in
674      // each struct declaration and type name."
675      // FIXME: Does Microsoft really have the implicit int extension in C++?
676      if (S.getLangOpts().CPlusPlus &&
677          !S.getLangOpts().MicrosoftExt) {
678        S.Diag(DeclLoc, diag::err_missing_type_specifier)
679          << DS.getSourceRange();
680
681        // When this occurs in C++ code, often something is very broken with the
682        // value being declared, poison it as invalid so we don't get chains of
683        // errors.
684        declarator.setInvalidType(true);
685      } else {
686        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
687          << DS.getSourceRange();
688      }
689    }
690
691    // FALL THROUGH.
692  case DeclSpec::TST_int: {
693    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
694      switch (DS.getTypeSpecWidth()) {
695      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
696      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
697      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
698      case DeclSpec::TSW_longlong:
699        Result = Context.LongLongTy;
700
701        // long long is a C99 feature.
702        if (!S.getLangOpts().C99)
703          S.Diag(DS.getTypeSpecWidthLoc(),
704                 S.getLangOpts().CPlusPlus0x ?
705                   diag::warn_cxx98_compat_longlong : diag::ext_longlong);
706        break;
707      }
708    } else {
709      switch (DS.getTypeSpecWidth()) {
710      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
711      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
712      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
713      case DeclSpec::TSW_longlong:
714        Result = Context.UnsignedLongLongTy;
715
716        // long long is a C99 feature.
717        if (!S.getLangOpts().C99)
718          S.Diag(DS.getTypeSpecWidthLoc(),
719                 S.getLangOpts().CPlusPlus0x ?
720                   diag::warn_cxx98_compat_longlong : diag::ext_longlong);
721        break;
722      }
723    }
724    break;
725  }
726  case DeclSpec::TST_int128:
727    if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
728      Result = Context.UnsignedInt128Ty;
729    else
730      Result = Context.Int128Ty;
731    break;
732  case DeclSpec::TST_half: Result = Context.HalfTy; break;
733  case DeclSpec::TST_float: Result = Context.FloatTy; break;
734  case DeclSpec::TST_double:
735    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
736      Result = Context.LongDoubleTy;
737    else
738      Result = Context.DoubleTy;
739
740    if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
741      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
742      declarator.setInvalidType(true);
743    }
744    break;
745  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
746  case DeclSpec::TST_decimal32:    // _Decimal32
747  case DeclSpec::TST_decimal64:    // _Decimal64
748  case DeclSpec::TST_decimal128:   // _Decimal128
749    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
750    Result = Context.IntTy;
751    declarator.setInvalidType(true);
752    break;
753  case DeclSpec::TST_class:
754  case DeclSpec::TST_enum:
755  case DeclSpec::TST_union:
756  case DeclSpec::TST_struct:
757  case DeclSpec::TST_interface: {
758    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
759    if (!D) {
760      // This can happen in C++ with ambiguous lookups.
761      Result = Context.IntTy;
762      declarator.setInvalidType(true);
763      break;
764    }
765
766    // If the type is deprecated or unavailable, diagnose it.
767    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
768
769    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
770           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
771
772    // TypeQuals handled by caller.
773    Result = Context.getTypeDeclType(D);
774
775    // In both C and C++, make an ElaboratedType.
776    ElaboratedTypeKeyword Keyword
777      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
778    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
779    break;
780  }
781  case DeclSpec::TST_typename: {
782    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
783           DS.getTypeSpecSign() == 0 &&
784           "Can't handle qualifiers on typedef names yet!");
785    Result = S.GetTypeFromParser(DS.getRepAsType());
786    if (Result.isNull())
787      declarator.setInvalidType(true);
788    else if (DeclSpec::ProtocolQualifierListTy PQ
789               = DS.getProtocolQualifiers()) {
790      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
791        // Silently drop any existing protocol qualifiers.
792        // TODO: determine whether that's the right thing to do.
793        if (ObjT->getNumProtocols())
794          Result = ObjT->getBaseType();
795
796        if (DS.getNumProtocolQualifiers())
797          Result = Context.getObjCObjectType(Result,
798                                             (ObjCProtocolDecl*const*) PQ,
799                                             DS.getNumProtocolQualifiers());
800      } else if (Result->isObjCIdType()) {
801        // id<protocol-list>
802        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
803                                           (ObjCProtocolDecl*const*) PQ,
804                                           DS.getNumProtocolQualifiers());
805        Result = Context.getObjCObjectPointerType(Result);
806      } else if (Result->isObjCClassType()) {
807        // Class<protocol-list>
808        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
809                                           (ObjCProtocolDecl*const*) PQ,
810                                           DS.getNumProtocolQualifiers());
811        Result = Context.getObjCObjectPointerType(Result);
812      } else {
813        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
814          << DS.getSourceRange();
815        declarator.setInvalidType(true);
816      }
817    }
818
819    // TypeQuals handled by caller.
820    break;
821  }
822  case DeclSpec::TST_typeofType:
823    // FIXME: Preserve type source info.
824    Result = S.GetTypeFromParser(DS.getRepAsType());
825    assert(!Result.isNull() && "Didn't get a type for typeof?");
826    if (!Result->isDependentType())
827      if (const TagType *TT = Result->getAs<TagType>())
828        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
829    // TypeQuals handled by caller.
830    Result = Context.getTypeOfType(Result);
831    break;
832  case DeclSpec::TST_typeofExpr: {
833    Expr *E = DS.getRepAsExpr();
834    assert(E && "Didn't get an expression for typeof?");
835    // TypeQuals handled by caller.
836    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
837    if (Result.isNull()) {
838      Result = Context.IntTy;
839      declarator.setInvalidType(true);
840    }
841    break;
842  }
843  case DeclSpec::TST_decltype: {
844    Expr *E = DS.getRepAsExpr();
845    assert(E && "Didn't get an expression for decltype?");
846    // TypeQuals handled by caller.
847    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
848    if (Result.isNull()) {
849      Result = Context.IntTy;
850      declarator.setInvalidType(true);
851    }
852    break;
853  }
854  case DeclSpec::TST_underlyingType:
855    Result = S.GetTypeFromParser(DS.getRepAsType());
856    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
857    Result = S.BuildUnaryTransformType(Result,
858                                       UnaryTransformType::EnumUnderlyingType,
859                                       DS.getTypeSpecTypeLoc());
860    if (Result.isNull()) {
861      Result = Context.IntTy;
862      declarator.setInvalidType(true);
863    }
864    break;
865
866  case DeclSpec::TST_auto: {
867    // TypeQuals handled by caller.
868    Result = Context.getAutoType(QualType());
869    break;
870  }
871
872  case DeclSpec::TST_unknown_anytype:
873    Result = Context.UnknownAnyTy;
874    break;
875
876  case DeclSpec::TST_atomic:
877    Result = S.GetTypeFromParser(DS.getRepAsType());
878    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
879    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
880    if (Result.isNull()) {
881      Result = Context.IntTy;
882      declarator.setInvalidType(true);
883    }
884    break;
885
886  case DeclSpec::TST_error:
887    Result = Context.IntTy;
888    declarator.setInvalidType(true);
889    break;
890  }
891
892  // Handle complex types.
893  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
894    if (S.getLangOpts().Freestanding)
895      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
896    Result = Context.getComplexType(Result);
897  } else if (DS.isTypeAltiVecVector()) {
898    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
899    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
900    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
901    if (DS.isTypeAltiVecPixel())
902      VecKind = VectorType::AltiVecPixel;
903    else if (DS.isTypeAltiVecBool())
904      VecKind = VectorType::AltiVecBool;
905    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
906  }
907
908  // FIXME: Imaginary.
909  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
910    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
911
912  // Before we process any type attributes, synthesize a block literal
913  // function declarator if necessary.
914  if (declarator.getContext() == Declarator::BlockLiteralContext)
915    maybeSynthesizeBlockSignature(state, Result);
916
917  // Apply any type attributes from the decl spec.  This may cause the
918  // list of type attributes to be temporarily saved while the type
919  // attributes are pushed around.
920  if (AttributeList *attrs = DS.getAttributes().getList())
921    processTypeAttrs(state, Result, true, attrs);
922
923  // Apply const/volatile/restrict qualifiers to T.
924  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
925
926    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
927    // or incomplete types shall not be restrict-qualified."  C++ also allows
928    // restrict-qualified references.
929    if (TypeQuals & DeclSpec::TQ_restrict) {
930      if (Result->isAnyPointerType() || Result->isReferenceType()) {
931        QualType EltTy;
932        if (Result->isObjCObjectPointerType())
933          EltTy = Result;
934        else
935          EltTy = Result->isPointerType() ?
936                    Result->getAs<PointerType>()->getPointeeType() :
937                    Result->getAs<ReferenceType>()->getPointeeType();
938
939        // If we have a pointer or reference, the pointee must have an object
940        // incomplete type.
941        if (!EltTy->isIncompleteOrObjectType()) {
942          S.Diag(DS.getRestrictSpecLoc(),
943               diag::err_typecheck_invalid_restrict_invalid_pointee)
944            << EltTy << DS.getSourceRange();
945          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
946        }
947      } else {
948        S.Diag(DS.getRestrictSpecLoc(),
949               diag::err_typecheck_invalid_restrict_not_pointer)
950          << Result << DS.getSourceRange();
951        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
952      }
953    }
954
955    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
956    // of a function type includes any type qualifiers, the behavior is
957    // undefined."
958    if (Result->isFunctionType() && TypeQuals) {
959      // Get some location to point at, either the C or V location.
960      SourceLocation Loc;
961      if (TypeQuals & DeclSpec::TQ_const)
962        Loc = DS.getConstSpecLoc();
963      else if (TypeQuals & DeclSpec::TQ_volatile)
964        Loc = DS.getVolatileSpecLoc();
965      else {
966        assert((TypeQuals & DeclSpec::TQ_restrict) &&
967               "Has CVR quals but not C, V, or R?");
968        Loc = DS.getRestrictSpecLoc();
969      }
970      S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
971        << Result << DS.getSourceRange();
972    }
973
974    // C++ [dcl.ref]p1:
975    //   Cv-qualified references are ill-formed except when the
976    //   cv-qualifiers are introduced through the use of a typedef
977    //   (7.1.3) or of a template type argument (14.3), in which
978    //   case the cv-qualifiers are ignored.
979    // FIXME: Shouldn't we be checking SCS_typedef here?
980    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
981        TypeQuals && Result->isReferenceType()) {
982      TypeQuals &= ~DeclSpec::TQ_const;
983      TypeQuals &= ~DeclSpec::TQ_volatile;
984    }
985
986    // C90 6.5.3 constraints: "The same type qualifier shall not appear more
987    // than once in the same specifier-list or qualifier-list, either directly
988    // or via one or more typedefs."
989    if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
990        && TypeQuals & Result.getCVRQualifiers()) {
991      if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
992        S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
993          << "const";
994      }
995
996      if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
997        S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
998          << "volatile";
999      }
1000
1001      // C90 doesn't have restrict, so it doesn't force us to produce a warning
1002      // in this case.
1003    }
1004
1005    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
1006    Result = Context.getQualifiedType(Result, Quals);
1007  }
1008
1009  return Result;
1010}
1011
1012static std::string getPrintableNameForEntity(DeclarationName Entity) {
1013  if (Entity)
1014    return Entity.getAsString();
1015
1016  return "type name";
1017}
1018
1019QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1020                                  Qualifiers Qs) {
1021  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1022  // object or incomplete types shall not be restrict-qualified."
1023  if (Qs.hasRestrict()) {
1024    unsigned DiagID = 0;
1025    QualType ProblemTy;
1026
1027    const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
1028    if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
1029      if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
1030        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1031        ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
1032      }
1033    } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1034      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1035        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1036        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1037      }
1038    } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
1039      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1040        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1041        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1042      }
1043    } else if (!Ty->isDependentType()) {
1044      // FIXME: this deserves a proper diagnostic
1045      DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1046      ProblemTy = T;
1047    }
1048
1049    if (DiagID) {
1050      Diag(Loc, DiagID) << ProblemTy;
1051      Qs.removeRestrict();
1052    }
1053  }
1054
1055  return Context.getQualifiedType(T, Qs);
1056}
1057
1058/// \brief Build a paren type including \p T.
1059QualType Sema::BuildParenType(QualType T) {
1060  return Context.getParenType(T);
1061}
1062
1063/// Given that we're building a pointer or reference to the given
1064static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1065                                           SourceLocation loc,
1066                                           bool isReference) {
1067  // Bail out if retention is unrequired or already specified.
1068  if (!type->isObjCLifetimeType() ||
1069      type.getObjCLifetime() != Qualifiers::OCL_None)
1070    return type;
1071
1072  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1073
1074  // If the object type is const-qualified, we can safely use
1075  // __unsafe_unretained.  This is safe (because there are no read
1076  // barriers), and it'll be safe to coerce anything but __weak* to
1077  // the resulting type.
1078  if (type.isConstQualified()) {
1079    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1080
1081  // Otherwise, check whether the static type does not require
1082  // retaining.  This currently only triggers for Class (possibly
1083  // protocol-qualifed, and arrays thereof).
1084  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1085    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1086
1087  // If we are in an unevaluated context, like sizeof, skip adding a
1088  // qualification.
1089  } else if (S.isUnevaluatedContext()) {
1090    return type;
1091
1092  // If that failed, give an error and recover using __strong.  __strong
1093  // is the option most likely to prevent spurious second-order diagnostics,
1094  // like when binding a reference to a field.
1095  } else {
1096    // These types can show up in private ivars in system headers, so
1097    // we need this to not be an error in those cases.  Instead we
1098    // want to delay.
1099    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1100      S.DelayedDiagnostics.add(
1101          sema::DelayedDiagnostic::makeForbiddenType(loc,
1102              diag::err_arc_indirect_no_ownership, type, isReference));
1103    } else {
1104      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1105    }
1106    implicitLifetime = Qualifiers::OCL_Strong;
1107  }
1108  assert(implicitLifetime && "didn't infer any lifetime!");
1109
1110  Qualifiers qs;
1111  qs.addObjCLifetime(implicitLifetime);
1112  return S.Context.getQualifiedType(type, qs);
1113}
1114
1115/// \brief Build a pointer type.
1116///
1117/// \param T The type to which we'll be building a pointer.
1118///
1119/// \param Loc The location of the entity whose type involves this
1120/// pointer type or, if there is no such entity, the location of the
1121/// type that will have pointer type.
1122///
1123/// \param Entity The name of the entity that involves the pointer
1124/// type, if known.
1125///
1126/// \returns A suitable pointer type, if there are no
1127/// errors. Otherwise, returns a NULL type.
1128QualType Sema::BuildPointerType(QualType T,
1129                                SourceLocation Loc, DeclarationName Entity) {
1130  if (T->isReferenceType()) {
1131    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1132    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1133      << getPrintableNameForEntity(Entity) << T;
1134    return QualType();
1135  }
1136
1137  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1138
1139  // In ARC, it is forbidden to build pointers to unqualified pointers.
1140  if (getLangOpts().ObjCAutoRefCount)
1141    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1142
1143  // Build the pointer type.
1144  return Context.getPointerType(T);
1145}
1146
1147/// \brief Build a reference type.
1148///
1149/// \param T The type to which we'll be building a reference.
1150///
1151/// \param Loc The location of the entity whose type involves this
1152/// reference type or, if there is no such entity, the location of the
1153/// type that will have reference type.
1154///
1155/// \param Entity The name of the entity that involves the reference
1156/// type, if known.
1157///
1158/// \returns A suitable reference type, if there are no
1159/// errors. Otherwise, returns a NULL type.
1160QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1161                                  SourceLocation Loc,
1162                                  DeclarationName Entity) {
1163  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1164         "Unresolved overloaded function type");
1165
1166  // C++0x [dcl.ref]p6:
1167  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1168  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1169  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1170  //   the type "lvalue reference to T", while an attempt to create the type
1171  //   "rvalue reference to cv TR" creates the type TR.
1172  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1173
1174  // C++ [dcl.ref]p4: There shall be no references to references.
1175  //
1176  // According to C++ DR 106, references to references are only
1177  // diagnosed when they are written directly (e.g., "int & &"),
1178  // but not when they happen via a typedef:
1179  //
1180  //   typedef int& intref;
1181  //   typedef intref& intref2;
1182  //
1183  // Parser::ParseDeclaratorInternal diagnoses the case where
1184  // references are written directly; here, we handle the
1185  // collapsing of references-to-references as described in C++0x.
1186  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1187
1188  // C++ [dcl.ref]p1:
1189  //   A declarator that specifies the type "reference to cv void"
1190  //   is ill-formed.
1191  if (T->isVoidType()) {
1192    Diag(Loc, diag::err_reference_to_void);
1193    return QualType();
1194  }
1195
1196  // In ARC, it is forbidden to build references to unqualified pointers.
1197  if (getLangOpts().ObjCAutoRefCount)
1198    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1199
1200  // Handle restrict on references.
1201  if (LValueRef)
1202    return Context.getLValueReferenceType(T, SpelledAsLValue);
1203  return Context.getRValueReferenceType(T);
1204}
1205
1206/// Check whether the specified array size makes the array type a VLA.  If so,
1207/// return true, if not, return the size of the array in SizeVal.
1208static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1209  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1210  // (like gnu99, but not c99) accept any evaluatable value as an extension.
