SemaType.cpp revision ea2ff6c133b6ea3b3bb6a3164f24e15dff7e1368
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/TypeLocVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26using namespace clang;
27
28#include <iostream>
29
30/// \brief Perform adjustment on the parameter type of a function.
31///
32/// This routine adjusts the given parameter type @p T to the actual
33/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
34/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
35QualType Sema::adjustParameterType(QualType T) {
36  // C99 6.7.5.3p7:
37  //   A declaration of a parameter as "array of type" shall be
38  //   adjusted to "qualified pointer to type", where the type
39  //   qualifiers (if any) are those specified within the [ and ] of
40  //   the array type derivation.
41  if (T->isArrayType())
42    return Context.getArrayDecayedType(T);
43
44  // C99 6.7.5.3p8:
45  //   A declaration of a parameter as "function returning type"
46  //   shall be adjusted to "pointer to function returning type", as
47  //   in 6.3.2.1.
48  if (T->isFunctionType())
49    return Context.getPointerType(T);
50
51  return T;
52}
53
54
55
56/// isOmittedBlockReturnType - Return true if this declarator is missing a
57/// return type because this is a omitted return type on a block literal.
58static bool isOmittedBlockReturnType(const Declarator &D) {
59  if (D.getContext() != Declarator::BlockLiteralContext ||
60      D.getDeclSpec().hasTypeSpecifier())
61    return false;
62
63  if (D.getNumTypeObjects() == 0)
64    return true;   // ^{ ... }
65
66  if (D.getNumTypeObjects() == 1 &&
67      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
68    return true;   // ^(int X, float Y) { ... }
69
70  return false;
71}
72
73typedef std::pair<const AttributeList*,QualType> DelayedAttribute;
74typedef llvm::SmallVectorImpl<DelayedAttribute> DelayedAttributeSet;
75
76static void ProcessTypeAttributeList(Sema &S, QualType &Type,
77                                     bool IsDeclSpec,
78                                     const AttributeList *Attrs,
79                                     DelayedAttributeSet &DelayedFnAttrs);
80static bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr);
81
82static void ProcessDelayedFnAttrs(Sema &S, QualType &Type,
83                                  DelayedAttributeSet &Attrs) {
84  for (DelayedAttributeSet::iterator I = Attrs.begin(),
85         E = Attrs.end(); I != E; ++I)
86    if (ProcessFnAttr(S, Type, *I->first)) {
87      S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
88        << I->first->getName() << I->second;
89      // Avoid any further processing of this attribute.
90      I->first->setInvalid();
91    }
92  Attrs.clear();
93}
94
95static void DiagnoseDelayedFnAttrs(Sema &S, DelayedAttributeSet &Attrs) {
96  for (DelayedAttributeSet::iterator I = Attrs.begin(),
97         E = Attrs.end(); I != E; ++I) {
98    S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
99      << I->first->getName() << I->second;
100    // Avoid any further processing of this attribute.
101    I->first->setInvalid();
102  }
103  Attrs.clear();
104}
105
106/// \brief Convert the specified declspec to the appropriate type
107/// object.
108/// \param D  the declarator containing the declaration specifier.
109/// \returns The type described by the declaration specifiers.  This function
110/// never returns null.
111static QualType ConvertDeclSpecToType(Sema &TheSema,
112                                      Declarator &TheDeclarator,
113                                      DelayedAttributeSet &Delayed) {
114  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
115  // checking.
116  const DeclSpec &DS = TheDeclarator.getDeclSpec();
117  SourceLocation DeclLoc = TheDeclarator.getIdentifierLoc();
118  if (DeclLoc.isInvalid())
119    DeclLoc = DS.getSourceRange().getBegin();
120
121  ASTContext &Context = TheSema.Context;
122
123  QualType Result;
124  switch (DS.getTypeSpecType()) {
125  case DeclSpec::TST_void:
126    Result = Context.VoidTy;
127    break;
128  case DeclSpec::TST_char:
129    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
130      Result = Context.CharTy;
131    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
132      Result = Context.SignedCharTy;
133    else {
134      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
135             "Unknown TSS value");
136      Result = Context.UnsignedCharTy;
137    }
138    break;
139  case DeclSpec::TST_wchar:
140    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
141      Result = Context.WCharTy;
142    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
143      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
144        << DS.getSpecifierName(DS.getTypeSpecType());
145      Result = Context.getSignedWCharType();
146    } else {
147      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
148        "Unknown TSS value");
149      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
150        << DS.getSpecifierName(DS.getTypeSpecType());
151      Result = Context.getUnsignedWCharType();
152    }
153    break;
154  case DeclSpec::TST_char16:
155      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
156        "Unknown TSS value");
157      Result = Context.Char16Ty;
158    break;
159  case DeclSpec::TST_char32:
160      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
161        "Unknown TSS value");
162      Result = Context.Char32Ty;
163    break;
164  case DeclSpec::TST_unspecified:
165    // "<proto1,proto2>" is an objc qualified ID with a missing id.
