SemaType.cpp revision d9e25cd62162910982a8f4335438ef493b6d9696
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/SmallPtrSet.h"
24using namespace clang;
25
26/// \brief Perform adjustment on the parameter type of a function.
27///
28/// This routine adjusts the given parameter type @p T to the actual
29/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
30/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
31QualType Sema::adjustParameterType(QualType T) {
32  // C99 6.7.5.3p7:
33  if (T->isArrayType()) {
34    // C99 6.7.5.3p7:
35    //   A declaration of a parameter as "array of type" shall be
36    //   adjusted to "qualified pointer to type", where the type
37    //   qualifiers (if any) are those specified within the [ and ] of
38    //   the array type derivation.
39    return Context.getArrayDecayedType(T);
40  } else if (T->isFunctionType())
41    // C99 6.7.5.3p8:
42    //   A declaration of a parameter as "function returning type"
43    //   shall be adjusted to "pointer to function returning type", as
44    //   in 6.3.2.1.
45    return Context.getPointerType(T);
46
47  return T;
48}
49
50/// \brief Convert the specified declspec to the appropriate type
51/// object.
52/// \param DS  the declaration specifiers
53/// \param DeclLoc The location of the declarator identifier or invalid if none.
54/// \returns The type described by the declaration specifiers.  This function
55/// never returns null.
56QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS,
57                                     SourceLocation DeclLoc,
58                                     bool &isInvalid) {
59  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
60  // checking.
61  QualType Result;
62
63  switch (DS.getTypeSpecType()) {
64  case DeclSpec::TST_void:
65    Result = Context.VoidTy;
66    break;
67  case DeclSpec::TST_char:
68    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
69      Result = Context.CharTy;
70    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
71      Result = Context.SignedCharTy;
72    else {
73      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
74             "Unknown TSS value");
75      Result = Context.UnsignedCharTy;
76    }
77    break;
78  case DeclSpec::TST_wchar:
79    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
80      Result = Context.WCharTy;
81    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
82      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
83        << DS.getSpecifierName(DS.getTypeSpecType());
84      Result = Context.getSignedWCharType();
85    } else {
86      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
87        "Unknown TSS value");
88      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
89        << DS.getSpecifierName(DS.getTypeSpecType());
90      Result = Context.getUnsignedWCharType();
91    }
92    break;
93  case DeclSpec::TST_char16:
94      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
95        "Unknown TSS value");
96      Result = Context.Char16Ty;
97    break;
98  case DeclSpec::TST_char32:
99      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
100        "Unknown TSS value");
101      Result = Context.Char32Ty;
102    break;
103  case DeclSpec::TST_unspecified:
104    // "<proto1,proto2>" is an objc qualified ID with a missing id.
105    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
106      Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
107                                                (ObjCProtocolDecl**)PQ,
108                                                DS.getNumProtocolQualifiers());
109      break;
110    }
111
112    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
113    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
114    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
115    // Note that the one exception to this is function definitions, which are
116    // allowed to be completely missing a declspec.  This is handled in the
117    // parser already though by it pretending to have seen an 'int' in this
118    // case.
119    if (getLangOptions().ImplicitInt) {
120      // In C89 mode, we only warn if there is a completely missing declspec
121      // when one is not allowed.
122      if (DS.isEmpty()) {
123        if (DeclLoc.isInvalid())
124          DeclLoc = DS.getSourceRange().getBegin();
125        Diag(DeclLoc, diag::ext_missing_declspec)
126          << DS.getSourceRange()
127        << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
128                                                 "int");
129      }
130    } else if (!DS.hasTypeSpecifier()) {
131      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
132      // "At least one type specifier shall be given in the declaration
133      // specifiers in each declaration, and in the specifier-qualifier list in
134      // each struct declaration and type name."
135      // FIXME: Does Microsoft really have the implicit int extension in C++?
136      if (DeclLoc.isInvalid())
137        DeclLoc = DS.getSourceRange().getBegin();
138
139      if (getLangOptions().CPlusPlus && !getLangOptions().Microsoft) {
140        Diag(DeclLoc, diag::err_missing_type_specifier)
141          << DS.getSourceRange();
142
143        // When this occurs in C++ code, often something is very broken with the
144        // value being declared, poison it as invalid so we don't get chains of
145        // errors.
146        isInvalid = true;
147      } else {
148        Diag(DeclLoc, diag::ext_missing_type_specifier)
149          << DS.getSourceRange();
150      }
151    }
152
153    // FALL THROUGH.
154  case DeclSpec::TST_int: {
155    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
156      switch (DS.getTypeSpecWidth()) {
157      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
158      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
159      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
160      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
161      }
162    } else {
163      switch (DS.getTypeSpecWidth()) {
164      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
165      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
166      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
167      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
168      }
169    }
170    break;
171  }
172  case DeclSpec::TST_float: Result = Context.FloatTy; break;
173  case DeclSpec::TST_double:
174    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
175      Result = Context.LongDoubleTy;
176    else
177      Result = Context.DoubleTy;
178    break;
179  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
180  case DeclSpec::TST_decimal32:    // _Decimal32
181  case DeclSpec::TST_decimal64:    // _Decimal64
182  case DeclSpec::TST_decimal128:   // _Decimal128
183    Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
184    Result = Context.IntTy;
185    isInvalid = true;
186    break;
187  case DeclSpec::TST_class:
188  case DeclSpec::TST_enum:
189  case DeclSpec::TST_union:
190  case DeclSpec::TST_struct: {
191    Decl *D = static_cast<Decl *>(DS.getTypeRep());
192    assert(D && "Didn't get a decl for a class/enum/union/struct?");
193    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
194           DS.getTypeSpecSign() == 0 &&
195           "Can't handle qualifiers on typedef names yet!");
196    // TypeQuals handled by caller.
197    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
198
199    // In C++, make an ElaboratedType.
200    if (getLangOptions().CPlusPlus) {
201      TagDecl::TagKind Tag
202        = TagDecl::getTagKindForTypeSpec(DS.getTypeSpecType());
203      Result = Context.getElaboratedType(Result, Tag);
204    }
205
206    if (D->isInvalidDecl())
207      isInvalid = true;
208    break;
209  }
210  case DeclSpec::TST_typename: {
211    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
212           DS.getTypeSpecSign() == 0 &&
213           "Can't handle qualifiers on typedef names yet!");
214    Result = GetTypeFromParser(DS.getTypeRep());
215
216    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
217      if (const ObjCInterfaceType *Interface = Result->getAs<ObjCInterfaceType>())
218        // It would be nice if protocol qualifiers were only stored with the
219        // ObjCObjectPointerType. Unfortunately, this isn't possible due
220        // to the following typedef idiom (which is uncommon, but allowed):
221        //
222        // typedef Foo<P> T;
223        // static void func() {
224        //   Foo<P> *yy;
225        //   T *zz;
226        // }
227        Result = Context.getObjCInterfaceType(Interface->getDecl(),
228                                              (ObjCProtocolDecl**)PQ,
229                                              DS.getNumProtocolQualifiers());
230      else if (Result->isObjCIdType())
231        // id<protocol-list>
232        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy,
233                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
234      else if (Result->isObjCClassType()) {
235        if (DeclLoc.isInvalid())
236          DeclLoc = DS.getSourceRange().getBegin();
237        // Class<protocol-list>
238        Result = Context.getObjCObjectPointerType(Context.ObjCBuiltinClassTy,
239                        (ObjCProtocolDecl**)PQ, DS.getNumProtocolQualifiers());
240      } else {
241        if (DeclLoc.isInvalid())
242          DeclLoc = DS.getSourceRange().getBegin();
243        Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
244          << DS.getSourceRange();
245        isInvalid = true;
246      }
247    }
248
249    // If this is a reference to an invalid typedef, propagate the invalidity.
250    if (TypedefType *TDT = dyn_cast<TypedefType>(Result))
251      if (TDT->getDecl()->isInvalidDecl())
252        isInvalid = true;
253
254    // TypeQuals handled by caller.
255    break;
256  }
257  case DeclSpec::TST_typeofType:
258    // FIXME: Preserve type source info.
259    Result = GetTypeFromParser(DS.getTypeRep());
260    assert(!Result.isNull() && "Didn't get a type for typeof?");
261    // TypeQuals handled by caller.