1211  class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1212  public:
1213    VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
1214
1215    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1216    }
1217
1218    virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) {
1219      S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
1220    }
1221  } Diagnoser;
1222
1223  return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
1224                                           S.LangOpts.GNUMode).isInvalid();
1225}
1226
1227
1228/// \brief Build an array type.
1229///
1230/// \param T The type of each element in the array.
1231///
1232/// \param ASM C99 array size modifier (e.g., '*', 'static').
1233///
1234/// \param ArraySize Expression describing the size of the array.
1235///
1236/// \param Brackets The range from the opening '[' to the closing ']'.
1237///
1238/// \param Entity The name of the entity that involves the array
1239/// type, if known.
1240///
1241/// \returns A suitable array type, if there are no errors. Otherwise,
1242/// returns a NULL type.
1243QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1244                              Expr *ArraySize, unsigned Quals,
1245                              SourceRange Brackets, DeclarationName Entity) {
1246
1247  SourceLocation Loc = Brackets.getBegin();
1248  if (getLangOpts().CPlusPlus) {
1249    // C++ [dcl.array]p1:
1250    //   T is called the array element type; this type shall not be a reference
1251    //   type, the (possibly cv-qualified) type void, a function type or an
1252    //   abstract class type.
1253    //
1254    // C++ [dcl.array]p3:
1255    //   When several "array of" specifications are adjacent, [...] only the
1256    //   first of the constant expressions that specify the bounds of the arrays
1257    //   may be omitted.
1258    //
1259    // Note: function types are handled in the common path with C.
1260    if (T->isReferenceType()) {
1261      Diag(Loc, diag::err_illegal_decl_array_of_references)
1262      << getPrintableNameForEntity(Entity) << T;
1263      return QualType();
1264    }
1265
1266    if (T->isVoidType() || T->isIncompleteArrayType()) {
1267      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1268      return QualType();
1269    }
1270
1271    if (RequireNonAbstractType(Brackets.getBegin(), T,
1272                               diag::err_array_of_abstract_type))
1273      return QualType();
1274
1275  } else {
1276    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1277    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1278    if (RequireCompleteType(Loc, T,
1279                            diag::err_illegal_decl_array_incomplete_type))
1280      return QualType();
1281  }
1282
1283  if (T->isFunctionType()) {
1284    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1285      << getPrintableNameForEntity(Entity) << T;
1286    return QualType();
1287  }
1288
1289  if (T->getContainedAutoType()) {
1290    Diag(Loc, diag::err_illegal_decl_array_of_auto)
1291      << getPrintableNameForEntity(Entity) << T;
1292    return QualType();
1293  }
1294
1295  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1296    // If the element type is a struct or union that contains a variadic
1297    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1298    if (EltTy->getDecl()->hasFlexibleArrayMember())
1299      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1300  } else if (T->isObjCObjectType()) {
1301    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1302    return QualType();
1303  }
1304
1305  // Do placeholder conversions on the array size expression.
1306  if (ArraySize && ArraySize->hasPlaceholderType()) {
1307    ExprResult Result = CheckPlaceholderExpr(ArraySize);
1308    if (Result.isInvalid()) return QualType();
1309    ArraySize = Result.take();
1310  }
1311
1312  // Do lvalue-to-rvalue conversions on the array size expression.
1313  if (ArraySize && !ArraySize->isRValue()) {
1314    ExprResult Result = DefaultLvalueConversion(ArraySize);
1315    if (Result.isInvalid())
1316      return QualType();
1317
1318    ArraySize = Result.take();
1319  }
1320
1321  // C99 6.7.5.2p1: The size expression shall have integer type.
1322  // C++11 allows contextual conversions to such types.
1323  if (!getLangOpts().CPlusPlus0x &&
1324      ArraySize && !ArraySize->isTypeDependent() &&
1325      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1326    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1327      << ArraySize->getType() << ArraySize->getSourceRange();
1328    return QualType();
1329  }
1330
1331  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1332  if (!ArraySize) {
1333    if (ASM == ArrayType::Star)
1334      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1335    else
1336      T = Context.getIncompleteArrayType(T, ASM, Quals);
1337  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1338    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1339  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
1340              !T->isConstantSizeType()) ||
1341             isArraySizeVLA(*this, ArraySize, ConstVal)) {
1342    // Even in C++11, don't allow contextual conversions in the array bound
1343    // of a VLA.
1344    if (getLangOpts().CPlusPlus0x &&
1345        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1346      Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1347        << ArraySize->getType() << ArraySize->getSourceRange();
1348      return QualType();
1349    }
1350
1351    // C99: an array with an element type that has a non-constant-size is a VLA.
1352    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1353    // that we can fold to a non-zero positive value as an extension.
1354    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1355  } else {
1356    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1357    // have a value greater than zero.
1358    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1359      if (Entity)
1360        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1361          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1362      else
1363        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1364          << ArraySize->getSourceRange();
1365      return QualType();
1366    }
1367    if (ConstVal == 0) {
1368      // GCC accepts zero sized static arrays. We allow them when
1369      // we're not in a SFINAE context.
1370      Diag(ArraySize->getLocStart(),
1371           isSFINAEContext()? diag::err_typecheck_zero_array_size
1372                            : diag::ext_typecheck_zero_array_size)
1373        << ArraySize->getSourceRange();
1374
1375      if (ASM == ArrayType::Static) {
1376        Diag(ArraySize->getLocStart(),
1377             diag::warn_typecheck_zero_static_array_size)
1378          << ArraySize->getSourceRange();
1379        ASM = ArrayType::Normal;
1380      }
1381    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1382               !T->isIncompleteType()) {
1383      // Is the array too large?
1384      unsigned ActiveSizeBits
1385        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1386      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1387        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1388          << ConstVal.toString(10)
1389          << ArraySize->getSourceRange();
1390    }
1391
1392    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1393  }
1394  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1395  if (!getLangOpts().C99) {
1396    if (T->isVariableArrayType()) {
1397      // Prohibit the use of non-POD types in VLAs.
1398      QualType BaseT = Context.getBaseElementType(T);
1399      if (!T->isDependentType() &&
1400          !BaseT.isPODType(Context) &&
1401          !BaseT->isObjCLifetimeType()) {
1402        Diag(Loc, diag::err_vla_non_pod)
1403          << BaseT;
1404        return QualType();
1405      }
1406      // Prohibit the use of VLAs during template argument deduction.
1407      else if (isSFINAEContext()) {
1408        Diag(Loc, diag::err_vla_in_sfinae);
1409        return QualType();
1410      }
1411      // Just extwarn about VLAs.
1412      else
1413        Diag(Loc, diag::ext_vla);
1414    } else if (ASM != ArrayType::Normal || Quals != 0)
1415      Diag(Loc,
1416           getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
1417                                     : diag::ext_c99_array_usage) << ASM;
1418  }
1419
1420  return T;
1421}
1422
1423/// \brief Build an ext-vector type.
1424///
1425/// Run the required checks for the extended vector type.
1426QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1427                                  SourceLocation AttrLoc) {
1428  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1429  // in conjunction with complex types (pointers, arrays, functions, etc.).
1430  if (!T->isDependentType() &&
1431      !T->isIntegerType() && !T->isRealFloatingType()) {
1432    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1433    return QualType();
1434  }
1435
1436  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1437    llvm::APSInt vecSize(32);
1438    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1439      Diag(AttrLoc, diag::err_attribute_argument_not_int)
1440        << "ext_vector_type" << ArraySize->getSourceRange();
1441      return QualType();
1442    }
1443
1444    // unlike gcc's vector_size attribute, the size is specified as the
1445    // number of elements, not the number of bytes.
1446    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1447
1448    if (vectorSize == 0) {
1449      Diag(AttrLoc, diag::err_attribute_zero_size)
1450      << ArraySize->getSourceRange();
1451      return QualType();
1452    }
1453
1454    return Context.getExtVectorType(T, vectorSize);
1455  }
1456
1457  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1458}
1459
1460/// \brief Build a function type.
1461///
1462/// This routine checks the function type according to C++ rules and
1463/// under the assumption that the result type and parameter types have
1464/// just been instantiated from a template. It therefore duplicates
1465/// some of the behavior of GetTypeForDeclarator, but in a much
1466/// simpler form that is only suitable for this narrow use case.
1467///
1468/// \param T The return type of the function.
1469///
1470/// \param ParamTypes The parameter types of the function. This array
1471/// will be modified to account for adjustments to the types of the
1472/// function parameters.
1473///
1474/// \param NumParamTypes The number of parameter types in ParamTypes.
1475///
1476/// \param Variadic Whether this is a variadic function type.
1477///
1478/// \param HasTrailingReturn Whether this function has a trailing return type.
1479///
1480/// \param Quals The cvr-qualifiers to be applied to the function type.
1481///
1482/// \param Loc The location of the entity whose type involves this
1483/// function type or, if there is no such entity, the location of the
1484/// type that will have function type.
1485///
1486/// \param Entity The name of the entity that involves the function
1487/// type, if known.
1488///
1489/// \returns A suitable function type, if there are no
1490/// errors. Otherwise, returns a NULL type.
1491QualType Sema::BuildFunctionType(QualType T,
1492                                 QualType *ParamTypes,
1493                                 unsigned NumParamTypes,
1494                                 bool Variadic, bool HasTrailingReturn,
1495                                 unsigned Quals,
1496                                 RefQualifierKind RefQualifier,
1497                                 SourceLocation Loc, DeclarationName Entity,
1498                                 FunctionType::ExtInfo Info) {
1499  if (T->isArrayType() || T->isFunctionType()) {
1500    Diag(Loc, diag::err_func_returning_array_function)
1501      << T->isFunctionType() << T;
1502    return QualType();
1503  }
1504
1505  // Functions cannot return half FP.
1506  if (T->isHalfType()) {
1507    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1508      FixItHint::CreateInsertion(Loc, "*");
1509    return QualType();
1510  }
1511
1512  bool Invalid = false;
1513  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
1514    // FIXME: Loc is too inprecise here, should use proper locations for args.
1515    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1516    if (ParamType->isVoidType()) {
1517      Diag(Loc, diag::err_param_with_void_type);
1518      Invalid = true;
1519    } else if (ParamType->isHalfType()) {
1520      // Disallow half FP arguments.
1521      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1522        FixItHint::CreateInsertion(Loc, "*");
1523      Invalid = true;
1524    }
1525
1526    ParamTypes[Idx] = ParamType;
1527  }
1528
1529  if (Invalid)
1530    return QualType();
1531
1532  FunctionProtoType::ExtProtoInfo EPI;
1533  EPI.Variadic = Variadic;
1534  EPI.HasTrailingReturn = HasTrailingReturn;
1535  EPI.TypeQuals = Quals;
1536  EPI.RefQualifier = RefQualifier;
1537  EPI.ExtInfo = Info;
1538
1539  return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
1540}
1541
1542/// \brief Build a member pointer type \c T Class::*.
1543///
1544/// \param T the type to which the member pointer refers.
1545/// \param Class the class type into which the member pointer points.
1546/// \param Loc the location where this type begins
1547/// \param Entity the name of the entity that will have this member pointer type
1548///
1549/// \returns a member pointer type, if successful, or a NULL type if there was
1550/// an error.
1551QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1552                                      SourceLocation Loc,
1553                                      DeclarationName Entity) {
1554  // Verify that we're not building a pointer to pointer to function with
1555  // exception specification.
1556  if (CheckDistantExceptionSpec(T)) {
1557    Diag(Loc, diag::err_distant_exception_spec);
1558
1559    // FIXME: If we're doing this as part of template instantiation,
1560    // we should return immediately.
1561
1562    // Build the type anyway, but use the canonical type so that the
1563    // exception specifiers are stripped off.
1564    T = Context.getCanonicalType(T);
1565  }
1566
1567  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1568  //   with reference type, or "cv void."
1569  if (T->isReferenceType()) {
1570    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1571      << (Entity? Entity.getAsString() : "type name") << T;
1572    return QualType();
1573  }
1574
1575  if (T->isVoidType()) {
1576    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1577      << (Entity? Entity.getAsString() : "type name");
1578    return QualType();
1579  }
1580
1581  if (!Class->isDependentType() && !Class->isRecordType()) {
1582    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1583    return QualType();
1584  }
1585
1586  // In the Microsoft ABI, the class is allowed to be an incomplete
1587  // type. In such cases, the compiler makes a worst-case assumption.
1588  // We make no such assumption right now, so emit an error if the
1589  // class isn't a complete type.
1590  if (Context.getTargetInfo().getCXXABI() == CXXABI_Microsoft &&
1591      RequireCompleteType(Loc, Class, diag::err_incomplete_type))
1592    return QualType();
1593
1594  return Context.getMemberPointerType(T, Class.getTypePtr());
1595}
1596
1597/// \brief Build a block pointer type.
1598///
1599/// \param T The type to which we'll be building a block pointer.
1600///
1601/// \param Loc The source location, used for diagnostics.
1602///
1603/// \param Entity The name of the entity that involves the block pointer
1604/// type, if known.
1605///
1606/// \returns A suitable block pointer type, if there are no
1607/// errors. Otherwise, returns a NULL type.
1608QualType Sema::BuildBlockPointerType(QualType T,
1609                                     SourceLocation Loc,
1610                                     DeclarationName Entity) {
1611  if (!T->isFunctionType()) {
1612    Diag(Loc, diag::err_nonfunction_block_type);
1613    return QualType();
1614  }
1615
1616  return Context.getBlockPointerType(T);
1617}
1618
1619QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1620  QualType QT = Ty.get();
1621  if (QT.isNull()) {
1622    if (TInfo) *TInfo = 0;
1623    return QualType();
1624  }
1625
1626  TypeSourceInfo *DI = 0;
1627  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1628    QT = LIT->getType();
1629    DI = LIT->getTypeSourceInfo();
1630  }
1631
1632  if (TInfo) *TInfo = DI;
1633  return QT;
1634}
1635
1636static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1637                                            Qualifiers::ObjCLifetime ownership,
1638                                            unsigned chunkIndex);
1639
1640/// Given that this is the declaration of a parameter under ARC,
1641/// attempt to infer attributes and such for pointer-to-whatever
1642/// types.
1643static void inferARCWriteback(TypeProcessingState &state,
1644                              QualType &declSpecType) {
1645  Sema &S = state.getSema();
1646  Declarator &declarator = state.getDeclarator();
1647
1648  // TODO: should we care about decl qualifiers?
1649
1650  // Check whether the declarator has the expected form.  We walk
1651  // from the inside out in order to make the block logic work.
1652  unsigned outermostPointerIndex = 0;
1653  bool isBlockPointer = false;
1654  unsigned numPointers = 0;
1655  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1656    unsigned chunkIndex = i;
1657    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1658    switch (chunk.Kind) {
1659    case DeclaratorChunk::Paren:
1660      // Ignore parens.
1661      break;
1662
1663    case DeclaratorChunk::Reference:
1664    case DeclaratorChunk::Pointer:
1665      // Count the number of pointers.  Treat references
1666      // interchangeably as pointers; if they're mis-ordered, normal
1667      // type building will discover that.
1668      outermostPointerIndex = chunkIndex;
1669      numPointers++;
1670      break;
1671
1672    case DeclaratorChunk::BlockPointer:
1673      // If we have a pointer to block pointer, that's an acceptable
1674      // indirect reference; anything else is not an application of
1675      // the rules.
1676      if (numPointers != 1) return;
1677      numPointers++;
1678      outermostPointerIndex = chunkIndex;
1679      isBlockPointer = true;
1680
1681      // We don't care about pointer structure in return values here.
1682      goto done;
1683
1684    case DeclaratorChunk::Array: // suppress if written (id[])?
1685    case DeclaratorChunk::Function:
1686    case DeclaratorChunk::MemberPointer:
1687      return;
1688    }
1689  }
1690 done:
1691
1692  // If we have *one* pointer, then we want to throw the qualifier on
1693  // the declaration-specifiers, which means that it needs to be a
1694  // retainable object type.
1695  if (numPointers == 1) {
1696    // If it's not a retainable object type, the rule doesn't apply.
1697    if (!declSpecType->isObjCRetainableType()) return;
1698
1699    // If it already has lifetime, don't do anything.
1700    if (declSpecType.getObjCLifetime()) return;
1701
1702    // Otherwise, modify the type in-place.
1703    Qualifiers qs;
1704
1705    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1706      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1707    else
1708      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1709    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1710
1711  // If we have *two* pointers, then we want to throw the qualifier on
1712  // the outermost pointer.
1713  } else if (numPointers == 2) {
1714    // If we don't have a block pointer, we need to check whether the
1715    // declaration-specifiers gave us something that will turn into a
1716    // retainable object pointer after we slap the first pointer on it.
1717    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1718      return;
1719
1720    // Look for an explicit lifetime attribute there.
1721    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1722    if (chunk.Kind != DeclaratorChunk::Pointer &&
1723        chunk.Kind != DeclaratorChunk::BlockPointer)
1724      return;
1725    for (const AttributeList *attr = chunk.getAttrs(); attr;
1726           attr = attr->getNext())
1727      if (attr->getKind() == AttributeList::AT_ObjCOwnership)
1728        return;
1729
1730    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1731                                          outermostPointerIndex);
1732
1733  // Any other number of pointers/references does not trigger the rule.
1734  } else return;
1735
1736  // TODO: mark whether we did this inference?
