SemaType.cpp revision e656b8397f05fd1b7c4a735372f79a52f4e32be5
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/ScopeInfo.h"
15#include "clang/Sema/SemaInternal.h"
16#include "clang/Sema/Template.h"
17#include "clang/Basic/OpenCL.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTMutationListener.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/TypeLoc.h"
24#include "clang/AST/TypeLocVisitor.h"
25#include "clang/AST/Expr.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Parse/ParseDiagnostic.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/DelayedDiagnostic.h"
32#include "clang/Sema/Lookup.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/Support/ErrorHandling.h"
35using namespace clang;
36
37/// isOmittedBlockReturnType - Return true if this declarator is missing a
38/// return type because this is a omitted return type on a block literal.
39static bool isOmittedBlockReturnType(const Declarator &D) {
40  if (D.getContext() != Declarator::BlockLiteralContext ||
41      D.getDeclSpec().hasTypeSpecifier())
42    return false;
43
44  if (D.getNumTypeObjects() == 0)
45    return true;   // ^{ ... }
46
47  if (D.getNumTypeObjects() == 1 &&
48      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
49    return true;   // ^(int X, float Y) { ... }
50
51  return false;
52}
53
54/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
55/// doesn't apply to the given type.
56static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
57                                     QualType type) {
58  bool useExpansionLoc = false;
59
60  unsigned diagID = 0;
61  switch (attr.getKind()) {
62  case AttributeList::AT_objc_gc:
63    diagID = diag::warn_pointer_attribute_wrong_type;
64    useExpansionLoc = true;
65    break;
66
67  case AttributeList::AT_objc_ownership:
68    diagID = diag::warn_objc_object_attribute_wrong_type;
69    useExpansionLoc = true;
70    break;
71
72  default:
73    // Assume everything else was a function attribute.
74    diagID = diag::warn_function_attribute_wrong_type;
75    break;
76  }
77
78  SourceLocation loc = attr.getLoc();
79  StringRef name = attr.getName()->getName();
80
81  // The GC attributes are usually written with macros;  special-case them.
82  if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
83    if (attr.getParameterName()->isStr("strong")) {
84      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
85    } else if (attr.getParameterName()->isStr("weak")) {
86      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
87    }
88  }
89
90  S.Diag(loc, diagID) << name << type;
91}
92
93// objc_gc applies to Objective-C pointers or, otherwise, to the
94// smallest available pointer type (i.e. 'void*' in 'void**').
95#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
96    case AttributeList::AT_objc_gc: \
97    case AttributeList::AT_objc_ownership
98
99// Function type attributes.
100#define FUNCTION_TYPE_ATTRS_CASELIST \
101    case AttributeList::AT_noreturn: \
102    case AttributeList::AT_cdecl: \
103    case AttributeList::AT_fastcall: \
104    case AttributeList::AT_stdcall: \
105    case AttributeList::AT_thiscall: \
106    case AttributeList::AT_pascal: \
107    case AttributeList::AT_regparm: \
108    case AttributeList::AT_pcs \
109
110namespace {
111  /// An object which stores processing state for the entire
112  /// GetTypeForDeclarator process.
113  class TypeProcessingState {
114    Sema &sema;
115
116    /// The declarator being processed.
117    Declarator &declarator;
118
119    /// The index of the declarator chunk we're currently processing.
120    /// May be the total number of valid chunks, indicating the
121    /// DeclSpec.
122    unsigned chunkIndex;
123
124    /// Whether there are non-trivial modifications to the decl spec.
125    bool trivial;
126
127    /// Whether we saved the attributes in the decl spec.
128    bool hasSavedAttrs;
129
130    /// The original set of attributes on the DeclSpec.
131    SmallVector<AttributeList*, 2> savedAttrs;
132
133    /// A list of attributes to diagnose the uselessness of when the
134    /// processing is complete.
135    SmallVector<AttributeList*, 2> ignoredTypeAttrs;
136
137  public:
138    TypeProcessingState(Sema &sema, Declarator &declarator)
139      : sema(sema), declarator(declarator),
140        chunkIndex(declarator.getNumTypeObjects()),
141        trivial(true), hasSavedAttrs(false) {}
142
143    Sema &getSema() const {
144      return sema;
145    }
146
147    Declarator &getDeclarator() const {
148      return declarator;
149    }
150
151    unsigned getCurrentChunkIndex() const {
152      return chunkIndex;
153    }
154
155    void setCurrentChunkIndex(unsigned idx) {
156      assert(idx <= declarator.getNumTypeObjects());
157      chunkIndex = idx;
158    }
159
160    AttributeList *&getCurrentAttrListRef() const {
161      assert(chunkIndex <= declarator.getNumTypeObjects());
162      if (chunkIndex == declarator.getNumTypeObjects())
163        return getMutableDeclSpec().getAttributes().getListRef();
164      return declarator.getTypeObject(chunkIndex).getAttrListRef();
165    }
166
167    /// Save the current set of attributes on the DeclSpec.
168    void saveDeclSpecAttrs() {
169      // Don't try to save them multiple times.
170      if (hasSavedAttrs) return;
171
172      DeclSpec &spec = getMutableDeclSpec();
173      for (AttributeList *attr = spec.getAttributes().getList(); attr;
174             attr = attr->getNext())
175        savedAttrs.push_back(attr);
176      trivial &= savedAttrs.empty();
177      hasSavedAttrs = true;
178    }
179
180    /// Record that we had nowhere to put the given type attribute.
181    /// We will diagnose such attributes later.
182    void addIgnoredTypeAttr(AttributeList &attr) {
183      ignoredTypeAttrs.push_back(&attr);
184    }
185
186    /// Diagnose all the ignored type attributes, given that the
187    /// declarator worked out to the given type.
188    void diagnoseIgnoredTypeAttrs(QualType type) const {
189      for (SmallVectorImpl<AttributeList*>::const_iterator
190             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
191           i != e; ++i)
192        diagnoseBadTypeAttribute(getSema(), **i, type);
193    }
194
195    ~TypeProcessingState() {
196      if (trivial) return;
197
198      restoreDeclSpecAttrs();
199    }
200
201  private:
202    DeclSpec &getMutableDeclSpec() const {
203      return const_cast<DeclSpec&>(declarator.getDeclSpec());
204    }
205
206    void restoreDeclSpecAttrs() {
207      assert(hasSavedAttrs);
208
209      if (savedAttrs.empty()) {
210        getMutableDeclSpec().getAttributes().set(0);
211        return;
212      }
213
214      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
215      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
216        savedAttrs[i]->setNext(savedAttrs[i+1]);
217      savedAttrs.back()->setNext(0);
218    }
219  };
220
221  /// Basically std::pair except that we really want to avoid an
222  /// implicit operator= for safety concerns.  It's also a minor
223  /// link-time optimization for this to be a private type.
224  struct AttrAndList {
225    /// The attribute.
226    AttributeList &first;
227
228    /// The head of the list the attribute is currently in.
229    AttributeList *&second;
230
231    AttrAndList(AttributeList &attr, AttributeList *&head)
232      : first(attr), second(head) {}
233  };
234}
235
236namespace llvm {
237  template <> struct isPodLike<AttrAndList> {
238    static const bool value = true;
239  };
240}
241
242static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
243  attr.setNext(head);
244  head = &attr;
245}
246
247static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
248  if (head == &attr) {
249    head = attr.getNext();
250    return;
251  }
252
253  AttributeList *cur = head;
254  while (true) {
255    assert(cur && cur->getNext() && "ran out of attrs?");
256    if (cur->getNext() == &attr) {
257      cur->setNext(attr.getNext());
258      return;
259    }
260    cur = cur->getNext();
261  }
262}
263
264static void moveAttrFromListToList(AttributeList &attr,
265                                   AttributeList *&fromList,
266                                   AttributeList *&toList) {
267  spliceAttrOutOfList(attr, fromList);
268  spliceAttrIntoList(attr, toList);
269}
270
271static void processTypeAttrs(TypeProcessingState &state,
272                             QualType &type, bool isDeclSpec,
273                             AttributeList *attrs);
274
275static bool handleFunctionTypeAttr(TypeProcessingState &state,
276                                   AttributeList &attr,
277                                   QualType &type);
278
279static bool handleObjCGCTypeAttr(TypeProcessingState &state,
280                                 AttributeList &attr, QualType &type);
281
282static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
283                                       AttributeList &attr, QualType &type);
284
285static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
286                                      AttributeList &attr, QualType &type) {
287  if (attr.getKind() == AttributeList::AT_objc_gc)
288    return handleObjCGCTypeAttr(state, attr, type);
289  assert(attr.getKind() == AttributeList::AT_objc_ownership);
290  return handleObjCOwnershipTypeAttr(state, attr, type);
291}
292
293/// Given that an objc_gc attribute was written somewhere on a
294/// declaration *other* than on the declarator itself (for which, use
295/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
296/// didn't apply in whatever position it was written in, try to move
297/// it to a more appropriate position.
298static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
299                                          AttributeList &attr,
300                                          QualType type) {
301  Declarator &declarator = state.getDeclarator();
302  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
303    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
304    switch (chunk.Kind) {
305    case DeclaratorChunk::Pointer:
306    case DeclaratorChunk::BlockPointer:
307      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
308                             chunk.getAttrListRef());
309      return;
310
311    case DeclaratorChunk::Paren:
312    case DeclaratorChunk::Array:
313      continue;
314
315    // Don't walk through these.
316    case DeclaratorChunk::Reference:
317    case DeclaratorChunk::Function:
318    case DeclaratorChunk::MemberPointer:
319      goto error;
320    }
321  }
322 error:
323
324  diagnoseBadTypeAttribute(state.getSema(), attr, type);
325}
326
327/// Distribute an objc_gc type attribute that was written on the
328/// declarator.
329static void
330distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
331                                            AttributeList &attr,
332                                            QualType &declSpecType) {
333  Declarator &declarator = state.getDeclarator();
334
335  // objc_gc goes on the innermost pointer to something that's not a
336  // pointer.
337  unsigned innermost = -1U;
338  bool considerDeclSpec = true;
339  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
340    DeclaratorChunk &chunk = declarator.getTypeObject(i);
341    switch (chunk.Kind) {
342    case DeclaratorChunk::Pointer:
343    case DeclaratorChunk::BlockPointer:
344      innermost = i;
345      continue;
346
347    case DeclaratorChunk::Reference:
348    case DeclaratorChunk::MemberPointer:
349    case DeclaratorChunk::Paren:
350    case DeclaratorChunk::Array:
351      continue;
352
353    case DeclaratorChunk::Function:
354      considerDeclSpec = false;
355      goto done;
356    }
357  }
358 done:
359
360  // That might actually be the decl spec if we weren't blocked by
361  // anything in the declarator.
362  if (considerDeclSpec) {
363    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
364      // Splice the attribute into the decl spec.  Prevents the
365      // attribute from being applied multiple times and gives
366      // the source-location-filler something to work with.
367      state.saveDeclSpecAttrs();
368      moveAttrFromListToList(attr, declarator.getAttrListRef(),
369               declarator.getMutableDeclSpec().getAttributes().getListRef());
370      return;
371    }
372  }
373
374  // Otherwise, if we found an appropriate chunk, splice the attribute
375  // into it.
376  if (innermost != -1U) {
377    moveAttrFromListToList(attr, declarator.getAttrListRef(),
378                       declarator.getTypeObject(innermost).getAttrListRef());
379    return;
380  }
381
382  // Otherwise, diagnose when we're done building the type.
383  spliceAttrOutOfList(attr, declarator.getAttrListRef());
384  state.addIgnoredTypeAttr(attr);
385}
386
387/// A function type attribute was written somewhere in a declaration
388/// *other* than on the declarator itself or in the decl spec.  Given
389/// that it didn't apply in whatever position it was written in, try
390/// to move it to a more appropriate position.
391static void distributeFunctionTypeAttr(TypeProcessingState &state,
392                                       AttributeList &attr,
393                                       QualType type) {
394  Declarator &declarator = state.getDeclarator();
395
396  // Try to push the attribute from the return type of a function to
397  // the function itself.
398  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
399    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
400    switch (chunk.Kind) {
401    case DeclaratorChunk::Function:
402      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
403                             chunk.getAttrListRef());
404      return;
405
406    case DeclaratorChunk::Paren:
407    case DeclaratorChunk::Pointer:
408    case DeclaratorChunk::BlockPointer:
409    case DeclaratorChunk::Array:
410    case DeclaratorChunk::Reference:
411    case DeclaratorChunk::MemberPointer:
412      continue;
413    }
414  }
415
416  diagnoseBadTypeAttribute(state.getSema(), attr, type);
417}
418
419/// Try to distribute a function type attribute to the innermost
420/// function chunk or type.  Returns true if the attribute was
421/// distributed, false if no location was found.
422static bool
423distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
424                                      AttributeList &attr,
425                                      AttributeList *&attrList,
426                                      QualType &declSpecType) {
427  Declarator &declarator = state.getDeclarator();
428
429  // Put it on the innermost function chunk, if there is one.
430  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
431    DeclaratorChunk &chunk = declarator.getTypeObject(i);
432    if (chunk.Kind != DeclaratorChunk::Function) continue;
433
434    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
435    return true;
436  }
437
438  if (handleFunctionTypeAttr(state, attr, declSpecType)) {
439    spliceAttrOutOfList(attr, attrList);
440    return true;
441  }
442
443  return false;
444}
445
446/// A function type attribute was written in the decl spec.  Try to
447/// apply it somewhere.
448static void
449distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
450                                       AttributeList &attr,
451                                       QualType &declSpecType) {
452  state.saveDeclSpecAttrs();
453
454  // Try to distribute to the innermost.
455  if (distributeFunctionTypeAttrToInnermost(state, attr,
456                                            state.getCurrentAttrListRef(),
457                                            declSpecType))
458    return;
459
460  // If that failed, diagnose the bad attribute when the declarator is
461  // fully built.
462  state.addIgnoredTypeAttr(attr);
463}
464
465/// A function type attribute was written on the declarator.  Try to
466/// apply it somewhere.
467static void
468distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
469                                         AttributeList &attr,
470                                         QualType &declSpecType) {
471  Declarator &declarator = state.getDeclarator();
472
473  // Try to distribute to the innermost.
474  if (distributeFunctionTypeAttrToInnermost(state, attr,
475                                            declarator.getAttrListRef(),
476                                            declSpecType))
477    return;
478
479  // If that failed, diagnose the bad attribute when the declarator is
480  // fully built.
481  spliceAttrOutOfList(attr, declarator.getAttrListRef());
482  state.addIgnoredTypeAttr(attr);
483}
484
485/// \brief Given that there are attributes written on the declarator
486/// itself, try to distribute any type attributes to the appropriate
487/// declarator chunk.
488///
489/// These are attributes like the following:
490///   int f ATTR;
491///   int (f ATTR)();
492/// but not necessarily this:
493///   int f() ATTR;
494static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
495                                              QualType &declSpecType) {
496  // Collect all the type attributes from the declarator itself.
497  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
498  AttributeList *attr = state.getDeclarator().getAttributes();
499  AttributeList *next;
500  do {
501    next = attr->getNext();
502
503    switch (attr->getKind()) {
504    OBJC_POINTER_TYPE_ATTRS_CASELIST:
505      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
506      break;
507
508    case AttributeList::AT_ns_returns_retained:
509      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
510        break;
511      // fallthrough
512
513    FUNCTION_TYPE_ATTRS_CASELIST:
514      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
515      break;
516
517    default:
518      break;
519    }
520  } while ((attr = next));
521}
522
523/// Add a synthetic '()' to a block-literal declarator if it is
524/// required, given the return type.
525static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
526                                          QualType declSpecType) {
527  Declarator &declarator = state.getDeclarator();
528
529  // First, check whether the declarator would produce a function,
530  // i.e. whether the innermost semantic chunk is a function.
531  if (declarator.isFunctionDeclarator()) {
532    // If so, make that declarator a prototyped declarator.
533    declarator.getFunctionTypeInfo().hasPrototype = true;
534    return;
535  }
536
537  // If there are any type objects, the type as written won't name a
538  // function, regardless of the decl spec type.  This is because a
539  // block signature declarator is always an abstract-declarator, and
540  // abstract-declarators can't just be parentheses chunks.  Therefore
541  // we need to build a function chunk unless there are no type
542  // objects and the decl spec type is a function.
543  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
544    return;
545
546  // Note that there *are* cases with invalid declarators where
547  // declarators consist solely of parentheses.  In general, these
548  // occur only in failed efforts to make function declarators, so
549  // faking up the function chunk is still the right thing to do.
550
551  // Otherwise, we need to fake up a function declarator.
552  SourceLocation loc = declarator.getLocStart();
553
554  // ...and *prepend* it to the declarator.
555  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
556                             /*proto*/ true,
557                             /*variadic*/ false, SourceLocation(),
558                             /*args*/ 0, 0,
559                             /*type quals*/ 0,
560                             /*ref-qualifier*/true, SourceLocation(),
561                             /*const qualifier*/SourceLocation(),
562                             /*volatile qualifier*/SourceLocation(),
563                             /*mutable qualifier*/SourceLocation(),
564                             /*EH*/ EST_None, SourceLocation(), 0, 0, 0, 0, 0,
565                             /*parens*/ loc, loc,
566                             declarator));
567
568  // For consistency, make sure the state still has us as processing
569  // the decl spec.
570  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
571  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
572}
573
574/// \brief Convert the specified declspec to the appropriate type
575/// object.
576/// \param D  the declarator containing the declaration specifier.
577/// \returns The type described by the declaration specifiers.  This function
578/// never returns null.
579static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
580  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
581  // checking.
582
583  Sema &S = state.getSema();
584  Declarator &declarator = state.getDeclarator();
585  const DeclSpec &DS = declarator.getDeclSpec();
586  SourceLocation DeclLoc = declarator.getIdentifierLoc();
587  if (DeclLoc.isInvalid())
588    DeclLoc = DS.getLocStart();
589
590  ASTContext &Context = S.Context;
591
592  QualType Result;
593  switch (DS.getTypeSpecType()) {
594  case DeclSpec::TST_void:
595    Result = Context.VoidTy;
596    break;
597  case DeclSpec::TST_char:
598    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
599      Result = Context.CharTy;
600    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
601      Result = Context.SignedCharTy;
602    else {
603      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
604             "Unknown TSS value");
605      Result = Context.UnsignedCharTy;
606    }
607    break;
608  case DeclSpec::TST_wchar:
609    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
610      Result = Context.WCharTy;
611    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
612      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
613        << DS.getSpecifierName(DS.getTypeSpecType());
614      Result = Context.getSignedWCharType();
615    } else {
616      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
617        "Unknown TSS value");
618      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
619        << DS.getSpecifierName(DS.getTypeSpecType());
620      Result = Context.getUnsignedWCharType();
621    }
622    break;
623  case DeclSpec::TST_char16:
624      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
625        "Unknown TSS value");
626      Result = Context.Char16Ty;
627    break;
628  case DeclSpec::TST_char32:
629      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
630        "Unknown TSS value");
631      Result = Context.Char32Ty;
632    break;
633  case DeclSpec::TST_unspecified:
634    // "<proto1,proto2>" is an objc qualified ID with a missing id.