166    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
167      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
168                                         (ObjCProtocolDecl**)PQ,
169                                         DS.getNumProtocolQualifiers());
170      Result = Context.getObjCObjectPointerType(Result);
171      break;
172    }
173
174    // If this is a missing declspec in a block literal return context, then it
175    // is inferred from the return statements inside the block.
176    if (isOmittedBlockReturnType(TheDeclarator)) {
177      Result = Context.DependentTy;
178      break;
179    }
180
181    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
182    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
183    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
184    // Note that the one exception to this is function definitions, which are
185    // allowed to be completely missing a declspec.  This is handled in the
186    // parser already though by it pretending to have seen an 'int' in this
187    // case.
188    if (TheSema.getLangOptions().ImplicitInt) {
189      // In C89 mode, we only warn if there is a completely missing declspec
190      // when one is not allowed.
191      if (DS.isEmpty()) {
192        TheSema.Diag(DeclLoc, diag::ext_missing_declspec)
193          << DS.getSourceRange()
194        << FixItHint::CreateInsertion(DS.getSourceRange().getBegin(), "int");
195      }
196    } else if (!DS.hasTypeSpecifier()) {
197      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
198      // "At least one type specifier shall be given in the declaration
199      // specifiers in each declaration, and in the specifier-qualifier list in
200      // each struct declaration and type name."
201      // FIXME: Does Microsoft really have the implicit int extension in C++?
202      if (TheSema.getLangOptions().CPlusPlus &&
203          !TheSema.getLangOptions().Microsoft) {
204        TheSema.Diag(DeclLoc, diag::err_missing_type_specifier)
205          << DS.getSourceRange();
206
207        // When this occurs in C++ code, often something is very broken with the
208        // value being declared, poison it as invalid so we don't get chains of
209        // errors.
210        TheDeclarator.setInvalidType(true);
211      } else {
212        TheSema.Diag(DeclLoc, diag::ext_missing_type_specifier)
213          << DS.getSourceRange();
214      }
215    }
216
217    // FALL THROUGH.
218  case DeclSpec::TST_int: {
219    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
220      switch (DS.getTypeSpecWidth()) {
221      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
222      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
223      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
224      case DeclSpec::TSW_longlong:
225        Result = Context.LongLongTy;
226
227        // long long is a C99 feature.
228        if (!TheSema.getLangOptions().C99 &&
229            !TheSema.getLangOptions().CPlusPlus0x)
230          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
231        break;
232      }
233    } else {
234      switch (DS.getTypeSpecWidth()) {
235      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
236      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
237      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
238      case DeclSpec::TSW_longlong:
239        Result = Context.UnsignedLongLongTy;
240
241        // long long is a C99 feature.
242        if (!TheSema.getLangOptions().C99 &&
243            !TheSema.getLangOptions().CPlusPlus0x)
244          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
245        break;
246      }
247    }
248    break;
249  }
250  case DeclSpec::TST_float: Result = Context.FloatTy; break;
251  case DeclSpec::TST_double:
252    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
253      Result = Context.LongDoubleTy;
254    else
255      Result = Context.DoubleTy;
256    break;
257  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
258  case DeclSpec::TST_decimal32:    // _Decimal32
259  case DeclSpec::TST_decimal64:    // _Decimal64
260  case DeclSpec::TST_decimal128:   // _Decimal128
261    TheSema.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
262    Result = Context.IntTy;
263    TheDeclarator.setInvalidType(true);
264    break;
265  case DeclSpec::TST_class:
266  case DeclSpec::TST_enum:
267  case DeclSpec::TST_union:
268  case DeclSpec::TST_struct: {
269    TypeDecl *D
270      = dyn_cast_or_null<TypeDecl>(static_cast<Decl *>(DS.getTypeRep()));
271    if (!D) {
272      // This can happen in C++ with ambiguous lookups.