1737}
1738
1739static void DiagnoseIgnoredQualifiers(unsigned Quals,
1740                                      SourceLocation ConstQualLoc,
1741                                      SourceLocation VolatileQualLoc,
1742                                      SourceLocation RestrictQualLoc,
1743                                      Sema& S) {
1744  std::string QualStr;
1745  unsigned NumQuals = 0;
1746  SourceLocation Loc;
1747
1748  FixItHint ConstFixIt;
1749  FixItHint VolatileFixIt;
1750  FixItHint RestrictFixIt;
1751
1752  const SourceManager &SM = S.getSourceManager();
1753
1754  // FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
1755  // find a range and grow it to encompass all the qualifiers, regardless of
1756  // the order in which they textually appear.
1757  if (Quals & Qualifiers::Const) {
1758    ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
1759    QualStr = "const";
1760    ++NumQuals;
1761    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(ConstQualLoc, Loc))
1762      Loc = ConstQualLoc;
1763  }
1764  if (Quals & Qualifiers::Volatile) {
1765    VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
1766    QualStr += (NumQuals == 0 ? "volatile" : " volatile");
1767    ++NumQuals;
1768    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(VolatileQualLoc, Loc))
1769      Loc = VolatileQualLoc;
1770  }
1771  if (Quals & Qualifiers::Restrict) {
1772    RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
1773    QualStr += (NumQuals == 0 ? "restrict" : " restrict");
1774    ++NumQuals;
1775    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(RestrictQualLoc, Loc))
1776      Loc = RestrictQualLoc;
1777  }
1778
1779  assert(NumQuals > 0 && "No known qualifiers?");
1780
1781  S.Diag(Loc, diag::warn_qual_return_type)
1782    << QualStr << NumQuals << ConstFixIt << VolatileFixIt << RestrictFixIt;
1783}
1784
1785static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
1786                                             TypeSourceInfo *&ReturnTypeInfo) {
1787  Sema &SemaRef = state.getSema();
1788  Declarator &D = state.getDeclarator();
1789  QualType T;
1790  ReturnTypeInfo = 0;
1791
1792  // The TagDecl owned by the DeclSpec.
1793  TagDecl *OwnedTagDecl = 0;
1794
1795  switch (D.getName().getKind()) {
1796  case UnqualifiedId::IK_ImplicitSelfParam:
1797  case UnqualifiedId::IK_OperatorFunctionId:
1798  case UnqualifiedId::IK_Identifier:
1799  case UnqualifiedId::IK_LiteralOperatorId:
1800  case UnqualifiedId::IK_TemplateId:
1801    T = ConvertDeclSpecToType(state);
1802
1803    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
1804      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
1805      // Owned declaration is embedded in declarator.
1806      OwnedTagDecl->setEmbeddedInDeclarator(true);
1807    }
1808    break;
1809
1810  case UnqualifiedId::IK_ConstructorName:
1811  case UnqualifiedId::IK_ConstructorTemplateId:
1812  case UnqualifiedId::IK_DestructorName:
1813    // Constructors and destructors don't have return types. Use
1814    // "void" instead.
1815    T = SemaRef.Context.VoidTy;
1816    if (AttributeList *attrs = D.getDeclSpec().getAttributes().getList())
1817      processTypeAttrs(state, T, true, attrs);
1818    break;
1819
1820  case UnqualifiedId::IK_ConversionFunctionId:
1821    // The result type of a conversion function is the type that it
1822    // converts to.
1823    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
1824                                  &ReturnTypeInfo);
1825    break;
1826  }
1827
1828  if (D.getAttributes())
1829    distributeTypeAttrsFromDeclarator(state, T);
1830
1831  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
1832  // In C++11, a function declarator using 'auto' must have a trailing return
1833  // type (this is checked later) and we can skip this. In other languages
1834  // using auto, we need to check regardless.
1835  if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
1836      (!SemaRef.getLangOpts().CPlusPlus0x || !D.isFunctionDeclarator())) {
1837    int Error = -1;
1838
1839    switch (D.getContext()) {
1840    case Declarator::KNRTypeListContext:
1841      llvm_unreachable("K&R type lists aren't allowed in C++");
1842    case Declarator::LambdaExprContext:
1843      llvm_unreachable("Can't specify a type specifier in lambda grammar");
1844    case Declarator::ObjCParameterContext:
1845    case Declarator::ObjCResultContext:
1846    case Declarator::PrototypeContext:
1847      Error = 0; // Function prototype
1848      break;
1849    case Declarator::MemberContext:
1850      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
1851        break;
1852      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
1853      case TTK_Enum: llvm_unreachable("unhandled tag kind");
1854      case TTK_Struct: Error = 1; /* Struct member */ break;
1855      case TTK_Union:  Error = 2; /* Union member */ break;
1856      case TTK_Class:  Error = 3; /* Class member */ break;
1857      case TTK_Interface: Error = 4; /* Interface member */ break;
1858      }
1859      break;
1860    case Declarator::CXXCatchContext:
1861    case Declarator::ObjCCatchContext:
1862      Error = 5; // Exception declaration
1863      break;
1864    case Declarator::TemplateParamContext:
1865      Error = 6; // Template parameter
1866      break;
1867    case Declarator::BlockLiteralContext:
1868      Error = 7; // Block literal
1869      break;
1870    case Declarator::TemplateTypeArgContext:
1871      Error = 8; // Template type argument
1872      break;
1873    case Declarator::AliasDeclContext:
1874    case Declarator::AliasTemplateContext:
1875      Error = 10; // Type alias
1876      break;
1877    case Declarator::TrailingReturnContext:
1878      Error = 11; // Function return type
1879      break;
1880    case Declarator::TypeNameContext:
1881      Error = 12; // Generic
1882      break;
1883    case Declarator::FileContext:
1884    case Declarator::BlockContext:
1885    case Declarator::ForContext:
1886    case Declarator::ConditionContext:
1887    case Declarator::CXXNewContext:
1888      break;
1889    }
1890
1891    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1892      Error = 9;
1893
1894    // In Objective-C it is an error to use 'auto' on a function declarator.
1895    if (D.isFunctionDeclarator())
1896      Error = 11;
1897
1898    // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
1899    // contains a trailing return type. That is only legal at the outermost
1900    // level. Check all declarator chunks (outermost first) anyway, to give
1901    // better diagnostics.
1902    if (SemaRef.getLangOpts().CPlusPlus0x && Error != -1) {
1903      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1904        unsigned chunkIndex = e - i - 1;
1905        state.setCurrentChunkIndex(chunkIndex);
1906        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1907        if (DeclType.Kind == DeclaratorChunk::Function) {
1908          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1909          if (FTI.hasTrailingReturnType()) {
1910            Error = -1;
1911            break;
1912          }
1913        }
1914      }
1915    }
1916
1917    if (Error != -1) {
1918      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1919                   diag::err_auto_not_allowed)
1920        << Error;
1921      T = SemaRef.Context.IntTy;
1922      D.setInvalidType(true);
1923    } else
1924      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1925                   diag::warn_cxx98_compat_auto_type_specifier);
1926  }
1927
1928  if (SemaRef.getLangOpts().CPlusPlus &&
1929      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
1930    // Check the contexts where C++ forbids the declaration of a new class
1931    // or enumeration in a type-specifier-seq.
1932    switch (D.getContext()) {
1933    case Declarator::TrailingReturnContext:
1934      // Class and enumeration definitions are syntactically not allowed in
1935      // trailing return types.
1936      llvm_unreachable("parser should not have allowed this");
1937      break;
1938    case Declarator::FileContext:
1939    case Declarator::MemberContext:
1940    case Declarator::BlockContext:
1941    case Declarator::ForContext:
1942    case Declarator::BlockLiteralContext:
1943    case Declarator::LambdaExprContext:
1944      // C++11 [dcl.type]p3:
1945      //   A type-specifier-seq shall not define a class or enumeration unless
1946      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
1947      //   the declaration of a template-declaration.
1948    case Declarator::AliasDeclContext:
1949      break;
1950    case Declarator::AliasTemplateContext:
1951      SemaRef.Diag(OwnedTagDecl->getLocation(),
1952             diag::err_type_defined_in_alias_template)
1953        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1954      break;
1955    case Declarator::TypeNameContext:
1956    case Declarator::TemplateParamContext:
1957    case Declarator::CXXNewContext:
1958    case Declarator::CXXCatchContext:
1959    case Declarator::ObjCCatchContext:
1960    case Declarator::TemplateTypeArgContext:
1961      SemaRef.Diag(OwnedTagDecl->getLocation(),
1962             diag::err_type_defined_in_type_specifier)
1963        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1964      break;
1965    case Declarator::PrototypeContext:
1966    case Declarator::ObjCParameterContext:
1967    case Declarator::ObjCResultContext:
1968    case Declarator::KNRTypeListContext:
1969      // C++ [dcl.fct]p6:
1970      //   Types shall not be defined in return or parameter types.
1971      SemaRef.Diag(OwnedTagDecl->getLocation(),
1972                   diag::err_type_defined_in_param_type)
1973        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1974      break;
1975    case Declarator::ConditionContext:
1976      // C++ 6.4p2:
1977      // The type-specifier-seq shall not contain typedef and shall not declare
1978      // a new class or enumeration.
1979      SemaRef.Diag(OwnedTagDecl->getLocation(),
1980                   diag::err_type_defined_in_condition);
1981      break;
1982    }
1983  }
1984
1985  return T;
1986}
1987
1988static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1989  std::string Quals =
1990    Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
1991
1992  switch (FnTy->getRefQualifier()) {
1993  case RQ_None:
1994    break;
1995
1996  case RQ_LValue:
1997    if (!Quals.empty())
1998      Quals += ' ';
1999    Quals += '&';
2000    break;
2001
2002  case RQ_RValue:
2003    if (!Quals.empty())
2004      Quals += ' ';
2005    Quals += "&&";
2006    break;
2007  }
2008
2009  return Quals;
2010}
2011
2012/// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
2013/// can be contained within the declarator chunk DeclType, and produce an
2014/// appropriate diagnostic if not.
2015static void checkQualifiedFunction(Sema &S, QualType T,
2016                                   DeclaratorChunk &DeclType) {
2017  // C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
2018  // cv-qualifier or a ref-qualifier can only appear at the topmost level
2019  // of a type.
2020  int DiagKind = -1;
2021  switch (DeclType.Kind) {
2022  case DeclaratorChunk::Paren:
2023  case DeclaratorChunk::MemberPointer:
2024    // These cases are permitted.
2025    return;
2026  case DeclaratorChunk::Array:
2027  case DeclaratorChunk::Function:
2028    // These cases don't allow function types at all; no need to diagnose the
2029    // qualifiers separately.
2030    return;
2031  case DeclaratorChunk::BlockPointer:
2032    DiagKind = 0;
2033    break;
2034  case DeclaratorChunk::Pointer:
2035    DiagKind = 1;
2036    break;
2037  case DeclaratorChunk::Reference:
2038    DiagKind = 2;
2039    break;
2040  }
2041
2042  assert(DiagKind != -1);
2043  S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
2044    << DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
2045    << getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
2046}
2047
2048/// Produce an approprioate diagnostic for an ambiguity between a function
2049/// declarator and a C++ direct-initializer.
2050static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
2051                                       DeclaratorChunk &DeclType, QualType RT) {
2052  const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2053  assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
2054
2055  // If the return type is void there is no ambiguity.
2056  if (RT->isVoidType())
2057    return;
2058
2059  // An initializer for a non-class type can have at most one argument.
2060  if (!RT->isRecordType() && FTI.NumArgs > 1)
2061    return;
2062
2063  // An initializer for a reference must have exactly one argument.
2064  if (RT->isReferenceType() && FTI.NumArgs != 1)
2065    return;
2066
2067  // Only warn if this declarator is declaring a function at block scope, and
2068  // doesn't have a storage class (such as 'extern') specified.
2069  if (!D.isFunctionDeclarator() ||
2070      D.getFunctionDefinitionKind() != FDK_Declaration ||
2071      !S.CurContext->isFunctionOrMethod() ||
2072      D.getDeclSpec().getStorageClassSpecAsWritten()
2073        != DeclSpec::SCS_unspecified)
2074    return;
2075
2076  // Inside a condition, a direct initializer is not permitted. We allow one to
2077  // be parsed in order to give better diagnostics in condition parsing.
2078  if (D.getContext() == Declarator::ConditionContext)
2079    return;
2080
2081  SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
2082
2083  S.Diag(DeclType.Loc,
2084         FTI.NumArgs ? diag::warn_parens_disambiguated_as_function_declaration
2085                     : diag::warn_empty_parens_are_function_decl)
2086    << ParenRange;
2087
2088  // If the declaration looks like:
2089  //   T var1,
2090  //   f();
2091  // and name lookup finds a function named 'f', then the ',' was
2092  // probably intended to be a ';'.
2093  if (!D.isFirstDeclarator() && D.getIdentifier()) {
2094    FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
2095    FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
2096    if (Comma.getFileID() != Name.getFileID() ||
2097        Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
2098      LookupResult Result(S, D.getIdentifier(), SourceLocation(),
2099                          Sema::LookupOrdinaryName);
2100      if (S.LookupName(Result, S.getCurScope()))
2101        S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
2102          << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
2103          << D.getIdentifier();
2104    }
2105  }
2106
2107  if (FTI.NumArgs > 0) {
2108    // For a declaration with parameters, eg. "T var(T());", suggest adding parens
2109    // around the first parameter to turn the declaration into a variable
2110    // declaration.
2111    SourceRange Range = FTI.ArgInfo[0].Param->getSourceRange();
2112    SourceLocation B = Range.getBegin();
2113    SourceLocation E = S.PP.getLocForEndOfToken(Range.getEnd());
2114    // FIXME: Maybe we should suggest adding braces instead of parens
2115    // in C++11 for classes that don't have an initializer_list constructor.
2116    S.Diag(B, diag::note_additional_parens_for_variable_declaration)
2117      << FixItHint::CreateInsertion(B, "(")
2118      << FixItHint::CreateInsertion(E, ")");
2119  } else {
2120    // For a declaration without parameters, eg. "T var();", suggest replacing the
2121    // parens with an initializer to turn the declaration into a variable
2122    // declaration.
2123    const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
2124
2125    // Empty parens mean value-initialization, and no parens mean
2126    // default initialization. These are equivalent if the default
2127    // constructor is user-provided or if zero-initialization is a
2128    // no-op.
2129    if (RD && RD->hasDefinition() &&
2130        (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
2131      S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
2132        << FixItHint::CreateRemoval(ParenRange);
2133    else {
2134      std::string Init = S.getFixItZeroInitializerForType(RT);
2135      if (Init.empty() && S.LangOpts.CPlusPlus0x)
2136        Init = "{}";
2137      if (!Init.empty())
2138        S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
2139          << FixItHint::CreateReplacement(ParenRange, Init);
2140    }
2141  }
2142}
2143
2144static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
2145                                                QualType declSpecType,
2146                                                TypeSourceInfo *TInfo) {
2147
2148  QualType T = declSpecType;
2149  Declarator &D = state.getDeclarator();
2150  Sema &S = state.getSema();
2151  ASTContext &Context = S.Context;
2152  const LangOptions &LangOpts = S.getLangOpts();
2153
2154  bool ImplicitlyNoexcept = false;
2155  if (D.getName().getKind() == UnqualifiedId::IK_OperatorFunctionId &&
2156      LangOpts.CPlusPlus0x) {
2157    OverloadedOperatorKind OO = D.getName().OperatorFunctionId.Operator;
2158    /// In C++0x, deallocation functions (normal and array operator delete)
2159    /// are implicitly noexcept.
2160    if (OO == OO_Delete || OO == OO_Array_Delete)
2161      ImplicitlyNoexcept = true;
2162  }
2163
2164  // The name we're declaring, if any.
2165  DeclarationName Name;
2166  if (D.getIdentifier())
2167    Name = D.getIdentifier();
2168
2169  // Does this declaration declare a typedef-name?
2170  bool IsTypedefName =
2171    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2172    D.getContext() == Declarator::AliasDeclContext ||
2173    D.getContext() == Declarator::AliasTemplateContext;
2174
2175  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2176  bool IsQualifiedFunction = T->isFunctionProtoType() &&
2177      (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
2178       T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
2179
2180  // Walk the DeclTypeInfo, building the recursive type as we go.
2181  // DeclTypeInfos are ordered from the identifier out, which is
2182  // opposite of what we want :).
2183  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2184    unsigned chunkIndex = e - i - 1;
2185    state.setCurrentChunkIndex(chunkIndex);
2186    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2187    if (IsQualifiedFunction) {
2188      checkQualifiedFunction(S, T, DeclType);
2189      IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
2190    }
2191    switch (DeclType.Kind) {
2192    case DeclaratorChunk::Paren:
2193      T = S.BuildParenType(T);
2194      break;
2195    case DeclaratorChunk::BlockPointer:
2196      // If blocks are disabled, emit an error.
2197      if (!LangOpts.Blocks)
2198        S.Diag(DeclType.Loc, diag::err_blocks_disable);
2199
2200      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
2201      if (DeclType.Cls.TypeQuals)
2202        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
2203      break;
2204    case DeclaratorChunk::Pointer:
2205      // Verify that we're not building a pointer to pointer to function with
2206      // exception specification.
2207      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2208        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2209        D.setInvalidType(true);
2210        // Build the type anyway.