635    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
636      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
637                                         (ObjCProtocolDecl**)PQ,
638                                         DS.getNumProtocolQualifiers());
639      Result = Context.getObjCObjectPointerType(Result);
640      break;
641    }
642
643    // If this is a missing declspec in a block literal return context, then it
644    // is inferred from the return statements inside the block.
645    // The declspec is always missing in a lambda expr context; it is either
646    // specified with a trailing return type or inferred.
647    if (declarator.getContext() == Declarator::LambdaExprContext ||
648        isOmittedBlockReturnType(declarator)) {
649      Result = Context.DependentTy;
650      break;
651    }
652
653    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
654    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
655    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
656    // Note that the one exception to this is function definitions, which are
657    // allowed to be completely missing a declspec.  This is handled in the
658    // parser already though by it pretending to have seen an 'int' in this
659    // case.
660    if (S.getLangOpts().ImplicitInt) {
661      // In C89 mode, we only warn if there is a completely missing declspec
662      // when one is not allowed.
663      if (DS.isEmpty()) {
664        S.Diag(DeclLoc, diag::ext_missing_declspec)
665          << DS.getSourceRange()
666        << FixItHint::CreateInsertion(DS.getLocStart(), "int");
667      }
668    } else if (!DS.hasTypeSpecifier()) {
669      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
670      // "At least one type specifier shall be given in the declaration
671      // specifiers in each declaration, and in the specifier-qualifier list in
672      // each struct declaration and type name."
673      // FIXME: Does Microsoft really have the implicit int extension in C++?
674      if (S.getLangOpts().CPlusPlus &&
675          !S.getLangOpts().MicrosoftExt) {
676        S.Diag(DeclLoc, diag::err_missing_type_specifier)
677          << DS.getSourceRange();
678
679        // When this occurs in C++ code, often something is very broken with the
680        // value being declared, poison it as invalid so we don't get chains of
681        // errors.
682        declarator.setInvalidType(true);
683      } else {
684        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
685          << DS.getSourceRange();
686      }
687    }
688
689    // FALL THROUGH.
690  case DeclSpec::TST_int: {
691    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
692      switch (DS.getTypeSpecWidth()) {
693      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
694      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
695      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
696      case DeclSpec::TSW_longlong:
697        Result = Context.LongLongTy;
698
699        // long long is a C99 feature.
700        if (!S.getLangOpts().C99)
701          S.Diag(DS.getTypeSpecWidthLoc(),
702                 S.getLangOpts().CPlusPlus0x ?
703                   diag::warn_cxx98_compat_longlong : diag::ext_longlong);
704        break;
705      }
706    } else {
707      switch (DS.getTypeSpecWidth()) {
708      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
709      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
710      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
711      case DeclSpec::TSW_longlong:
712        Result = Context.UnsignedLongLongTy;
713
714        // long long is a C99 feature.
715        if (!S.getLangOpts().C99)
716          S.Diag(DS.getTypeSpecWidthLoc(),
717                 S.getLangOpts().CPlusPlus0x ?
718                   diag::warn_cxx98_compat_longlong : diag::ext_longlong);
719        break;
720      }
721    }
722    break;
723  }
724  case DeclSpec::TST_int128:
725    if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
726      Result = Context.UnsignedInt128Ty;
727    else
728      Result = Context.Int128Ty;
729    break;
730  case DeclSpec::TST_half: Result = Context.HalfTy; break;
731  case DeclSpec::TST_float: Result = Context.FloatTy; break;
732  case DeclSpec::TST_double:
733    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
734      Result = Context.LongDoubleTy;
735    else
736      Result = Context.DoubleTy;
737
738    if (S.getLangOpts().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
739      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
740      declarator.setInvalidType(true);
741    }
742    break;
743  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
744  case DeclSpec::TST_decimal32:    // _Decimal32
745  case DeclSpec::TST_decimal64:    // _Decimal64
746  case DeclSpec::TST_decimal128:   // _Decimal128
747    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
748    Result = Context.IntTy;
749    declarator.setInvalidType(true);
750    break;
751  case DeclSpec::TST_class:
752  case DeclSpec::TST_enum:
753  case DeclSpec::TST_union:
754  case DeclSpec::TST_struct: {
755    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
756    if (!D) {
757      // This can happen in C++ with ambiguous lookups.
758      Result = Context.IntTy;
759      declarator.setInvalidType(true);
760      break;
761    }
762
763    // If the type is deprecated or unavailable, diagnose it.
764    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
765
766    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
767           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
768
769    // TypeQuals handled by caller.
770    Result = Context.getTypeDeclType(D);
771
772    // In both C and C++, make an ElaboratedType.
773    ElaboratedTypeKeyword Keyword
774      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
775    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
776    break;
777  }
778  case DeclSpec::TST_typename: {
779    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
780           DS.getTypeSpecSign() == 0 &&
781           "Can't handle qualifiers on typedef names yet!");
782    Result = S.GetTypeFromParser(DS.getRepAsType());
783    if (Result.isNull())
784      declarator.setInvalidType(true);
785    else if (DeclSpec::ProtocolQualifierListTy PQ
786               = DS.getProtocolQualifiers()) {
787      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
788        // Silently drop any existing protocol qualifiers.
789        // TODO: determine whether that's the right thing to do.
790        if (ObjT->getNumProtocols())
791          Result = ObjT->getBaseType();
792
793        if (DS.getNumProtocolQualifiers())
794          Result = Context.getObjCObjectType(Result,
795                                             (ObjCProtocolDecl**) PQ,
796                                             DS.getNumProtocolQualifiers());
797      } else if (Result->isObjCIdType()) {
798        // id<protocol-list>
799        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
800                                           (ObjCProtocolDecl**) PQ,
801                                           DS.getNumProtocolQualifiers());
802        Result = Context.getObjCObjectPointerType(Result);
803      } else if (Result->isObjCClassType()) {
804        // Class<protocol-list>
805        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
806                                           (ObjCProtocolDecl**) PQ,
807                                           DS.getNumProtocolQualifiers());
808        Result = Context.getObjCObjectPointerType(Result);
809      } else {
810        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
811          << DS.getSourceRange();
812        declarator.setInvalidType(true);
813      }
814    }
815
816    // TypeQuals handled by caller.
817    break;
818  }
819  case DeclSpec::TST_typeofType:
820    // FIXME: Preserve type source info.
821    Result = S.GetTypeFromParser(DS.getRepAsType());
822    assert(!Result.isNull() && "Didn't get a type for typeof?");
823    if (!Result->isDependentType())
824      if (const TagType *TT = Result->getAs<TagType>())
825        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
826    // TypeQuals handled by caller.
827    Result = Context.getTypeOfType(Result);
828    break;
829  case DeclSpec::TST_typeofExpr: {
830    Expr *E = DS.getRepAsExpr();
831    assert(E && "Didn't get an expression for typeof?");
832    // TypeQuals handled by caller.
833    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
834    if (Result.isNull()) {
835      Result = Context.IntTy;
836      declarator.setInvalidType(true);
837    }
838    break;
839  }
840  case DeclSpec::TST_decltype: {
841    Expr *E = DS.getRepAsExpr();
842    assert(E && "Didn't get an expression for decltype?");
843    // TypeQuals handled by caller.
844    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
845    if (Result.isNull()) {
846      Result = Context.IntTy;
847      declarator.setInvalidType(true);
848    }
849    break;
850  }
851  case DeclSpec::TST_underlyingType:
852    Result = S.GetTypeFromParser(DS.getRepAsType());
853    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
854    Result = S.BuildUnaryTransformType(Result,
855                                       UnaryTransformType::EnumUnderlyingType,
856                                       DS.getTypeSpecTypeLoc());
857    if (Result.isNull()) {
858      Result = Context.IntTy;
859      declarator.setInvalidType(true);
860    }
861    break;
862
863  case DeclSpec::TST_auto: {
864    // TypeQuals handled by caller.
865    Result = Context.getAutoType(QualType());
866    break;
867  }
868
869  case DeclSpec::TST_unknown_anytype:
870    Result = Context.UnknownAnyTy;
871    break;
872
873  case DeclSpec::TST_atomic:
874    Result = S.GetTypeFromParser(DS.getRepAsType());
875    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
876    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
877    if (Result.isNull()) {
878      Result = Context.IntTy;
879      declarator.setInvalidType(true);
880    }
881    break;
882
883  case DeclSpec::TST_error:
884    Result = Context.IntTy;
885    declarator.setInvalidType(true);
886    break;
887  }
888
889  // Handle complex types.
890  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
891    if (S.getLangOpts().Freestanding)
892      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
893    Result = Context.getComplexType(Result);
894  } else if (DS.isTypeAltiVecVector()) {
895    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
896    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
897    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
898    if (DS.isTypeAltiVecPixel())
899      VecKind = VectorType::AltiVecPixel;
900    else if (DS.isTypeAltiVecBool())
901      VecKind = VectorType::AltiVecBool;
902    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
903  }
904
905  // FIXME: Imaginary.
906  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
907    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
908
909  // Before we process any type attributes, synthesize a block literal
910  // function declarator if necessary.
911  if (declarator.getContext() == Declarator::BlockLiteralContext)
912    maybeSynthesizeBlockSignature(state, Result);
913
914  // Apply any type attributes from the decl spec.  This may cause the
915  // list of type attributes to be temporarily saved while the type
916  // attributes are pushed around.
917  if (AttributeList *attrs = DS.getAttributes().getList())
918    processTypeAttrs(state, Result, true, attrs);
919
920  // Apply const/volatile/restrict qualifiers to T.
921  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
922
923    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
924    // or incomplete types shall not be restrict-qualified."  C++ also allows
925    // restrict-qualified references.
926    if (TypeQuals & DeclSpec::TQ_restrict) {
927      if (Result->isAnyPointerType() || Result->isReferenceType()) {
928        QualType EltTy;
929        if (Result->isObjCObjectPointerType())
930          EltTy = Result;
931        else
932          EltTy = Result->isPointerType() ?
933                    Result->getAs<PointerType>()->getPointeeType() :
934                    Result->getAs<ReferenceType>()->getPointeeType();
935
936        // If we have a pointer or reference, the pointee must have an object
937        // incomplete type.
938        if (!EltTy->isIncompleteOrObjectType()) {
939          S.Diag(DS.getRestrictSpecLoc(),
940               diag::err_typecheck_invalid_restrict_invalid_pointee)
941            << EltTy << DS.getSourceRange();
942          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
943        }
944      } else {
945        S.Diag(DS.getRestrictSpecLoc(),
946               diag::err_typecheck_invalid_restrict_not_pointer)
947          << Result << DS.getSourceRange();
948        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
949      }
950    }
951
952    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
953    // of a function type includes any type qualifiers, the behavior is
954    // undefined."
955    if (Result->isFunctionType() && TypeQuals) {
956      // Get some location to point at, either the C or V location.
957      SourceLocation Loc;
958      if (TypeQuals & DeclSpec::TQ_const)
959        Loc = DS.getConstSpecLoc();
960      else if (TypeQuals & DeclSpec::TQ_volatile)
961        Loc = DS.getVolatileSpecLoc();
962      else {
963        assert((TypeQuals & DeclSpec::TQ_restrict) &&
964               "Has CVR quals but not C, V, or R?");
965        Loc = DS.getRestrictSpecLoc();
966      }
967      S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
968        << Result << DS.getSourceRange();
969    }
970
971    // C++ [dcl.ref]p1:
972    //   Cv-qualified references are ill-formed except when the
973    //   cv-qualifiers are introduced through the use of a typedef
974    //   (7.1.3) or of a template type argument (14.3), in which
975    //   case the cv-qualifiers are ignored.
976    // FIXME: Shouldn't we be checking SCS_typedef here?
977    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
978        TypeQuals && Result->isReferenceType()) {
979      TypeQuals &= ~DeclSpec::TQ_const;
980      TypeQuals &= ~DeclSpec::TQ_volatile;
981    }
982
983    // C90 6.5.3 constraints: "The same type qualifier shall not appear more
984    // than once in the same specifier-list or qualifier-list, either directly
985    // or via one or more typedefs."
986    if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
987        && TypeQuals & Result.getCVRQualifiers()) {
988      if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
989        S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
990          << "const";
991      }
992
993      if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
994        S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
995          << "volatile";
996      }
997
998      // C90 doesn't have restrict, so it doesn't force us to produce a warning
999      // in this case.
1000    }
1001
1002    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
1003    Result = Context.getQualifiedType(Result, Quals);
1004  }
1005
1006  return Result;
1007}
1008
1009static std::string getPrintableNameForEntity(DeclarationName Entity) {
1010  if (Entity)
1011    return Entity.getAsString();
1012
1013  return "type name";
1014}
1015
1016QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1017                                  Qualifiers Qs) {
1018  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1019  // object or incomplete types shall not be restrict-qualified."
1020  if (Qs.hasRestrict()) {
1021    unsigned DiagID = 0;
1022    QualType ProblemTy;
1023
1024    const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
1025    if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
1026      if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
1027        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1028        ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
1029      }
1030    } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1031      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1032        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1033        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1034      }
1035    } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
1036      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1037        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1038        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1039      }
1040    } else if (!Ty->isDependentType()) {
1041      // FIXME: this deserves a proper diagnostic
1042      DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1043      ProblemTy = T;
1044    }
1045
1046    if (DiagID) {
1047      Diag(Loc, DiagID) << ProblemTy;
1048      Qs.removeRestrict();
1049    }
1050  }
1051
1052  return Context.getQualifiedType(T, Qs);
1053}
1054
1055/// \brief Build a paren type including \p T.
1056QualType Sema::BuildParenType(QualType T) {
1057  return Context.getParenType(T);
1058}
1059
1060/// Given that we're building a pointer or reference to the given
1061static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1062                                           SourceLocation loc,
1063                                           bool isReference) {
1064  // Bail out if retention is unrequired or already specified.
1065  if (!type->isObjCLifetimeType() ||
1066      type.getObjCLifetime() != Qualifiers::OCL_None)
1067    return type;
1068
1069  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1070
1071  // If the object type is const-qualified, we can safely use
1072  // __unsafe_unretained.  This is safe (because there are no read
1073  // barriers), and it'll be safe to coerce anything but __weak* to
1074  // the resulting type.
1075  if (type.isConstQualified()) {
1076    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1077
1078  // Otherwise, check whether the static type does not require
1079  // retaining.  This currently only triggers for Class (possibly
1080  // protocol-qualifed, and arrays thereof).
1081  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1082    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1083
1084  // If we are in an unevaluated context, like sizeof, skip adding a
1085  // qualification.
1086  } else if (S.ExprEvalContexts.back().Context == Sema::Unevaluated) {
1087    return type;
1088
1089  // If that failed, give an error and recover using __strong.  __strong
1090  // is the option most likely to prevent spurious second-order diagnostics,
1091  // like when binding a reference to a field.
1092  } else {
1093    // These types can show up in private ivars in system headers, so
1094    // we need this to not be an error in those cases.  Instead we
1095    // want to delay.
1096    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1097      S.DelayedDiagnostics.add(
1098          sema::DelayedDiagnostic::makeForbiddenType(loc,
1099              diag::err_arc_indirect_no_ownership, type, isReference));
1100    } else {
1101      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1102    }
1103    implicitLifetime = Qualifiers::OCL_Strong;
1104  }
1105  assert(implicitLifetime && "didn't infer any lifetime!");
1106
1107  Qualifiers qs;
1108  qs.addObjCLifetime(implicitLifetime);
1109  return S.Context.getQualifiedType(type, qs);
1110}
1111
1112/// \brief Build a pointer type.
1113///
1114/// \param T The type to which we'll be building a pointer.
1115///
1116/// \param Loc The location of the entity whose type involves this
1117/// pointer type or, if there is no such entity, the location of the
1118/// type that will have pointer type.
1119///
1120/// \param Entity The name of the entity that involves the pointer
1121/// type, if known.
1122///
1123/// \returns A suitable pointer type, if there are no
1124/// errors. Otherwise, returns a NULL type.
1125QualType Sema::BuildPointerType(QualType T,
1126                                SourceLocation Loc, DeclarationName Entity) {
1127  if (T->isReferenceType()) {
1128    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1129    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1130      << getPrintableNameForEntity(Entity) << T;
1131    return QualType();
1132  }
1133
1134  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1135
1136  // In ARC, it is forbidden to build pointers to unqualified pointers.
1137  if (getLangOpts().ObjCAutoRefCount)
1138    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1139
1140  // Build the pointer type.
1141  return Context.getPointerType(T);
1142}
1143
1144/// \brief Build a reference type.
1145///
1146/// \param T The type to which we'll be building a reference.
1147///
1148/// \param Loc The location of the entity whose type involves this
1149/// reference type or, if there is no such entity, the location of the
1150/// type that will have reference type.
1151///
1152/// \param Entity The name of the entity that involves the reference
1153/// type, if known.
1154///
1155/// \returns A suitable reference type, if there are no
1156/// errors. Otherwise, returns a NULL type.
1157QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1158                                  SourceLocation Loc,
1159                                  DeclarationName Entity) {
1160  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1161         "Unresolved overloaded function type");
1162
1163  // C++0x [dcl.ref]p6:
1164  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1165  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1166  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1167  //   the type "lvalue reference to T", while an attempt to create the type
1168  //   "rvalue reference to cv TR" creates the type TR.
1169  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1170
1171  // C++ [dcl.ref]p4: There shall be no references to references.
1172  //
1173  // According to C++ DR 106, references to references are only
1174  // diagnosed when they are written directly (e.g., "int & &"),
1175  // but not when they happen via a typedef:
1176  //
1177  //   typedef int& intref;
1178  //   typedef intref& intref2;
1179  //
1180  // Parser::ParseDeclaratorInternal diagnoses the case where
1181  // references are written directly; here, we handle the
1182  // collapsing of references-to-references as described in C++0x.
1183  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1184
1185  // C++ [dcl.ref]p1:
1186  //   A declarator that specifies the type "reference to cv void"
1187  //   is ill-formed.
1188  if (T->isVoidType()) {
1189    Diag(Loc, diag::err_reference_to_void);
1190    return QualType();
1191  }
1192
1193  // In ARC, it is forbidden to build references to unqualified pointers.
1194  if (getLangOpts().ObjCAutoRefCount)
1195    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1196
1197  // Handle restrict on references.
1198  if (LValueRef)
1199    return Context.getLValueReferenceType(T, SpelledAsLValue);
1200  return Context.getRValueReferenceType(T);
1201}
1202
1203/// Check whether the specified array size makes the array type a VLA.  If so,
1204/// return true, if not, return the size of the array in SizeVal.
1205static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1206  // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1207  // (like gnu99, but not c99) accept any evaluatable value as an extension.
