SemaType.cpp revision d37b360bf9f954af119c9805fdc79ab9d30e06c6
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Template.h"
16#include "clang/Basic/OpenCL.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeLocVisitor.h"
24#include "clang/AST/Expr.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/DelayedDiagnostic.h"
30#include "clang/Sema/Lookup.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/Support/ErrorHandling.h"
33using namespace clang;
34
35/// isOmittedBlockReturnType - Return true if this declarator is missing a
36/// return type because this is a omitted return type on a block literal.
37static bool isOmittedBlockReturnType(const Declarator &D) {
38  if (D.getContext() != Declarator::BlockLiteralContext ||
39      D.getDeclSpec().hasTypeSpecifier())
40    return false;
41
42  if (D.getNumTypeObjects() == 0)
43    return true;   // ^{ ... }
44
45  if (D.getNumTypeObjects() == 1 &&
46      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
47    return true;   // ^(int X, float Y) { ... }
48
49  return false;
50}
51
52/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
53/// doesn't apply to the given type.
54static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
55                                     QualType type) {
56  bool useExpansionLoc = false;
57
58  unsigned diagID = 0;
59  switch (attr.getKind()) {
60  case AttributeList::AT_objc_gc:
61    diagID = diag::warn_pointer_attribute_wrong_type;
62    useExpansionLoc = true;
63    break;
64
65  case AttributeList::AT_objc_ownership:
66    diagID = diag::warn_objc_object_attribute_wrong_type;
67    useExpansionLoc = true;
68    break;
69
70  default:
71    // Assume everything else was a function attribute.
72    diagID = diag::warn_function_attribute_wrong_type;
73    break;
74  }
75
76  SourceLocation loc = attr.getLoc();
77  StringRef name = attr.getName()->getName();
78
79  // The GC attributes are usually written with macros;  special-case them.
80  if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
81    if (attr.getParameterName()->isStr("strong")) {
82      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
83    } else if (attr.getParameterName()->isStr("weak")) {
84      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
85    }
86  }
87
88  S.Diag(loc, diagID) << name << type;
89}
90
91// objc_gc applies to Objective-C pointers or, otherwise, to the
92// smallest available pointer type (i.e. 'void*' in 'void**').
93#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
94    case AttributeList::AT_objc_gc: \
95    case AttributeList::AT_objc_ownership
96
97// Function type attributes.
98#define FUNCTION_TYPE_ATTRS_CASELIST \
99    case AttributeList::AT_noreturn: \
100    case AttributeList::AT_cdecl: \
101    case AttributeList::AT_fastcall: \
102    case AttributeList::AT_stdcall: \
103    case AttributeList::AT_thiscall: \
104    case AttributeList::AT_pascal: \
105    case AttributeList::AT_regparm: \
106    case AttributeList::AT_pcs \
107
108namespace {
109  /// An object which stores processing state for the entire
110  /// GetTypeForDeclarator process.
111  class TypeProcessingState {
112    Sema &sema;
113
114    /// The declarator being processed.
115    Declarator &declarator;
116
117    /// The index of the declarator chunk we're currently processing.
118    /// May be the total number of valid chunks, indicating the
119    /// DeclSpec.
120    unsigned chunkIndex;
121
122    /// Whether there are non-trivial modifications to the decl spec.
123    bool trivial;
124
125    /// Whether we saved the attributes in the decl spec.
126    bool hasSavedAttrs;
127
128    /// The original set of attributes on the DeclSpec.
129    SmallVector<AttributeList*, 2> savedAttrs;
130
131    /// A list of attributes to diagnose the uselessness of when the
132    /// processing is complete.
133    SmallVector<AttributeList*, 2> ignoredTypeAttrs;
134
135  public:
136    TypeProcessingState(Sema &sema, Declarator &declarator)
137      : sema(sema), declarator(declarator),
138        chunkIndex(declarator.getNumTypeObjects()),
139        trivial(true), hasSavedAttrs(false) {}
140
141    Sema &getSema() const {
142      return sema;
143    }
144
145    Declarator &getDeclarator() const {
146      return declarator;
147    }
148
149    unsigned getCurrentChunkIndex() const {
150      return chunkIndex;
151    }
152
153    void setCurrentChunkIndex(unsigned idx) {
154      assert(idx <= declarator.getNumTypeObjects());
155      chunkIndex = idx;
156    }
157
158    AttributeList *&getCurrentAttrListRef() const {
159      assert(chunkIndex <= declarator.getNumTypeObjects());
160      if (chunkIndex == declarator.getNumTypeObjects())
161        return getMutableDeclSpec().getAttributes().getListRef();
162      return declarator.getTypeObject(chunkIndex).getAttrListRef();
163    }
164
165    /// Save the current set of attributes on the DeclSpec.
166    void saveDeclSpecAttrs() {
167      // Don't try to save them multiple times.
168      if (hasSavedAttrs) return;
169
170      DeclSpec &spec = getMutableDeclSpec();
171      for (AttributeList *attr = spec.getAttributes().getList(); attr;
172             attr = attr->getNext())
173        savedAttrs.push_back(attr);
174      trivial &= savedAttrs.empty();
175      hasSavedAttrs = true;
176    }
177
178    /// Record that we had nowhere to put the given type attribute.
179    /// We will diagnose such attributes later.
180    void addIgnoredTypeAttr(AttributeList &attr) {
181      ignoredTypeAttrs.push_back(&attr);
182    }
183
184    /// Diagnose all the ignored type attributes, given that the
185    /// declarator worked out to the given type.
186    void diagnoseIgnoredTypeAttrs(QualType type) const {
187      for (SmallVectorImpl<AttributeList*>::const_iterator
188             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
189           i != e; ++i)
190        diagnoseBadTypeAttribute(getSema(), **i, type);
191    }
192
193    ~TypeProcessingState() {
194      if (trivial) return;
195
196      restoreDeclSpecAttrs();
197    }
198
199  private:
200    DeclSpec &getMutableDeclSpec() const {
201      return const_cast<DeclSpec&>(declarator.getDeclSpec());
202    }
203
204    void restoreDeclSpecAttrs() {
205      assert(hasSavedAttrs);
206
207      if (savedAttrs.empty()) {
208        getMutableDeclSpec().getAttributes().set(0);
209        return;
210      }
211
212      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
213      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
214        savedAttrs[i]->setNext(savedAttrs[i+1]);
215      savedAttrs.back()->setNext(0);
216    }
217  };
218
219  /// Basically std::pair except that we really want to avoid an
220  /// implicit operator= for safety concerns.  It's also a minor
221  /// link-time optimization for this to be a private type.
222  struct AttrAndList {
223    /// The attribute.
224    AttributeList &first;
225
226    /// The head of the list the attribute is currently in.
227    AttributeList *&second;
228
229    AttrAndList(AttributeList &attr, AttributeList *&head)
230      : first(attr), second(head) {}
231  };
232}
233
234namespace llvm {
235  template <> struct isPodLike<AttrAndList> {
236    static const bool value = true;
237  };
238}
239
240static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
241  attr.setNext(head);
242  head = &attr;
243}
244
245static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
246  if (head == &attr) {
247    head = attr.getNext();
248    return;
249  }
250
251  AttributeList *cur = head;
252  while (true) {
253    assert(cur && cur->getNext() && "ran out of attrs?");
254    if (cur->getNext() == &attr) {
255      cur->setNext(attr.getNext());
256      return;
257    }
258    cur = cur->getNext();
259  }
260}
261
262static void moveAttrFromListToList(AttributeList &attr,
263                                   AttributeList *&fromList,
264                                   AttributeList *&toList) {
265  spliceAttrOutOfList(attr, fromList);
266  spliceAttrIntoList(attr, toList);
267}
268
269static void processTypeAttrs(TypeProcessingState &state,
270                             QualType &type, bool isDeclSpec,
271                             AttributeList *attrs);
272
273static bool handleFunctionTypeAttr(TypeProcessingState &state,
274                                   AttributeList &attr,
275                                   QualType &type);
276
277static bool handleObjCGCTypeAttr(TypeProcessingState &state,
278                                 AttributeList &attr, QualType &type);
279
280static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
281                                       AttributeList &attr, QualType &type);
282
283static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
284                                      AttributeList &attr, QualType &type) {
285  if (attr.getKind() == AttributeList::AT_objc_gc)
286    return handleObjCGCTypeAttr(state, attr, type);
287  assert(attr.getKind() == AttributeList::AT_objc_ownership);
288  return handleObjCOwnershipTypeAttr(state, attr, type);
289}
290
291/// Given that an objc_gc attribute was written somewhere on a
292/// declaration *other* than on the declarator itself (for which, use
293/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
294/// didn't apply in whatever position it was written in, try to move
295/// it to a more appropriate position.
296static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
297                                          AttributeList &attr,
298                                          QualType type) {
299  Declarator &declarator = state.getDeclarator();
300  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
301    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
302    switch (chunk.Kind) {
303    case DeclaratorChunk::Pointer:
304    case DeclaratorChunk::BlockPointer:
305      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
306                             chunk.getAttrListRef());
307      return;
308
309    case DeclaratorChunk::Paren:
310    case DeclaratorChunk::Array:
311      continue;
312
313    // Don't walk through these.
314    case DeclaratorChunk::Reference:
315    case DeclaratorChunk::Function:
316    case DeclaratorChunk::MemberPointer:
317      goto error;
318    }
319  }
320 error:
321
322  diagnoseBadTypeAttribute(state.getSema(), attr, type);
323}
324
325/// Distribute an objc_gc type attribute that was written on the
326/// declarator.
327static void
328distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
329                                            AttributeList &attr,
330                                            QualType &declSpecType) {
331  Declarator &declarator = state.getDeclarator();
332
333  // objc_gc goes on the innermost pointer to something that's not a
334  // pointer.
335  unsigned innermost = -1U;
336  bool considerDeclSpec = true;
337  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
338    DeclaratorChunk &chunk = declarator.getTypeObject(i);
339    switch (chunk.Kind) {
340    case DeclaratorChunk::Pointer:
341    case DeclaratorChunk::BlockPointer:
342      innermost = i;
343      continue;
344
345    case DeclaratorChunk::Reference:
346    case DeclaratorChunk::MemberPointer:
347    case DeclaratorChunk::Paren:
348    case DeclaratorChunk::Array:
349      continue;
350
351    case DeclaratorChunk::Function:
352      considerDeclSpec = false;
353      goto done;
354    }
355  }
356 done:
357
358  // That might actually be the decl spec if we weren't blocked by
359  // anything in the declarator.
360  if (considerDeclSpec) {
361    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
362      // Splice the attribute into the decl spec.  Prevents the
363      // attribute from being applied multiple times and gives
364      // the source-location-filler something to work with.
365      state.saveDeclSpecAttrs();
366      moveAttrFromListToList(attr, declarator.getAttrListRef(),
367               declarator.getMutableDeclSpec().getAttributes().getListRef());
368      return;
369    }
370  }
371
372  // Otherwise, if we found an appropriate chunk, splice the attribute
373  // into it.
374  if (innermost != -1U) {
375    moveAttrFromListToList(attr, declarator.getAttrListRef(),
376                       declarator.getTypeObject(innermost).getAttrListRef());
377    return;
378  }
379
380  // Otherwise, diagnose when we're done building the type.
381  spliceAttrOutOfList(attr, declarator.getAttrListRef());
382  state.addIgnoredTypeAttr(attr);
383}
384
385/// A function type attribute was written somewhere in a declaration
386/// *other* than on the declarator itself or in the decl spec.  Given
387/// that it didn't apply in whatever position it was written in, try
388/// to move it to a more appropriate position.
389static void distributeFunctionTypeAttr(TypeProcessingState &state,
390                                       AttributeList &attr,
391                                       QualType type) {
392  Declarator &declarator = state.getDeclarator();
393
394  // Try to push the attribute from the return type of a function to
395  // the function itself.
396  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
397    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
398    switch (chunk.Kind) {
399    case DeclaratorChunk::Function:
400      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
401                             chunk.getAttrListRef());
402      return;
403
404    case DeclaratorChunk::Paren:
405    case DeclaratorChunk::Pointer:
406    case DeclaratorChunk::BlockPointer:
407    case DeclaratorChunk::Array:
408    case DeclaratorChunk::Reference:
409    case DeclaratorChunk::MemberPointer:
410      continue;
411    }
412  }
413
414  diagnoseBadTypeAttribute(state.getSema(), attr, type);
415}
416
417/// Try to distribute a function type attribute to the innermost
418/// function chunk or type.  Returns true if the attribute was
419/// distributed, false if no location was found.
420static bool
421distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
422                                      AttributeList &attr,
423                                      AttributeList *&attrList,
424                                      QualType &declSpecType) {
425  Declarator &declarator = state.getDeclarator();
426
427  // Put it on the innermost function chunk, if there is one.
428  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
429    DeclaratorChunk &chunk = declarator.getTypeObject(i);
430    if (chunk.Kind != DeclaratorChunk::Function) continue;
431
432    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
433    return true;
434  }
435
436  if (handleFunctionTypeAttr(state, attr, declSpecType)) {
437    spliceAttrOutOfList(attr, attrList);
438    return true;
439  }
440
441  return false;
442}
443
444/// A function type attribute was written in the decl spec.  Try to
445/// apply it somewhere.
446static void
447distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
448                                       AttributeList &attr,
449                                       QualType &declSpecType) {
450  state.saveDeclSpecAttrs();
451
452  // Try to distribute to the innermost.
453  if (distributeFunctionTypeAttrToInnermost(state, attr,
454                                            state.getCurrentAttrListRef(),
455                                            declSpecType))
456    return;
457
458  // If that failed, diagnose the bad attribute when the declarator is
459  // fully built.
460  state.addIgnoredTypeAttr(attr);
461}
462
463/// A function type attribute was written on the declarator.  Try to
464/// apply it somewhere.
465static void
466distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
467                                         AttributeList &attr,
468                                         QualType &declSpecType) {
469  Declarator &declarator = state.getDeclarator();
470
471  // Try to distribute to the innermost.
472  if (distributeFunctionTypeAttrToInnermost(state, attr,
473                                            declarator.getAttrListRef(),
474                                            declSpecType))
475    return;
476
477  // If that failed, diagnose the bad attribute when the declarator is
478  // fully built.
479  spliceAttrOutOfList(attr, declarator.getAttrListRef());
480  state.addIgnoredTypeAttr(attr);
481}
482
483/// \brief Given that there are attributes written on the declarator
484/// itself, try to distribute any type attributes to the appropriate
485/// declarator chunk.
486///
487/// These are attributes like the following:
488///   int f ATTR;
489///   int (f ATTR)();
490/// but not necessarily this:
491///   int f() ATTR;
492static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
493                                              QualType &declSpecType) {
494  // Collect all the type attributes from the declarator itself.
495  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
496  AttributeList *attr = state.getDeclarator().getAttributes();
497  AttributeList *next;
498  do {
499    next = attr->getNext();
500
501    switch (attr->getKind()) {
502    OBJC_POINTER_TYPE_ATTRS_CASELIST:
503      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
504      break;
505
506    case AttributeList::AT_ns_returns_retained:
507      if (!state.getSema().getLangOptions().ObjCAutoRefCount)
508        break;
509      // fallthrough
510
511    FUNCTION_TYPE_ATTRS_CASELIST:
512      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
513      break;
514
515    default:
516      break;
517    }
518  } while ((attr = next));
519}
520
521/// Add a synthetic '()' to a block-literal declarator if it is
522/// required, given the return type.
523static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
524                                          QualType declSpecType) {
525  Declarator &declarator = state.getDeclarator();
526
527  // First, check whether the declarator would produce a function,
528  // i.e. whether the innermost semantic chunk is a function.
529  if (declarator.isFunctionDeclarator()) {
530    // If so, make that declarator a prototyped declarator.
531    declarator.getFunctionTypeInfo().hasPrototype = true;
532    return;
533  }
534
535  // If there are any type objects, the type as written won't name a
536  // function, regardless of the decl spec type.  This is because a
537  // block signature declarator is always an abstract-declarator, and
538  // abstract-declarators can't just be parentheses chunks.  Therefore
539  // we need to build a function chunk unless there are no type
540  // objects and the decl spec type is a function.
541  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
542    return;
543
544  // Note that there *are* cases with invalid declarators where
545  // declarators consist solely of parentheses.  In general, these
546  // occur only in failed efforts to make function declarators, so
547  // faking up the function chunk is still the right thing to do.
548
549  // Otherwise, we need to fake up a function declarator.
550  SourceLocation loc = declarator.getSourceRange().getBegin();
551
552  // ...and *prepend* it to the declarator.
553  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
554                             /*proto*/ true,
555                             /*variadic*/ false, SourceLocation(),
556                             /*args*/ 0, 0,
557                             /*type quals*/ 0,
558                             /*ref-qualifier*/true, SourceLocation(),
559                             /*const qualifier*/SourceLocation(),
560                             /*volatile qualifier*/SourceLocation(),
561                             /*mutable qualifier*/SourceLocation(),
562                             /*EH*/ EST_None, SourceLocation(), 0, 0, 0, 0,
563                             /*parens*/ loc, loc,
564                             declarator));
565
566  // For consistency, make sure the state still has us as processing
567  // the decl spec.
568  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
569  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
570}
571
572/// \brief Convert the specified declspec to the appropriate type
573/// object.
574/// \param D  the declarator containing the declaration specifier.
575/// \returns The type described by the declaration specifiers.  This function
576/// never returns null.
577static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
578  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
579  // checking.
580
581  Sema &S = state.getSema();
582  Declarator &declarator = state.getDeclarator();
583  const DeclSpec &DS = declarator.getDeclSpec();
584  SourceLocation DeclLoc = declarator.getIdentifierLoc();
585  if (DeclLoc.isInvalid())
586    DeclLoc = DS.getSourceRange().getBegin();
587
588  ASTContext &Context = S.Context;
589
590  QualType Result;
591  switch (DS.getTypeSpecType()) {
592  case DeclSpec::TST_void:
593    Result = Context.VoidTy;
594    break;
595  case DeclSpec::TST_char:
596    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
597      Result = Context.CharTy;
598    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
599      Result = Context.SignedCharTy;
600    else {
601      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
602             "Unknown TSS value");
603      Result = Context.UnsignedCharTy;
604    }
605    break;
606  case DeclSpec::TST_wchar:
607    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
608      Result = Context.WCharTy;
609    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
610      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
611        << DS.getSpecifierName(DS.getTypeSpecType());
612      Result = Context.getSignedWCharType();
613    } else {
614      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
615        "Unknown TSS value");
616      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
617        << DS.getSpecifierName(DS.getTypeSpecType());
618      Result = Context.getUnsignedWCharType();
619    }
620    break;
621  case DeclSpec::TST_char16:
622      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
623        "Unknown TSS value");
624      Result = Context.Char16Ty;
625    break;
626  case DeclSpec::TST_char32:
627      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
628        "Unknown TSS value");
629      Result = Context.Char32Ty;
630    break;
631  case DeclSpec::TST_unspecified:
632    // "<proto1,proto2>" is an objc qualified ID with a missing id.