2211      }
2212      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
2213        T = Context.getObjCObjectPointerType(T);
2214        if (DeclType.Ptr.TypeQuals)
2215          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2216        break;
2217      }
2218      T = S.BuildPointerType(T, DeclType.Loc, Name);
2219      if (DeclType.Ptr.TypeQuals)
2220        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2221
2222      break;
2223    case DeclaratorChunk::Reference: {
2224      // Verify that we're not building a reference to pointer to function with
2225      // exception specification.
2226      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2227        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2228        D.setInvalidType(true);
2229        // Build the type anyway.
2230      }
2231      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2232
2233      Qualifiers Quals;
2234      if (DeclType.Ref.HasRestrict)
2235        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2236      break;
2237    }
2238    case DeclaratorChunk::Array: {
2239      // Verify that we're not building an array of pointers to function with
2240      // exception specification.
2241      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2242        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2243        D.setInvalidType(true);
2244        // Build the type anyway.
2245      }
2246      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2247      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2248      ArrayType::ArraySizeModifier ASM;
2249      if (ATI.isStar)
2250        ASM = ArrayType::Star;
2251      else if (ATI.hasStatic)
2252        ASM = ArrayType::Static;
2253      else
2254        ASM = ArrayType::Normal;
2255      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2256        // FIXME: This check isn't quite right: it allows star in prototypes
2257        // for function definitions, and disallows some edge cases detailed
2258        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2259        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2260        ASM = ArrayType::Normal;
2261        D.setInvalidType(true);
2262      }
2263
2264      // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
2265      // shall appear only in a declaration of a function parameter with an
2266      // array type, ...
2267      if (ASM == ArrayType::Static || ATI.TypeQuals) {
2268        if (!(D.isPrototypeContext() ||
2269              D.getContext() == Declarator::KNRTypeListContext)) {
2270          S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
2271              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2272          // Remove the 'static' and the type qualifiers.
2273          if (ASM == ArrayType::Static)
2274            ASM = ArrayType::Normal;
2275          ATI.TypeQuals = 0;
2276          D.setInvalidType(true);
2277        }
2278
2279        // C99 6.7.5.2p1: ... and then only in the outermost array type
2280        // derivation.
2281        unsigned x = chunkIndex;
2282        while (x != 0) {
2283          // Walk outwards along the declarator chunks.
2284          x--;
2285          const DeclaratorChunk &DC = D.getTypeObject(x);
2286          switch (DC.Kind) {
2287          case DeclaratorChunk::Paren:
2288            continue;
2289          case DeclaratorChunk::Array:
2290          case DeclaratorChunk::Pointer:
2291          case DeclaratorChunk::Reference:
2292          case DeclaratorChunk::MemberPointer:
2293            S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
2294              (ASM == ArrayType::Static ? "'static'" : "type qualifier");
2295            if (ASM == ArrayType::Static)
2296              ASM = ArrayType::Normal;
2297            ATI.TypeQuals = 0;
2298            D.setInvalidType(true);
2299            break;
2300          case DeclaratorChunk::Function:
2301          case DeclaratorChunk::BlockPointer:
2302            // These are invalid anyway, so just ignore.
2303            break;
2304          }
2305        }
2306      }
2307
2308      T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2309                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2310      break;
2311    }
2312    case DeclaratorChunk::Function: {
2313      // If the function declarator has a prototype (i.e. it is not () and
2314      // does not have a K&R-style identifier list), then the arguments are part
2315      // of the type, otherwise the argument list is ().
2316      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2317      IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
2318
2319      // Check for auto functions and trailing return type and adjust the
2320      // return type accordingly.
2321      if (!D.isInvalidType()) {
2322        // trailing-return-type is only required if we're declaring a function,
2323        // and not, for instance, a pointer to a function.
2324        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2325            !FTI.hasTrailingReturnType() && chunkIndex == 0) {
2326          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2327               diag::err_auto_missing_trailing_return);
2328          T = Context.IntTy;
2329          D.setInvalidType(true);
2330        } else if (FTI.hasTrailingReturnType()) {
2331          // T must be exactly 'auto' at this point. See CWG issue 681.
2332          if (isa<ParenType>(T)) {
2333            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2334                 diag::err_trailing_return_in_parens)
2335              << T << D.getDeclSpec().getSourceRange();
2336            D.setInvalidType(true);
2337          } else if (D.getContext() != Declarator::LambdaExprContext &&
2338                     (T.hasQualifiers() || !isa<AutoType>(T))) {
2339            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2340                 diag::err_trailing_return_without_auto)
2341              << T << D.getDeclSpec().getSourceRange();
2342            D.setInvalidType(true);
2343          }
2344          T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
2345          if (T.isNull()) {
2346            // An error occurred parsing the trailing return type.
2347            T = Context.IntTy;
2348            D.setInvalidType(true);
2349          }
2350        }
2351      }
2352
2353      // C99 6.7.5.3p1: The return type may not be a function or array type.
2354      // For conversion functions, we'll diagnose this particular error later.
2355      if ((T->isArrayType() || T->isFunctionType()) &&
2356          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2357        unsigned diagID = diag::err_func_returning_array_function;
2358        // Last processing chunk in block context means this function chunk
2359        // represents the block.
2360        if (chunkIndex == 0 &&
2361            D.getContext() == Declarator::BlockLiteralContext)
2362          diagID = diag::err_block_returning_array_function;
2363        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2364        T = Context.IntTy;
2365        D.setInvalidType(true);
2366      }
2367
2368      // Do not allow returning half FP value.
2369      // FIXME: This really should be in BuildFunctionType.
2370      if (T->isHalfType()) {
2371        S.Diag(D.getIdentifierLoc(),
2372             diag::err_parameters_retval_cannot_have_fp16_type) << 1
2373          << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
2374        D.setInvalidType(true);
2375      }
2376
2377      // cv-qualifiers on return types are pointless except when the type is a
2378      // class type in C++.
2379      if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
2380          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
2381          (!LangOpts.CPlusPlus || !T->isDependentType())) {
2382        assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
2383        DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2384        assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
2385
2386        DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
2387
2388        DiagnoseIgnoredQualifiers(PTI.TypeQuals,
2389            SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2390            SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2391            SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2392            S);
2393
2394      } else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
2395          (!LangOpts.CPlusPlus ||
2396           (!T->isDependentType() && !T->isRecordType()))) {
2397
2398        DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
2399                                  D.getDeclSpec().getConstSpecLoc(),
2400                                  D.getDeclSpec().getVolatileSpecLoc(),
2401                                  D.getDeclSpec().getRestrictSpecLoc(),
2402                                  S);
2403      }
2404
2405      if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2406        // C++ [dcl.fct]p6:
2407        //   Types shall not be defined in return or parameter types.
2408        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2409        if (Tag->isCompleteDefinition())
2410          S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2411            << Context.getTypeDeclType(Tag);
2412      }
2413
2414      // Exception specs are not allowed in typedefs. Complain, but add it
2415      // anyway.
2416      if (IsTypedefName && FTI.getExceptionSpecType())
2417        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2418          << (D.getContext() == Declarator::AliasDeclContext ||
2419              D.getContext() == Declarator::AliasTemplateContext);
2420
2421      // If we see "T var();" or "T var(T());" at block scope, it is probably
2422      // an attempt to initialize a variable, not a function declaration.
2423      if (FTI.isAmbiguous)
2424        warnAboutAmbiguousFunction(S, D, DeclType, T);
2425
2426      if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2427        // Simple void foo(), where the incoming T is the result type.
2428        T = Context.getFunctionNoProtoType(T);
2429      } else {
2430        // We allow a zero-parameter variadic function in C if the
2431        // function is marked with the "overloadable" attribute. Scan
2432        // for this attribute now.
2433        if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2434          bool Overloadable = false;
2435          for (const AttributeList *Attrs = D.getAttributes();
2436               Attrs; Attrs = Attrs->getNext()) {
2437            if (Attrs->getKind() == AttributeList::AT_Overloadable) {
2438              Overloadable = true;
2439              break;
2440            }
2441          }
2442
2443          if (!Overloadable)
2444            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2445        }
2446
2447        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2448          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2449          // definition.
2450          S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2451          D.setInvalidType(true);
2452          break;
2453        }
2454
2455        FunctionProtoType::ExtProtoInfo EPI;
2456        EPI.Variadic = FTI.isVariadic;
2457        EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
2458        EPI.TypeQuals = FTI.TypeQuals;
2459        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2460                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2461                    : RQ_RValue;
2462
2463        // Otherwise, we have a function with an argument list that is
2464        // potentially variadic.
2465        SmallVector<QualType, 16> ArgTys;
2466        ArgTys.reserve(FTI.NumArgs);
2467
2468        SmallVector<bool, 16> ConsumedArguments;
2469        ConsumedArguments.reserve(FTI.NumArgs);
2470        bool HasAnyConsumedArguments = false;
2471
2472        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2473          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2474          QualType ArgTy = Param->getType();
2475          assert(!ArgTy.isNull() && "Couldn't parse type?");
2476
2477          // Adjust the parameter type.
2478          assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
2479                 "Unadjusted type?");
2480
2481          // Look for 'void'.  void is allowed only as a single argument to a
2482          // function with no other parameters (C99 6.7.5.3p10).  We record
2483          // int(void) as a FunctionProtoType with an empty argument list.
2484          if (ArgTy->isVoidType()) {
2485            // If this is something like 'float(int, void)', reject it.  'void'
2486            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2487            // have arguments of incomplete type.
2488            if (FTI.NumArgs != 1 || FTI.isVariadic) {
2489              S.Diag(DeclType.Loc, diag::err_void_only_param);
2490              ArgTy = Context.IntTy;
2491              Param->setType(ArgTy);
2492            } else if (FTI.ArgInfo[i].Ident) {
2493              // Reject, but continue to parse 'int(void abc)'.
2494              S.Diag(FTI.ArgInfo[i].IdentLoc,
2495                   diag::err_param_with_void_type);
2496              ArgTy = Context.IntTy;
2497              Param->setType(ArgTy);
2498            } else {
2499              // Reject, but continue to parse 'float(const void)'.
2500              if (ArgTy.hasQualifiers())
2501                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2502
2503              // Do not add 'void' to the ArgTys list.
2504              break;
2505            }
2506          } else if (ArgTy->isHalfType()) {
2507            // Disallow half FP arguments.
2508            // FIXME: This really should be in BuildFunctionType.
2509            S.Diag(Param->getLocation(),
2510               diag::err_parameters_retval_cannot_have_fp16_type) << 0
2511            << FixItHint::CreateInsertion(Param->getLocation(), "*");
2512            D.setInvalidType();
2513          } else if (!FTI.hasPrototype) {
2514            if (ArgTy->isPromotableIntegerType()) {
2515              ArgTy = Context.getPromotedIntegerType(ArgTy);
2516              Param->setKNRPromoted(true);
2517            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2518              if (BTy->getKind() == BuiltinType::Float) {
2519                ArgTy = Context.DoubleTy;
2520                Param->setKNRPromoted(true);
2521              }
2522            }
2523          }
2524
2525          if (LangOpts.ObjCAutoRefCount) {
2526            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2527            ConsumedArguments.push_back(Consumed);
2528            HasAnyConsumedArguments |= Consumed;
2529          }
2530
2531          ArgTys.push_back(ArgTy);
2532        }
2533
2534        if (HasAnyConsumedArguments)
2535          EPI.ConsumedArguments = ConsumedArguments.data();
2536
2537        SmallVector<QualType, 4> Exceptions;
2538        SmallVector<ParsedType, 2> DynamicExceptions;
2539        SmallVector<SourceRange, 2> DynamicExceptionRanges;
2540        Expr *NoexceptExpr = 0;
2541
2542        if (FTI.getExceptionSpecType() == EST_Dynamic) {
2543          // FIXME: It's rather inefficient to have to split into two vectors
2544          // here.
2545          unsigned N = FTI.NumExceptions;
2546          DynamicExceptions.reserve(N);
2547          DynamicExceptionRanges.reserve(N);
2548          for (unsigned I = 0; I != N; ++I) {
2549            DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
2550            DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
2551          }
2552        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2553          NoexceptExpr = FTI.NoexceptExpr;
2554        }
2555
2556        S.checkExceptionSpecification(FTI.getExceptionSpecType(),
2557                                      DynamicExceptions,
2558                                      DynamicExceptionRanges,
2559                                      NoexceptExpr,
2560                                      Exceptions,
2561                                      EPI);
2562
2563        if (FTI.getExceptionSpecType() == EST_None &&
2564            ImplicitlyNoexcept && chunkIndex == 0) {
2565          // Only the outermost chunk is marked noexcept, of course.
2566          EPI.ExceptionSpecType = EST_BasicNoexcept;
2567        }
2568
2569        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
2570      }
2571
2572      break;
2573    }
2574    case DeclaratorChunk::MemberPointer:
2575      // The scope spec must refer to a class, or be dependent.
2576      CXXScopeSpec &SS = DeclType.Mem.Scope();
2577      QualType ClsType;
2578      if (SS.isInvalid()) {
2579        // Avoid emitting extra errors if we already errored on the scope.
2580        D.setInvalidType(true);
2581      } else if (S.isDependentScopeSpecifier(SS) ||
2582                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
2583        NestedNameSpecifier *NNS
2584          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2585        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
2586        switch (NNS->getKind()) {
2587        case NestedNameSpecifier::Identifier:
2588          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
2589                                                 NNS->getAsIdentifier());
2590          break;
2591
2592        case NestedNameSpecifier::Namespace:
2593        case NestedNameSpecifier::NamespaceAlias:
2594        case NestedNameSpecifier::Global:
2595          llvm_unreachable("Nested-name-specifier must name a type");
2596
2597        case NestedNameSpecifier::TypeSpec:
2598        case NestedNameSpecifier::TypeSpecWithTemplate:
2599          ClsType = QualType(NNS->getAsType(), 0);
2600          // Note: if the NNS has a prefix and ClsType is a nondependent
2601          // TemplateSpecializationType, then the NNS prefix is NOT included
2602          // in ClsType; hence we wrap ClsType into an ElaboratedType.
2603          // NOTE: in particular, no wrap occurs if ClsType already is an
2604          // Elaborated, DependentName, or DependentTemplateSpecialization.
2605          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
2606            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
2607          break;
2608        }
2609      } else {
2610        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
2611             diag::err_illegal_decl_mempointer_in_nonclass)
2612          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
2613          << DeclType.Mem.Scope().getRange();
2614        D.setInvalidType(true);
2615      }
2616
2617      if (!ClsType.isNull())
2618        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
2619      if (T.isNull()) {
2620        T = Context.IntTy;
2621        D.setInvalidType(true);
2622      } else if (DeclType.Mem.TypeQuals) {
2623        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
2624      }
2625      break;
2626    }
2627
2628    if (T.isNull()) {
2629      D.setInvalidType(true);
2630      T = Context.IntTy;
2631    }
2632
2633    // See if there are any attributes on this declarator chunk.
2634    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
2635      processTypeAttrs(state, T, false, attrs);
2636  }
2637
2638  if (LangOpts.CPlusPlus && T->isFunctionType()) {
2639    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
2640    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
2641
2642    // C++ 8.3.5p4:
2643    //   A cv-qualifier-seq shall only be part of the function type
2644    //   for a nonstatic member function, the function type to which a pointer
2645    //   to member refers, or the top-level function type of a function typedef
2646    //   declaration.
2647    //
2648    // Core issue 547 also allows cv-qualifiers on function types that are
2649    // top-level template type arguments.
2650    bool FreeFunction;
2651    if (!D.getCXXScopeSpec().isSet()) {
2652      FreeFunction = ((D.getContext() != Declarator::MemberContext &&
2653                       D.getContext() != Declarator::LambdaExprContext) ||
2654                      D.getDeclSpec().isFriendSpecified());
2655    } else {
2656      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
2657      FreeFunction = (DC && !DC->isRecord());
2658    }
2659
2660    // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
2661    // function that is not a constructor declares that function to be const.
2662    if (D.getDeclSpec().isConstexprSpecified() && !FreeFunction &&
2663        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static &&
2664        D.getName().getKind() != UnqualifiedId::IK_ConstructorName &&
2665        D.getName().getKind() != UnqualifiedId::IK_ConstructorTemplateId &&
2666        !(FnTy->getTypeQuals() & DeclSpec::TQ_const)) {
2667      // Rebuild function type adding a 'const' qualifier.
2668      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2669      EPI.TypeQuals |= DeclSpec::TQ_const;
2670      T = Context.getFunctionType(FnTy->getResultType(),
2671                                  FnTy->arg_type_begin(),
2672                                  FnTy->getNumArgs(), EPI);
2673    }
2674
2675    // C++11 [dcl.fct]p6 (w/DR1417):
2676    // An attempt to specify a function type with a cv-qualifier-seq or a
2677    // ref-qualifier (including by typedef-name) is ill-formed unless it is:
2678    //  - the function type for a non-static member function,
2679    //  - the function type to which a pointer to member refers,
2680    //  - the top-level function type of a function typedef declaration or
2681    //    alias-declaration,
2682    //  - the type-id in the default argument of a type-parameter, or
2683    //  - the type-id of a template-argument for a type-parameter
2684    if (IsQualifiedFunction &&
2685        !(!FreeFunction &&
2686          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
2687        !IsTypedefName &&
2688        D.getContext() != Declarator::TemplateTypeArgContext) {
2689      SourceLocation Loc = D.getLocStart();
2690      SourceRange RemovalRange;
2691      unsigned I;
2692      if (D.isFunctionDeclarator(I)) {
2693        SmallVector<SourceLocation, 4> RemovalLocs;
2694        const DeclaratorChunk &Chunk = D.getTypeObject(I);
2695        assert(Chunk.Kind == DeclaratorChunk::Function);
2696        if (Chunk.Fun.hasRefQualifier())
2697          RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
2698        if (Chunk.Fun.TypeQuals & Qualifiers::Const)
2699          RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
2700        if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
2701          RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
2702        // FIXME: We do not track the location of the __restrict qualifier.