262    Result = Context.getTypeOfType(Result);
263    break;
264  case DeclSpec::TST_typeofExpr: {
265    Expr *E = static_cast<Expr *>(DS.getTypeRep());
266    assert(E && "Didn't get an expression for typeof?");
267    // TypeQuals handled by caller.
268    Result = Context.getTypeOfExprType(E);
269    break;
270  }
271  case DeclSpec::TST_decltype: {
272    Expr *E = static_cast<Expr *>(DS.getTypeRep());
273    assert(E && "Didn't get an expression for decltype?");
274    // TypeQuals handled by caller.
275    Result = BuildDecltypeType(E);
276    if (Result.isNull()) {
277      Result = Context.IntTy;
278      isInvalid = true;
279    }
280    break;
281  }
282  case DeclSpec::TST_auto: {
283    // TypeQuals handled by caller.
284    Result = Context.UndeducedAutoTy;
285    break;
286  }
287
288  case DeclSpec::TST_error:
289    Result = Context.IntTy;
290    isInvalid = true;
291    break;
292  }
293
294  // Handle complex types.
295  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
296    if (getLangOptions().Freestanding)
297      Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
298    Result = Context.getComplexType(Result);
299  }
300
301  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
302         "FIXME: imaginary types not supported yet!");
303
304  // See if there are any attributes on the declspec that apply to the type (as
305  // opposed to the decl).
306  if (const AttributeList *AL = DS.getAttributes())
307    ProcessTypeAttributeList(Result, AL);
308
309  // Apply const/volatile/restrict qualifiers to T.
310  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
311
312    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
313    // or incomplete types shall not be restrict-qualified."  C++ also allows
314    // restrict-qualified references.
315    if (TypeQuals & DeclSpec::TQ_restrict) {
316      if (Result->isPointerType() || Result->isReferenceType()) {
317        QualType EltTy = Result->isPointerType() ?
318          Result->getAs<PointerType>()->getPointeeType() :
319          Result->getAs<ReferenceType>()->getPointeeType();
320
321        // If we have a pointer or reference, the pointee must have an object
322        // incomplete type.
323        if (!EltTy->isIncompleteOrObjectType()) {
324          Diag(DS.getRestrictSpecLoc(),
325               diag::err_typecheck_invalid_restrict_invalid_pointee)
326            << EltTy << DS.getSourceRange();
327          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
328        }
329      } else {
330        Diag(DS.getRestrictSpecLoc(),
331             diag::err_typecheck_invalid_restrict_not_pointer)
332          << Result << DS.getSourceRange();
333        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
334      }
335    }
336
337    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
338    // of a function type includes any type qualifiers, the behavior is
339    // undefined."
340    if (Result->isFunctionType() && TypeQuals) {
341      // Get some location to point at, either the C or V location.
342      SourceLocation Loc;
343      if (TypeQuals & DeclSpec::TQ_const)
344        Loc = DS.getConstSpecLoc();
345      else if (TypeQuals & DeclSpec::TQ_volatile)
346        Loc = DS.getVolatileSpecLoc();
347      else {
348        assert((TypeQuals & DeclSpec::TQ_restrict) &&
349               "Has CVR quals but not C, V, or R?");
350        Loc = DS.getRestrictSpecLoc();
351      }
352      Diag(Loc, diag::warn_typecheck_function_qualifiers)
353        << Result << DS.getSourceRange();
354    }
355
356    // C++ [dcl.ref]p1:
357    //   Cv-qualified references are ill-formed except when the
358    //   cv-qualifiers are introduced through the use of a typedef
359    //   (7.1.3) or of a template type argument (14.3), in which
360    //   case the cv-qualifiers are ignored.
361    // FIXME: Shouldn't we be checking SCS_typedef here?
362    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
363        TypeQuals && Result->isReferenceType()) {
364      TypeQuals &= ~DeclSpec::TQ_const;
365      TypeQuals &= ~DeclSpec::TQ_volatile;
366    }
367
368    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
369    Result = Context.getQualifiedType(Result, Quals);
370  }
371
372  return Result;
373}
374
375static std::string getPrintableNameForEntity(DeclarationName Entity) {
376  if (Entity)
377    return Entity.getAsString();
378
379  return "type name";
380}
381
382/// \brief Build a pointer type.
383///
384/// \param T The type to which we'll be building a pointer.
385///
386/// \param Quals The cvr-qualifiers to be applied to the pointer type.
387///
388/// \param Loc The location of the entity whose type involves this
389/// pointer type or, if there is no such entity, the location of the
390/// type that will have pointer type.
391///
392/// \param Entity The name of the entity that involves the pointer
393/// type, if known.
394///
395/// \returns A suitable pointer type, if there are no
396/// errors. Otherwise, returns a NULL type.
397QualType Sema::BuildPointerType(QualType T, unsigned Quals,
398                                SourceLocation Loc, DeclarationName Entity) {
399  if (T->isReferenceType()) {
400    // C++ 8.3.2p4: There shall be no ... pointers to references ...
401    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
402      << getPrintableNameForEntity(Entity);
403    return QualType();
404  }
405
406  Qualifiers Qs = Qualifiers::fromCVRMask(Quals);
407
408  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
409  // object or incomplete types shall not be restrict-qualified."
410  if (Qs.hasRestrict() && !T->isIncompleteOrObjectType()) {
411    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
412      << T;
413    Qs.removeRestrict();
414  }
415
416  // Build the pointer type.
417  return Context.getQualifiedType(Context.getPointerType(T), Qs);
418}
419
420/// \brief Build a reference type.
421///
422/// \param T The type to which we'll be building a reference.
423///
424/// \param CVR The cvr-qualifiers to be applied to the reference type.
425///
426/// \param Loc The location of the entity whose type involves this
427/// reference type or, if there is no such entity, the location of the
428/// type that will have reference type.
429///
430/// \param Entity The name of the entity that involves the reference
431/// type, if known.
432///
433/// \returns A suitable reference type, if there are no
434/// errors. Otherwise, returns a NULL type.
435QualType Sema::BuildReferenceType(QualType T, bool LValueRef, unsigned CVR,
436                                  SourceLocation Loc, DeclarationName Entity) {
437  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
438  if (LValueRef) {
439    if (const RValueReferenceType *R = T->getAs<RValueReferenceType>()) {
440      // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
441      //   reference to a type T, and attempt to create the type "lvalue
442      //   reference to cv TD" creates the type "lvalue reference to T".
443      // We use the qualifiers (restrict or none) of the original reference,
444      // not the new ones. This is consistent with GCC.
445      QualType LVRT = Context.getLValueReferenceType(R->getPointeeType());
446      return Context.getQualifiedType(LVRT, T.getQualifiers());
447    }
448  }
449  if (T->isReferenceType()) {
450    // C++ [dcl.ref]p4: There shall be no references to references.
451    //
452    // According to C++ DR 106, references to references are only
453    // diagnosed when they are written directly (e.g., "int & &"),
454    // but not when they happen via a typedef:
455    //
456    //   typedef int& intref;
457    //   typedef intref& intref2;
458    //
459    // Parser::ParseDeclaratorInternal diagnoses the case where
460    // references are written directly; here, we handle the
461    // collapsing of references-to-references as described in C++
462    // DR 106 and amended by C++ DR 540.
463    return T;
464  }
465
466  // C++ [dcl.ref]p1:
467  //   A declarator that specifies the type "reference to cv void"
468  //   is ill-formed.
469  if (T->isVoidType()) {
470    Diag(Loc, diag::err_reference_to_void);
471    return QualType();
472  }
473
474  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
475  // object or incomplete types shall not be restrict-qualified."
476  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
477    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
478      << T;
479    Quals.removeRestrict();
480  }
481
482  // C++ [dcl.ref]p1:
483  //   [...] Cv-qualified references are ill-formed except when the
484  //   cv-qualifiers are introduced through the use of a typedef
485  //   (7.1.3) or of a template type argument (14.3), in which case
486  //   the cv-qualifiers are ignored.
487  //
488  // We diagnose extraneous cv-qualifiers for the non-typedef,
489  // non-template type argument case within the parser. Here, we just
490  // ignore any extraneous cv-qualifiers.
491  Quals.removeConst();
492  Quals.removeVolatile();
493
494  // Handle restrict on references.