273      Result = Context.IntTy;
274      TheDeclarator.setInvalidType(true);
275      break;
276    }
277
278    // If the type is deprecated or unavailable, diagnose it.
279    TheSema.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeLoc());
280
281    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
282           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
283
284    // TypeQuals handled by caller.
285    Result = Context.getTypeDeclType(D);
286
287    // In C++, make an ElaboratedType.
288    if (TheSema.getLangOptions().CPlusPlus) {
289      ElaboratedTypeKeyword Keyword
290        = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
291      Result = TheSema.getElaboratedType(Keyword, DS.getTypeSpecScope(),
292                                         Result);
293    }
294    if (D->isInvalidDecl())
295      TheDeclarator.setInvalidType(true);
296    break;
297  }
298  case DeclSpec::TST_typename: {
299    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
300           DS.getTypeSpecSign() == 0 &&
301           "Can't handle qualifiers on typedef names yet!");
302    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
303
304    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
305      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
306        // Silently drop any existing protocol qualifiers.
307        // TODO: determine whether that's the right thing to do.
308        if (ObjT->getNumProtocols())
309          Result = ObjT->getBaseType();
310
311        if (DS.getNumProtocolQualifiers())
312          Result = Context.getObjCObjectType(Result,
313                                             (ObjCProtocolDecl**) PQ,
314                                             DS.getNumProtocolQualifiers());
315      } else if (Result->isObjCIdType()) {
316        // id<protocol-list>
317        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
318                                           (ObjCProtocolDecl**) PQ,
319                                           DS.getNumProtocolQualifiers());
320        Result = Context.getObjCObjectPointerType(Result);
321      } else if (Result->isObjCClassType()) {
322        // Class<protocol-list>
323        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
324                                           (ObjCProtocolDecl**) PQ,
325                                           DS.getNumProtocolQualifiers());
326        Result = Context.getObjCObjectPointerType(Result);
327      } else {
328        TheSema.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
329          << DS.getSourceRange();
330        TheDeclarator.setInvalidType(true);
331      }
332    }
333
334    // TypeQuals handled by caller.
335    break;
336  }
337  case DeclSpec::TST_typeofType:
338    // FIXME: Preserve type source info.
339    Result = TheSema.GetTypeFromParser(DS.getTypeRep());
340    assert(!Result.isNull() && "Didn't get a type for typeof?");
341    // TypeQuals handled by caller.
342    Result = Context.getTypeOfType(Result);
343    break;
344  case DeclSpec::TST_typeofExpr: {
345    Expr *E = static_cast<Expr *>(DS.getTypeRep());
346    assert(E && "Didn't get an expression for typeof?");
347    // TypeQuals handled by caller.
348    Result = TheSema.BuildTypeofExprType(E);
349    if (Result.isNull()) {
350      Result = Context.IntTy;
351      TheDeclarator.setInvalidType(true);
352    }
353    break;
354  }
355  case DeclSpec::TST_decltype: {
356    Expr *E = static_cast<Expr *>(DS.getTypeRep());
357    assert(E && "Didn't get an expression for decltype?");
358    // TypeQuals handled by caller.
359    Result = TheSema.BuildDecltypeType(E);
360    if (Result.isNull()) {
361      Result = Context.IntTy;
362      TheDeclarator.setInvalidType(true);
363    }
364    break;
365  }
366  case DeclSpec::TST_auto: {
367    // TypeQuals handled by caller.
368    Result = Context.UndeducedAutoTy;
369    break;
370  }
371
372  case DeclSpec::TST_error:
373    Result = Context.IntTy;
374    TheDeclarator.setInvalidType(true);
375    break;
376  }
377
378  // Handle complex types.
379  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
380    if (TheSema.getLangOptions().Freestanding)
381      TheSema.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
382    Result = Context.getComplexType(Result);
383  } else if (DS.isTypeAltiVecVector()) {
384    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
385    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
386    Result = Context.getVectorType(Result, 128/typeSize, true,
387      DS.isTypeAltiVecPixel());
388  }
389
390  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
391         "FIXME: imaginary types not supported yet!");
392
393  // See if there are any attributes on the declspec that apply to the type (as
394  // opposed to the decl).