633    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
634      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
635                                         (ObjCProtocolDecl**)PQ,
636                                         DS.getNumProtocolQualifiers());
637      Result = Context.getObjCObjectPointerType(Result);
638      break;
639    }
640
641    // If this is a missing declspec in a block literal return context, then it
642    // is inferred from the return statements inside the block.
643    // The declspec is always missing in a lambda expr context; it is either
644    // specified with a trailing return type or inferred.
645    if (declarator.getContext() == Declarator::LambdaExprContext ||
646        isOmittedBlockReturnType(declarator)) {
647      Result = Context.DependentTy;
648      break;
649    }
650
651    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
652    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
653    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
654    // Note that the one exception to this is function definitions, which are
655    // allowed to be completely missing a declspec.  This is handled in the
656    // parser already though by it pretending to have seen an 'int' in this
657    // case.
658    if (S.getLangOptions().ImplicitInt) {
659      // In C89 mode, we only warn if there is a completely missing declspec
660      // when one is not allowed.
661      if (DS.isEmpty()) {
662        S.Diag(DeclLoc, diag::ext_missing_declspec)
663          << DS.getSourceRange()
664        << FixItHint::CreateInsertion(DS.getSourceRange().getBegin(), "int");
665      }
666    } else if (!DS.hasTypeSpecifier()) {
667      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
668      // "At least one type specifier shall be given in the declaration
669      // specifiers in each declaration, and in the specifier-qualifier list in
670      // each struct declaration and type name."
671      // FIXME: Does Microsoft really have the implicit int extension in C++?
672      if (S.getLangOptions().CPlusPlus &&
673          !S.getLangOptions().MicrosoftExt) {
674        S.Diag(DeclLoc, diag::err_missing_type_specifier)
675          << DS.getSourceRange();
676
677        // When this occurs in C++ code, often something is very broken with the
678        // value being declared, poison it as invalid so we don't get chains of
679        // errors.
680        declarator.setInvalidType(true);
681      } else {
682        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
683          << DS.getSourceRange();
684      }
685    }
686
687    // FALL THROUGH.
688  case DeclSpec::TST_int: {
689    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
690      switch (DS.getTypeSpecWidth()) {
691      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
692      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
693      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
694      case DeclSpec::TSW_longlong:
695        Result = Context.LongLongTy;
696
697        // long long is a C99 feature.
698        if (!S.getLangOptions().C99)
699          S.Diag(DS.getTypeSpecWidthLoc(),
700                 S.getLangOptions().CPlusPlus0x ?
701                   diag::warn_cxx98_compat_longlong : diag::ext_longlong);
702        break;
703      }
704    } else {
705      switch (DS.getTypeSpecWidth()) {
706      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
707      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
708      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
709      case DeclSpec::TSW_longlong:
710        Result = Context.UnsignedLongLongTy;
711
712        // long long is a C99 feature.
713        if (!S.getLangOptions().C99)
714          S.Diag(DS.getTypeSpecWidthLoc(),
715                 S.getLangOptions().CPlusPlus0x ?
716                   diag::warn_cxx98_compat_longlong : diag::ext_longlong);
717        break;
718      }
719    }
720    break;
721  }
722  case DeclSpec::TST_half: Result = Context.HalfTy; break;
723  case DeclSpec::TST_float: Result = Context.FloatTy; break;
724  case DeclSpec::TST_double:
725    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
726      Result = Context.LongDoubleTy;
727    else
728      Result = Context.DoubleTy;
729
730    if (S.getLangOptions().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
731      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
732      declarator.setInvalidType(true);
733    }
734    break;
735  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
736  case DeclSpec::TST_decimal32:    // _Decimal32
737  case DeclSpec::TST_decimal64:    // _Decimal64
738  case DeclSpec::TST_decimal128:   // _Decimal128
739    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
740    Result = Context.IntTy;
741    declarator.setInvalidType(true);
742    break;
743  case DeclSpec::TST_class:
744  case DeclSpec::TST_enum:
745  case DeclSpec::TST_union:
746  case DeclSpec::TST_struct: {
747    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
748    if (!D) {
749      // This can happen in C++ with ambiguous lookups.
750      Result = Context.IntTy;
751      declarator.setInvalidType(true);
752      break;
753    }
754
755    // If the type is deprecated or unavailable, diagnose it.
756    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
757
758    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
759           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
760
761    // TypeQuals handled by caller.
762    Result = Context.getTypeDeclType(D);
763
764    // In both C and C++, make an ElaboratedType.
765    ElaboratedTypeKeyword Keyword
766      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
767    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
768
769    if (D->isInvalidDecl())
770      declarator.setInvalidType(true);
771    break;
772  }
773  case DeclSpec::TST_typename: {
774    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
775           DS.getTypeSpecSign() == 0 &&
776           "Can't handle qualifiers on typedef names yet!");
777    Result = S.GetTypeFromParser(DS.getRepAsType());
778    if (Result.isNull())
779      declarator.setInvalidType(true);
780    else if (DeclSpec::ProtocolQualifierListTy PQ
781               = DS.getProtocolQualifiers()) {
782      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
783        // Silently drop any existing protocol qualifiers.
784        // TODO: determine whether that's the right thing to do.
785        if (ObjT->getNumProtocols())
786          Result = ObjT->getBaseType();
787
788        if (DS.getNumProtocolQualifiers())
789          Result = Context.getObjCObjectType(Result,
790                                             (ObjCProtocolDecl**) PQ,
791                                             DS.getNumProtocolQualifiers());
792      } else if (Result->isObjCIdType()) {
793        // id<protocol-list>
794        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
795                                           (ObjCProtocolDecl**) PQ,
796                                           DS.getNumProtocolQualifiers());
797        Result = Context.getObjCObjectPointerType(Result);
798      } else if (Result->isObjCClassType()) {
799        // Class<protocol-list>
800        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
801                                           (ObjCProtocolDecl**) PQ,
802                                           DS.getNumProtocolQualifiers());
803        Result = Context.getObjCObjectPointerType(Result);
804      } else {
805        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
806          << DS.getSourceRange();
807        declarator.setInvalidType(true);
808      }
809    }
810
811    // TypeQuals handled by caller.
812    break;
813  }
814  case DeclSpec::TST_typeofType:
815    // FIXME: Preserve type source info.
816    Result = S.GetTypeFromParser(DS.getRepAsType());
817    assert(!Result.isNull() && "Didn't get a type for typeof?");
818    if (!Result->isDependentType())
819      if (const TagType *TT = Result->getAs<TagType>())
820        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
821    // TypeQuals handled by caller.
822    Result = Context.getTypeOfType(Result);
823    break;
824  case DeclSpec::TST_typeofExpr: {
825    Expr *E = DS.getRepAsExpr();
826    assert(E && "Didn't get an expression for typeof?");
827    // TypeQuals handled by caller.
828    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
829    if (Result.isNull()) {
830      Result = Context.IntTy;
831      declarator.setInvalidType(true);
832    }
833    break;
834  }
835  case DeclSpec::TST_decltype: {
836    Expr *E = DS.getRepAsExpr();
837    assert(E && "Didn't get an expression for decltype?");
838    // TypeQuals handled by caller.
839    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
840    if (Result.isNull()) {
841      Result = Context.IntTy;
842      declarator.setInvalidType(true);
843    }
844    break;
845  }
846  case DeclSpec::TST_underlyingType:
847    Result = S.GetTypeFromParser(DS.getRepAsType());
848    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
849    Result = S.BuildUnaryTransformType(Result,
850                                       UnaryTransformType::EnumUnderlyingType,
851                                       DS.getTypeSpecTypeLoc());
852    if (Result.isNull()) {
853      Result = Context.IntTy;
854      declarator.setInvalidType(true);
855    }
856    break;
857
858  case DeclSpec::TST_auto: {
859    // TypeQuals handled by caller.
860    Result = Context.getAutoType(QualType());
861    break;
862  }
863
864  case DeclSpec::TST_unknown_anytype:
865    Result = Context.UnknownAnyTy;
866    break;
867
868  case DeclSpec::TST_atomic:
869    Result = S.GetTypeFromParser(DS.getRepAsType());
870    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
871    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
872    if (Result.isNull()) {
873      Result = Context.IntTy;
874      declarator.setInvalidType(true);
875    }
876    break;
877
878  case DeclSpec::TST_error:
879    Result = Context.IntTy;
880    declarator.setInvalidType(true);
881    break;
882  }
883
884  // Handle complex types.
885  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
886    if (S.getLangOptions().Freestanding)
887      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
888    Result = Context.getComplexType(Result);
889  } else if (DS.isTypeAltiVecVector()) {
890    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
891    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
892    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
893    if (DS.isTypeAltiVecPixel())
894      VecKind = VectorType::AltiVecPixel;
895    else if (DS.isTypeAltiVecBool())
896      VecKind = VectorType::AltiVecBool;
897    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
898  }
899
900  // FIXME: Imaginary.
901  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
902    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
903
904  // Before we process any type attributes, synthesize a block literal
905  // function declarator if necessary.
906  if (declarator.getContext() == Declarator::BlockLiteralContext)
907    maybeSynthesizeBlockSignature(state, Result);
908
909  // Apply any type attributes from the decl spec.  This may cause the
910  // list of type attributes to be temporarily saved while the type
911  // attributes are pushed around.
912  if (AttributeList *attrs = DS.getAttributes().getList())
913    processTypeAttrs(state, Result, true, attrs);
914
915  // Apply const/volatile/restrict qualifiers to T.
916  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
917
918    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
919    // or incomplete types shall not be restrict-qualified."  C++ also allows
920    // restrict-qualified references.
921    if (TypeQuals & DeclSpec::TQ_restrict) {
922      if (Result->isAnyPointerType() || Result->isReferenceType()) {
923        QualType EltTy;
924        if (Result->isObjCObjectPointerType())
925          EltTy = Result;
926        else
927          EltTy = Result->isPointerType() ?
928                    Result->getAs<PointerType>()->getPointeeType() :
929                    Result->getAs<ReferenceType>()->getPointeeType();
930
931        // If we have a pointer or reference, the pointee must have an object
932        // incomplete type.
933        if (!EltTy->isIncompleteOrObjectType()) {
934          S.Diag(DS.getRestrictSpecLoc(),
935               diag::err_typecheck_invalid_restrict_invalid_pointee)
936            << EltTy << DS.getSourceRange();
937          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
938        }
939      } else {
940        S.Diag(DS.getRestrictSpecLoc(),
941               diag::err_typecheck_invalid_restrict_not_pointer)
942          << Result << DS.getSourceRange();
943        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
944      }
945    }
946
947    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
948    // of a function type includes any type qualifiers, the behavior is
949    // undefined."
950    if (Result->isFunctionType() && TypeQuals) {
951      // Get some location to point at, either the C or V location.
952      SourceLocation Loc;
953      if (TypeQuals & DeclSpec::TQ_const)
954        Loc = DS.getConstSpecLoc();
955      else if (TypeQuals & DeclSpec::TQ_volatile)
956        Loc = DS.getVolatileSpecLoc();
957      else {
958        assert((TypeQuals & DeclSpec::TQ_restrict) &&
959               "Has CVR quals but not C, V, or R?");
960        Loc = DS.getRestrictSpecLoc();
961      }
962      S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
963        << Result << DS.getSourceRange();
964    }
965
966    // C++ [dcl.ref]p1:
967    //   Cv-qualified references are ill-formed except when the
968    //   cv-qualifiers are introduced through the use of a typedef
969    //   (7.1.3) or of a template type argument (14.3), in which
970    //   case the cv-qualifiers are ignored.
971    // FIXME: Shouldn't we be checking SCS_typedef here?
972    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
973        TypeQuals && Result->isReferenceType()) {
974      TypeQuals &= ~DeclSpec::TQ_const;
975      TypeQuals &= ~DeclSpec::TQ_volatile;
976    }
977
978    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
979    Result = Context.getQualifiedType(Result, Quals);
980  }
981
982  return Result;
983}
984
985static std::string getPrintableNameForEntity(DeclarationName Entity) {
986  if (Entity)
987    return Entity.getAsString();
988
989  return "type name";
990}
991
992QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
993                                  Qualifiers Qs) {
994  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
995  // object or incomplete types shall not be restrict-qualified."
996  if (Qs.hasRestrict()) {
997    unsigned DiagID = 0;
998    QualType ProblemTy;
999
1000    const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
1001    if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
1002      if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
1003        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1004        ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
1005      }
1006    } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1007      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1008        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1009        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1010      }
1011    } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
1012      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1013        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1014        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1015      }
1016    } else if (!Ty->isDependentType()) {
1017      // FIXME: this deserves a proper diagnostic
1018      DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1019      ProblemTy = T;
1020    }
1021
1022    if (DiagID) {
1023      Diag(Loc, DiagID) << ProblemTy;
1024      Qs.removeRestrict();
1025    }
1026  }
1027
1028  return Context.getQualifiedType(T, Qs);
1029}
1030
1031/// \brief Build a paren type including \p T.
1032QualType Sema::BuildParenType(QualType T) {
1033  return Context.getParenType(T);
1034}
1035
1036/// Given that we're building a pointer or reference to the given
1037static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1038                                           SourceLocation loc,
1039                                           bool isReference) {
1040  // Bail out if retention is unrequired or already specified.
1041  if (!type->isObjCLifetimeType() ||
1042      type.getObjCLifetime() != Qualifiers::OCL_None)
1043    return type;
1044
1045  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1046
1047  // If the object type is const-qualified, we can safely use
1048  // __unsafe_unretained.  This is safe (because there are no read
1049  // barriers), and it'll be safe to coerce anything but __weak* to
1050  // the resulting type.
1051  if (type.isConstQualified()) {
1052    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1053
1054  // Otherwise, check whether the static type does not require
1055  // retaining.  This currently only triggers for Class (possibly
1056  // protocol-qualifed, and arrays thereof).
1057  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1058    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1059
1060  // If we are in an unevaluated context, like sizeof, skip adding a
1061  // qualification.
1062  } else if (S.ExprEvalContexts.back().Context == Sema::Unevaluated) {
1063    return type;
1064
1065  // If that failed, give an error and recover using __strong.  __strong
1066  // is the option most likely to prevent spurious second-order diagnostics,
1067  // like when binding a reference to a field.
1068  } else {
1069    // These types can show up in private ivars in system headers, so
1070    // we need this to not be an error in those cases.  Instead we
1071    // want to delay.
1072    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1073      S.DelayedDiagnostics.add(
1074          sema::DelayedDiagnostic::makeForbiddenType(loc,
1075              diag::err_arc_indirect_no_ownership, type, isReference));
1076    } else {
1077      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1078    }
1079    implicitLifetime = Qualifiers::OCL_Strong;
1080  }
1081  assert(implicitLifetime && "didn't infer any lifetime!");
1082
1083  Qualifiers qs;
1084  qs.addObjCLifetime(implicitLifetime);
1085  return S.Context.getQualifiedType(type, qs);
1086}
1087
1088/// \brief Build a pointer type.
1089///
1090/// \param T The type to which we'll be building a pointer.
1091///
1092/// \param Loc The location of the entity whose type involves this
1093/// pointer type or, if there is no such entity, the location of the
1094/// type that will have pointer type.
1095///
1096/// \param Entity The name of the entity that involves the pointer
1097/// type, if known.
1098///
1099/// \returns A suitable pointer type, if there are no
1100/// errors. Otherwise, returns a NULL type.
1101QualType Sema::BuildPointerType(QualType T,
1102                                SourceLocation Loc, DeclarationName Entity) {
1103  if (T->isReferenceType()) {
1104    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1105    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1106      << getPrintableNameForEntity(Entity) << T;
1107    return QualType();
1108  }
1109
1110  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1111
1112  // In ARC, it is forbidden to build pointers to unqualified pointers.
1113  if (getLangOptions().ObjCAutoRefCount)
1114    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1115
1116  // Build the pointer type.
1117  return Context.getPointerType(T);
1118}
1119
1120/// \brief Build a reference type.
1121///
1122/// \param T The type to which we'll be building a reference.
1123///
1124/// \param Loc The location of the entity whose type involves this
1125/// reference type or, if there is no such entity, the location of the
1126/// type that will have reference type.
1127///
1128/// \param Entity The name of the entity that involves the reference
1129/// type, if known.
1130///
1131/// \returns A suitable reference type, if there are no
1132/// errors. Otherwise, returns a NULL type.
1133QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1134                                  SourceLocation Loc,
1135                                  DeclarationName Entity) {
1136  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1137         "Unresolved overloaded function type");
1138
1139  // C++0x [dcl.ref]p6:
1140  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1141  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1142  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1143  //   the type "lvalue reference to T", while an attempt to create the type
1144  //   "rvalue reference to cv TR" creates the type TR.
1145  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1146
1147  // C++ [dcl.ref]p4: There shall be no references to references.
1148  //
1149  // According to C++ DR 106, references to references are only
1150  // diagnosed when they are written directly (e.g., "int & &"),
1151  // but not when they happen via a typedef:
1152  //
1153  //   typedef int& intref;
1154  //   typedef intref& intref2;
1155  //
1156  // Parser::ParseDeclaratorInternal diagnoses the case where
1157  // references are written directly; here, we handle the
1158  // collapsing of references-to-references as described in C++0x.
1159  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1160
1161  // C++ [dcl.ref]p1:
1162  //   A declarator that specifies the type "reference to cv void"
1163  //   is ill-formed.
1164  if (T->isVoidType()) {
1165    Diag(Loc, diag::err_reference_to_void);
1166    return QualType();
1167  }
1168
1169  // In ARC, it is forbidden to build references to unqualified pointers.
1170  if (getLangOptions().ObjCAutoRefCount)
1171    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1172
1173  // Handle restrict on references.
1174  if (LValueRef)
1175    return Context.getLValueReferenceType(T, SpelledAsLValue);
1176  return Context.getRValueReferenceType(T);
1177}
1178
1179/// Check whether the specified array size makes the array type a VLA.  If so,
1180/// return true, if not, return the size of the array in SizeVal.
1181static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1182  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1183  // (like gnu99, but not c99) accept any evaluatable value as an extension.
