SemaType.cpp revision e71202efccdead44c8a3d4a2296d866d0e89799b
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Template.h"
16#include "clang/Basic/OpenCL.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeLocVisitor.h"
24#include "clang/AST/Expr.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/DelayedDiagnostic.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/Support/ErrorHandling.h"
32using namespace clang;
33
34/// isOmittedBlockReturnType - Return true if this declarator is missing a
35/// return type because this is a omitted return type on a block literal.
36static bool isOmittedBlockReturnType(const Declarator &D) {
37  if (D.getContext() != Declarator::BlockLiteralContext ||
38      D.getDeclSpec().hasTypeSpecifier())
39    return false;
40
41  if (D.getNumTypeObjects() == 0)
42    return true;   // ^{ ... }
43
44  if (D.getNumTypeObjects() == 1 &&
45      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
46    return true;   // ^(int X, float Y) { ... }
47
48  return false;
49}
50
51/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
52/// doesn't apply to the given type.
53static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
54                                     QualType type) {
55  bool useExpansionLoc = false;
56
57  unsigned diagID = 0;
58  switch (attr.getKind()) {
59  case AttributeList::AT_objc_gc:
60    diagID = diag::warn_pointer_attribute_wrong_type;
61    useExpansionLoc = true;
62    break;
63
64  case AttributeList::AT_objc_ownership:
65    diagID = diag::warn_objc_object_attribute_wrong_type;
66    useExpansionLoc = true;
67    break;
68
69  default:
70    // Assume everything else was a function attribute.
71    diagID = diag::warn_function_attribute_wrong_type;
72    break;
73  }
74
75  SourceLocation loc = attr.getLoc();
76  StringRef name = attr.getName()->getName();
77
78  // The GC attributes are usually written with macros;  special-case them.
79  if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
80    if (attr.getParameterName()->isStr("strong")) {
81      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
82    } else if (attr.getParameterName()->isStr("weak")) {
83      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
84    }
85  }
86
87  S.Diag(loc, diagID) << name << type;
88}
89
90// objc_gc applies to Objective-C pointers or, otherwise, to the
91// smallest available pointer type (i.e. 'void*' in 'void**').
92#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
93    case AttributeList::AT_objc_gc: \
94    case AttributeList::AT_objc_ownership
95
96// Function type attributes.
97#define FUNCTION_TYPE_ATTRS_CASELIST \
98    case AttributeList::AT_noreturn: \
99    case AttributeList::AT_cdecl: \
100    case AttributeList::AT_fastcall: \
101    case AttributeList::AT_stdcall: \
102    case AttributeList::AT_thiscall: \
103    case AttributeList::AT_pascal: \
104    case AttributeList::AT_regparm: \
105    case AttributeList::AT_pcs \
106
107namespace {
108  /// An object which stores processing state for the entire
109  /// GetTypeForDeclarator process.
110  class TypeProcessingState {
111    Sema &sema;
112
113    /// The declarator being processed.
114    Declarator &declarator;
115
116    /// The index of the declarator chunk we're currently processing.
117    /// May be the total number of valid chunks, indicating the
118    /// DeclSpec.
119    unsigned chunkIndex;
120
121    /// Whether there are non-trivial modifications to the decl spec.
122    bool trivial;
123
124    /// Whether we saved the attributes in the decl spec.
125    bool hasSavedAttrs;
126
127    /// The original set of attributes on the DeclSpec.
128    SmallVector<AttributeList*, 2> savedAttrs;
129
130    /// A list of attributes to diagnose the uselessness of when the
131    /// processing is complete.
132    SmallVector<AttributeList*, 2> ignoredTypeAttrs;
133
134  public:
135    TypeProcessingState(Sema &sema, Declarator &declarator)
136      : sema(sema), declarator(declarator),
137        chunkIndex(declarator.getNumTypeObjects()),
138        trivial(true), hasSavedAttrs(false) {}
139
140    Sema &getSema() const {
141      return sema;
142    }
143
144    Declarator &getDeclarator() const {
145      return declarator;
146    }
147
148    unsigned getCurrentChunkIndex() const {
149      return chunkIndex;
150    }
151
152    void setCurrentChunkIndex(unsigned idx) {
153      assert(idx <= declarator.getNumTypeObjects());
154      chunkIndex = idx;
155    }
156
157    AttributeList *&getCurrentAttrListRef() const {
158      assert(chunkIndex <= declarator.getNumTypeObjects());
159      if (chunkIndex == declarator.getNumTypeObjects())
160        return getMutableDeclSpec().getAttributes().getListRef();
161      return declarator.getTypeObject(chunkIndex).getAttrListRef();
162    }
163
164    /// Save the current set of attributes on the DeclSpec.
165    void saveDeclSpecAttrs() {
166      // Don't try to save them multiple times.
167      if (hasSavedAttrs) return;
168
169      DeclSpec &spec = getMutableDeclSpec();
170      for (AttributeList *attr = spec.getAttributes().getList(); attr;
171             attr = attr->getNext())
172        savedAttrs.push_back(attr);
173      trivial &= savedAttrs.empty();
174      hasSavedAttrs = true;
175    }
176
177    /// Record that we had nowhere to put the given type attribute.
178    /// We will diagnose such attributes later.
179    void addIgnoredTypeAttr(AttributeList &attr) {
180      ignoredTypeAttrs.push_back(&attr);
181    }
182
183    /// Diagnose all the ignored type attributes, given that the
184    /// declarator worked out to the given type.
185    void diagnoseIgnoredTypeAttrs(QualType type) const {
186      for (SmallVectorImpl<AttributeList*>::const_iterator
187             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
188           i != e; ++i)
189        diagnoseBadTypeAttribute(getSema(), **i, type);
190    }
191
192    ~TypeProcessingState() {
193      if (trivial) return;
194
195      restoreDeclSpecAttrs();
196    }
197
198  private:
199    DeclSpec &getMutableDeclSpec() const {
200      return const_cast<DeclSpec&>(declarator.getDeclSpec());
201    }
202
203    void restoreDeclSpecAttrs() {
204      assert(hasSavedAttrs);
205
206      if (savedAttrs.empty()) {
207        getMutableDeclSpec().getAttributes().set(0);
208        return;
209      }
210
211      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
212      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
213        savedAttrs[i]->setNext(savedAttrs[i+1]);
214      savedAttrs.back()->setNext(0);
215    }
216  };
217
218  /// Basically std::pair except that we really want to avoid an
219  /// implicit operator= for safety concerns.  It's also a minor
220  /// link-time optimization for this to be a private type.
221  struct AttrAndList {
222    /// The attribute.
223    AttributeList &first;
224
225    /// The head of the list the attribute is currently in.
226    AttributeList *&second;
227
228    AttrAndList(AttributeList &attr, AttributeList *&head)
229      : first(attr), second(head) {}
230  };
231}
232
233namespace llvm {
234  template <> struct isPodLike<AttrAndList> {
235    static const bool value = true;
236  };
237}
238
239static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
240  attr.setNext(head);
241  head = &attr;
242}
243
244static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
245  if (head == &attr) {
246    head = attr.getNext();
247    return;
248  }
249
250  AttributeList *cur = head;
251  while (true) {
252    assert(cur && cur->getNext() && "ran out of attrs?");
253    if (cur->getNext() == &attr) {
254      cur->setNext(attr.getNext());
255      return;
256    }
257    cur = cur->getNext();
258  }
259}
260
261static void moveAttrFromListToList(AttributeList &attr,
262                                   AttributeList *&fromList,
263                                   AttributeList *&toList) {
264  spliceAttrOutOfList(attr, fromList);
265  spliceAttrIntoList(attr, toList);
266}
267
268static void processTypeAttrs(TypeProcessingState &state,
269                             QualType &type, bool isDeclSpec,
270                             AttributeList *attrs);
271
272static bool handleFunctionTypeAttr(TypeProcessingState &state,
273                                   AttributeList &attr,
274                                   QualType &type);
275
276static bool handleObjCGCTypeAttr(TypeProcessingState &state,
277                                 AttributeList &attr, QualType &type);
278
279static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
280                                       AttributeList &attr, QualType &type);
281
282static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
283                                      AttributeList &attr, QualType &type) {
284  if (attr.getKind() == AttributeList::AT_objc_gc)
285    return handleObjCGCTypeAttr(state, attr, type);
286  assert(attr.getKind() == AttributeList::AT_objc_ownership);
287  return handleObjCOwnershipTypeAttr(state, attr, type);
288}
289
290/// Given that an objc_gc attribute was written somewhere on a
291/// declaration *other* than on the declarator itself (for which, use
292/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
293/// didn't apply in whatever position it was written in, try to move
294/// it to a more appropriate position.
295static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
296                                          AttributeList &attr,
297                                          QualType type) {
298  Declarator &declarator = state.getDeclarator();
299  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
300    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
301    switch (chunk.Kind) {
302    case DeclaratorChunk::Pointer:
303    case DeclaratorChunk::BlockPointer:
304      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
305                             chunk.getAttrListRef());
306      return;
307
308    case DeclaratorChunk::Paren:
309    case DeclaratorChunk::Array:
310      continue;
311
312    // Don't walk through these.
313    case DeclaratorChunk::Reference:
314    case DeclaratorChunk::Function:
315    case DeclaratorChunk::MemberPointer:
316      goto error;
317    }
318  }
319 error:
320
321  diagnoseBadTypeAttribute(state.getSema(), attr, type);
322}
323
324/// Distribute an objc_gc type attribute that was written on the
325/// declarator.
326static void
327distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
328                                            AttributeList &attr,
329                                            QualType &declSpecType) {
330  Declarator &declarator = state.getDeclarator();
331
332  // objc_gc goes on the innermost pointer to something that's not a
333  // pointer.
334  unsigned innermost = -1U;
335  bool considerDeclSpec = true;
336  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = declarator.getTypeObject(i);
338    switch (chunk.Kind) {
339    case DeclaratorChunk::Pointer:
340    case DeclaratorChunk::BlockPointer:
341      innermost = i;
342      continue;
343
344    case DeclaratorChunk::Reference:
345    case DeclaratorChunk::MemberPointer:
346    case DeclaratorChunk::Paren:
347    case DeclaratorChunk::Array:
348      continue;
349
350    case DeclaratorChunk::Function:
351      considerDeclSpec = false;
352      goto done;
353    }
354  }
355 done:
356
357  // That might actually be the decl spec if we weren't blocked by
358  // anything in the declarator.
359  if (considerDeclSpec) {
360    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
361      // Splice the attribute into the decl spec.  Prevents the
362      // attribute from being applied multiple times and gives
363      // the source-location-filler something to work with.
364      state.saveDeclSpecAttrs();
365      moveAttrFromListToList(attr, declarator.getAttrListRef(),
366               declarator.getMutableDeclSpec().getAttributes().getListRef());
367      return;
368    }
369  }
370
371  // Otherwise, if we found an appropriate chunk, splice the attribute
372  // into it.
373  if (innermost != -1U) {
374    moveAttrFromListToList(attr, declarator.getAttrListRef(),
375                       declarator.getTypeObject(innermost).getAttrListRef());
376    return;
377  }
378
379  // Otherwise, diagnose when we're done building the type.
380  spliceAttrOutOfList(attr, declarator.getAttrListRef());
381  state.addIgnoredTypeAttr(attr);
382}
383
384/// A function type attribute was written somewhere in a declaration
385/// *other* than on the declarator itself or in the decl spec.  Given
386/// that it didn't apply in whatever position it was written in, try
387/// to move it to a more appropriate position.
388static void distributeFunctionTypeAttr(TypeProcessingState &state,
389                                       AttributeList &attr,
390                                       QualType type) {
391  Declarator &declarator = state.getDeclarator();
392
393  // Try to push the attribute from the return type of a function to
394  // the function itself.
395  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
396    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
397    switch (chunk.Kind) {
398    case DeclaratorChunk::Function:
399      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
400                             chunk.getAttrListRef());
401      return;
402
403    case DeclaratorChunk::Paren:
404    case DeclaratorChunk::Pointer:
405    case DeclaratorChunk::BlockPointer:
406    case DeclaratorChunk::Array:
407    case DeclaratorChunk::Reference:
408    case DeclaratorChunk::MemberPointer:
409      continue;
410    }
411  }
412
413  diagnoseBadTypeAttribute(state.getSema(), attr, type);
414}
415
416/// Try to distribute a function type attribute to the innermost
417/// function chunk or type.  Returns true if the attribute was
418/// distributed, false if no location was found.
419static bool
420distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
421                                      AttributeList &attr,
422                                      AttributeList *&attrList,
423                                      QualType &declSpecType) {
424  Declarator &declarator = state.getDeclarator();
425
426  // Put it on the innermost function chunk, if there is one.
427  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
428    DeclaratorChunk &chunk = declarator.getTypeObject(i);
429    if (chunk.Kind != DeclaratorChunk::Function) continue;
430
431    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
432    return true;
433  }
434
435  if (handleFunctionTypeAttr(state, attr, declSpecType)) {
436    spliceAttrOutOfList(attr, attrList);
437    return true;
438  }
439
440  return false;
441}
442
443/// A function type attribute was written in the decl spec.  Try to
444/// apply it somewhere.
445static void
446distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
447                                       AttributeList &attr,
448                                       QualType &declSpecType) {
449  state.saveDeclSpecAttrs();
450
451  // Try to distribute to the innermost.
452  if (distributeFunctionTypeAttrToInnermost(state, attr,
453                                            state.getCurrentAttrListRef(),
454                                            declSpecType))
455    return;
456
457  // If that failed, diagnose the bad attribute when the declarator is
458  // fully built.
459  state.addIgnoredTypeAttr(attr);
460}
461
462/// A function type attribute was written on the declarator.  Try to
463/// apply it somewhere.
464static void
465distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
466                                         AttributeList &attr,
467                                         QualType &declSpecType) {
468  Declarator &declarator = state.getDeclarator();
469
470  // Try to distribute to the innermost.
471  if (distributeFunctionTypeAttrToInnermost(state, attr,
472                                            declarator.getAttrListRef(),
473                                            declSpecType))
474    return;
475
476  // If that failed, diagnose the bad attribute when the declarator is
477  // fully built.
478  spliceAttrOutOfList(attr, declarator.getAttrListRef());
479  state.addIgnoredTypeAttr(attr);
480}
481
482/// \brief Given that there are attributes written on the declarator
483/// itself, try to distribute any type attributes to the appropriate
484/// declarator chunk.
485///
486/// These are attributes like the following:
487///   int f ATTR;
488///   int (f ATTR)();
489/// but not necessarily this:
490///   int f() ATTR;
491static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
492                                              QualType &declSpecType) {
493  // Collect all the type attributes from the declarator itself.
494  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
495  AttributeList *attr = state.getDeclarator().getAttributes();
496  AttributeList *next;
497  do {
498    next = attr->getNext();
499
500    switch (attr->getKind()) {
501    OBJC_POINTER_TYPE_ATTRS_CASELIST:
502      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
503      break;
504
505    case AttributeList::AT_ns_returns_retained:
506      if (!state.getSema().getLangOptions().ObjCAutoRefCount)
507        break;
508      // fallthrough
509
510    FUNCTION_TYPE_ATTRS_CASELIST:
511      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
512      break;
513
514    default:
515      break;
516    }
517  } while ((attr = next));
518}
519
520/// Add a synthetic '()' to a block-literal declarator if it is
521/// required, given the return type.
522static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
523                                          QualType declSpecType) {
524  Declarator &declarator = state.getDeclarator();
525
526  // First, check whether the declarator would produce a function,
527  // i.e. whether the innermost semantic chunk is a function.
528  if (declarator.isFunctionDeclarator()) {
529    // If so, make that declarator a prototyped declarator.
530    declarator.getFunctionTypeInfo().hasPrototype = true;
531    return;
532  }
533
534  // If there are any type objects, the type as written won't name a
535  // function, regardless of the decl spec type.  This is because a
536  // block signature declarator is always an abstract-declarator, and
537  // abstract-declarators can't just be parentheses chunks.  Therefore
538  // we need to build a function chunk unless there are no type
539  // objects and the decl spec type is a function.
540  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
541    return;
542
543  // Note that there *are* cases with invalid declarators where
544  // declarators consist solely of parentheses.  In general, these
545  // occur only in failed efforts to make function declarators, so
546  // faking up the function chunk is still the right thing to do.
547
548  // Otherwise, we need to fake up a function declarator.
549  SourceLocation loc = declarator.getSourceRange().getBegin();
550
551  // ...and *prepend* it to the declarator.
552  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
553                             /*proto*/ true,
554                             /*variadic*/ false, SourceLocation(),
555                             /*args*/ 0, 0,
556                             /*type quals*/ 0,
557                             /*ref-qualifier*/true, SourceLocation(),
558                             /*const qualifier*/SourceLocation(),
559                             /*volatile qualifier*/SourceLocation(),
560                             /*mutable qualifier*/SourceLocation(),
561                             /*EH*/ EST_None, SourceLocation(), 0, 0, 0, 0,
562                             /*parens*/ loc, loc,
563                             declarator));
564
565  // For consistency, make sure the state still has us as processing
566  // the decl spec.
567  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
568  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
569}
570
571/// \brief Convert the specified declspec to the appropriate type
572/// object.
573/// \param D  the declarator containing the declaration specifier.
574/// \returns The type described by the declaration specifiers.  This function
575/// never returns null.
576static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
577  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
578  // checking.
579
580  Sema &S = state.getSema();
581  Declarator &declarator = state.getDeclarator();
582  const DeclSpec &DS = declarator.getDeclSpec();
583  SourceLocation DeclLoc = declarator.getIdentifierLoc();
584  if (DeclLoc.isInvalid())
585    DeclLoc = DS.getSourceRange().getBegin();
586
587  ASTContext &Context = S.Context;
588
589  QualType Result;
590  switch (DS.getTypeSpecType()) {
591  case DeclSpec::TST_void:
592    Result = Context.VoidTy;
593    break;
594  case DeclSpec::TST_char:
595    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
596      Result = Context.CharTy;
597    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
598      Result = Context.SignedCharTy;
599    else {
600      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
601             "Unknown TSS value");
602      Result = Context.UnsignedCharTy;
603    }
604    break;
605  case DeclSpec::TST_wchar:
606    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
607      Result = Context.WCharTy;
608    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
609      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
610        << DS.getSpecifierName(DS.getTypeSpecType());
611      Result = Context.getSignedWCharType();
612    } else {
613      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
614        "Unknown TSS value");
615      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
616        << DS.getSpecifierName(DS.getTypeSpecType());
617      Result = Context.getUnsignedWCharType();
618    }
619    break;
620  case DeclSpec::TST_char16:
621      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
622        "Unknown TSS value");
623      Result = Context.Char16Ty;
624    break;
625  case DeclSpec::TST_char32:
626      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
627        "Unknown TSS value");
628      Result = Context.Char32Ty;
629    break;
630  case DeclSpec::TST_unspecified:
631    // "<proto1,proto2>" is an objc qualified ID with a missing id.