395  if (const AttributeList *AL = DS.getAttributes())
396    ProcessTypeAttributeList(TheSema, Result, true, AL, Delayed);
397
398  // Apply const/volatile/restrict qualifiers to T.
399  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
400
401    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
402    // or incomplete types shall not be restrict-qualified."  C++ also allows
403    // restrict-qualified references.
404    if (TypeQuals & DeclSpec::TQ_restrict) {
405      if (Result->isAnyPointerType() || Result->isReferenceType()) {
406        QualType EltTy;
407        if (Result->isObjCObjectPointerType())
408          EltTy = Result;
409        else
410          EltTy = Result->isPointerType() ?
411                    Result->getAs<PointerType>()->getPointeeType() :
412                    Result->getAs<ReferenceType>()->getPointeeType();
413
414        // If we have a pointer or reference, the pointee must have an object
415        // incomplete type.
416        if (!EltTy->isIncompleteOrObjectType()) {
417          TheSema.Diag(DS.getRestrictSpecLoc(),
418               diag::err_typecheck_invalid_restrict_invalid_pointee)
419            << EltTy << DS.getSourceRange();
420          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
421        }
422      } else {
423        TheSema.Diag(DS.getRestrictSpecLoc(),
424             diag::err_typecheck_invalid_restrict_not_pointer)
425          << Result << DS.getSourceRange();
426        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
427      }
428    }
429
430    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
431    // of a function type includes any type qualifiers, the behavior is
432    // undefined."
433    if (Result->isFunctionType() && TypeQuals) {
434      // Get some location to point at, either the C or V location.
435      SourceLocation Loc;
436      if (TypeQuals & DeclSpec::TQ_const)
437        Loc = DS.getConstSpecLoc();
438      else if (TypeQuals & DeclSpec::TQ_volatile)
439        Loc = DS.getVolatileSpecLoc();
440      else {
441        assert((TypeQuals & DeclSpec::TQ_restrict) &&
442               "Has CVR quals but not C, V, or R?");
443        Loc = DS.getRestrictSpecLoc();
444      }
445      TheSema.Diag(Loc, diag::warn_typecheck_function_qualifiers)
446        << Result << DS.getSourceRange();
447    }
448
449    // C++ [dcl.ref]p1:
450    //   Cv-qualified references are ill-formed except when the
451    //   cv-qualifiers are introduced through the use of a typedef
452    //   (7.1.3) or of a template type argument (14.3), in which
453    //   case the cv-qualifiers are ignored.
454    // FIXME: Shouldn't we be checking SCS_typedef here?
455    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
456        TypeQuals && Result->isReferenceType()) {
457      TypeQuals &= ~DeclSpec::TQ_const;
458      TypeQuals &= ~DeclSpec::TQ_volatile;
459    }
460
461    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
462    Result = Context.getQualifiedType(Result, Quals);
463  }
464
465  return Result;
466}
467
468static std::string getPrintableNameForEntity(DeclarationName Entity) {
469  if (Entity)
470    return Entity.getAsString();
471
472  return "type name";
473}
474
475/// \brief Build a pointer type.
476///
477/// \param T The type to which we'll be building a pointer.
478///
479/// \param Quals The cvr-qualifiers to be applied to the pointer type.
480///
481/// \param Loc The location of the entity whose type involves this
482/// pointer type or, if there is no such entity, the location of the
483/// type that will have pointer type.
484///
485/// \param Entity The name of the entity that involves the pointer
486/// type, if known.
487///
488/// \returns A suitable pointer type, if there are no
489/// errors. Otherwise, returns a NULL type.
490QualType Sema::BuildPointerType(QualType T, unsigned Quals,
491                                SourceLocation Loc, DeclarationName Entity) {
492  if (T->isReferenceType()) {
493    // C++ 8.3.2p4: There shall be no ... pointers to references ...
494    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
495      << getPrintableNameForEntity(Entity) << T;
496    return QualType();
497  }
498
499  Qualifiers Qs = Qualifiers::fromCVRMask(Quals);
500
501  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
502  // object or incomplete types shall not be restrict-qualified."
503  if (Qs.hasRestrict() && !T->isIncompleteOrObjectType()) {
504    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
505      << T;
506    Qs.removeRestrict();
507  }
508
509  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
510
511  // Build the pointer type.