495  if (LValueRef)
496    return Context.getQualifiedType(Context.getLValueReferenceType(T), Quals);
497  return Context.getQualifiedType(Context.getRValueReferenceType(T), Quals);
498}
499
500/// \brief Build an array type.
501///
502/// \param T The type of each element in the array.
503///
504/// \param ASM C99 array size modifier (e.g., '*', 'static').
505///
506/// \param ArraySize Expression describing the size of the array.
507///
508/// \param Quals The cvr-qualifiers to be applied to the array's
509/// element type.
510///
511/// \param Loc The location of the entity whose type involves this
512/// array type or, if there is no such entity, the location of the
513/// type that will have array type.
514///
515/// \param Entity The name of the entity that involves the array
516/// type, if known.
517///
518/// \returns A suitable array type, if there are no errors. Otherwise,
519/// returns a NULL type.
520QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
521                              Expr *ArraySize, unsigned Quals,
522                              SourceRange Brackets, DeclarationName Entity) {
523
524  SourceLocation Loc = Brackets.getBegin();
525  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
526  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
527  if (RequireCompleteType(Loc, T,
528                             diag::err_illegal_decl_array_incomplete_type))
529    return QualType();
530
531  if (T->isFunctionType()) {
532    Diag(Loc, diag::err_illegal_decl_array_of_functions)
533      << getPrintableNameForEntity(Entity);
534    return QualType();
535  }
536
537  // C++ 8.3.2p4: There shall be no ... arrays of references ...
538  if (T->isReferenceType()) {
539    Diag(Loc, diag::err_illegal_decl_array_of_references)
540      << getPrintableNameForEntity(Entity);
541    return QualType();
542  }
543
544  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
545    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
546      << getPrintableNameForEntity(Entity);
547    return QualType();
548  }
549
550  if (const RecordType *EltTy = T->getAs<RecordType>()) {
551    // If the element type is a struct or union that contains a variadic
552    // array, accept it as a GNU extension: C99 6.7.2.1p2.
553    if (EltTy->getDecl()->hasFlexibleArrayMember())
554      Diag(Loc, diag::ext_flexible_array_in_array) << T;
555  } else if (T->isObjCInterfaceType()) {
556    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
557    return QualType();
558  }
559
560  // C99 6.7.5.2p1: The size expression shall have integer type.
561  if (ArraySize && !ArraySize->isTypeDependent() &&
562      !ArraySize->getType()->isIntegerType()) {
563    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
564      << ArraySize->getType() << ArraySize->getSourceRange();
565    ArraySize->Destroy(Context);
566    return QualType();
567  }
568  llvm::APSInt ConstVal(32);
569  if (!ArraySize) {
570    if (ASM == ArrayType::Star)
571      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
572    else
573      T = Context.getIncompleteArrayType(T, ASM, Quals);
574  } else if (ArraySize->isValueDependent()) {
575    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
576  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
577             (!T->isDependentType() && !T->isConstantSizeType())) {
578    // Per C99, a variable array is an array with either a non-constant
579    // size or an element type that has a non-constant-size
580    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
581  } else {
582    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
583    // have a value greater than zero.
584    if (ConstVal.isSigned()) {
585      if (ConstVal.isNegative()) {
586        Diag(ArraySize->getLocStart(),
587             diag::err_typecheck_negative_array_size)
588          << ArraySize->getSourceRange();
589        return QualType();
590      } else if (ConstVal == 0) {
591        // GCC accepts zero sized static arrays.
592        Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
593          << ArraySize->getSourceRange();
594      }
595    }
596    T = Context.getConstantArrayWithExprType(T, ConstVal, ArraySize,
597                                             ASM, Quals, Brackets);
598  }
599  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
600  if (!getLangOptions().C99) {
601    if (ArraySize && !ArraySize->isTypeDependent() &&
602        !ArraySize->isValueDependent() &&
603        !ArraySize->isIntegerConstantExpr(Context))
604      Diag(Loc, getLangOptions().CPlusPlus? diag::err_vla_cxx : diag::ext_vla);
605    else if (ASM != ArrayType::Normal || Quals != 0)
606      Diag(Loc,
607           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
608                                     : diag::ext_c99_array_usage);
609  }
610
611  return T;
612}
613
614/// \brief Build an ext-vector type.
615///
616/// Run the required checks for the extended vector type.
617QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
618                                  SourceLocation AttrLoc) {
619
620  Expr *Arg = (Expr *)ArraySize.get();
621
622  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
623  // in conjunction with complex types (pointers, arrays, functions, etc.).
624  if (!T->isDependentType() &&
625      !T->isIntegerType() && !T->isRealFloatingType()) {
626    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
627    return QualType();
628  }
629
630  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
631    llvm::APSInt vecSize(32);
632    if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
633      Diag(AttrLoc, diag::err_attribute_argument_not_int)
634      << "ext_vector_type" << Arg->getSourceRange();
635      return QualType();
636    }
637
638    // unlike gcc's vector_size attribute, the size is specified as the
639    // number of elements, not the number of bytes.
640    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
641
642    if (vectorSize == 0) {
643      Diag(AttrLoc, diag::err_attribute_zero_size)
644      << Arg->getSourceRange();
645      return QualType();
646    }
647
648    if (!T->isDependentType())
649      return Context.getExtVectorType(T, vectorSize);
650  }
651
652  return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
653                                                AttrLoc);
654}
655
656/// \brief Build a function type.
657///
658/// This routine checks the function type according to C++ rules and
659/// under the assumption that the result type and parameter types have
660/// just been instantiated from a template. It therefore duplicates
661/// some of the behavior of GetTypeForDeclarator, but in a much
662/// simpler form that is only suitable for this narrow use case.
663///
664/// \param T The return type of the function.
665///
666/// \param ParamTypes The parameter types of the function. This array
667/// will be modified to account for adjustments to the types of the
668/// function parameters.
669///
670/// \param NumParamTypes The number of parameter types in ParamTypes.
671///
672/// \param Variadic Whether this is a variadic function type.
673///
674/// \param Quals The cvr-qualifiers to be applied to the function type.
675///
676/// \param Loc The location of the entity whose type involves this
677/// function type or, if there is no such entity, the location of the
678/// type that will have function type.
679///
680/// \param Entity The name of the entity that involves the function
681/// type, if known.
682///
683/// \returns A suitable function type, if there are no
684/// errors. Otherwise, returns a NULL type.
685QualType Sema::BuildFunctionType(QualType T,
686                                 QualType *ParamTypes,
687                                 unsigned NumParamTypes,
688                                 bool Variadic, unsigned Quals,
689                                 SourceLocation Loc, DeclarationName Entity) {
690  if (T->isArrayType() || T->isFunctionType()) {
691    Diag(Loc, diag::err_func_returning_array_function) << T;
692    return QualType();
693  }
694
695  bool Invalid = false;
696  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
697    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
698    if (ParamType->isVoidType()) {
699      Diag(Loc, diag::err_param_with_void_type);
700      Invalid = true;
701    }
702
703    ParamTypes[Idx] = adjustFunctionParamType(ParamType);
704  }
705
706  if (Invalid)
707    return QualType();
708
709  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
710                                 Quals);
711}
712
713/// \brief Build a member pointer type \c T Class::*.
714///
715/// \param T the type to which the member pointer refers.
716/// \param Class the class type into which the member pointer points.
717/// \param CVR Qualifiers applied to the member pointer type
718/// \param Loc the location where this type begins
719/// \param Entity the name of the entity that will have this member pointer type
720///
721/// \returns a member pointer type, if successful, or a NULL type if there was
722/// an error.
723QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
724                                      unsigned CVR, SourceLocation Loc,
725                                      DeclarationName Entity) {
726  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
727
728  // Verify that we're not building a pointer to pointer to function with
729  // exception specification.
730  if (CheckDistantExceptionSpec(T)) {
731    Diag(Loc, diag::err_distant_exception_spec);
732
733    // FIXME: If we're doing this as part of template instantiation,
734    // we should return immediately.
735
736    // Build the type anyway, but use the canonical type so that the
737    // exception specifiers are stripped off.
738    T = Context.getCanonicalType(T);
739  }
740
741  // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
742  //   with reference type, or "cv void."