632    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
633      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
634                                         (ObjCProtocolDecl**)PQ,
635                                         DS.getNumProtocolQualifiers());
636      Result = Context.getObjCObjectPointerType(Result);
637      break;
638    }
639
640    // If this is a missing declspec in a block literal return context, then it
641    // is inferred from the return statements inside the block.
642    if (isOmittedBlockReturnType(declarator)) {
643      Result = Context.DependentTy;
644      break;
645    }
646
647    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
648    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
649    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
650    // Note that the one exception to this is function definitions, which are
651    // allowed to be completely missing a declspec.  This is handled in the
652    // parser already though by it pretending to have seen an 'int' in this
653    // case.
654    if (S.getLangOptions().ImplicitInt) {
655      // In C89 mode, we only warn if there is a completely missing declspec
656      // when one is not allowed.
657      if (DS.isEmpty()) {
658        S.Diag(DeclLoc, diag::ext_missing_declspec)
659          << DS.getSourceRange()
660        << FixItHint::CreateInsertion(DS.getSourceRange().getBegin(), "int");
661      }
662    } else if (!DS.hasTypeSpecifier()) {
663      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
664      // "At least one type specifier shall be given in the declaration
665      // specifiers in each declaration, and in the specifier-qualifier list in
666      // each struct declaration and type name."
667      // FIXME: Does Microsoft really have the implicit int extension in C++?
668      if (S.getLangOptions().CPlusPlus &&
669          !S.getLangOptions().MicrosoftExt) {
670        S.Diag(DeclLoc, diag::err_missing_type_specifier)
671          << DS.getSourceRange();
672
673        // When this occurs in C++ code, often something is very broken with the
674        // value being declared, poison it as invalid so we don't get chains of
675        // errors.
676        declarator.setInvalidType(true);
677      } else {
678        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
679          << DS.getSourceRange();
680      }
681    }
682
683    // FALL THROUGH.
684  case DeclSpec::TST_int: {
685    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
686      switch (DS.getTypeSpecWidth()) {
687      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
688      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
689      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
690      case DeclSpec::TSW_longlong:
691        Result = Context.LongLongTy;
692
693        // long long is a C99 feature.
694        if (!S.getLangOptions().C99)
695          S.Diag(DS.getTypeSpecWidthLoc(),
696                 S.getLangOptions().CPlusPlus0x ?
697                   diag::warn_cxx98_compat_longlong : diag::ext_longlong);
698        break;
699      }
700    } else {
701      switch (DS.getTypeSpecWidth()) {
702      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
703      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
704      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
705      case DeclSpec::TSW_longlong:
706        Result = Context.UnsignedLongLongTy;
707
708        // long long is a C99 feature.
709        if (!S.getLangOptions().C99)
710          S.Diag(DS.getTypeSpecWidthLoc(),
711                 S.getLangOptions().CPlusPlus0x ?
712                   diag::warn_cxx98_compat_longlong : diag::ext_longlong);
713        break;
714      }
715    }
716    break;
717  }
718  case DeclSpec::TST_half: Result = Context.HalfTy; break;
719  case DeclSpec::TST_float: Result = Context.FloatTy; break;
720  case DeclSpec::TST_double:
721    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
722      Result = Context.LongDoubleTy;
723    else
724      Result = Context.DoubleTy;
725
726    if (S.getLangOptions().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
727      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
728      declarator.setInvalidType(true);
729    }
730    break;
731  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
732  case DeclSpec::TST_decimal32:    // _Decimal32
733  case DeclSpec::TST_decimal64:    // _Decimal64
734  case DeclSpec::TST_decimal128:   // _Decimal128
735    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
736    Result = Context.IntTy;
737    declarator.setInvalidType(true);
738    break;
739  case DeclSpec::TST_class:
740  case DeclSpec::TST_enum:
741  case DeclSpec::TST_union:
742  case DeclSpec::TST_struct: {
743    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
744    if (!D) {
745      // This can happen in C++ with ambiguous lookups.
746      Result = Context.IntTy;
747      declarator.setInvalidType(true);
748      break;
749    }
750
751    // If the type is deprecated or unavailable, diagnose it.
752    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
753
754    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
755           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
756
757    // TypeQuals handled by caller.
758    Result = Context.getTypeDeclType(D);
759
760    // In both C and C++, make an ElaboratedType.
761    ElaboratedTypeKeyword Keyword
762      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
763    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
764
765    if (D->isInvalidDecl())
766      declarator.setInvalidType(true);
767    break;
768  }
769  case DeclSpec::TST_typename: {
770    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
771           DS.getTypeSpecSign() == 0 &&
772           "Can't handle qualifiers on typedef names yet!");
773    Result = S.GetTypeFromParser(DS.getRepAsType());
774    if (Result.isNull())
775      declarator.setInvalidType(true);
776    else if (DeclSpec::ProtocolQualifierListTy PQ
777               = DS.getProtocolQualifiers()) {
778      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
779        // Silently drop any existing protocol qualifiers.
780        // TODO: determine whether that's the right thing to do.
781        if (ObjT->getNumProtocols())
782          Result = ObjT->getBaseType();
783
784        if (DS.getNumProtocolQualifiers())
785          Result = Context.getObjCObjectType(Result,
786                                             (ObjCProtocolDecl**) PQ,
787                                             DS.getNumProtocolQualifiers());
788      } else if (Result->isObjCIdType()) {
789        // id<protocol-list>
790        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
791                                           (ObjCProtocolDecl**) PQ,
792                                           DS.getNumProtocolQualifiers());
793        Result = Context.getObjCObjectPointerType(Result);
794      } else if (Result->isObjCClassType()) {
795        // Class<protocol-list>
796        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
797                                           (ObjCProtocolDecl**) PQ,
798                                           DS.getNumProtocolQualifiers());
799        Result = Context.getObjCObjectPointerType(Result);
800      } else {
801        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
802          << DS.getSourceRange();
803        declarator.setInvalidType(true);
804      }
805    }
806
807    // TypeQuals handled by caller.
808    break;
809  }
810  case DeclSpec::TST_typeofType:
811    // FIXME: Preserve type source info.
812    Result = S.GetTypeFromParser(DS.getRepAsType());
813    assert(!Result.isNull() && "Didn't get a type for typeof?");
814    if (!Result->isDependentType())
815      if (const TagType *TT = Result->getAs<TagType>())
816        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
817    // TypeQuals handled by caller.
818    Result = Context.getTypeOfType(Result);
819    break;
820  case DeclSpec::TST_typeofExpr: {
821    Expr *E = DS.getRepAsExpr();
822    assert(E && "Didn't get an expression for typeof?");
823    // TypeQuals handled by caller.
824    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
825    if (Result.isNull()) {
826      Result = Context.IntTy;
827      declarator.setInvalidType(true);
828    }
829    break;
830  }
831  case DeclSpec::TST_decltype: {
832    Expr *E = DS.getRepAsExpr();
833    assert(E && "Didn't get an expression for decltype?");
834    // TypeQuals handled by caller.
835    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
836    if (Result.isNull()) {
837      Result = Context.IntTy;
838      declarator.setInvalidType(true);
839    }
840    break;
841  }
842  case DeclSpec::TST_underlyingType:
843    Result = S.GetTypeFromParser(DS.getRepAsType());
844    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
845    Result = S.BuildUnaryTransformType(Result,
846                                       UnaryTransformType::EnumUnderlyingType,
847                                       DS.getTypeSpecTypeLoc());
848    if (Result.isNull()) {
849      Result = Context.IntTy;
850      declarator.setInvalidType(true);
851    }
852    break;
853
854  case DeclSpec::TST_auto: {
855    // TypeQuals handled by caller.
856    Result = Context.getAutoType(QualType());
857    break;
858  }
859
860  case DeclSpec::TST_unknown_anytype:
861    Result = Context.UnknownAnyTy;
862    break;
863
864  case DeclSpec::TST_atomic:
865    Result = S.GetTypeFromParser(DS.getRepAsType());
866    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
867    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
868    if (Result.isNull()) {
869      Result = Context.IntTy;
870      declarator.setInvalidType(true);
871    }
872    break;
873
874  case DeclSpec::TST_error:
875    Result = Context.IntTy;
876    declarator.setInvalidType(true);
877    break;
878  }
879
880  // Handle complex types.
881  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
882    if (S.getLangOptions().Freestanding)
883      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
884    Result = Context.getComplexType(Result);
885  } else if (DS.isTypeAltiVecVector()) {
886    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
887    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
888    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
889    if (DS.isTypeAltiVecPixel())
890      VecKind = VectorType::AltiVecPixel;
891    else if (DS.isTypeAltiVecBool())
892      VecKind = VectorType::AltiVecBool;
893    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
894  }
895
896  // FIXME: Imaginary.
897  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
898    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
899
900  // Before we process any type attributes, synthesize a block literal
901  // function declarator if necessary.
902  if (declarator.getContext() == Declarator::BlockLiteralContext)
903    maybeSynthesizeBlockSignature(state, Result);
904
905  // Apply any type attributes from the decl spec.  This may cause the
906  // list of type attributes to be temporarily saved while the type
907  // attributes are pushed around.
908  if (AttributeList *attrs = DS.getAttributes().getList())
909    processTypeAttrs(state, Result, true, attrs);
910
911  // Apply const/volatile/restrict qualifiers to T.
912  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
913
914    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
915    // or incomplete types shall not be restrict-qualified."  C++ also allows
916    // restrict-qualified references.
917    if (TypeQuals & DeclSpec::TQ_restrict) {
918      if (Result->isAnyPointerType() || Result->isReferenceType()) {
919        QualType EltTy;
920        if (Result->isObjCObjectPointerType())
921          EltTy = Result;
922        else
923          EltTy = Result->isPointerType() ?
924                    Result->getAs<PointerType>()->getPointeeType() :
925                    Result->getAs<ReferenceType>()->getPointeeType();
926
927        // If we have a pointer or reference, the pointee must have an object
928        // incomplete type.
929        if (!EltTy->isIncompleteOrObjectType()) {
930          S.Diag(DS.getRestrictSpecLoc(),
931               diag::err_typecheck_invalid_restrict_invalid_pointee)
932            << EltTy << DS.getSourceRange();
933          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
934        }
935      } else {
936        S.Diag(DS.getRestrictSpecLoc(),
937               diag::err_typecheck_invalid_restrict_not_pointer)
938          << Result << DS.getSourceRange();
939        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
940      }
941    }
942
943    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
944    // of a function type includes any type qualifiers, the behavior is
945    // undefined."
946    if (Result->isFunctionType() && TypeQuals) {
947      // Get some location to point at, either the C or V location.
948      SourceLocation Loc;
949      if (TypeQuals & DeclSpec::TQ_const)
950        Loc = DS.getConstSpecLoc();
951      else if (TypeQuals & DeclSpec::TQ_volatile)
952        Loc = DS.getVolatileSpecLoc();
953      else {
954        assert((TypeQuals & DeclSpec::TQ_restrict) &&
955               "Has CVR quals but not C, V, or R?");
956        Loc = DS.getRestrictSpecLoc();
957      }
958      S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
959        << Result << DS.getSourceRange();
960    }
961
962    // C++ [dcl.ref]p1:
963    //   Cv-qualified references are ill-formed except when the
964    //   cv-qualifiers are introduced through the use of a typedef
965    //   (7.1.3) or of a template type argument (14.3), in which
966    //   case the cv-qualifiers are ignored.
967    // FIXME: Shouldn't we be checking SCS_typedef here?
968    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
969        TypeQuals && Result->isReferenceType()) {
970      TypeQuals &= ~DeclSpec::TQ_const;
971      TypeQuals &= ~DeclSpec::TQ_volatile;
972    }
973
974    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
975    Result = Context.getQualifiedType(Result, Quals);
976  }
977
978  return Result;
979}
980
981static std::string getPrintableNameForEntity(DeclarationName Entity) {
982  if (Entity)
983    return Entity.getAsString();
984
985  return "type name";
986}
987
988QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
989                                  Qualifiers Qs) {
990  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
991  // object or incomplete types shall not be restrict-qualified."
992  if (Qs.hasRestrict()) {
993    unsigned DiagID = 0;
994    QualType ProblemTy;
995
996    const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
997    if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
998      if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
999        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1000        ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
1001      }
1002    } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1003      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1004        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1005        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1006      }
1007    } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
1008      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1009        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1010        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1011      }
1012    } else if (!Ty->isDependentType()) {
1013      // FIXME: this deserves a proper diagnostic
1014      DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1015      ProblemTy = T;
1016    }
1017
1018    if (DiagID) {
1019      Diag(Loc, DiagID) << ProblemTy;
1020      Qs.removeRestrict();
1021    }
1022  }
1023
1024  return Context.getQualifiedType(T, Qs);
1025}
1026
1027/// \brief Build a paren type including \p T.
1028QualType Sema::BuildParenType(QualType T) {
1029  return Context.getParenType(T);
1030}
1031
1032/// Given that we're building a pointer or reference to the given
1033static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1034                                           SourceLocation loc,
1035                                           bool isReference) {
1036  // Bail out if retention is unrequired or already specified.
1037  if (!type->isObjCLifetimeType() ||
1038      type.getObjCLifetime() != Qualifiers::OCL_None)
1039    return type;
1040
1041  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1042
1043  // If the object type is const-qualified, we can safely use
1044  // __unsafe_unretained.  This is safe (because there are no read
1045  // barriers), and it'll be safe to coerce anything but __weak* to
1046  // the resulting type.
1047  if (type.isConstQualified()) {
1048    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1049
1050  // Otherwise, check whether the static type does not require
1051  // retaining.  This currently only triggers for Class (possibly
1052  // protocol-qualifed, and arrays thereof).
1053  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1054    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1055
1056  // If we are in an unevaluated context, like sizeof, assume ExplicitNone and
1057  // don't give error.
1058  } else if (S.ExprEvalContexts.back().Context == Sema::Unevaluated) {
1059    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1060
1061  // If that failed, give an error and recover using __autoreleasing.
1062  } else {
1063    // These types can show up in private ivars in system headers, so
1064    // we need this to not be an error in those cases.  Instead we
1065    // want to delay.
1066    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1067      S.DelayedDiagnostics.add(
1068          sema::DelayedDiagnostic::makeForbiddenType(loc,
1069              diag::err_arc_indirect_no_ownership, type, isReference));
1070    } else {
1071      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1072    }
1073    implicitLifetime = Qualifiers::OCL_Autoreleasing;
1074  }
1075  assert(implicitLifetime && "didn't infer any lifetime!");
1076
1077  Qualifiers qs;
1078  qs.addObjCLifetime(implicitLifetime);
1079  return S.Context.getQualifiedType(type, qs);
1080}
1081
1082/// \brief Build a pointer type.
1083///
1084/// \param T The type to which we'll be building a pointer.
1085///
1086/// \param Loc The location of the entity whose type involves this
1087/// pointer type or, if there is no such entity, the location of the
1088/// type that will have pointer type.
1089///
1090/// \param Entity The name of the entity that involves the pointer
1091/// type, if known.
1092///
1093/// \returns A suitable pointer type, if there are no
1094/// errors. Otherwise, returns a NULL type.
1095QualType Sema::BuildPointerType(QualType T,
1096                                SourceLocation Loc, DeclarationName Entity) {
1097  if (T->isReferenceType()) {
1098    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1099    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1100      << getPrintableNameForEntity(Entity) << T;
1101    return QualType();
1102  }
1103
1104  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1105
1106  // In ARC, it is forbidden to build pointers to unqualified pointers.
1107  if (getLangOptions().ObjCAutoRefCount)
1108    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1109
1110  // Build the pointer type.
1111  return Context.getPointerType(T);
1112}
1113
1114/// \brief Build a reference type.
1115///
1116/// \param T The type to which we'll be building a reference.
1117///
1118/// \param Loc The location of the entity whose type involves this
1119/// reference type or, if there is no such entity, the location of the
1120/// type that will have reference type.
1121///
1122/// \param Entity The name of the entity that involves the reference
1123/// type, if known.
1124///
1125/// \returns A suitable reference type, if there are no
1126/// errors. Otherwise, returns a NULL type.
1127QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1128                                  SourceLocation Loc,
1129                                  DeclarationName Entity) {
1130  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1131         "Unresolved overloaded function type");
1132
1133  // C++0x [dcl.ref]p6:
1134  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1135  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1136  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1137  //   the type "lvalue reference to T", while an attempt to create the type
1138  //   "rvalue reference to cv TR" creates the type TR.
1139  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1140
1141  // C++ [dcl.ref]p4: There shall be no references to references.
1142  //
1143  // According to C++ DR 106, references to references are only
1144  // diagnosed when they are written directly (e.g., "int & &"),
1145  // but not when they happen via a typedef:
1146  //
1147  //   typedef int& intref;
1148  //   typedef intref& intref2;
1149  //
1150  // Parser::ParseDeclaratorInternal diagnoses the case where
1151  // references are written directly; here, we handle the
1152  // collapsing of references-to-references as described in C++0x.
1153  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1154
1155  // C++ [dcl.ref]p1:
1156  //   A declarator that specifies the type "reference to cv void"
1157  //   is ill-formed.
1158  if (T->isVoidType()) {
1159    Diag(Loc, diag::err_reference_to_void);
1160    return QualType();
1161  }
1162
1163  // In ARC, it is forbidden to build references to unqualified pointers.
1164  if (getLangOptions().ObjCAutoRefCount)
1165    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1166
1167  // Handle restrict on references.
1168  if (LValueRef)
1169    return Context.getLValueReferenceType(T, SpelledAsLValue);
1170  return Context.getRValueReferenceType(T);
1171}
1172
1173/// Check whether the specified array size makes the array type a VLA.  If so,
1174/// return true, if not, return the size of the array in SizeVal.