512  return Context.getQualifiedType(Context.getPointerType(T), Qs);
513}
514
515/// \brief Build a reference type.
516///
517/// \param T The type to which we'll be building a reference.
518///
519/// \param CVR The cvr-qualifiers to be applied to the reference type.
520///
521/// \param Loc The location of the entity whose type involves this
522/// reference type or, if there is no such entity, the location of the
523/// type that will have reference type.
524///
525/// \param Entity The name of the entity that involves the reference
526/// type, if known.
527///
528/// \returns A suitable reference type, if there are no
529/// errors. Otherwise, returns a NULL type.
530QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
531                                  unsigned CVR, SourceLocation Loc,
532                                  DeclarationName Entity) {
533  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
534
535  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
536
537  // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
538  //   reference to a type T, and attempt to create the type "lvalue
539  //   reference to cv TD" creates the type "lvalue reference to T".
540  // We use the qualifiers (restrict or none) of the original reference,
541  // not the new ones. This is consistent with GCC.
542
543  // C++ [dcl.ref]p4: There shall be no references to references.
544  //
545  // According to C++ DR 106, references to references are only
546  // diagnosed when they are written directly (e.g., "int & &"),
547  // but not when they happen via a typedef:
548  //
549  //   typedef int& intref;
550  //   typedef intref& intref2;
551  //
552  // Parser::ParseDeclaratorInternal diagnoses the case where
553  // references are written directly; here, we handle the
554  // collapsing of references-to-references as described in C++
555  // DR 106 and amended by C++ DR 540.
556
557  // C++ [dcl.ref]p1:
558  //   A declarator that specifies the type "reference to cv void"
559  //   is ill-formed.
560  if (T->isVoidType()) {
561    Diag(Loc, diag::err_reference_to_void);
562    return QualType();
563  }
564
565  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
566  // object or incomplete types shall not be restrict-qualified."
567  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
568    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
569      << T;
570    Quals.removeRestrict();
571  }
572
573  // C++ [dcl.ref]p1:
574  //   [...] Cv-qualified references are ill-formed except when the
575  //   cv-qualifiers are introduced through the use of a typedef
576  //   (7.1.3) or of a template type argument (14.3), in which case
577  //   the cv-qualifiers are ignored.
578  //
579  // We diagnose extraneous cv-qualifiers for the non-typedef,
580  // non-template type argument case within the parser. Here, we just
581  // ignore any extraneous cv-qualifiers.
582  Quals.removeConst();
583  Quals.removeVolatile();
584
585  // Handle restrict on references.
586  if (LValueRef)
587    return Context.getQualifiedType(
588               Context.getLValueReferenceType(T, SpelledAsLValue), Quals);
589  return Context.getQualifiedType(Context.getRValueReferenceType(T), Quals);
590}
591
592/// \brief Build an array type.
593///
594/// \param T The type of each element in the array.
595///
596/// \param ASM C99 array size modifier (e.g., '*', 'static').
597///
598/// \param ArraySize Expression describing the size of the array.
599///
600/// \param Quals The cvr-qualifiers to be applied to the array's
601/// element type.
602///
603/// \param Loc The location of the entity whose type involves this
604/// array type or, if there is no such entity, the location of the
605/// type that will have array type.
606///
607/// \param Entity The name of the entity that involves the array
608/// type, if known.
609///
610/// \returns A suitable array type, if there are no errors. Otherwise,
611/// returns a NULL type.
612QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
613                              Expr *ArraySize, unsigned Quals,
614                              SourceRange Brackets, DeclarationName Entity) {
615
616  SourceLocation Loc = Brackets.getBegin();
617  if (getLangOptions().CPlusPlus) {
618    // C++ [dcl.array]p1:
619    //   T is called the array element type; this type shall not be a reference
620    //   type, the (possibly cv-qualified) type void, a function type or an
621    //   abstract class type.
622    //
623    // Note: function types are handled in the common path with C.