1184  return S.VerifyIntegerConstantExpression(
1185      ArraySize, &SizeVal, S.PDiag(), S.LangOpts.GNUMode,
1186      S.PDiag(diag::ext_vla_folded_to_constant)).isInvalid();
1187}
1188
1189
1190/// \brief Build an array type.
1191///
1192/// \param T The type of each element in the array.
1193///
1194/// \param ASM C99 array size modifier (e.g., '*', 'static').
1195///
1196/// \param ArraySize Expression describing the size of the array.
1197///
1198/// \param Loc The location of the entity whose type involves this
1199/// array type or, if there is no such entity, the location of the
1200/// type that will have array type.
1201///
1202/// \param Entity The name of the entity that involves the array
1203/// type, if known.
1204///
1205/// \returns A suitable array type, if there are no errors. Otherwise,
1206/// returns a NULL type.
1207QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1208                              Expr *ArraySize, unsigned Quals,
1209                              SourceRange Brackets, DeclarationName Entity) {
1210
1211  SourceLocation Loc = Brackets.getBegin();
1212  if (getLangOptions().CPlusPlus) {
1213    // C++ [dcl.array]p1:
1214    //   T is called the array element type; this type shall not be a reference
1215    //   type, the (possibly cv-qualified) type void, a function type or an
1216    //   abstract class type.
1217    //
1218    // Note: function types are handled in the common path with C.
1219    if (T->isReferenceType()) {
1220      Diag(Loc, diag::err_illegal_decl_array_of_references)
1221      << getPrintableNameForEntity(Entity) << T;
1222      return QualType();
1223    }
1224
1225    if (T->isVoidType()) {
1226      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1227      return QualType();
1228    }
1229
1230    if (RequireNonAbstractType(Brackets.getBegin(), T,
1231                               diag::err_array_of_abstract_type))
1232      return QualType();
1233
1234  } else {
1235    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1236    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1237    if (RequireCompleteType(Loc, T,
1238                            diag::err_illegal_decl_array_incomplete_type))
1239      return QualType();
1240  }
1241
1242  if (T->isFunctionType()) {
1243    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1244      << getPrintableNameForEntity(Entity) << T;
1245    return QualType();
1246  }
1247
1248  if (T->getContainedAutoType()) {
1249    Diag(Loc, diag::err_illegal_decl_array_of_auto)
1250      << getPrintableNameForEntity(Entity) << T;
1251    return QualType();
1252  }
1253
1254  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1255    // If the element type is a struct or union that contains a variadic
1256    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1257    if (EltTy->getDecl()->hasFlexibleArrayMember())
1258      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1259  } else if (T->isObjCObjectType()) {
1260    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1261    return QualType();
1262  }
1263
1264  // Do placeholder conversions on the array size expression.
1265  if (ArraySize && ArraySize->hasPlaceholderType()) {
1266    ExprResult Result = CheckPlaceholderExpr(ArraySize);
1267    if (Result.isInvalid()) return QualType();
1268    ArraySize = Result.take();
1269  }
1270
1271  // Do lvalue-to-rvalue conversions on the array size expression.
1272  if (ArraySize && !ArraySize->isRValue()) {
1273    ExprResult Result = DefaultLvalueConversion(ArraySize);
1274    if (Result.isInvalid())
1275      return QualType();
1276
1277    ArraySize = Result.take();
1278  }
1279
1280  // C99 6.7.5.2p1: The size expression shall have integer type.
1281  // C++11 allows contextual conversions to such types.
1282  if (!getLangOptions().CPlusPlus0x &&
1283      ArraySize && !ArraySize->isTypeDependent() &&
1284      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1285    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1286      << ArraySize->getType() << ArraySize->getSourceRange();
1287    return QualType();
1288  }
1289
1290  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1291  if (!ArraySize) {
1292    if (ASM == ArrayType::Star)
1293      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1294    else
1295      T = Context.getIncompleteArrayType(T, ASM, Quals);
1296  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1297    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1298  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
1299              !T->isConstantSizeType()) ||
1300             isArraySizeVLA(*this, ArraySize, ConstVal)) {
1301    // Even in C++11, don't allow contextual conversions in the array bound
1302    // of a VLA.
1303    if (getLangOptions().CPlusPlus0x &&
1304        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1305      Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1306        << ArraySize->getType() << ArraySize->getSourceRange();
1307      return QualType();
1308    }
1309
1310    // C99: an array with an element type that has a non-constant-size is a VLA.
1311    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1312    // that we can fold to a non-zero positive value as an extension.
1313    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1314  } else {
1315    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1316    // have a value greater than zero.
1317    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1318      if (Entity)
1319        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1320          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1321      else
1322        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1323          << ArraySize->getSourceRange();
1324      return QualType();
1325    }
1326    if (ConstVal == 0) {
1327      // GCC accepts zero sized static arrays. We allow them when
1328      // we're not in a SFINAE context.
1329      Diag(ArraySize->getLocStart(),
1330           isSFINAEContext()? diag::err_typecheck_zero_array_size
1331                            : diag::ext_typecheck_zero_array_size)
1332        << ArraySize->getSourceRange();
1333
1334      if (ASM == ArrayType::Static) {
1335        Diag(ArraySize->getLocStart(),
1336             diag::warn_typecheck_zero_static_array_size)
1337          << ArraySize->getSourceRange();
1338        ASM = ArrayType::Normal;
1339      }
1340    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1341               !T->isIncompleteType()) {
1342      // Is the array too large?
1343      unsigned ActiveSizeBits
1344        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1345      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1346        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1347          << ConstVal.toString(10)
1348          << ArraySize->getSourceRange();
1349    }
1350
1351    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1352  }
1353  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1354  if (!getLangOptions().C99) {
1355    if (T->isVariableArrayType()) {
1356      // Prohibit the use of non-POD types in VLAs.
1357      QualType BaseT = Context.getBaseElementType(T);
1358      if (!T->isDependentType() &&
1359          !BaseT.isPODType(Context) &&
1360          !BaseT->isObjCLifetimeType()) {
1361        Diag(Loc, diag::err_vla_non_pod)
1362          << BaseT;
1363        return QualType();
1364      }
1365      // Prohibit the use of VLAs during template argument deduction.
1366      else if (isSFINAEContext()) {
1367        Diag(Loc, diag::err_vla_in_sfinae);
1368        return QualType();
1369      }
1370      // Just extwarn about VLAs.
1371      else
1372        Diag(Loc, diag::ext_vla);
1373    } else if (ASM != ArrayType::Normal || Quals != 0)
1374      Diag(Loc,
1375           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
1376                                     : diag::ext_c99_array_usage) << ASM;
1377  }
1378
1379  return T;
1380}
1381
1382/// \brief Build an ext-vector type.
1383///
1384/// Run the required checks for the extended vector type.
1385QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1386                                  SourceLocation AttrLoc) {
1387  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1388  // in conjunction with complex types (pointers, arrays, functions, etc.).
1389  if (!T->isDependentType() &&
1390      !T->isIntegerType() && !T->isRealFloatingType()) {
1391    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1392    return QualType();
1393  }
1394
1395  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1396    llvm::APSInt vecSize(32);
1397    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1398      Diag(AttrLoc, diag::err_attribute_argument_not_int)
1399        << "ext_vector_type" << ArraySize->getSourceRange();
1400      return QualType();
1401    }
1402
1403    // unlike gcc's vector_size attribute, the size is specified as the
1404    // number of elements, not the number of bytes.
1405    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1406
1407    if (vectorSize == 0) {
1408      Diag(AttrLoc, diag::err_attribute_zero_size)
1409      << ArraySize->getSourceRange();
1410      return QualType();
1411    }
1412
1413    return Context.getExtVectorType(T, vectorSize);
1414  }
1415
1416  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1417}
1418
1419/// \brief Build a function type.
1420///
1421/// This routine checks the function type according to C++ rules and
1422/// under the assumption that the result type and parameter types have
1423/// just been instantiated from a template. It therefore duplicates
1424/// some of the behavior of GetTypeForDeclarator, but in a much
1425/// simpler form that is only suitable for this narrow use case.
1426///
1427/// \param T The return type of the function.
1428///
1429/// \param ParamTypes The parameter types of the function. This array
1430/// will be modified to account for adjustments to the types of the
1431/// function parameters.
1432///
1433/// \param NumParamTypes The number of parameter types in ParamTypes.
1434///
1435/// \param Variadic Whether this is a variadic function type.
1436///
1437/// \param HasTrailingReturn Whether this function has a trailing return type.
1438///
1439/// \param Quals The cvr-qualifiers to be applied to the function type.
1440///
1441/// \param Loc The location of the entity whose type involves this
1442/// function type or, if there is no such entity, the location of the
1443/// type that will have function type.
1444///
1445/// \param Entity The name of the entity that involves the function
1446/// type, if known.
1447///
1448/// \returns A suitable function type, if there are no
1449/// errors. Otherwise, returns a NULL type.
1450QualType Sema::BuildFunctionType(QualType T,
1451                                 QualType *ParamTypes,
1452                                 unsigned NumParamTypes,
1453                                 bool Variadic, bool HasTrailingReturn,
1454                                 unsigned Quals,
1455                                 RefQualifierKind RefQualifier,
1456                                 SourceLocation Loc, DeclarationName Entity,
1457                                 FunctionType::ExtInfo Info) {
1458  if (T->isArrayType() || T->isFunctionType()) {
1459    Diag(Loc, diag::err_func_returning_array_function)
1460      << T->isFunctionType() << T;
1461    return QualType();
1462  }
1463
1464  // Functions cannot return half FP.
1465  if (T->isHalfType()) {
1466    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1467      FixItHint::CreateInsertion(Loc, "*");
1468    return QualType();
1469  }
1470
1471  bool Invalid = false;
1472  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
1473    // FIXME: Loc is too inprecise here, should use proper locations for args.
1474    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1475    if (ParamType->isVoidType()) {
1476      Diag(Loc, diag::err_param_with_void_type);
1477      Invalid = true;
1478    } else if (ParamType->isHalfType()) {
1479      // Disallow half FP arguments.
1480      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1481        FixItHint::CreateInsertion(Loc, "*");
1482      Invalid = true;
1483    }
1484
1485    ParamTypes[Idx] = ParamType;
1486  }
1487
1488  if (Invalid)
1489    return QualType();
1490
1491  FunctionProtoType::ExtProtoInfo EPI;
1492  EPI.Variadic = Variadic;
1493  EPI.HasTrailingReturn = HasTrailingReturn;
1494  EPI.TypeQuals = Quals;
1495  EPI.RefQualifier = RefQualifier;
1496  EPI.ExtInfo = Info;
1497
1498  return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
1499}
1500
1501/// \brief Build a member pointer type \c T Class::*.
1502///
1503/// \param T the type to which the member pointer refers.
1504/// \param Class the class type into which the member pointer points.
1505/// \param Loc the location where this type begins
1506/// \param Entity the name of the entity that will have this member pointer type
1507///
1508/// \returns a member pointer type, if successful, or a NULL type if there was
1509/// an error.
1510QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1511                                      SourceLocation Loc,
1512                                      DeclarationName Entity) {
1513  // Verify that we're not building a pointer to pointer to function with
1514  // exception specification.
1515  if (CheckDistantExceptionSpec(T)) {
1516    Diag(Loc, diag::err_distant_exception_spec);
1517
1518    // FIXME: If we're doing this as part of template instantiation,
1519    // we should return immediately.
1520
1521    // Build the type anyway, but use the canonical type so that the
1522    // exception specifiers are stripped off.
1523    T = Context.getCanonicalType(T);
1524  }
1525
1526  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1527  //   with reference type, or "cv void."
1528  if (T->isReferenceType()) {
1529    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1530      << (Entity? Entity.getAsString() : "type name") << T;
1531    return QualType();
1532  }
1533
1534  if (T->isVoidType()) {
1535    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1536      << (Entity? Entity.getAsString() : "type name");
1537    return QualType();
1538  }
1539
1540  if (!Class->isDependentType() && !Class->isRecordType()) {
1541    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1542    return QualType();
1543  }
1544
1545  // In the Microsoft ABI, the class is allowed to be an incomplete
1546  // type. In such cases, the compiler makes a worst-case assumption.
1547  // We make no such assumption right now, so emit an error if the
1548  // class isn't a complete type.
1549  if (Context.getTargetInfo().getCXXABI() == CXXABI_Microsoft &&
1550      RequireCompleteType(Loc, Class, diag::err_incomplete_type))
1551    return QualType();
1552
1553  return Context.getMemberPointerType(T, Class.getTypePtr());
1554}
1555
1556/// \brief Build a block pointer type.
1557///
1558/// \param T The type to which we'll be building a block pointer.
1559///
1560/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
1561///
1562/// \param Loc The location of the entity whose type involves this
1563/// block pointer type or, if there is no such entity, the location of the
1564/// type that will have block pointer type.
1565///
1566/// \param Entity The name of the entity that involves the block pointer
1567/// type, if known.
1568///
1569/// \returns A suitable block pointer type, if there are no
1570/// errors. Otherwise, returns a NULL type.
1571QualType Sema::BuildBlockPointerType(QualType T,
1572                                     SourceLocation Loc,
1573                                     DeclarationName Entity) {
1574  if (!T->isFunctionType()) {
1575    Diag(Loc, diag::err_nonfunction_block_type);
1576    return QualType();
1577  }
1578
1579  return Context.getBlockPointerType(T);
1580}
1581
1582QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1583  QualType QT = Ty.get();
1584  if (QT.isNull()) {
1585    if (TInfo) *TInfo = 0;
1586    return QualType();
1587  }
1588
1589  TypeSourceInfo *DI = 0;
1590  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1591    QT = LIT->getType();
1592    DI = LIT->getTypeSourceInfo();
1593  }
1594
1595  if (TInfo) *TInfo = DI;
1596  return QT;
1597}
1598
1599static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1600                                            Qualifiers::ObjCLifetime ownership,
1601                                            unsigned chunkIndex);
1602
1603/// Given that this is the declaration of a parameter under ARC,
1604/// attempt to infer attributes and such for pointer-to-whatever
1605/// types.
1606static void inferARCWriteback(TypeProcessingState &state,
1607                              QualType &declSpecType) {
1608  Sema &S = state.getSema();
1609  Declarator &declarator = state.getDeclarator();
1610
1611  // TODO: should we care about decl qualifiers?
1612
1613  // Check whether the declarator has the expected form.  We walk
1614  // from the inside out in order to make the block logic work.
1615  unsigned outermostPointerIndex = 0;
1616  bool isBlockPointer = false;
1617  unsigned numPointers = 0;
1618  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1619    unsigned chunkIndex = i;
1620    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1621    switch (chunk.Kind) {
1622    case DeclaratorChunk::Paren:
1623      // Ignore parens.
1624      break;
1625
1626    case DeclaratorChunk::Reference:
1627    case DeclaratorChunk::Pointer:
1628      // Count the number of pointers.  Treat references
1629      // interchangeably as pointers; if they're mis-ordered, normal
1630      // type building will discover that.
1631      outermostPointerIndex = chunkIndex;
1632      numPointers++;
1633      break;
1634
1635    case DeclaratorChunk::BlockPointer:
1636      // If we have a pointer to block pointer, that's an acceptable
1637      // indirect reference; anything else is not an application of
1638      // the rules.
1639      if (numPointers != 1) return;
1640      numPointers++;
1641      outermostPointerIndex = chunkIndex;
1642      isBlockPointer = true;
1643
1644      // We don't care about pointer structure in return values here.
1645      goto done;
1646
1647    case DeclaratorChunk::Array: // suppress if written (id[])?
1648    case DeclaratorChunk::Function:
1649    case DeclaratorChunk::MemberPointer:
1650      return;
1651    }
1652  }
1653 done:
1654
1655  // If we have *one* pointer, then we want to throw the qualifier on
1656  // the declaration-specifiers, which means that it needs to be a
1657  // retainable object type.
1658  if (numPointers == 1) {
1659    // If it's not a retainable object type, the rule doesn't apply.
1660    if (!declSpecType->isObjCRetainableType()) return;
1661
1662    // If it already has lifetime, don't do anything.
1663    if (declSpecType.getObjCLifetime()) return;
1664
1665    // Otherwise, modify the type in-place.
1666    Qualifiers qs;
1667
1668    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1669      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1670    else
1671      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1672    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1673
1674  // If we have *two* pointers, then we want to throw the qualifier on
1675  // the outermost pointer.
1676  } else if (numPointers == 2) {
1677    // If we don't have a block pointer, we need to check whether the
1678    // declaration-specifiers gave us something that will turn into a
1679    // retainable object pointer after we slap the first pointer on it.
1680    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1681      return;
1682
1683    // Look for an explicit lifetime attribute there.
1684    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1685    if (chunk.Kind != DeclaratorChunk::Pointer &&
1686        chunk.Kind != DeclaratorChunk::BlockPointer)
1687      return;
1688    for (const AttributeList *attr = chunk.getAttrs(); attr;
1689           attr = attr->getNext())
1690      if (attr->getKind() == AttributeList::AT_objc_ownership)
1691        return;
1692
1693    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1694                                          outermostPointerIndex);
1695
1696  // Any other number of pointers/references does not trigger the rule.
1697  } else return;
1698
1699  // TODO: mark whether we did this inference?
1700}
1701
1702static void DiagnoseIgnoredQualifiers(unsigned Quals,
1703                                      SourceLocation ConstQualLoc,
1704                                      SourceLocation VolatileQualLoc,
1705                                      SourceLocation RestrictQualLoc,
1706                                      Sema& S) {
1707  std::string QualStr;
1708  unsigned NumQuals = 0;
1709  SourceLocation Loc;
1710
1711  FixItHint ConstFixIt;
1712  FixItHint VolatileFixIt;
1713  FixItHint RestrictFixIt;
1714
1715  const SourceManager &SM = S.getSourceManager();
1716
1717  // FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
1718  // find a range and grow it to encompass all the qualifiers, regardless of
1719  // the order in which they textually appear.
1720  if (Quals & Qualifiers::Const) {
1721    ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
1722    QualStr = "const";
1723    ++NumQuals;
1724    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(ConstQualLoc, Loc))
1725      Loc = ConstQualLoc;
1726  }
1727  if (Quals & Qualifiers::Volatile) {
1728    VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
1729    QualStr += (NumQuals == 0 ? "volatile" : " volatile");
1730    ++NumQuals;
1731    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(VolatileQualLoc, Loc))
1732      Loc = VolatileQualLoc;
1733  }
1734  if (Quals & Qualifiers::Restrict) {
1735    RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
1736    QualStr += (NumQuals == 0 ? "restrict" : " restrict");
1737    ++NumQuals;
1738    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(RestrictQualLoc, Loc))
1739      Loc = RestrictQualLoc;
1740  }
1741
1742  assert(NumQuals > 0 && "No known qualifiers?");
1743
1744  S.Diag(Loc, diag::warn_qual_return_type)
1745    << QualStr << NumQuals << ConstFixIt << VolatileFixIt << RestrictFixIt;
1746}
1747
1748static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
1749                                             TypeSourceInfo *&ReturnTypeInfo) {
1750  Sema &SemaRef = state.getSema();
1751  Declarator &D = state.getDeclarator();
1752  QualType T;
1753  ReturnTypeInfo = 0;
1754
1755  // The TagDecl owned by the DeclSpec.