2703        //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
2704        //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
2705        if (!RemovalLocs.empty()) {
2706          std::sort(RemovalLocs.begin(), RemovalLocs.end(),
2707                    BeforeThanCompare<SourceLocation>(S.getSourceManager()));
2708          RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
2709          Loc = RemovalLocs.front();
2710        }
2711      }
2712
2713      S.Diag(Loc, diag::err_invalid_qualified_function_type)
2714        << FreeFunction << D.isFunctionDeclarator() << T
2715        << getFunctionQualifiersAsString(FnTy)
2716        << FixItHint::CreateRemoval(RemovalRange);
2717
2718      // Strip the cv-qualifiers and ref-qualifiers from the type.
2719      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2720      EPI.TypeQuals = 0;
2721      EPI.RefQualifier = RQ_None;
2722
2723      T = Context.getFunctionType(FnTy->getResultType(),
2724                                  FnTy->arg_type_begin(),
2725                                  FnTy->getNumArgs(), EPI);
2726    }
2727  }
2728
2729  // Apply any undistributed attributes from the declarator.
2730  if (!T.isNull())
2731    if (AttributeList *attrs = D.getAttributes())
2732      processTypeAttrs(state, T, false, attrs);
2733
2734  // Diagnose any ignored type attributes.
2735  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
2736
2737  // C++0x [dcl.constexpr]p9:
2738  //  A constexpr specifier used in an object declaration declares the object
2739  //  as const.
2740  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
2741    T.addConst();
2742  }
2743
2744  // If there was an ellipsis in the declarator, the declaration declares a
2745  // parameter pack whose type may be a pack expansion type.
2746  if (D.hasEllipsis() && !T.isNull()) {
2747    // C++0x [dcl.fct]p13:
2748    //   A declarator-id or abstract-declarator containing an ellipsis shall
2749    //   only be used in a parameter-declaration. Such a parameter-declaration
2750    //   is a parameter pack (14.5.3). [...]
2751    switch (D.getContext()) {
2752    case Declarator::PrototypeContext:
2753      // C++0x [dcl.fct]p13:
2754      //   [...] When it is part of a parameter-declaration-clause, the
2755      //   parameter pack is a function parameter pack (14.5.3). The type T
2756      //   of the declarator-id of the function parameter pack shall contain
2757      //   a template parameter pack; each template parameter pack in T is
2758      //   expanded by the function parameter pack.
2759      //
2760      // We represent function parameter packs as function parameters whose
2761      // type is a pack expansion.
2762      if (!T->containsUnexpandedParameterPack()) {
2763        S.Diag(D.getEllipsisLoc(),
2764             diag::err_function_parameter_pack_without_parameter_packs)
2765          << T <<  D.getSourceRange();
2766        D.setEllipsisLoc(SourceLocation());
2767      } else {
2768        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2769      }
2770      break;
2771
2772    case Declarator::TemplateParamContext:
2773      // C++0x [temp.param]p15:
2774      //   If a template-parameter is a [...] is a parameter-declaration that
2775      //   declares a parameter pack (8.3.5), then the template-parameter is a
2776      //   template parameter pack (14.5.3).
2777      //
2778      // Note: core issue 778 clarifies that, if there are any unexpanded
2779      // parameter packs in the type of the non-type template parameter, then
2780      // it expands those parameter packs.
2781      if (T->containsUnexpandedParameterPack())
2782        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2783      else
2784        S.Diag(D.getEllipsisLoc(),
2785               LangOpts.CPlusPlus0x
2786                 ? diag::warn_cxx98_compat_variadic_templates
2787                 : diag::ext_variadic_templates);
2788      break;
2789
2790    case Declarator::FileContext:
2791    case Declarator::KNRTypeListContext:
2792    case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
2793    case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
2794    case Declarator::TypeNameContext:
2795    case Declarator::CXXNewContext:
2796    case Declarator::AliasDeclContext:
2797    case Declarator::AliasTemplateContext:
2798    case Declarator::MemberContext:
2799    case Declarator::BlockContext:
2800    case Declarator::ForContext:
2801    case Declarator::ConditionContext:
2802    case Declarator::CXXCatchContext:
2803    case Declarator::ObjCCatchContext:
2804    case Declarator::BlockLiteralContext:
2805    case Declarator::LambdaExprContext:
2806    case Declarator::TrailingReturnContext:
2807    case Declarator::TemplateTypeArgContext:
2808      // FIXME: We may want to allow parameter packs in block-literal contexts
2809      // in the future.
2810      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
2811      D.setEllipsisLoc(SourceLocation());
2812      break;
2813    }
2814  }
2815
2816  if (T.isNull())
2817    return Context.getNullTypeSourceInfo();
2818  else if (D.isInvalidType())
2819    return Context.getTrivialTypeSourceInfo(T);
2820
2821  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
2822}
2823
2824/// GetTypeForDeclarator - Convert the type for the specified
2825/// declarator to Type instances.
2826///
2827/// The result of this call will never be null, but the associated
2828/// type may be a null type if there's an unrecoverable error.
2829TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
2830  // Determine the type of the declarator. Not all forms of declarator
2831  // have a type.
2832
2833  TypeProcessingState state(*this, D);
2834
2835  TypeSourceInfo *ReturnTypeInfo = 0;
2836  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2837  if (T.isNull())
2838    return Context.getNullTypeSourceInfo();
2839
2840  if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
2841    inferARCWriteback(state, T);
2842
2843  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
2844}
2845
2846static void transferARCOwnershipToDeclSpec(Sema &S,
2847                                           QualType &declSpecTy,
2848                                           Qualifiers::ObjCLifetime ownership) {
2849  if (declSpecTy->isObjCRetainableType() &&
2850      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
2851    Qualifiers qs;
2852    qs.addObjCLifetime(ownership);
2853    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
2854  }
2855}
2856
2857static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2858                                            Qualifiers::ObjCLifetime ownership,
2859                                            unsigned chunkIndex) {
2860  Sema &S = state.getSema();
2861  Declarator &D = state.getDeclarator();
2862
2863  // Look for an explicit lifetime attribute.
2864  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
2865  for (const AttributeList *attr = chunk.getAttrs(); attr;
2866         attr = attr->getNext())
2867    if (attr->getKind() == AttributeList::AT_ObjCOwnership)
2868      return;
2869
2870  const char *attrStr = 0;
2871  switch (ownership) {
2872  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
2873  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
2874  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
2875  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
2876  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
2877  }
2878
2879  // If there wasn't one, add one (with an invalid source location
2880  // so that we don't make an AttributedType for it).
2881  AttributeList *attr = D.getAttributePool()
2882    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
2883            /*scope*/ 0, SourceLocation(),
2884            &S.Context.Idents.get(attrStr), SourceLocation(),
2885            /*args*/ 0, 0, AttributeList::AS_GNU);
2886  spliceAttrIntoList(*attr, chunk.getAttrListRef());
2887
2888  // TODO: mark whether we did this inference?
2889}
2890
2891/// \brief Used for transferring ownership in casts resulting in l-values.
2892static void transferARCOwnership(TypeProcessingState &state,
2893                                 QualType &declSpecTy,
2894                                 Qualifiers::ObjCLifetime ownership) {
2895  Sema &S = state.getSema();
2896  Declarator &D = state.getDeclarator();
2897
2898  int inner = -1;
2899  bool hasIndirection = false;
2900  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2901    DeclaratorChunk &chunk = D.getTypeObject(i);
2902    switch (chunk.Kind) {
2903    case DeclaratorChunk::Paren:
2904      // Ignore parens.
2905      break;
2906
2907    case DeclaratorChunk::Array:
2908    case DeclaratorChunk::Reference:
2909    case DeclaratorChunk::Pointer:
2910      if (inner != -1)
2911        hasIndirection = true;
2912      inner = i;
2913      break;
2914
2915    case DeclaratorChunk::BlockPointer:
2916      if (inner != -1)
2917        transferARCOwnershipToDeclaratorChunk(state, ownership, i);
2918      return;
2919
2920    case DeclaratorChunk::Function:
2921    case DeclaratorChunk::MemberPointer:
2922      return;
2923    }
2924  }
2925
2926  if (inner == -1)
2927    return;
2928
2929  DeclaratorChunk &chunk = D.getTypeObject(inner);
2930  if (chunk.Kind == DeclaratorChunk::Pointer) {
2931    if (declSpecTy->isObjCRetainableType())
2932      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2933    if (declSpecTy->isObjCObjectType() && hasIndirection)
2934      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
2935  } else {
2936    assert(chunk.Kind == DeclaratorChunk::Array ||
2937           chunk.Kind == DeclaratorChunk::Reference);
2938    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2939  }
2940}
2941
2942TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
2943  TypeProcessingState state(*this, D);
2944
2945  TypeSourceInfo *ReturnTypeInfo = 0;
2946  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2947  if (declSpecTy.isNull())
2948    return Context.getNullTypeSourceInfo();
2949
2950  if (getLangOpts().ObjCAutoRefCount) {
2951    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
2952    if (ownership != Qualifiers::OCL_None)
2953      transferARCOwnership(state, declSpecTy, ownership);
2954  }
2955
2956  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
2957}
2958
2959/// Map an AttributedType::Kind to an AttributeList::Kind.
2960static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
2961  switch (kind) {
2962  case AttributedType::attr_address_space:
2963    return AttributeList::AT_AddressSpace;
2964  case AttributedType::attr_regparm:
2965    return AttributeList::AT_Regparm;
2966  case AttributedType::attr_vector_size:
2967    return AttributeList::AT_VectorSize;
2968  case AttributedType::attr_neon_vector_type:
2969    return AttributeList::AT_NeonVectorType;
2970  case AttributedType::attr_neon_polyvector_type:
2971    return AttributeList::AT_NeonPolyVectorType;
2972  case AttributedType::attr_objc_gc:
2973    return AttributeList::AT_ObjCGC;
2974  case AttributedType::attr_objc_ownership:
2975    return AttributeList::AT_ObjCOwnership;
2976  case AttributedType::attr_noreturn:
2977    return AttributeList::AT_NoReturn;
2978  case AttributedType::attr_cdecl:
2979    return AttributeList::AT_CDecl;
2980  case AttributedType::attr_fastcall:
2981    return AttributeList::AT_FastCall;
2982  case AttributedType::attr_stdcall:
2983    return AttributeList::AT_StdCall;
2984  case AttributedType::attr_thiscall:
2985    return AttributeList::AT_ThisCall;
2986  case AttributedType::attr_pascal:
2987    return AttributeList::AT_Pascal;
2988  case AttributedType::attr_pcs:
2989    return AttributeList::AT_Pcs;
2990  }
2991  llvm_unreachable("unexpected attribute kind!");
2992}
2993
2994static void fillAttributedTypeLoc(AttributedTypeLoc TL,
2995                                  const AttributeList *attrs) {
2996  AttributedType::Kind kind = TL.getAttrKind();
2997
2998  assert(attrs && "no type attributes in the expected location!");
2999  AttributeList::Kind parsedKind = getAttrListKind(kind);
3000  while (attrs->getKind() != parsedKind) {
3001    attrs = attrs->getNext();
3002    assert(attrs && "no matching attribute in expected location!");
3003  }
3004
3005  TL.setAttrNameLoc(attrs->getLoc());
3006  if (TL.hasAttrExprOperand())
3007    TL.setAttrExprOperand(attrs->getArg(0));
3008  else if (TL.hasAttrEnumOperand())
3009    TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
3010
3011  // FIXME: preserve this information to here.
3012  if (TL.hasAttrOperand())
3013    TL.setAttrOperandParensRange(SourceRange());
3014}
3015
3016namespace {
3017  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
3018    ASTContext &Context;
3019    const DeclSpec &DS;
3020
3021  public:
3022    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
3023      : Context(Context), DS(DS) {}
3024
3025    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3026      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
3027      Visit(TL.getModifiedLoc());
3028    }
3029    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3030      Visit(TL.getUnqualifiedLoc());
3031    }
3032    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
3033      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3034    }
3035    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
3036      TL.setNameLoc(DS.getTypeSpecTypeLoc());
3037      // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
3038      // addition field. What we have is good enough for dispay of location
3039      // of 'fixit' on interface name.
3040      TL.setNameEndLoc(DS.getLocEnd());
3041    }
3042    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
3043      // Handle the base type, which might not have been written explicitly.
3044      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
3045        TL.setHasBaseTypeAsWritten(false);
3046        TL.getBaseLoc().initialize(Context, SourceLocation());
3047      } else {
3048        TL.setHasBaseTypeAsWritten(true);
3049        Visit(TL.getBaseLoc());
3050      }
3051
3052      // Protocol qualifiers.
3053      if (DS.getProtocolQualifiers()) {
3054        assert(TL.getNumProtocols() > 0);
3055        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
3056        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
3057        TL.setRAngleLoc(DS.getSourceRange().getEnd());
3058        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
3059          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
3060      } else {
3061        assert(TL.getNumProtocols() == 0);
3062        TL.setLAngleLoc(SourceLocation());
3063        TL.setRAngleLoc(SourceLocation());
3064      }
3065    }
3066    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3067      TL.setStarLoc(SourceLocation());
3068      Visit(TL.getPointeeLoc());
3069    }
3070    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
3071      TypeSourceInfo *TInfo = 0;
3072      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3073
3074      // If we got no declarator info from previous Sema routines,
3075      // just fill with the typespec loc.
3076      if (!TInfo) {
3077        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
3078        return;
3079      }
3080
3081      TypeLoc OldTL = TInfo->getTypeLoc();
3082      if (TInfo->getType()->getAs<ElaboratedType>()) {
3083        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
3084        TemplateSpecializationTypeLoc NamedTL =
3085          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
3086        TL.copy(NamedTL);
3087      }
3088      else
3089        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
3090    }
3091    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
3092      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
3093      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3094      TL.setParensRange(DS.getTypeofParensRange());
3095    }
3096    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
3097      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
3098      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
3099      TL.setParensRange(DS.getTypeofParensRange());
3100      assert(DS.getRepAsType());
3101      TypeSourceInfo *TInfo = 0;
3102      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3103      TL.setUnderlyingTInfo(TInfo);
3104    }
3105    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
3106      // FIXME: This holds only because we only have one unary transform.
3107      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
3108      TL.setKWLoc(DS.getTypeSpecTypeLoc());
3109      TL.setParensRange(DS.getTypeofParensRange());
3110      assert(DS.getRepAsType());
3111      TypeSourceInfo *TInfo = 0;
3112      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3113      TL.setUnderlyingTInfo(TInfo);
3114    }
3115    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
3116      // By default, use the source location of the type specifier.
3117      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
3118      if (TL.needsExtraLocalData()) {
3119        // Set info for the written builtin specifiers.
3120        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
3121        // Try to have a meaningful source location.
3122        if (TL.getWrittenSignSpec() != TSS_unspecified)
3123          // Sign spec loc overrides the others (e.g., 'unsigned long').
3124          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
3125        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
3126          // Width spec loc overrides type spec loc (e.g., 'short int').
3127          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
3128      }
3129    }
3130    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
3131      ElaboratedTypeKeyword Keyword
3132        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
3133      if (DS.getTypeSpecType() == TST_typename) {
3134        TypeSourceInfo *TInfo = 0;
3135        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3136        if (TInfo) {
3137          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
3138          return;
3139        }
3140      }
3141      TL.setElaboratedKeywordLoc(Keyword != ETK_None
3142                                 ? DS.getTypeSpecTypeLoc()
3143                                 : SourceLocation());
3144      const CXXScopeSpec& SS = DS.getTypeSpecScope();
3145      TL.setQualifierLoc(SS.getWithLocInContext(Context));
3146      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
3147    }
3148    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
3149      assert(DS.getTypeSpecType() == TST_typename);
3150      TypeSourceInfo *TInfo = 0;
3151      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3152      assert(TInfo);
3153      TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
3154    }
3155    void VisitDependentTemplateSpecializationTypeLoc(
3156                                 DependentTemplateSpecializationTypeLoc TL) {
3157      assert(DS.getTypeSpecType() == TST_typename);
3158      TypeSourceInfo *TInfo = 0;
3159      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3160      assert(TInfo);
3161      TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
3162                TInfo->getTypeLoc()));
3163    }
3164    void VisitTagTypeLoc(TagTypeLoc TL) {
3165      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
3166    }
3167    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
3168      TL.setKWLoc(DS.getTypeSpecTypeLoc());
3169      TL.setParensRange(DS.getTypeofParensRange());
3170
3171      TypeSourceInfo *TInfo = 0;
3172      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3173      TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
3174    }
3175
3176    void VisitTypeLoc(TypeLoc TL) {
3177      // FIXME: add other typespec types and change this to an assert.