624    if (T->isReferenceType()) {
625      Diag(Loc, diag::err_illegal_decl_array_of_references)
626      << getPrintableNameForEntity(Entity) << T;
627      return QualType();
628    }
629
630    if (T->isVoidType()) {
631      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
632      return QualType();
633    }
634
635    if (RequireNonAbstractType(Brackets.getBegin(), T,
636                               diag::err_array_of_abstract_type))
637      return QualType();
638
639  } else {
640    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
641    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
642    if (RequireCompleteType(Loc, T,
643                            diag::err_illegal_decl_array_incomplete_type))
644      return QualType();
645  }
646
647  if (T->isFunctionType()) {
648    Diag(Loc, diag::err_illegal_decl_array_of_functions)
649      << getPrintableNameForEntity(Entity) << T;
650    return QualType();
651  }
652
653  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
654    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
655      << getPrintableNameForEntity(Entity);
656    return QualType();
657  }
658
659  if (const RecordType *EltTy = T->getAs<RecordType>()) {
660    // If the element type is a struct or union that contains a variadic
661    // array, accept it as a GNU extension: C99 6.7.2.1p2.
662    if (EltTy->getDecl()->hasFlexibleArrayMember())
663      Diag(Loc, diag::ext_flexible_array_in_array) << T;
664  } else if (T->isObjCObjectType()) {
665    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
666    return QualType();
667  }
668
669  // C99 6.7.5.2p1: The size expression shall have integer type.
670  if (ArraySize && !ArraySize->isTypeDependent() &&
671      !ArraySize->getType()->isIntegerType()) {
672    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
673      << ArraySize->getType() << ArraySize->getSourceRange();
674    ArraySize->Destroy(Context);
675    return QualType();
676  }
677  llvm::APSInt ConstVal(32);
678  if (!ArraySize) {
679    if (ASM == ArrayType::Star)
680      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
681    else
682      T = Context.getIncompleteArrayType(T, ASM, Quals);
683  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
684    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
685  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
686             (!T->isDependentType() && !T->isIncompleteType() &&
687              !T->isConstantSizeType())) {
688    // Per C99, a variable array is an array with either a non-constant
689    // size or an element type that has a non-constant-size
690    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
691  } else {
692    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
693    // have a value greater than zero.
694    if (ConstVal.isSigned() && ConstVal.isNegative()) {
695      Diag(ArraySize->getLocStart(),
696           diag::err_typecheck_negative_array_size)
697        << ArraySize->getSourceRange();
698      return QualType();
699    }
700    if (ConstVal == 0) {
701      // GCC accepts zero sized static arrays. We allow them when
702      // we're not in a SFINAE context.
703      Diag(ArraySize->getLocStart(),
704           isSFINAEContext()? diag::err_typecheck_zero_array_size
705                            : diag::ext_typecheck_zero_array_size)
706        << ArraySize->getSourceRange();
707    }
708    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
709  }
710  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
711  if (!getLangOptions().C99) {
712    if (T->isVariableArrayType()) {
713      // Prohibit the use of non-POD types in VLAs.
714      if (!T->isDependentType() &&
715          !Context.getBaseElementType(T)->isPODType()) {
716        Diag(Loc, diag::err_vla_non_pod)
717          << Context.getBaseElementType(T);
718        return QualType();
719      }
720      // Prohibit the use of VLAs during template argument deduction.
721      else if (isSFINAEContext()) {
722        Diag(Loc, diag::err_vla_in_sfinae);
723        return QualType();
724      }
725      // Just extwarn about VLAs.
726      else
727        Diag(Loc, diag::ext_vla);
728    } else if (ASM != ArrayType::Normal || Quals != 0)
729      Diag(Loc,
730           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
731                                     : diag::ext_c99_array_usage);
732  }
733
734  return T;
735}
736
737/// \brief Build an ext-vector type.
738///
739/// Run the required checks for the extended vector type.
740QualType Sema::BuildExtVectorType(QualType T, ExprArg ArraySize,
741                                  SourceLocation AttrLoc) {
742
743  Expr *Arg = (Expr *)ArraySize.get();
744
745  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
746  // in conjunction with complex types (pointers, arrays, functions, etc.).
747  if (!T->isDependentType() &&
748      !T->isIntegerType() && !T->isRealFloatingType()) {
749    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
750    return QualType();
751  }
752
753  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
754    llvm::APSInt vecSize(32);
755    if (!Arg->isIntegerConstantExpr(vecSize, Context)) {
756      Diag(AttrLoc, diag::err_attribute_argument_not_int)
757      << "ext_vector_type" << Arg->getSourceRange();
758      return QualType();
759    }
760
761    // unlike gcc's vector_size attribute, the size is specified as the
762    // number of elements, not the number of bytes.