1756  TagDecl *OwnedTagDecl = 0;
1757
1758  switch (D.getName().getKind()) {
1759  case UnqualifiedId::IK_ImplicitSelfParam:
1760  case UnqualifiedId::IK_OperatorFunctionId:
1761  case UnqualifiedId::IK_Identifier:
1762  case UnqualifiedId::IK_LiteralOperatorId:
1763  case UnqualifiedId::IK_TemplateId:
1764    T = ConvertDeclSpecToType(state);
1765
1766    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
1767      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
1768      // Owned declaration is embedded in declarator.
1769      OwnedTagDecl->setEmbeddedInDeclarator(true);
1770    }
1771    break;
1772
1773  case UnqualifiedId::IK_ConstructorName:
1774  case UnqualifiedId::IK_ConstructorTemplateId:
1775  case UnqualifiedId::IK_DestructorName:
1776    // Constructors and destructors don't have return types. Use
1777    // "void" instead.
1778    T = SemaRef.Context.VoidTy;
1779    break;
1780
1781  case UnqualifiedId::IK_ConversionFunctionId:
1782    // The result type of a conversion function is the type that it
1783    // converts to.
1784    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
1785                                  &ReturnTypeInfo);
1786    break;
1787  }
1788
1789  if (D.getAttributes())
1790    distributeTypeAttrsFromDeclarator(state, T);
1791
1792  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
1793  // In C++11, a function declarator using 'auto' must have a trailing return
1794  // type (this is checked later) and we can skip this. In other languages
1795  // using auto, we need to check regardless.
1796  if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
1797      (!SemaRef.getLangOptions().CPlusPlus0x || !D.isFunctionDeclarator())) {
1798    int Error = -1;
1799
1800    switch (D.getContext()) {
1801    case Declarator::KNRTypeListContext:
1802      llvm_unreachable("K&R type lists aren't allowed in C++");
1803    case Declarator::LambdaExprContext:
1804      llvm_unreachable("Can't specify a type specifier in lambda grammar");
1805    case Declarator::ObjCParameterContext:
1806    case Declarator::ObjCResultContext:
1807    case Declarator::PrototypeContext:
1808      Error = 0; // Function prototype
1809      break;
1810    case Declarator::MemberContext:
1811      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
1812        break;
1813      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
1814      case TTK_Enum: llvm_unreachable("unhandled tag kind");
1815      case TTK_Struct: Error = 1; /* Struct member */ break;
1816      case TTK_Union:  Error = 2; /* Union member */ break;
1817      case TTK_Class:  Error = 3; /* Class member */ break;
1818      }
1819      break;
1820    case Declarator::CXXCatchContext:
1821    case Declarator::ObjCCatchContext:
1822      Error = 4; // Exception declaration
1823      break;
1824    case Declarator::TemplateParamContext:
1825      Error = 5; // Template parameter
1826      break;
1827    case Declarator::BlockLiteralContext:
1828      Error = 6; // Block literal
1829      break;
1830    case Declarator::TemplateTypeArgContext:
1831      Error = 7; // Template type argument
1832      break;
1833    case Declarator::AliasDeclContext:
1834    case Declarator::AliasTemplateContext:
1835      Error = 9; // Type alias
1836      break;
1837    case Declarator::TypeNameContext:
1838      Error = 11; // Generic
1839      break;
1840    case Declarator::FileContext:
1841    case Declarator::BlockContext:
1842    case Declarator::ForContext:
1843    case Declarator::ConditionContext:
1844    case Declarator::CXXNewContext:
1845      break;
1846    }
1847
1848    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1849      Error = 8;
1850
1851    // In Objective-C it is an error to use 'auto' on a function declarator.
1852    if (D.isFunctionDeclarator())
1853      Error = 10;
1854
1855    // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
1856    // contains a trailing return type. That is only legal at the outermost
1857    // level. Check all declarator chunks (outermost first) anyway, to give
1858    // better diagnostics.
1859    if (SemaRef.getLangOptions().CPlusPlus0x && Error != -1) {
1860      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1861        unsigned chunkIndex = e - i - 1;
1862        state.setCurrentChunkIndex(chunkIndex);
1863        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1864        if (DeclType.Kind == DeclaratorChunk::Function) {
1865          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1866          if (FTI.TrailingReturnType) {
1867            Error = -1;
1868            break;
1869          }
1870        }
1871      }
1872    }
1873
1874    if (Error != -1) {
1875      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1876                   diag::err_auto_not_allowed)
1877        << Error;
1878      T = SemaRef.Context.IntTy;
1879      D.setInvalidType(true);
1880    } else
1881      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1882                   diag::warn_cxx98_compat_auto_type_specifier);
1883  }
1884
1885  if (SemaRef.getLangOptions().CPlusPlus &&
1886      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
1887    // Check the contexts where C++ forbids the declaration of a new class
1888    // or enumeration in a type-specifier-seq.
1889    switch (D.getContext()) {
1890    case Declarator::FileContext:
1891    case Declarator::MemberContext:
1892    case Declarator::BlockContext:
1893    case Declarator::ForContext:
1894    case Declarator::BlockLiteralContext:
1895    case Declarator::LambdaExprContext:
1896      // C++11 [dcl.type]p3:
1897      //   A type-specifier-seq shall not define a class or enumeration unless
1898      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
1899      //   the declaration of a template-declaration.
1900    case Declarator::AliasDeclContext:
1901      break;
1902    case Declarator::AliasTemplateContext:
1903      SemaRef.Diag(OwnedTagDecl->getLocation(),
1904             diag::err_type_defined_in_alias_template)
1905        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1906      break;
1907    case Declarator::TypeNameContext:
1908    case Declarator::TemplateParamContext:
1909    case Declarator::CXXNewContext:
1910    case Declarator::CXXCatchContext:
1911    case Declarator::ObjCCatchContext:
1912    case Declarator::TemplateTypeArgContext:
1913      SemaRef.Diag(OwnedTagDecl->getLocation(),
1914             diag::err_type_defined_in_type_specifier)
1915        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1916      break;
1917    case Declarator::PrototypeContext:
1918    case Declarator::ObjCParameterContext:
1919    case Declarator::ObjCResultContext:
1920    case Declarator::KNRTypeListContext:
1921      // C++ [dcl.fct]p6:
1922      //   Types shall not be defined in return or parameter types.
1923      SemaRef.Diag(OwnedTagDecl->getLocation(),
1924                   diag::err_type_defined_in_param_type)
1925        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1926      break;
1927    case Declarator::ConditionContext:
1928      // C++ 6.4p2:
1929      // The type-specifier-seq shall not contain typedef and shall not declare
1930      // a new class or enumeration.
1931      SemaRef.Diag(OwnedTagDecl->getLocation(),
1932                   diag::err_type_defined_in_condition);
1933      break;
1934    }
1935  }
1936
1937  return T;
1938}
1939
1940std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy) {
1941  std::string Quals =
1942    Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
1943
1944  switch (FnTy->getRefQualifier()) {
1945  case RQ_None:
1946    break;
1947
1948  case RQ_LValue:
1949    if (!Quals.empty())
1950      Quals += ' ';
1951    Quals += '&';
1952    break;
1953
1954  case RQ_RValue:
1955    if (!Quals.empty())
1956      Quals += ' ';
1957    Quals += "&&";
1958    break;
1959  }
1960
1961  return Quals;
1962}
1963
1964/// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
1965/// can be contained within the declarator chunk DeclType, and produce an
1966/// appropriate diagnostic if not.
1967static void checkQualifiedFunction(Sema &S, QualType T,
1968                                   DeclaratorChunk &DeclType) {
1969  // C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
1970  // cv-qualifier or a ref-qualifier can only appear at the topmost level
1971  // of a type.
1972  int DiagKind = -1;
1973  switch (DeclType.Kind) {
1974  case DeclaratorChunk::Paren:
1975  case DeclaratorChunk::MemberPointer:
1976    // These cases are permitted.
1977    return;
1978  case DeclaratorChunk::Array:
1979  case DeclaratorChunk::Function:
1980    // These cases don't allow function types at all; no need to diagnose the
1981    // qualifiers separately.
1982    return;
1983  case DeclaratorChunk::BlockPointer:
1984    DiagKind = 0;
1985    break;
1986  case DeclaratorChunk::Pointer:
1987    DiagKind = 1;
1988    break;
1989  case DeclaratorChunk::Reference:
1990    DiagKind = 2;
1991    break;
1992  }
1993
1994  assert(DiagKind != -1);
1995  S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
1996    << DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
1997    << getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
1998}
1999
2000static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
2001                                                QualType declSpecType,
2002                                                TypeSourceInfo *TInfo) {
2003
2004  QualType T = declSpecType;
2005  Declarator &D = state.getDeclarator();
2006  Sema &S = state.getSema();
2007  ASTContext &Context = S.Context;
2008  const LangOptions &LangOpts = S.getLangOptions();
2009
2010  bool ImplicitlyNoexcept = false;
2011  if (D.getName().getKind() == UnqualifiedId::IK_OperatorFunctionId &&
2012      LangOpts.CPlusPlus0x) {
2013    OverloadedOperatorKind OO = D.getName().OperatorFunctionId.Operator;
2014    /// In C++0x, deallocation functions (normal and array operator delete)
2015    /// are implicitly noexcept.
2016    if (OO == OO_Delete || OO == OO_Array_Delete)
2017      ImplicitlyNoexcept = true;
2018  }
2019
2020  // The name we're declaring, if any.
2021  DeclarationName Name;
2022  if (D.getIdentifier())
2023    Name = D.getIdentifier();
2024
2025  // Does this declaration declare a typedef-name?
2026  bool IsTypedefName =
2027    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2028    D.getContext() == Declarator::AliasDeclContext ||
2029    D.getContext() == Declarator::AliasTemplateContext;
2030
2031  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2032  bool IsQualifiedFunction = T->isFunctionProtoType() &&
2033      (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
2034       T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
2035
2036  // Walk the DeclTypeInfo, building the recursive type as we go.
2037  // DeclTypeInfos are ordered from the identifier out, which is
2038  // opposite of what we want :).
2039  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2040    unsigned chunkIndex = e - i - 1;
2041    state.setCurrentChunkIndex(chunkIndex);
2042    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2043    if (IsQualifiedFunction) {
2044      checkQualifiedFunction(S, T, DeclType);
2045      IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
2046    }
2047    switch (DeclType.Kind) {
2048    case DeclaratorChunk::Paren:
2049      T = S.BuildParenType(T);
2050      break;
2051    case DeclaratorChunk::BlockPointer:
2052      // If blocks are disabled, emit an error.
2053      if (!LangOpts.Blocks)
2054        S.Diag(DeclType.Loc, diag::err_blocks_disable);
2055
2056      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
2057      if (DeclType.Cls.TypeQuals)
2058        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
2059      break;
2060    case DeclaratorChunk::Pointer:
2061      // Verify that we're not building a pointer to pointer to function with
2062      // exception specification.
2063      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2064        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2065        D.setInvalidType(true);
2066        // Build the type anyway.
2067      }
2068      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
2069        T = Context.getObjCObjectPointerType(T);
2070        if (DeclType.Ptr.TypeQuals)
2071          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2072        break;
2073      }
2074      T = S.BuildPointerType(T, DeclType.Loc, Name);
2075      if (DeclType.Ptr.TypeQuals)
2076        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2077
2078      break;
2079    case DeclaratorChunk::Reference: {
2080      // Verify that we're not building a reference to pointer to function with
2081      // exception specification.
2082      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2083        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2084        D.setInvalidType(true);
2085        // Build the type anyway.
2086      }
2087      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2088
2089      Qualifiers Quals;
2090      if (DeclType.Ref.HasRestrict)
2091        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2092      break;
2093    }
2094    case DeclaratorChunk::Array: {
2095      // Verify that we're not building an array of pointers to function with
2096      // exception specification.
2097      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2098        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2099        D.setInvalidType(true);
2100        // Build the type anyway.
2101      }
2102      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2103      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2104      ArrayType::ArraySizeModifier ASM;
2105      if (ATI.isStar)
2106        ASM = ArrayType::Star;
2107      else if (ATI.hasStatic)
2108        ASM = ArrayType::Static;
2109      else
2110        ASM = ArrayType::Normal;
2111      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2112        // FIXME: This check isn't quite right: it allows star in prototypes
2113        // for function definitions, and disallows some edge cases detailed
2114        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2115        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2116        ASM = ArrayType::Normal;
2117        D.setInvalidType(true);
2118      }
2119      T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2120                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2121      break;
2122    }
2123    case DeclaratorChunk::Function: {
2124      // If the function declarator has a prototype (i.e. it is not () and
2125      // does not have a K&R-style identifier list), then the arguments are part
2126      // of the type, otherwise the argument list is ().
2127      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2128      IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
2129
2130      // Check for auto functions and trailing return type and adjust the
2131      // return type accordingly.
2132      if (!D.isInvalidType()) {
2133        // trailing-return-type is only required if we're declaring a function,
2134        // and not, for instance, a pointer to a function.
2135        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2136            !FTI.TrailingReturnType && chunkIndex == 0) {
2137          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2138               diag::err_auto_missing_trailing_return);
2139          T = Context.IntTy;
2140          D.setInvalidType(true);
2141        } else if (FTI.TrailingReturnType) {
2142          // T must be exactly 'auto' at this point. See CWG issue 681.
2143          if (isa<ParenType>(T)) {
2144            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2145                 diag::err_trailing_return_in_parens)
2146              << T << D.getDeclSpec().getSourceRange();
2147            D.setInvalidType(true);
2148          } else if (D.getContext() != Declarator::LambdaExprContext &&
2149                     (T.hasQualifiers() || !isa<AutoType>(T))) {
2150            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2151                 diag::err_trailing_return_without_auto)
2152              << T << D.getDeclSpec().getSourceRange();
2153            D.setInvalidType(true);
2154          }
2155
2156          T = S.GetTypeFromParser(
2157            ParsedType::getFromOpaquePtr(FTI.TrailingReturnType),
2158            &TInfo);
2159        }
2160      }
2161
2162      // C99 6.7.5.3p1: The return type may not be a function or array type.
2163      // For conversion functions, we'll diagnose this particular error later.
2164      if ((T->isArrayType() || T->isFunctionType()) &&
2165          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2166        unsigned diagID = diag::err_func_returning_array_function;
2167        // Last processing chunk in block context means this function chunk
2168        // represents the block.
2169        if (chunkIndex == 0 &&
2170            D.getContext() == Declarator::BlockLiteralContext)
2171          diagID = diag::err_block_returning_array_function;
2172        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2173        T = Context.IntTy;
2174        D.setInvalidType(true);
2175      }
2176
2177      // Do not allow returning half FP value.
2178      // FIXME: This really should be in BuildFunctionType.
2179      if (T->isHalfType()) {
2180        S.Diag(D.getIdentifierLoc(),
2181             diag::err_parameters_retval_cannot_have_fp16_type) << 1
2182          << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
2183        D.setInvalidType(true);
2184      }
2185
2186      // cv-qualifiers on return types are pointless except when the type is a
2187      // class type in C++.
2188      if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
2189          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
2190          (!LangOpts.CPlusPlus || !T->isDependentType())) {
2191        assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
2192        DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2193        assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
2194
2195        DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
2196
2197        DiagnoseIgnoredQualifiers(PTI.TypeQuals,
2198            SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2199            SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2200            SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2201            S);
2202
2203      } else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
2204          (!LangOpts.CPlusPlus ||
2205           (!T->isDependentType() && !T->isRecordType()))) {
2206
2207        DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
2208                                  D.getDeclSpec().getConstSpecLoc(),
2209                                  D.getDeclSpec().getVolatileSpecLoc(),
2210                                  D.getDeclSpec().getRestrictSpecLoc(),
2211                                  S);
2212      }
2213
2214      if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2215        // C++ [dcl.fct]p6:
2216        //   Types shall not be defined in return or parameter types.
2217        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2218        if (Tag->isCompleteDefinition())
2219          S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2220            << Context.getTypeDeclType(Tag);
2221      }
2222
2223      // Exception specs are not allowed in typedefs. Complain, but add it
2224      // anyway.
2225      if (IsTypedefName && FTI.getExceptionSpecType())
2226        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2227          << (D.getContext() == Declarator::AliasDeclContext ||
2228              D.getContext() == Declarator::AliasTemplateContext);
2229
2230      if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2231        // Simple void foo(), where the incoming T is the result type.
2232        T = Context.getFunctionNoProtoType(T);
2233      } else {
2234        // We allow a zero-parameter variadic function in C if the
2235        // function is marked with the "overloadable" attribute. Scan
2236        // for this attribute now.
2237        if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2238          bool Overloadable = false;
2239          for (const AttributeList *Attrs = D.getAttributes();
2240               Attrs; Attrs = Attrs->getNext()) {
2241            if (Attrs->getKind() == AttributeList::AT_overloadable) {
2242              Overloadable = true;
2243              break;
2244            }
2245          }
2246
2247          if (!Overloadable)
2248            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2249        }
2250
2251        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2252          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2253          // definition.
2254          S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2255          D.setInvalidType(true);
2256          break;
2257        }
2258
2259        FunctionProtoType::ExtProtoInfo EPI;
2260        EPI.Variadic = FTI.isVariadic;
2261        EPI.HasTrailingReturn = FTI.TrailingReturnType;
2262        EPI.TypeQuals = FTI.TypeQuals;
2263        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2264                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2265                    : RQ_RValue;
2266
2267        // Otherwise, we have a function with an argument list that is
2268        // potentially variadic.
2269        SmallVector<QualType, 16> ArgTys;
2270        ArgTys.reserve(FTI.NumArgs);
2271
2272        SmallVector<bool, 16> ConsumedArguments;
2273        ConsumedArguments.reserve(FTI.NumArgs);
2274        bool HasAnyConsumedArguments = false;
2275
2276        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2277          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2278          QualType ArgTy = Param->getType();
2279          assert(!ArgTy.isNull() && "Couldn't parse type?");
2280
2281          // Adjust the parameter type.
2282          assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
2283                 "Unadjusted type?");
2284
2285          // Look for 'void'.  void is allowed only as a single argument to a
2286          // function with no other parameters (C99 6.7.5.3p10).  We record
2287          // int(void) as a FunctionProtoType with an empty argument list.