1175static bool isArraySizeVLA(Expr *ArraySize, llvm::APSInt &SizeVal, Sema &S) {
1176  // If the size is an ICE, it certainly isn't a VLA.
1177  if (ArraySize->isIntegerConstantExpr(SizeVal, S.Context))
1178    return false;
1179
1180  // If we're in a GNU mode (like gnu99, but not c99) accept any evaluatable
1181  // value as an extension.
1182  Expr::EvalResult Result;
1183  if (S.LangOpts.GNUMode && ArraySize->EvaluateAsRValue(Result, S.Context)) {
1184    if (!Result.hasSideEffects() && Result.Val.isInt()) {
1185      SizeVal = Result.Val.getInt();
1186      S.Diag(ArraySize->getLocStart(), diag::ext_vla_folded_to_constant);
1187      return false;
1188    }
1189  }
1190
1191  return true;
1192}
1193
1194
1195/// \brief Build an array type.
1196///
1197/// \param T The type of each element in the array.
1198///
1199/// \param ASM C99 array size modifier (e.g., '*', 'static').
1200///
1201/// \param ArraySize Expression describing the size of the array.
1202///
1203/// \param Loc The location of the entity whose type involves this
1204/// array type or, if there is no such entity, the location of the
1205/// type that will have array type.
1206///
1207/// \param Entity The name of the entity that involves the array
1208/// type, if known.
1209///
1210/// \returns A suitable array type, if there are no errors. Otherwise,
1211/// returns a NULL type.
1212QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1213                              Expr *ArraySize, unsigned Quals,
1214                              SourceRange Brackets, DeclarationName Entity) {
1215
1216  SourceLocation Loc = Brackets.getBegin();
1217  if (getLangOptions().CPlusPlus) {
1218    // C++ [dcl.array]p1:
1219    //   T is called the array element type; this type shall not be a reference
1220    //   type, the (possibly cv-qualified) type void, a function type or an
1221    //   abstract class type.
1222    //
1223    // Note: function types are handled in the common path with C.
1224    if (T->isReferenceType()) {
1225      Diag(Loc, diag::err_illegal_decl_array_of_references)
1226      << getPrintableNameForEntity(Entity) << T;
1227      return QualType();
1228    }
1229
1230    if (T->isVoidType()) {
1231      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1232      return QualType();
1233    }
1234
1235    if (RequireNonAbstractType(Brackets.getBegin(), T,
1236                               diag::err_array_of_abstract_type))
1237      return QualType();
1238
1239  } else {
1240    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1241    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1242    if (RequireCompleteType(Loc, T,
1243                            diag::err_illegal_decl_array_incomplete_type))
1244      return QualType();
1245  }
1246
1247  if (T->isFunctionType()) {
1248    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1249      << getPrintableNameForEntity(Entity) << T;
1250    return QualType();
1251  }
1252
1253  if (T->getContainedAutoType()) {
1254    Diag(Loc, diag::err_illegal_decl_array_of_auto)
1255      << getPrintableNameForEntity(Entity) << T;
1256    return QualType();
1257  }
1258
1259  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1260    // If the element type is a struct or union that contains a variadic
1261    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1262    if (EltTy->getDecl()->hasFlexibleArrayMember())
1263      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1264  } else if (T->isObjCObjectType()) {
1265    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1266    return QualType();
1267  }
1268
1269  // Do lvalue-to-rvalue conversions on the array size expression.
1270  if (ArraySize && !ArraySize->isRValue()) {
1271    ExprResult Result = DefaultLvalueConversion(ArraySize);
1272    if (Result.isInvalid())
1273      return QualType();
1274
1275    ArraySize = Result.take();
1276  }
1277
1278  // C99 6.7.5.2p1: The size expression shall have integer type.
1279  // TODO: in theory, if we were insane, we could allow contextual
1280  // conversions to integer type here.
1281  if (ArraySize && !ArraySize->isTypeDependent() &&
1282      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1283    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1284      << ArraySize->getType() << ArraySize->getSourceRange();
1285    return QualType();
1286  }
1287  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1288  if (!ArraySize) {
1289    if (ASM == ArrayType::Star)
1290      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1291    else
1292      T = Context.getIncompleteArrayType(T, ASM, Quals);
1293  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1294    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1295  } else if (!T->isDependentType() && !T->isIncompleteType() &&
1296             !T->isConstantSizeType()) {
1297    // C99: an array with an element type that has a non-constant-size is a VLA.
1298    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1299  } else if (isArraySizeVLA(ArraySize, ConstVal, *this)) {
1300    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1301    // that we can fold to a non-zero positive value as an extension.
1302    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1303  } else {
1304    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1305    // have a value greater than zero.
1306    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1307      if (Entity)
1308        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1309          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1310      else
1311        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1312          << ArraySize->getSourceRange();
1313      return QualType();
1314    }
1315    if (ConstVal == 0) {
1316      // GCC accepts zero sized static arrays. We allow them when
1317      // we're not in a SFINAE context.
1318      Diag(ArraySize->getLocStart(),
1319           isSFINAEContext()? diag::err_typecheck_zero_array_size
1320                            : diag::ext_typecheck_zero_array_size)
1321        << ArraySize->getSourceRange();
1322
1323      if (ASM == ArrayType::Static) {
1324        Diag(ArraySize->getLocStart(),
1325             diag::warn_typecheck_zero_static_array_size)
1326          << ArraySize->getSourceRange();
1327        ASM = ArrayType::Normal;
1328      }
1329    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1330               !T->isIncompleteType()) {
1331      // Is the array too large?
1332      unsigned ActiveSizeBits
1333        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1334      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1335        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1336          << ConstVal.toString(10)
1337          << ArraySize->getSourceRange();
1338    }
1339
1340    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1341  }
1342  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1343  if (!getLangOptions().C99) {
1344    if (T->isVariableArrayType()) {
1345      // Prohibit the use of non-POD types in VLAs.
1346      QualType BaseT = Context.getBaseElementType(T);
1347      if (!T->isDependentType() &&
1348          !BaseT.isPODType(Context) &&
1349          !BaseT->isObjCLifetimeType()) {
1350        Diag(Loc, diag::err_vla_non_pod)
1351          << BaseT;
1352        return QualType();
1353      }
1354      // Prohibit the use of VLAs during template argument deduction.
1355      else if (isSFINAEContext()) {
1356        Diag(Loc, diag::err_vla_in_sfinae);
1357        return QualType();
1358      }
1359      // Just extwarn about VLAs.
1360      else
1361        Diag(Loc, diag::ext_vla);
1362    } else if (ASM != ArrayType::Normal || Quals != 0)
1363      Diag(Loc,
1364           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
1365                                     : diag::ext_c99_array_usage);
1366  }
1367
1368  return T;
1369}
1370
1371/// \brief Build an ext-vector type.
1372///
1373/// Run the required checks for the extended vector type.
1374QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1375                                  SourceLocation AttrLoc) {
1376  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1377  // in conjunction with complex types (pointers, arrays, functions, etc.).
1378  if (!T->isDependentType() &&
1379      !T->isIntegerType() && !T->isRealFloatingType()) {
1380    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1381    return QualType();
1382  }
1383
1384  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1385    llvm::APSInt vecSize(32);
1386    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1387      Diag(AttrLoc, diag::err_attribute_argument_not_int)
1388        << "ext_vector_type" << ArraySize->getSourceRange();
1389      return QualType();
1390    }
1391
1392    // unlike gcc's vector_size attribute, the size is specified as the
1393    // number of elements, not the number of bytes.
1394    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1395
1396    if (vectorSize == 0) {
1397      Diag(AttrLoc, diag::err_attribute_zero_size)
1398      << ArraySize->getSourceRange();
1399      return QualType();
1400    }
1401
1402    return Context.getExtVectorType(T, vectorSize);
1403  }
1404
1405  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1406}
1407
1408/// \brief Build a function type.
1409///
1410/// This routine checks the function type according to C++ rules and
1411/// under the assumption that the result type and parameter types have
1412/// just been instantiated from a template. It therefore duplicates
1413/// some of the behavior of GetTypeForDeclarator, but in a much
1414/// simpler form that is only suitable for this narrow use case.
1415///
1416/// \param T The return type of the function.
1417///
1418/// \param ParamTypes The parameter types of the function. This array
1419/// will be modified to account for adjustments to the types of the
1420/// function parameters.
1421///
1422/// \param NumParamTypes The number of parameter types in ParamTypes.
1423///
1424/// \param Variadic Whether this is a variadic function type.
1425///
1426/// \param Quals The cvr-qualifiers to be applied to the function type.
1427///
1428/// \param Loc The location of the entity whose type involves this
1429/// function type or, if there is no such entity, the location of the
1430/// type that will have function type.
1431///
1432/// \param Entity The name of the entity that involves the function
1433/// type, if known.
1434///
1435/// \returns A suitable function type, if there are no
1436/// errors. Otherwise, returns a NULL type.
1437QualType Sema::BuildFunctionType(QualType T,
1438                                 QualType *ParamTypes,
1439                                 unsigned NumParamTypes,
1440                                 bool Variadic, unsigned Quals,
1441                                 RefQualifierKind RefQualifier,
1442                                 SourceLocation Loc, DeclarationName Entity,
1443                                 FunctionType::ExtInfo Info) {
1444  if (T->isArrayType() || T->isFunctionType()) {
1445    Diag(Loc, diag::err_func_returning_array_function)
1446      << T->isFunctionType() << T;
1447    return QualType();
1448  }
1449
1450  // Functions cannot return half FP.
1451  if (T->isHalfType()) {
1452    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1453      FixItHint::CreateInsertion(Loc, "*");
1454    return QualType();
1455  }
1456
1457  bool Invalid = false;
1458  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
1459    // FIXME: Loc is too inprecise here, should use proper locations for args.
1460    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1461    if (ParamType->isVoidType()) {
1462      Diag(Loc, diag::err_param_with_void_type);
1463      Invalid = true;
1464    } else if (ParamType->isHalfType()) {
1465      // Disallow half FP arguments.
1466      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1467        FixItHint::CreateInsertion(Loc, "*");
1468      Invalid = true;
1469    }
1470
1471    ParamTypes[Idx] = ParamType;
1472  }
1473
1474  if (Invalid)
1475    return QualType();
1476
1477  FunctionProtoType::ExtProtoInfo EPI;
1478  EPI.Variadic = Variadic;
1479  EPI.TypeQuals = Quals;
1480  EPI.RefQualifier = RefQualifier;
1481  EPI.ExtInfo = Info;
1482
1483  return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
1484}
1485
1486/// \brief Build a member pointer type \c T Class::*.
1487///
1488/// \param T the type to which the member pointer refers.
1489/// \param Class the class type into which the member pointer points.
1490/// \param CVR Qualifiers applied to the member pointer type
1491/// \param Loc the location where this type begins
1492/// \param Entity the name of the entity that will have this member pointer type
1493///
1494/// \returns a member pointer type, if successful, or a NULL type if there was
1495/// an error.
1496QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1497                                      SourceLocation Loc,
1498                                      DeclarationName Entity) {
1499  // Verify that we're not building a pointer to pointer to function with
1500  // exception specification.
1501  if (CheckDistantExceptionSpec(T)) {
1502    Diag(Loc, diag::err_distant_exception_spec);
1503
1504    // FIXME: If we're doing this as part of template instantiation,
1505    // we should return immediately.
1506
1507    // Build the type anyway, but use the canonical type so that the
1508    // exception specifiers are stripped off.
1509    T = Context.getCanonicalType(T);
1510  }
1511
1512  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1513  //   with reference type, or "cv void."
1514  if (T->isReferenceType()) {
1515    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1516      << (Entity? Entity.getAsString() : "type name") << T;
1517    return QualType();
1518  }
1519
1520  if (T->isVoidType()) {
1521    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1522      << (Entity? Entity.getAsString() : "type name");
1523    return QualType();
1524  }
1525
1526  if (!Class->isDependentType() && !Class->isRecordType()) {
1527    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1528    return QualType();
1529  }
1530
1531  // In the Microsoft ABI, the class is allowed to be an incomplete
1532  // type. In such cases, the compiler makes a worst-case assumption.
1533  // We make no such assumption right now, so emit an error if the
1534  // class isn't a complete type.
1535  if (Context.getTargetInfo().getCXXABI() == CXXABI_Microsoft &&
1536      RequireCompleteType(Loc, Class, diag::err_incomplete_type))
1537    return QualType();
1538
1539  return Context.getMemberPointerType(T, Class.getTypePtr());
1540}
1541
1542/// \brief Build a block pointer type.
1543///
1544/// \param T The type to which we'll be building a block pointer.
1545///
1546/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
1547///
1548/// \param Loc The location of the entity whose type involves this
1549/// block pointer type or, if there is no such entity, the location of the
1550/// type that will have block pointer type.
1551///
1552/// \param Entity The name of the entity that involves the block pointer
1553/// type, if known.
1554///
1555/// \returns A suitable block pointer type, if there are no
1556/// errors. Otherwise, returns a NULL type.
1557QualType Sema::BuildBlockPointerType(QualType T,
1558                                     SourceLocation Loc,
1559                                     DeclarationName Entity) {
1560  if (!T->isFunctionType()) {
1561    Diag(Loc, diag::err_nonfunction_block_type);
1562    return QualType();
1563  }
1564
1565  return Context.getBlockPointerType(T);
1566}
1567
1568QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1569  QualType QT = Ty.get();
1570  if (QT.isNull()) {
1571    if (TInfo) *TInfo = 0;
1572    return QualType();
1573  }
1574
1575  TypeSourceInfo *DI = 0;
1576  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1577    QT = LIT->getType();
1578    DI = LIT->getTypeSourceInfo();
1579  }
1580
1581  if (TInfo) *TInfo = DI;
1582  return QT;
1583}
1584
1585static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1586                                            Qualifiers::ObjCLifetime ownership,
1587                                            unsigned chunkIndex);
1588
1589/// Given that this is the declaration of a parameter under ARC,
1590/// attempt to infer attributes and such for pointer-to-whatever
1591/// types.
1592static void inferARCWriteback(TypeProcessingState &state,
1593                              QualType &declSpecType) {
1594  Sema &S = state.getSema();
1595  Declarator &declarator = state.getDeclarator();
1596
1597  // TODO: should we care about decl qualifiers?
1598
1599  // Check whether the declarator has the expected form.  We walk
1600  // from the inside out in order to make the block logic work.
1601  unsigned outermostPointerIndex = 0;
1602  bool isBlockPointer = false;
1603  unsigned numPointers = 0;
1604  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1605    unsigned chunkIndex = i;
1606    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1607    switch (chunk.Kind) {
1608    case DeclaratorChunk::Paren:
1609      // Ignore parens.
1610      break;
1611
1612    case DeclaratorChunk::Reference:
1613    case DeclaratorChunk::Pointer:
1614      // Count the number of pointers.  Treat references
1615      // interchangeably as pointers; if they're mis-ordered, normal
1616      // type building will discover that.
1617      outermostPointerIndex = chunkIndex;
1618      numPointers++;
1619      break;
1620
1621    case DeclaratorChunk::BlockPointer:
1622      // If we have a pointer to block pointer, that's an acceptable
1623      // indirect reference; anything else is not an application of
1624      // the rules.
1625      if (numPointers != 1) return;
1626      numPointers++;
1627      outermostPointerIndex = chunkIndex;
1628      isBlockPointer = true;
1629
1630      // We don't care about pointer structure in return values here.
1631      goto done;
1632
1633    case DeclaratorChunk::Array: // suppress if written (id[])?
1634    case DeclaratorChunk::Function:
1635    case DeclaratorChunk::MemberPointer:
1636      return;
1637    }
1638  }
1639 done:
1640
1641  // If we have *one* pointer, then we want to throw the qualifier on
1642  // the declaration-specifiers, which means that it needs to be a
1643  // retainable object type.
1644  if (numPointers == 1) {
1645    // If it's not a retainable object type, the rule doesn't apply.
1646    if (!declSpecType->isObjCRetainableType()) return;
1647
1648    // If it already has lifetime, don't do anything.
1649    if (declSpecType.getObjCLifetime()) return;
1650
1651    // Otherwise, modify the type in-place.
1652    Qualifiers qs;
1653
1654    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1655      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1656    else
1657      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1658    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1659
1660  // If we have *two* pointers, then we want to throw the qualifier on
1661  // the outermost pointer.
1662  } else if (numPointers == 2) {
1663    // If we don't have a block pointer, we need to check whether the
1664    // declaration-specifiers gave us something that will turn into a
1665    // retainable object pointer after we slap the first pointer on it.
1666    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1667      return;
1668
1669    // Look for an explicit lifetime attribute there.
1670    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1671    if (chunk.Kind != DeclaratorChunk::Pointer &&
1672        chunk.Kind != DeclaratorChunk::BlockPointer)
1673      return;
1674    for (const AttributeList *attr = chunk.getAttrs(); attr;
1675           attr = attr->getNext())
1676      if (attr->getKind() == AttributeList::AT_objc_ownership)
1677        return;
1678
1679    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1680                                          outermostPointerIndex);
1681
1682  // Any other number of pointers/references does not trigger the rule.
1683  } else return;
1684
1685  // TODO: mark whether we did this inference?
1686}
1687
1688static void DiagnoseIgnoredQualifiers(unsigned Quals,
1689                                      SourceLocation ConstQualLoc,
1690                                      SourceLocation VolatileQualLoc,
1691                                      SourceLocation RestrictQualLoc,
1692                                      Sema& S) {
1693  std::string QualStr;
1694  unsigned NumQuals = 0;
1695  SourceLocation Loc;
1696
1697  FixItHint ConstFixIt;
1698  FixItHint VolatileFixIt;
1699  FixItHint RestrictFixIt;
1700
1701  const SourceManager &SM = S.getSourceManager();
1702
1703  // FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
1704  // find a range and grow it to encompass all the qualifiers, regardless of
1705  // the order in which they textually appear.