3178      TL.initialize(Context, DS.getTypeSpecTypeLoc());
3179    }
3180  };
3181
3182  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
3183    ASTContext &Context;
3184    const DeclaratorChunk &Chunk;
3185
3186  public:
3187    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
3188      : Context(Context), Chunk(Chunk) {}
3189
3190    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3191      llvm_unreachable("qualified type locs not expected here!");
3192    }
3193
3194    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3195      fillAttributedTypeLoc(TL, Chunk.getAttrs());
3196    }
3197    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
3198      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3199      TL.setCaretLoc(Chunk.Loc);
3200    }
3201    void VisitPointerTypeLoc(PointerTypeLoc TL) {
3202      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3203      TL.setStarLoc(Chunk.Loc);
3204    }
3205    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3206      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3207      TL.setStarLoc(Chunk.Loc);
3208    }
3209    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3210      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3211      const CXXScopeSpec& SS = Chunk.Mem.Scope();
3212      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3213
3214      const Type* ClsTy = TL.getClass();
3215      QualType ClsQT = QualType(ClsTy, 0);
3216      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3217      // Now copy source location info into the type loc component.
3218      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3219      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3220      case NestedNameSpecifier::Identifier:
3221        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3222        {
3223          DependentNameTypeLoc DNTLoc = cast<DependentNameTypeLoc>(ClsTL);
3224          DNTLoc.setElaboratedKeywordLoc(SourceLocation());
3225          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3226          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3227        }
3228        break;
3229
3230      case NestedNameSpecifier::TypeSpec:
3231      case NestedNameSpecifier::TypeSpecWithTemplate:
3232        if (isa<ElaboratedType>(ClsTy)) {
3233          ElaboratedTypeLoc ETLoc = *cast<ElaboratedTypeLoc>(&ClsTL);
3234          ETLoc.setElaboratedKeywordLoc(SourceLocation());
3235          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3236          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3237          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3238        } else {
3239          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3240        }
3241        break;
3242
3243      case NestedNameSpecifier::Namespace:
3244      case NestedNameSpecifier::NamespaceAlias:
3245      case NestedNameSpecifier::Global:
3246        llvm_unreachable("Nested-name-specifier must name a type");
3247      }
3248
3249      // Finally fill in MemberPointerLocInfo fields.
3250      TL.setStarLoc(Chunk.Loc);
3251      TL.setClassTInfo(ClsTInfo);
3252    }
3253    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3254      assert(Chunk.Kind == DeclaratorChunk::Reference);
3255      // 'Amp' is misleading: this might have been originally
3256      /// spelled with AmpAmp.
3257      TL.setAmpLoc(Chunk.Loc);
3258    }
3259    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3260      assert(Chunk.Kind == DeclaratorChunk::Reference);
3261      assert(!Chunk.Ref.LValueRef);
3262      TL.setAmpAmpLoc(Chunk.Loc);
3263    }
3264    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3265      assert(Chunk.Kind == DeclaratorChunk::Array);
3266      TL.setLBracketLoc(Chunk.Loc);
3267      TL.setRBracketLoc(Chunk.EndLoc);
3268      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3269    }
3270    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3271      assert(Chunk.Kind == DeclaratorChunk::Function);
3272      TL.setLocalRangeBegin(Chunk.Loc);
3273      TL.setLocalRangeEnd(Chunk.EndLoc);
3274
3275      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3276      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
3277        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3278        TL.setArg(tpi++, Param);
3279      }
3280      // FIXME: exception specs
3281    }
3282    void VisitParenTypeLoc(ParenTypeLoc TL) {
3283      assert(Chunk.Kind == DeclaratorChunk::Paren);
3284      TL.setLParenLoc(Chunk.Loc);
3285      TL.setRParenLoc(Chunk.EndLoc);
3286    }
3287
3288    void VisitTypeLoc(TypeLoc TL) {
3289      llvm_unreachable("unsupported TypeLoc kind in declarator!");
3290    }
3291  };
3292}
3293
3294/// \brief Create and instantiate a TypeSourceInfo with type source information.
3295///
3296/// \param T QualType referring to the type as written in source code.
3297///
3298/// \param ReturnTypeInfo For declarators whose return type does not show
3299/// up in the normal place in the declaration specifiers (such as a C++
3300/// conversion function), this pointer will refer to a type source information
3301/// for that return type.
3302TypeSourceInfo *
3303Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3304                                     TypeSourceInfo *ReturnTypeInfo) {
3305  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3306  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3307
3308  // Handle parameter packs whose type is a pack expansion.
3309  if (isa<PackExpansionType>(T)) {
3310    cast<PackExpansionTypeLoc>(CurrTL).setEllipsisLoc(D.getEllipsisLoc());
3311    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3312  }
3313
3314  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3315    while (isa<AttributedTypeLoc>(CurrTL)) {
3316      AttributedTypeLoc TL = cast<AttributedTypeLoc>(CurrTL);
3317      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3318      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3319    }
3320
3321    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3322    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3323  }
3324
3325  // If we have different source information for the return type, use
3326  // that.  This really only applies to C++ conversion functions.
3327  if (ReturnTypeInfo) {
3328    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3329    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3330    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3331  } else {
3332    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3333  }
3334
3335  return TInfo;
3336}
3337
3338
3339/// checkImplicitObjCParamAttribute - diagnoses when pointer to ObjC pointer
3340/// has implicit ownership attribute.
3341static void
3342checkImplicitObjCParamAttribute(Sema &S, Declarator &D, QualType T) {
3343  if (!S.getLangOpts().ObjCAutoRefCount ||
3344      !S.OriginalLexicalContext ||
3345      (S.OriginalLexicalContext->getDeclKind() != Decl::ObjCImplementation &&
3346       S.OriginalLexicalContext->getDeclKind() != Decl::ObjCCategoryImpl))
3347    return;
3348
3349  if (!T->isObjCIndirectLifetimeType())
3350    return;
3351  if (!T->isPointerType() && !T->isReferenceType())
3352    return;
3353  QualType OrigT = T;
3354  T = T->isPointerType()
3355    ? T->getAs<PointerType>()->getPointeeType()
3356    : T->getAs<ReferenceType>()->getPointeeType();
3357  if (T->isObjCLifetimeType()) {
3358    // when lifetime is Qualifiers::OCL_None it means that it has
3359    // no implicit ownership qualifier (which means it is explicit).
3360    Qualifiers::ObjCLifetime lifetime =
3361    T.getLocalQualifiers().getObjCLifetime();
3362    if (lifetime != Qualifiers::OCL_None)
3363      S.Diag(D.getLocStart(), diag::warn_arc_strong_pointer_objc_pointer)
3364      << OrigT;
3365  }
3366}
3367
3368/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3369ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3370  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3371  // and Sema during declaration parsing. Try deallocating/caching them when
3372  // it's appropriate, instead of allocating them and keeping them around.
3373  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3374                                                       TypeAlignment);
3375  new (LocT) LocInfoType(T, TInfo);
3376  assert(LocT->getTypeClass() != T->getTypeClass() &&
3377         "LocInfoType's TypeClass conflicts with an existing Type class");
3378  return ParsedType::make(QualType(LocT, 0));
3379}
3380
3381void LocInfoType::getAsStringInternal(std::string &Str,
3382                                      const PrintingPolicy &Policy) const {
3383  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3384         " was used directly instead of getting the QualType through"
3385         " GetTypeFromParser");
3386}
3387
3388TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3389  // C99 6.7.6: Type names have no identifier.  This is already validated by
3390  // the parser.
3391  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3392
3393  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3394  QualType T = TInfo->getType();
3395  if (D.isInvalidType())
3396    return true;
3397
3398  // Make sure there are no unused decl attributes on the declarator.
3399  // We don't want to do this for ObjC parameters because we're going
3400  // to apply them to the actual parameter declaration.
3401  if (D.getContext() != Declarator::ObjCParameterContext)
3402    checkUnusedDeclAttributes(D);
3403  else
3404    checkImplicitObjCParamAttribute(*this, D, T);
3405
3406  if (getLangOpts().CPlusPlus) {
3407    // Check that there are no default arguments (C++ only).
3408    CheckExtraCXXDefaultArguments(D);
3409  }
3410
3411  return CreateParsedType(T, TInfo);
3412}
3413
3414ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3415  QualType T = Context.getObjCInstanceType();
3416  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3417  return CreateParsedType(T, TInfo);
3418}
3419
3420
3421//===----------------------------------------------------------------------===//
3422// Type Attribute Processing
3423//===----------------------------------------------------------------------===//
3424
3425/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3426/// specified type.  The attribute contains 1 argument, the id of the address
3427/// space for the type.
3428static void HandleAddressSpaceTypeAttribute(QualType &Type,
3429                                            const AttributeList &Attr, Sema &S){
3430
3431  // If this type is already address space qualified, reject it.
3432  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3433  // qualifiers for two or more different address spaces."
3434  if (Type.getAddressSpace()) {
3435    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3436    Attr.setInvalid();
3437    return;
3438  }
3439
3440  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3441  // qualified by an address-space qualifier."
3442  if (Type->isFunctionType()) {
3443    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3444    Attr.setInvalid();
3445    return;
3446  }
3447
3448  // Check the attribute arguments.
3449  if (Attr.getNumArgs() != 1) {
3450    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3451    Attr.setInvalid();
3452    return;
3453  }
3454  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
3455  llvm::APSInt addrSpace(32);
3456  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3457      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3458    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
3459      << ASArgExpr->getSourceRange();
3460    Attr.setInvalid();
3461    return;
3462  }
3463
3464  // Bounds checking.
3465  if (addrSpace.isSigned()) {
3466    if (addrSpace.isNegative()) {
3467      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3468        << ASArgExpr->getSourceRange();
3469      Attr.setInvalid();
3470      return;
3471    }
3472    addrSpace.setIsSigned(false);
3473  }
3474  llvm::APSInt max(addrSpace.getBitWidth());
3475  max = Qualifiers::MaxAddressSpace;
3476  if (addrSpace > max) {
3477    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3478      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
3479    Attr.setInvalid();
3480    return;
3481  }
3482
3483  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3484  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3485}
3486
3487/// Does this type have a "direct" ownership qualifier?  That is,
3488/// is it written like "__strong id", as opposed to something like
3489/// "typeof(foo)", where that happens to be strong?
3490static bool hasDirectOwnershipQualifier(QualType type) {
3491  // Fast path: no qualifier at all.
3492  assert(type.getQualifiers().hasObjCLifetime());
3493
3494  while (true) {
3495    // __strong id
3496    if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
3497      if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
3498        return true;
3499
3500      type = attr->getModifiedType();
3501
3502    // X *__strong (...)
3503    } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
3504      type = paren->getInnerType();
3505
3506    // That's it for things we want to complain about.  In particular,
3507    // we do not want to look through typedefs, typeof(expr),
3508    // typeof(type), or any other way that the type is somehow
3509    // abstracted.
3510    } else {
3511
3512      return false;
3513    }
3514  }
3515}
3516
3517/// handleObjCOwnershipTypeAttr - Process an objc_ownership
3518/// attribute on the specified type.
3519///
3520/// Returns 'true' if the attribute was handled.
3521static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
3522                                       AttributeList &attr,
3523                                       QualType &type) {
3524  bool NonObjCPointer = false;
3525
3526  if (!type->isDependentType()) {
3527    if (const PointerType *ptr = type->getAs<PointerType>()) {
3528      QualType pointee = ptr->getPointeeType();
3529      if (pointee->isObjCRetainableType() || pointee->isPointerType())
3530        return false;
3531      // It is important not to lose the source info that there was an attribute
3532      // applied to non-objc pointer. We will create an attributed type but
3533      // its type will be the same as the original type.
3534      NonObjCPointer = true;
3535    } else if (!type->isObjCRetainableType()) {
3536      return false;
3537    }
3538  }
3539
3540  Sema &S = state.getSema();
3541  SourceLocation AttrLoc = attr.getLoc();
3542  if (AttrLoc.isMacroID())
3543    AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
3544
3545  if (!attr.getParameterName()) {
3546    S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
3547      << "objc_ownership" << 1;
3548    attr.setInvalid();
3549    return true;
3550  }
3551
3552  // Consume lifetime attributes without further comment outside of
3553  // ARC mode.
3554  if (!S.getLangOpts().ObjCAutoRefCount)
3555    return true;
3556
3557  Qualifiers::ObjCLifetime lifetime;
3558  if (attr.getParameterName()->isStr("none"))
3559    lifetime = Qualifiers::OCL_ExplicitNone;
3560  else if (attr.getParameterName()->isStr("strong"))
3561    lifetime = Qualifiers::OCL_Strong;
3562  else if (attr.getParameterName()->isStr("weak"))
3563    lifetime = Qualifiers::OCL_Weak;
3564  else if (attr.getParameterName()->isStr("autoreleasing"))
3565    lifetime = Qualifiers::OCL_Autoreleasing;
3566  else {
3567    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
3568      << "objc_ownership" << attr.getParameterName();
3569    attr.setInvalid();
3570    return true;
3571  }
3572
3573  SplitQualType underlyingType = type.split();
3574
3575  // Check for redundant/conflicting ownership qualifiers.
3576  if (Qualifiers::ObjCLifetime previousLifetime
3577        = type.getQualifiers().getObjCLifetime()) {
3578    // If it's written directly, that's an error.
3579    if (hasDirectOwnershipQualifier(type)) {
3580      S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
3581        << type;
3582      return true;
3583    }
3584
3585    // Otherwise, if the qualifiers actually conflict, pull sugar off
3586    // until we reach a type that is directly qualified.
3587    if (previousLifetime != lifetime) {
3588      // This should always terminate: the canonical type is
3589      // qualified, so some bit of sugar must be hiding it.
3590      while (!underlyingType.Quals.hasObjCLifetime()) {
3591        underlyingType = underlyingType.getSingleStepDesugaredType();
3592      }
3593      underlyingType.Quals.removeObjCLifetime();
3594    }
3595  }
3596
3597  underlyingType.Quals.addObjCLifetime(lifetime);
3598
3599  if (NonObjCPointer) {
3600    StringRef name = attr.getName()->getName();
3601    switch (lifetime) {
3602    case Qualifiers::OCL_None:
3603    case Qualifiers::OCL_ExplicitNone:
3604      break;
3605    case Qualifiers::OCL_Strong: name = "__strong"; break;
3606    case Qualifiers::OCL_Weak: name = "__weak"; break;
3607    case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
3608    }
3609    S.Diag(AttrLoc, diag::warn_objc_object_attribute_wrong_type)
3610      << name << type;
3611  }
3612
3613  QualType origType = type;
3614  if (!NonObjCPointer)
3615    type = S.Context.getQualifiedType(underlyingType);
3616
3617  // If we have a valid source location for the attribute, use an
3618  // AttributedType instead.
3619  if (AttrLoc.isValid())
3620    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
3621                                       origType, type);
3622
3623  // Forbid __weak if the runtime doesn't support it.
3624  if (lifetime == Qualifiers::OCL_Weak &&
3625      !S.getLangOpts().ObjCARCWeak && !NonObjCPointer) {
3626
3627    // Actually, delay this until we know what we're parsing.
3628    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
3629      S.DelayedDiagnostics.add(
3630          sema::DelayedDiagnostic::makeForbiddenType(
3631              S.getSourceManager().getExpansionLoc(AttrLoc),
3632              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
3633    } else {
3634      S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
3635    }
3636
3637    attr.setInvalid();
3638    return true;
3639  }
3640
3641  // Forbid __weak for class objects marked as
3642  // objc_arc_weak_reference_unavailable
3643  if (lifetime == Qualifiers::OCL_Weak) {
3644    QualType T = type;
3645    while (const PointerType *ptr = T->getAs<PointerType>())
3646      T = ptr->getPointeeType();
3647    if (const ObjCObjectPointerType *ObjT = T->getAs<ObjCObjectPointerType>()) {
3648      if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
3649        if (Class->isArcWeakrefUnavailable()) {
3650            S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
3651            S.Diag(ObjT->getInterfaceDecl()->getLocation(),
3652                   diag::note_class_declared);
3653        }
3654      }
3655    }
3656  }
3657
3658  return true;
3659}
3660
3661/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
3662/// attribute on the specified type.  Returns true to indicate that
3663/// the attribute was handled, false to indicate that the type does
3664/// not permit the attribute.
3665static bool handleObjCGCTypeAttr(TypeProcessingState &state,
3666                                 AttributeList &attr,
3667                                 QualType &type) {
3668  Sema &S = state.getSema();
3669
3670  // Delay if this isn't some kind of pointer.
3671  if (!type->isPointerType() &&
3672      !type->isObjCObjectPointerType() &&
3673      !type->isBlockPointerType())
3674    return false;
3675
3676  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
3677    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
3678    attr.setInvalid();
3679    return true;
3680  }
3681
3682  // Check the attribute arguments.
3683  if (!attr.getParameterName()) {
3684    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3685      << "objc_gc" << 1;
3686    attr.setInvalid();
3687    return true;
3688  }
3689  Qualifiers::GC GCAttr;
3690  if (attr.getNumArgs() != 0) {
3691    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3692    attr.setInvalid();
3693    return true;
3694  }
3695  if (attr.getParameterName()->isStr("weak"))
3696    GCAttr = Qualifiers::Weak;
3697  else if (attr.getParameterName()->isStr("strong"))
3698    GCAttr = Qualifiers::Strong;
3699  else {
3700    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3701      << "objc_gc" << attr.getParameterName();
3702    attr.setInvalid();
3703    return true;
3704  }
3705
3706  QualType origType = type;
3707  type = S.Context.getObjCGCQualType(origType, GCAttr);
3708
3709  // Make an attributed type to preserve the source information.