743  if (T->isReferenceType()) {
744    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
745      << (Entity? Entity.getAsString() : "type name");
746    return QualType();
747  }
748
749  if (T->isVoidType()) {
750    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
751      << (Entity? Entity.getAsString() : "type name");
752    return QualType();
753  }
754
755  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
756  // object or incomplete types shall not be restrict-qualified."
757  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
758    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
759      << T;
760
761    // FIXME: If we're doing this as part of template instantiation,
762    // we should return immediately.
763    Quals.removeRestrict();
764  }
765
766  if (!Class->isDependentType() && !Class->isRecordType()) {
767    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
768    return QualType();
769  }
770
771  return Context.getQualifiedType(
772           Context.getMemberPointerType(T, Class.getTypePtr()), Quals);
773}
774
775/// \brief Build a block pointer type.
776///
777/// \param T The type to which we'll be building a block pointer.
778///
779/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
780///
781/// \param Loc The location of the entity whose type involves this
782/// block pointer type or, if there is no such entity, the location of the
783/// type that will have block pointer type.
784///
785/// \param Entity The name of the entity that involves the block pointer
786/// type, if known.
787///
788/// \returns A suitable block pointer type, if there are no
789/// errors. Otherwise, returns a NULL type.
790QualType Sema::BuildBlockPointerType(QualType T, unsigned CVR,
791                                     SourceLocation Loc,
792                                     DeclarationName Entity) {
793  if (!T->isFunctionType()) {
794    Diag(Loc, diag::err_nonfunction_block_type);
795    return QualType();
796  }
797
798  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
799  return Context.getQualifiedType(Context.getBlockPointerType(T), Quals);
800}
801
802QualType Sema::GetTypeFromParser(TypeTy *Ty, DeclaratorInfo **DInfo) {
803  QualType QT = QualType::getFromOpaquePtr(Ty);
804  DeclaratorInfo *DI = 0;
805  if (LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
806    QT = LIT->getType();
807    DI = LIT->getDeclaratorInfo();
808  }
809
810  if (DInfo) *DInfo = DI;
811  return QT;
812}
813
814/// GetTypeForDeclarator - Convert the type for the specified
815/// declarator to Type instances. Skip the outermost Skip type
816/// objects.
817///
818/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
819/// owns the declaration of a type (e.g., the definition of a struct
820/// type), then *OwnedDecl will receive the owned declaration.
821QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
822                                    DeclaratorInfo **DInfo, unsigned Skip,
823                                    TagDecl **OwnedDecl) {
824  bool OmittedReturnType = false;
825
826  if (D.getContext() == Declarator::BlockLiteralContext
827      && Skip == 0
828      && !D.getDeclSpec().hasTypeSpecifier()
829      && (D.getNumTypeObjects() == 0
830          || (D.getNumTypeObjects() == 1
831              && D.getTypeObject(0).Kind == DeclaratorChunk::Function)))
832    OmittedReturnType = true;
833
834  // long long is a C99 feature.
835  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
836      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
837    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
838
839  // Determine the type of the declarator. Not all forms of declarator
840  // have a type.
841  QualType T;
842  switch (D.getKind()) {
843  case Declarator::DK_Abstract:
844  case Declarator::DK_Normal:
845  case Declarator::DK_Operator:
846  case Declarator::DK_TemplateId: {
847    const DeclSpec &DS = D.getDeclSpec();
848    if (OmittedReturnType) {
849      // We default to a dependent type initially.  Can be modified by
850      // the first return statement.
851      T = Context.DependentTy;
852    } else {
853      bool isInvalid = false;
854      T = ConvertDeclSpecToType(DS, D.getIdentifierLoc(), isInvalid);
855      if (isInvalid)
856        D.setInvalidType(true);
857      else if (OwnedDecl && DS.isTypeSpecOwned())
858        *OwnedDecl = cast<TagDecl>((Decl *)DS.getTypeRep());
859    }
860    break;
861  }
862
863  case Declarator::DK_Constructor:
864  case Declarator::DK_Destructor:
865  case Declarator::DK_Conversion:
866    // Constructors and destructors don't have return types. Use
867    // "void" instead. Conversion operators will check their return
868    // types separately.
869    T = Context.VoidTy;
870    break;
871  }
872
873  if (T == Context.UndeducedAutoTy) {
874    int Error = -1;
875
876    switch (D.getContext()) {
877    case Declarator::KNRTypeListContext:
878      assert(0 && "K&R type lists aren't allowed in C++");
879      break;
880    case Declarator::PrototypeContext:
881      Error = 0; // Function prototype
882      break;
883    case Declarator::MemberContext:
884      switch (cast<TagDecl>(CurContext)->getTagKind()) {
885      case TagDecl::TK_enum: assert(0 && "unhandled tag kind"); break;
886      case TagDecl::TK_struct: Error = 1; /* Struct member */ break;
887      case TagDecl::TK_union:  Error = 2; /* Union member */ break;
888      case TagDecl::TK_class:  Error = 3; /* Class member */ break;
889      }
890      break;
891    case Declarator::CXXCatchContext:
892      Error = 4; // Exception declaration
893      break;
894    case Declarator::TemplateParamContext:
895      Error = 5; // Template parameter
896      break;
897    case Declarator::BlockLiteralContext:
898      Error = 6;  // Block literal
899      break;
900    case Declarator::FileContext:
901    case Declarator::BlockContext:
902    case Declarator::ForContext:
903    case Declarator::ConditionContext:
904    case Declarator::TypeNameContext:
905      break;
906    }
907
908    if (Error != -1) {
909      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
910        << Error;
911      T = Context.IntTy;
912      D.setInvalidType(true);
913    }
914  }
915
916  // The name we're declaring, if any.
917  DeclarationName Name;
918  if (D.getIdentifier())
919    Name = D.getIdentifier();
920
921  bool ShouldBuildInfo = DInfo != 0;
922  // The QualType referring to the type as written in source code. We can't use
923  // T because it can change due to semantic analysis.
924  QualType SourceTy = T;
925
926  // Walk the DeclTypeInfo, building the recursive type as we go.
927  // DeclTypeInfos are ordered from the identifier out, which is
928  // opposite of what we want :).
929  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
930    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1+Skip);
931    switch (DeclType.Kind) {
932    default: assert(0 && "Unknown decltype!");
933    case DeclaratorChunk::BlockPointer:
934      if (ShouldBuildInfo) {
935        if (SourceTy->isFunctionType())
936          SourceTy
937            = Context.getQualifiedType(Context.getBlockPointerType(SourceTy),
938                             Qualifiers::fromCVRMask(DeclType.Cls.TypeQuals));
939        else
940          // If not function type Context::getBlockPointerType asserts,
941          // so just give up.
942          ShouldBuildInfo = false;
943      }
944
945      // If blocks are disabled, emit an error.
946      if (!LangOpts.Blocks)
947        Diag(DeclType.Loc, diag::err_blocks_disable);
948
949      T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(),
950                                Name);
951      break;
952    case DeclaratorChunk::Pointer:
953      //FIXME: Use ObjCObjectPointer for info when appropriate.
954      if (ShouldBuildInfo)
955        SourceTy = Context.getQualifiedType(Context.getPointerType(SourceTy),
956                             Qualifiers::fromCVRMask(DeclType.Ptr.TypeQuals));
957      // Verify that we're not building a pointer to pointer to function with
958      // exception specification.
959      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
960        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
961        D.setInvalidType(true);
962        // Build the type anyway.
963      }
964      if (getLangOptions().ObjC1 && T->isObjCInterfaceType()) {
965        const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>();
966        T = Context.getObjCObjectPointerType(T,
967                                         (ObjCProtocolDecl **)OIT->qual_begin(),
968                                         OIT->getNumProtocols());
969        break;
970      }
971      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
972      break;
973    case DeclaratorChunk::Reference: {
974      Qualifiers Quals;
975      if (DeclType.Ref.HasRestrict) Quals.addRestrict();
976
977      if (ShouldBuildInfo) {
978        if (DeclType.Ref.LValueRef)
979          SourceTy = Context.getLValueReferenceType(SourceTy);
980        else
981          SourceTy = Context.getRValueReferenceType(SourceTy);
982        SourceTy = Context.getQualifiedType(SourceTy, Quals);
983      }
984
985      // Verify that we're not building a reference to pointer to function with
986      // exception specification.
987      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
988        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
989        D.setInvalidType(true);
990        // Build the type anyway.