763    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
764
765    if (vectorSize == 0) {
766      Diag(AttrLoc, diag::err_attribute_zero_size)
767      << Arg->getSourceRange();
768      return QualType();
769    }
770
771    if (!T->isDependentType())
772      return Context.getExtVectorType(T, vectorSize);
773  }
774
775  return Context.getDependentSizedExtVectorType(T, ArraySize.takeAs<Expr>(),
776                                                AttrLoc);
777}
778
779/// \brief Build a function type.
780///
781/// This routine checks the function type according to C++ rules and
782/// under the assumption that the result type and parameter types have
783/// just been instantiated from a template. It therefore duplicates
784/// some of the behavior of GetTypeForDeclarator, but in a much
785/// simpler form that is only suitable for this narrow use case.
786///
787/// \param T The return type of the function.
788///
789/// \param ParamTypes The parameter types of the function. This array
790/// will be modified to account for adjustments to the types of the
791/// function parameters.
792///
793/// \param NumParamTypes The number of parameter types in ParamTypes.
794///
795/// \param Variadic Whether this is a variadic function type.
796///
797/// \param Quals The cvr-qualifiers to be applied to the function type.
798///
799/// \param Loc The location of the entity whose type involves this
800/// function type or, if there is no such entity, the location of the
801/// type that will have function type.
802///
803/// \param Entity The name of the entity that involves the function
804/// type, if known.
805///
806/// \returns A suitable function type, if there are no
807/// errors. Otherwise, returns a NULL type.
808QualType Sema::BuildFunctionType(QualType T,
809                                 QualType *ParamTypes,
810                                 unsigned NumParamTypes,
811                                 bool Variadic, unsigned Quals,
812                                 SourceLocation Loc, DeclarationName Entity) {
813  if (T->isArrayType() || T->isFunctionType()) {
814    Diag(Loc, diag::err_func_returning_array_function)
815      << T->isFunctionType() << T;
816    return QualType();
817  }
818
819  bool Invalid = false;
820  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
821    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
822    if (ParamType->isVoidType()) {
823      Diag(Loc, diag::err_param_with_void_type);
824      Invalid = true;
825    }
826
827    ParamTypes[Idx] = ParamType;
828  }
829
830  if (Invalid)
831    return QualType();
832
833  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
834                                 Quals, false, false, 0, 0,
835                                 FunctionType::ExtInfo());
836}
837
838/// \brief Build a member pointer type \c T Class::*.
839///
840/// \param T the type to which the member pointer refers.
841/// \param Class the class type into which the member pointer points.
842/// \param CVR Qualifiers applied to the member pointer type
843/// \param Loc the location where this type begins
844/// \param Entity the name of the entity that will have this member pointer type
845///
846/// \returns a member pointer type, if successful, or a NULL type if there was
847/// an error.
848QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
849                                      unsigned CVR, SourceLocation Loc,
850                                      DeclarationName Entity) {
851  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
852
853  // Verify that we're not building a pointer to pointer to function with
854  // exception specification.
855  if (CheckDistantExceptionSpec(T)) {
856    Diag(Loc, diag::err_distant_exception_spec);
857
858    // FIXME: If we're doing this as part of template instantiation,
859    // we should return immediately.
860
861    // Build the type anyway, but use the canonical type so that the
862    // exception specifiers are stripped off.
863    T = Context.getCanonicalType(T);
864  }
865
866  // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
867  //   with reference type, or "cv void."
868  if (T->isReferenceType()) {
869    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
870      << (Entity? Entity.getAsString() : "type name") << T;
871    return QualType();
872  }
873
874  if (T->isVoidType()) {
875    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
876      << (Entity? Entity.getAsString() : "type name");
877    return QualType();
878  }
879
880  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
881  // object or incomplete types shall not be restrict-qualified."
882  if (Quals.hasRestrict() && !T->isIncompleteOrObjectType()) {
883    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
884      << T;
885
886    // FIXME: If we're doing this as part of template instantiation,
887    // we should return immediately.
888    Quals.removeRestrict();
889  }
890
891  if (!Class->isDependentType() && !Class->isRecordType()) {
892    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
893    return QualType();
894  }
895
896  return Context.getQualifiedType(
897           Context.getMemberPointerType(T, Class.getTypePtr()), Quals);
898}
899
900/// \brief Build a block pointer type.
901///
902/// \param T The type to which we'll be building a block pointer.