2288          if (ArgTy->isVoidType()) {
2289            // If this is something like 'float(int, void)', reject it.  'void'
2290            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2291            // have arguments of incomplete type.
2292            if (FTI.NumArgs != 1 || FTI.isVariadic) {
2293              S.Diag(DeclType.Loc, diag::err_void_only_param);
2294              ArgTy = Context.IntTy;
2295              Param->setType(ArgTy);
2296            } else if (FTI.ArgInfo[i].Ident) {
2297              // Reject, but continue to parse 'int(void abc)'.
2298              S.Diag(FTI.ArgInfo[i].IdentLoc,
2299                   diag::err_param_with_void_type);
2300              ArgTy = Context.IntTy;
2301              Param->setType(ArgTy);
2302            } else {
2303              // Reject, but continue to parse 'float(const void)'.
2304              if (ArgTy.hasQualifiers())
2305                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2306
2307              // Do not add 'void' to the ArgTys list.
2308              break;
2309            }
2310          } else if (ArgTy->isHalfType()) {
2311            // Disallow half FP arguments.
2312            // FIXME: This really should be in BuildFunctionType.
2313            S.Diag(Param->getLocation(),
2314               diag::err_parameters_retval_cannot_have_fp16_type) << 0
2315            << FixItHint::CreateInsertion(Param->getLocation(), "*");
2316            D.setInvalidType();
2317          } else if (!FTI.hasPrototype) {
2318            if (ArgTy->isPromotableIntegerType()) {
2319              ArgTy = Context.getPromotedIntegerType(ArgTy);
2320              Param->setKNRPromoted(true);
2321            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2322              if (BTy->getKind() == BuiltinType::Float) {
2323                ArgTy = Context.DoubleTy;
2324                Param->setKNRPromoted(true);
2325              }
2326            }
2327          }
2328
2329          if (LangOpts.ObjCAutoRefCount) {
2330            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2331            ConsumedArguments.push_back(Consumed);
2332            HasAnyConsumedArguments |= Consumed;
2333          }
2334
2335          ArgTys.push_back(ArgTy);
2336        }
2337
2338        if (HasAnyConsumedArguments)
2339          EPI.ConsumedArguments = ConsumedArguments.data();
2340
2341        SmallVector<QualType, 4> Exceptions;
2342        EPI.ExceptionSpecType = FTI.getExceptionSpecType();
2343        if (FTI.getExceptionSpecType() == EST_Dynamic) {
2344          Exceptions.reserve(FTI.NumExceptions);
2345          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
2346            // FIXME: Preserve type source info.
2347            QualType ET = S.GetTypeFromParser(FTI.Exceptions[ei].Ty);
2348            // Check that the type is valid for an exception spec, and
2349            // drop it if not.
2350            if (!S.CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
2351              Exceptions.push_back(ET);
2352          }
2353          EPI.NumExceptions = Exceptions.size();
2354          EPI.Exceptions = Exceptions.data();
2355        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2356          // If an error occurred, there's no expression here.
2357          if (Expr *NoexceptExpr = FTI.NoexceptExpr) {
2358            assert((NoexceptExpr->isTypeDependent() ||
2359                    NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
2360                        Context.BoolTy) &&
2361                 "Parser should have made sure that the expression is boolean");
2362            if (!NoexceptExpr->isValueDependent())
2363              NoexceptExpr = S.VerifyIntegerConstantExpression(NoexceptExpr, 0,
2364                S.PDiag(diag::err_noexcept_needs_constant_expression),
2365                /*AllowFold*/ false).take();
2366            EPI.NoexceptExpr = NoexceptExpr;
2367          }
2368        } else if (FTI.getExceptionSpecType() == EST_None &&
2369                   ImplicitlyNoexcept && chunkIndex == 0) {
2370          // Only the outermost chunk is marked noexcept, of course.
2371          EPI.ExceptionSpecType = EST_BasicNoexcept;
2372        }
2373
2374        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
2375      }
2376
2377      break;
2378    }
2379    case DeclaratorChunk::MemberPointer:
2380      // The scope spec must refer to a class, or be dependent.
2381      CXXScopeSpec &SS = DeclType.Mem.Scope();
2382      QualType ClsType;
2383      if (SS.isInvalid()) {
2384        // Avoid emitting extra errors if we already errored on the scope.
2385        D.setInvalidType(true);
2386      } else if (S.isDependentScopeSpecifier(SS) ||
2387                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
2388        NestedNameSpecifier *NNS
2389          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2390        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
2391        switch (NNS->getKind()) {
2392        case NestedNameSpecifier::Identifier:
2393          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
2394                                                 NNS->getAsIdentifier());
2395          break;
2396
2397        case NestedNameSpecifier::Namespace:
2398        case NestedNameSpecifier::NamespaceAlias:
2399        case NestedNameSpecifier::Global:
2400          llvm_unreachable("Nested-name-specifier must name a type");
2401
2402        case NestedNameSpecifier::TypeSpec:
2403        case NestedNameSpecifier::TypeSpecWithTemplate:
2404          ClsType = QualType(NNS->getAsType(), 0);
2405          // Note: if the NNS has a prefix and ClsType is a nondependent
2406          // TemplateSpecializationType, then the NNS prefix is NOT included
2407          // in ClsType; hence we wrap ClsType into an ElaboratedType.
2408          // NOTE: in particular, no wrap occurs if ClsType already is an
2409          // Elaborated, DependentName, or DependentTemplateSpecialization.
2410          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
2411            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
2412          break;
2413        }
2414      } else {
2415        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
2416             diag::err_illegal_decl_mempointer_in_nonclass)
2417          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
2418          << DeclType.Mem.Scope().getRange();
2419        D.setInvalidType(true);
2420      }
2421
2422      if (!ClsType.isNull())
2423        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
2424      if (T.isNull()) {
2425        T = Context.IntTy;
2426        D.setInvalidType(true);
2427      } else if (DeclType.Mem.TypeQuals) {
2428        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
2429      }
2430      break;
2431    }
2432
2433    if (T.isNull()) {
2434      D.setInvalidType(true);
2435      T = Context.IntTy;
2436    }
2437
2438    // See if there are any attributes on this declarator chunk.
2439    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
2440      processTypeAttrs(state, T, false, attrs);
2441  }
2442
2443  if (LangOpts.CPlusPlus && T->isFunctionType()) {
2444    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
2445    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
2446
2447    // C++ 8.3.5p4:
2448    //   A cv-qualifier-seq shall only be part of the function type
2449    //   for a nonstatic member function, the function type to which a pointer
2450    //   to member refers, or the top-level function type of a function typedef
2451    //   declaration.
2452    //
2453    // Core issue 547 also allows cv-qualifiers on function types that are
2454    // top-level template type arguments.
2455    bool FreeFunction;
2456    if (!D.getCXXScopeSpec().isSet()) {
2457      FreeFunction = ((D.getContext() != Declarator::MemberContext &&
2458                       D.getContext() != Declarator::LambdaExprContext) ||
2459                      D.getDeclSpec().isFriendSpecified());
2460    } else {
2461      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
2462      FreeFunction = (DC && !DC->isRecord());
2463    }
2464
2465    // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
2466    // function that is not a constructor declares that function to be const.
2467    if (D.getDeclSpec().isConstexprSpecified() && !FreeFunction &&
2468        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static &&
2469        D.getName().getKind() != UnqualifiedId::IK_ConstructorName &&
2470        D.getName().getKind() != UnqualifiedId::IK_ConstructorTemplateId &&
2471        !(FnTy->getTypeQuals() & DeclSpec::TQ_const)) {
2472      // Rebuild function type adding a 'const' qualifier.
2473      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2474      EPI.TypeQuals |= DeclSpec::TQ_const;
2475      T = Context.getFunctionType(FnTy->getResultType(),
2476                                  FnTy->arg_type_begin(),
2477                                  FnTy->getNumArgs(), EPI);
2478    }
2479
2480    // C++11 [dcl.fct]p6 (w/DR1417):
2481    // An attempt to specify a function type with a cv-qualifier-seq or a
2482    // ref-qualifier (including by typedef-name) is ill-formed unless it is:
2483    //  - the function type for a non-static member function,
2484    //  - the function type to which a pointer to member refers,
2485    //  - the top-level function type of a function typedef declaration or
2486    //    alias-declaration,
2487    //  - the type-id in the default argument of a type-parameter, or
2488    //  - the type-id of a template-argument for a type-parameter
2489    if (IsQualifiedFunction &&
2490        !(!FreeFunction &&
2491          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
2492        !IsTypedefName &&
2493        D.getContext() != Declarator::TemplateTypeArgContext) {
2494      SourceLocation Loc = D.getSourceRange().getBegin();
2495      SourceRange RemovalRange;
2496      unsigned I;
2497      if (D.isFunctionDeclarator(I)) {
2498        SmallVector<SourceLocation, 4> RemovalLocs;
2499        const DeclaratorChunk &Chunk = D.getTypeObject(I);
2500        assert(Chunk.Kind == DeclaratorChunk::Function);
2501        if (Chunk.Fun.hasRefQualifier())
2502          RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
2503        if (Chunk.Fun.TypeQuals & Qualifiers::Const)
2504          RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
2505        if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
2506          RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
2507        // FIXME: We do not track the location of the __restrict qualifier.
2508        //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
2509        //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
2510        if (!RemovalLocs.empty()) {
2511          std::sort(RemovalLocs.begin(), RemovalLocs.end(),
2512                    SourceManager::LocBeforeThanCompare(S.getSourceManager()));
2513          RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
2514          Loc = RemovalLocs.front();
2515        }
2516      }
2517
2518      S.Diag(Loc, diag::err_invalid_qualified_function_type)
2519        << FreeFunction << D.isFunctionDeclarator() << T
2520        << getFunctionQualifiersAsString(FnTy)
2521        << FixItHint::CreateRemoval(RemovalRange);
2522
2523      // Strip the cv-qualifiers and ref-qualifiers from the type.
2524      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2525      EPI.TypeQuals = 0;
2526      EPI.RefQualifier = RQ_None;
2527
2528      T = Context.getFunctionType(FnTy->getResultType(),
2529                                  FnTy->arg_type_begin(),
2530                                  FnTy->getNumArgs(), EPI);
2531    }
2532  }
2533
2534  // Apply any undistributed attributes from the declarator.
2535  if (!T.isNull())
2536    if (AttributeList *attrs = D.getAttributes())
2537      processTypeAttrs(state, T, false, attrs);
2538
2539  // Diagnose any ignored type attributes.
2540  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
2541
2542  // C++0x [dcl.constexpr]p9:
2543  //  A constexpr specifier used in an object declaration declares the object
2544  //  as const.
2545  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
2546    T.addConst();
2547  }
2548
2549  // If there was an ellipsis in the declarator, the declaration declares a
2550  // parameter pack whose type may be a pack expansion type.
2551  if (D.hasEllipsis() && !T.isNull()) {
2552    // C++0x [dcl.fct]p13:
2553    //   A declarator-id or abstract-declarator containing an ellipsis shall
2554    //   only be used in a parameter-declaration. Such a parameter-declaration
2555    //   is a parameter pack (14.5.3). [...]
2556    switch (D.getContext()) {
2557    case Declarator::PrototypeContext:
2558      // C++0x [dcl.fct]p13:
2559      //   [...] When it is part of a parameter-declaration-clause, the
2560      //   parameter pack is a function parameter pack (14.5.3). The type T
2561      //   of the declarator-id of the function parameter pack shall contain
2562      //   a template parameter pack; each template parameter pack in T is
2563      //   expanded by the function parameter pack.
2564      //
2565      // We represent function parameter packs as function parameters whose
2566      // type is a pack expansion.
2567      if (!T->containsUnexpandedParameterPack()) {
2568        S.Diag(D.getEllipsisLoc(),
2569             diag::err_function_parameter_pack_without_parameter_packs)
2570          << T <<  D.getSourceRange();
2571        D.setEllipsisLoc(SourceLocation());
2572      } else {
2573        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2574      }
2575      break;
2576
2577    case Declarator::TemplateParamContext:
2578      // C++0x [temp.param]p15:
2579      //   If a template-parameter is a [...] is a parameter-declaration that
2580      //   declares a parameter pack (8.3.5), then the template-parameter is a
2581      //   template parameter pack (14.5.3).
2582      //
2583      // Note: core issue 778 clarifies that, if there are any unexpanded
2584      // parameter packs in the type of the non-type template parameter, then
2585      // it expands those parameter packs.
2586      if (T->containsUnexpandedParameterPack())
2587        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2588      else
2589        S.Diag(D.getEllipsisLoc(),
2590               LangOpts.CPlusPlus0x
2591                 ? diag::warn_cxx98_compat_variadic_templates
2592                 : diag::ext_variadic_templates);
2593      break;
2594
2595    case Declarator::FileContext:
2596    case Declarator::KNRTypeListContext:
2597    case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
2598    case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
2599    case Declarator::TypeNameContext:
2600    case Declarator::CXXNewContext:
2601    case Declarator::AliasDeclContext:
2602    case Declarator::AliasTemplateContext:
2603    case Declarator::MemberContext:
2604    case Declarator::BlockContext:
2605    case Declarator::ForContext:
2606    case Declarator::ConditionContext:
2607    case Declarator::CXXCatchContext:
2608    case Declarator::ObjCCatchContext:
2609    case Declarator::BlockLiteralContext:
2610    case Declarator::LambdaExprContext:
2611    case Declarator::TemplateTypeArgContext:
2612      // FIXME: We may want to allow parameter packs in block-literal contexts
2613      // in the future.
2614      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
2615      D.setEllipsisLoc(SourceLocation());
2616      break;
2617    }
2618  }
2619
2620  if (T.isNull())
2621    return Context.getNullTypeSourceInfo();
2622  else if (D.isInvalidType())
2623    return Context.getTrivialTypeSourceInfo(T);
2624
2625  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
2626}
2627
2628/// GetTypeForDeclarator - Convert the type for the specified
2629/// declarator to Type instances.
2630///
2631/// The result of this call will never be null, but the associated
2632/// type may be a null type if there's an unrecoverable error.
2633TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
2634  // Determine the type of the declarator. Not all forms of declarator
2635  // have a type.
2636
2637  TypeProcessingState state(*this, D);
2638
2639  TypeSourceInfo *ReturnTypeInfo = 0;
2640  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2641  if (T.isNull())
2642    return Context.getNullTypeSourceInfo();
2643
2644  if (D.isPrototypeContext() && getLangOptions().ObjCAutoRefCount)
2645    inferARCWriteback(state, T);
2646
2647  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
2648}
2649
2650static void transferARCOwnershipToDeclSpec(Sema &S,
2651                                           QualType &declSpecTy,
2652                                           Qualifiers::ObjCLifetime ownership) {
2653  if (declSpecTy->isObjCRetainableType() &&
2654      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
2655    Qualifiers qs;
2656    qs.addObjCLifetime(ownership);
2657    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
2658  }
2659}
2660
2661static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2662                                            Qualifiers::ObjCLifetime ownership,
2663                                            unsigned chunkIndex) {
2664  Sema &S = state.getSema();
2665  Declarator &D = state.getDeclarator();
2666
2667  // Look for an explicit lifetime attribute.
2668  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
2669  for (const AttributeList *attr = chunk.getAttrs(); attr;
2670         attr = attr->getNext())
2671    if (attr->getKind() == AttributeList::AT_objc_ownership)
2672      return;
2673
2674  const char *attrStr = 0;
2675  switch (ownership) {
2676  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
2677  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
2678  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
2679  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
2680  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
2681  }
2682
2683  // If there wasn't one, add one (with an invalid source location
2684  // so that we don't make an AttributedType for it).
2685  AttributeList *attr = D.getAttributePool()
2686    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
2687            /*scope*/ 0, SourceLocation(),
2688            &S.Context.Idents.get(attrStr), SourceLocation(),
2689            /*args*/ 0, 0,
2690            /*declspec*/ false, /*C++0x*/ false);
2691  spliceAttrIntoList(*attr, chunk.getAttrListRef());
2692
2693  // TODO: mark whether we did this inference?
2694}
2695
2696/// \brief Used for transfering ownership in casts resulting in l-values.
2697static void transferARCOwnership(TypeProcessingState &state,
2698                                 QualType &declSpecTy,
2699                                 Qualifiers::ObjCLifetime ownership) {
2700  Sema &S = state.getSema();
2701  Declarator &D = state.getDeclarator();
2702
2703  int inner = -1;
2704  bool hasIndirection = false;
2705  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2706    DeclaratorChunk &chunk = D.getTypeObject(i);
2707    switch (chunk.Kind) {
2708    case DeclaratorChunk::Paren:
2709      // Ignore parens.
2710      break;
2711
2712    case DeclaratorChunk::Array:
2713    case DeclaratorChunk::Reference:
2714    case DeclaratorChunk::Pointer:
2715      if (inner != -1)
2716        hasIndirection = true;
2717      inner = i;
2718      break;
2719
2720    case DeclaratorChunk::BlockPointer:
2721      if (inner != -1)
2722        transferARCOwnershipToDeclaratorChunk(state, ownership, i);
2723      return;
2724
2725    case DeclaratorChunk::Function:
2726    case DeclaratorChunk::MemberPointer:
2727      return;
2728    }
2729  }
2730
2731  if (inner == -1)
2732    return;
2733
2734  DeclaratorChunk &chunk = D.getTypeObject(inner);
2735  if (chunk.Kind == DeclaratorChunk::Pointer) {
2736    if (declSpecTy->isObjCRetainableType())
2737      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2738    if (declSpecTy->isObjCObjectType() && hasIndirection)
2739      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
2740  } else {
2741    assert(chunk.Kind == DeclaratorChunk::Array ||
2742           chunk.Kind == DeclaratorChunk::Reference);
2743    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2744  }
2745}
2746
2747TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
2748  TypeProcessingState state(*this, D);
2749
2750  TypeSourceInfo *ReturnTypeInfo = 0;
2751  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2752  if (declSpecTy.isNull())
2753    return Context.getNullTypeSourceInfo();
2754
2755  if (getLangOptions().ObjCAutoRefCount) {
2756    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
2757    if (ownership != Qualifiers::OCL_None)
2758      transferARCOwnership(state, declSpecTy, ownership);
2759  }
2760
2761  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
2762}
2763
2764/// Map an AttributedType::Kind to an AttributeList::Kind.