1208  return S.VerifyIntegerConstantExpression(
1209      ArraySize, &SizeVal, S.PDiag(), S.LangOpts.GNUMode,
1210      S.PDiag(diag::ext_vla_folded_to_constant)).isInvalid();
1211}
1212
1213
1214/// \brief Build an array type.
1215///
1216/// \param T The type of each element in the array.
1217///
1218/// \param ASM C99 array size modifier (e.g., '*', 'static').
1219///
1220/// \param ArraySize Expression describing the size of the array.
1221///
1222/// \param Loc The location of the entity whose type involves this
1223/// array type or, if there is no such entity, the location of the
1224/// type that will have array type.
1225///
1226/// \param Entity The name of the entity that involves the array
1227/// type, if known.
1228///
1229/// \returns A suitable array type, if there are no errors. Otherwise,
1230/// returns a NULL type.
1231QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1232                              Expr *ArraySize, unsigned Quals,
1233                              SourceRange Brackets, DeclarationName Entity) {
1234
1235  SourceLocation Loc = Brackets.getBegin();
1236  if (getLangOpts().CPlusPlus) {
1237    // C++ [dcl.array]p1:
1238    //   T is called the array element type; this type shall not be a reference
1239    //   type, the (possibly cv-qualified) type void, a function type or an
1240    //   abstract class type.
1241    //
1242    // Note: function types are handled in the common path with C.
1243    if (T->isReferenceType()) {
1244      Diag(Loc, diag::err_illegal_decl_array_of_references)
1245      << getPrintableNameForEntity(Entity) << T;
1246      return QualType();
1247    }
1248
1249    if (T->isVoidType()) {
1250      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1251      return QualType();
1252    }
1253
1254    if (RequireNonAbstractType(Brackets.getBegin(), T,
1255                               diag::err_array_of_abstract_type))
1256      return QualType();
1257
1258  } else {
1259    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1260    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1261    if (RequireCompleteType(Loc, T,
1262                            diag::err_illegal_decl_array_incomplete_type))
1263      return QualType();
1264  }
1265
1266  if (T->isFunctionType()) {
1267    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1268      << getPrintableNameForEntity(Entity) << T;
1269    return QualType();
1270  }
1271
1272  if (T->getContainedAutoType()) {
1273    Diag(Loc, diag::err_illegal_decl_array_of_auto)
1274      << getPrintableNameForEntity(Entity) << T;
1275    return QualType();
1276  }
1277
1278  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1279    // If the element type is a struct or union that contains a variadic
1280    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1281    if (EltTy->getDecl()->hasFlexibleArrayMember())
1282      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1283  } else if (T->isObjCObjectType()) {
1284    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1285    return QualType();
1286  }
1287
1288  // Do placeholder conversions on the array size expression.
1289  if (ArraySize && ArraySize->hasPlaceholderType()) {
1290    ExprResult Result = CheckPlaceholderExpr(ArraySize);
1291    if (Result.isInvalid()) return QualType();
1292    ArraySize = Result.take();
1293  }
1294
1295  // Do lvalue-to-rvalue conversions on the array size expression.
1296  if (ArraySize && !ArraySize->isRValue()) {
1297    ExprResult Result = DefaultLvalueConversion(ArraySize);
1298    if (Result.isInvalid())
1299      return QualType();
1300
1301    ArraySize = Result.take();
1302  }
1303
1304  // C99 6.7.5.2p1: The size expression shall have integer type.
1305  // C++11 allows contextual conversions to such types.
1306  if (!getLangOpts().CPlusPlus0x &&
1307      ArraySize && !ArraySize->isTypeDependent() &&
1308      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1309    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1310      << ArraySize->getType() << ArraySize->getSourceRange();
1311    return QualType();
1312  }
1313
1314  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1315  if (!ArraySize) {
1316    if (ASM == ArrayType::Star)
1317      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1318    else
1319      T = Context.getIncompleteArrayType(T, ASM, Quals);
1320  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1321    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1322  } else if ((!T->isDependentType() && !T->isIncompleteType() &&
1323              !T->isConstantSizeType()) ||
1324             isArraySizeVLA(*this, ArraySize, ConstVal)) {
1325    // Even in C++11, don't allow contextual conversions in the array bound
1326    // of a VLA.
1327    if (getLangOpts().CPlusPlus0x &&
1328        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1329      Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1330        << ArraySize->getType() << ArraySize->getSourceRange();
1331      return QualType();
1332    }
1333
1334    // C99: an array with an element type that has a non-constant-size is a VLA.
1335    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1336    // that we can fold to a non-zero positive value as an extension.
1337    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1338  } else {
1339    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1340    // have a value greater than zero.
1341    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1342      if (Entity)
1343        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1344          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1345      else
1346        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1347          << ArraySize->getSourceRange();
1348      return QualType();
1349    }
1350    if (ConstVal == 0) {
1351      // GCC accepts zero sized static arrays. We allow them when
1352      // we're not in a SFINAE context.
1353      Diag(ArraySize->getLocStart(),
1354           isSFINAEContext()? diag::err_typecheck_zero_array_size
1355                            : diag::ext_typecheck_zero_array_size)
1356        << ArraySize->getSourceRange();
1357
1358      if (ASM == ArrayType::Static) {
1359        Diag(ArraySize->getLocStart(),
1360             diag::warn_typecheck_zero_static_array_size)
1361          << ArraySize->getSourceRange();
1362        ASM = ArrayType::Normal;
1363      }
1364    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1365               !T->isIncompleteType()) {
1366      // Is the array too large?
1367      unsigned ActiveSizeBits
1368        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1369      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1370        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1371          << ConstVal.toString(10)
1372          << ArraySize->getSourceRange();
1373    }
1374
1375    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1376  }
1377  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1378  if (!getLangOpts().C99) {
1379    if (T->isVariableArrayType()) {
1380      // Prohibit the use of non-POD types in VLAs.
1381      QualType BaseT = Context.getBaseElementType(T);
1382      if (!T->isDependentType() &&
1383          !BaseT.isPODType(Context) &&
1384          !BaseT->isObjCLifetimeType()) {
1385        Diag(Loc, diag::err_vla_non_pod)
1386          << BaseT;
1387        return QualType();
1388      }
1389      // Prohibit the use of VLAs during template argument deduction.
1390      else if (isSFINAEContext()) {
1391        Diag(Loc, diag::err_vla_in_sfinae);
1392        return QualType();
1393      }
1394      // Just extwarn about VLAs.
1395      else
1396        Diag(Loc, diag::ext_vla);
1397    } else if (ASM != ArrayType::Normal || Quals != 0)
1398      Diag(Loc,
1399           getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
1400                                     : diag::ext_c99_array_usage) << ASM;
1401  }
1402
1403  return T;
1404}
1405
1406/// \brief Build an ext-vector type.
1407///
1408/// Run the required checks for the extended vector type.
1409QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1410                                  SourceLocation AttrLoc) {
1411  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1412  // in conjunction with complex types (pointers, arrays, functions, etc.).
1413  if (!T->isDependentType() &&
1414      !T->isIntegerType() && !T->isRealFloatingType()) {
1415    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1416    return QualType();
1417  }
1418
1419  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1420    llvm::APSInt vecSize(32);
1421    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1422      Diag(AttrLoc, diag::err_attribute_argument_not_int)
1423        << "ext_vector_type" << ArraySize->getSourceRange();
1424      return QualType();
1425    }
1426
1427    // unlike gcc's vector_size attribute, the size is specified as the
1428    // number of elements, not the number of bytes.
1429    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1430
1431    if (vectorSize == 0) {
1432      Diag(AttrLoc, diag::err_attribute_zero_size)
1433      << ArraySize->getSourceRange();
1434      return QualType();
1435    }
1436
1437    return Context.getExtVectorType(T, vectorSize);
1438  }
1439
1440  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1441}
1442
1443/// \brief Build a function type.
1444///
1445/// This routine checks the function type according to C++ rules and
1446/// under the assumption that the result type and parameter types have
1447/// just been instantiated from a template. It therefore duplicates
1448/// some of the behavior of GetTypeForDeclarator, but in a much
1449/// simpler form that is only suitable for this narrow use case.
1450///
1451/// \param T The return type of the function.
1452///
1453/// \param ParamTypes The parameter types of the function. This array
1454/// will be modified to account for adjustments to the types of the
1455/// function parameters.
1456///
1457/// \param NumParamTypes The number of parameter types in ParamTypes.
1458///
1459/// \param Variadic Whether this is a variadic function type.
1460///
1461/// \param HasTrailingReturn Whether this function has a trailing return type.
1462///
1463/// \param Quals The cvr-qualifiers to be applied to the function type.
1464///
1465/// \param Loc The location of the entity whose type involves this
1466/// function type or, if there is no such entity, the location of the
1467/// type that will have function type.
1468///
1469/// \param Entity The name of the entity that involves the function
1470/// type, if known.
1471///
1472/// \returns A suitable function type, if there are no
1473/// errors. Otherwise, returns a NULL type.
1474QualType Sema::BuildFunctionType(QualType T,
1475                                 QualType *ParamTypes,
1476                                 unsigned NumParamTypes,
1477                                 bool Variadic, bool HasTrailingReturn,
1478                                 unsigned Quals,
1479                                 RefQualifierKind RefQualifier,
1480                                 SourceLocation Loc, DeclarationName Entity,
1481                                 FunctionType::ExtInfo Info) {
1482  if (T->isArrayType() || T->isFunctionType()) {
1483    Diag(Loc, diag::err_func_returning_array_function)
1484      << T->isFunctionType() << T;
1485    return QualType();
1486  }
1487
1488  // Functions cannot return half FP.
1489  if (T->isHalfType()) {
1490    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1491      FixItHint::CreateInsertion(Loc, "*");
1492    return QualType();
1493  }
1494
1495  bool Invalid = false;
1496  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
1497    // FIXME: Loc is too inprecise here, should use proper locations for args.
1498    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1499    if (ParamType->isVoidType()) {
1500      Diag(Loc, diag::err_param_with_void_type);
1501      Invalid = true;
1502    } else if (ParamType->isHalfType()) {
1503      // Disallow half FP arguments.
1504      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1505        FixItHint::CreateInsertion(Loc, "*");
1506      Invalid = true;
1507    }
1508
1509    ParamTypes[Idx] = ParamType;
1510  }
1511
1512  if (Invalid)
1513    return QualType();
1514
1515  FunctionProtoType::ExtProtoInfo EPI;
1516  EPI.Variadic = Variadic;
1517  EPI.HasTrailingReturn = HasTrailingReturn;
1518  EPI.TypeQuals = Quals;
1519  EPI.RefQualifier = RefQualifier;
1520  EPI.ExtInfo = Info;
1521
1522  return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
1523}
1524
1525/// \brief Build a member pointer type \c T Class::*.
1526///
1527/// \param T the type to which the member pointer refers.
1528/// \param Class the class type into which the member pointer points.
1529/// \param Loc the location where this type begins
1530/// \param Entity the name of the entity that will have this member pointer type
1531///
1532/// \returns a member pointer type, if successful, or a NULL type if there was
1533/// an error.
1534QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1535                                      SourceLocation Loc,
1536                                      DeclarationName Entity) {
1537  // Verify that we're not building a pointer to pointer to function with
1538  // exception specification.
1539  if (CheckDistantExceptionSpec(T)) {
1540    Diag(Loc, diag::err_distant_exception_spec);
1541
1542    // FIXME: If we're doing this as part of template instantiation,
1543    // we should return immediately.
1544
1545    // Build the type anyway, but use the canonical type so that the
1546    // exception specifiers are stripped off.
1547    T = Context.getCanonicalType(T);
1548  }
1549
1550  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1551  //   with reference type, or "cv void."
1552  if (T->isReferenceType()) {
1553    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1554      << (Entity? Entity.getAsString() : "type name") << T;
1555    return QualType();
1556  }
1557
1558  if (T->isVoidType()) {
1559    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1560      << (Entity? Entity.getAsString() : "type name");
1561    return QualType();
1562  }
1563
1564  if (!Class->isDependentType() && !Class->isRecordType()) {
1565    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1566    return QualType();
1567  }
1568
1569  // In the Microsoft ABI, the class is allowed to be an incomplete
1570  // type. In such cases, the compiler makes a worst-case assumption.
1571  // We make no such assumption right now, so emit an error if the
1572  // class isn't a complete type.
1573  if (Context.getTargetInfo().getCXXABI() == CXXABI_Microsoft &&
1574      RequireCompleteType(Loc, Class, diag::err_incomplete_type))
1575    return QualType();
1576
1577  return Context.getMemberPointerType(T, Class.getTypePtr());
1578}
1579
1580/// \brief Build a block pointer type.
1581///
1582/// \param T The type to which we'll be building a block pointer.
1583///
1584/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
1585///
1586/// \param Loc The location of the entity whose type involves this
1587/// block pointer type or, if there is no such entity, the location of the
1588/// type that will have block pointer type.
1589///
1590/// \param Entity The name of the entity that involves the block pointer
1591/// type, if known.
1592///
1593/// \returns A suitable block pointer type, if there are no
1594/// errors. Otherwise, returns a NULL type.
1595QualType Sema::BuildBlockPointerType(QualType T,
1596                                     SourceLocation Loc,
1597                                     DeclarationName Entity) {
1598  if (!T->isFunctionType()) {
1599    Diag(Loc, diag::err_nonfunction_block_type);
1600    return QualType();
1601  }
1602
1603  return Context.getBlockPointerType(T);
1604}
1605
1606QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1607  QualType QT = Ty.get();
1608  if (QT.isNull()) {
1609    if (TInfo) *TInfo = 0;
1610    return QualType();
1611  }
1612
1613  TypeSourceInfo *DI = 0;
1614  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1615    QT = LIT->getType();
1616    DI = LIT->getTypeSourceInfo();
1617  }
1618
1619  if (TInfo) *TInfo = DI;
1620  return QT;
1621}
1622
1623static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1624                                            Qualifiers::ObjCLifetime ownership,
1625                                            unsigned chunkIndex);
1626
1627/// Given that this is the declaration of a parameter under ARC,
1628/// attempt to infer attributes and such for pointer-to-whatever
1629/// types.
1630static void inferARCWriteback(TypeProcessingState &state,
1631                              QualType &declSpecType) {
1632  Sema &S = state.getSema();
1633  Declarator &declarator = state.getDeclarator();
1634
1635  // TODO: should we care about decl qualifiers?
1636
1637  // Check whether the declarator has the expected form.  We walk
1638  // from the inside out in order to make the block logic work.
1639  unsigned outermostPointerIndex = 0;
1640  bool isBlockPointer = false;
1641  unsigned numPointers = 0;
1642  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1643    unsigned chunkIndex = i;
1644    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1645    switch (chunk.Kind) {
1646    case DeclaratorChunk::Paren:
1647      // Ignore parens.
1648      break;
1649
1650    case DeclaratorChunk::Reference:
1651    case DeclaratorChunk::Pointer:
1652      // Count the number of pointers.  Treat references
1653      // interchangeably as pointers; if they're mis-ordered, normal
1654      // type building will discover that.
1655      outermostPointerIndex = chunkIndex;
1656      numPointers++;
1657      break;
1658
1659    case DeclaratorChunk::BlockPointer:
1660      // If we have a pointer to block pointer, that's an acceptable
1661      // indirect reference; anything else is not an application of
1662      // the rules.
1663      if (numPointers != 1) return;
1664      numPointers++;
1665      outermostPointerIndex = chunkIndex;
1666      isBlockPointer = true;
1667
1668      // We don't care about pointer structure in return values here.
1669      goto done;
1670
1671    case DeclaratorChunk::Array: // suppress if written (id[])?
1672    case DeclaratorChunk::Function:
1673    case DeclaratorChunk::MemberPointer:
1674      return;
1675    }
1676  }
1677 done:
1678
1679  // If we have *one* pointer, then we want to throw the qualifier on
1680  // the declaration-specifiers, which means that it needs to be a
1681  // retainable object type.
1682  if (numPointers == 1) {
1683    // If it's not a retainable object type, the rule doesn't apply.
1684    if (!declSpecType->isObjCRetainableType()) return;
1685
1686    // If it already has lifetime, don't do anything.
1687    if (declSpecType.getObjCLifetime()) return;
1688
1689    // Otherwise, modify the type in-place.
1690    Qualifiers qs;
1691
1692    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1693      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1694    else
1695      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1696    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1697
1698  // If we have *two* pointers, then we want to throw the qualifier on
1699  // the outermost pointer.
1700  } else if (numPointers == 2) {
1701    // If we don't have a block pointer, we need to check whether the
1702    // declaration-specifiers gave us something that will turn into a
1703    // retainable object pointer after we slap the first pointer on it.
1704    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1705      return;
1706
1707    // Look for an explicit lifetime attribute there.
1708    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1709    if (chunk.Kind != DeclaratorChunk::Pointer &&
1710        chunk.Kind != DeclaratorChunk::BlockPointer)
1711      return;
1712    for (const AttributeList *attr = chunk.getAttrs(); attr;
1713           attr = attr->getNext())
1714      if (attr->getKind() == AttributeList::AT_objc_ownership)
1715        return;
1716
1717    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1718                                          outermostPointerIndex);
1719
1720  // Any other number of pointers/references does not trigger the rule.
1721  } else return;
1722
1723  // TODO: mark whether we did this inference?
1724}
1725
1726static void DiagnoseIgnoredQualifiers(unsigned Quals,
1727                                      SourceLocation ConstQualLoc,
1728                                      SourceLocation VolatileQualLoc,
1729                                      SourceLocation RestrictQualLoc,
1730                                      Sema& S) {
1731  std::string QualStr;
1732  unsigned NumQuals = 0;
1733  SourceLocation Loc;
1734
1735  FixItHint ConstFixIt;
1736  FixItHint VolatileFixIt;
1737  FixItHint RestrictFixIt;
1738
1739  const SourceManager &SM = S.getSourceManager();
1740
1741  // FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
1742  // find a range and grow it to encompass all the qualifiers, regardless of
1743  // the order in which they textually appear.
1744  if (Quals & Qualifiers::Const) {
1745    ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
1746    QualStr = "const";
1747    ++NumQuals;
1748    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(ConstQualLoc, Loc))
1749      Loc = ConstQualLoc;
1750  }
1751  if (Quals & Qualifiers::Volatile) {
1752    VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
1753    QualStr += (NumQuals == 0 ? "volatile" : " volatile");
1754    ++NumQuals;
1755    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(VolatileQualLoc, Loc))
1756      Loc = VolatileQualLoc;
1757  }
1758  if (Quals & Qualifiers::Restrict) {
1759    RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
1760    QualStr += (NumQuals == 0 ? "restrict" : " restrict");
1761    ++NumQuals;
1762    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(RestrictQualLoc, Loc))
1763      Loc = RestrictQualLoc;
1764  }
1765
1766  assert(NumQuals > 0 && "No known qualifiers?");
1767
1768  S.Diag(Loc, diag::warn_qual_return_type)
1769    << QualStr << NumQuals << ConstFixIt << VolatileFixIt << RestrictFixIt;
1770}
1771
1772static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
1773                                             TypeSourceInfo *&ReturnTypeInfo) {
1774  Sema &SemaRef = state.getSema();
1775  Declarator &D = state.getDeclarator();
1776  QualType T;
1777  ReturnTypeInfo = 0;
1778
1779  // The TagDecl owned by the DeclSpec.