991      }
992      T = BuildReferenceType(T, DeclType.Ref.LValueRef, Quals,
993                             DeclType.Loc, Name);
994      break;
995    }
996    case DeclaratorChunk::Array: {
997      if (ShouldBuildInfo)
998        // We just need to get an array type, the exact type doesn't matter.
999        SourceTy = Context.getIncompleteArrayType(SourceTy, ArrayType::Normal,
1000                                                  DeclType.Arr.TypeQuals);
1001
1002      // Verify that we're not building an array of pointers to function with
1003      // exception specification.
1004      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1005        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1006        D.setInvalidType(true);
1007        // Build the type anyway.
1008      }
1009      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1010      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
1011      ArrayType::ArraySizeModifier ASM;
1012      if (ATI.isStar)
1013        ASM = ArrayType::Star;
1014      else if (ATI.hasStatic)
1015        ASM = ArrayType::Static;
1016      else
1017        ASM = ArrayType::Normal;
1018      if (ASM == ArrayType::Star &&
1019          D.getContext() != Declarator::PrototypeContext) {
1020        // FIXME: This check isn't quite right: it allows star in prototypes
1021        // for function definitions, and disallows some edge cases detailed
1022        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
1023        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
1024        ASM = ArrayType::Normal;
1025        D.setInvalidType(true);
1026      }
1027      T = BuildArrayType(T, ASM, ArraySize,
1028                         Qualifiers::fromCVRMask(ATI.TypeQuals),
1029                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
1030      break;
1031    }
1032    case DeclaratorChunk::Function: {
1033      if (ShouldBuildInfo) {
1034        const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1035        llvm::SmallVector<QualType, 16> ArgTys;
1036
1037        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1038          ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
1039          if (Param) {
1040            QualType ArgTy = adjustFunctionParamType(Param->getType());
1041
1042            ArgTys.push_back(ArgTy);
1043          }
1044        }
1045        SourceTy = Context.getFunctionType(SourceTy, ArgTys.data(),
1046                                           ArgTys.size(),
1047                                           FTI.isVariadic,
1048                                           FTI.TypeQuals);
1049      }
1050
1051      // If the function declarator has a prototype (i.e. it is not () and
1052      // does not have a K&R-style identifier list), then the arguments are part
1053      // of the type, otherwise the argument list is ().
1054      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1055
1056      // C99 6.7.5.3p1: The return type may not be a function or array type.
1057      if (T->isArrayType() || T->isFunctionType()) {
1058        Diag(DeclType.Loc, diag::err_func_returning_array_function) << T;
1059        T = Context.IntTy;
1060        D.setInvalidType(true);
1061      }
1062
1063      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
1064        // C++ [dcl.fct]p6:
1065        //   Types shall not be defined in return or parameter types.
1066        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
1067        if (Tag->isDefinition())
1068          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
1069            << Context.getTypeDeclType(Tag);
1070      }
1071
1072      // Exception specs are not allowed in typedefs. Complain, but add it
1073      // anyway.
1074      if (FTI.hasExceptionSpec &&
1075          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1076        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
1077
1078      if (FTI.NumArgs == 0) {
1079        if (getLangOptions().CPlusPlus) {
1080          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
1081          // function takes no arguments.
1082          llvm::SmallVector<QualType, 4> Exceptions;
1083          Exceptions.reserve(FTI.NumExceptions);
1084          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1085            // FIXME: Preserve type source info.
1086            QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1087            // Check that the type is valid for an exception spec, and drop it
1088            // if not.
1089            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1090              Exceptions.push_back(ET);
1091          }
1092          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
1093                                      FTI.hasExceptionSpec,
1094                                      FTI.hasAnyExceptionSpec,
1095                                      Exceptions.size(), Exceptions.data());
1096        } else if (FTI.isVariadic) {
1097          // We allow a zero-parameter variadic function in C if the
1098          // function is marked with the "overloadable"
1099          // attribute. Scan for this attribute now.
1100          bool Overloadable = false;
1101          for (const AttributeList *Attrs = D.getAttributes();
1102               Attrs; Attrs = Attrs->getNext()) {
1103            if (Attrs->getKind() == AttributeList::AT_overloadable) {
1104              Overloadable = true;
1105              break;
1106            }
1107          }
1108
1109          if (!Overloadable)
1110            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
1111          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0);
1112        } else {
1113          // Simple void foo(), where the incoming T is the result type.
1114          T = Context.getFunctionNoProtoType(T);
1115        }
1116      } else if (FTI.ArgInfo[0].Param == 0) {
1117        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
1118        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
1119      } else {
1120        // Otherwise, we have a function with an argument list that is
1121        // potentially variadic.
1122        llvm::SmallVector<QualType, 16> ArgTys;
1123
1124        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1125          ParmVarDecl *Param =
1126            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
1127          QualType ArgTy = Param->getType();
1128          assert(!ArgTy.isNull() && "Couldn't parse type?");
1129
1130          // Adjust the parameter type.
1131          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1132
1133          // Look for 'void'.  void is allowed only as a single argument to a
1134          // function with no other parameters (C99 6.7.5.3p10).  We record
1135          // int(void) as a FunctionProtoType with an empty argument list.
1136          if (ArgTy->isVoidType()) {
1137            // If this is something like 'float(int, void)', reject it.  'void'
1138            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1139            // have arguments of incomplete type.
1140            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1141              Diag(DeclType.Loc, diag::err_void_only_param);
1142              ArgTy = Context.IntTy;
1143              Param->setType(ArgTy);
1144            } else if (FTI.ArgInfo[i].Ident) {
1145              // Reject, but continue to parse 'int(void abc)'.
1146              Diag(FTI.ArgInfo[i].IdentLoc,
1147                   diag::err_param_with_void_type);
1148              ArgTy = Context.IntTy;
1149              Param->setType(ArgTy);
1150            } else {
1151              // Reject, but continue to parse 'float(const void)'.
1152              if (ArgTy.hasQualifiers())
1153                Diag(DeclType.Loc, diag::err_void_param_qualified);
1154
1155              // Do not add 'void' to the ArgTys list.
1156              break;
1157            }
1158          } else if (!FTI.hasPrototype) {
1159            if (ArgTy->isPromotableIntegerType()) {
1160              ArgTy = Context.getPromotedIntegerType(ArgTy);
1161            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
1162              if (BTy->getKind() == BuiltinType::Float)
1163                ArgTy = Context.DoubleTy;
1164            }
1165          }
1166
1167          ArgTys.push_back(adjustFunctionParamType(ArgTy));
1168        }
1169
1170        llvm::SmallVector<QualType, 4> Exceptions;
1171        Exceptions.reserve(FTI.NumExceptions);
1172        for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1173          // FIXME: Preserve type source info.
1174          QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1175          // Check that the type is valid for an exception spec, and drop it if
1176          // not.
1177          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1178            Exceptions.push_back(ET);
1179        }
1180
1181        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
1182                                    FTI.isVariadic, FTI.TypeQuals,
1183                                    FTI.hasExceptionSpec,
1184                                    FTI.hasAnyExceptionSpec,
1185                                    Exceptions.size(), Exceptions.data());
1186      }
1187      break;
1188    }
1189    case DeclaratorChunk::MemberPointer:
1190      // Verify that we're not building a pointer to pointer to function with
1191      // exception specification.
1192      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1193        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1194        D.setInvalidType(true);
1195        // Build the type anyway.
1196      }
1197      // The scope spec must refer to a class, or be dependent.