3710  if (attr.getLoc().isValid())
3711    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
3712                                       origType, type);
3713
3714  return true;
3715}
3716
3717namespace {
3718  /// A helper class to unwrap a type down to a function for the
3719  /// purposes of applying attributes there.
3720  ///
3721  /// Use:
3722  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
3723  ///   if (unwrapped.isFunctionType()) {
3724  ///     const FunctionType *fn = unwrapped.get();
3725  ///     // change fn somehow
3726  ///     T = unwrapped.wrap(fn);
3727  ///   }
3728  struct FunctionTypeUnwrapper {
3729    enum WrapKind {
3730      Desugar,
3731      Parens,
3732      Pointer,
3733      BlockPointer,
3734      Reference,
3735      MemberPointer
3736    };
3737
3738    QualType Original;
3739    const FunctionType *Fn;
3740    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
3741
3742    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
3743      while (true) {
3744        const Type *Ty = T.getTypePtr();
3745        if (isa<FunctionType>(Ty)) {
3746          Fn = cast<FunctionType>(Ty);
3747          return;
3748        } else if (isa<ParenType>(Ty)) {
3749          T = cast<ParenType>(Ty)->getInnerType();
3750          Stack.push_back(Parens);
3751        } else if (isa<PointerType>(Ty)) {
3752          T = cast<PointerType>(Ty)->getPointeeType();
3753          Stack.push_back(Pointer);
3754        } else if (isa<BlockPointerType>(Ty)) {
3755          T = cast<BlockPointerType>(Ty)->getPointeeType();
3756          Stack.push_back(BlockPointer);
3757        } else if (isa<MemberPointerType>(Ty)) {
3758          T = cast<MemberPointerType>(Ty)->getPointeeType();
3759          Stack.push_back(MemberPointer);
3760        } else if (isa<ReferenceType>(Ty)) {
3761          T = cast<ReferenceType>(Ty)->getPointeeType();
3762          Stack.push_back(Reference);
3763        } else {
3764          const Type *DTy = Ty->getUnqualifiedDesugaredType();
3765          if (Ty == DTy) {
3766            Fn = 0;
3767            return;
3768          }
3769
3770          T = QualType(DTy, 0);
3771          Stack.push_back(Desugar);
3772        }
3773      }
3774    }
3775
3776    bool isFunctionType() const { return (Fn != 0); }
3777    const FunctionType *get() const { return Fn; }
3778
3779    QualType wrap(Sema &S, const FunctionType *New) {
3780      // If T wasn't modified from the unwrapped type, do nothing.
3781      if (New == get()) return Original;
3782
3783      Fn = New;
3784      return wrap(S.Context, Original, 0);
3785    }
3786
3787  private:
3788    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
3789      if (I == Stack.size())
3790        return C.getQualifiedType(Fn, Old.getQualifiers());
3791
3792      // Build up the inner type, applying the qualifiers from the old
3793      // type to the new type.
3794      SplitQualType SplitOld = Old.split();
3795
3796      // As a special case, tail-recurse if there are no qualifiers.
3797      if (SplitOld.Quals.empty())
3798        return wrap(C, SplitOld.Ty, I);
3799      return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
3800    }
3801
3802    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
3803      if (I == Stack.size()) return QualType(Fn, 0);
3804
3805      switch (static_cast<WrapKind>(Stack[I++])) {
3806      case Desugar:
3807        // This is the point at which we potentially lose source
3808        // information.
3809        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
3810
3811      case Parens: {
3812        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
3813        return C.getParenType(New);
3814      }
3815
3816      case Pointer: {
3817        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
3818        return C.getPointerType(New);
3819      }
3820
3821      case BlockPointer: {
3822        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
3823        return C.getBlockPointerType(New);
3824      }
3825
3826      case MemberPointer: {
3827        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
3828        QualType New = wrap(C, OldMPT->getPointeeType(), I);
3829        return C.getMemberPointerType(New, OldMPT->getClass());
3830      }
3831
3832      case Reference: {
3833        const ReferenceType *OldRef = cast<ReferenceType>(Old);
3834        QualType New = wrap(C, OldRef->getPointeeType(), I);
3835        if (isa<LValueReferenceType>(OldRef))
3836          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
3837        else
3838          return C.getRValueReferenceType(New);
3839      }
3840      }
3841
3842      llvm_unreachable("unknown wrapping kind");
3843    }
3844  };
3845}
3846
3847/// Process an individual function attribute.  Returns true to
3848/// indicate that the attribute was handled, false if it wasn't.
3849static bool handleFunctionTypeAttr(TypeProcessingState &state,
3850                                   AttributeList &attr,
3851                                   QualType &type) {
3852  Sema &S = state.getSema();
3853
3854  FunctionTypeUnwrapper unwrapped(S, type);
3855
3856  if (attr.getKind() == AttributeList::AT_NoReturn) {
3857    if (S.CheckNoReturnAttr(attr))
3858      return true;
3859
3860    // Delay if this is not a function type.
3861    if (!unwrapped.isFunctionType())
3862      return false;
3863
3864    // Otherwise we can process right away.
3865    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
3866    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3867    return true;
3868  }
3869
3870  // ns_returns_retained is not always a type attribute, but if we got
3871  // here, we're treating it as one right now.
3872  if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
3873    assert(S.getLangOpts().ObjCAutoRefCount &&
3874           "ns_returns_retained treated as type attribute in non-ARC");
3875    if (attr.getNumArgs()) return true;
3876
3877    // Delay if this is not a function type.
3878    if (!unwrapped.isFunctionType())
3879      return false;
3880
3881    FunctionType::ExtInfo EI
3882      = unwrapped.get()->getExtInfo().withProducesResult(true);
3883    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3884    return true;
3885  }
3886
3887  if (attr.getKind() == AttributeList::AT_Regparm) {
3888    unsigned value;
3889    if (S.CheckRegparmAttr(attr, value))
3890      return true;
3891
3892    // Delay if this is not a function type.
3893    if (!unwrapped.isFunctionType())
3894      return false;
3895
3896    // Diagnose regparm with fastcall.
3897    const FunctionType *fn = unwrapped.get();
3898    CallingConv CC = fn->getCallConv();
3899    if (CC == CC_X86FastCall) {
3900      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3901        << FunctionType::getNameForCallConv(CC)
3902        << "regparm";
3903      attr.setInvalid();
3904      return true;
3905    }
3906
3907    FunctionType::ExtInfo EI =
3908      unwrapped.get()->getExtInfo().withRegParm(value);
3909    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3910    return true;
3911  }
3912
3913  // Otherwise, a calling convention.
3914  CallingConv CC;
3915  if (S.CheckCallingConvAttr(attr, CC))
3916    return true;
3917
3918  // Delay if the type didn't work out to a function.
3919  if (!unwrapped.isFunctionType()) return false;
3920
3921  const FunctionType *fn = unwrapped.get();
3922  CallingConv CCOld = fn->getCallConv();
3923  if (S.Context.getCanonicalCallConv(CC) ==
3924      S.Context.getCanonicalCallConv(CCOld)) {
3925    FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
3926    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3927    return true;
3928  }
3929
3930  if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
3931    // Should we diagnose reapplications of the same convention?
3932    S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3933      << FunctionType::getNameForCallConv(CC)
3934      << FunctionType::getNameForCallConv(CCOld);
3935    attr.setInvalid();
3936    return true;
3937  }
3938
3939  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
3940  if (CC == CC_X86FastCall) {
3941    if (isa<FunctionNoProtoType>(fn)) {
3942      S.Diag(attr.getLoc(), diag::err_cconv_knr)
3943        << FunctionType::getNameForCallConv(CC);
3944      attr.setInvalid();
3945      return true;
3946    }
3947
3948    const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
3949    if (FnP->isVariadic()) {
3950      S.Diag(attr.getLoc(), diag::err_cconv_varargs)
3951        << FunctionType::getNameForCallConv(CC);
3952      attr.setInvalid();
3953      return true;
3954    }
3955
3956    // Also diagnose fastcall with regparm.
3957    if (fn->getHasRegParm()) {
3958      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3959        << "regparm"
3960        << FunctionType::getNameForCallConv(CC);
3961      attr.setInvalid();
3962      return true;
3963    }
3964  }
3965
3966  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
3967  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3968  return true;
3969}
3970
3971/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
3972static void HandleOpenCLImageAccessAttribute(QualType& CurType,
3973                                             const AttributeList &Attr,
3974                                             Sema &S) {
3975  // Check the attribute arguments.
3976  if (Attr.getNumArgs() != 1) {
3977    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3978    Attr.setInvalid();
3979    return;
3980  }
3981  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3982  llvm::APSInt arg(32);
3983  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3984      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
3985    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3986      << "opencl_image_access" << sizeExpr->getSourceRange();
3987    Attr.setInvalid();
3988    return;
3989  }
3990  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
3991  switch (iarg) {
3992  case CLIA_read_only:
3993  case CLIA_write_only:
3994  case CLIA_read_write:
3995    // Implemented in a separate patch
3996    break;
3997  default:
3998    // Implemented in a separate patch
3999    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4000      << sizeExpr->getSourceRange();
4001    Attr.setInvalid();
4002    break;
4003  }
4004}
4005
4006/// HandleVectorSizeAttribute - this attribute is only applicable to integral
4007/// and float scalars, although arrays, pointers, and function return values are
4008/// allowed in conjunction with this construct. Aggregates with this attribute
4009/// are invalid, even if they are of the same size as a corresponding scalar.
4010/// The raw attribute should contain precisely 1 argument, the vector size for
4011/// the variable, measured in bytes. If curType and rawAttr are well formed,
4012/// this routine will return a new vector type.
4013static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
4014                                 Sema &S) {
4015  // Check the attribute arguments.
4016  if (Attr.getNumArgs() != 1) {
4017    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4018    Attr.setInvalid();
4019    return;
4020  }
4021  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
4022  llvm::APSInt vecSize(32);
4023  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
4024      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
4025    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4026      << "vector_size" << sizeExpr->getSourceRange();
4027    Attr.setInvalid();
4028    return;
4029  }
4030  // the base type must be integer or float, and can't already be a vector.
4031  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
4032    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
4033    Attr.setInvalid();
4034    return;
4035  }
4036  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4037  // vecSize is specified in bytes - convert to bits.
4038  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
4039
4040  // the vector size needs to be an integral multiple of the type size.
4041  if (vectorSize % typeSize) {
4042    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
4043      << sizeExpr->getSourceRange();
4044    Attr.setInvalid();
4045    return;
4046  }
4047  if (vectorSize == 0) {
4048    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
4049      << sizeExpr->getSourceRange();
4050    Attr.setInvalid();
4051    return;
4052  }
4053
4054  // Success! Instantiate the vector type, the number of elements is > 0, and
4055  // not required to be a power of 2, unlike GCC.
4056  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
4057                                    VectorType::GenericVector);
4058}
4059
4060/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
4061/// a type.
4062static void HandleExtVectorTypeAttr(QualType &CurType,
4063                                    const AttributeList &Attr,
4064                                    Sema &S) {
4065  Expr *sizeExpr;
4066
4067  // Special case where the argument is a template id.
4068  if (Attr.getParameterName()) {
4069    CXXScopeSpec SS;
4070    SourceLocation TemplateKWLoc;
4071    UnqualifiedId id;
4072    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
4073
4074    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
4075                                          id, false, false);
4076    if (Size.isInvalid())
4077      return;
4078
4079    sizeExpr = Size.get();
4080  } else {
4081    // check the attribute arguments.
4082    if (Attr.getNumArgs() != 1) {
4083      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4084      return;
4085    }
4086    sizeExpr = Attr.getArg(0);
4087  }
4088
4089  // Create the vector type.
4090  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
4091  if (!T.isNull())
4092    CurType = T;
4093}
4094
4095/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
4096/// "neon_polyvector_type" attributes are used to create vector types that
4097/// are mangled according to ARM's ABI.  Otherwise, these types are identical
4098/// to those created with the "vector_size" attribute.  Unlike "vector_size"
4099/// the argument to these Neon attributes is the number of vector elements,
4100/// not the vector size in bytes.  The vector width and element type must
4101/// match one of the standard Neon vector types.
4102static void HandleNeonVectorTypeAttr(QualType& CurType,
4103                                     const AttributeList &Attr, Sema &S,
4104                                     VectorType::VectorKind VecKind,
4105                                     const char *AttrName) {
4106  // Check the attribute arguments.
4107  if (Attr.getNumArgs() != 1) {
4108    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
4109    Attr.setInvalid();
4110    return;
4111  }
4112  // The number of elements must be an ICE.
4113  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
4114  llvm::APSInt numEltsInt(32);
4115  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
4116      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
4117    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
4118      << AttrName << numEltsExpr->getSourceRange();
4119    Attr.setInvalid();
4120    return;
4121  }
4122  // Only certain element types are supported for Neon vectors.
4123  const BuiltinType* BTy = CurType->getAs<BuiltinType>();
4124  if (!BTy ||
4125      (VecKind == VectorType::NeonPolyVector &&
4126       BTy->getKind() != BuiltinType::SChar &&
4127       BTy->getKind() != BuiltinType::Short) ||
4128      (BTy->getKind() != BuiltinType::SChar &&
4129       BTy->getKind() != BuiltinType::UChar &&
4130       BTy->getKind() != BuiltinType::Short &&
4131       BTy->getKind() != BuiltinType::UShort &&
4132       BTy->getKind() != BuiltinType::Int &&
4133       BTy->getKind() != BuiltinType::UInt &&
4134       BTy->getKind() != BuiltinType::LongLong &&
4135       BTy->getKind() != BuiltinType::ULongLong &&
4136       BTy->getKind() != BuiltinType::Float)) {
4137    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
4138    Attr.setInvalid();
4139    return;
4140  }
4141  // The total size of the vector must be 64 or 128 bits.
4142  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
4143  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
4144  unsigned vecSize = typeSize * numElts;
4145  if (vecSize != 64 && vecSize != 128) {
4146    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
4147    Attr.setInvalid();
4148    return;
4149  }
4150
4151  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
4152}
4153
4154static void processTypeAttrs(TypeProcessingState &state, QualType &type,
4155                             bool isDeclSpec, AttributeList *attrs) {
4156  // Scan through and apply attributes to this type where it makes sense.  Some
4157  // attributes (such as __address_space__, __vector_size__, etc) apply to the
4158  // type, but others can be present in the type specifiers even though they
4159  // apply to the decl.  Here we apply type attributes and ignore the rest.
4160
4161  AttributeList *next;
4162  do {
4163    AttributeList &attr = *attrs;
4164    next = attr.getNext();
4165
4166    // Skip attributes that were marked to be invalid.
4167    if (attr.isInvalid())
4168      continue;
4169
4170    // If this is an attribute we can handle, do so now,
4171    // otherwise, add it to the FnAttrs list for rechaining.
4172    switch (attr.getKind()) {
4173    default: break;
4174
4175    case AttributeList::AT_MayAlias:
4176      // FIXME: This attribute needs to actually be handled, but if we ignore
4177      // it it breaks large amounts of Linux software.
4178      attr.setUsedAsTypeAttr();
4179      break;
4180    case AttributeList::AT_AddressSpace:
4181      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
4182      attr.setUsedAsTypeAttr();
4183      break;
4184    OBJC_POINTER_TYPE_ATTRS_CASELIST:
4185      if (!handleObjCPointerTypeAttr(state, attr, type))
4186        distributeObjCPointerTypeAttr(state, attr, type);
4187      attr.setUsedAsTypeAttr();
4188      break;
4189    case AttributeList::AT_VectorSize:
4190      HandleVectorSizeAttr(type, attr, state.getSema());
4191      attr.setUsedAsTypeAttr();
4192      break;
4193    case AttributeList::AT_ExtVectorType:
4194      if (state.getDeclarator().getDeclSpec().getStorageClassSpec()
4195            != DeclSpec::SCS_typedef)
4196        HandleExtVectorTypeAttr(type, attr, state.getSema());
4197      attr.setUsedAsTypeAttr();
4198      break;
4199    case AttributeList::AT_NeonVectorType:
4200      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4201                               VectorType::NeonVector, "neon_vector_type");
4202      attr.setUsedAsTypeAttr();
4203      break;
4204    case AttributeList::AT_NeonPolyVectorType:
4205      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4206                               VectorType::NeonPolyVector,
4207                               "neon_polyvector_type");
4208      attr.setUsedAsTypeAttr();
4209      break;
4210    case AttributeList::AT_OpenCLImageAccess:
4211      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
4212      attr.setUsedAsTypeAttr();
4213      break;
4214
4215    case AttributeList::AT_Win64:
4216    case AttributeList::AT_Ptr32:
4217    case AttributeList::AT_Ptr64:
4218      // FIXME: don't ignore these
4219      attr.setUsedAsTypeAttr();
4220      break;
4221
4222    case AttributeList::AT_NSReturnsRetained:
4223      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
4224    break;
4225      // fallthrough into the function attrs
4226
4227    FUNCTION_TYPE_ATTRS_CASELIST:
4228      attr.setUsedAsTypeAttr();
4229
4230      // Never process function type attributes as part of the
4231      // declaration-specifiers.
4232      if (isDeclSpec)
4233        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
4234
4235      // Otherwise, handle the possible delays.