1780  TagDecl *OwnedTagDecl = 0;
1781
1782  switch (D.getName().getKind()) {
1783  case UnqualifiedId::IK_ImplicitSelfParam:
1784  case UnqualifiedId::IK_OperatorFunctionId:
1785  case UnqualifiedId::IK_Identifier:
1786  case UnqualifiedId::IK_LiteralOperatorId:
1787  case UnqualifiedId::IK_TemplateId:
1788    T = ConvertDeclSpecToType(state);
1789
1790    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
1791      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
1792      // Owned declaration is embedded in declarator.
1793      OwnedTagDecl->setEmbeddedInDeclarator(true);
1794    }
1795    break;
1796
1797  case UnqualifiedId::IK_ConstructorName:
1798  case UnqualifiedId::IK_ConstructorTemplateId:
1799  case UnqualifiedId::IK_DestructorName:
1800    // Constructors and destructors don't have return types. Use
1801    // "void" instead.
1802    T = SemaRef.Context.VoidTy;
1803    break;
1804
1805  case UnqualifiedId::IK_ConversionFunctionId:
1806    // The result type of a conversion function is the type that it
1807    // converts to.
1808    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
1809                                  &ReturnTypeInfo);
1810    break;
1811  }
1812
1813  if (D.getAttributes())
1814    distributeTypeAttrsFromDeclarator(state, T);
1815
1816  // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
1817  // In C++11, a function declarator using 'auto' must have a trailing return
1818  // type (this is checked later) and we can skip this. In other languages
1819  // using auto, we need to check regardless.
1820  if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
1821      (!SemaRef.getLangOpts().CPlusPlus0x || !D.isFunctionDeclarator())) {
1822    int Error = -1;
1823
1824    switch (D.getContext()) {
1825    case Declarator::KNRTypeListContext:
1826      llvm_unreachable("K&R type lists aren't allowed in C++");
1827    case Declarator::LambdaExprContext:
1828      llvm_unreachable("Can't specify a type specifier in lambda grammar");
1829    case Declarator::ObjCParameterContext:
1830    case Declarator::ObjCResultContext:
1831    case Declarator::PrototypeContext:
1832      Error = 0; // Function prototype
1833      break;
1834    case Declarator::MemberContext:
1835      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
1836        break;
1837      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
1838      case TTK_Enum: llvm_unreachable("unhandled tag kind");
1839      case TTK_Struct: Error = 1; /* Struct member */ break;
1840      case TTK_Union:  Error = 2; /* Union member */ break;
1841      case TTK_Class:  Error = 3; /* Class member */ break;
1842      }
1843      break;
1844    case Declarator::CXXCatchContext:
1845    case Declarator::ObjCCatchContext:
1846      Error = 4; // Exception declaration
1847      break;
1848    case Declarator::TemplateParamContext:
1849      Error = 5; // Template parameter
1850      break;
1851    case Declarator::BlockLiteralContext:
1852      Error = 6; // Block literal
1853      break;
1854    case Declarator::TemplateTypeArgContext:
1855      Error = 7; // Template type argument
1856      break;
1857    case Declarator::AliasDeclContext:
1858    case Declarator::AliasTemplateContext:
1859      Error = 9; // Type alias
1860      break;
1861    case Declarator::TrailingReturnContext:
1862      Error = 10; // Function return type
1863      break;
1864    case Declarator::TypeNameContext:
1865      Error = 11; // Generic
1866      break;
1867    case Declarator::FileContext:
1868    case Declarator::BlockContext:
1869    case Declarator::ForContext:
1870    case Declarator::ConditionContext:
1871    case Declarator::CXXNewContext:
1872      break;
1873    }
1874
1875    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1876      Error = 8;
1877
1878    // In Objective-C it is an error to use 'auto' on a function declarator.
1879    if (D.isFunctionDeclarator())
1880      Error = 10;
1881
1882    // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
1883    // contains a trailing return type. That is only legal at the outermost
1884    // level. Check all declarator chunks (outermost first) anyway, to give
1885    // better diagnostics.
1886    if (SemaRef.getLangOpts().CPlusPlus0x && Error != -1) {
1887      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1888        unsigned chunkIndex = e - i - 1;
1889        state.setCurrentChunkIndex(chunkIndex);
1890        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1891        if (DeclType.Kind == DeclaratorChunk::Function) {
1892          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1893          if (FTI.TrailingReturnType) {
1894            Error = -1;
1895            break;
1896          }
1897        }
1898      }
1899    }
1900
1901    if (Error != -1) {
1902      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1903                   diag::err_auto_not_allowed)
1904        << Error;
1905      T = SemaRef.Context.IntTy;
1906      D.setInvalidType(true);
1907    } else
1908      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1909                   diag::warn_cxx98_compat_auto_type_specifier);
1910  }
1911
1912  if (SemaRef.getLangOpts().CPlusPlus &&
1913      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
1914    // Check the contexts where C++ forbids the declaration of a new class
1915    // or enumeration in a type-specifier-seq.
1916    switch (D.getContext()) {
1917    case Declarator::TrailingReturnContext:
1918      // Class and enumeration definitions are syntactically not allowed in
1919      // trailing return types.
1920      llvm_unreachable("parser should not have allowed this");
1921      break;
1922    case Declarator::FileContext:
1923    case Declarator::MemberContext:
1924    case Declarator::BlockContext:
1925    case Declarator::ForContext:
1926    case Declarator::BlockLiteralContext:
1927    case Declarator::LambdaExprContext:
1928      // C++11 [dcl.type]p3:
1929      //   A type-specifier-seq shall not define a class or enumeration unless
1930      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
1931      //   the declaration of a template-declaration.
1932    case Declarator::AliasDeclContext:
1933      break;
1934    case Declarator::AliasTemplateContext:
1935      SemaRef.Diag(OwnedTagDecl->getLocation(),
1936             diag::err_type_defined_in_alias_template)
1937        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1938      break;
1939    case Declarator::TypeNameContext:
1940    case Declarator::TemplateParamContext:
1941    case Declarator::CXXNewContext:
1942    case Declarator::CXXCatchContext:
1943    case Declarator::ObjCCatchContext:
1944    case Declarator::TemplateTypeArgContext:
1945      SemaRef.Diag(OwnedTagDecl->getLocation(),
1946             diag::err_type_defined_in_type_specifier)
1947        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1948      break;
1949    case Declarator::PrototypeContext:
1950    case Declarator::ObjCParameterContext:
1951    case Declarator::ObjCResultContext:
1952    case Declarator::KNRTypeListContext:
1953      // C++ [dcl.fct]p6:
1954      //   Types shall not be defined in return or parameter types.
1955      SemaRef.Diag(OwnedTagDecl->getLocation(),
1956                   diag::err_type_defined_in_param_type)
1957        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1958      break;
1959    case Declarator::ConditionContext:
1960      // C++ 6.4p2:
1961      // The type-specifier-seq shall not contain typedef and shall not declare
1962      // a new class or enumeration.
1963      SemaRef.Diag(OwnedTagDecl->getLocation(),
1964                   diag::err_type_defined_in_condition);
1965      break;
1966    }
1967  }
1968
1969  return T;
1970}
1971
1972static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1973  std::string Quals =
1974    Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
1975
1976  switch (FnTy->getRefQualifier()) {
1977  case RQ_None:
1978    break;
1979
1980  case RQ_LValue:
1981    if (!Quals.empty())
1982      Quals += ' ';
1983    Quals += '&';
1984    break;
1985
1986  case RQ_RValue:
1987    if (!Quals.empty())
1988      Quals += ' ';
1989    Quals += "&&";
1990    break;
1991  }
1992
1993  return Quals;
1994}
1995
1996/// Check that the function type T, which has a cv-qualifier or a ref-qualifier,
1997/// can be contained within the declarator chunk DeclType, and produce an
1998/// appropriate diagnostic if not.
1999static void checkQualifiedFunction(Sema &S, QualType T,
2000                                   DeclaratorChunk &DeclType) {
2001  // C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: a function type with a
2002  // cv-qualifier or a ref-qualifier can only appear at the topmost level
2003  // of a type.
2004  int DiagKind = -1;
2005  switch (DeclType.Kind) {
2006  case DeclaratorChunk::Paren:
2007  case DeclaratorChunk::MemberPointer:
2008    // These cases are permitted.
2009    return;
2010  case DeclaratorChunk::Array:
2011  case DeclaratorChunk::Function:
2012    // These cases don't allow function types at all; no need to diagnose the
2013    // qualifiers separately.
2014    return;
2015  case DeclaratorChunk::BlockPointer:
2016    DiagKind = 0;
2017    break;
2018  case DeclaratorChunk::Pointer:
2019    DiagKind = 1;
2020    break;
2021  case DeclaratorChunk::Reference:
2022    DiagKind = 2;
2023    break;
2024  }
2025
2026  assert(DiagKind != -1);
2027  S.Diag(DeclType.Loc, diag::err_compound_qualified_function_type)
2028    << DiagKind << isa<FunctionType>(T.IgnoreParens()) << T
2029    << getFunctionQualifiersAsString(T->castAs<FunctionProtoType>());
2030}
2031
2032static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
2033                                                QualType declSpecType,
2034                                                TypeSourceInfo *TInfo) {
2035
2036  QualType T = declSpecType;
2037  Declarator &D = state.getDeclarator();
2038  Sema &S = state.getSema();
2039  ASTContext &Context = S.Context;
2040  const LangOptions &LangOpts = S.getLangOpts();
2041
2042  bool ImplicitlyNoexcept = false;
2043  if (D.getName().getKind() == UnqualifiedId::IK_OperatorFunctionId &&
2044      LangOpts.CPlusPlus0x) {
2045    OverloadedOperatorKind OO = D.getName().OperatorFunctionId.Operator;
2046    /// In C++0x, deallocation functions (normal and array operator delete)
2047    /// are implicitly noexcept.
2048    if (OO == OO_Delete || OO == OO_Array_Delete)
2049      ImplicitlyNoexcept = true;
2050  }
2051
2052  // The name we're declaring, if any.
2053  DeclarationName Name;
2054  if (D.getIdentifier())
2055    Name = D.getIdentifier();
2056
2057  // Does this declaration declare a typedef-name?
2058  bool IsTypedefName =
2059    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2060    D.getContext() == Declarator::AliasDeclContext ||
2061    D.getContext() == Declarator::AliasTemplateContext;
2062
2063  // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2064  bool IsQualifiedFunction = T->isFunctionProtoType() &&
2065      (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
2066       T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
2067
2068  // Walk the DeclTypeInfo, building the recursive type as we go.
2069  // DeclTypeInfos are ordered from the identifier out, which is
2070  // opposite of what we want :).
2071  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2072    unsigned chunkIndex = e - i - 1;
2073    state.setCurrentChunkIndex(chunkIndex);
2074    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2075    if (IsQualifiedFunction) {
2076      checkQualifiedFunction(S, T, DeclType);
2077      IsQualifiedFunction = DeclType.Kind == DeclaratorChunk::Paren;
2078    }
2079    switch (DeclType.Kind) {
2080    case DeclaratorChunk::Paren:
2081      T = S.BuildParenType(T);
2082      break;
2083    case DeclaratorChunk::BlockPointer:
2084      // If blocks are disabled, emit an error.
2085      if (!LangOpts.Blocks)
2086        S.Diag(DeclType.Loc, diag::err_blocks_disable);
2087
2088      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
2089      if (DeclType.Cls.TypeQuals)
2090        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
2091      break;
2092    case DeclaratorChunk::Pointer:
2093      // Verify that we're not building a pointer to pointer to function with
2094      // exception specification.
2095      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2096        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2097        D.setInvalidType(true);
2098        // Build the type anyway.
2099      }
2100      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
2101        T = Context.getObjCObjectPointerType(T);
2102        if (DeclType.Ptr.TypeQuals)
2103          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2104        break;
2105      }
2106      T = S.BuildPointerType(T, DeclType.Loc, Name);
2107      if (DeclType.Ptr.TypeQuals)
2108        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
2109
2110      break;
2111    case DeclaratorChunk::Reference: {
2112      // Verify that we're not building a reference to pointer to function with
2113      // exception specification.
2114      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2115        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2116        D.setInvalidType(true);
2117        // Build the type anyway.
2118      }
2119      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2120
2121      Qualifiers Quals;
2122      if (DeclType.Ref.HasRestrict)
2123        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2124      break;
2125    }
2126    case DeclaratorChunk::Array: {
2127      // Verify that we're not building an array of pointers to function with
2128      // exception specification.
2129      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2130        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2131        D.setInvalidType(true);
2132        // Build the type anyway.
2133      }
2134      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2135      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2136      ArrayType::ArraySizeModifier ASM;
2137      if (ATI.isStar)
2138        ASM = ArrayType::Star;
2139      else if (ATI.hasStatic)
2140        ASM = ArrayType::Static;
2141      else
2142        ASM = ArrayType::Normal;
2143      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2144        // FIXME: This check isn't quite right: it allows star in prototypes
2145        // for function definitions, and disallows some edge cases detailed
2146        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2147        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2148        ASM = ArrayType::Normal;
2149        D.setInvalidType(true);
2150      }
2151      T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
2152                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2153      break;
2154    }
2155    case DeclaratorChunk::Function: {
2156      // If the function declarator has a prototype (i.e. it is not () and
2157      // does not have a K&R-style identifier list), then the arguments are part
2158      // of the type, otherwise the argument list is ().
2159      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2160      IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
2161
2162      // Check for auto functions and trailing return type and adjust the
2163      // return type accordingly.
2164      if (!D.isInvalidType()) {
2165        // trailing-return-type is only required if we're declaring a function,
2166        // and not, for instance, a pointer to a function.
2167        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2168            !FTI.TrailingReturnType && chunkIndex == 0) {
2169          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2170               diag::err_auto_missing_trailing_return);
2171          T = Context.IntTy;
2172          D.setInvalidType(true);
2173        } else if (FTI.TrailingReturnType) {
2174          // T must be exactly 'auto' at this point. See CWG issue 681.
2175          if (isa<ParenType>(T)) {
2176            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2177                 diag::err_trailing_return_in_parens)
2178              << T << D.getDeclSpec().getSourceRange();
2179            D.setInvalidType(true);
2180          } else if (D.getContext() != Declarator::LambdaExprContext &&
2181                     (T.hasQualifiers() || !isa<AutoType>(T))) {
2182            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2183                 diag::err_trailing_return_without_auto)
2184              << T << D.getDeclSpec().getSourceRange();
2185            D.setInvalidType(true);
2186          }
2187
2188          T = S.GetTypeFromParser(
2189            ParsedType::getFromOpaquePtr(FTI.TrailingReturnType),
2190            &TInfo);
2191        }
2192      }
2193
2194      // C99 6.7.5.3p1: The return type may not be a function or array type.
2195      // For conversion functions, we'll diagnose this particular error later.
2196      if ((T->isArrayType() || T->isFunctionType()) &&
2197          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2198        unsigned diagID = diag::err_func_returning_array_function;
2199        // Last processing chunk in block context means this function chunk
2200        // represents the block.
2201        if (chunkIndex == 0 &&
2202            D.getContext() == Declarator::BlockLiteralContext)
2203          diagID = diag::err_block_returning_array_function;
2204        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2205        T = Context.IntTy;
2206        D.setInvalidType(true);
2207      }
2208
2209      // Do not allow returning half FP value.
2210      // FIXME: This really should be in BuildFunctionType.
2211      if (T->isHalfType()) {
2212        S.Diag(D.getIdentifierLoc(),
2213             diag::err_parameters_retval_cannot_have_fp16_type) << 1
2214          << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
2215        D.setInvalidType(true);
2216      }
2217
2218      // cv-qualifiers on return types are pointless except when the type is a
2219      // class type in C++.
2220      if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
2221          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
2222          (!LangOpts.CPlusPlus || !T->isDependentType())) {
2223        assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
2224        DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2225        assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
2226
2227        DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
2228
2229        DiagnoseIgnoredQualifiers(PTI.TypeQuals,
2230            SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2231            SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2232            SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2233            S);
2234
2235      } else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
2236          (!LangOpts.CPlusPlus ||
2237           (!T->isDependentType() && !T->isRecordType()))) {
2238
2239        DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
2240                                  D.getDeclSpec().getConstSpecLoc(),
2241                                  D.getDeclSpec().getVolatileSpecLoc(),
2242                                  D.getDeclSpec().getRestrictSpecLoc(),
2243                                  S);
2244      }
2245
2246      if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2247        // C++ [dcl.fct]p6:
2248        //   Types shall not be defined in return or parameter types.
2249        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2250        if (Tag->isCompleteDefinition())
2251          S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2252            << Context.getTypeDeclType(Tag);
2253      }
2254
2255      // Exception specs are not allowed in typedefs. Complain, but add it
2256      // anyway.
2257      if (IsTypedefName && FTI.getExceptionSpecType())
2258        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2259          << (D.getContext() == Declarator::AliasDeclContext ||
2260              D.getContext() == Declarator::AliasTemplateContext);
2261
2262      if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2263        // Simple void foo(), where the incoming T is the result type.
2264        T = Context.getFunctionNoProtoType(T);
2265      } else {
2266        // We allow a zero-parameter variadic function in C if the
2267        // function is marked with the "overloadable" attribute. Scan
2268        // for this attribute now.
2269        if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2270          bool Overloadable = false;
2271          for (const AttributeList *Attrs = D.getAttributes();
2272               Attrs; Attrs = Attrs->getNext()) {
2273            if (Attrs->getKind() == AttributeList::AT_overloadable) {
2274              Overloadable = true;
2275              break;
2276            }
2277          }
2278
2279          if (!Overloadable)
2280            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2281        }
2282
2283        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2284          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2285          // definition.
2286          S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2287          D.setInvalidType(true);
2288          break;
2289        }
2290
2291        FunctionProtoType::ExtProtoInfo EPI;
2292        EPI.Variadic = FTI.isVariadic;
2293        EPI.HasTrailingReturn = FTI.TrailingReturnType;
2294        EPI.TypeQuals = FTI.TypeQuals;
2295        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2296                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2297                    : RQ_RValue;
2298
2299        // Otherwise, we have a function with an argument list that is
2300        // potentially variadic.
2301        SmallVector<QualType, 16> ArgTys;
2302        ArgTys.reserve(FTI.NumArgs);
2303
2304        SmallVector<bool, 16> ConsumedArguments;
2305        ConsumedArguments.reserve(FTI.NumArgs);
2306        bool HasAnyConsumedArguments = false;
2307
2308        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2309          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2310          QualType ArgTy = Param->getType();
2311          assert(!ArgTy.isNull() && "Couldn't parse type?");
2312
2313          // Adjust the parameter type.