1198      QualType ClsType;
1199      if (isDependentScopeSpecifier(DeclType.Mem.Scope())) {
1200        NestedNameSpecifier *NNS
1201          = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
1202        assert(NNS->getAsType() && "Nested-name-specifier must name a type");
1203        ClsType = QualType(NNS->getAsType(), 0);
1204      } else if (CXXRecordDecl *RD
1205                   = dyn_cast_or_null<CXXRecordDecl>(
1206                                    computeDeclContext(DeclType.Mem.Scope()))) {
1207        ClsType = Context.getTagDeclType(RD);
1208      } else {
1209        Diag(DeclType.Mem.Scope().getBeginLoc(),
1210             diag::err_illegal_decl_mempointer_in_nonclass)
1211          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1212          << DeclType.Mem.Scope().getRange();
1213        D.setInvalidType(true);
1214      }
1215
1216      if (ShouldBuildInfo) {
1217        QualType cls = !ClsType.isNull() ? ClsType : Context.IntTy;
1218        SourceTy = Context.getQualifiedType(
1219                      Context.getMemberPointerType(SourceTy, cls.getTypePtr()),
1220                      Qualifiers::fromCVRMask(DeclType.Mem.TypeQuals));
1221      }
1222
1223      if (!ClsType.isNull())
1224        T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals,
1225                                   DeclType.Loc, D.getIdentifier());
1226      if (T.isNull()) {
1227        T = Context.IntTy;
1228        D.setInvalidType(true);
1229      }
1230      break;
1231    }
1232
1233    if (T.isNull()) {
1234      D.setInvalidType(true);
1235      T = Context.IntTy;
1236    }
1237
1238    // See if there are any attributes on this declarator chunk.
1239    if (const AttributeList *AL = DeclType.getAttrs())
1240      ProcessTypeAttributeList(T, AL);
1241  }
1242
1243  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1244    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
1245    assert(FnTy && "Why oh why is there not a FunctionProtoType here ?");
1246
1247    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1248    // for a nonstatic member function, the function type to which a pointer
1249    // to member refers, or the top-level function type of a function typedef
1250    // declaration.
1251    if (FnTy->getTypeQuals() != 0 &&
1252        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1253        ((D.getContext() != Declarator::MemberContext &&
1254          (!D.getCXXScopeSpec().isSet() ||
1255           !computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)
1256              ->isRecord())) ||
1257         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1258      if (D.isFunctionDeclarator())
1259        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1260      else
1261        Diag(D.getIdentifierLoc(),
1262             diag::err_invalid_qualified_typedef_function_type_use);
1263
1264      // Strip the cv-quals from the type.
1265      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1266                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
1267    }
1268  }
1269
1270  // If there were any type attributes applied to the decl itself (not the
1271  // type, apply the type attribute to the type!)
1272  if (const AttributeList *Attrs = D.getAttributes())
1273    ProcessTypeAttributeList(T, Attrs);
1274
1275  if (ShouldBuildInfo)
1276    *DInfo = GetDeclaratorInfoForDeclarator(D, SourceTy, Skip);
1277
1278  return T;
1279}
1280
1281/// \brief Create and instantiate a DeclaratorInfo with type source information.
1282///
1283/// \param T QualType referring to the type as written in source code.
1284DeclaratorInfo *
1285Sema::GetDeclaratorInfoForDeclarator(Declarator &D, QualType T, unsigned Skip) {
1286  DeclaratorInfo *DInfo = Context.CreateDeclaratorInfo(T);
1287  TypeLoc CurrTL = DInfo->getTypeLoc();
1288
1289  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
1290    assert(!CurrTL.isNull());
1291
1292    DeclaratorChunk &DeclType = D.getTypeObject(i);
1293    switch (DeclType.Kind) {
1294    default: assert(0 && "Unknown decltype!");
1295    case DeclaratorChunk::BlockPointer: {
1296      BlockPointerLoc &BPL = cast<BlockPointerLoc>(CurrTL);
1297      BPL.setCaretLoc(DeclType.Loc);
1298      break;
1299    }
1300    case DeclaratorChunk::Pointer: {
1301      //FIXME: ObjCObject pointers.
1302      PointerLoc &PL = cast<PointerLoc>(CurrTL);
1303      PL.setStarLoc(DeclType.Loc);
1304      break;
1305    }
1306    case DeclaratorChunk::Reference: {
1307      ReferenceLoc &RL = cast<ReferenceLoc>(CurrTL);
1308      RL.setAmpLoc(DeclType.Loc);
1309      break;
1310    }
1311    case DeclaratorChunk::Array: {
1312      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1313      ArrayLoc &AL = cast<ArrayLoc>(CurrTL);
1314      AL.setLBracketLoc(DeclType.Loc);
1315      AL.setRBracketLoc(DeclType.EndLoc);
1316      AL.setSizeExpr(static_cast<Expr*>(ATI.NumElts));
1317      //FIXME: Star location for [*].
1318      break;
1319    }
1320    case DeclaratorChunk::Function: {
1321      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1322      FunctionLoc &FL = cast<FunctionLoc>(CurrTL);
1323      FL.setLParenLoc(DeclType.Loc);
1324      FL.setRParenLoc(DeclType.EndLoc);
1325      for (unsigned i = 0, e = FTI.NumArgs, tpi = 0; i != e; ++i) {
1326        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
1327        if (Param) {
1328          assert(tpi < FL.getNumArgs());
1329          FL.setArg(tpi++, Param);
1330        }
1331      }
1332      break;
1333      //FIXME: Exception specs.
1334    }
1335    case DeclaratorChunk::MemberPointer: {
1336      MemberPointerLoc &MPL = cast<MemberPointerLoc>(CurrTL);
1337      MPL.setStarLoc(DeclType.Loc);
1338      //FIXME: Class location.
1339      break;
1340    }
1341
1342    }
1343
1344    CurrTL = CurrTL.getNextTypeLoc();
1345  }
1346
1347  if (TypedefLoc *TL = dyn_cast<TypedefLoc>(&CurrTL)) {
1348    TL->setNameLoc(D.getDeclSpec().getTypeSpecTypeLoc());
1349  } else {
1350    //FIXME: Other typespecs.
1351    DefaultTypeSpecLoc &DTL = cast<DefaultTypeSpecLoc>(CurrTL);
1352    DTL.setStartLoc(D.getDeclSpec().getSourceRange().getBegin());
1353  }
1354
1355  return DInfo;
1356}
1357
1358/// \brief Create a LocInfoType to hold the given QualType and DeclaratorInfo.
1359QualType Sema::CreateLocInfoType(QualType T, DeclaratorInfo *DInfo) {
1360  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
1361  // and Sema during declaration parsing. Try deallocating/caching them when
1362  // it's appropriate, instead of allocating them and keeping them around.
1363  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), 8);
1364  new (LocT) LocInfoType(T, DInfo);
1365  assert(LocT->getTypeClass() != T->getTypeClass() &&
1366         "LocInfoType's TypeClass conflicts with an existing Type class");
1367  return QualType(LocT, 0);
1368}
1369
1370void LocInfoType::getAsStringInternal(std::string &Str,
1371                                      const PrintingPolicy &Policy) const {
1372  assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
1373         " was used directly instead of getting the QualType through"
1374         " GetTypeFromParser");
1375}
1376
1377/// CheckSpecifiedExceptionType - Check if the given type is valid in an
1378/// exception specification. Incomplete types, or pointers to incomplete types
1379/// other than void are not allowed.
1380bool Sema::CheckSpecifiedExceptionType(QualType T, const SourceRange &Range) {
1381  // FIXME: This may not correctly work with the fix for core issue 437,
1382  // where a class's own type is considered complete within its body.
1383
1384  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
1385  //   an incomplete type.
1386  if (T->isIncompleteType())
1387    return Diag(Range.getBegin(), diag::err_incomplete_in_exception_spec)
1388      << Range << T << /*direct*/0;
1389
1390  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
1391  //   an incomplete type a pointer or reference to an incomplete type, other
1392  //   than (cv) void*.
1393  int kind;
1394  if (const PointerType* IT = T->getAs<PointerType>()) {
1395    T = IT->getPointeeType();
1396    kind = 1;
1397  } else if (const ReferenceType* IT = T->getAs<ReferenceType>()) {
1398    T = IT->getPointeeType();
1399    kind = 2;
1400  } else
1401    return false;
1402
1403  if (T->isIncompleteType() && !T->isVoidType())
1404    return Diag(Range.getBegin(), diag::err_incomplete_in_exception_spec)
1405      << Range << T << /*indirect*/kind;
1406
1407  return false;
1408}
1409
1410/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
1411/// to member to a function with an exception specification. This means that
1412/// it is invalid to add another level of indirection.
1413bool Sema::CheckDistantExceptionSpec(QualType T) {
1414  if (const PointerType *PT = T->getAs<PointerType>())
1415    T = PT->getPointeeType();
1416  else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
1417    T = PT->getPointeeType();
1418  else
1419    return false;
1420
1421  const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
1422  if (!FnT)
1423    return false;
1424
1425  return FnT->hasExceptionSpec();
1426}
1427
1428/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
1429/// exception specifications. Exception specifications are equivalent if
1430/// they allow exactly the same set of exception types. It does not matter how
1431/// that is achieved. See C++ [except.spec]p2.