1706  if (Quals & Qualifiers::Const) {
1707    ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
1708    QualStr = "const";
1709    ++NumQuals;
1710    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(ConstQualLoc, Loc))
1711      Loc = ConstQualLoc;
1712  }
1713  if (Quals & Qualifiers::Volatile) {
1714    VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
1715    QualStr += (NumQuals == 0 ? "volatile" : " volatile");
1716    ++NumQuals;
1717    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(VolatileQualLoc, Loc))
1718      Loc = VolatileQualLoc;
1719  }
1720  if (Quals & Qualifiers::Restrict) {
1721    RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
1722    QualStr += (NumQuals == 0 ? "restrict" : " restrict");
1723    ++NumQuals;
1724    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(RestrictQualLoc, Loc))
1725      Loc = RestrictQualLoc;
1726  }
1727
1728  assert(NumQuals > 0 && "No known qualifiers?");
1729
1730  S.Diag(Loc, diag::warn_qual_return_type)
1731    << QualStr << NumQuals << ConstFixIt << VolatileFixIt << RestrictFixIt;
1732}
1733
1734static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
1735                                             TypeSourceInfo *&ReturnTypeInfo) {
1736  Sema &SemaRef = state.getSema();
1737  Declarator &D = state.getDeclarator();
1738  QualType T;
1739  ReturnTypeInfo = 0;
1740
1741  // The TagDecl owned by the DeclSpec.
1742  TagDecl *OwnedTagDecl = 0;
1743
1744  switch (D.getName().getKind()) {
1745  case UnqualifiedId::IK_ImplicitSelfParam:
1746  case UnqualifiedId::IK_OperatorFunctionId:
1747  case UnqualifiedId::IK_Identifier:
1748  case UnqualifiedId::IK_LiteralOperatorId:
1749  case UnqualifiedId::IK_TemplateId:
1750    T = ConvertDeclSpecToType(state);
1751
1752    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
1753      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
1754      // Owned declaration is embedded in declarator.
1755      OwnedTagDecl->setEmbeddedInDeclarator(true);
1756    }
1757    break;
1758
1759  case UnqualifiedId::IK_ConstructorName:
1760  case UnqualifiedId::IK_ConstructorTemplateId:
1761  case UnqualifiedId::IK_DestructorName:
1762    // Constructors and destructors don't have return types. Use
1763    // "void" instead.
1764    T = SemaRef.Context.VoidTy;
1765    break;
1766
1767  case UnqualifiedId::IK_ConversionFunctionId:
1768    // The result type of a conversion function is the type that it
1769    // converts to.
1770    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
1771                                  &ReturnTypeInfo);
1772    break;
1773  }
1774
1775  if (D.getAttributes())
1776    distributeTypeAttrsFromDeclarator(state, T);
1777
1778  // C++0x [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
1779  // In C++0x, a function declarator using 'auto' must have a trailing return
1780  // type (this is checked later) and we can skip this. In other languages
1781  // using auto, we need to check regardless.
1782  if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
1783      (!SemaRef.getLangOptions().CPlusPlus0x || !D.isFunctionDeclarator())) {
1784    int Error = -1;
1785
1786    switch (D.getContext()) {
1787    case Declarator::KNRTypeListContext:
1788      llvm_unreachable("K&R type lists aren't allowed in C++");
1789      break;
1790    case Declarator::ObjCParameterContext:
1791    case Declarator::ObjCResultContext:
1792    case Declarator::PrototypeContext:
1793      Error = 0; // Function prototype
1794      break;
1795    case Declarator::MemberContext:
1796      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
1797        break;
1798      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
1799      case TTK_Enum: llvm_unreachable("unhandled tag kind");
1800      case TTK_Struct: Error = 1; /* Struct member */ break;
1801      case TTK_Union:  Error = 2; /* Union member */ break;
1802      case TTK_Class:  Error = 3; /* Class member */ break;
1803      }
1804      break;
1805    case Declarator::CXXCatchContext:
1806    case Declarator::ObjCCatchContext:
1807      Error = 4; // Exception declaration
1808      break;
1809    case Declarator::TemplateParamContext:
1810      Error = 5; // Template parameter
1811      break;
1812    case Declarator::BlockLiteralContext:
1813      Error = 6; // Block literal
1814      break;
1815    case Declarator::TemplateTypeArgContext:
1816      Error = 7; // Template type argument
1817      break;
1818    case Declarator::AliasDeclContext:
1819    case Declarator::AliasTemplateContext:
1820      Error = 9; // Type alias
1821      break;
1822    case Declarator::TypeNameContext:
1823      Error = 11; // Generic
1824      break;
1825    case Declarator::FileContext:
1826    case Declarator::BlockContext:
1827    case Declarator::ForContext:
1828    case Declarator::ConditionContext:
1829    case Declarator::CXXNewContext:
1830      break;
1831    }
1832
1833    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1834      Error = 8;
1835
1836    // In Objective-C it is an error to use 'auto' on a function declarator.
1837    if (D.isFunctionDeclarator())
1838      Error = 10;
1839
1840    // C++0x [dcl.spec.auto]p2: 'auto' is always fine if the declarator
1841    // contains a trailing return type. That is only legal at the outermost
1842    // level. Check all declarator chunks (outermost first) anyway, to give
1843    // better diagnostics.
1844    if (SemaRef.getLangOptions().CPlusPlus0x && Error != -1) {
1845      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1846        unsigned chunkIndex = e - i - 1;
1847        state.setCurrentChunkIndex(chunkIndex);
1848        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1849        if (DeclType.Kind == DeclaratorChunk::Function) {
1850          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1851          if (FTI.TrailingReturnType) {
1852            Error = -1;
1853            break;
1854          }
1855        }
1856      }
1857    }
1858
1859    if (Error != -1) {
1860      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1861                   diag::err_auto_not_allowed)
1862        << Error;
1863      T = SemaRef.Context.IntTy;
1864      D.setInvalidType(true);
1865    } else
1866      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1867                   diag::warn_cxx98_compat_auto_type_specifier);
1868  }
1869
1870  if (SemaRef.getLangOptions().CPlusPlus &&
1871      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
1872    // Check the contexts where C++ forbids the declaration of a new class
1873    // or enumeration in a type-specifier-seq.
1874    switch (D.getContext()) {
1875    case Declarator::FileContext:
1876    case Declarator::MemberContext:
1877    case Declarator::BlockContext:
1878    case Declarator::ForContext:
1879    case Declarator::BlockLiteralContext:
1880      // C++0x [dcl.type]p3:
1881      //   A type-specifier-seq shall not define a class or enumeration unless
1882      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
1883      //   the declaration of a template-declaration.
1884    case Declarator::AliasDeclContext:
1885      break;
1886    case Declarator::AliasTemplateContext:
1887      SemaRef.Diag(OwnedTagDecl->getLocation(),
1888             diag::err_type_defined_in_alias_template)
1889        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1890      break;
1891    case Declarator::TypeNameContext:
1892    case Declarator::TemplateParamContext:
1893    case Declarator::CXXNewContext:
1894    case Declarator::CXXCatchContext:
1895    case Declarator::ObjCCatchContext:
1896    case Declarator::TemplateTypeArgContext:
1897      SemaRef.Diag(OwnedTagDecl->getLocation(),
1898             diag::err_type_defined_in_type_specifier)
1899        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1900      break;
1901    case Declarator::PrototypeContext:
1902    case Declarator::ObjCParameterContext:
1903    case Declarator::ObjCResultContext:
1904    case Declarator::KNRTypeListContext:
1905      // C++ [dcl.fct]p6:
1906      //   Types shall not be defined in return or parameter types.
1907      SemaRef.Diag(OwnedTagDecl->getLocation(),
1908                   diag::err_type_defined_in_param_type)
1909        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1910      break;
1911    case Declarator::ConditionContext:
1912      // C++ 6.4p2:
1913      // The type-specifier-seq shall not contain typedef and shall not declare
1914      // a new class or enumeration.
1915      SemaRef.Diag(OwnedTagDecl->getLocation(),
1916                   diag::err_type_defined_in_condition);
1917      break;
1918    }
1919  }
1920
1921  return T;
1922}
1923
1924static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
1925                                                QualType declSpecType,
1926                                                TypeSourceInfo *TInfo) {
1927
1928  QualType T = declSpecType;
1929  Declarator &D = state.getDeclarator();
1930  Sema &S = state.getSema();
1931  ASTContext &Context = S.Context;
1932  const LangOptions &LangOpts = S.getLangOptions();
1933
1934  bool ImplicitlyNoexcept = false;
1935  if (D.getName().getKind() == UnqualifiedId::IK_OperatorFunctionId &&
1936      LangOpts.CPlusPlus0x) {
1937    OverloadedOperatorKind OO = D.getName().OperatorFunctionId.Operator;
1938    /// In C++0x, deallocation functions (normal and array operator delete)
1939    /// are implicitly noexcept.
1940    if (OO == OO_Delete || OO == OO_Array_Delete)
1941      ImplicitlyNoexcept = true;
1942  }
1943
1944  // The name we're declaring, if any.
1945  DeclarationName Name;
1946  if (D.getIdentifier())
1947    Name = D.getIdentifier();
1948
1949  // Does this declaration declare a typedef-name?
1950  bool IsTypedefName =
1951    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
1952    D.getContext() == Declarator::AliasDeclContext ||
1953    D.getContext() == Declarator::AliasTemplateContext;
1954
1955  // Walk the DeclTypeInfo, building the recursive type as we go.
1956  // DeclTypeInfos are ordered from the identifier out, which is
1957  // opposite of what we want :).
1958  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1959    unsigned chunkIndex = e - i - 1;
1960    state.setCurrentChunkIndex(chunkIndex);
1961    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1962    switch (DeclType.Kind) {
1963    default: llvm_unreachable("Unknown decltype!");
1964    case DeclaratorChunk::Paren:
1965      T = S.BuildParenType(T);
1966      break;
1967    case DeclaratorChunk::BlockPointer:
1968      // If blocks are disabled, emit an error.
1969      if (!LangOpts.Blocks)
1970        S.Diag(DeclType.Loc, diag::err_blocks_disable);
1971
1972      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
1973      if (DeclType.Cls.TypeQuals)
1974        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
1975      break;
1976    case DeclaratorChunk::Pointer:
1977      // Verify that we're not building a pointer to pointer to function with
1978      // exception specification.
1979      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
1980        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1981        D.setInvalidType(true);
1982        // Build the type anyway.
1983      }
1984      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
1985        T = Context.getObjCObjectPointerType(T);
1986        if (DeclType.Ptr.TypeQuals)
1987          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
1988        break;
1989      }
1990      T = S.BuildPointerType(T, DeclType.Loc, Name);
1991      if (DeclType.Ptr.TypeQuals)
1992        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
1993
1994      break;
1995    case DeclaratorChunk::Reference: {
1996      // Verify that we're not building a reference to pointer to function with
1997      // exception specification.
1998      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
1999        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2000        D.setInvalidType(true);
2001        // Build the type anyway.
2002      }
2003      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2004
2005      Qualifiers Quals;
2006      if (DeclType.Ref.HasRestrict)
2007        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2008      break;
2009    }
2010    case DeclaratorChunk::Array: {
2011      // Verify that we're not building an array of pointers to function with
2012      // exception specification.
2013      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2014        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2015        D.setInvalidType(true);
2016        // Build the type anyway.
2017      }
2018      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2019      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2020      ArrayType::ArraySizeModifier ASM;
2021      if (ATI.isStar)
2022        ASM = ArrayType::Star;
2023      else if (ATI.hasStatic)
2024        ASM = ArrayType::Static;
2025      else
2026        ASM = ArrayType::Normal;
2027      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2028        // FIXME: This check isn't quite right: it allows star in prototypes
2029        // for function definitions, and disallows some edge cases detailed
2030        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2031        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2032        ASM = ArrayType::Normal;
2033        D.setInvalidType(true);
2034      }
2035      T = S.BuildArrayType(T, ASM, ArraySize,
2036                           Qualifiers::fromCVRMask(ATI.TypeQuals),
2037                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2038      break;
2039    }
2040    case DeclaratorChunk::Function: {
2041      // If the function declarator has a prototype (i.e. it is not () and
2042      // does not have a K&R-style identifier list), then the arguments are part
2043      // of the type, otherwise the argument list is ().
2044      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2045
2046      // Check for auto functions and trailing return type and adjust the
2047      // return type accordingly.
2048      if (!D.isInvalidType()) {
2049        // trailing-return-type is only required if we're declaring a function,
2050        // and not, for instance, a pointer to a function.
2051        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2052            !FTI.TrailingReturnType && chunkIndex == 0) {
2053          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2054               diag::err_auto_missing_trailing_return);
2055          T = Context.IntTy;
2056          D.setInvalidType(true);
2057        } else if (FTI.TrailingReturnType) {
2058          // T must be exactly 'auto' at this point. See CWG issue 681.
2059          if (isa<ParenType>(T)) {
2060            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2061                 diag::err_trailing_return_in_parens)
2062              << T << D.getDeclSpec().getSourceRange();
2063            D.setInvalidType(true);
2064          } else if (T.hasQualifiers() || !isa<AutoType>(T)) {
2065            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2066                 diag::err_trailing_return_without_auto)
2067              << T << D.getDeclSpec().getSourceRange();
2068            D.setInvalidType(true);
2069          }
2070
2071          T = S.GetTypeFromParser(
2072            ParsedType::getFromOpaquePtr(FTI.TrailingReturnType),
2073            &TInfo);
2074        }
2075      }
2076
2077      // C99 6.7.5.3p1: The return type may not be a function or array type.
2078      // For conversion functions, we'll diagnose this particular error later.
2079      if ((T->isArrayType() || T->isFunctionType()) &&
2080          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2081        unsigned diagID = diag::err_func_returning_array_function;
2082        // Last processing chunk in block context means this function chunk
2083        // represents the block.
2084        if (chunkIndex == 0 &&
2085            D.getContext() == Declarator::BlockLiteralContext)
2086          diagID = diag::err_block_returning_array_function;
2087        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2088        T = Context.IntTy;
2089        D.setInvalidType(true);
2090      }
2091
2092      // Do not allow returning half FP value.
2093      // FIXME: This really should be in BuildFunctionType.
2094      if (T->isHalfType()) {
2095        S.Diag(D.getIdentifierLoc(),
2096             diag::err_parameters_retval_cannot_have_fp16_type) << 1
2097          << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
2098        D.setInvalidType(true);
2099      }
2100
2101      // cv-qualifiers on return types are pointless except when the type is a
2102      // class type in C++.
2103      if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
2104          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
2105          (!LangOpts.CPlusPlus || !T->isDependentType())) {
2106        assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
2107        DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2108        assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
2109
2110        DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
2111
2112        DiagnoseIgnoredQualifiers(PTI.TypeQuals,
2113            SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2114            SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2115            SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2116            S);
2117
2118      } else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
2119          (!LangOpts.CPlusPlus ||
2120           (!T->isDependentType() && !T->isRecordType()))) {
2121
2122        DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
2123                                  D.getDeclSpec().getConstSpecLoc(),
2124                                  D.getDeclSpec().getVolatileSpecLoc(),
2125                                  D.getDeclSpec().getRestrictSpecLoc(),
2126                                  S);
2127      }
2128
2129      if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2130        // C++ [dcl.fct]p6:
2131        //   Types shall not be defined in return or parameter types.
2132        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2133        if (Tag->isCompleteDefinition())
2134          S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2135            << Context.getTypeDeclType(Tag);
2136      }
2137
2138      // Exception specs are not allowed in typedefs. Complain, but add it
2139      // anyway.
2140      if (IsTypedefName && FTI.getExceptionSpecType())
2141        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2142          << (D.getContext() == Declarator::AliasDeclContext ||
2143              D.getContext() == Declarator::AliasTemplateContext);
2144
2145      if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2146        // Simple void foo(), where the incoming T is the result type.
2147        T = Context.getFunctionNoProtoType(T);
2148      } else {
2149        // We allow a zero-parameter variadic function in C if the
2150        // function is marked with the "overloadable" attribute. Scan
2151        // for this attribute now.
2152        if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2153          bool Overloadable = false;
2154          for (const AttributeList *Attrs = D.getAttributes();
2155               Attrs; Attrs = Attrs->getNext()) {
2156            if (Attrs->getKind() == AttributeList::AT_overloadable) {
2157              Overloadable = true;
2158              break;
2159            }
2160          }
2161
2162          if (!Overloadable)
2163            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2164        }
2165
2166        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2167          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2168          // definition.
2169          S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2170          D.setInvalidType(true);
2171          break;
2172        }
2173
2174        FunctionProtoType::ExtProtoInfo EPI;
2175        EPI.Variadic = FTI.isVariadic;
2176        EPI.TypeQuals = FTI.TypeQuals;
2177        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2178                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2179                    : RQ_RValue;
2180
2181        // Otherwise, we have a function with an argument list that is
2182        // potentially variadic.
2183        SmallVector<QualType, 16> ArgTys;
2184        ArgTys.reserve(FTI.NumArgs);
2185
2186        SmallVector<bool, 16> ConsumedArguments;
2187        ConsumedArguments.reserve(FTI.NumArgs);
2188        bool HasAnyConsumedArguments = false;
2189
2190        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2191          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2192          QualType ArgTy = Param->getType();
2193          assert(!ArgTy.isNull() && "Couldn't parse type?");
2194
2195          // Adjust the parameter type.
2196          assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
2197                 "Unadjusted type?");
2198
2199          // Look for 'void'.  void is allowed only as a single argument to a
2200          // function with no other parameters (C99 6.7.5.3p10).  We record
2201          // int(void) as a FunctionProtoType with an empty argument list.
2202          if (ArgTy->isVoidType()) {
2203            // If this is something like 'float(int, void)', reject it.  'void'
2204            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2205            // have arguments of incomplete type.
2206            if (FTI.NumArgs != 1 || FTI.isVariadic) {
2207              S.Diag(DeclType.Loc, diag::err_void_only_param);
2208              ArgTy = Context.IntTy;
2209              Param->setType(ArgTy);
2210            } else if (FTI.ArgInfo[i].Ident) {
2211              // Reject, but continue to parse 'int(void abc)'.
2212              S.Diag(FTI.ArgInfo[i].IdentLoc,
2213                   diag::err_param_with_void_type);
2214              ArgTy = Context.IntTy;
2215              Param->setType(ArgTy);
2216            } else {
2217              // Reject, but continue to parse 'float(const void)'.
2218              if (ArgTy.hasQualifiers())
2219                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2220
2221              // Do not add 'void' to the ArgTys list.
2222              break;
2223            }
2224          } else if (ArgTy->isHalfType()) {
2225            // Disallow half FP arguments.
2226            // FIXME: This really should be in BuildFunctionType.