2314          assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
2315                 "Unadjusted type?");
2316
2317          // Look for 'void'.  void is allowed only as a single argument to a
2318          // function with no other parameters (C99 6.7.5.3p10).  We record
2319          // int(void) as a FunctionProtoType with an empty argument list.
2320          if (ArgTy->isVoidType()) {
2321            // If this is something like 'float(int, void)', reject it.  'void'
2322            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2323            // have arguments of incomplete type.
2324            if (FTI.NumArgs != 1 || FTI.isVariadic) {
2325              S.Diag(DeclType.Loc, diag::err_void_only_param);
2326              ArgTy = Context.IntTy;
2327              Param->setType(ArgTy);
2328            } else if (FTI.ArgInfo[i].Ident) {
2329              // Reject, but continue to parse 'int(void abc)'.
2330              S.Diag(FTI.ArgInfo[i].IdentLoc,
2331                   diag::err_param_with_void_type);
2332              ArgTy = Context.IntTy;
2333              Param->setType(ArgTy);
2334            } else {
2335              // Reject, but continue to parse 'float(const void)'.
2336              if (ArgTy.hasQualifiers())
2337                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2338
2339              // Do not add 'void' to the ArgTys list.
2340              break;
2341            }
2342          } else if (ArgTy->isHalfType()) {
2343            // Disallow half FP arguments.
2344            // FIXME: This really should be in BuildFunctionType.
2345            S.Diag(Param->getLocation(),
2346               diag::err_parameters_retval_cannot_have_fp16_type) << 0
2347            << FixItHint::CreateInsertion(Param->getLocation(), "*");
2348            D.setInvalidType();
2349          } else if (!FTI.hasPrototype) {
2350            if (ArgTy->isPromotableIntegerType()) {
2351              ArgTy = Context.getPromotedIntegerType(ArgTy);
2352              Param->setKNRPromoted(true);
2353            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2354              if (BTy->getKind() == BuiltinType::Float) {
2355                ArgTy = Context.DoubleTy;
2356                Param->setKNRPromoted(true);
2357              }
2358            }
2359          }
2360
2361          if (LangOpts.ObjCAutoRefCount) {
2362            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2363            ConsumedArguments.push_back(Consumed);
2364            HasAnyConsumedArguments |= Consumed;
2365          }
2366
2367          ArgTys.push_back(ArgTy);
2368        }
2369
2370        if (HasAnyConsumedArguments)
2371          EPI.ConsumedArguments = ConsumedArguments.data();
2372
2373        SmallVector<QualType, 4> Exceptions;
2374        SmallVector<ParsedType, 2> DynamicExceptions;
2375        SmallVector<SourceRange, 2> DynamicExceptionRanges;
2376        Expr *NoexceptExpr = 0;
2377
2378        if (FTI.getExceptionSpecType() == EST_Dynamic) {
2379          // FIXME: It's rather inefficient to have to split into two vectors
2380          // here.
2381          unsigned N = FTI.NumExceptions;
2382          DynamicExceptions.reserve(N);
2383          DynamicExceptionRanges.reserve(N);
2384          for (unsigned I = 0; I != N; ++I) {
2385            DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
2386            DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
2387          }
2388        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2389          NoexceptExpr = FTI.NoexceptExpr;
2390        }
2391
2392        S.checkExceptionSpecification(FTI.getExceptionSpecType(),
2393                                      DynamicExceptions,
2394                                      DynamicExceptionRanges,
2395                                      NoexceptExpr,
2396                                      Exceptions,
2397                                      EPI);
2398
2399        if (FTI.getExceptionSpecType() == EST_None &&
2400            ImplicitlyNoexcept && chunkIndex == 0) {
2401          // Only the outermost chunk is marked noexcept, of course.
2402          EPI.ExceptionSpecType = EST_BasicNoexcept;
2403        }
2404
2405        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
2406      }
2407
2408      break;
2409    }
2410    case DeclaratorChunk::MemberPointer:
2411      // The scope spec must refer to a class, or be dependent.
2412      CXXScopeSpec &SS = DeclType.Mem.Scope();
2413      QualType ClsType;
2414      if (SS.isInvalid()) {
2415        // Avoid emitting extra errors if we already errored on the scope.
2416        D.setInvalidType(true);
2417      } else if (S.isDependentScopeSpecifier(SS) ||
2418                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
2419        NestedNameSpecifier *NNS
2420          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2421        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
2422        switch (NNS->getKind()) {
2423        case NestedNameSpecifier::Identifier:
2424          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
2425                                                 NNS->getAsIdentifier());
2426          break;
2427
2428        case NestedNameSpecifier::Namespace:
2429        case NestedNameSpecifier::NamespaceAlias:
2430        case NestedNameSpecifier::Global:
2431          llvm_unreachable("Nested-name-specifier must name a type");
2432
2433        case NestedNameSpecifier::TypeSpec:
2434        case NestedNameSpecifier::TypeSpecWithTemplate:
2435          ClsType = QualType(NNS->getAsType(), 0);
2436          // Note: if the NNS has a prefix and ClsType is a nondependent
2437          // TemplateSpecializationType, then the NNS prefix is NOT included
2438          // in ClsType; hence we wrap ClsType into an ElaboratedType.
2439          // NOTE: in particular, no wrap occurs if ClsType already is an
2440          // Elaborated, DependentName, or DependentTemplateSpecialization.
2441          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
2442            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
2443          break;
2444        }
2445      } else {
2446        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
2447             diag::err_illegal_decl_mempointer_in_nonclass)
2448          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
2449          << DeclType.Mem.Scope().getRange();
2450        D.setInvalidType(true);
2451      }
2452
2453      if (!ClsType.isNull())
2454        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
2455      if (T.isNull()) {
2456        T = Context.IntTy;
2457        D.setInvalidType(true);
2458      } else if (DeclType.Mem.TypeQuals) {
2459        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
2460      }
2461      break;
2462    }
2463
2464    if (T.isNull()) {
2465      D.setInvalidType(true);
2466      T = Context.IntTy;
2467    }
2468
2469    // See if there are any attributes on this declarator chunk.
2470    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
2471      processTypeAttrs(state, T, false, attrs);
2472  }
2473
2474  if (LangOpts.CPlusPlus && T->isFunctionType()) {
2475    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
2476    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
2477
2478    // C++ 8.3.5p4:
2479    //   A cv-qualifier-seq shall only be part of the function type
2480    //   for a nonstatic member function, the function type to which a pointer
2481    //   to member refers, or the top-level function type of a function typedef
2482    //   declaration.
2483    //
2484    // Core issue 547 also allows cv-qualifiers on function types that are
2485    // top-level template type arguments.
2486    bool FreeFunction;
2487    if (!D.getCXXScopeSpec().isSet()) {
2488      FreeFunction = ((D.getContext() != Declarator::MemberContext &&
2489                       D.getContext() != Declarator::LambdaExprContext) ||
2490                      D.getDeclSpec().isFriendSpecified());
2491    } else {
2492      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
2493      FreeFunction = (DC && !DC->isRecord());
2494    }
2495
2496    // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
2497    // function that is not a constructor declares that function to be const.
2498    if (D.getDeclSpec().isConstexprSpecified() && !FreeFunction &&
2499        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static &&
2500        D.getName().getKind() != UnqualifiedId::IK_ConstructorName &&
2501        D.getName().getKind() != UnqualifiedId::IK_ConstructorTemplateId &&
2502        !(FnTy->getTypeQuals() & DeclSpec::TQ_const)) {
2503      // Rebuild function type adding a 'const' qualifier.
2504      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2505      EPI.TypeQuals |= DeclSpec::TQ_const;
2506      T = Context.getFunctionType(FnTy->getResultType(),
2507                                  FnTy->arg_type_begin(),
2508                                  FnTy->getNumArgs(), EPI);
2509    }
2510
2511    // C++11 [dcl.fct]p6 (w/DR1417):
2512    // An attempt to specify a function type with a cv-qualifier-seq or a
2513    // ref-qualifier (including by typedef-name) is ill-formed unless it is:
2514    //  - the function type for a non-static member function,
2515    //  - the function type to which a pointer to member refers,
2516    //  - the top-level function type of a function typedef declaration or
2517    //    alias-declaration,
2518    //  - the type-id in the default argument of a type-parameter, or
2519    //  - the type-id of a template-argument for a type-parameter
2520    if (IsQualifiedFunction &&
2521        !(!FreeFunction &&
2522          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
2523        !IsTypedefName &&
2524        D.getContext() != Declarator::TemplateTypeArgContext) {
2525      SourceLocation Loc = D.getLocStart();
2526      SourceRange RemovalRange;
2527      unsigned I;
2528      if (D.isFunctionDeclarator(I)) {
2529        SmallVector<SourceLocation, 4> RemovalLocs;
2530        const DeclaratorChunk &Chunk = D.getTypeObject(I);
2531        assert(Chunk.Kind == DeclaratorChunk::Function);
2532        if (Chunk.Fun.hasRefQualifier())
2533          RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
2534        if (Chunk.Fun.TypeQuals & Qualifiers::Const)
2535          RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
2536        if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
2537          RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
2538        // FIXME: We do not track the location of the __restrict qualifier.
2539        //if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
2540        //  RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
2541        if (!RemovalLocs.empty()) {
2542          std::sort(RemovalLocs.begin(), RemovalLocs.end(),
2543                    SourceManager::LocBeforeThanCompare(S.getSourceManager()));
2544          RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
2545          Loc = RemovalLocs.front();
2546        }
2547      }
2548
2549      S.Diag(Loc, diag::err_invalid_qualified_function_type)
2550        << FreeFunction << D.isFunctionDeclarator() << T
2551        << getFunctionQualifiersAsString(FnTy)
2552        << FixItHint::CreateRemoval(RemovalRange);
2553
2554      // Strip the cv-qualifiers and ref-qualifiers from the type.
2555      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2556      EPI.TypeQuals = 0;
2557      EPI.RefQualifier = RQ_None;
2558
2559      T = Context.getFunctionType(FnTy->getResultType(),
2560                                  FnTy->arg_type_begin(),
2561                                  FnTy->getNumArgs(), EPI);
2562    }
2563  }
2564
2565  // Apply any undistributed attributes from the declarator.
2566  if (!T.isNull())
2567    if (AttributeList *attrs = D.getAttributes())
2568      processTypeAttrs(state, T, false, attrs);
2569
2570  // Diagnose any ignored type attributes.
2571  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
2572
2573  // C++0x [dcl.constexpr]p9:
2574  //  A constexpr specifier used in an object declaration declares the object
2575  //  as const.
2576  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
2577    T.addConst();
2578  }
2579
2580  // If there was an ellipsis in the declarator, the declaration declares a
2581  // parameter pack whose type may be a pack expansion type.
2582  if (D.hasEllipsis() && !T.isNull()) {
2583    // C++0x [dcl.fct]p13:
2584    //   A declarator-id or abstract-declarator containing an ellipsis shall
2585    //   only be used in a parameter-declaration. Such a parameter-declaration
2586    //   is a parameter pack (14.5.3). [...]
2587    switch (D.getContext()) {
2588    case Declarator::PrototypeContext:
2589      // C++0x [dcl.fct]p13:
2590      //   [...] When it is part of a parameter-declaration-clause, the
2591      //   parameter pack is a function parameter pack (14.5.3). The type T
2592      //   of the declarator-id of the function parameter pack shall contain
2593      //   a template parameter pack; each template parameter pack in T is
2594      //   expanded by the function parameter pack.
2595      //
2596      // We represent function parameter packs as function parameters whose
2597      // type is a pack expansion.
2598      if (!T->containsUnexpandedParameterPack()) {
2599        S.Diag(D.getEllipsisLoc(),
2600             diag::err_function_parameter_pack_without_parameter_packs)
2601          << T <<  D.getSourceRange();
2602        D.setEllipsisLoc(SourceLocation());
2603      } else {
2604        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2605      }
2606      break;
2607
2608    case Declarator::TemplateParamContext:
2609      // C++0x [temp.param]p15:
2610      //   If a template-parameter is a [...] is a parameter-declaration that
2611      //   declares a parameter pack (8.3.5), then the template-parameter is a
2612      //   template parameter pack (14.5.3).
2613      //
2614      // Note: core issue 778 clarifies that, if there are any unexpanded
2615      // parameter packs in the type of the non-type template parameter, then
2616      // it expands those parameter packs.
2617      if (T->containsUnexpandedParameterPack())
2618        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2619      else
2620        S.Diag(D.getEllipsisLoc(),
2621               LangOpts.CPlusPlus0x
2622                 ? diag::warn_cxx98_compat_variadic_templates
2623                 : diag::ext_variadic_templates);
2624      break;
2625
2626    case Declarator::FileContext:
2627    case Declarator::KNRTypeListContext:
2628    case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
2629    case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
2630    case Declarator::TypeNameContext:
2631    case Declarator::CXXNewContext:
2632    case Declarator::AliasDeclContext:
2633    case Declarator::AliasTemplateContext:
2634    case Declarator::MemberContext:
2635    case Declarator::BlockContext:
2636    case Declarator::ForContext:
2637    case Declarator::ConditionContext:
2638    case Declarator::CXXCatchContext:
2639    case Declarator::ObjCCatchContext:
2640    case Declarator::BlockLiteralContext:
2641    case Declarator::LambdaExprContext:
2642    case Declarator::TrailingReturnContext:
2643    case Declarator::TemplateTypeArgContext:
2644      // FIXME: We may want to allow parameter packs in block-literal contexts
2645      // in the future.
2646      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
2647      D.setEllipsisLoc(SourceLocation());
2648      break;
2649    }
2650  }
2651
2652  if (T.isNull())
2653    return Context.getNullTypeSourceInfo();
2654  else if (D.isInvalidType())
2655    return Context.getTrivialTypeSourceInfo(T);
2656
2657  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
2658}
2659
2660/// GetTypeForDeclarator - Convert the type for the specified
2661/// declarator to Type instances.
2662///
2663/// The result of this call will never be null, but the associated
2664/// type may be a null type if there's an unrecoverable error.
2665TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
2666  // Determine the type of the declarator. Not all forms of declarator
2667  // have a type.
2668
2669  TypeProcessingState state(*this, D);
2670
2671  TypeSourceInfo *ReturnTypeInfo = 0;
2672  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2673  if (T.isNull())
2674    return Context.getNullTypeSourceInfo();
2675
2676  if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
2677    inferARCWriteback(state, T);
2678
2679  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
2680}
2681
2682static void transferARCOwnershipToDeclSpec(Sema &S,
2683                                           QualType &declSpecTy,
2684                                           Qualifiers::ObjCLifetime ownership) {
2685  if (declSpecTy->isObjCRetainableType() &&
2686      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
2687    Qualifiers qs;
2688    qs.addObjCLifetime(ownership);
2689    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
2690  }
2691}
2692
2693static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2694                                            Qualifiers::ObjCLifetime ownership,
2695                                            unsigned chunkIndex) {
2696  Sema &S = state.getSema();
2697  Declarator &D = state.getDeclarator();
2698
2699  // Look for an explicit lifetime attribute.
2700  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
2701  for (const AttributeList *attr = chunk.getAttrs(); attr;
2702         attr = attr->getNext())
2703    if (attr->getKind() == AttributeList::AT_objc_ownership)
2704      return;
2705
2706  const char *attrStr = 0;
2707  switch (ownership) {
2708  case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
2709  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
2710  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
2711  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
2712  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
2713  }
2714
2715  // If there wasn't one, add one (with an invalid source location
2716  // so that we don't make an AttributedType for it).
2717  AttributeList *attr = D.getAttributePool()
2718    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
2719            /*scope*/ 0, SourceLocation(),
2720            &S.Context.Idents.get(attrStr), SourceLocation(),
2721            /*args*/ 0, 0,
2722            /*declspec*/ false, /*C++0x*/ false);
2723  spliceAttrIntoList(*attr, chunk.getAttrListRef());
2724
2725  // TODO: mark whether we did this inference?
2726}
2727
2728/// \brief Used for transfering ownership in casts resulting in l-values.
2729static void transferARCOwnership(TypeProcessingState &state,
2730                                 QualType &declSpecTy,
2731                                 Qualifiers::ObjCLifetime ownership) {
2732  Sema &S = state.getSema();
2733  Declarator &D = state.getDeclarator();
2734
2735  int inner = -1;
2736  bool hasIndirection = false;
2737  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2738    DeclaratorChunk &chunk = D.getTypeObject(i);
2739    switch (chunk.Kind) {
2740    case DeclaratorChunk::Paren:
2741      // Ignore parens.
2742      break;
2743
2744    case DeclaratorChunk::Array:
2745    case DeclaratorChunk::Reference:
2746    case DeclaratorChunk::Pointer:
2747      if (inner != -1)
2748        hasIndirection = true;
2749      inner = i;
2750      break;
2751
2752    case DeclaratorChunk::BlockPointer:
2753      if (inner != -1)
2754        transferARCOwnershipToDeclaratorChunk(state, ownership, i);
2755      return;
2756
2757    case DeclaratorChunk::Function:
2758    case DeclaratorChunk::MemberPointer:
2759      return;
2760    }
2761  }
2762
2763  if (inner == -1)
2764    return;
2765
2766  DeclaratorChunk &chunk = D.getTypeObject(inner);
2767  if (chunk.Kind == DeclaratorChunk::Pointer) {
2768    if (declSpecTy->isObjCRetainableType())
2769      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2770    if (declSpecTy->isObjCObjectType() && hasIndirection)
2771      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
2772  } else {
2773    assert(chunk.Kind == DeclaratorChunk::Array ||
2774           chunk.Kind == DeclaratorChunk::Reference);
2775    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2776  }
2777}
2778
2779TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
2780  TypeProcessingState state(*this, D);
2781
2782  TypeSourceInfo *ReturnTypeInfo = 0;
2783  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2784  if (declSpecTy.isNull())
2785    return Context.getNullTypeSourceInfo();
2786
2787  if (getLangOpts().ObjCAutoRefCount) {
2788    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
2789    if (ownership != Qualifiers::OCL_None)
2790      transferARCOwnership(state, declSpecTy, ownership);
2791  }
2792
2793  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
2794}
2795
2796/// Map an AttributedType::Kind to an AttributeList::Kind.