1432bool Sema::CheckEquivalentExceptionSpec(
1433    const FunctionProtoType *Old, SourceLocation OldLoc,
1434    const FunctionProtoType *New, SourceLocation NewLoc) {
1435  bool OldAny = !Old->hasExceptionSpec() || Old->hasAnyExceptionSpec();
1436  bool NewAny = !New->hasExceptionSpec() || New->hasAnyExceptionSpec();
1437  if (OldAny && NewAny)
1438    return false;
1439  if (OldAny || NewAny) {
1440    Diag(NewLoc, diag::err_mismatched_exception_spec);
1441    Diag(OldLoc, diag::note_previous_declaration);
1442    return true;
1443  }
1444
1445  bool Success = true;
1446  // Both have a definite exception spec. Collect the first set, then compare
1447  // to the second.
1448  llvm::SmallPtrSet<const Type*, 8> Types;
1449  for (FunctionProtoType::exception_iterator I = Old->exception_begin(),
1450       E = Old->exception_end(); I != E; ++I)
1451    Types.insert(Context.getCanonicalType(*I).getTypePtr());
1452
1453  for (FunctionProtoType::exception_iterator I = New->exception_begin(),
1454       E = New->exception_end(); I != E && Success; ++I)
1455    Success = Types.erase(Context.getCanonicalType(*I).getTypePtr());
1456
1457  Success = Success && Types.empty();
1458
1459  if (Success) {
1460    return false;
1461  }
1462  Diag(NewLoc, diag::err_mismatched_exception_spec);
1463  Diag(OldLoc, diag::note_previous_declaration);
1464  return true;
1465}
1466
1467/// CheckExceptionSpecSubset - Check whether the second function type's
1468/// exception specification is a subset (or equivalent) of the first function
1469/// type. This is used by override and pointer assignment checks.
1470bool Sema::CheckExceptionSpecSubset(unsigned DiagID, unsigned NoteID,
1471    const FunctionProtoType *Superset, SourceLocation SuperLoc,
1472    const FunctionProtoType *Subset, SourceLocation SubLoc) {
1473  // FIXME: As usual, we could be more specific in our error messages, but
1474  // that better waits until we've got types with source locations.
1475
1476  // If superset contains everything, we're done.
1477  if (!Superset->hasExceptionSpec() || Superset->hasAnyExceptionSpec())
1478    return false;
1479
1480  // It does not. If the subset contains everything, we've failed.
1481  if (!Subset->hasExceptionSpec() || Subset->hasAnyExceptionSpec()) {
1482    Diag(SubLoc, DiagID);
1483    Diag(SuperLoc, NoteID);
1484    return true;
1485  }
1486
1487  // Neither contains everything. Do a proper comparison.
1488  for (FunctionProtoType::exception_iterator SubI = Subset->exception_begin(),
1489       SubE = Subset->exception_end(); SubI != SubE; ++SubI) {
1490    // Take one type from the subset.
1491    QualType CanonicalSubT = Context.getCanonicalType(*SubI);
1492    bool SubIsPointer = false;
1493    if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>())
1494      CanonicalSubT = RefTy->getPointeeType();
1495    if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) {
1496      CanonicalSubT = PtrTy->getPointeeType();
1497      SubIsPointer = true;
1498    }
1499    bool SubIsClass = CanonicalSubT->isRecordType();
1500    CanonicalSubT = CanonicalSubT.getUnqualifiedType();
1501
1502    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1503                    /*DetectVirtual=*/false);
1504
1505    bool Contained = false;
1506    // Make sure it's in the superset.
1507    for (FunctionProtoType::exception_iterator SuperI =
1508           Superset->exception_begin(), SuperE = Superset->exception_end();
1509         SuperI != SuperE; ++SuperI) {
1510      QualType CanonicalSuperT = Context.getCanonicalType(*SuperI);
1511      // SubT must be SuperT or derived from it, or pointer or reference to
1512      // such types.
1513      if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>())
1514        CanonicalSuperT = RefTy->getPointeeType();
1515      if (SubIsPointer) {
1516        if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>())
1517          CanonicalSuperT = PtrTy->getPointeeType();
1518        else {
1519          continue;
1520        }
1521      }
1522      CanonicalSuperT = CanonicalSuperT.getUnqualifiedType();
1523      // If the types are the same, move on to the next type in the subset.
1524      if (CanonicalSubT == CanonicalSuperT) {
1525        Contained = true;
1526        break;
1527      }
1528
1529      // Otherwise we need to check the inheritance.
1530      if (!SubIsClass || !CanonicalSuperT->isRecordType())
1531        continue;
1532
1533      Paths.clear();
1534      if (!IsDerivedFrom(CanonicalSubT, CanonicalSuperT, Paths))
1535        continue;
1536
1537      if (Paths.isAmbiguous(CanonicalSuperT))
1538        continue;
1539
1540      if (FindInaccessibleBase(CanonicalSubT, CanonicalSuperT, Paths, true))
1541        continue;
1542
1543      Contained = true;
1544      break;
1545    }
1546    if (!Contained) {
1547      Diag(SubLoc, DiagID);
1548      Diag(SuperLoc, NoteID);
1549      return true;
1550    }
1551  }
1552  // We've run the gauntlet.
1553  return false;
1554}
1555
1556/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
1557/// declarator
1558QualType Sema::ObjCGetTypeForMethodDefinition(DeclPtrTy D) {
1559  ObjCMethodDecl *MDecl = cast<ObjCMethodDecl>(D.getAs<Decl>());
1560  QualType T = MDecl->getResultType();
1561  llvm::SmallVector<QualType, 16> ArgTys;
1562
1563  // Add the first two invisible argument types for self and _cmd.
1564  if (MDecl->isInstanceMethod()) {
1565    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
1566    selfTy = Context.getPointerType(selfTy);
1567    ArgTys.push_back(selfTy);
1568  } else
1569    ArgTys.push_back(Context.getObjCIdType());
1570  ArgTys.push_back(Context.getObjCSelType());
1571
1572  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
1573       E = MDecl->param_end(); PI != E; ++PI) {
1574    QualType ArgTy = (*PI)->getType();
1575    assert(!ArgTy.isNull() && "Couldn't parse type?");
1576    ArgTy = adjustParameterType(ArgTy);
1577    ArgTys.push_back(ArgTy);
1578  }
1579  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
1580                              MDecl->isVariadic(), 0);
1581  return T;
1582}
1583
1584/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
1585/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
1586/// they point to and return true. If T1 and T2 aren't pointer types
1587/// or pointer-to-member types, or if they are not similar at this
1588/// level, returns false and leaves T1 and T2 unchanged. Top-level
1589/// qualifiers on T1 and T2 are ignored. This function will typically
1590/// be called in a loop that successively "unwraps" pointer and
1591/// pointer-to-member types to compare them at each level.
1592bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
1593  const PointerType *T1PtrType = T1->getAs<PointerType>(),
1594                    *T2PtrType = T2->getAs<PointerType>();
1595  if (T1PtrType && T2PtrType) {
1596    T1 = T1PtrType->getPointeeType();
1597    T2 = T2PtrType->getPointeeType();
1598    return true;
1599  }
1600
1601  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
1602                          *T2MPType = T2->getAs<MemberPointerType>();
1603  if (T1MPType && T2MPType &&
1604      Context.getCanonicalType(T1MPType->getClass()) ==
1605      Context.getCanonicalType(T2MPType->getClass())) {
1606    T1 = T1MPType->getPointeeType();
1607    T2 = T2MPType->getPointeeType();
1608    return true;
1609  }
1610  return false;
1611}
1612
1613Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1614  // C99 6.7.6: Type names have no identifier.  This is already validated by
1615  // the parser.
1616  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1617
1618  DeclaratorInfo *DInfo = 0;
1619  TagDecl *OwnedTag = 0;
1620  QualType T = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0, &OwnedTag);
1621  if (D.isInvalidType())
1622    return true;
1623
1624  if (getLangOptions().CPlusPlus) {
1625    // Check that there are no default arguments (C++ only).