2765static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
2766  switch (kind) {
2767  case AttributedType::attr_address_space:
2768    return AttributeList::AT_address_space;
2769  case AttributedType::attr_regparm:
2770    return AttributeList::AT_regparm;
2771  case AttributedType::attr_vector_size:
2772    return AttributeList::AT_vector_size;
2773  case AttributedType::attr_neon_vector_type:
2774    return AttributeList::AT_neon_vector_type;
2775  case AttributedType::attr_neon_polyvector_type:
2776    return AttributeList::AT_neon_polyvector_type;
2777  case AttributedType::attr_objc_gc:
2778    return AttributeList::AT_objc_gc;
2779  case AttributedType::attr_objc_ownership:
2780    return AttributeList::AT_objc_ownership;
2781  case AttributedType::attr_noreturn:
2782    return AttributeList::AT_noreturn;
2783  case AttributedType::attr_cdecl:
2784    return AttributeList::AT_cdecl;
2785  case AttributedType::attr_fastcall:
2786    return AttributeList::AT_fastcall;
2787  case AttributedType::attr_stdcall:
2788    return AttributeList::AT_stdcall;
2789  case AttributedType::attr_thiscall:
2790    return AttributeList::AT_thiscall;
2791  case AttributedType::attr_pascal:
2792    return AttributeList::AT_pascal;
2793  case AttributedType::attr_pcs:
2794    return AttributeList::AT_pcs;
2795  }
2796  llvm_unreachable("unexpected attribute kind!");
2797}
2798
2799static void fillAttributedTypeLoc(AttributedTypeLoc TL,
2800                                  const AttributeList *attrs) {
2801  AttributedType::Kind kind = TL.getAttrKind();
2802
2803  assert(attrs && "no type attributes in the expected location!");
2804  AttributeList::Kind parsedKind = getAttrListKind(kind);
2805  while (attrs->getKind() != parsedKind) {
2806    attrs = attrs->getNext();
2807    assert(attrs && "no matching attribute in expected location!");
2808  }
2809
2810  TL.setAttrNameLoc(attrs->getLoc());
2811  if (TL.hasAttrExprOperand())
2812    TL.setAttrExprOperand(attrs->getArg(0));
2813  else if (TL.hasAttrEnumOperand())
2814    TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
2815
2816  // FIXME: preserve this information to here.
2817  if (TL.hasAttrOperand())
2818    TL.setAttrOperandParensRange(SourceRange());
2819}
2820
2821namespace {
2822  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
2823    ASTContext &Context;
2824    const DeclSpec &DS;
2825
2826  public:
2827    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
2828      : Context(Context), DS(DS) {}
2829
2830    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
2831      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
2832      Visit(TL.getModifiedLoc());
2833    }
2834    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
2835      Visit(TL.getUnqualifiedLoc());
2836    }
2837    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
2838      TL.setNameLoc(DS.getTypeSpecTypeLoc());
2839    }
2840    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
2841      TL.setNameLoc(DS.getTypeSpecTypeLoc());
2842    }
2843    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
2844      // Handle the base type, which might not have been written explicitly.
2845      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
2846        TL.setHasBaseTypeAsWritten(false);
2847        TL.getBaseLoc().initialize(Context, SourceLocation());
2848      } else {
2849        TL.setHasBaseTypeAsWritten(true);
2850        Visit(TL.getBaseLoc());
2851      }
2852
2853      // Protocol qualifiers.
2854      if (DS.getProtocolQualifiers()) {
2855        assert(TL.getNumProtocols() > 0);
2856        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
2857        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
2858        TL.setRAngleLoc(DS.getSourceRange().getEnd());
2859        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
2860          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
2861      } else {
2862        assert(TL.getNumProtocols() == 0);
2863        TL.setLAngleLoc(SourceLocation());
2864        TL.setRAngleLoc(SourceLocation());
2865      }
2866    }
2867    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
2868      TL.setStarLoc(SourceLocation());
2869      Visit(TL.getPointeeLoc());
2870    }
2871    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
2872      TypeSourceInfo *TInfo = 0;
2873      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2874
2875      // If we got no declarator info from previous Sema routines,
2876      // just fill with the typespec loc.
2877      if (!TInfo) {
2878        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
2879        return;
2880      }
2881
2882      TypeLoc OldTL = TInfo->getTypeLoc();
2883      if (TInfo->getType()->getAs<ElaboratedType>()) {
2884        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
2885        TemplateSpecializationTypeLoc NamedTL =
2886          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
2887        TL.copy(NamedTL);
2888      }
2889      else
2890        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
2891    }
2892    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
2893      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
2894      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2895      TL.setParensRange(DS.getTypeofParensRange());
2896    }
2897    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
2898      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
2899      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2900      TL.setParensRange(DS.getTypeofParensRange());
2901      assert(DS.getRepAsType());
2902      TypeSourceInfo *TInfo = 0;
2903      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2904      TL.setUnderlyingTInfo(TInfo);
2905    }
2906    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
2907      // FIXME: This holds only because we only have one unary transform.
2908      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
2909      TL.setKWLoc(DS.getTypeSpecTypeLoc());
2910      TL.setParensRange(DS.getTypeofParensRange());
2911      assert(DS.getRepAsType());
2912      TypeSourceInfo *TInfo = 0;
2913      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2914      TL.setUnderlyingTInfo(TInfo);
2915    }
2916    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
2917      // By default, use the source location of the type specifier.
2918      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
2919      if (TL.needsExtraLocalData()) {
2920        // Set info for the written builtin specifiers.
2921        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
2922        // Try to have a meaningful source location.
2923        if (TL.getWrittenSignSpec() != TSS_unspecified)
2924          // Sign spec loc overrides the others (e.g., 'unsigned long').
2925          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
2926        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
2927          // Width spec loc overrides type spec loc (e.g., 'short int').
2928          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
2929      }
2930    }
2931    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
2932      ElaboratedTypeKeyword Keyword
2933        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2934      if (DS.getTypeSpecType() == TST_typename) {
2935        TypeSourceInfo *TInfo = 0;
2936        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2937        if (TInfo) {
2938          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
2939          return;
2940        }
2941      }
2942      TL.setElaboratedKeywordLoc(Keyword != ETK_None
2943                                 ? DS.getTypeSpecTypeLoc()
2944                                 : SourceLocation());
2945      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2946      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2947      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
2948    }
2949    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
2950      assert(DS.getTypeSpecType() == TST_typename);
2951      TypeSourceInfo *TInfo = 0;
2952      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2953      assert(TInfo);
2954      TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
2955    }
2956    void VisitDependentTemplateSpecializationTypeLoc(
2957                                 DependentTemplateSpecializationTypeLoc TL) {
2958      assert(DS.getTypeSpecType() == TST_typename);
2959      TypeSourceInfo *TInfo = 0;
2960      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2961      assert(TInfo);
2962      TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
2963                TInfo->getTypeLoc()));
2964    }
2965    void VisitTagTypeLoc(TagTypeLoc TL) {
2966      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2967    }
2968    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
2969      TL.setKWLoc(DS.getTypeSpecTypeLoc());
2970      TL.setParensRange(DS.getTypeofParensRange());
2971
2972      TypeSourceInfo *TInfo = 0;
2973      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2974      TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
2975    }
2976
2977    void VisitTypeLoc(TypeLoc TL) {
2978      // FIXME: add other typespec types and change this to an assert.
2979      TL.initialize(Context, DS.getTypeSpecTypeLoc());
2980    }
2981  };
2982
2983  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
2984    ASTContext &Context;
2985    const DeclaratorChunk &Chunk;
2986
2987  public:
2988    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
2989      : Context(Context), Chunk(Chunk) {}
2990
2991    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
2992      llvm_unreachable("qualified type locs not expected here!");
2993    }
2994
2995    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
2996      fillAttributedTypeLoc(TL, Chunk.getAttrs());
2997    }
2998    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
2999      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3000      TL.setCaretLoc(Chunk.Loc);
3001    }
3002    void VisitPointerTypeLoc(PointerTypeLoc TL) {
3003      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3004      TL.setStarLoc(Chunk.Loc);
3005    }
3006    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3007      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3008      TL.setStarLoc(Chunk.Loc);
3009    }
3010    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3011      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3012      const CXXScopeSpec& SS = Chunk.Mem.Scope();
3013      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3014
3015      const Type* ClsTy = TL.getClass();
3016      QualType ClsQT = QualType(ClsTy, 0);
3017      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3018      // Now copy source location info into the type loc component.
3019      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3020      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3021      case NestedNameSpecifier::Identifier:
3022        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3023        {
3024          DependentNameTypeLoc DNTLoc = cast<DependentNameTypeLoc>(ClsTL);
3025          DNTLoc.setElaboratedKeywordLoc(SourceLocation());
3026          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3027          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3028        }
3029        break;
3030
3031      case NestedNameSpecifier::TypeSpec:
3032      case NestedNameSpecifier::TypeSpecWithTemplate:
3033        if (isa<ElaboratedType>(ClsTy)) {
3034          ElaboratedTypeLoc ETLoc = *cast<ElaboratedTypeLoc>(&ClsTL);
3035          ETLoc.setElaboratedKeywordLoc(SourceLocation());
3036          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3037          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3038          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3039        } else {
3040          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3041        }
3042        break;
3043
3044      case NestedNameSpecifier::Namespace:
3045      case NestedNameSpecifier::NamespaceAlias:
3046      case NestedNameSpecifier::Global:
3047        llvm_unreachable("Nested-name-specifier must name a type");
3048      }
3049
3050      // Finally fill in MemberPointerLocInfo fields.
3051      TL.setStarLoc(Chunk.Loc);
3052      TL.setClassTInfo(ClsTInfo);
3053    }
3054    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3055      assert(Chunk.Kind == DeclaratorChunk::Reference);
3056      // 'Amp' is misleading: this might have been originally
3057      /// spelled with AmpAmp.
3058      TL.setAmpLoc(Chunk.Loc);
3059    }
3060    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3061      assert(Chunk.Kind == DeclaratorChunk::Reference);
3062      assert(!Chunk.Ref.LValueRef);
3063      TL.setAmpAmpLoc(Chunk.Loc);
3064    }
3065    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3066      assert(Chunk.Kind == DeclaratorChunk::Array);
3067      TL.setLBracketLoc(Chunk.Loc);
3068      TL.setRBracketLoc(Chunk.EndLoc);
3069      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3070    }
3071    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3072      assert(Chunk.Kind == DeclaratorChunk::Function);
3073      TL.setLocalRangeBegin(Chunk.Loc);
3074      TL.setLocalRangeEnd(Chunk.EndLoc);
3075      TL.setTrailingReturn(!!Chunk.Fun.TrailingReturnType);
3076
3077      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3078      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
3079        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3080        TL.setArg(tpi++, Param);
3081      }
3082      // FIXME: exception specs
3083    }
3084    void VisitParenTypeLoc(ParenTypeLoc TL) {
3085      assert(Chunk.Kind == DeclaratorChunk::Paren);
3086      TL.setLParenLoc(Chunk.Loc);
3087      TL.setRParenLoc(Chunk.EndLoc);
3088    }
3089
3090    void VisitTypeLoc(TypeLoc TL) {
3091      llvm_unreachable("unsupported TypeLoc kind in declarator!");
3092    }
3093  };
3094}
3095
3096/// \brief Create and instantiate a TypeSourceInfo with type source information.
3097///
3098/// \param T QualType referring to the type as written in source code.
3099///
3100/// \param ReturnTypeInfo For declarators whose return type does not show
3101/// up in the normal place in the declaration specifiers (such as a C++
3102/// conversion function), this pointer will refer to a type source information
3103/// for that return type.
3104TypeSourceInfo *
3105Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3106                                     TypeSourceInfo *ReturnTypeInfo) {
3107  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3108  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3109
3110  // Handle parameter packs whose type is a pack expansion.
3111  if (isa<PackExpansionType>(T)) {
3112    cast<PackExpansionTypeLoc>(CurrTL).setEllipsisLoc(D.getEllipsisLoc());
3113    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3114  }
3115
3116  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3117    while (isa<AttributedTypeLoc>(CurrTL)) {
3118      AttributedTypeLoc TL = cast<AttributedTypeLoc>(CurrTL);
3119      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3120      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3121    }
3122
3123    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3124    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3125  }
3126
3127  // If we have different source information for the return type, use
3128  // that.  This really only applies to C++ conversion functions.
3129  if (ReturnTypeInfo) {
3130    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3131    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3132    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3133  } else {
3134    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3135  }
3136
3137  return TInfo;
3138}
3139
3140/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3141ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3142  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3143  // and Sema during declaration parsing. Try deallocating/caching them when
3144  // it's appropriate, instead of allocating them and keeping them around.
3145  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3146                                                       TypeAlignment);
3147  new (LocT) LocInfoType(T, TInfo);
3148  assert(LocT->getTypeClass() != T->getTypeClass() &&
3149         "LocInfoType's TypeClass conflicts with an existing Type class");
3150  return ParsedType::make(QualType(LocT, 0));
3151}
3152
3153void LocInfoType::getAsStringInternal(std::string &Str,
3154                                      const PrintingPolicy &Policy) const {
3155  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3156         " was used directly instead of getting the QualType through"
3157         " GetTypeFromParser");
3158}
3159
3160TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3161  // C99 6.7.6: Type names have no identifier.  This is already validated by
3162  // the parser.
3163  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3164
3165  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3166  QualType T = TInfo->getType();
3167  if (D.isInvalidType())
3168    return true;
3169
3170  // Make sure there are no unused decl attributes on the declarator.
3171  // We don't want to do this for ObjC parameters because we're going
3172  // to apply them to the actual parameter declaration.
3173  if (D.getContext() != Declarator::ObjCParameterContext)
3174    checkUnusedDeclAttributes(D);
3175
3176  if (getLangOptions().CPlusPlus) {
3177    // Check that there are no default arguments (C++ only).
3178    CheckExtraCXXDefaultArguments(D);
3179  }
3180
3181  return CreateParsedType(T, TInfo);
3182}
3183
3184ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3185  QualType T = Context.getObjCInstanceType();
3186  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3187  return CreateParsedType(T, TInfo);
3188}
3189
3190
3191//===----------------------------------------------------------------------===//
3192// Type Attribute Processing
3193//===----------------------------------------------------------------------===//
3194
3195/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3196/// specified type.  The attribute contains 1 argument, the id of the address
3197/// space for the type.
3198static void HandleAddressSpaceTypeAttribute(QualType &Type,
3199                                            const AttributeList &Attr, Sema &S){
3200
3201  // If this type is already address space qualified, reject it.
3202  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3203  // qualifiers for two or more different address spaces."
3204  if (Type.getAddressSpace()) {
3205    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3206    Attr.setInvalid();
3207    return;
3208  }
3209
3210  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3211  // qualified by an address-space qualifier."
3212  if (Type->isFunctionType()) {
3213    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3214    Attr.setInvalid();
3215    return;
3216  }
3217
3218  // Check the attribute arguments.
3219  if (Attr.getNumArgs() != 1) {
3220    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3221    Attr.setInvalid();
3222    return;
3223  }
3224  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
3225  llvm::APSInt addrSpace(32);
3226  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3227      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3228    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
3229      << ASArgExpr->getSourceRange();
3230    Attr.setInvalid();
3231    return;
3232  }
3233
3234  // Bounds checking.
3235  if (addrSpace.isSigned()) {
3236    if (addrSpace.isNegative()) {
3237      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3238        << ASArgExpr->getSourceRange();
3239      Attr.setInvalid();
3240      return;
3241    }
3242    addrSpace.setIsSigned(false);
3243  }
3244  llvm::APSInt max(addrSpace.getBitWidth());
3245  max = Qualifiers::MaxAddressSpace;
3246  if (addrSpace > max) {
3247    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3248      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
3249    Attr.setInvalid();
3250    return;
3251  }
3252
3253  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3254  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3255}
3256
3257/// Does this type have a "direct" ownership qualifier?  That is,
3258/// is it written like "__strong id", as opposed to something like
3259/// "typeof(foo)", where that happens to be strong?
3260static bool hasDirectOwnershipQualifier(QualType type) {
3261  // Fast path: no qualifier at all.
3262  assert(type.getQualifiers().hasObjCLifetime());
3263
3264  while (true) {
3265    // __strong id
3266    if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
3267      if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
3268        return true;
3269
3270      type = attr->getModifiedType();
3271
3272    // X *__strong (...)
3273    } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
3274      type = paren->getInnerType();
3275
3276    // That's it for things we want to complain about.  In particular,
3277    // we do not want to look through typedefs, typeof(expr),
3278    // typeof(type), or any other way that the type is somehow
3279    // abstracted.
3280    } else {
3281
3282      return false;
3283    }
3284  }
3285}
3286
3287/// handleObjCOwnershipTypeAttr - Process an objc_ownership
3288/// attribute on the specified type.
3289///
3290/// Returns 'true' if the attribute was handled.
3291static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
3292                                       AttributeList &attr,
3293                                       QualType &type) {
3294  bool NonObjCPointer = false;
3295
3296  if (!type->isDependentType()) {
3297    if (const PointerType *ptr = type->getAs<PointerType>()) {
3298      QualType pointee = ptr->getPointeeType();
3299      if (pointee->isObjCRetainableType() || pointee->isPointerType())
3300        return false;
3301      // It is important not to lose the source info that there was an attribute
3302      // applied to non-objc pointer. We will create an attributed type but
3303      // its type will be the same as the original type.
3304      NonObjCPointer = true;
3305    } else if (!type->isObjCRetainableType()) {
3306      return false;
3307    }
3308  }
3309
3310  Sema &S = state.getSema();
3311  SourceLocation AttrLoc = attr.getLoc();
3312  if (AttrLoc.isMacroID())
3313    AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
3314
3315  if (!attr.getParameterName()) {
3316    S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
3317      << "objc_ownership" << 1;
3318    attr.setInvalid();
3319    return true;
3320  }
3321
3322  // Consume lifetime attributes without further comment outside of
3323  // ARC mode.
3324  if (!S.getLangOptions().ObjCAutoRefCount)
3325    return true;
3326
3327  Qualifiers::ObjCLifetime lifetime;
3328  if (attr.getParameterName()->isStr("none"))
3329    lifetime = Qualifiers::OCL_ExplicitNone;
3330  else if (attr.getParameterName()->isStr("strong"))
3331    lifetime = Qualifiers::OCL_Strong;
3332  else if (attr.getParameterName()->isStr("weak"))
3333    lifetime = Qualifiers::OCL_Weak;
3334  else if (attr.getParameterName()->isStr("autoreleasing"))
3335    lifetime = Qualifiers::OCL_Autoreleasing;
3336  else {
3337    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
3338      << "objc_ownership" << attr.getParameterName();
3339    attr.setInvalid();
3340    return true;
3341  }
3342
3343  SplitQualType underlyingType = type.split();
3344
3345  // Check for redundant/conflicting ownership qualifiers.