2797static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
2798  switch (kind) {
2799  case AttributedType::attr_address_space:
2800    return AttributeList::AT_address_space;
2801  case AttributedType::attr_regparm:
2802    return AttributeList::AT_regparm;
2803  case AttributedType::attr_vector_size:
2804    return AttributeList::AT_vector_size;
2805  case AttributedType::attr_neon_vector_type:
2806    return AttributeList::AT_neon_vector_type;
2807  case AttributedType::attr_neon_polyvector_type:
2808    return AttributeList::AT_neon_polyvector_type;
2809  case AttributedType::attr_objc_gc:
2810    return AttributeList::AT_objc_gc;
2811  case AttributedType::attr_objc_ownership:
2812    return AttributeList::AT_objc_ownership;
2813  case AttributedType::attr_noreturn:
2814    return AttributeList::AT_noreturn;
2815  case AttributedType::attr_cdecl:
2816    return AttributeList::AT_cdecl;
2817  case AttributedType::attr_fastcall:
2818    return AttributeList::AT_fastcall;
2819  case AttributedType::attr_stdcall:
2820    return AttributeList::AT_stdcall;
2821  case AttributedType::attr_thiscall:
2822    return AttributeList::AT_thiscall;
2823  case AttributedType::attr_pascal:
2824    return AttributeList::AT_pascal;
2825  case AttributedType::attr_pcs:
2826    return AttributeList::AT_pcs;
2827  }
2828  llvm_unreachable("unexpected attribute kind!");
2829}
2830
2831static void fillAttributedTypeLoc(AttributedTypeLoc TL,
2832                                  const AttributeList *attrs) {
2833  AttributedType::Kind kind = TL.getAttrKind();
2834
2835  assert(attrs && "no type attributes in the expected location!");
2836  AttributeList::Kind parsedKind = getAttrListKind(kind);
2837  while (attrs->getKind() != parsedKind) {
2838    attrs = attrs->getNext();
2839    assert(attrs && "no matching attribute in expected location!");
2840  }
2841
2842  TL.setAttrNameLoc(attrs->getLoc());
2843  if (TL.hasAttrExprOperand())
2844    TL.setAttrExprOperand(attrs->getArg(0));
2845  else if (TL.hasAttrEnumOperand())
2846    TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
2847
2848  // FIXME: preserve this information to here.
2849  if (TL.hasAttrOperand())
2850    TL.setAttrOperandParensRange(SourceRange());
2851}
2852
2853namespace {
2854  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
2855    ASTContext &Context;
2856    const DeclSpec &DS;
2857
2858  public:
2859    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
2860      : Context(Context), DS(DS) {}
2861
2862    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
2863      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
2864      Visit(TL.getModifiedLoc());
2865    }
2866    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
2867      Visit(TL.getUnqualifiedLoc());
2868    }
2869    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
2870      TL.setNameLoc(DS.getTypeSpecTypeLoc());
2871    }
2872    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
2873      TL.setNameLoc(DS.getTypeSpecTypeLoc());
2874    }
2875    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
2876      // Handle the base type, which might not have been written explicitly.
2877      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
2878        TL.setHasBaseTypeAsWritten(false);
2879        TL.getBaseLoc().initialize(Context, SourceLocation());
2880      } else {
2881        TL.setHasBaseTypeAsWritten(true);
2882        Visit(TL.getBaseLoc());
2883      }
2884
2885      // Protocol qualifiers.
2886      if (DS.getProtocolQualifiers()) {
2887        assert(TL.getNumProtocols() > 0);
2888        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
2889        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
2890        TL.setRAngleLoc(DS.getSourceRange().getEnd());
2891        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
2892          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
2893      } else {
2894        assert(TL.getNumProtocols() == 0);
2895        TL.setLAngleLoc(SourceLocation());
2896        TL.setRAngleLoc(SourceLocation());
2897      }
2898    }
2899    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
2900      TL.setStarLoc(SourceLocation());
2901      Visit(TL.getPointeeLoc());
2902    }
2903    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
2904      TypeSourceInfo *TInfo = 0;
2905      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2906
2907      // If we got no declarator info from previous Sema routines,
2908      // just fill with the typespec loc.
2909      if (!TInfo) {
2910        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
2911        return;
2912      }
2913
2914      TypeLoc OldTL = TInfo->getTypeLoc();
2915      if (TInfo->getType()->getAs<ElaboratedType>()) {
2916        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
2917        TemplateSpecializationTypeLoc NamedTL =
2918          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
2919        TL.copy(NamedTL);
2920      }
2921      else
2922        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
2923    }
2924    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
2925      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
2926      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2927      TL.setParensRange(DS.getTypeofParensRange());
2928    }
2929    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
2930      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
2931      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2932      TL.setParensRange(DS.getTypeofParensRange());
2933      assert(DS.getRepAsType());
2934      TypeSourceInfo *TInfo = 0;
2935      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2936      TL.setUnderlyingTInfo(TInfo);
2937    }
2938    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
2939      // FIXME: This holds only because we only have one unary transform.
2940      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
2941      TL.setKWLoc(DS.getTypeSpecTypeLoc());
2942      TL.setParensRange(DS.getTypeofParensRange());
2943      assert(DS.getRepAsType());
2944      TypeSourceInfo *TInfo = 0;
2945      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2946      TL.setUnderlyingTInfo(TInfo);
2947    }
2948    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
2949      // By default, use the source location of the type specifier.
2950      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
2951      if (TL.needsExtraLocalData()) {
2952        // Set info for the written builtin specifiers.
2953        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
2954        // Try to have a meaningful source location.
2955        if (TL.getWrittenSignSpec() != TSS_unspecified)
2956          // Sign spec loc overrides the others (e.g., 'unsigned long').
2957          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
2958        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
2959          // Width spec loc overrides type spec loc (e.g., 'short int').
2960          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
2961      }
2962    }
2963    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
2964      ElaboratedTypeKeyword Keyword
2965        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2966      if (DS.getTypeSpecType() == TST_typename) {
2967        TypeSourceInfo *TInfo = 0;
2968        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2969        if (TInfo) {
2970          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
2971          return;
2972        }
2973      }
2974      TL.setElaboratedKeywordLoc(Keyword != ETK_None
2975                                 ? DS.getTypeSpecTypeLoc()
2976                                 : SourceLocation());
2977      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2978      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2979      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
2980    }
2981    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
2982      assert(DS.getTypeSpecType() == TST_typename);
2983      TypeSourceInfo *TInfo = 0;
2984      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2985      assert(TInfo);
2986      TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
2987    }
2988    void VisitDependentTemplateSpecializationTypeLoc(
2989                                 DependentTemplateSpecializationTypeLoc TL) {
2990      assert(DS.getTypeSpecType() == TST_typename);
2991      TypeSourceInfo *TInfo = 0;
2992      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2993      assert(TInfo);
2994      TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
2995                TInfo->getTypeLoc()));
2996    }
2997    void VisitTagTypeLoc(TagTypeLoc TL) {
2998      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2999    }
3000    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
3001      TL.setKWLoc(DS.getTypeSpecTypeLoc());
3002      TL.setParensRange(DS.getTypeofParensRange());
3003
3004      TypeSourceInfo *TInfo = 0;
3005      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
3006      TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
3007    }
3008
3009    void VisitTypeLoc(TypeLoc TL) {
3010      // FIXME: add other typespec types and change this to an assert.
3011      TL.initialize(Context, DS.getTypeSpecTypeLoc());
3012    }
3013  };
3014
3015  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
3016    ASTContext &Context;
3017    const DeclaratorChunk &Chunk;
3018
3019  public:
3020    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
3021      : Context(Context), Chunk(Chunk) {}
3022
3023    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
3024      llvm_unreachable("qualified type locs not expected here!");
3025    }
3026
3027    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
3028      fillAttributedTypeLoc(TL, Chunk.getAttrs());
3029    }
3030    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
3031      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
3032      TL.setCaretLoc(Chunk.Loc);
3033    }
3034    void VisitPointerTypeLoc(PointerTypeLoc TL) {
3035      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3036      TL.setStarLoc(Chunk.Loc);
3037    }
3038    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3039      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3040      TL.setStarLoc(Chunk.Loc);
3041    }
3042    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3043      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3044      const CXXScopeSpec& SS = Chunk.Mem.Scope();
3045      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3046
3047      const Type* ClsTy = TL.getClass();
3048      QualType ClsQT = QualType(ClsTy, 0);
3049      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3050      // Now copy source location info into the type loc component.
3051      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3052      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3053      case NestedNameSpecifier::Identifier:
3054        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3055        {
3056          DependentNameTypeLoc DNTLoc = cast<DependentNameTypeLoc>(ClsTL);
3057          DNTLoc.setElaboratedKeywordLoc(SourceLocation());
3058          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3059          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3060        }
3061        break;
3062
3063      case NestedNameSpecifier::TypeSpec:
3064      case NestedNameSpecifier::TypeSpecWithTemplate:
3065        if (isa<ElaboratedType>(ClsTy)) {
3066          ElaboratedTypeLoc ETLoc = *cast<ElaboratedTypeLoc>(&ClsTL);
3067          ETLoc.setElaboratedKeywordLoc(SourceLocation());
3068          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3069          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3070          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3071        } else {
3072          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3073        }
3074        break;
3075
3076      case NestedNameSpecifier::Namespace:
3077      case NestedNameSpecifier::NamespaceAlias:
3078      case NestedNameSpecifier::Global:
3079        llvm_unreachable("Nested-name-specifier must name a type");
3080      }
3081
3082      // Finally fill in MemberPointerLocInfo fields.
3083      TL.setStarLoc(Chunk.Loc);
3084      TL.setClassTInfo(ClsTInfo);
3085    }
3086    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3087      assert(Chunk.Kind == DeclaratorChunk::Reference);
3088      // 'Amp' is misleading: this might have been originally
3089      /// spelled with AmpAmp.
3090      TL.setAmpLoc(Chunk.Loc);
3091    }
3092    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3093      assert(Chunk.Kind == DeclaratorChunk::Reference);
3094      assert(!Chunk.Ref.LValueRef);
3095      TL.setAmpAmpLoc(Chunk.Loc);
3096    }
3097    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3098      assert(Chunk.Kind == DeclaratorChunk::Array);
3099      TL.setLBracketLoc(Chunk.Loc);
3100      TL.setRBracketLoc(Chunk.EndLoc);
3101      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3102    }
3103    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3104      assert(Chunk.Kind == DeclaratorChunk::Function);
3105      TL.setLocalRangeBegin(Chunk.Loc);
3106      TL.setLocalRangeEnd(Chunk.EndLoc);
3107      TL.setTrailingReturn(!!Chunk.Fun.TrailingReturnType);
3108
3109      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3110      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
3111        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3112        TL.setArg(tpi++, Param);
3113      }
3114      // FIXME: exception specs
3115    }
3116    void VisitParenTypeLoc(ParenTypeLoc TL) {
3117      assert(Chunk.Kind == DeclaratorChunk::Paren);
3118      TL.setLParenLoc(Chunk.Loc);
3119      TL.setRParenLoc(Chunk.EndLoc);
3120    }
3121
3122    void VisitTypeLoc(TypeLoc TL) {
3123      llvm_unreachable("unsupported TypeLoc kind in declarator!");
3124    }
3125  };
3126}
3127
3128/// \brief Create and instantiate a TypeSourceInfo with type source information.
3129///
3130/// \param T QualType referring to the type as written in source code.
3131///
3132/// \param ReturnTypeInfo For declarators whose return type does not show
3133/// up in the normal place in the declaration specifiers (such as a C++
3134/// conversion function), this pointer will refer to a type source information
3135/// for that return type.
3136TypeSourceInfo *
3137Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3138                                     TypeSourceInfo *ReturnTypeInfo) {
3139  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3140  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3141
3142  // Handle parameter packs whose type is a pack expansion.
3143  if (isa<PackExpansionType>(T)) {
3144    cast<PackExpansionTypeLoc>(CurrTL).setEllipsisLoc(D.getEllipsisLoc());
3145    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3146  }
3147
3148  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3149    while (isa<AttributedTypeLoc>(CurrTL)) {
3150      AttributedTypeLoc TL = cast<AttributedTypeLoc>(CurrTL);
3151      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3152      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3153    }
3154
3155    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3156    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3157  }
3158
3159  // If we have different source information for the return type, use
3160  // that.  This really only applies to C++ conversion functions.
3161  if (ReturnTypeInfo) {
3162    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3163    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3164    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3165  } else {
3166    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3167  }
3168
3169  return TInfo;
3170}
3171
3172/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3173ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3174  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3175  // and Sema during declaration parsing. Try deallocating/caching them when
3176  // it's appropriate, instead of allocating them and keeping them around.
3177  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3178                                                       TypeAlignment);
3179  new (LocT) LocInfoType(T, TInfo);
3180  assert(LocT->getTypeClass() != T->getTypeClass() &&
3181         "LocInfoType's TypeClass conflicts with an existing Type class");
3182  return ParsedType::make(QualType(LocT, 0));
3183}
3184
3185void LocInfoType::getAsStringInternal(std::string &Str,
3186                                      const PrintingPolicy &Policy) const {
3187  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3188         " was used directly instead of getting the QualType through"
3189         " GetTypeFromParser");
3190}
3191
3192TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3193  // C99 6.7.6: Type names have no identifier.  This is already validated by
3194  // the parser.
3195  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3196
3197  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3198  QualType T = TInfo->getType();
3199  if (D.isInvalidType())
3200    return true;
3201
3202  // Make sure there are no unused decl attributes on the declarator.
3203  // We don't want to do this for ObjC parameters because we're going
3204  // to apply them to the actual parameter declaration.
3205  if (D.getContext() != Declarator::ObjCParameterContext)
3206    checkUnusedDeclAttributes(D);
3207
3208  if (getLangOpts().CPlusPlus) {
3209    // Check that there are no default arguments (C++ only).
3210    CheckExtraCXXDefaultArguments(D);
3211  }
3212
3213  return CreateParsedType(T, TInfo);
3214}
3215
3216ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3217  QualType T = Context.getObjCInstanceType();
3218  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3219  return CreateParsedType(T, TInfo);
3220}
3221
3222
3223//===----------------------------------------------------------------------===//
3224// Type Attribute Processing
3225//===----------------------------------------------------------------------===//
3226
3227/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3228/// specified type.  The attribute contains 1 argument, the id of the address
3229/// space for the type.
3230static void HandleAddressSpaceTypeAttribute(QualType &Type,
3231                                            const AttributeList &Attr, Sema &S){
3232
3233  // If this type is already address space qualified, reject it.
3234  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3235  // qualifiers for two or more different address spaces."
3236  if (Type.getAddressSpace()) {
3237    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3238    Attr.setInvalid();
3239    return;
3240  }
3241
3242  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3243  // qualified by an address-space qualifier."
3244  if (Type->isFunctionType()) {
3245    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3246    Attr.setInvalid();
3247    return;
3248  }
3249
3250  // Check the attribute arguments.
3251  if (Attr.getNumArgs() != 1) {
3252    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3253    Attr.setInvalid();
3254    return;
3255  }
3256  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
3257  llvm::APSInt addrSpace(32);
3258  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3259      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3260    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
3261      << ASArgExpr->getSourceRange();
3262    Attr.setInvalid();
3263    return;
3264  }
3265
3266  // Bounds checking.
3267  if (addrSpace.isSigned()) {
3268    if (addrSpace.isNegative()) {
3269      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3270        << ASArgExpr->getSourceRange();
3271      Attr.setInvalid();
3272      return;
3273    }
3274    addrSpace.setIsSigned(false);
3275  }
3276  llvm::APSInt max(addrSpace.getBitWidth());
3277  max = Qualifiers::MaxAddressSpace;
3278  if (addrSpace > max) {
3279    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3280      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
3281    Attr.setInvalid();
3282    return;
3283  }
3284
3285  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3286  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3287}
3288
3289/// Does this type have a "direct" ownership qualifier?  That is,
3290/// is it written like "__strong id", as opposed to something like
3291/// "typeof(foo)", where that happens to be strong?
3292static bool hasDirectOwnershipQualifier(QualType type) {
3293  // Fast path: no qualifier at all.
3294  assert(type.getQualifiers().hasObjCLifetime());
3295
3296  while (true) {
3297    // __strong id
3298    if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
3299      if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
3300        return true;
3301
3302      type = attr->getModifiedType();
3303
3304    // X *__strong (...)
3305    } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
3306      type = paren->getInnerType();
3307
3308    // That's it for things we want to complain about.  In particular,
3309    // we do not want to look through typedefs, typeof(expr),
3310    // typeof(type), or any other way that the type is somehow
3311    // abstracted.
3312    } else {
3313
3314      return false;
3315    }
3316  }
3317}
3318
3319/// handleObjCOwnershipTypeAttr - Process an objc_ownership
3320/// attribute on the specified type.
3321///
3322/// Returns 'true' if the attribute was handled.
3323static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
3324                                       AttributeList &attr,
3325                                       QualType &type) {
3326  bool NonObjCPointer = false;
3327
3328  if (!type->isDependentType()) {
3329    if (const PointerType *ptr = type->getAs<PointerType>()) {
3330      QualType pointee = ptr->getPointeeType();
3331      if (pointee->isObjCRetainableType() || pointee->isPointerType())
3332        return false;
3333      // It is important not to lose the source info that there was an attribute
3334      // applied to non-objc pointer. We will create an attributed type but
3335      // its type will be the same as the original type.
3336      NonObjCPointer = true;
3337    } else if (!type->isObjCRetainableType()) {
3338      return false;
3339    }
3340  }
3341
3342  Sema &S = state.getSema();
3343  SourceLocation AttrLoc = attr.getLoc();
3344  if (AttrLoc.isMacroID())
3345    AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
3346
3347  if (!attr.getParameterName()) {
3348    S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
3349      << "objc_ownership" << 1;
3350    attr.setInvalid();
3351    return true;
3352  }
3353
3354  // Consume lifetime attributes without further comment outside of
3355  // ARC mode.
3356  if (!S.getLangOpts().ObjCAutoRefCount)
3357    return true;
3358
3359  Qualifiers::ObjCLifetime lifetime;
3360  if (attr.getParameterName()->isStr("none"))
3361    lifetime = Qualifiers::OCL_ExplicitNone;
3362  else if (attr.getParameterName()->isStr("strong"))
3363    lifetime = Qualifiers::OCL_Strong;
3364  else if (attr.getParameterName()->isStr("weak"))
3365    lifetime = Qualifiers::OCL_Weak;
3366  else if (attr.getParameterName()->isStr("autoreleasing"))
3367    lifetime = Qualifiers::OCL_Autoreleasing;
3368  else {
3369    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
3370      << "objc_ownership" << attr.getParameterName();
3371    attr.setInvalid();
3372    return true;
3373  }
3374
3375  SplitQualType underlyingType = type.split();
3376
3377  // Check for redundant/conflicting ownership qualifiers.
3378  if (Qualifiers::ObjCLifetime previousLifetime
3379        = type.getQualifiers().getObjCLifetime()) {
3380    // If it's written directly, that's an error.
3381    if (hasDirectOwnershipQualifier(type)) {
3382      S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
3383        << type;
3384      return true;
3385    }
3386
3387    // Otherwise, if the qualifiers actually conflict, pull sugar off
3388    // until we reach a type that is directly qualified.
3389    if (previousLifetime != lifetime) {
3390      // This should always terminate: the canonical type is
3391      // qualified, so some bit of sugar must be hiding it.