2227            S.Diag(Param->getLocation(),
2228               diag::err_parameters_retval_cannot_have_fp16_type) << 0
2229            << FixItHint::CreateInsertion(Param->getLocation(), "*");
2230            D.setInvalidType();
2231          } else if (!FTI.hasPrototype) {
2232            if (ArgTy->isPromotableIntegerType()) {
2233              ArgTy = Context.getPromotedIntegerType(ArgTy);
2234              Param->setKNRPromoted(true);
2235            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2236              if (BTy->getKind() == BuiltinType::Float) {
2237                ArgTy = Context.DoubleTy;
2238                Param->setKNRPromoted(true);
2239              }
2240            }
2241          }
2242
2243          if (LangOpts.ObjCAutoRefCount) {
2244            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2245            ConsumedArguments.push_back(Consumed);
2246            HasAnyConsumedArguments |= Consumed;
2247          }
2248
2249          ArgTys.push_back(ArgTy);
2250        }
2251
2252        if (HasAnyConsumedArguments)
2253          EPI.ConsumedArguments = ConsumedArguments.data();
2254
2255        SmallVector<QualType, 4> Exceptions;
2256        EPI.ExceptionSpecType = FTI.getExceptionSpecType();
2257        if (FTI.getExceptionSpecType() == EST_Dynamic) {
2258          Exceptions.reserve(FTI.NumExceptions);
2259          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
2260            // FIXME: Preserve type source info.
2261            QualType ET = S.GetTypeFromParser(FTI.Exceptions[ei].Ty);
2262            // Check that the type is valid for an exception spec, and
2263            // drop it if not.
2264            if (!S.CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
2265              Exceptions.push_back(ET);
2266          }
2267          EPI.NumExceptions = Exceptions.size();
2268          EPI.Exceptions = Exceptions.data();
2269        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2270          // If an error occurred, there's no expression here.
2271          if (Expr *NoexceptExpr = FTI.NoexceptExpr) {
2272            assert((NoexceptExpr->isTypeDependent() ||
2273                    NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
2274                        Context.BoolTy) &&
2275                 "Parser should have made sure that the expression is boolean");
2276            SourceLocation ErrLoc;
2277            llvm::APSInt Dummy;
2278            if (!NoexceptExpr->isValueDependent() &&
2279                !NoexceptExpr->isIntegerConstantExpr(Dummy, Context, &ErrLoc,
2280                                                     /*evaluated*/false))
2281              S.Diag(ErrLoc, diag::err_noexcept_needs_constant_expression)
2282                  << NoexceptExpr->getSourceRange();
2283            else
2284              EPI.NoexceptExpr = NoexceptExpr;
2285          }
2286        } else if (FTI.getExceptionSpecType() == EST_None &&
2287                   ImplicitlyNoexcept && chunkIndex == 0) {
2288          // Only the outermost chunk is marked noexcept, of course.
2289          EPI.ExceptionSpecType = EST_BasicNoexcept;
2290        }
2291
2292        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
2293      }
2294
2295      break;
2296    }
2297    case DeclaratorChunk::MemberPointer:
2298      // The scope spec must refer to a class, or be dependent.
2299      CXXScopeSpec &SS = DeclType.Mem.Scope();
2300      QualType ClsType;
2301      if (SS.isInvalid()) {
2302        // Avoid emitting extra errors if we already errored on the scope.
2303        D.setInvalidType(true);
2304      } else if (S.isDependentScopeSpecifier(SS) ||
2305                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
2306        NestedNameSpecifier *NNS
2307          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2308        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
2309        switch (NNS->getKind()) {
2310        case NestedNameSpecifier::Identifier:
2311          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
2312                                                 NNS->getAsIdentifier());
2313          break;
2314
2315        case NestedNameSpecifier::Namespace:
2316        case NestedNameSpecifier::NamespaceAlias:
2317        case NestedNameSpecifier::Global:
2318          llvm_unreachable("Nested-name-specifier must name a type");
2319          break;
2320
2321        case NestedNameSpecifier::TypeSpec:
2322        case NestedNameSpecifier::TypeSpecWithTemplate:
2323          ClsType = QualType(NNS->getAsType(), 0);
2324          // Note: if the NNS has a prefix and ClsType is a nondependent
2325          // TemplateSpecializationType, then the NNS prefix is NOT included
2326          // in ClsType; hence we wrap ClsType into an ElaboratedType.
2327          // NOTE: in particular, no wrap occurs if ClsType already is an
2328          // Elaborated, DependentName, or DependentTemplateSpecialization.
2329          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
2330            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
2331          break;
2332        }
2333      } else {
2334        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
2335             diag::err_illegal_decl_mempointer_in_nonclass)
2336          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
2337          << DeclType.Mem.Scope().getRange();
2338        D.setInvalidType(true);
2339      }
2340
2341      if (!ClsType.isNull())
2342        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
2343      if (T.isNull()) {
2344        T = Context.IntTy;
2345        D.setInvalidType(true);
2346      } else if (DeclType.Mem.TypeQuals) {
2347        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
2348      }
2349      break;
2350    }
2351
2352    if (T.isNull()) {
2353      D.setInvalidType(true);
2354      T = Context.IntTy;
2355    }
2356
2357    // See if there are any attributes on this declarator chunk.
2358    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
2359      processTypeAttrs(state, T, false, attrs);
2360  }
2361
2362  if (LangOpts.CPlusPlus && T->isFunctionType()) {
2363    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
2364    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
2365
2366    // C++ 8.3.5p4:
2367    //   A cv-qualifier-seq shall only be part of the function type
2368    //   for a nonstatic member function, the function type to which a pointer
2369    //   to member refers, or the top-level function type of a function typedef
2370    //   declaration.
2371    //
2372    // Core issue 547 also allows cv-qualifiers on function types that are
2373    // top-level template type arguments.
2374    bool FreeFunction;
2375    if (!D.getCXXScopeSpec().isSet()) {
2376      FreeFunction = (D.getContext() != Declarator::MemberContext ||
2377                      D.getDeclSpec().isFriendSpecified());
2378    } else {
2379      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
2380      FreeFunction = (DC && !DC->isRecord());
2381    }
2382
2383    // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
2384    // function that is not a constructor declares that function to be const.
2385    if (D.getDeclSpec().isConstexprSpecified() && !FreeFunction &&
2386        D.getName().getKind() != UnqualifiedId::IK_ConstructorName &&
2387        D.getName().getKind() != UnqualifiedId::IK_ConstructorTemplateId &&
2388        !(FnTy->getTypeQuals() & DeclSpec::TQ_const)) {
2389      // Rebuild function type adding a 'const' qualifier.
2390      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2391      EPI.TypeQuals |= DeclSpec::TQ_const;
2392      T = Context.getFunctionType(FnTy->getResultType(),
2393                                  FnTy->arg_type_begin(),
2394                                  FnTy->getNumArgs(), EPI);
2395    }
2396
2397    // C++0x [dcl.fct]p6:
2398    //   A ref-qualifier shall only be part of the function type for a
2399    //   non-static member function, the function type to which a pointer to
2400    //   member refers, or the top-level function type of a function typedef
2401    //   declaration.
2402    if ((FnTy->getTypeQuals() != 0 || FnTy->getRefQualifier()) &&
2403        !(D.getContext() == Declarator::TemplateTypeArgContext &&
2404          !D.isFunctionDeclarator()) && !IsTypedefName &&
2405        (FreeFunction ||
2406         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
2407      if (D.getContext() == Declarator::TemplateTypeArgContext) {
2408        // Accept qualified function types as template type arguments as a GNU
2409        // extension. This is also the subject of C++ core issue 547.
2410        std::string Quals;
2411        if (FnTy->getTypeQuals() != 0)
2412          Quals = Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
2413
2414        switch (FnTy->getRefQualifier()) {
2415        case RQ_None:
2416          break;
2417
2418        case RQ_LValue:
2419          if (!Quals.empty())
2420            Quals += ' ';
2421          Quals += '&';
2422          break;
2423
2424        case RQ_RValue:
2425          if (!Quals.empty())
2426            Quals += ' ';
2427          Quals += "&&";
2428          break;
2429        }
2430
2431        S.Diag(D.getIdentifierLoc(),
2432             diag::ext_qualified_function_type_template_arg)
2433          << Quals;
2434      } else {
2435        if (FnTy->getTypeQuals() != 0) {
2436          if (D.isFunctionDeclarator()) {
2437            SourceRange Range = D.getIdentifierLoc();
2438            for (unsigned I = 0, N = D.getNumTypeObjects(); I != N; ++I) {
2439              const DeclaratorChunk &Chunk = D.getTypeObject(N-I-1);
2440              if (Chunk.Kind == DeclaratorChunk::Function &&
2441                  Chunk.Fun.TypeQuals != 0) {
2442                switch (Chunk.Fun.TypeQuals) {
2443                case Qualifiers::Const:
2444                  Range = Chunk.Fun.getConstQualifierLoc();
2445                  break;
2446                case Qualifiers::Volatile:
2447                  Range = Chunk.Fun.getVolatileQualifierLoc();
2448                  break;
2449                case Qualifiers::Const | Qualifiers::Volatile: {
2450                    SourceLocation CLoc = Chunk.Fun.getConstQualifierLoc();
2451                    SourceLocation VLoc = Chunk.Fun.getVolatileQualifierLoc();
2452                    if (S.getSourceManager()
2453                        .isBeforeInTranslationUnit(CLoc, VLoc)) {
2454                      Range = SourceRange(CLoc, VLoc);
2455                    } else {
2456                      Range = SourceRange(VLoc, CLoc);
2457                    }
2458                  }
2459                  break;
2460                }
2461                break;
2462              }
2463            }
2464            S.Diag(Range.getBegin(), diag::err_invalid_qualified_function_type)
2465                << FixItHint::CreateRemoval(Range);
2466          } else
2467            S.Diag(D.getIdentifierLoc(),
2468                 diag::err_invalid_qualified_typedef_function_type_use)
2469              << FreeFunction;
2470        }
2471
2472        if (FnTy->getRefQualifier()) {
2473          if (D.isFunctionDeclarator()) {
2474            SourceLocation Loc = D.getIdentifierLoc();
2475            for (unsigned I = 0, N = D.getNumTypeObjects(); I != N; ++I) {
2476              const DeclaratorChunk &Chunk = D.getTypeObject(N-I-1);
2477              if (Chunk.Kind == DeclaratorChunk::Function &&
2478                  Chunk.Fun.hasRefQualifier()) {
2479                Loc = Chunk.Fun.getRefQualifierLoc();
2480                break;
2481              }
2482            }
2483
2484            S.Diag(Loc, diag::err_invalid_ref_qualifier_function_type)
2485              << (FnTy->getRefQualifier() == RQ_LValue)
2486              << FixItHint::CreateRemoval(Loc);
2487          } else {
2488            S.Diag(D.getIdentifierLoc(),
2489                 diag::err_invalid_ref_qualifier_typedef_function_type_use)
2490              << FreeFunction
2491              << (FnTy->getRefQualifier() == RQ_LValue);
2492          }
2493        }
2494
2495        // Strip the cv-qualifiers and ref-qualifiers from the type.
2496        FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2497        EPI.TypeQuals = 0;
2498        EPI.RefQualifier = RQ_None;
2499
2500        T = Context.getFunctionType(FnTy->getResultType(),
2501                                    FnTy->arg_type_begin(),
2502                                    FnTy->getNumArgs(), EPI);
2503      }
2504    }
2505  }
2506
2507  // Apply any undistributed attributes from the declarator.
2508  if (!T.isNull())
2509    if (AttributeList *attrs = D.getAttributes())
2510      processTypeAttrs(state, T, false, attrs);
2511
2512  // Diagnose any ignored type attributes.
2513  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
2514
2515  // C++0x [dcl.constexpr]p9:
2516  //  A constexpr specifier used in an object declaration declares the object
2517  //  as const.
2518  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
2519    T.addConst();
2520  }
2521
2522  // If there was an ellipsis in the declarator, the declaration declares a
2523  // parameter pack whose type may be a pack expansion type.
2524  if (D.hasEllipsis() && !T.isNull()) {
2525    // C++0x [dcl.fct]p13:
2526    //   A declarator-id or abstract-declarator containing an ellipsis shall
2527    //   only be used in a parameter-declaration. Such a parameter-declaration
2528    //   is a parameter pack (14.5.3). [...]
2529    switch (D.getContext()) {
2530    case Declarator::PrototypeContext:
2531      // C++0x [dcl.fct]p13:
2532      //   [...] When it is part of a parameter-declaration-clause, the
2533      //   parameter pack is a function parameter pack (14.5.3). The type T
2534      //   of the declarator-id of the function parameter pack shall contain
2535      //   a template parameter pack; each template parameter pack in T is
2536      //   expanded by the function parameter pack.
2537      //
2538      // We represent function parameter packs as function parameters whose
2539      // type is a pack expansion.
2540      if (!T->containsUnexpandedParameterPack()) {
2541        S.Diag(D.getEllipsisLoc(),
2542             diag::err_function_parameter_pack_without_parameter_packs)
2543          << T <<  D.getSourceRange();
2544        D.setEllipsisLoc(SourceLocation());
2545      } else {
2546        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2547      }
2548      break;
2549
2550    case Declarator::TemplateParamContext:
2551      // C++0x [temp.param]p15:
2552      //   If a template-parameter is a [...] is a parameter-declaration that
2553      //   declares a parameter pack (8.3.5), then the template-parameter is a
2554      //   template parameter pack (14.5.3).
2555      //
2556      // Note: core issue 778 clarifies that, if there are any unexpanded
2557      // parameter packs in the type of the non-type template parameter, then
2558      // it expands those parameter packs.
2559      if (T->containsUnexpandedParameterPack())
2560        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2561      else
2562        S.Diag(D.getEllipsisLoc(),
2563               LangOpts.CPlusPlus0x
2564                 ? diag::warn_cxx98_compat_variadic_templates
2565                 : diag::ext_variadic_templates);
2566      break;
2567
2568    case Declarator::FileContext:
2569    case Declarator::KNRTypeListContext:
2570    case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
2571    case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
2572    case Declarator::TypeNameContext:
2573    case Declarator::CXXNewContext:
2574    case Declarator::AliasDeclContext:
2575    case Declarator::AliasTemplateContext:
2576    case Declarator::MemberContext:
2577    case Declarator::BlockContext:
2578    case Declarator::ForContext:
2579    case Declarator::ConditionContext:
2580    case Declarator::CXXCatchContext:
2581    case Declarator::ObjCCatchContext:
2582    case Declarator::BlockLiteralContext:
2583    case Declarator::TemplateTypeArgContext:
2584      // FIXME: We may want to allow parameter packs in block-literal contexts
2585      // in the future.
2586      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
2587      D.setEllipsisLoc(SourceLocation());
2588      break;
2589    }
2590  }
2591
2592  if (T.isNull())
2593    return Context.getNullTypeSourceInfo();
2594  else if (D.isInvalidType())
2595    return Context.getTrivialTypeSourceInfo(T);
2596
2597  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
2598}
2599
2600/// GetTypeForDeclarator - Convert the type for the specified
2601/// declarator to Type instances.
2602///
2603/// The result of this call will never be null, but the associated
2604/// type may be a null type if there's an unrecoverable error.
2605TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
2606  // Determine the type of the declarator. Not all forms of declarator
2607  // have a type.
2608
2609  TypeProcessingState state(*this, D);
2610
2611  TypeSourceInfo *ReturnTypeInfo = 0;
2612  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2613  if (T.isNull())
2614    return Context.getNullTypeSourceInfo();
2615
2616  if (D.isPrototypeContext() && getLangOptions().ObjCAutoRefCount)
2617    inferARCWriteback(state, T);
2618
2619  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
2620}
2621
2622static void transferARCOwnershipToDeclSpec(Sema &S,
2623                                           QualType &declSpecTy,
2624                                           Qualifiers::ObjCLifetime ownership) {
2625  if (declSpecTy->isObjCRetainableType() &&
2626      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
2627    Qualifiers qs;
2628    qs.addObjCLifetime(ownership);
2629    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
2630  }
2631}
2632
2633static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2634                                            Qualifiers::ObjCLifetime ownership,
2635                                            unsigned chunkIndex) {
2636  Sema &S = state.getSema();
2637  Declarator &D = state.getDeclarator();
2638
2639  // Look for an explicit lifetime attribute.
2640  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
2641  for (const AttributeList *attr = chunk.getAttrs(); attr;
2642         attr = attr->getNext())
2643    if (attr->getKind() == AttributeList::AT_objc_ownership)
2644      return;
2645
2646  const char *attrStr = 0;
2647  switch (ownership) {
2648  case Qualifiers::OCL_None: llvm_unreachable("no ownership!"); break;
2649  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
2650  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
2651  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
2652  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
2653  }
2654
2655  // If there wasn't one, add one (with an invalid source location
2656  // so that we don't make an AttributedType for it).
2657  AttributeList *attr = D.getAttributePool()
2658    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
2659            /*scope*/ 0, SourceLocation(),
2660            &S.Context.Idents.get(attrStr), SourceLocation(),
2661            /*args*/ 0, 0,
2662            /*declspec*/ false, /*C++0x*/ false);
2663  spliceAttrIntoList(*attr, chunk.getAttrListRef());
2664
2665  // TODO: mark whether we did this inference?
2666}
2667
2668/// \brief Used for transfering ownership in casts resulting in l-values.
2669static void transferARCOwnership(TypeProcessingState &state,
2670                                 QualType &declSpecTy,
2671                                 Qualifiers::ObjCLifetime ownership) {
2672  Sema &S = state.getSema();
2673  Declarator &D = state.getDeclarator();
2674
2675  int inner = -1;
2676  bool hasIndirection = false;
2677  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2678    DeclaratorChunk &chunk = D.getTypeObject(i);
2679    switch (chunk.Kind) {
2680    case DeclaratorChunk::Paren:
2681      // Ignore parens.