3346  if (Qualifiers::ObjCLifetime previousLifetime
3347        = type.getQualifiers().getObjCLifetime()) {
3348    // If it's written directly, that's an error.
3349    if (hasDirectOwnershipQualifier(type)) {
3350      S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
3351        << type;
3352      return true;
3353    }
3354
3355    // Otherwise, if the qualifiers actually conflict, pull sugar off
3356    // until we reach a type that is directly qualified.
3357    if (previousLifetime != lifetime) {
3358      // This should always terminate: the canonical type is
3359      // qualified, so some bit of sugar must be hiding it.
3360      while (!underlyingType.Quals.hasObjCLifetime()) {
3361        underlyingType = underlyingType.getSingleStepDesugaredType();
3362      }
3363      underlyingType.Quals.removeObjCLifetime();
3364    }
3365  }
3366
3367  underlyingType.Quals.addObjCLifetime(lifetime);
3368
3369  if (NonObjCPointer) {
3370    StringRef name = attr.getName()->getName();
3371    switch (lifetime) {
3372    case Qualifiers::OCL_None:
3373    case Qualifiers::OCL_ExplicitNone:
3374      break;
3375    case Qualifiers::OCL_Strong: name = "__strong"; break;
3376    case Qualifiers::OCL_Weak: name = "__weak"; break;
3377    case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
3378    }
3379    S.Diag(AttrLoc, diag::warn_objc_object_attribute_wrong_type)
3380      << name << type;
3381  }
3382
3383  QualType origType = type;
3384  if (!NonObjCPointer)
3385    type = S.Context.getQualifiedType(underlyingType);
3386
3387  // If we have a valid source location for the attribute, use an
3388  // AttributedType instead.
3389  if (AttrLoc.isValid())
3390    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
3391                                       origType, type);
3392
3393  // Forbid __weak if the runtime doesn't support it.
3394  if (lifetime == Qualifiers::OCL_Weak &&
3395      !S.getLangOptions().ObjCRuntimeHasWeak && !NonObjCPointer) {
3396
3397    // Actually, delay this until we know what we're parsing.
3398    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
3399      S.DelayedDiagnostics.add(
3400          sema::DelayedDiagnostic::makeForbiddenType(
3401              S.getSourceManager().getExpansionLoc(AttrLoc),
3402              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
3403    } else {
3404      S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
3405    }
3406
3407    attr.setInvalid();
3408    return true;
3409  }
3410
3411  // Forbid __weak for class objects marked as
3412  // objc_arc_weak_reference_unavailable
3413  if (lifetime == Qualifiers::OCL_Weak) {
3414    QualType T = type;
3415    while (const PointerType *ptr = T->getAs<PointerType>())
3416      T = ptr->getPointeeType();
3417    if (const ObjCObjectPointerType *ObjT = T->getAs<ObjCObjectPointerType>()) {
3418      ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl();
3419      if (Class->isArcWeakrefUnavailable()) {
3420          S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
3421          S.Diag(ObjT->getInterfaceDecl()->getLocation(),
3422                 diag::note_class_declared);
3423      }
3424    }
3425  }
3426
3427  return true;
3428}
3429
3430/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
3431/// attribute on the specified type.  Returns true to indicate that
3432/// the attribute was handled, false to indicate that the type does
3433/// not permit the attribute.
3434static bool handleObjCGCTypeAttr(TypeProcessingState &state,
3435                                 AttributeList &attr,
3436                                 QualType &type) {
3437  Sema &S = state.getSema();
3438
3439  // Delay if this isn't some kind of pointer.
3440  if (!type->isPointerType() &&
3441      !type->isObjCObjectPointerType() &&
3442      !type->isBlockPointerType())
3443    return false;
3444
3445  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
3446    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
3447    attr.setInvalid();
3448    return true;
3449  }
3450
3451  // Check the attribute arguments.
3452  if (!attr.getParameterName()) {
3453    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3454      << "objc_gc" << 1;
3455    attr.setInvalid();
3456    return true;
3457  }
3458  Qualifiers::GC GCAttr;
3459  if (attr.getNumArgs() != 0) {
3460    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3461    attr.setInvalid();
3462    return true;
3463  }
3464  if (attr.getParameterName()->isStr("weak"))
3465    GCAttr = Qualifiers::Weak;
3466  else if (attr.getParameterName()->isStr("strong"))
3467    GCAttr = Qualifiers::Strong;
3468  else {
3469    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3470      << "objc_gc" << attr.getParameterName();
3471    attr.setInvalid();
3472    return true;
3473  }
3474
3475  QualType origType = type;
3476  type = S.Context.getObjCGCQualType(origType, GCAttr);
3477
3478  // Make an attributed type to preserve the source information.
3479  if (attr.getLoc().isValid())
3480    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
3481                                       origType, type);
3482
3483  return true;
3484}
3485
3486namespace {
3487  /// A helper class to unwrap a type down to a function for the
3488  /// purposes of applying attributes there.
3489  ///
3490  /// Use:
3491  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
3492  ///   if (unwrapped.isFunctionType()) {
3493  ///     const FunctionType *fn = unwrapped.get();
3494  ///     // change fn somehow
3495  ///     T = unwrapped.wrap(fn);
3496  ///   }
3497  struct FunctionTypeUnwrapper {
3498    enum WrapKind {
3499      Desugar,
3500      Parens,
3501      Pointer,
3502      BlockPointer,
3503      Reference,
3504      MemberPointer
3505    };
3506
3507    QualType Original;
3508    const FunctionType *Fn;
3509    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
3510
3511    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
3512      while (true) {
3513        const Type *Ty = T.getTypePtr();
3514        if (isa<FunctionType>(Ty)) {
3515          Fn = cast<FunctionType>(Ty);
3516          return;
3517        } else if (isa<ParenType>(Ty)) {
3518          T = cast<ParenType>(Ty)->getInnerType();
3519          Stack.push_back(Parens);
3520        } else if (isa<PointerType>(Ty)) {
3521          T = cast<PointerType>(Ty)->getPointeeType();
3522          Stack.push_back(Pointer);
3523        } else if (isa<BlockPointerType>(Ty)) {
3524          T = cast<BlockPointerType>(Ty)->getPointeeType();
3525          Stack.push_back(BlockPointer);
3526        } else if (isa<MemberPointerType>(Ty)) {
3527          T = cast<MemberPointerType>(Ty)->getPointeeType();
3528          Stack.push_back(MemberPointer);
3529        } else if (isa<ReferenceType>(Ty)) {
3530          T = cast<ReferenceType>(Ty)->getPointeeType();
3531          Stack.push_back(Reference);
3532        } else {
3533          const Type *DTy = Ty->getUnqualifiedDesugaredType();
3534          if (Ty == DTy) {
3535            Fn = 0;
3536            return;
3537          }
3538
3539          T = QualType(DTy, 0);
3540          Stack.push_back(Desugar);
3541        }
3542      }
3543    }
3544
3545    bool isFunctionType() const { return (Fn != 0); }
3546    const FunctionType *get() const { return Fn; }
3547
3548    QualType wrap(Sema &S, const FunctionType *New) {
3549      // If T wasn't modified from the unwrapped type, do nothing.
3550      if (New == get()) return Original;
3551
3552      Fn = New;
3553      return wrap(S.Context, Original, 0);
3554    }
3555
3556  private:
3557    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
3558      if (I == Stack.size())
3559        return C.getQualifiedType(Fn, Old.getQualifiers());
3560
3561      // Build up the inner type, applying the qualifiers from the old
3562      // type to the new type.
3563      SplitQualType SplitOld = Old.split();
3564
3565      // As a special case, tail-recurse if there are no qualifiers.
3566      if (SplitOld.Quals.empty())
3567        return wrap(C, SplitOld.Ty, I);
3568      return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
3569    }
3570
3571    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
3572      if (I == Stack.size()) return QualType(Fn, 0);
3573
3574      switch (static_cast<WrapKind>(Stack[I++])) {
3575      case Desugar:
3576        // This is the point at which we potentially lose source
3577        // information.
3578        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
3579
3580      case Parens: {
3581        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
3582        return C.getParenType(New);
3583      }
3584
3585      case Pointer: {
3586        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
3587        return C.getPointerType(New);
3588      }
3589
3590      case BlockPointer: {
3591        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
3592        return C.getBlockPointerType(New);
3593      }
3594
3595      case MemberPointer: {
3596        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
3597        QualType New = wrap(C, OldMPT->getPointeeType(), I);
3598        return C.getMemberPointerType(New, OldMPT->getClass());
3599      }
3600
3601      case Reference: {
3602        const ReferenceType *OldRef = cast<ReferenceType>(Old);
3603        QualType New = wrap(C, OldRef->getPointeeType(), I);
3604        if (isa<LValueReferenceType>(OldRef))
3605          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
3606        else
3607          return C.getRValueReferenceType(New);
3608      }
3609      }
3610
3611      llvm_unreachable("unknown wrapping kind");
3612    }
3613  };
3614}
3615
3616/// Process an individual function attribute.  Returns true to
3617/// indicate that the attribute was handled, false if it wasn't.
3618static bool handleFunctionTypeAttr(TypeProcessingState &state,
3619                                   AttributeList &attr,
3620                                   QualType &type) {
3621  Sema &S = state.getSema();
3622
3623  FunctionTypeUnwrapper unwrapped(S, type);
3624
3625  if (attr.getKind() == AttributeList::AT_noreturn) {
3626    if (S.CheckNoReturnAttr(attr))
3627      return true;
3628
3629    // Delay if this is not a function type.
3630    if (!unwrapped.isFunctionType())
3631      return false;
3632
3633    // Otherwise we can process right away.
3634    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
3635    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3636    return true;
3637  }
3638
3639  // ns_returns_retained is not always a type attribute, but if we got
3640  // here, we're treating it as one right now.
3641  if (attr.getKind() == AttributeList::AT_ns_returns_retained) {
3642    assert(S.getLangOptions().ObjCAutoRefCount &&
3643           "ns_returns_retained treated as type attribute in non-ARC");
3644    if (attr.getNumArgs()) return true;
3645
3646    // Delay if this is not a function type.
3647    if (!unwrapped.isFunctionType())
3648      return false;
3649
3650    FunctionType::ExtInfo EI
3651      = unwrapped.get()->getExtInfo().withProducesResult(true);
3652    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3653    return true;
3654  }
3655
3656  if (attr.getKind() == AttributeList::AT_regparm) {
3657    unsigned value;
3658    if (S.CheckRegparmAttr(attr, value))
3659      return true;
3660
3661    // Delay if this is not a function type.
3662    if (!unwrapped.isFunctionType())
3663      return false;
3664
3665    // Diagnose regparm with fastcall.
3666    const FunctionType *fn = unwrapped.get();
3667    CallingConv CC = fn->getCallConv();
3668    if (CC == CC_X86FastCall) {
3669      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3670        << FunctionType::getNameForCallConv(CC)
3671        << "regparm";
3672      attr.setInvalid();
3673      return true;
3674    }
3675
3676    FunctionType::ExtInfo EI =
3677      unwrapped.get()->getExtInfo().withRegParm(value);
3678    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3679    return true;
3680  }
3681
3682  // Otherwise, a calling convention.
3683  CallingConv CC;
3684  if (S.CheckCallingConvAttr(attr, CC))
3685    return true;
3686
3687  // Delay if the type didn't work out to a function.
3688  if (!unwrapped.isFunctionType()) return false;
3689
3690  const FunctionType *fn = unwrapped.get();
3691  CallingConv CCOld = fn->getCallConv();
3692  if (S.Context.getCanonicalCallConv(CC) ==
3693      S.Context.getCanonicalCallConv(CCOld)) {
3694    FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
3695    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3696    return true;
3697  }
3698
3699  if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
3700    // Should we diagnose reapplications of the same convention?
3701    S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3702      << FunctionType::getNameForCallConv(CC)
3703      << FunctionType::getNameForCallConv(CCOld);
3704    attr.setInvalid();
3705    return true;
3706  }
3707
3708  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
3709  if (CC == CC_X86FastCall) {
3710    if (isa<FunctionNoProtoType>(fn)) {
3711      S.Diag(attr.getLoc(), diag::err_cconv_knr)
3712        << FunctionType::getNameForCallConv(CC);
3713      attr.setInvalid();
3714      return true;
3715    }
3716
3717    const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
3718    if (FnP->isVariadic()) {
3719      S.Diag(attr.getLoc(), diag::err_cconv_varargs)
3720        << FunctionType::getNameForCallConv(CC);
3721      attr.setInvalid();
3722      return true;
3723    }
3724
3725    // Also diagnose fastcall with regparm.
3726    if (fn->getHasRegParm()) {
3727      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3728        << "regparm"
3729        << FunctionType::getNameForCallConv(CC);
3730      attr.setInvalid();
3731      return true;
3732    }
3733  }
3734
3735  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
3736  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3737  return true;
3738}
3739
3740/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
3741static void HandleOpenCLImageAccessAttribute(QualType& CurType,
3742                                             const AttributeList &Attr,
3743                                             Sema &S) {
3744  // Check the attribute arguments.
3745  if (Attr.getNumArgs() != 1) {
3746    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3747    Attr.setInvalid();
3748    return;
3749  }
3750  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3751  llvm::APSInt arg(32);
3752  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3753      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
3754    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3755      << "opencl_image_access" << sizeExpr->getSourceRange();
3756    Attr.setInvalid();
3757    return;
3758  }
3759  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
3760  switch (iarg) {
3761  case CLIA_read_only:
3762  case CLIA_write_only:
3763  case CLIA_read_write:
3764    // Implemented in a separate patch
3765    break;
3766  default:
3767    // Implemented in a separate patch
3768    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3769      << sizeExpr->getSourceRange();
3770    Attr.setInvalid();
3771    break;
3772  }
3773}
3774
3775/// HandleVectorSizeAttribute - this attribute is only applicable to integral
3776/// and float scalars, although arrays, pointers, and function return values are
3777/// allowed in conjunction with this construct. Aggregates with this attribute
3778/// are invalid, even if they are of the same size as a corresponding scalar.
3779/// The raw attribute should contain precisely 1 argument, the vector size for
3780/// the variable, measured in bytes. If curType and rawAttr are well formed,
3781/// this routine will return a new vector type.
3782static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
3783                                 Sema &S) {
3784  // Check the attribute arguments.
3785  if (Attr.getNumArgs() != 1) {
3786    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3787    Attr.setInvalid();
3788    return;
3789  }
3790  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3791  llvm::APSInt vecSize(32);
3792  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3793      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
3794    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3795      << "vector_size" << sizeExpr->getSourceRange();
3796    Attr.setInvalid();
3797    return;
3798  }
3799  // the base type must be integer or float, and can't already be a vector.
3800  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
3801    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
3802    Attr.setInvalid();
3803    return;
3804  }
3805  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3806  // vecSize is specified in bytes - convert to bits.
3807  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
3808
3809  // the vector size needs to be an integral multiple of the type size.
3810  if (vectorSize % typeSize) {
3811    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3812      << sizeExpr->getSourceRange();
3813    Attr.setInvalid();
3814    return;
3815  }
3816  if (vectorSize == 0) {
3817    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
3818      << sizeExpr->getSourceRange();
3819    Attr.setInvalid();
3820    return;
3821  }
3822
3823  // Success! Instantiate the vector type, the number of elements is > 0, and
3824  // not required to be a power of 2, unlike GCC.
3825  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
3826                                    VectorType::GenericVector);
3827}
3828
3829/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
3830/// a type.
3831static void HandleExtVectorTypeAttr(QualType &CurType,
3832                                    const AttributeList &Attr,
3833                                    Sema &S) {
3834  Expr *sizeExpr;
3835
3836  // Special case where the argument is a template id.
3837  if (Attr.getParameterName()) {
3838    CXXScopeSpec SS;
3839    SourceLocation TemplateKWLoc;
3840    UnqualifiedId id;
3841    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
3842
3843    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
3844                                          id, false, false);
3845    if (Size.isInvalid())
3846      return;
3847
3848    sizeExpr = Size.get();
3849  } else {
3850    // check the attribute arguments.
3851    if (Attr.getNumArgs() != 1) {
3852      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3853      return;
3854    }
3855    sizeExpr = Attr.getArg(0);
3856  }
3857
3858  // Create the vector type.
3859  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
3860  if (!T.isNull())
3861    CurType = T;
3862}
3863
3864/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
3865/// "neon_polyvector_type" attributes are used to create vector types that
3866/// are mangled according to ARM's ABI.  Otherwise, these types are identical
3867/// to those created with the "vector_size" attribute.  Unlike "vector_size"
3868/// the argument to these Neon attributes is the number of vector elements,
3869/// not the vector size in bytes.  The vector width and element type must
3870/// match one of the standard Neon vector types.
3871static void HandleNeonVectorTypeAttr(QualType& CurType,
3872                                     const AttributeList &Attr, Sema &S,
3873                                     VectorType::VectorKind VecKind,
3874                                     const char *AttrName) {
3875  // Check the attribute arguments.
3876  if (Attr.getNumArgs() != 1) {
3877    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3878    Attr.setInvalid();
3879    return;
3880  }
3881  // The number of elements must be an ICE.
3882  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
3883  llvm::APSInt numEltsInt(32);
3884  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
3885      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
3886    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3887      << AttrName << numEltsExpr->getSourceRange();
3888    Attr.setInvalid();
3889    return;
3890  }
3891  // Only certain element types are supported for Neon vectors.
3892  const BuiltinType* BTy = CurType->getAs<BuiltinType>();
3893  if (!BTy ||
3894      (VecKind == VectorType::NeonPolyVector &&
3895       BTy->getKind() != BuiltinType::SChar &&
3896       BTy->getKind() != BuiltinType::Short) ||
3897      (BTy->getKind() != BuiltinType::SChar &&
3898       BTy->getKind() != BuiltinType::UChar &&
3899       BTy->getKind() != BuiltinType::Short &&
3900       BTy->getKind() != BuiltinType::UShort &&
3901       BTy->getKind() != BuiltinType::Int &&
3902       BTy->getKind() != BuiltinType::UInt &&
3903       BTy->getKind() != BuiltinType::LongLong &&
3904       BTy->getKind() != BuiltinType::ULongLong &&
3905       BTy->getKind() != BuiltinType::Float)) {
3906    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
3907    Attr.setInvalid();
3908    return;
3909  }
3910  // The total size of the vector must be 64 or 128 bits.