3392      while (!underlyingType.Quals.hasObjCLifetime()) {
3393        underlyingType = underlyingType.getSingleStepDesugaredType();
3394      }
3395      underlyingType.Quals.removeObjCLifetime();
3396    }
3397  }
3398
3399  underlyingType.Quals.addObjCLifetime(lifetime);
3400
3401  if (NonObjCPointer) {
3402    StringRef name = attr.getName()->getName();
3403    switch (lifetime) {
3404    case Qualifiers::OCL_None:
3405    case Qualifiers::OCL_ExplicitNone:
3406      break;
3407    case Qualifiers::OCL_Strong: name = "__strong"; break;
3408    case Qualifiers::OCL_Weak: name = "__weak"; break;
3409    case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
3410    }
3411    S.Diag(AttrLoc, diag::warn_objc_object_attribute_wrong_type)
3412      << name << type;
3413  }
3414
3415  QualType origType = type;
3416  if (!NonObjCPointer)
3417    type = S.Context.getQualifiedType(underlyingType);
3418
3419  // If we have a valid source location for the attribute, use an
3420  // AttributedType instead.
3421  if (AttrLoc.isValid())
3422    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
3423                                       origType, type);
3424
3425  // Forbid __weak if the runtime doesn't support it.
3426  if (lifetime == Qualifiers::OCL_Weak &&
3427      !S.getLangOpts().ObjCRuntimeHasWeak && !NonObjCPointer) {
3428
3429    // Actually, delay this until we know what we're parsing.
3430    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
3431      S.DelayedDiagnostics.add(
3432          sema::DelayedDiagnostic::makeForbiddenType(
3433              S.getSourceManager().getExpansionLoc(AttrLoc),
3434              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
3435    } else {
3436      S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
3437    }
3438
3439    attr.setInvalid();
3440    return true;
3441  }
3442
3443  // Forbid __weak for class objects marked as
3444  // objc_arc_weak_reference_unavailable
3445  if (lifetime == Qualifiers::OCL_Weak) {
3446    QualType T = type;
3447    while (const PointerType *ptr = T->getAs<PointerType>())
3448      T = ptr->getPointeeType();
3449    if (const ObjCObjectPointerType *ObjT = T->getAs<ObjCObjectPointerType>()) {
3450      ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl();
3451      if (Class->isArcWeakrefUnavailable()) {
3452          S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
3453          S.Diag(ObjT->getInterfaceDecl()->getLocation(),
3454                 diag::note_class_declared);
3455      }
3456    }
3457  }
3458
3459  return true;
3460}
3461
3462/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
3463/// attribute on the specified type.  Returns true to indicate that
3464/// the attribute was handled, false to indicate that the type does
3465/// not permit the attribute.
3466static bool handleObjCGCTypeAttr(TypeProcessingState &state,
3467                                 AttributeList &attr,
3468                                 QualType &type) {
3469  Sema &S = state.getSema();
3470
3471  // Delay if this isn't some kind of pointer.
3472  if (!type->isPointerType() &&
3473      !type->isObjCObjectPointerType() &&
3474      !type->isBlockPointerType())
3475    return false;
3476
3477  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
3478    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
3479    attr.setInvalid();
3480    return true;
3481  }
3482
3483  // Check the attribute arguments.
3484  if (!attr.getParameterName()) {
3485    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3486      << "objc_gc" << 1;
3487    attr.setInvalid();
3488    return true;
3489  }
3490  Qualifiers::GC GCAttr;
3491  if (attr.getNumArgs() != 0) {
3492    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3493    attr.setInvalid();
3494    return true;
3495  }
3496  if (attr.getParameterName()->isStr("weak"))
3497    GCAttr = Qualifiers::Weak;
3498  else if (attr.getParameterName()->isStr("strong"))
3499    GCAttr = Qualifiers::Strong;
3500  else {
3501    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3502      << "objc_gc" << attr.getParameterName();
3503    attr.setInvalid();
3504    return true;
3505  }
3506
3507  QualType origType = type;
3508  type = S.Context.getObjCGCQualType(origType, GCAttr);
3509
3510  // Make an attributed type to preserve the source information.
3511  if (attr.getLoc().isValid())
3512    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
3513                                       origType, type);
3514
3515  return true;
3516}
3517
3518namespace {
3519  /// A helper class to unwrap a type down to a function for the
3520  /// purposes of applying attributes there.
3521  ///
3522  /// Use:
3523  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
3524  ///   if (unwrapped.isFunctionType()) {
3525  ///     const FunctionType *fn = unwrapped.get();
3526  ///     // change fn somehow
3527  ///     T = unwrapped.wrap(fn);
3528  ///   }
3529  struct FunctionTypeUnwrapper {
3530    enum WrapKind {
3531      Desugar,
3532      Parens,
3533      Pointer,
3534      BlockPointer,
3535      Reference,
3536      MemberPointer
3537    };
3538
3539    QualType Original;
3540    const FunctionType *Fn;
3541    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
3542
3543    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
3544      while (true) {
3545        const Type *Ty = T.getTypePtr();
3546        if (isa<FunctionType>(Ty)) {
3547          Fn = cast<FunctionType>(Ty);
3548          return;
3549        } else if (isa<ParenType>(Ty)) {
3550          T = cast<ParenType>(Ty)->getInnerType();
3551          Stack.push_back(Parens);
3552        } else if (isa<PointerType>(Ty)) {
3553          T = cast<PointerType>(Ty)->getPointeeType();
3554          Stack.push_back(Pointer);
3555        } else if (isa<BlockPointerType>(Ty)) {
3556          T = cast<BlockPointerType>(Ty)->getPointeeType();
3557          Stack.push_back(BlockPointer);
3558        } else if (isa<MemberPointerType>(Ty)) {
3559          T = cast<MemberPointerType>(Ty)->getPointeeType();
3560          Stack.push_back(MemberPointer);
3561        } else if (isa<ReferenceType>(Ty)) {
3562          T = cast<ReferenceType>(Ty)->getPointeeType();
3563          Stack.push_back(Reference);
3564        } else {
3565          const Type *DTy = Ty->getUnqualifiedDesugaredType();
3566          if (Ty == DTy) {
3567            Fn = 0;
3568            return;
3569          }
3570
3571          T = QualType(DTy, 0);
3572          Stack.push_back(Desugar);
3573        }
3574      }
3575    }
3576
3577    bool isFunctionType() const { return (Fn != 0); }
3578    const FunctionType *get() const { return Fn; }
3579
3580    QualType wrap(Sema &S, const FunctionType *New) {
3581      // If T wasn't modified from the unwrapped type, do nothing.
3582      if (New == get()) return Original;
3583
3584      Fn = New;
3585      return wrap(S.Context, Original, 0);
3586    }
3587
3588  private:
3589    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
3590      if (I == Stack.size())
3591        return C.getQualifiedType(Fn, Old.getQualifiers());
3592
3593      // Build up the inner type, applying the qualifiers from the old
3594      // type to the new type.
3595      SplitQualType SplitOld = Old.split();
3596
3597      // As a special case, tail-recurse if there are no qualifiers.
3598      if (SplitOld.Quals.empty())
3599        return wrap(C, SplitOld.Ty, I);
3600      return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
3601    }
3602
3603    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
3604      if (I == Stack.size()) return QualType(Fn, 0);
3605
3606      switch (static_cast<WrapKind>(Stack[I++])) {
3607      case Desugar:
3608        // This is the point at which we potentially lose source
3609        // information.
3610        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
3611
3612      case Parens: {
3613        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
3614        return C.getParenType(New);
3615      }
3616
3617      case Pointer: {
3618        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
3619        return C.getPointerType(New);
3620      }
3621
3622      case BlockPointer: {
3623        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
3624        return C.getBlockPointerType(New);
3625      }
3626
3627      case MemberPointer: {
3628        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
3629        QualType New = wrap(C, OldMPT->getPointeeType(), I);
3630        return C.getMemberPointerType(New, OldMPT->getClass());
3631      }
3632
3633      case Reference: {
3634        const ReferenceType *OldRef = cast<ReferenceType>(Old);
3635        QualType New = wrap(C, OldRef->getPointeeType(), I);
3636        if (isa<LValueReferenceType>(OldRef))
3637          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
3638        else
3639          return C.getRValueReferenceType(New);
3640      }
3641      }
3642
3643      llvm_unreachable("unknown wrapping kind");
3644    }
3645  };
3646}
3647
3648/// Process an individual function attribute.  Returns true to
3649/// indicate that the attribute was handled, false if it wasn't.
3650static bool handleFunctionTypeAttr(TypeProcessingState &state,
3651                                   AttributeList &attr,
3652                                   QualType &type) {
3653  Sema &S = state.getSema();
3654
3655  FunctionTypeUnwrapper unwrapped(S, type);
3656
3657  if (attr.getKind() == AttributeList::AT_noreturn) {
3658    if (S.CheckNoReturnAttr(attr))
3659      return true;
3660
3661    // Delay if this is not a function type.
3662    if (!unwrapped.isFunctionType())
3663      return false;
3664
3665    // Otherwise we can process right away.
3666    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
3667    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3668    return true;
3669  }
3670
3671  // ns_returns_retained is not always a type attribute, but if we got
3672  // here, we're treating it as one right now.
3673  if (attr.getKind() == AttributeList::AT_ns_returns_retained) {
3674    assert(S.getLangOpts().ObjCAutoRefCount &&
3675           "ns_returns_retained treated as type attribute in non-ARC");
3676    if (attr.getNumArgs()) return true;
3677
3678    // Delay if this is not a function type.
3679    if (!unwrapped.isFunctionType())
3680      return false;
3681
3682    FunctionType::ExtInfo EI
3683      = unwrapped.get()->getExtInfo().withProducesResult(true);
3684    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3685    return true;
3686  }
3687
3688  if (attr.getKind() == AttributeList::AT_regparm) {
3689    unsigned value;
3690    if (S.CheckRegparmAttr(attr, value))
3691      return true;
3692
3693    // Delay if this is not a function type.
3694    if (!unwrapped.isFunctionType())
3695      return false;
3696
3697    // Diagnose regparm with fastcall.
3698    const FunctionType *fn = unwrapped.get();
3699    CallingConv CC = fn->getCallConv();
3700    if (CC == CC_X86FastCall) {
3701      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3702        << FunctionType::getNameForCallConv(CC)
3703        << "regparm";
3704      attr.setInvalid();
3705      return true;
3706    }
3707
3708    FunctionType::ExtInfo EI =
3709      unwrapped.get()->getExtInfo().withRegParm(value);
3710    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3711    return true;
3712  }
3713
3714  // Otherwise, a calling convention.
3715  CallingConv CC;
3716  if (S.CheckCallingConvAttr(attr, CC))
3717    return true;
3718
3719  // Delay if the type didn't work out to a function.
3720  if (!unwrapped.isFunctionType()) return false;
3721
3722  const FunctionType *fn = unwrapped.get();
3723  CallingConv CCOld = fn->getCallConv();
3724  if (S.Context.getCanonicalCallConv(CC) ==
3725      S.Context.getCanonicalCallConv(CCOld)) {
3726    FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
3727    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3728    return true;
3729  }
3730
3731  if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
3732    // Should we diagnose reapplications of the same convention?
3733    S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3734      << FunctionType::getNameForCallConv(CC)
3735      << FunctionType::getNameForCallConv(CCOld);
3736    attr.setInvalid();
3737    return true;
3738  }
3739
3740  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
3741  if (CC == CC_X86FastCall) {
3742    if (isa<FunctionNoProtoType>(fn)) {
3743      S.Diag(attr.getLoc(), diag::err_cconv_knr)
3744        << FunctionType::getNameForCallConv(CC);
3745      attr.setInvalid();
3746      return true;
3747    }
3748
3749    const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
3750    if (FnP->isVariadic()) {
3751      S.Diag(attr.getLoc(), diag::err_cconv_varargs)
3752        << FunctionType::getNameForCallConv(CC);
3753      attr.setInvalid();
3754      return true;
3755    }
3756
3757    // Also diagnose fastcall with regparm.
3758    if (fn->getHasRegParm()) {
3759      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3760        << "regparm"
3761        << FunctionType::getNameForCallConv(CC);
3762      attr.setInvalid();
3763      return true;
3764    }
3765  }
3766
3767  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
3768  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3769  return true;
3770}
3771
3772/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
3773static void HandleOpenCLImageAccessAttribute(QualType& CurType,
3774                                             const AttributeList &Attr,
3775                                             Sema &S) {
3776  // Check the attribute arguments.
3777  if (Attr.getNumArgs() != 1) {
3778    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3779    Attr.setInvalid();
3780    return;
3781  }
3782  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3783  llvm::APSInt arg(32);
3784  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3785      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
3786    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3787      << "opencl_image_access" << sizeExpr->getSourceRange();
3788    Attr.setInvalid();
3789    return;
3790  }
3791  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
3792  switch (iarg) {
3793  case CLIA_read_only:
3794  case CLIA_write_only:
3795  case CLIA_read_write:
3796    // Implemented in a separate patch
3797    break;
3798  default:
3799    // Implemented in a separate patch
3800    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3801      << sizeExpr->getSourceRange();
3802    Attr.setInvalid();
3803    break;
3804  }
3805}
3806
3807/// HandleVectorSizeAttribute - this attribute is only applicable to integral
3808/// and float scalars, although arrays, pointers, and function return values are
3809/// allowed in conjunction with this construct. Aggregates with this attribute
3810/// are invalid, even if they are of the same size as a corresponding scalar.
3811/// The raw attribute should contain precisely 1 argument, the vector size for
3812/// the variable, measured in bytes. If curType and rawAttr are well formed,
3813/// this routine will return a new vector type.
3814static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
3815                                 Sema &S) {
3816  // Check the attribute arguments.
3817  if (Attr.getNumArgs() != 1) {
3818    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3819    Attr.setInvalid();
3820    return;
3821  }
3822  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3823  llvm::APSInt vecSize(32);
3824  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3825      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
3826    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3827      << "vector_size" << sizeExpr->getSourceRange();
3828    Attr.setInvalid();
3829    return;
3830  }
3831  // the base type must be integer or float, and can't already be a vector.
3832  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
3833    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
3834    Attr.setInvalid();
3835    return;
3836  }
3837  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3838  // vecSize is specified in bytes - convert to bits.
3839  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
3840
3841  // the vector size needs to be an integral multiple of the type size.
3842  if (vectorSize % typeSize) {
3843    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3844      << sizeExpr->getSourceRange();
3845    Attr.setInvalid();
3846    return;
3847  }
3848  if (vectorSize == 0) {
3849    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
3850      << sizeExpr->getSourceRange();
3851    Attr.setInvalid();
3852    return;
3853  }
3854
3855  // Success! Instantiate the vector type, the number of elements is > 0, and
3856  // not required to be a power of 2, unlike GCC.
3857  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
3858                                    VectorType::GenericVector);
3859}
3860
3861/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
3862/// a type.
3863static void HandleExtVectorTypeAttr(QualType &CurType,
3864                                    const AttributeList &Attr,
3865                                    Sema &S) {
3866  Expr *sizeExpr;
3867
3868  // Special case where the argument is a template id.
3869  if (Attr.getParameterName()) {
3870    CXXScopeSpec SS;
3871    SourceLocation TemplateKWLoc;
3872    UnqualifiedId id;
3873    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
3874
3875    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
3876                                          id, false, false);
3877    if (Size.isInvalid())
3878      return;
3879
3880    sizeExpr = Size.get();
3881  } else {
3882    // check the attribute arguments.
3883    if (Attr.getNumArgs() != 1) {
3884      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3885      return;
3886    }
3887    sizeExpr = Attr.getArg(0);
3888  }
3889
3890  // Create the vector type.
3891  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
3892  if (!T.isNull())
3893    CurType = T;
3894}
3895
3896/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
3897/// "neon_polyvector_type" attributes are used to create vector types that
3898/// are mangled according to ARM's ABI.  Otherwise, these types are identical
3899/// to those created with the "vector_size" attribute.  Unlike "vector_size"
3900/// the argument to these Neon attributes is the number of vector elements,
3901/// not the vector size in bytes.  The vector width and element type must
3902/// match one of the standard Neon vector types.
3903static void HandleNeonVectorTypeAttr(QualType& CurType,
3904                                     const AttributeList &Attr, Sema &S,
3905                                     VectorType::VectorKind VecKind,
3906                                     const char *AttrName) {
3907  // Check the attribute arguments.
3908  if (Attr.getNumArgs() != 1) {
3909    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3910    Attr.setInvalid();
3911    return;
3912  }
3913  // The number of elements must be an ICE.
3914  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
3915  llvm::APSInt numEltsInt(32);
3916  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
3917      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
3918    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3919      << AttrName << numEltsExpr->getSourceRange();
3920    Attr.setInvalid();
3921    return;
3922  }
3923  // Only certain element types are supported for Neon vectors.
3924  const BuiltinType* BTy = CurType->getAs<BuiltinType>();
3925  if (!BTy ||
3926      (VecKind == VectorType::NeonPolyVector &&
3927       BTy->getKind() != BuiltinType::SChar &&
3928       BTy->getKind() != BuiltinType::Short) ||
3929      (BTy->getKind() != BuiltinType::SChar &&
3930       BTy->getKind() != BuiltinType::UChar &&
3931       BTy->getKind() != BuiltinType::Short &&
3932       BTy->getKind() != BuiltinType::UShort &&
3933       BTy->getKind() != BuiltinType::Int &&
3934       BTy->getKind() != BuiltinType::UInt &&
3935       BTy->getKind() != BuiltinType::LongLong &&
3936       BTy->getKind() != BuiltinType::ULongLong &&
3937       BTy->getKind() != BuiltinType::Float)) {
3938    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
3939    Attr.setInvalid();
3940    return;
3941  }
3942  // The total size of the vector must be 64 or 128 bits.
3943  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3944  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
3945  unsigned vecSize = typeSize * numElts;
3946  if (vecSize != 64 && vecSize != 128) {
3947    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
3948    Attr.setInvalid();
3949    return;
3950  }
3951
3952  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
3953}
3954
3955static void processTypeAttrs(TypeProcessingState &state, QualType &type,
3956                             bool isDeclSpec, AttributeList *attrs) {
3957  // Scan through and apply attributes to this type where it makes sense.  Some
3958  // attributes (such as __address_space__, __vector_size__, etc) apply to the
3959  // type, but others can be present in the type specifiers even though they
3960  // apply to the decl.  Here we apply type attributes and ignore the rest.
3961
3962  AttributeList *next;
3963  do {
3964    AttributeList &attr = *attrs;
3965    next = attr.getNext();
3966
3967    // Skip attributes that were marked to be invalid.
3968    if (attr.isInvalid())
3969      continue;
3970
3971    // If this is an attribute we can handle, do so now,
3972    // otherwise, add it to the FnAttrs list for rechaining.
3973    switch (attr.getKind()) {
3974    default: break;
3975
3976    case AttributeList::AT_may_alias:
3977      // FIXME: This attribute needs to actually be handled, but if we ignore
3978      // it it breaks large amounts of Linux software.