2682      break;
2683
2684    case DeclaratorChunk::Array:
2685    case DeclaratorChunk::Reference:
2686    case DeclaratorChunk::Pointer:
2687      if (inner != -1)
2688        hasIndirection = true;
2689      inner = i;
2690      break;
2691
2692    case DeclaratorChunk::BlockPointer:
2693      if (inner != -1)
2694        transferARCOwnershipToDeclaratorChunk(state, ownership, i);
2695      return;
2696
2697    case DeclaratorChunk::Function:
2698    case DeclaratorChunk::MemberPointer:
2699      return;
2700    }
2701  }
2702
2703  if (inner == -1)
2704    return;
2705
2706  DeclaratorChunk &chunk = D.getTypeObject(inner);
2707  if (chunk.Kind == DeclaratorChunk::Pointer) {
2708    if (declSpecTy->isObjCRetainableType())
2709      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2710    if (declSpecTy->isObjCObjectType() && hasIndirection)
2711      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
2712  } else {
2713    assert(chunk.Kind == DeclaratorChunk::Array ||
2714           chunk.Kind == DeclaratorChunk::Reference);
2715    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2716  }
2717}
2718
2719TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
2720  TypeProcessingState state(*this, D);
2721
2722  TypeSourceInfo *ReturnTypeInfo = 0;
2723  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2724  if (declSpecTy.isNull())
2725    return Context.getNullTypeSourceInfo();
2726
2727  if (getLangOptions().ObjCAutoRefCount) {
2728    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
2729    if (ownership != Qualifiers::OCL_None)
2730      transferARCOwnership(state, declSpecTy, ownership);
2731  }
2732
2733  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
2734}
2735
2736/// Map an AttributedType::Kind to an AttributeList::Kind.
2737static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
2738  switch (kind) {
2739  case AttributedType::attr_address_space:
2740    return AttributeList::AT_address_space;
2741  case AttributedType::attr_regparm:
2742    return AttributeList::AT_regparm;
2743  case AttributedType::attr_vector_size:
2744    return AttributeList::AT_vector_size;
2745  case AttributedType::attr_neon_vector_type:
2746    return AttributeList::AT_neon_vector_type;
2747  case AttributedType::attr_neon_polyvector_type:
2748    return AttributeList::AT_neon_polyvector_type;
2749  case AttributedType::attr_objc_gc:
2750    return AttributeList::AT_objc_gc;
2751  case AttributedType::attr_objc_ownership:
2752    return AttributeList::AT_objc_ownership;
2753  case AttributedType::attr_noreturn:
2754    return AttributeList::AT_noreturn;
2755  case AttributedType::attr_cdecl:
2756    return AttributeList::AT_cdecl;
2757  case AttributedType::attr_fastcall:
2758    return AttributeList::AT_fastcall;
2759  case AttributedType::attr_stdcall:
2760    return AttributeList::AT_stdcall;
2761  case AttributedType::attr_thiscall:
2762    return AttributeList::AT_thiscall;
2763  case AttributedType::attr_pascal:
2764    return AttributeList::AT_pascal;
2765  case AttributedType::attr_pcs:
2766    return AttributeList::AT_pcs;
2767  }
2768  llvm_unreachable("unexpected attribute kind!");
2769  return AttributeList::Kind();
2770}
2771
2772static void fillAttributedTypeLoc(AttributedTypeLoc TL,
2773                                  const AttributeList *attrs) {
2774  AttributedType::Kind kind = TL.getAttrKind();
2775
2776  assert(attrs && "no type attributes in the expected location!");
2777  AttributeList::Kind parsedKind = getAttrListKind(kind);
2778  while (attrs->getKind() != parsedKind) {
2779    attrs = attrs->getNext();
2780    assert(attrs && "no matching attribute in expected location!");
2781  }
2782
2783  TL.setAttrNameLoc(attrs->getLoc());
2784  if (TL.hasAttrExprOperand())
2785    TL.setAttrExprOperand(attrs->getArg(0));
2786  else if (TL.hasAttrEnumOperand())
2787    TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
2788
2789  // FIXME: preserve this information to here.
2790  if (TL.hasAttrOperand())
2791    TL.setAttrOperandParensRange(SourceRange());
2792}
2793
2794namespace {
2795  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
2796    ASTContext &Context;
2797    const DeclSpec &DS;
2798
2799  public:
2800    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
2801      : Context(Context), DS(DS) {}
2802
2803    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
2804      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
2805      Visit(TL.getModifiedLoc());
2806    }
2807    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
2808      Visit(TL.getUnqualifiedLoc());
2809    }
2810    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
2811      TL.setNameLoc(DS.getTypeSpecTypeLoc());
2812    }
2813    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
2814      TL.setNameLoc(DS.getTypeSpecTypeLoc());
2815    }
2816    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
2817      // Handle the base type, which might not have been written explicitly.
2818      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
2819        TL.setHasBaseTypeAsWritten(false);
2820        TL.getBaseLoc().initialize(Context, SourceLocation());
2821      } else {
2822        TL.setHasBaseTypeAsWritten(true);
2823        Visit(TL.getBaseLoc());
2824      }
2825
2826      // Protocol qualifiers.
2827      if (DS.getProtocolQualifiers()) {
2828        assert(TL.getNumProtocols() > 0);
2829        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
2830        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
2831        TL.setRAngleLoc(DS.getSourceRange().getEnd());
2832        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
2833          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
2834      } else {
2835        assert(TL.getNumProtocols() == 0);
2836        TL.setLAngleLoc(SourceLocation());
2837        TL.setRAngleLoc(SourceLocation());
2838      }
2839    }
2840    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
2841      TL.setStarLoc(SourceLocation());
2842      Visit(TL.getPointeeLoc());
2843    }
2844    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
2845      TypeSourceInfo *TInfo = 0;
2846      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2847
2848      // If we got no declarator info from previous Sema routines,
2849      // just fill with the typespec loc.
2850      if (!TInfo) {
2851        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
2852        return;
2853      }
2854
2855      TypeLoc OldTL = TInfo->getTypeLoc();
2856      if (TInfo->getType()->getAs<ElaboratedType>()) {
2857        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
2858        TemplateSpecializationTypeLoc NamedTL =
2859          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
2860        TL.copy(NamedTL);
2861      }
2862      else
2863        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
2864    }
2865    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
2866      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
2867      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2868      TL.setParensRange(DS.getTypeofParensRange());
2869    }
2870    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
2871      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
2872      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2873      TL.setParensRange(DS.getTypeofParensRange());
2874      assert(DS.getRepAsType());
2875      TypeSourceInfo *TInfo = 0;
2876      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2877      TL.setUnderlyingTInfo(TInfo);
2878    }
2879    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
2880      // FIXME: This holds only because we only have one unary transform.
2881      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
2882      TL.setKWLoc(DS.getTypeSpecTypeLoc());
2883      TL.setParensRange(DS.getTypeofParensRange());
2884      assert(DS.getRepAsType());
2885      TypeSourceInfo *TInfo = 0;
2886      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2887      TL.setUnderlyingTInfo(TInfo);
2888    }
2889    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
2890      // By default, use the source location of the type specifier.
2891      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
2892      if (TL.needsExtraLocalData()) {
2893        // Set info for the written builtin specifiers.
2894        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
2895        // Try to have a meaningful source location.
2896        if (TL.getWrittenSignSpec() != TSS_unspecified)
2897          // Sign spec loc overrides the others (e.g., 'unsigned long').
2898          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
2899        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
2900          // Width spec loc overrides type spec loc (e.g., 'short int').
2901          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
2902      }
2903    }
2904    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
2905      ElaboratedTypeKeyword Keyword
2906        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2907      if (DS.getTypeSpecType() == TST_typename) {
2908        TypeSourceInfo *TInfo = 0;
2909        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2910        if (TInfo) {
2911          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
2912          return;
2913        }
2914      }
2915      TL.setKeywordLoc(Keyword != ETK_None
2916                       ? DS.getTypeSpecTypeLoc()
2917                       : SourceLocation());
2918      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2919      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2920      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
2921    }
2922    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
2923      ElaboratedTypeKeyword Keyword
2924        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2925      if (DS.getTypeSpecType() == TST_typename) {
2926        TypeSourceInfo *TInfo = 0;
2927        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2928        if (TInfo) {
2929          TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
2930          return;
2931        }
2932      }
2933      TL.setKeywordLoc(Keyword != ETK_None
2934                       ? DS.getTypeSpecTypeLoc()
2935                       : SourceLocation());
2936      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2937      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2938      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2939    }
2940    void VisitDependentTemplateSpecializationTypeLoc(
2941                                 DependentTemplateSpecializationTypeLoc TL) {
2942      ElaboratedTypeKeyword Keyword
2943        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2944      if (Keyword == ETK_Typename) {
2945        TypeSourceInfo *TInfo = 0;
2946        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2947        if (TInfo) {
2948          TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
2949                    TInfo->getTypeLoc()));
2950          return;
2951        }
2952      }
2953      TL.initializeLocal(Context, SourceLocation());
2954      TL.setKeywordLoc(Keyword != ETK_None
2955                       ? DS.getTypeSpecTypeLoc()
2956                       : SourceLocation());
2957      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2958      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2959      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2960    }
2961    void VisitTagTypeLoc(TagTypeLoc TL) {
2962      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2963    }
2964    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
2965      TL.setKWLoc(DS.getTypeSpecTypeLoc());
2966      TL.setParensRange(DS.getTypeofParensRange());
2967
2968      TypeSourceInfo *TInfo = 0;
2969      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2970      TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
2971    }
2972
2973    void VisitTypeLoc(TypeLoc TL) {
2974      // FIXME: add other typespec types and change this to an assert.
2975      TL.initialize(Context, DS.getTypeSpecTypeLoc());
2976    }
2977  };
2978
2979  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
2980    ASTContext &Context;
2981    const DeclaratorChunk &Chunk;
2982
2983  public:
2984    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
2985      : Context(Context), Chunk(Chunk) {}
2986
2987    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
2988      llvm_unreachable("qualified type locs not expected here!");
2989    }
2990
2991    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
2992      fillAttributedTypeLoc(TL, Chunk.getAttrs());
2993    }
2994    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
2995      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
2996      TL.setCaretLoc(Chunk.Loc);
2997    }
2998    void VisitPointerTypeLoc(PointerTypeLoc TL) {
2999      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3000      TL.setStarLoc(Chunk.Loc);
3001    }
3002    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
3003      assert(Chunk.Kind == DeclaratorChunk::Pointer);
3004      TL.setStarLoc(Chunk.Loc);
3005    }
3006    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
3007      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
3008      const CXXScopeSpec& SS = Chunk.Mem.Scope();
3009      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
3010
3011      const Type* ClsTy = TL.getClass();
3012      QualType ClsQT = QualType(ClsTy, 0);
3013      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
3014      // Now copy source location info into the type loc component.
3015      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
3016      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
3017      case NestedNameSpecifier::Identifier:
3018        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
3019        {
3020          DependentNameTypeLoc DNTLoc = cast<DependentNameTypeLoc>(ClsTL);
3021          DNTLoc.setKeywordLoc(SourceLocation());
3022          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
3023          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
3024        }
3025        break;
3026
3027      case NestedNameSpecifier::TypeSpec:
3028      case NestedNameSpecifier::TypeSpecWithTemplate:
3029        if (isa<ElaboratedType>(ClsTy)) {
3030          ElaboratedTypeLoc ETLoc = *cast<ElaboratedTypeLoc>(&ClsTL);
3031          ETLoc.setKeywordLoc(SourceLocation());
3032          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
3033          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
3034          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3035        } else {
3036          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3037        }
3038        break;
3039
3040      case NestedNameSpecifier::Namespace:
3041      case NestedNameSpecifier::NamespaceAlias:
3042      case NestedNameSpecifier::Global:
3043        llvm_unreachable("Nested-name-specifier must name a type");
3044        break;
3045      }
3046
3047      // Finally fill in MemberPointerLocInfo fields.
3048      TL.setStarLoc(Chunk.Loc);
3049      TL.setClassTInfo(ClsTInfo);
3050    }
3051    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3052      assert(Chunk.Kind == DeclaratorChunk::Reference);
3053      // 'Amp' is misleading: this might have been originally
3054      /// spelled with AmpAmp.
3055      TL.setAmpLoc(Chunk.Loc);
3056    }
3057    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3058      assert(Chunk.Kind == DeclaratorChunk::Reference);
3059      assert(!Chunk.Ref.LValueRef);
3060      TL.setAmpAmpLoc(Chunk.Loc);
3061    }
3062    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3063      assert(Chunk.Kind == DeclaratorChunk::Array);
3064      TL.setLBracketLoc(Chunk.Loc);
3065      TL.setRBracketLoc(Chunk.EndLoc);
3066      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3067    }
3068    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3069      assert(Chunk.Kind == DeclaratorChunk::Function);
3070      TL.setLocalRangeBegin(Chunk.Loc);
3071      TL.setLocalRangeEnd(Chunk.EndLoc);
3072      TL.setTrailingReturn(!!Chunk.Fun.TrailingReturnType);
3073
3074      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3075      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
3076        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3077        TL.setArg(tpi++, Param);
3078      }
3079      // FIXME: exception specs
3080    }
3081    void VisitParenTypeLoc(ParenTypeLoc TL) {
3082      assert(Chunk.Kind == DeclaratorChunk::Paren);
3083      TL.setLParenLoc(Chunk.Loc);
3084      TL.setRParenLoc(Chunk.EndLoc);
3085    }
3086
3087    void VisitTypeLoc(TypeLoc TL) {
3088      llvm_unreachable("unsupported TypeLoc kind in declarator!");
3089    }
3090  };
3091}
3092
3093/// \brief Create and instantiate a TypeSourceInfo with type source information.
3094///
3095/// \param T QualType referring to the type as written in source code.
3096///
3097/// \param ReturnTypeInfo For declarators whose return type does not show
3098/// up in the normal place in the declaration specifiers (such as a C++
3099/// conversion function), this pointer will refer to a type source information
3100/// for that return type.
3101TypeSourceInfo *
3102Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3103                                     TypeSourceInfo *ReturnTypeInfo) {
3104  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3105  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3106
3107  // Handle parameter packs whose type is a pack expansion.
3108  if (isa<PackExpansionType>(T)) {
3109    cast<PackExpansionTypeLoc>(CurrTL).setEllipsisLoc(D.getEllipsisLoc());
3110    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3111  }
3112
3113  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3114    while (isa<AttributedTypeLoc>(CurrTL)) {
3115      AttributedTypeLoc TL = cast<AttributedTypeLoc>(CurrTL);
3116      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3117      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3118    }
3119
3120    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3121    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3122  }
3123
3124  // If we have different source information for the return type, use
3125  // that.  This really only applies to C++ conversion functions.
3126  if (ReturnTypeInfo) {
3127    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3128    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3129    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3130  } else {
3131    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3132  }
3133
3134  return TInfo;
3135}
3136
3137/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3138ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3139  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3140  // and Sema during declaration parsing. Try deallocating/caching them when
3141  // it's appropriate, instead of allocating them and keeping them around.
3142  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3143                                                       TypeAlignment);
3144  new (LocT) LocInfoType(T, TInfo);
3145  assert(LocT->getTypeClass() != T->getTypeClass() &&
3146         "LocInfoType's TypeClass conflicts with an existing Type class");
3147  return ParsedType::make(QualType(LocT, 0));
3148}
3149
3150void LocInfoType::getAsStringInternal(std::string &Str,
3151                                      const PrintingPolicy &Policy) const {
3152  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3153         " was used directly instead of getting the QualType through"
3154         " GetTypeFromParser");
3155}
3156
3157TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3158  // C99 6.7.6: Type names have no identifier.  This is already validated by
3159  // the parser.
3160  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3161
3162  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3163  QualType T = TInfo->getType();
3164  if (D.isInvalidType())
3165    return true;
3166
3167  // Make sure there are no unused decl attributes on the declarator.
3168  // We don't want to do this for ObjC parameters because we're going
3169  // to apply them to the actual parameter declaration.
3170  if (D.getContext() != Declarator::ObjCParameterContext)
3171    checkUnusedDeclAttributes(D);
3172
3173  if (getLangOptions().CPlusPlus) {
3174    // Check that there are no default arguments (C++ only).
3175    CheckExtraCXXDefaultArguments(D);
3176  }
3177
3178  return CreateParsedType(T, TInfo);
3179}
3180
3181ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3182  QualType T = Context.getObjCInstanceType();
3183  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3184  return CreateParsedType(T, TInfo);
3185}
3186
3187
3188//===----------------------------------------------------------------------===//
3189// Type Attribute Processing
3190//===----------------------------------------------------------------------===//
3191
3192/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3193/// specified type.  The attribute contains 1 argument, the id of the address
3194/// space for the type.
3195static void HandleAddressSpaceTypeAttribute(QualType &Type,
3196                                            const AttributeList &Attr, Sema &S){
3197
3198  // If this type is already address space qualified, reject it.
3199  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3200  // qualifiers for two or more different address spaces."
3201  if (Type.getAddressSpace()) {
3202    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3203    Attr.setInvalid();
3204    return;
3205  }
3206
3207  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3208  // qualified by an address-space qualifier."
3209  if (Type->isFunctionType()) {
3210    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3211    Attr.setInvalid();
3212    return;
3213  }
3214
3215  // Check the attribute arguments.
3216  if (Attr.getNumArgs() != 1) {
3217    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3218    Attr.setInvalid();
3219    return;
3220  }
3221  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
3222  llvm::APSInt addrSpace(32);
3223  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3224      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3225    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
3226      << ASArgExpr->getSourceRange();
3227    Attr.setInvalid();
3228    return;
3229  }
3230
3231  // Bounds checking.
3232  if (addrSpace.isSigned()) {
3233    if (addrSpace.isNegative()) {
3234      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3235        << ASArgExpr->getSourceRange();
3236      Attr.setInvalid();
3237      return;
3238    }
3239    addrSpace.setIsSigned(false);
3240  }
3241  llvm::APSInt max(addrSpace.getBitWidth());
3242  max = Qualifiers::MaxAddressSpace;
3243  if (addrSpace > max) {
3244    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3245      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
3246    Attr.setInvalid();
3247    return;
3248  }
3249
3250  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3251  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3252}
3253
3254/// handleObjCOwnershipTypeAttr - Process an objc_ownership
3255/// attribute on the specified type.
3256///
3257/// Returns 'true' if the attribute was handled.
3258static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
3259                                       AttributeList &attr,
3260                                       QualType &type) {
3261  bool NonObjCPointer = false;
3262
3263  if (!type->isDependentType()) {
3264    if (const PointerType *ptr = type->getAs<PointerType>()) {
3265      QualType pointee = ptr->getPointeeType();
3266      if (pointee->isObjCRetainableType() || pointee->isPointerType())
3267        return false;
3268      // It is important not to lose the source info that there was an attribute
3269      // applied to non-objc pointer. We will create an attributed type but
3270      // its type will be the same as the original type.