3911  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3912  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
3913  unsigned vecSize = typeSize * numElts;
3914  if (vecSize != 64 && vecSize != 128) {
3915    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
3916    Attr.setInvalid();
3917    return;
3918  }
3919
3920  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
3921}
3922
3923static void processTypeAttrs(TypeProcessingState &state, QualType &type,
3924                             bool isDeclSpec, AttributeList *attrs) {
3925  // Scan through and apply attributes to this type where it makes sense.  Some
3926  // attributes (such as __address_space__, __vector_size__, etc) apply to the
3927  // type, but others can be present in the type specifiers even though they
3928  // apply to the decl.  Here we apply type attributes and ignore the rest.
3929
3930  AttributeList *next;
3931  do {
3932    AttributeList &attr = *attrs;
3933    next = attr.getNext();
3934
3935    // Skip attributes that were marked to be invalid.
3936    if (attr.isInvalid())
3937      continue;
3938
3939    // If this is an attribute we can handle, do so now,
3940    // otherwise, add it to the FnAttrs list for rechaining.
3941    switch (attr.getKind()) {
3942    default: break;
3943
3944    case AttributeList::AT_may_alias:
3945      // FIXME: This attribute needs to actually be handled, but if we ignore
3946      // it it breaks large amounts of Linux software.
3947      attr.setUsedAsTypeAttr();
3948      break;
3949    case AttributeList::AT_address_space:
3950      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
3951      attr.setUsedAsTypeAttr();
3952      break;
3953    OBJC_POINTER_TYPE_ATTRS_CASELIST:
3954      if (!handleObjCPointerTypeAttr(state, attr, type))
3955        distributeObjCPointerTypeAttr(state, attr, type);
3956      attr.setUsedAsTypeAttr();
3957      break;
3958    case AttributeList::AT_vector_size:
3959      HandleVectorSizeAttr(type, attr, state.getSema());
3960      attr.setUsedAsTypeAttr();
3961      break;
3962    case AttributeList::AT_ext_vector_type:
3963      if (state.getDeclarator().getDeclSpec().getStorageClassSpec()
3964            != DeclSpec::SCS_typedef)
3965        HandleExtVectorTypeAttr(type, attr, state.getSema());
3966      attr.setUsedAsTypeAttr();
3967      break;
3968    case AttributeList::AT_neon_vector_type:
3969      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
3970                               VectorType::NeonVector, "neon_vector_type");
3971      attr.setUsedAsTypeAttr();
3972      break;
3973    case AttributeList::AT_neon_polyvector_type:
3974      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
3975                               VectorType::NeonPolyVector,
3976                               "neon_polyvector_type");
3977      attr.setUsedAsTypeAttr();
3978      break;
3979    case AttributeList::AT_opencl_image_access:
3980      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
3981      attr.setUsedAsTypeAttr();
3982      break;
3983
3984    case AttributeList::AT_ns_returns_retained:
3985      if (!state.getSema().getLangOptions().ObjCAutoRefCount)
3986	break;
3987      // fallthrough into the function attrs
3988
3989    FUNCTION_TYPE_ATTRS_CASELIST:
3990      attr.setUsedAsTypeAttr();
3991
3992      // Never process function type attributes as part of the
3993      // declaration-specifiers.
3994      if (isDeclSpec)
3995        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
3996
3997      // Otherwise, handle the possible delays.
3998      else if (!handleFunctionTypeAttr(state, attr, type))
3999        distributeFunctionTypeAttr(state, attr, type);
4000      break;
4001    }
4002  } while ((attrs = next));
4003}
4004
4005/// \brief Ensure that the type of the given expression is complete.
4006///
4007/// This routine checks whether the expression \p E has a complete type. If the
4008/// expression refers to an instantiable construct, that instantiation is
4009/// performed as needed to complete its type. Furthermore
4010/// Sema::RequireCompleteType is called for the expression's type (or in the
4011/// case of a reference type, the referred-to type).
4012///
4013/// \param E The expression whose type is required to be complete.
4014/// \param PD The partial diagnostic that will be printed out if the type cannot
4015/// be completed.
4016///
4017/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
4018/// otherwise.
4019bool Sema::RequireCompleteExprType(Expr *E, const PartialDiagnostic &PD,
4020                                   std::pair<SourceLocation,
4021                                             PartialDiagnostic> Note) {
4022  QualType T = E->getType();
4023
4024  // Fast path the case where the type is already complete.
4025  if (!T->isIncompleteType())
4026    return false;
4027
4028  // Incomplete array types may be completed by the initializer attached to
4029  // their definitions. For static data members of class templates we need to
4030  // instantiate the definition to get this initializer and complete the type.
4031  if (T->isIncompleteArrayType()) {
4032    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4033      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4034        if (Var->isStaticDataMember() &&
4035            Var->getInstantiatedFromStaticDataMember()) {
4036
4037          MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
4038          assert(MSInfo && "Missing member specialization information?");
4039          if (MSInfo->getTemplateSpecializationKind()
4040                != TSK_ExplicitSpecialization) {
4041            // If we don't already have a point of instantiation, this is it.
4042            if (MSInfo->getPointOfInstantiation().isInvalid()) {
4043              MSInfo->setPointOfInstantiation(E->getLocStart());
4044
4045              // This is a modification of an existing AST node. Notify
4046              // listeners.
4047              if (ASTMutationListener *L = getASTMutationListener())
4048                L->StaticDataMemberInstantiated(Var);
4049            }
4050
4051            InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
4052
4053            // Update the type to the newly instantiated definition's type both
4054            // here and within the expression.
4055            if (VarDecl *Def = Var->getDefinition()) {
4056              DRE->setDecl(Def);
4057              T = Def->getType();
4058              DRE->setType(T);
4059              E->setType(T);
4060            }
4061          }
4062
4063          // We still go on to try to complete the type independently, as it
4064          // may also require instantiations or diagnostics if it remains
4065          // incomplete.
4066        }
4067      }
4068    }
4069  }
4070
4071  // FIXME: Are there other cases which require instantiating something other
4072  // than the type to complete the type of an expression?
4073
4074  // Look through reference types and complete the referred type.
4075  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
4076    T = Ref->getPointeeType();
4077
4078  return RequireCompleteType(E->getExprLoc(), T, PD, Note);
4079}
4080
4081/// @brief Ensure that the type T is a complete type.
4082///
4083/// This routine checks whether the type @p T is complete in any
4084/// context where a complete type is required. If @p T is a complete
4085/// type, returns false. If @p T is a class template specialization,
4086/// this routine then attempts to perform class template
4087/// instantiation. If instantiation fails, or if @p T is incomplete
4088/// and cannot be completed, issues the diagnostic @p diag (giving it
4089/// the type @p T) and returns true.
4090///
4091/// @param Loc  The location in the source that the incomplete type
4092/// diagnostic should refer to.
4093///
4094/// @param T  The type that this routine is examining for completeness.
4095///
4096/// @param PD The partial diagnostic that will be printed out if T is not a
4097/// complete type.
4098///
4099/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
4100/// @c false otherwise.
4101bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4102                               const PartialDiagnostic &PD,
4103                               std::pair<SourceLocation,
4104                                         PartialDiagnostic> Note) {
4105  unsigned diag = PD.getDiagID();
4106
4107  // FIXME: Add this assertion to make sure we always get instantiation points.
4108  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
4109  // FIXME: Add this assertion to help us flush out problems with
4110  // checking for dependent types and type-dependent expressions.
4111  //
4112  //  assert(!T->isDependentType() &&
4113  //         "Can't ask whether a dependent type is complete");
4114
4115  // If we have a complete type, we're done.
4116  NamedDecl *Def = 0;
4117  if (!T->isIncompleteType(&Def)) {
4118    // If we know about the definition but it is not visible, complain.
4119    if (diag != 0 && Def && !LookupResult::isVisible(Def)) {
4120      // Suppress this error outside of a SFINAE context if we've already
4121      // emitted the error once for this type. There's no usefulness in
4122      // repeating the diagnostic.
4123      // FIXME: Add a Fix-It that imports the corresponding module or includes
4124      // the header.
4125      if (isSFINAEContext() || HiddenDefinitions.insert(Def)) {
4126        Diag(Loc, diag::err_module_private_definition) << T;
4127        Diag(Def->getLocation(), diag::note_previous_definition);
4128      }
4129    }
4130
4131    return false;
4132  }
4133
4134  const TagType *Tag = T->getAs<TagType>();
4135  const ObjCInterfaceType *IFace = 0;
4136
4137  if (Tag) {
4138    // Avoid diagnosing invalid decls as incomplete.
4139    if (Tag->getDecl()->isInvalidDecl())
4140      return true;
4141
4142    // Give the external AST source a chance to complete the type.
4143    if (Tag->getDecl()->hasExternalLexicalStorage()) {
4144      Context.getExternalSource()->CompleteType(Tag->getDecl());
4145      if (!Tag->isIncompleteType())
4146        return false;
4147    }
4148  }
4149  else if ((IFace = T->getAs<ObjCInterfaceType>())) {
4150    // Avoid diagnosing invalid decls as incomplete.
4151    if (IFace->getDecl()->isInvalidDecl())
4152      return true;
4153
4154    // Give the external AST source a chance to complete the type.
4155    if (IFace->getDecl()->hasExternalLexicalStorage()) {
4156      Context.getExternalSource()->CompleteType(IFace->getDecl());
4157      if (!IFace->isIncompleteType())
4158        return false;
4159    }
4160  }
4161
4162  // If we have a class template specialization or a class member of a
4163  // class template specialization, or an array with known size of such,
4164  // try to instantiate it.
4165  QualType MaybeTemplate = T;
4166  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
4167    MaybeTemplate = Array->getElementType();
4168  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
4169    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
4170          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
4171      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
4172        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
4173                                                      TSK_ImplicitInstantiation,
4174                                                      /*Complain=*/diag != 0);
4175    } else if (CXXRecordDecl *Rec
4176                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
4177      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
4178        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
4179        assert(MSInfo && "Missing member specialization information?");
4180        // This record was instantiated from a class within a template.
4181        if (MSInfo->getTemplateSpecializationKind()
4182                                               != TSK_ExplicitSpecialization)
4183          return InstantiateClass(Loc, Rec, Pattern,
4184                                  getTemplateInstantiationArgs(Rec),
4185                                  TSK_ImplicitInstantiation,
4186                                  /*Complain=*/diag != 0);
4187      }
4188    }
4189  }
4190
4191  if (diag == 0)
4192    return true;
4193
4194  // We have an incomplete type. Produce a diagnostic.
4195  Diag(Loc, PD) << T;
4196
4197  // If we have a note, produce it.
4198  if (!Note.first.isInvalid())
4199    Diag(Note.first, Note.second);
4200
4201  // If the type was a forward declaration of a class/struct/union
4202  // type, produce a note.
4203  if (Tag && !Tag->getDecl()->isInvalidDecl())
4204    Diag(Tag->getDecl()->getLocation(),
4205         Tag->isBeingDefined() ? diag::note_type_being_defined
4206                               : diag::note_forward_declaration)
4207      << QualType(Tag, 0);
4208
4209  // If the Objective-C class was a forward declaration, produce a note.
4210  if (IFace && !IFace->getDecl()->isInvalidDecl())
4211    Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
4212
4213  return true;
4214}
4215
4216bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4217                               const PartialDiagnostic &PD) {
4218  return RequireCompleteType(Loc, T, PD,
4219                             std::make_pair(SourceLocation(), PDiag(0)));
4220}
4221
4222bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4223                               unsigned DiagID) {
4224  return RequireCompleteType(Loc, T, PDiag(DiagID),
4225                             std::make_pair(SourceLocation(), PDiag(0)));
4226}
4227
4228/// @brief Ensure that the type T is a literal type.
4229///
4230/// This routine checks whether the type @p T is a literal type. If @p T is an
4231/// incomplete type, an attempt is made to complete it. If @p T is a literal
4232/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
4233/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
4234/// it the type @p T), along with notes explaining why the type is not a
4235/// literal type, and returns true.
4236///
4237/// @param Loc  The location in the source that the non-literal type
4238/// diagnostic should refer to.
4239///
4240/// @param T  The type that this routine is examining for literalness.
4241///
4242/// @param PD The partial diagnostic that will be printed out if T is not a
4243/// literal type.
4244///
4245/// @param AllowIncompleteType If true, an incomplete type will be considered
4246/// acceptable.
4247///
4248/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
4249/// @c false otherwise.
4250bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
4251                              const PartialDiagnostic &PD,
4252                              bool AllowIncompleteType) {
4253  assert(!T->isDependentType() && "type should not be dependent");
4254
4255  bool Incomplete = RequireCompleteType(Loc, T, 0);
4256  if (T->isLiteralType() ||
4257      (AllowIncompleteType && Incomplete && !T->isVoidType()))
4258    return false;
4259
4260  if (PD.getDiagID() == 0)
4261    return true;
4262
4263  Diag(Loc, PD) << T;
4264
4265  if (T->isVariableArrayType())
4266    return true;
4267
4268  const RecordType *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>();
4269  if (!RT)
4270    return true;
4271
4272  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4273
4274  // If the class has virtual base classes, then it's not an aggregate, and
4275  // cannot have any constexpr constructors, so is non-literal. This is better
4276  // to diagnose than the resulting absence of constexpr constructors.
4277  if (RD->getNumVBases()) {
4278    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
4279      << RD->isStruct() << RD->getNumVBases();
4280    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
4281           E = RD->vbases_end(); I != E; ++I)
4282      Diag(I->getSourceRange().getBegin(),
4283           diag::note_constexpr_virtual_base_here) << I->getSourceRange();
4284  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor()) {
4285    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
4286
4287    switch (RD->getTemplateSpecializationKind()) {
4288    case TSK_Undeclared:
4289    case TSK_ExplicitSpecialization:
4290      break;
4291
4292    case TSK_ImplicitInstantiation:
4293    case TSK_ExplicitInstantiationDeclaration:
4294    case TSK_ExplicitInstantiationDefinition:
4295      // If the base template had constexpr constructors which were
4296      // instantiated as non-constexpr constructors, explain why.
4297      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
4298           E = RD->ctor_end(); I != E; ++I) {
4299        if ((*I)->isCopyConstructor() || (*I)->isMoveConstructor())
4300          continue;
4301
4302        FunctionDecl *Base = (*I)->getInstantiatedFromMemberFunction();
4303        if (Base && Base->isConstexpr())
4304          CheckConstexprFunctionDecl(*I, CCK_NoteNonConstexprInstantiation);
4305      }
4306    }
4307  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
4308    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4309         E = RD->bases_end(); I != E; ++I) {
4310      if (!I->getType()->isLiteralType()) {
4311        Diag(I->getSourceRange().getBegin(),
4312             diag::note_non_literal_base_class)
4313          << RD << I->getType() << I->getSourceRange();
4314        return true;
4315      }
4316    }
4317    for (CXXRecordDecl::field_iterator I = RD->field_begin(),
4318         E = RD->field_end(); I != E; ++I) {
4319      if (!(*I)->getType()->isLiteralType()) {
4320        Diag((*I)->getLocation(), diag::note_non_literal_field)
4321          << RD << (*I) << (*I)->getType();
4322        return true;
4323      }
4324    }
4325  } else if (!RD->hasTrivialDestructor()) {
4326    // All fields and bases are of literal types, so have trivial destructors.
4327    // If this class's destructor is non-trivial it must be user-declared.
4328    CXXDestructorDecl *Dtor = RD->getDestructor();
4329    assert(Dtor && "class has literal fields and bases but no dtor?");
4330    if (!Dtor)
4331      return true;
4332
4333    Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
4334         diag::note_non_literal_user_provided_dtor :
4335         diag::note_non_literal_nontrivial_dtor) << RD;
4336  }
4337
4338  return true;
4339}
4340
4341/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
4342/// and qualified by the nested-name-specifier contained in SS.
4343QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
4344                                 const CXXScopeSpec &SS, QualType T) {
4345  if (T.isNull())
4346    return T;
4347  NestedNameSpecifier *NNS;
4348  if (SS.isValid())
4349    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4350  else {
4351    if (Keyword == ETK_None)
4352      return T;
4353    NNS = 0;
4354  }
4355  return Context.getElaboratedType(Keyword, NNS, T);
4356}
4357
4358QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
4359  ExprResult ER = CheckPlaceholderExpr(E);
4360  if (ER.isInvalid()) return QualType();
4361  E = ER.take();
4362
4363  if (!E->isTypeDependent()) {
4364    QualType T = E->getType();
4365    if (const TagType *TT = T->getAs<TagType>())
4366      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
4367  }
4368  return Context.getTypeOfExprType(E);
4369}
4370
4371QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
4372  ExprResult ER = CheckPlaceholderExpr(E);
4373  if (ER.isInvalid()) return QualType();
4374  E = ER.take();
4375
4376  return Context.getDecltypeType(E);
4377}
4378
4379QualType Sema::BuildUnaryTransformType(QualType BaseType,
4380                                       UnaryTransformType::UTTKind UKind,
4381                                       SourceLocation Loc) {
4382  switch (UKind) {
4383  case UnaryTransformType::EnumUnderlyingType:
4384    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
4385      Diag(Loc, diag::err_only_enums_have_underlying_types);
4386      return QualType();
4387    } else {
4388      QualType Underlying = BaseType;
4389      if (!BaseType->isDependentType()) {
4390        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
4391        assert(ED && "EnumType has no EnumDecl");
4392        DiagnoseUseOfDecl(ED, Loc);
4393        Underlying = ED->getIntegerType();
4394      }
4395      assert(!Underlying.isNull());
4396      return Context.getUnaryTransformType(BaseType, Underlying,
4397                                        UnaryTransformType::EnumUnderlyingType);
4398    }
4399  }
4400  llvm_unreachable("unknown unary transform type");
4401}
4402
4403QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
4404  if (!T->isDependentType()) {
4405    int DisallowedKind = -1;
4406    if (T->isIncompleteType())
4407      // FIXME: It isn't entirely clear whether incomplete atomic types
4408      // are allowed or not; for simplicity, ban them for the moment.
4409      DisallowedKind = 0;
4410    else if (T->isArrayType())
4411      DisallowedKind = 1;
4412    else if (T->isFunctionType())
4413      DisallowedKind = 2;
4414    else if (T->isReferenceType())
4415      DisallowedKind = 3;
4416    else if (T->isAtomicType())
4417      DisallowedKind = 4;
4418    else if (T.hasQualifiers())
4419      DisallowedKind = 5;
4420    else if (!T.isTriviallyCopyableType(Context))
4421      // Some other non-trivially-copyable type (probably a C++ class)
4422      DisallowedKind = 6;
4423
4424    if (DisallowedKind != -1) {
4425      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
4426      return QualType();
4427    }
4428
4429    // FIXME: Do we need any handling for ARC here?
4430  }
4431
4432  // Build the pointer type.
4433  return Context.getAtomicType(T);
4434}
4435