4236      else if (!handleFunctionTypeAttr(state, attr, type))
4237        distributeFunctionTypeAttr(state, attr, type);
4238      break;
4239    }
4240  } while ((attrs = next));
4241}
4242
4243/// \brief Ensure that the type of the given expression is complete.
4244///
4245/// This routine checks whether the expression \p E has a complete type. If the
4246/// expression refers to an instantiable construct, that instantiation is
4247/// performed as needed to complete its type. Furthermore
4248/// Sema::RequireCompleteType is called for the expression's type (or in the
4249/// case of a reference type, the referred-to type).
4250///
4251/// \param E The expression whose type is required to be complete.
4252/// \param Diagnoser The object that will emit a diagnostic if the type is
4253/// incomplete.
4254///
4255/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
4256/// otherwise.
4257bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser){
4258  QualType T = E->getType();
4259
4260  // Fast path the case where the type is already complete.
4261  if (!T->isIncompleteType())
4262    return false;
4263
4264  // Incomplete array types may be completed by the initializer attached to
4265  // their definitions. For static data members of class templates we need to
4266  // instantiate the definition to get this initializer and complete the type.
4267  if (T->isIncompleteArrayType()) {
4268    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4269      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4270        if (Var->isStaticDataMember() &&
4271            Var->getInstantiatedFromStaticDataMember()) {
4272
4273          MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
4274          assert(MSInfo && "Missing member specialization information?");
4275          if (MSInfo->getTemplateSpecializationKind()
4276                != TSK_ExplicitSpecialization) {
4277            // If we don't already have a point of instantiation, this is it.
4278            if (MSInfo->getPointOfInstantiation().isInvalid()) {
4279              MSInfo->setPointOfInstantiation(E->getLocStart());
4280
4281              // This is a modification of an existing AST node. Notify
4282              // listeners.
4283              if (ASTMutationListener *L = getASTMutationListener())
4284                L->StaticDataMemberInstantiated(Var);
4285            }
4286
4287            InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
4288
4289            // Update the type to the newly instantiated definition's type both
4290            // here and within the expression.
4291            if (VarDecl *Def = Var->getDefinition()) {
4292              DRE->setDecl(Def);
4293              T = Def->getType();
4294              DRE->setType(T);
4295              E->setType(T);
4296            }
4297          }
4298
4299          // We still go on to try to complete the type independently, as it
4300          // may also require instantiations or diagnostics if it remains
4301          // incomplete.
4302        }
4303      }
4304    }
4305  }
4306
4307  // FIXME: Are there other cases which require instantiating something other
4308  // than the type to complete the type of an expression?
4309
4310  // Look through reference types and complete the referred type.
4311  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
4312    T = Ref->getPointeeType();
4313
4314  return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
4315}
4316
4317namespace {
4318  struct TypeDiagnoserDiag : Sema::TypeDiagnoser {
4319    unsigned DiagID;
4320
4321    TypeDiagnoserDiag(unsigned DiagID)
4322      : Sema::TypeDiagnoser(DiagID == 0), DiagID(DiagID) {}
4323
4324    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
4325      if (Suppressed) return;
4326      S.Diag(Loc, DiagID) << T;
4327    }
4328  };
4329}
4330
4331bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
4332  TypeDiagnoserDiag Diagnoser(DiagID);
4333  return RequireCompleteExprType(E, Diagnoser);
4334}
4335
4336/// @brief Ensure that the type T is a complete type.
4337///
4338/// This routine checks whether the type @p T is complete in any
4339/// context where a complete type is required. If @p T is a complete
4340/// type, returns false. If @p T is a class template specialization,
4341/// this routine then attempts to perform class template
4342/// instantiation. If instantiation fails, or if @p T is incomplete
4343/// and cannot be completed, issues the diagnostic @p diag (giving it
4344/// the type @p T) and returns true.
4345///
4346/// @param Loc  The location in the source that the incomplete type
4347/// diagnostic should refer to.
4348///
4349/// @param T  The type that this routine is examining for completeness.
4350///
4351/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
4352/// @c false otherwise.
4353bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4354                               TypeDiagnoser &Diagnoser) {
4355  // FIXME: Add this assertion to make sure we always get instantiation points.
4356  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
4357  // FIXME: Add this assertion to help us flush out problems with
4358  // checking for dependent types and type-dependent expressions.
4359  //
4360  //  assert(!T->isDependentType() &&
4361  //         "Can't ask whether a dependent type is complete");
4362
4363  // If we have a complete type, we're done.
4364  NamedDecl *Def = 0;
4365  if (!T->isIncompleteType(&Def)) {
4366    // If we know about the definition but it is not visible, complain.
4367    if (!Diagnoser.Suppressed && Def && !LookupResult::isVisible(Def)) {
4368      // Suppress this error outside of a SFINAE context if we've already
4369      // emitted the error once for this type. There's no usefulness in
4370      // repeating the diagnostic.
4371      // FIXME: Add a Fix-It that imports the corresponding module or includes
4372      // the header.
4373      if (isSFINAEContext() || HiddenDefinitions.insert(Def)) {
4374        Diag(Loc, diag::err_module_private_definition) << T;
4375        Diag(Def->getLocation(), diag::note_previous_definition);
4376      }
4377    }
4378
4379    return false;
4380  }
4381
4382  const TagType *Tag = T->getAs<TagType>();
4383  const ObjCInterfaceType *IFace = 0;
4384
4385  if (Tag) {
4386    // Avoid diagnosing invalid decls as incomplete.
4387    if (Tag->getDecl()->isInvalidDecl())
4388      return true;
4389
4390    // Give the external AST source a chance to complete the type.
4391    if (Tag->getDecl()->hasExternalLexicalStorage()) {
4392      Context.getExternalSource()->CompleteType(Tag->getDecl());
4393      if (!Tag->isIncompleteType())
4394        return false;
4395    }
4396  }
4397  else if ((IFace = T->getAs<ObjCInterfaceType>())) {
4398    // Avoid diagnosing invalid decls as incomplete.
4399    if (IFace->getDecl()->isInvalidDecl())
4400      return true;
4401
4402    // Give the external AST source a chance to complete the type.
4403    if (IFace->getDecl()->hasExternalLexicalStorage()) {
4404      Context.getExternalSource()->CompleteType(IFace->getDecl());
4405      if (!IFace->isIncompleteType())
4406        return false;
4407    }
4408  }
4409
4410  // If we have a class template specialization or a class member of a
4411  // class template specialization, or an array with known size of such,
4412  // try to instantiate it.
4413  QualType MaybeTemplate = T;
4414  while (const ConstantArrayType *Array
4415           = Context.getAsConstantArrayType(MaybeTemplate))
4416    MaybeTemplate = Array->getElementType();
4417  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
4418    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
4419          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
4420      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
4421        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
4422                                                      TSK_ImplicitInstantiation,
4423                                            /*Complain=*/!Diagnoser.Suppressed);
4424    } else if (CXXRecordDecl *Rec
4425                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
4426      CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
4427      if (!Rec->isBeingDefined() && Pattern) {
4428        MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
4429        assert(MSI && "Missing member specialization information?");
4430        // This record was instantiated from a class within a template.
4431        if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4432          return InstantiateClass(Loc, Rec, Pattern,
4433                                  getTemplateInstantiationArgs(Rec),
4434                                  TSK_ImplicitInstantiation,
4435                                  /*Complain=*/!Diagnoser.Suppressed);
4436      }
4437    }
4438  }
4439
4440  if (Diagnoser.Suppressed)
4441    return true;
4442
4443  // We have an incomplete type. Produce a diagnostic.
4444  Diagnoser.diagnose(*this, Loc, T);
4445
4446  // If the type was a forward declaration of a class/struct/union
4447  // type, produce a note.
4448  if (Tag && !Tag->getDecl()->isInvalidDecl())
4449    Diag(Tag->getDecl()->getLocation(),
4450         Tag->isBeingDefined() ? diag::note_type_being_defined
4451                               : diag::note_forward_declaration)
4452      << QualType(Tag, 0);
4453
4454  // If the Objective-C class was a forward declaration, produce a note.
4455  if (IFace && !IFace->getDecl()->isInvalidDecl())
4456    Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
4457
4458  return true;
4459}
4460
4461bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4462                               unsigned DiagID) {
4463  TypeDiagnoserDiag Diagnoser(DiagID);
4464  return RequireCompleteType(Loc, T, Diagnoser);
4465}
4466
4467/// \brief Get diagnostic %select index for tag kind for
4468/// literal type diagnostic message.
4469/// WARNING: Indexes apply to particular diagnostics only!
4470///
4471/// \returns diagnostic %select index.
4472static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
4473  switch (Tag) {
4474  case TTK_Struct: return 0;
4475  case TTK_Interface: return 1;
4476  case TTK_Class:  return 2;
4477  default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
4478  }
4479}
4480
4481/// @brief Ensure that the type T is a literal type.
4482///
4483/// This routine checks whether the type @p T is a literal type. If @p T is an
4484/// incomplete type, an attempt is made to complete it. If @p T is a literal
4485/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
4486/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
4487/// it the type @p T), along with notes explaining why the type is not a
4488/// literal type, and returns true.
4489///
4490/// @param Loc  The location in the source that the non-literal type
4491/// diagnostic should refer to.
4492///
4493/// @param T  The type that this routine is examining for literalness.
4494///
4495/// @param Diagnoser Emits a diagnostic if T is not a literal type.
4496///
4497/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
4498/// @c false otherwise.
4499bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
4500                              TypeDiagnoser &Diagnoser) {
4501  assert(!T->isDependentType() && "type should not be dependent");
4502
4503  QualType ElemType = Context.getBaseElementType(T);
4504  RequireCompleteType(Loc, ElemType, 0);
4505
4506  if (T->isLiteralType())
4507    return false;
4508
4509  if (Diagnoser.Suppressed)
4510    return true;
4511
4512  Diagnoser.diagnose(*this, Loc, T);
4513
4514  if (T->isVariableArrayType())
4515    return true;
4516
4517  const RecordType *RT = ElemType->getAs<RecordType>();
4518  if (!RT)
4519    return true;
4520
4521  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4522
4523  // A partially-defined class type can't be a literal type, because a literal
4524  // class type must have a trivial destructor (which can't be checked until
4525  // the class definition is complete).
4526  if (!RD->isCompleteDefinition()) {
4527    RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T);
4528    return true;
4529  }
4530
4531  // If the class has virtual base classes, then it's not an aggregate, and
4532  // cannot have any constexpr constructors or a trivial default constructor,
4533  // so is non-literal. This is better to diagnose than the resulting absence
4534  // of constexpr constructors.
4535  if (RD->getNumVBases()) {
4536    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
4537      << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
4538    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
4539           E = RD->vbases_end(); I != E; ++I)
4540      Diag(I->getLocStart(),
4541           diag::note_constexpr_virtual_base_here) << I->getSourceRange();
4542  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
4543             !RD->hasTrivialDefaultConstructor()) {
4544    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
4545  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
4546    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4547         E = RD->bases_end(); I != E; ++I) {
4548      if (!I->getType()->isLiteralType()) {
4549        Diag(I->getLocStart(),
4550             diag::note_non_literal_base_class)
4551          << RD << I->getType() << I->getSourceRange();
4552        return true;
4553      }
4554    }
4555    for (CXXRecordDecl::field_iterator I = RD->field_begin(),
4556         E = RD->field_end(); I != E; ++I) {
4557      if (!I->getType()->isLiteralType() ||
4558          I->getType().isVolatileQualified()) {
4559        Diag(I->getLocation(), diag::note_non_literal_field)
4560          << RD << *I << I->getType()
4561          << I->getType().isVolatileQualified();
4562        return true;
4563      }
4564    }
4565  } else if (!RD->hasTrivialDestructor()) {
4566    // All fields and bases are of literal types, so have trivial destructors.
4567    // If this class's destructor is non-trivial it must be user-declared.
4568    CXXDestructorDecl *Dtor = RD->getDestructor();
4569    assert(Dtor && "class has literal fields and bases but no dtor?");
4570    if (!Dtor)
4571      return true;
4572
4573    Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
4574         diag::note_non_literal_user_provided_dtor :
4575         diag::note_non_literal_nontrivial_dtor) << RD;
4576  }
4577
4578  return true;
4579}
4580
4581bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
4582  TypeDiagnoserDiag Diagnoser(DiagID);
4583  return RequireLiteralType(Loc, T, Diagnoser);
4584}
4585
4586/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
4587/// and qualified by the nested-name-specifier contained in SS.
4588QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
4589                                 const CXXScopeSpec &SS, QualType T) {
4590  if (T.isNull())
4591    return T;
4592  NestedNameSpecifier *NNS;
4593  if (SS.isValid())
4594    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4595  else {
4596    if (Keyword == ETK_None)
4597      return T;
4598    NNS = 0;
4599  }
4600  return Context.getElaboratedType(Keyword, NNS, T);
4601}
4602
4603QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
4604  ExprResult ER = CheckPlaceholderExpr(E);
4605  if (ER.isInvalid()) return QualType();
4606  E = ER.take();
4607
4608  if (!E->isTypeDependent()) {
4609    QualType T = E->getType();
4610    if (const TagType *TT = T->getAs<TagType>())
4611      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
4612  }
4613  return Context.getTypeOfExprType(E);
4614}
4615
4616/// getDecltypeForExpr - Given an expr, will return the decltype for
4617/// that expression, according to the rules in C++11
4618/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
4619static QualType getDecltypeForExpr(Sema &S, Expr *E) {
4620  if (E->isTypeDependent())
4621    return S.Context.DependentTy;
4622
4623  // C++11 [dcl.type.simple]p4:
4624  //   The type denoted by decltype(e) is defined as follows:
4625  //
4626  //     - if e is an unparenthesized id-expression or an unparenthesized class
4627  //       member access (5.2.5), decltype(e) is the type of the entity named
4628  //       by e. If there is no such entity, or if e names a set of overloaded
4629  //       functions, the program is ill-formed;
4630  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4631    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
4632      return VD->getType();
4633  }
4634  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
4635    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
4636      return FD->getType();
4637  }
4638
4639  // C++11 [expr.lambda.prim]p18:
4640  //   Every occurrence of decltype((x)) where x is a possibly
4641  //   parenthesized id-expression that names an entity of automatic
4642  //   storage duration is treated as if x were transformed into an
4643  //   access to a corresponding data member of the closure type that
4644  //   would have been declared if x were an odr-use of the denoted
4645  //   entity.
4646  using namespace sema;
4647  if (S.getCurLambda()) {
4648    if (isa<ParenExpr>(E)) {
4649      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4650        if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4651          QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
4652          if (!T.isNull())
4653            return S.Context.getLValueReferenceType(T);
4654        }
4655      }
4656    }
4657  }
4658
4659
4660  // C++11 [dcl.type.simple]p4:
4661  //   [...]
4662  QualType T = E->getType();
4663  switch (E->getValueKind()) {
4664  //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
4665  //       type of e;
4666  case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
4667  //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
4668  //       type of e;
4669  case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
4670  //  - otherwise, decltype(e) is the type of e.
4671  case VK_RValue: break;
4672  }
4673
4674  return T;
4675}
4676
4677QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
4678  ExprResult ER = CheckPlaceholderExpr(E);
4679  if (ER.isInvalid()) return QualType();
4680  E = ER.take();
4681
4682  return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
4683}
4684
4685QualType Sema::BuildUnaryTransformType(QualType BaseType,
4686                                       UnaryTransformType::UTTKind UKind,
4687                                       SourceLocation Loc) {
4688  switch (UKind) {
4689  case UnaryTransformType::EnumUnderlyingType:
4690    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
4691      Diag(Loc, diag::err_only_enums_have_underlying_types);
4692      return QualType();
4693    } else {
4694      QualType Underlying = BaseType;
4695      if (!BaseType->isDependentType()) {
4696        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
4697        assert(ED && "EnumType has no EnumDecl");
4698        DiagnoseUseOfDecl(ED, Loc);
4699        Underlying = ED->getIntegerType();
4700      }
4701      assert(!Underlying.isNull());
4702      return Context.getUnaryTransformType(BaseType, Underlying,
4703                                        UnaryTransformType::EnumUnderlyingType);
4704    }
4705  }
4706  llvm_unreachable("unknown unary transform type");
4707}
4708
4709QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
4710  if (!T->isDependentType()) {
4711    // FIXME: It isn't entirely clear whether incomplete atomic types
4712    // are allowed or not; for simplicity, ban them for the moment.
4713    if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
4714      return QualType();
4715
4716    int DisallowedKind = -1;
4717    if (T->isArrayType())
4718      DisallowedKind = 1;
4719    else if (T->isFunctionType())
4720      DisallowedKind = 2;
4721    else if (T->isReferenceType())
4722      DisallowedKind = 3;
4723    else if (T->isAtomicType())
4724      DisallowedKind = 4;
4725    else if (T.hasQualifiers())
4726      DisallowedKind = 5;
4727    else if (!T.isTriviallyCopyableType(Context))
4728      // Some other non-trivially-copyable type (probably a C++ class)
4729      DisallowedKind = 6;
4730
4731    if (DisallowedKind != -1) {
4732      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
4733      return QualType();
4734    }
4735
4736    // FIXME: Do we need any handling for ARC here?
4737  }
4738
4739  // Build the pointer type.
4740  return Context.getAtomicType(T);
4741}
4742