3979      attr.setUsedAsTypeAttr();
3980      break;
3981    case AttributeList::AT_address_space:
3982      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
3983      attr.setUsedAsTypeAttr();
3984      break;
3985    OBJC_POINTER_TYPE_ATTRS_CASELIST:
3986      if (!handleObjCPointerTypeAttr(state, attr, type))
3987        distributeObjCPointerTypeAttr(state, attr, type);
3988      attr.setUsedAsTypeAttr();
3989      break;
3990    case AttributeList::AT_vector_size:
3991      HandleVectorSizeAttr(type, attr, state.getSema());
3992      attr.setUsedAsTypeAttr();
3993      break;
3994    case AttributeList::AT_ext_vector_type:
3995      if (state.getDeclarator().getDeclSpec().getStorageClassSpec()
3996            != DeclSpec::SCS_typedef)
3997        HandleExtVectorTypeAttr(type, attr, state.getSema());
3998      attr.setUsedAsTypeAttr();
3999      break;
4000    case AttributeList::AT_neon_vector_type:
4001      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4002                               VectorType::NeonVector, "neon_vector_type");
4003      attr.setUsedAsTypeAttr();
4004      break;
4005    case AttributeList::AT_neon_polyvector_type:
4006      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
4007                               VectorType::NeonPolyVector,
4008                               "neon_polyvector_type");
4009      attr.setUsedAsTypeAttr();
4010      break;
4011    case AttributeList::AT_opencl_image_access:
4012      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
4013      attr.setUsedAsTypeAttr();
4014      break;
4015
4016    case AttributeList::AT_ns_returns_retained:
4017      if (!state.getSema().getLangOpts().ObjCAutoRefCount)
4018	break;
4019      // fallthrough into the function attrs
4020
4021    FUNCTION_TYPE_ATTRS_CASELIST:
4022      attr.setUsedAsTypeAttr();
4023
4024      // Never process function type attributes as part of the
4025      // declaration-specifiers.
4026      if (isDeclSpec)
4027        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
4028
4029      // Otherwise, handle the possible delays.
4030      else if (!handleFunctionTypeAttr(state, attr, type))
4031        distributeFunctionTypeAttr(state, attr, type);
4032      break;
4033    }
4034  } while ((attrs = next));
4035}
4036
4037/// \brief Ensure that the type of the given expression is complete.
4038///
4039/// This routine checks whether the expression \p E has a complete type. If the
4040/// expression refers to an instantiable construct, that instantiation is
4041/// performed as needed to complete its type. Furthermore
4042/// Sema::RequireCompleteType is called for the expression's type (or in the
4043/// case of a reference type, the referred-to type).
4044///
4045/// \param E The expression whose type is required to be complete.
4046/// \param PD The partial diagnostic that will be printed out if the type cannot
4047/// be completed.
4048///
4049/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
4050/// otherwise.
4051bool Sema::RequireCompleteExprType(Expr *E, const PartialDiagnostic &PD,
4052                                   std::pair<SourceLocation,
4053                                             PartialDiagnostic> Note) {
4054  QualType T = E->getType();
4055
4056  // Fast path the case where the type is already complete.
4057  if (!T->isIncompleteType())
4058    return false;
4059
4060  // Incomplete array types may be completed by the initializer attached to
4061  // their definitions. For static data members of class templates we need to
4062  // instantiate the definition to get this initializer and complete the type.
4063  if (T->isIncompleteArrayType()) {
4064    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4065      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4066        if (Var->isStaticDataMember() &&
4067            Var->getInstantiatedFromStaticDataMember()) {
4068
4069          MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
4070          assert(MSInfo && "Missing member specialization information?");
4071          if (MSInfo->getTemplateSpecializationKind()
4072                != TSK_ExplicitSpecialization) {
4073            // If we don't already have a point of instantiation, this is it.
4074            if (MSInfo->getPointOfInstantiation().isInvalid()) {
4075              MSInfo->setPointOfInstantiation(E->getLocStart());
4076
4077              // This is a modification of an existing AST node. Notify
4078              // listeners.
4079              if (ASTMutationListener *L = getASTMutationListener())
4080                L->StaticDataMemberInstantiated(Var);
4081            }
4082
4083            InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
4084
4085            // Update the type to the newly instantiated definition's type both
4086            // here and within the expression.
4087            if (VarDecl *Def = Var->getDefinition()) {
4088              DRE->setDecl(Def);
4089              T = Def->getType();
4090              DRE->setType(T);
4091              E->setType(T);
4092            }
4093          }
4094
4095          // We still go on to try to complete the type independently, as it
4096          // may also require instantiations or diagnostics if it remains
4097          // incomplete.
4098        }
4099      }
4100    }
4101  }
4102
4103  // FIXME: Are there other cases which require instantiating something other
4104  // than the type to complete the type of an expression?
4105
4106  // Look through reference types and complete the referred type.
4107  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
4108    T = Ref->getPointeeType();
4109
4110  return RequireCompleteType(E->getExprLoc(), T, PD, Note);
4111}
4112
4113/// @brief Ensure that the type T is a complete type.
4114///
4115/// This routine checks whether the type @p T is complete in any
4116/// context where a complete type is required. If @p T is a complete
4117/// type, returns false. If @p T is a class template specialization,
4118/// this routine then attempts to perform class template
4119/// instantiation. If instantiation fails, or if @p T is incomplete
4120/// and cannot be completed, issues the diagnostic @p diag (giving it
4121/// the type @p T) and returns true.
4122///
4123/// @param Loc  The location in the source that the incomplete type
4124/// diagnostic should refer to.
4125///
4126/// @param T  The type that this routine is examining for completeness.
4127///
4128/// @param PD The partial diagnostic that will be printed out if T is not a
4129/// complete type.
4130///
4131/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
4132/// @c false otherwise.
4133bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4134                               const PartialDiagnostic &PD,
4135                               std::pair<SourceLocation,
4136                                         PartialDiagnostic> Note) {
4137  unsigned diag = PD.getDiagID();
4138
4139  // FIXME: Add this assertion to make sure we always get instantiation points.
4140  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
4141  // FIXME: Add this assertion to help us flush out problems with
4142  // checking for dependent types and type-dependent expressions.
4143  //
4144  //  assert(!T->isDependentType() &&
4145  //         "Can't ask whether a dependent type is complete");
4146
4147  // If we have a complete type, we're done.
4148  NamedDecl *Def = 0;
4149  if (!T->isIncompleteType(&Def)) {
4150    // If we know about the definition but it is not visible, complain.
4151    if (diag != 0 && Def && !LookupResult::isVisible(Def)) {
4152      // Suppress this error outside of a SFINAE context if we've already
4153      // emitted the error once for this type. There's no usefulness in
4154      // repeating the diagnostic.
4155      // FIXME: Add a Fix-It that imports the corresponding module or includes
4156      // the header.
4157      if (isSFINAEContext() || HiddenDefinitions.insert(Def)) {
4158        Diag(Loc, diag::err_module_private_definition) << T;
4159        Diag(Def->getLocation(), diag::note_previous_definition);
4160      }
4161    }
4162
4163    return false;
4164  }
4165
4166  const TagType *Tag = T->getAs<TagType>();
4167  const ObjCInterfaceType *IFace = 0;
4168
4169  if (Tag) {
4170    // Avoid diagnosing invalid decls as incomplete.
4171    if (Tag->getDecl()->isInvalidDecl())
4172      return true;
4173
4174    // Give the external AST source a chance to complete the type.
4175    if (Tag->getDecl()->hasExternalLexicalStorage()) {
4176      Context.getExternalSource()->CompleteType(Tag->getDecl());
4177      if (!Tag->isIncompleteType())
4178        return false;
4179    }
4180  }
4181  else if ((IFace = T->getAs<ObjCInterfaceType>())) {
4182    // Avoid diagnosing invalid decls as incomplete.
4183    if (IFace->getDecl()->isInvalidDecl())
4184      return true;
4185
4186    // Give the external AST source a chance to complete the type.
4187    if (IFace->getDecl()->hasExternalLexicalStorage()) {
4188      Context.getExternalSource()->CompleteType(IFace->getDecl());
4189      if (!IFace->isIncompleteType())
4190        return false;
4191    }
4192  }
4193
4194  // If we have a class template specialization or a class member of a
4195  // class template specialization, or an array with known size of such,
4196  // try to instantiate it.
4197  QualType MaybeTemplate = T;
4198  while (const ConstantArrayType *Array
4199           = Context.getAsConstantArrayType(MaybeTemplate))
4200    MaybeTemplate = Array->getElementType();
4201  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
4202    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
4203          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
4204      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
4205        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
4206                                                      TSK_ImplicitInstantiation,
4207                                                      /*Complain=*/diag != 0);
4208    } else if (CXXRecordDecl *Rec
4209                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
4210      CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
4211      if (!Rec->isBeingDefined() && Pattern) {
4212        MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
4213        assert(MSI && "Missing member specialization information?");
4214        // This record was instantiated from a class within a template.
4215        if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4216          return InstantiateClass(Loc, Rec, Pattern,
4217                                  getTemplateInstantiationArgs(Rec),
4218                                  TSK_ImplicitInstantiation,
4219                                  /*Complain=*/diag != 0);
4220      }
4221    }
4222  }
4223
4224  if (diag == 0)
4225    return true;
4226
4227  // We have an incomplete type. Produce a diagnostic.
4228  Diag(Loc, PD) << T;
4229
4230  // If we have a note, produce it.
4231  if (!Note.first.isInvalid())
4232    Diag(Note.first, Note.second);
4233
4234  // If the type was a forward declaration of a class/struct/union
4235  // type, produce a note.
4236  if (Tag && !Tag->getDecl()->isInvalidDecl())
4237    Diag(Tag->getDecl()->getLocation(),
4238         Tag->isBeingDefined() ? diag::note_type_being_defined
4239                               : diag::note_forward_declaration)
4240      << QualType(Tag, 0);
4241
4242  // If the Objective-C class was a forward declaration, produce a note.
4243  if (IFace && !IFace->getDecl()->isInvalidDecl())
4244    Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
4245
4246  return true;
4247}
4248
4249bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4250                               const PartialDiagnostic &PD) {
4251  return RequireCompleteType(Loc, T, PD,
4252                             std::make_pair(SourceLocation(), PDiag(0)));
4253}
4254
4255bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4256                               unsigned DiagID) {
4257  return RequireCompleteType(Loc, T, PDiag(DiagID),
4258                             std::make_pair(SourceLocation(), PDiag(0)));
4259}
4260
4261/// @brief Ensure that the type T is a literal type.
4262///
4263/// This routine checks whether the type @p T is a literal type. If @p T is an
4264/// incomplete type, an attempt is made to complete it. If @p T is a literal
4265/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
4266/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
4267/// it the type @p T), along with notes explaining why the type is not a
4268/// literal type, and returns true.
4269///
4270/// @param Loc  The location in the source that the non-literal type
4271/// diagnostic should refer to.
4272///
4273/// @param T  The type that this routine is examining for literalness.
4274///
4275/// @param PD The partial diagnostic that will be printed out if T is not a
4276/// literal type.
4277///
4278/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
4279/// @c false otherwise.
4280bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
4281                              const PartialDiagnostic &PD) {
4282  assert(!T->isDependentType() && "type should not be dependent");
4283
4284  QualType ElemType = Context.getBaseElementType(T);
4285  RequireCompleteType(Loc, ElemType, 0);
4286
4287  if (T->isLiteralType())
4288    return false;
4289
4290  if (PD.getDiagID() == 0)
4291    return true;
4292
4293  Diag(Loc, PD) << T;
4294
4295  if (T->isVariableArrayType())
4296    return true;
4297
4298  const RecordType *RT = ElemType->getAs<RecordType>();
4299  if (!RT)
4300    return true;
4301
4302  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4303
4304  // FIXME: Better diagnostic for incomplete class?
4305  if (!RD->isCompleteDefinition())
4306    return true;
4307
4308  // If the class has virtual base classes, then it's not an aggregate, and
4309  // cannot have any constexpr constructors or a trivial default constructor,
4310  // so is non-literal. This is better to diagnose than the resulting absence
4311  // of constexpr constructors.
4312  if (RD->getNumVBases()) {
4313    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
4314      << RD->isStruct() << RD->getNumVBases();
4315    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
4316           E = RD->vbases_end(); I != E; ++I)
4317      Diag(I->getLocStart(),
4318           diag::note_constexpr_virtual_base_here) << I->getSourceRange();
4319  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
4320             !RD->hasTrivialDefaultConstructor()) {
4321    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
4322  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
4323    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4324         E = RD->bases_end(); I != E; ++I) {
4325      if (!I->getType()->isLiteralType()) {
4326        Diag(I->getLocStart(),
4327             diag::note_non_literal_base_class)
4328          << RD << I->getType() << I->getSourceRange();
4329        return true;
4330      }
4331    }
4332    for (CXXRecordDecl::field_iterator I = RD->field_begin(),
4333         E = RD->field_end(); I != E; ++I) {
4334      if (!(*I)->getType()->isLiteralType() ||
4335          (*I)->getType().isVolatileQualified()) {
4336        Diag((*I)->getLocation(), diag::note_non_literal_field)
4337          << RD << (*I) << (*I)->getType()
4338          << (*I)->getType().isVolatileQualified();
4339        return true;
4340      }
4341    }
4342  } else if (!RD->hasTrivialDestructor()) {
4343    // All fields and bases are of literal types, so have trivial destructors.
4344    // If this class's destructor is non-trivial it must be user-declared.
4345    CXXDestructorDecl *Dtor = RD->getDestructor();
4346    assert(Dtor && "class has literal fields and bases but no dtor?");
4347    if (!Dtor)
4348      return true;
4349
4350    Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
4351         diag::note_non_literal_user_provided_dtor :
4352         diag::note_non_literal_nontrivial_dtor) << RD;
4353  }
4354
4355  return true;
4356}
4357
4358/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
4359/// and qualified by the nested-name-specifier contained in SS.
4360QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
4361                                 const CXXScopeSpec &SS, QualType T) {
4362  if (T.isNull())
4363    return T;
4364  NestedNameSpecifier *NNS;
4365  if (SS.isValid())
4366    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4367  else {
4368    if (Keyword == ETK_None)
4369      return T;
4370    NNS = 0;
4371  }
4372  return Context.getElaboratedType(Keyword, NNS, T);
4373}
4374
4375QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
4376  ExprResult ER = CheckPlaceholderExpr(E);
4377  if (ER.isInvalid()) return QualType();
4378  E = ER.take();
4379
4380  if (!E->isTypeDependent()) {
4381    QualType T = E->getType();
4382    if (const TagType *TT = T->getAs<TagType>())
4383      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
4384  }
4385  return Context.getTypeOfExprType(E);
4386}
4387
4388/// getDecltypeForExpr - Given an expr, will return the decltype for
4389/// that expression, according to the rules in C++11
4390/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
4391static QualType getDecltypeForExpr(Sema &S, Expr *E) {
4392  if (E->isTypeDependent())
4393    return S.Context.DependentTy;
4394
4395  // C++11 [dcl.type.simple]p4:
4396  //   The type denoted by decltype(e) is defined as follows:
4397  //
4398  //     - if e is an unparenthesized id-expression or an unparenthesized class
4399  //       member access (5.2.5), decltype(e) is the type of the entity named
4400  //       by e. If there is no such entity, or if e names a set of overloaded
4401  //       functions, the program is ill-formed;
4402  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4403    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
4404      return VD->getType();
4405  }
4406  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
4407    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
4408      return FD->getType();
4409  }
4410
4411  // C++11 [expr.lambda.prim]p18:
4412  //   Every occurrence of decltype((x)) where x is a possibly
4413  //   parenthesized id-expression that names an entity of automatic
4414  //   storage duration is treated as if x were transformed into an
4415  //   access to a corresponding data member of the closure type that
4416  //   would have been declared if x were an odr-use of the denoted
4417  //   entity.
4418  using namespace sema;
4419  if (S.getCurLambda()) {
4420    if (isa<ParenExpr>(E)) {
4421      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4422        if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
4423          QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
4424          if (!T.isNull())
4425            return S.Context.getLValueReferenceType(T);
4426        }
4427      }
4428    }
4429  }
4430
4431
4432  // C++11 [dcl.type.simple]p4:
4433  //   [...]
4434  QualType T = E->getType();
4435  switch (E->getValueKind()) {
4436  //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
4437  //       type of e;
4438  case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
4439  //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
4440  //       type of e;
4441  case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
4442  //  - otherwise, decltype(e) is the type of e.
4443  case VK_RValue: break;
4444  }
4445
4446  return T;
4447}
4448
4449QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
4450  ExprResult ER = CheckPlaceholderExpr(E);
4451  if (ER.isInvalid()) return QualType();
4452  E = ER.take();
4453
4454  return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
4455}
4456
4457QualType Sema::BuildUnaryTransformType(QualType BaseType,
4458                                       UnaryTransformType::UTTKind UKind,
4459                                       SourceLocation Loc) {
4460  switch (UKind) {
4461  case UnaryTransformType::EnumUnderlyingType:
4462    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
4463      Diag(Loc, diag::err_only_enums_have_underlying_types);
4464      return QualType();
4465    } else {
4466      QualType Underlying = BaseType;
4467      if (!BaseType->isDependentType()) {
4468        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
4469        assert(ED && "EnumType has no EnumDecl");
4470        DiagnoseUseOfDecl(ED, Loc);
4471        Underlying = ED->getIntegerType();
4472      }
4473      assert(!Underlying.isNull());
4474      return Context.getUnaryTransformType(BaseType, Underlying,
4475                                        UnaryTransformType::EnumUnderlyingType);
4476    }
4477  }
4478  llvm_unreachable("unknown unary transform type");
4479}
4480
4481QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
4482  if (!T->isDependentType()) {
4483    // FIXME: It isn't entirely clear whether incomplete atomic types
4484    // are allowed or not; for simplicity, ban them for the moment.
4485    if (RequireCompleteType(Loc, T,
4486                            PDiag(diag::err_atomic_specifier_bad_type) << 0))
4487      return QualType();
4488
4489    int DisallowedKind = -1;
4490    if (T->isArrayType())
4491      DisallowedKind = 1;
4492    else if (T->isFunctionType())
4493      DisallowedKind = 2;
4494    else if (T->isReferenceType())
4495      DisallowedKind = 3;
4496    else if (T->isAtomicType())
4497      DisallowedKind = 4;
4498    else if (T.hasQualifiers())
4499      DisallowedKind = 5;
4500    else if (!T.isTriviallyCopyableType(Context))
4501      // Some other non-trivially-copyable type (probably a C++ class)
4502      DisallowedKind = 6;
4503
4504    if (DisallowedKind != -1) {
4505      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
4506      return QualType();
4507    }
4508
4509    // FIXME: Do we need any handling for ARC here?
4510  }
4511
4512  // Build the pointer type.
4513  return Context.getAtomicType(T);
4514}
4515