3271      NonObjCPointer = true;
3272    } else if (!type->isObjCRetainableType()) {
3273      return false;
3274    }
3275  }
3276
3277  Sema &S = state.getSema();
3278  SourceLocation AttrLoc = attr.getLoc();
3279  if (AttrLoc.isMacroID())
3280    AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
3281
3282  if (type.getQualifiers().getObjCLifetime()) {
3283    S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
3284      << type;
3285    return true;
3286  }
3287
3288  if (!attr.getParameterName()) {
3289    S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
3290      << "objc_ownership" << 1;
3291    attr.setInvalid();
3292    return true;
3293  }
3294
3295  Qualifiers::ObjCLifetime lifetime;
3296  if (attr.getParameterName()->isStr("none"))
3297    lifetime = Qualifiers::OCL_ExplicitNone;
3298  else if (attr.getParameterName()->isStr("strong"))
3299    lifetime = Qualifiers::OCL_Strong;
3300  else if (attr.getParameterName()->isStr("weak"))
3301    lifetime = Qualifiers::OCL_Weak;
3302  else if (attr.getParameterName()->isStr("autoreleasing"))
3303    lifetime = Qualifiers::OCL_Autoreleasing;
3304  else {
3305    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
3306      << "objc_ownership" << attr.getParameterName();
3307    attr.setInvalid();
3308    return true;
3309  }
3310
3311  // Consume lifetime attributes without further comment outside of
3312  // ARC mode.
3313  if (!S.getLangOptions().ObjCAutoRefCount)
3314    return true;
3315
3316  if (NonObjCPointer) {
3317    StringRef name = attr.getName()->getName();
3318    switch (lifetime) {
3319    case Qualifiers::OCL_None:
3320    case Qualifiers::OCL_ExplicitNone:
3321      break;
3322    case Qualifiers::OCL_Strong: name = "__strong"; break;
3323    case Qualifiers::OCL_Weak: name = "__weak"; break;
3324    case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
3325    }
3326    S.Diag(AttrLoc, diag::warn_objc_object_attribute_wrong_type)
3327      << name << type;
3328  }
3329
3330  Qualifiers qs;
3331  qs.setObjCLifetime(lifetime);
3332  QualType origType = type;
3333  if (!NonObjCPointer)
3334    type = S.Context.getQualifiedType(type, qs);
3335
3336  // If we have a valid source location for the attribute, use an
3337  // AttributedType instead.
3338  if (AttrLoc.isValid())
3339    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
3340                                       origType, type);
3341
3342  // Forbid __weak if the runtime doesn't support it.
3343  if (lifetime == Qualifiers::OCL_Weak &&
3344      !S.getLangOptions().ObjCRuntimeHasWeak) {
3345
3346    // Actually, delay this until we know what we're parsing.
3347    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
3348      S.DelayedDiagnostics.add(
3349          sema::DelayedDiagnostic::makeForbiddenType(
3350              S.getSourceManager().getExpansionLoc(AttrLoc),
3351              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
3352    } else {
3353      S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
3354    }
3355
3356    attr.setInvalid();
3357    return true;
3358  }
3359
3360  // Forbid __weak for class objects marked as
3361  // objc_arc_weak_reference_unavailable
3362  if (lifetime == Qualifiers::OCL_Weak) {
3363    QualType T = type;
3364    while (const PointerType *ptr = T->getAs<PointerType>())
3365      T = ptr->getPointeeType();
3366    if (const ObjCObjectPointerType *ObjT = T->getAs<ObjCObjectPointerType>()) {
3367      ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl();
3368      if (Class->isArcWeakrefUnavailable()) {
3369          S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
3370          S.Diag(ObjT->getInterfaceDecl()->getLocation(),
3371                 diag::note_class_declared);
3372      }
3373    }
3374  }
3375
3376  return true;
3377}
3378
3379/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
3380/// attribute on the specified type.  Returns true to indicate that
3381/// the attribute was handled, false to indicate that the type does
3382/// not permit the attribute.
3383static bool handleObjCGCTypeAttr(TypeProcessingState &state,
3384                                 AttributeList &attr,
3385                                 QualType &type) {
3386  Sema &S = state.getSema();
3387
3388  // Delay if this isn't some kind of pointer.
3389  if (!type->isPointerType() &&
3390      !type->isObjCObjectPointerType() &&
3391      !type->isBlockPointerType())
3392    return false;
3393
3394  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
3395    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
3396    attr.setInvalid();
3397    return true;
3398  }
3399
3400  // Check the attribute arguments.
3401  if (!attr.getParameterName()) {
3402    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3403      << "objc_gc" << 1;
3404    attr.setInvalid();
3405    return true;
3406  }
3407  Qualifiers::GC GCAttr;
3408  if (attr.getNumArgs() != 0) {
3409    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3410    attr.setInvalid();
3411    return true;
3412  }
3413  if (attr.getParameterName()->isStr("weak"))
3414    GCAttr = Qualifiers::Weak;
3415  else if (attr.getParameterName()->isStr("strong"))
3416    GCAttr = Qualifiers::Strong;
3417  else {
3418    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3419      << "objc_gc" << attr.getParameterName();
3420    attr.setInvalid();
3421    return true;
3422  }
3423
3424  QualType origType = type;
3425  type = S.Context.getObjCGCQualType(origType, GCAttr);
3426
3427  // Make an attributed type to preserve the source information.
3428  if (attr.getLoc().isValid())
3429    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
3430                                       origType, type);
3431
3432  return true;
3433}
3434
3435namespace {
3436  /// A helper class to unwrap a type down to a function for the
3437  /// purposes of applying attributes there.
3438  ///
3439  /// Use:
3440  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
3441  ///   if (unwrapped.isFunctionType()) {
3442  ///     const FunctionType *fn = unwrapped.get();
3443  ///     // change fn somehow
3444  ///     T = unwrapped.wrap(fn);
3445  ///   }
3446  struct FunctionTypeUnwrapper {
3447    enum WrapKind {
3448      Desugar,
3449      Parens,
3450      Pointer,
3451      BlockPointer,
3452      Reference,
3453      MemberPointer
3454    };
3455
3456    QualType Original;
3457    const FunctionType *Fn;
3458    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
3459
3460    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
3461      while (true) {
3462        const Type *Ty = T.getTypePtr();
3463        if (isa<FunctionType>(Ty)) {
3464          Fn = cast<FunctionType>(Ty);
3465          return;
3466        } else if (isa<ParenType>(Ty)) {
3467          T = cast<ParenType>(Ty)->getInnerType();
3468          Stack.push_back(Parens);
3469        } else if (isa<PointerType>(Ty)) {
3470          T = cast<PointerType>(Ty)->getPointeeType();
3471          Stack.push_back(Pointer);
3472        } else if (isa<BlockPointerType>(Ty)) {
3473          T = cast<BlockPointerType>(Ty)->getPointeeType();
3474          Stack.push_back(BlockPointer);
3475        } else if (isa<MemberPointerType>(Ty)) {
3476          T = cast<MemberPointerType>(Ty)->getPointeeType();
3477          Stack.push_back(MemberPointer);
3478        } else if (isa<ReferenceType>(Ty)) {
3479          T = cast<ReferenceType>(Ty)->getPointeeType();
3480          Stack.push_back(Reference);
3481        } else {
3482          const Type *DTy = Ty->getUnqualifiedDesugaredType();
3483          if (Ty == DTy) {
3484            Fn = 0;
3485            return;
3486          }
3487
3488          T = QualType(DTy, 0);
3489          Stack.push_back(Desugar);
3490        }
3491      }
3492    }
3493
3494    bool isFunctionType() const { return (Fn != 0); }
3495    const FunctionType *get() const { return Fn; }
3496
3497    QualType wrap(Sema &S, const FunctionType *New) {
3498      // If T wasn't modified from the unwrapped type, do nothing.
3499      if (New == get()) return Original;
3500
3501      Fn = New;
3502      return wrap(S.Context, Original, 0);
3503    }
3504
3505  private:
3506    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
3507      if (I == Stack.size())
3508        return C.getQualifiedType(Fn, Old.getQualifiers());
3509
3510      // Build up the inner type, applying the qualifiers from the old
3511      // type to the new type.
3512      SplitQualType SplitOld = Old.split();
3513
3514      // As a special case, tail-recurse if there are no qualifiers.
3515      if (SplitOld.second.empty())
3516        return wrap(C, SplitOld.first, I);
3517      return C.getQualifiedType(wrap(C, SplitOld.first, I), SplitOld.second);
3518    }
3519
3520    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
3521      if (I == Stack.size()) return QualType(Fn, 0);
3522
3523      switch (static_cast<WrapKind>(Stack[I++])) {
3524      case Desugar:
3525        // This is the point at which we potentially lose source
3526        // information.
3527        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
3528
3529      case Parens: {
3530        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
3531        return C.getParenType(New);
3532      }
3533
3534      case Pointer: {
3535        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
3536        return C.getPointerType(New);
3537      }
3538
3539      case BlockPointer: {
3540        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
3541        return C.getBlockPointerType(New);
3542      }
3543
3544      case MemberPointer: {
3545        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
3546        QualType New = wrap(C, OldMPT->getPointeeType(), I);
3547        return C.getMemberPointerType(New, OldMPT->getClass());
3548      }
3549
3550      case Reference: {
3551        const ReferenceType *OldRef = cast<ReferenceType>(Old);
3552        QualType New = wrap(C, OldRef->getPointeeType(), I);
3553        if (isa<LValueReferenceType>(OldRef))
3554          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
3555        else
3556          return C.getRValueReferenceType(New);
3557      }
3558      }
3559
3560      llvm_unreachable("unknown wrapping kind");
3561      return QualType();
3562    }
3563  };
3564}
3565
3566/// Process an individual function attribute.  Returns true to
3567/// indicate that the attribute was handled, false if it wasn't.
3568static bool handleFunctionTypeAttr(TypeProcessingState &state,
3569                                   AttributeList &attr,
3570                                   QualType &type) {
3571  Sema &S = state.getSema();
3572
3573  FunctionTypeUnwrapper unwrapped(S, type);
3574
3575  if (attr.getKind() == AttributeList::AT_noreturn) {
3576    if (S.CheckNoReturnAttr(attr))
3577      return true;
3578
3579    // Delay if this is not a function type.
3580    if (!unwrapped.isFunctionType())
3581      return false;
3582
3583    // Otherwise we can process right away.
3584    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
3585    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3586    return true;
3587  }
3588
3589  // ns_returns_retained is not always a type attribute, but if we got
3590  // here, we're treating it as one right now.
3591  if (attr.getKind() == AttributeList::AT_ns_returns_retained) {
3592    assert(S.getLangOptions().ObjCAutoRefCount &&
3593           "ns_returns_retained treated as type attribute in non-ARC");
3594    if (attr.getNumArgs()) return true;
3595
3596    // Delay if this is not a function type.
3597    if (!unwrapped.isFunctionType())
3598      return false;
3599
3600    FunctionType::ExtInfo EI
3601      = unwrapped.get()->getExtInfo().withProducesResult(true);
3602    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3603    return true;
3604  }
3605
3606  if (attr.getKind() == AttributeList::AT_regparm) {
3607    unsigned value;
3608    if (S.CheckRegparmAttr(attr, value))
3609      return true;
3610
3611    // Delay if this is not a function type.
3612    if (!unwrapped.isFunctionType())
3613      return false;
3614
3615    // Diagnose regparm with fastcall.
3616    const FunctionType *fn = unwrapped.get();
3617    CallingConv CC = fn->getCallConv();
3618    if (CC == CC_X86FastCall) {
3619      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3620        << FunctionType::getNameForCallConv(CC)
3621        << "regparm";
3622      attr.setInvalid();
3623      return true;
3624    }
3625
3626    FunctionType::ExtInfo EI =
3627      unwrapped.get()->getExtInfo().withRegParm(value);
3628    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3629    return true;
3630  }
3631
3632  // Otherwise, a calling convention.
3633  CallingConv CC;
3634  if (S.CheckCallingConvAttr(attr, CC))
3635    return true;
3636
3637  // Delay if the type didn't work out to a function.
3638  if (!unwrapped.isFunctionType()) return false;
3639
3640  const FunctionType *fn = unwrapped.get();
3641  CallingConv CCOld = fn->getCallConv();
3642  if (S.Context.getCanonicalCallConv(CC) ==
3643      S.Context.getCanonicalCallConv(CCOld)) {
3644    FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
3645    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3646    return true;
3647  }
3648
3649  if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
3650    // Should we diagnose reapplications of the same convention?
3651    S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3652      << FunctionType::getNameForCallConv(CC)
3653      << FunctionType::getNameForCallConv(CCOld);
3654    attr.setInvalid();
3655    return true;
3656  }
3657
3658  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
3659  if (CC == CC_X86FastCall) {
3660    if (isa<FunctionNoProtoType>(fn)) {
3661      S.Diag(attr.getLoc(), diag::err_cconv_knr)
3662        << FunctionType::getNameForCallConv(CC);
3663      attr.setInvalid();
3664      return true;
3665    }
3666
3667    const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
3668    if (FnP->isVariadic()) {
3669      S.Diag(attr.getLoc(), diag::err_cconv_varargs)
3670        << FunctionType::getNameForCallConv(CC);
3671      attr.setInvalid();
3672      return true;
3673    }
3674
3675    // Also diagnose fastcall with regparm.
3676    if (fn->getHasRegParm()) {
3677      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3678        << "regparm"
3679        << FunctionType::getNameForCallConv(CC);
3680      attr.setInvalid();
3681      return true;
3682    }
3683  }
3684
3685  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
3686  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3687  return true;
3688}
3689
3690/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
3691static void HandleOpenCLImageAccessAttribute(QualType& CurType,
3692                                             const AttributeList &Attr,
3693                                             Sema &S) {
3694  // Check the attribute arguments.
3695  if (Attr.getNumArgs() != 1) {
3696    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3697    Attr.setInvalid();
3698    return;
3699  }
3700  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3701  llvm::APSInt arg(32);
3702  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3703      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
3704    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3705      << "opencl_image_access" << sizeExpr->getSourceRange();
3706    Attr.setInvalid();
3707    return;
3708  }
3709  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
3710  switch (iarg) {
3711  case CLIA_read_only:
3712  case CLIA_write_only:
3713  case CLIA_read_write:
3714    // Implemented in a separate patch
3715    break;
3716  default:
3717    // Implemented in a separate patch
3718    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3719      << sizeExpr->getSourceRange();
3720    Attr.setInvalid();
3721    break;
3722  }
3723}
3724
3725/// HandleVectorSizeAttribute - this attribute is only applicable to integral
3726/// and float scalars, although arrays, pointers, and function return values are
3727/// allowed in conjunction with this construct. Aggregates with this attribute
3728/// are invalid, even if they are of the same size as a corresponding scalar.
3729/// The raw attribute should contain precisely 1 argument, the vector size for
3730/// the variable, measured in bytes. If curType and rawAttr are well formed,
3731/// this routine will return a new vector type.
3732static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
3733                                 Sema &S) {
3734  // Check the attribute arguments.
3735  if (Attr.getNumArgs() != 1) {
3736    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3737    Attr.setInvalid();
3738    return;
3739  }
3740  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3741  llvm::APSInt vecSize(32);
3742  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3743      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
3744    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3745      << "vector_size" << sizeExpr->getSourceRange();
3746    Attr.setInvalid();
3747    return;
3748  }
3749  // the base type must be integer or float, and can't already be a vector.
3750  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
3751    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
3752    Attr.setInvalid();
3753    return;
3754  }
3755  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3756  // vecSize is specified in bytes - convert to bits.
3757  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
3758
3759  // the vector size needs to be an integral multiple of the type size.
3760  if (vectorSize % typeSize) {
3761    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3762      << sizeExpr->getSourceRange();
3763    Attr.setInvalid();
3764    return;
3765  }
3766  if (vectorSize == 0) {
3767    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
3768      << sizeExpr->getSourceRange();
3769    Attr.setInvalid();
3770    return;
3771  }
3772
3773  // Success! Instantiate the vector type, the number of elements is > 0, and
3774  // not required to be a power of 2, unlike GCC.
3775  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
3776                                    VectorType::GenericVector);
3777}
3778
3779/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
3780/// a type.
3781static void HandleExtVectorTypeAttr(QualType &CurType,
3782                                    const AttributeList &Attr,
3783                                    Sema &S) {
3784  Expr *sizeExpr;
3785
3786  // Special case where the argument is a template id.
3787  if (Attr.getParameterName()) {
3788    CXXScopeSpec SS;
3789    UnqualifiedId id;
3790    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
3791
3792    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, id, false,
3793                                          false);
3794    if (Size.isInvalid())
3795      return;
3796
3797    sizeExpr = Size.get();
3798  } else {
3799    // check the attribute arguments.
3800    if (Attr.getNumArgs() != 1) {
3801      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3802      return;
3803    }
3804    sizeExpr = Attr.getArg(0);
3805  }
3806
3807  // Create the vector type.
3808  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
3809  if (!T.isNull())
3810    CurType = T;
3811}
3812
3813/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
3814/// "neon_polyvector_type" attributes are used to create vector types that
3815/// are mangled according to ARM's ABI.  Otherwise, these types are identical
3816/// to those created with the "vector_size" attribute.  Unlike "vector_size"
3817/// the argument to these Neon attributes is the number of vector elements,
3818/// not the vector size in bytes.  The vector width and element type must
3819/// match one of the standard Neon vector types.
3820static void HandleNeonVectorTypeAttr(QualType& CurType,
3821                                     const AttributeList &Attr, Sema &S,
3822                                     VectorType::VectorKind VecKind,
3823                                     const char *AttrName) {
3824  // Check the attribute arguments.
3825  if (Attr.getNumArgs() != 1) {
3826    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3827    Attr.setInvalid();
3828    return;
3829  }
3830  // The number of elements must be an ICE.
3831  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
3832  llvm::APSInt numEltsInt(32);
3833  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
3834      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
3835    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3836      << AttrName << numEltsExpr->getSourceRange();
3837    Attr.setInvalid();
3838    return;
3839  }
3840  // Only certain element types are supported for Neon vectors.