1626    CheckExtraCXXDefaultArguments(D);
1627
1628    // C++0x [dcl.type]p3:
1629    //   A type-specifier-seq shall not define a class or enumeration
1630    //   unless it appears in the type-id of an alias-declaration
1631    //   (7.1.3).
1632    if (OwnedTag && OwnedTag->isDefinition())
1633      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1634        << Context.getTypeDeclType(OwnedTag);
1635  }
1636
1637  if (DInfo)
1638    T = CreateLocInfoType(T, DInfo);
1639
1640  return T.getAsOpaquePtr();
1641}
1642
1643
1644
1645//===----------------------------------------------------------------------===//
1646// Type Attribute Processing
1647//===----------------------------------------------------------------------===//
1648
1649/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1650/// specified type.  The attribute contains 1 argument, the id of the address
1651/// space for the type.
1652static void HandleAddressSpaceTypeAttribute(QualType &Type,
1653                                            const AttributeList &Attr, Sema &S){
1654
1655  // If this type is already address space qualified, reject it.
1656  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1657  // for two or more different address spaces."
1658  if (Type.getAddressSpace()) {
1659    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1660    return;
1661  }
1662
1663  // Check the attribute arguments.
1664  if (Attr.getNumArgs() != 1) {
1665    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1666    return;
1667  }
1668  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1669  llvm::APSInt addrSpace(32);
1670  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1671    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1672      << ASArgExpr->getSourceRange();
1673    return;
1674  }
1675
1676  // Bounds checking.
1677  if (addrSpace.isSigned()) {
1678    if (addrSpace.isNegative()) {
1679      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
1680        << ASArgExpr->getSourceRange();
1681      return;
1682    }
1683    addrSpace.setIsSigned(false);
1684  }
1685  llvm::APSInt max(addrSpace.getBitWidth());
1686  max = Qualifiers::MaxAddressSpace;
1687  if (addrSpace > max) {
1688    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
1689      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
1690    return;
1691  }
1692
1693  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1694  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1695}
1696
1697/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1698/// specified type.  The attribute contains 1 argument, weak or strong.
1699static void HandleObjCGCTypeAttribute(QualType &Type,
1700                                      const AttributeList &Attr, Sema &S) {
1701  if (Type.getObjCGCAttr() != Qualifiers::GCNone) {
1702    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1703    return;
1704  }
1705
1706  // Check the attribute arguments.
1707  if (!Attr.getParameterName()) {
1708    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1709      << "objc_gc" << 1;
1710    return;
1711  }
1712  Qualifiers::GC GCAttr;
1713  if (Attr.getNumArgs() != 0) {
1714    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1715    return;
1716  }
1717  if (Attr.getParameterName()->isStr("weak"))
1718    GCAttr = Qualifiers::Weak;
1719  else if (Attr.getParameterName()->isStr("strong"))
1720    GCAttr = Qualifiers::Strong;
1721  else {
1722    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1723      << "objc_gc" << Attr.getParameterName();
1724    return;
1725  }
1726
1727  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1728}
1729
1730/// HandleNoReturnTypeAttribute - Process the noreturn attribute on the
1731/// specified type.  The attribute contains 0 arguments.
1732static void HandleNoReturnTypeAttribute(QualType &Type,
1733                                        const AttributeList &Attr, Sema &S) {
1734  if (Attr.getNumArgs() != 0)
1735    return;
1736
1737  // We only apply this to a pointer to function or a pointer to block.
1738  if (!Type->isFunctionPointerType()
1739      && !Type->isBlockPointerType()
1740      && !Type->isFunctionType())
1741    return;
1742
1743  Type = S.Context.getNoReturnType(Type);
1744}
1745
1746void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
1747  // Scan through and apply attributes to this type where it makes sense.  Some
1748  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1749  // type, but others can be present in the type specifiers even though they
1750  // apply to the decl.  Here we apply type attributes and ignore the rest.
1751  for (; AL; AL = AL->getNext()) {
1752    // If this is an attribute we can handle, do so now, otherwise, add it to
1753    // the LeftOverAttrs list for rechaining.
1754    switch (AL->getKind()) {
1755    default: break;
1756    case AttributeList::AT_address_space:
1757      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
1758      break;
1759    case AttributeList::AT_objc_gc:
1760      HandleObjCGCTypeAttribute(Result, *AL, *this);
1761      break;
1762    case AttributeList::AT_noreturn:
1763      HandleNoReturnTypeAttribute(Result, *AL, *this);
1764      break;
1765    }
1766  }
1767}
1768
1769/// @brief Ensure that the type T is a complete type.
1770///
1771/// This routine checks whether the type @p T is complete in any
1772/// context where a complete type is required. If @p T is a complete
1773/// type, returns false. If @p T is a class template specialization,
1774/// this routine then attempts to perform class template
1775/// instantiation. If instantiation fails, or if @p T is incomplete
1776/// and cannot be completed, issues the diagnostic @p diag (giving it
1777/// the type @p T) and returns true.
1778///
1779/// @param Loc  The location in the source that the incomplete type
1780/// diagnostic should refer to.
1781///
1782/// @param T  The type that this routine is examining for completeness.
1783///
1784/// @param PD The partial diagnostic that will be printed out if T is not a
1785/// complete type.
1786///
1787/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1788/// @c false otherwise.
1789bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
1790                               const PartialDiagnostic &PD) {
1791  unsigned diag = PD.getDiagID();
1792
1793  // FIXME: Add this assertion to help us flush out problems with
1794  // checking for dependent types and type-dependent expressions.
1795  //
1796  //  assert(!T->isDependentType() &&
1797  //         "Can't ask whether a dependent type is complete");
1798
1799  // If we have a complete type, we're done.
1800  if (!T->isIncompleteType())
1801    return false;
1802
1803  // If we have a class template specialization or a class member of a
1804  // class template specialization, try to instantiate it.
1805  if (const RecordType *Record = T->getAs<RecordType>()) {
1806    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
1807          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
1808      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
1809        if (Loc.isValid())
1810          ClassTemplateSpec->setPointOfInstantiation(Loc);
1811        return InstantiateClassTemplateSpecialization(ClassTemplateSpec,
1812                                                      TSK_ImplicitInstantiation,
1813                                                      /*Complain=*/diag != 0);
1814      }
1815    } else if (CXXRecordDecl *Rec
1816                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
1817      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
1818        // This record was instantiated from a class within a template.
1819        return InstantiateClass(Loc, Rec, Pattern,
1820                                getTemplateInstantiationArgs(Rec),
1821                                TSK_ImplicitInstantiation,
1822                                /*Complain=*/diag != 0);
1823      }
1824    }
1825  }
1826
1827  if (diag == 0)
1828    return true;
1829
1830  // We have an incomplete type. Produce a diagnostic.
1831  Diag(Loc, PD) << T;
1832
1833  // If the type was a forward declaration of a class/struct/union
1834  // type, produce
1835  const TagType *Tag = 0;
1836  if (const RecordType *Record = T->getAs<RecordType>())
1837    Tag = Record;
1838  else if (const EnumType *Enum = T->getAs<EnumType>())
1839    Tag = Enum;
1840
1841  if (Tag && !Tag->getDecl()->isInvalidDecl())
1842    Diag(Tag->getDecl()->getLocation(),
1843         Tag->isBeingDefined() ? diag::note_type_being_defined
1844                               : diag::note_forward_declaration)
1845        << QualType(Tag, 0);
1846
1847  return true;
1848}
1849
1850/// \brief Retrieve a version of the type 'T' that is qualified by the
1851/// nested-name-specifier contained in SS.
1852QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
1853  if (!SS.isSet() || SS.isInvalid() || T.isNull())
1854    return T;
1855
1856  NestedNameSpecifier *NNS
1857    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1858  return Context.getQualifiedNameType(NNS, T);
1859}
1860
1861QualType Sema::BuildTypeofExprType(Expr *E) {
1862  return Context.getTypeOfExprType(E);
1863}
1864
1865QualType Sema::BuildDecltypeType(Expr *E) {
1866  if (E->getType() == Context.OverloadTy) {
1867    Diag(E->getLocStart(),
1868         diag::err_cannot_determine_declared_type_of_overloaded_function);
1869    return QualType();
1870  }
1871  return Context.getDecltypeType(E);
1872}
1873