3841  const BuiltinType* BTy = CurType->getAs<BuiltinType>();
3842  if (!BTy ||
3843      (VecKind == VectorType::NeonPolyVector &&
3844       BTy->getKind() != BuiltinType::SChar &&
3845       BTy->getKind() != BuiltinType::Short) ||
3846      (BTy->getKind() != BuiltinType::SChar &&
3847       BTy->getKind() != BuiltinType::UChar &&
3848       BTy->getKind() != BuiltinType::Short &&
3849       BTy->getKind() != BuiltinType::UShort &&
3850       BTy->getKind() != BuiltinType::Int &&
3851       BTy->getKind() != BuiltinType::UInt &&
3852       BTy->getKind() != BuiltinType::LongLong &&
3853       BTy->getKind() != BuiltinType::ULongLong &&
3854       BTy->getKind() != BuiltinType::Float)) {
3855    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
3856    Attr.setInvalid();
3857    return;
3858  }
3859  // The total size of the vector must be 64 or 128 bits.
3860  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3861  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
3862  unsigned vecSize = typeSize * numElts;
3863  if (vecSize != 64 && vecSize != 128) {
3864    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
3865    Attr.setInvalid();
3866    return;
3867  }
3868
3869  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
3870}
3871
3872static void processTypeAttrs(TypeProcessingState &state, QualType &type,
3873                             bool isDeclSpec, AttributeList *attrs) {
3874  // Scan through and apply attributes to this type where it makes sense.  Some
3875  // attributes (such as __address_space__, __vector_size__, etc) apply to the
3876  // type, but others can be present in the type specifiers even though they
3877  // apply to the decl.  Here we apply type attributes and ignore the rest.
3878
3879  AttributeList *next;
3880  do {
3881    AttributeList &attr = *attrs;
3882    next = attr.getNext();
3883
3884    // Skip attributes that were marked to be invalid.
3885    if (attr.isInvalid())
3886      continue;
3887
3888    // If this is an attribute we can handle, do so now,
3889    // otherwise, add it to the FnAttrs list for rechaining.
3890    switch (attr.getKind()) {
3891    default: break;
3892
3893    case AttributeList::AT_may_alias:
3894      // FIXME: This attribute needs to actually be handled, but if we ignore
3895      // it it breaks large amounts of Linux software.
3896      attr.setUsedAsTypeAttr();
3897      break;
3898    case AttributeList::AT_address_space:
3899      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
3900      attr.setUsedAsTypeAttr();
3901      break;
3902    OBJC_POINTER_TYPE_ATTRS_CASELIST:
3903      if (!handleObjCPointerTypeAttr(state, attr, type))
3904        distributeObjCPointerTypeAttr(state, attr, type);
3905      attr.setUsedAsTypeAttr();
3906      break;
3907    case AttributeList::AT_vector_size:
3908      HandleVectorSizeAttr(type, attr, state.getSema());
3909      attr.setUsedAsTypeAttr();
3910      break;
3911    case AttributeList::AT_ext_vector_type:
3912      if (state.getDeclarator().getDeclSpec().getStorageClassSpec()
3913            != DeclSpec::SCS_typedef)
3914        HandleExtVectorTypeAttr(type, attr, state.getSema());
3915      attr.setUsedAsTypeAttr();
3916      break;
3917    case AttributeList::AT_neon_vector_type:
3918      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
3919                               VectorType::NeonVector, "neon_vector_type");
3920      attr.setUsedAsTypeAttr();
3921      break;
3922    case AttributeList::AT_neon_polyvector_type:
3923      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
3924                               VectorType::NeonPolyVector,
3925                               "neon_polyvector_type");
3926      attr.setUsedAsTypeAttr();
3927      break;
3928    case AttributeList::AT_opencl_image_access:
3929      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
3930      attr.setUsedAsTypeAttr();
3931      break;
3932
3933    case AttributeList::AT_ns_returns_retained:
3934      if (!state.getSema().getLangOptions().ObjCAutoRefCount)
3935	break;
3936      // fallthrough into the function attrs
3937
3938    FUNCTION_TYPE_ATTRS_CASELIST:
3939      attr.setUsedAsTypeAttr();
3940
3941      // Never process function type attributes as part of the
3942      // declaration-specifiers.
3943      if (isDeclSpec)
3944        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
3945
3946      // Otherwise, handle the possible delays.
3947      else if (!handleFunctionTypeAttr(state, attr, type))
3948        distributeFunctionTypeAttr(state, attr, type);
3949      break;
3950    }
3951  } while ((attrs = next));
3952}
3953
3954/// \brief Ensure that the type of the given expression is complete.
3955///
3956/// This routine checks whether the expression \p E has a complete type. If the
3957/// expression refers to an instantiable construct, that instantiation is
3958/// performed as needed to complete its type. Furthermore
3959/// Sema::RequireCompleteType is called for the expression's type (or in the
3960/// case of a reference type, the referred-to type).
3961///
3962/// \param E The expression whose type is required to be complete.
3963/// \param PD The partial diagnostic that will be printed out if the type cannot
3964/// be completed.
3965///
3966/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
3967/// otherwise.
3968bool Sema::RequireCompleteExprType(Expr *E, const PartialDiagnostic &PD,
3969                                   std::pair<SourceLocation,
3970                                             PartialDiagnostic> Note) {
3971  QualType T = E->getType();
3972
3973  // Fast path the case where the type is already complete.
3974  if (!T->isIncompleteType())
3975    return false;
3976
3977  // Incomplete array types may be completed by the initializer attached to
3978  // their definitions. For static data members of class templates we need to
3979  // instantiate the definition to get this initializer and complete the type.
3980  if (T->isIncompleteArrayType()) {
3981    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3982      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3983        if (Var->isStaticDataMember() &&
3984            Var->getInstantiatedFromStaticDataMember()) {
3985
3986          MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
3987          assert(MSInfo && "Missing member specialization information?");
3988          if (MSInfo->getTemplateSpecializationKind()
3989                != TSK_ExplicitSpecialization) {
3990            // If we don't already have a point of instantiation, this is it.
3991            if (MSInfo->getPointOfInstantiation().isInvalid()) {
3992              MSInfo->setPointOfInstantiation(E->getLocStart());
3993
3994              // This is a modification of an existing AST node. Notify
3995              // listeners.
3996              if (ASTMutationListener *L = getASTMutationListener())
3997                L->StaticDataMemberInstantiated(Var);
3998            }
3999
4000            InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
4001
4002            // Update the type to the newly instantiated definition's type both
4003            // here and within the expression.
4004            if (VarDecl *Def = Var->getDefinition()) {
4005              DRE->setDecl(Def);
4006              T = Def->getType();
4007              DRE->setType(T);
4008              E->setType(T);
4009            }
4010          }
4011
4012          // We still go on to try to complete the type independently, as it
4013          // may also require instantiations or diagnostics if it remains
4014          // incomplete.
4015        }
4016      }
4017    }
4018  }
4019
4020  // FIXME: Are there other cases which require instantiating something other
4021  // than the type to complete the type of an expression?
4022
4023  // Look through reference types and complete the referred type.
4024  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
4025    T = Ref->getPointeeType();
4026
4027  return RequireCompleteType(E->getExprLoc(), T, PD, Note);
4028}
4029
4030/// @brief Ensure that the type T is a complete type.
4031///
4032/// This routine checks whether the type @p T is complete in any
4033/// context where a complete type is required. If @p T is a complete
4034/// type, returns false. If @p T is a class template specialization,
4035/// this routine then attempts to perform class template
4036/// instantiation. If instantiation fails, or if @p T is incomplete
4037/// and cannot be completed, issues the diagnostic @p diag (giving it
4038/// the type @p T) and returns true.
4039///
4040/// @param Loc  The location in the source that the incomplete type
4041/// diagnostic should refer to.
4042///
4043/// @param T  The type that this routine is examining for completeness.
4044///
4045/// @param PD The partial diagnostic that will be printed out if T is not a
4046/// complete type.
4047///
4048/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
4049/// @c false otherwise.
4050bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4051                               const PartialDiagnostic &PD,
4052                               std::pair<SourceLocation,
4053                                         PartialDiagnostic> Note) {
4054  unsigned diag = PD.getDiagID();
4055
4056  // FIXME: Add this assertion to make sure we always get instantiation points.
4057  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
4058  // FIXME: Add this assertion to help us flush out problems with
4059  // checking for dependent types and type-dependent expressions.
4060  //
4061  //  assert(!T->isDependentType() &&
4062  //         "Can't ask whether a dependent type is complete");
4063
4064  // If we have a complete type, we're done.
4065  if (!T->isIncompleteType())
4066    return false;
4067
4068  // If we have a class template specialization or a class member of a
4069  // class template specialization, or an array with known size of such,
4070  // try to instantiate it.
4071  QualType MaybeTemplate = T;
4072  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
4073    MaybeTemplate = Array->getElementType();
4074  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
4075    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
4076          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
4077      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
4078        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
4079                                                      TSK_ImplicitInstantiation,
4080                                                      /*Complain=*/diag != 0);
4081    } else if (CXXRecordDecl *Rec
4082                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
4083      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
4084        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
4085        assert(MSInfo && "Missing member specialization information?");
4086        // This record was instantiated from a class within a template.
4087        if (MSInfo->getTemplateSpecializationKind()
4088                                               != TSK_ExplicitSpecialization)
4089          return InstantiateClass(Loc, Rec, Pattern,
4090                                  getTemplateInstantiationArgs(Rec),
4091                                  TSK_ImplicitInstantiation,
4092                                  /*Complain=*/diag != 0);
4093      }
4094    }
4095  }
4096
4097  if (diag == 0)
4098    return true;
4099
4100  const TagType *Tag = T->getAs<TagType>();
4101
4102  // Avoid diagnosing invalid decls as incomplete.
4103  if (Tag && Tag->getDecl()->isInvalidDecl())
4104    return true;
4105
4106  // Give the external AST source a chance to complete the type.
4107  if (Tag && Tag->getDecl()->hasExternalLexicalStorage()) {
4108    Context.getExternalSource()->CompleteType(Tag->getDecl());
4109    if (!Tag->isIncompleteType())
4110      return false;
4111  }
4112
4113  // We have an incomplete type. Produce a diagnostic.
4114  Diag(Loc, PD) << T;
4115
4116  // If we have a note, produce it.
4117  if (!Note.first.isInvalid())
4118    Diag(Note.first, Note.second);
4119
4120  // If the type was a forward declaration of a class/struct/union
4121  // type, produce a note.
4122  if (Tag && !Tag->getDecl()->isInvalidDecl())
4123    Diag(Tag->getDecl()->getLocation(),
4124         Tag->isBeingDefined() ? diag::note_type_being_defined
4125                               : diag::note_forward_declaration)
4126        << QualType(Tag, 0);
4127
4128  return true;
4129}
4130
4131bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4132                               const PartialDiagnostic &PD) {
4133  return RequireCompleteType(Loc, T, PD,
4134                             std::make_pair(SourceLocation(), PDiag(0)));
4135}
4136
4137bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4138                               unsigned DiagID) {
4139  return RequireCompleteType(Loc, T, PDiag(DiagID),
4140                             std::make_pair(SourceLocation(), PDiag(0)));
4141}
4142
4143/// @brief Ensure that the type T is a literal type.
4144///
4145/// This routine checks whether the type @p T is a literal type. If @p T is an
4146/// incomplete type, an attempt is made to complete it. If @p T is a literal
4147/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
4148/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
4149/// it the type @p T), along with notes explaining why the type is not a
4150/// literal type, and returns true.
4151///
4152/// @param Loc  The location in the source that the non-literal type
4153/// diagnostic should refer to.
4154///
4155/// @param T  The type that this routine is examining for literalness.
4156///
4157/// @param PD The partial diagnostic that will be printed out if T is not a
4158/// literal type.
4159///
4160/// @param AllowIncompleteType If true, an incomplete type will be considered
4161/// acceptable.
4162///
4163/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
4164/// @c false otherwise.
4165bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
4166                              const PartialDiagnostic &PD,
4167                              bool AllowIncompleteType) {
4168  assert(!T->isDependentType() && "type should not be dependent");
4169
4170  bool Incomplete = RequireCompleteType(Loc, T, 0);
4171  if (T->isLiteralType() || (AllowIncompleteType && Incomplete))
4172    return false;
4173
4174  if (PD.getDiagID() == 0)
4175    return true;
4176
4177  Diag(Loc, PD) << T;
4178
4179  if (T->isVariableArrayType())
4180    return true;
4181
4182  const RecordType *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>();
4183  if (!RT)
4184    return true;
4185
4186  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4187
4188  // If the class has virtual base classes, then it's not an aggregate, and
4189  // cannot have any constexpr constructors, so is non-literal. This is better
4190  // to diagnose than the resulting absence of constexpr constructors.
4191  if (RD->getNumVBases()) {
4192    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
4193      << RD->isStruct() << RD->getNumVBases();
4194    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
4195           E = RD->vbases_end(); I != E; ++I)
4196      Diag(I->getSourceRange().getBegin(),
4197           diag::note_constexpr_virtual_base_here) << I->getSourceRange();
4198  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor()) {
4199    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
4200
4201    switch (RD->getTemplateSpecializationKind()) {
4202    case TSK_Undeclared:
4203    case TSK_ExplicitSpecialization:
4204      break;
4205
4206    case TSK_ImplicitInstantiation:
4207    case TSK_ExplicitInstantiationDeclaration:
4208    case TSK_ExplicitInstantiationDefinition:
4209      // If the base template had constexpr constructors which were
4210      // instantiated as non-constexpr constructors, explain why.
4211      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
4212           E = RD->ctor_end(); I != E; ++I) {
4213        if ((*I)->isCopyConstructor() || (*I)->isMoveConstructor())
4214          continue;
4215
4216        FunctionDecl *Base = (*I)->getInstantiatedFromMemberFunction();
4217        if (Base && Base->isConstexpr())
4218          CheckConstexprFunctionDecl(*I, CCK_NoteNonConstexprInstantiation);
4219      }
4220    }
4221  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
4222    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4223         E = RD->bases_end(); I != E; ++I) {
4224      if (!I->getType()->isLiteralType()) {
4225        Diag(I->getSourceRange().getBegin(),
4226             diag::note_non_literal_base_class)
4227          << RD << I->getType() << I->getSourceRange();
4228        return true;
4229      }
4230    }
4231    for (CXXRecordDecl::field_iterator I = RD->field_begin(),
4232         E = RD->field_end(); I != E; ++I) {
4233      if (!(*I)->getType()->isLiteralType()) {
4234        Diag((*I)->getLocation(), diag::note_non_literal_field)
4235          << RD << (*I) << (*I)->getType();
4236        return true;
4237      } else if ((*I)->isMutable()) {
4238        Diag((*I)->getLocation(), diag::note_non_literal_mutable_field) << RD;
4239        return true;
4240      }
4241    }
4242  } else if (!RD->hasTrivialDestructor()) {
4243    // All fields and bases are of literal types, so have trivial destructors.
4244    // If this class's destructor is non-trivial it must be user-declared.
4245    CXXDestructorDecl *Dtor = RD->getDestructor();
4246    assert(Dtor && "class has literal fields and bases but no dtor?");
4247    if (!Dtor)
4248      return true;
4249
4250    Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
4251         diag::note_non_literal_user_provided_dtor :
4252         diag::note_non_literal_nontrivial_dtor) << RD;
4253  }
4254
4255  return true;
4256}
4257
4258/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
4259/// and qualified by the nested-name-specifier contained in SS.
4260QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
4261                                 const CXXScopeSpec &SS, QualType T) {
4262  if (T.isNull())
4263    return T;
4264  NestedNameSpecifier *NNS;
4265  if (SS.isValid())
4266    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4267  else {
4268    if (Keyword == ETK_None)
4269      return T;
4270    NNS = 0;
4271  }
4272  return Context.getElaboratedType(Keyword, NNS, T);
4273}
4274
4275QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
4276  ExprResult ER = CheckPlaceholderExpr(E);
4277  if (ER.isInvalid()) return QualType();
4278  E = ER.take();
4279
4280  if (!E->isTypeDependent()) {
4281    QualType T = E->getType();
4282    if (const TagType *TT = T->getAs<TagType>())
4283      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
4284  }
4285  return Context.getTypeOfExprType(E);
4286}
4287
4288QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
4289  ExprResult ER = CheckPlaceholderExpr(E);
4290  if (ER.isInvalid()) return QualType();
4291  E = ER.take();
4292
4293  return Context.getDecltypeType(E);
4294}
4295
4296QualType Sema::BuildUnaryTransformType(QualType BaseType,
4297                                       UnaryTransformType::UTTKind UKind,
4298                                       SourceLocation Loc) {
4299  switch (UKind) {
4300  case UnaryTransformType::EnumUnderlyingType:
4301    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
4302      Diag(Loc, diag::err_only_enums_have_underlying_types);
4303      return QualType();
4304    } else {
4305      QualType Underlying = BaseType;
4306      if (!BaseType->isDependentType()) {
4307        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
4308        assert(ED && "EnumType has no EnumDecl");
4309        DiagnoseUseOfDecl(ED, Loc);
4310        Underlying = ED->getIntegerType();
4311      }
4312      assert(!Underlying.isNull());
4313      return Context.getUnaryTransformType(BaseType, Underlying,
4314                                        UnaryTransformType::EnumUnderlyingType);
4315    }
4316  }
4317  llvm_unreachable("unknown unary transform type");
4318}
4319
4320QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
4321  if (!T->isDependentType()) {
4322    int DisallowedKind = -1;
4323    if (T->isIncompleteType())
4324      // FIXME: It isn't entirely clear whether incomplete atomic types
4325      // are allowed or not; for simplicity, ban them for the moment.
4326      DisallowedKind = 0;
4327    else if (T->isArrayType())
4328      DisallowedKind = 1;
4329    else if (T->isFunctionType())
4330      DisallowedKind = 2;
4331    else if (T->isReferenceType())
4332      DisallowedKind = 3;
4333    else if (T->isAtomicType())
4334      DisallowedKind = 4;
4335    else if (T.hasQualifiers())
4336      DisallowedKind = 5;
4337    else if (!T.isTriviallyCopyableType(Context))
4338      // Some other non-trivially-copyable type (probably a C++ class)
4339      DisallowedKind = 6;
4340
4341    if (DisallowedKind != -1) {
4342      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
4343      return QualType();
4344    }
4345
4346    // FIXME: Do we need any handling for ARC here?
4347  }
4348
4349  // Build the pointer type.
4350  return Context.getAtomicType(T);
4351}
4352