903///
904/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
905///
906/// \param Loc The location of the entity whose type involves this
907/// block pointer type or, if there is no such entity, the location of the
908/// type that will have block pointer type.
909///
910/// \param Entity The name of the entity that involves the block pointer
911/// type, if known.
912///
913/// \returns A suitable block pointer type, if there are no
914/// errors. Otherwise, returns a NULL type.
915QualType Sema::BuildBlockPointerType(QualType T, unsigned CVR,
916                                     SourceLocation Loc,
917                                     DeclarationName Entity) {
918  if (!T->isFunctionType()) {
919    Diag(Loc, diag::err_nonfunction_block_type);
920    return QualType();
921  }
922
923  Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
924  return Context.getQualifiedType(Context.getBlockPointerType(T), Quals);
925}
926
927QualType Sema::GetTypeFromParser(TypeTy *Ty, TypeSourceInfo **TInfo) {
928  QualType QT = QualType::getFromOpaquePtr(Ty);
929  if (QT.isNull()) {
930    if (TInfo) *TInfo = 0;
931    return QualType();
932  }
933
934  TypeSourceInfo *DI = 0;
935  if (LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
936    QT = LIT->getType();
937    DI = LIT->getTypeSourceInfo();
938  }
939
940  if (TInfo) *TInfo = DI;
941  return QT;
942}
943
944/// GetTypeForDeclarator - Convert the type for the specified
945/// declarator to Type instances.
946///
947/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
948/// owns the declaration of a type (e.g., the definition of a struct
949/// type), then *OwnedDecl will receive the owned declaration.
950QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
951                                    TypeSourceInfo **TInfo,
952                                    TagDecl **OwnedDecl) {
953  // Determine the type of the declarator. Not all forms of declarator
954  // have a type.
955  QualType T;
956  TypeSourceInfo *ReturnTypeInfo = 0;
957
958  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromDeclSpec;
959
960  switch (D.getName().getKind()) {
961  case UnqualifiedId::IK_Identifier:
962  case UnqualifiedId::IK_OperatorFunctionId:
963  case UnqualifiedId::IK_LiteralOperatorId:
964  case UnqualifiedId::IK_TemplateId:
965    T = ConvertDeclSpecToType(*this, D, FnAttrsFromDeclSpec);
966
967    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
968      TagDecl* Owned = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
969      // Owned is embedded if it was defined here, or if it is the
970      // very first (i.e., canonical) declaration of this tag type.
971      Owned->setEmbeddedInDeclarator(Owned->isDefinition() ||
972                                     Owned->isCanonicalDecl());
973      if (OwnedDecl) *OwnedDecl = Owned;
974    }
975    break;
976
977  case UnqualifiedId::IK_ConstructorName:
978  case UnqualifiedId::IK_ConstructorTemplateId:
979  case UnqualifiedId::IK_DestructorName:
980    // Constructors and destructors don't have return types. Use
981    // "void" instead.
982    T = Context.VoidTy;
983
984    if (TInfo)
985      ReturnTypeInfo = Context.getTrivialTypeSourceInfo(T,
986                                                    D.getName().StartLocation);
987    break;
988
989  case UnqualifiedId::IK_ConversionFunctionId:
990    // The result type of a conversion function is the type that it
991    // converts to.
992    T = GetTypeFromParser(D.getName().ConversionFunctionId,
993                          TInfo? &ReturnTypeInfo : 0);
994    break;
995  }
996
997  if (T.isNull())
998    return T;
999
1000  if (T == Context.UndeducedAutoTy) {
1001    int Error = -1;
1002
1003    switch (D.getContext()) {
1004    case Declarator::KNRTypeListContext:
1005      assert(0 && "K&R type lists aren't allowed in C++");
1006      break;
1007    case Declarator::PrototypeContext:
1008      Error = 0; // Function prototype
1009      break;
1010    case Declarator::MemberContext:
1011      switch (cast<TagDecl>(CurContext)->getTagKind()) {
1012      case TTK_Enum: assert(0 && "unhandled tag kind"); break;
1013      case TTK_Struct: Error = 1; /* Struct member */ break;
1014      case TTK_Union:  Error = 2; /* Union member */ break;
1015      case TTK_Class:  Error = 3; /* Class member */ break;
1016      }
1017      break;
1018    case Declarator::CXXCatchContext:
1019      Error = 4; // Exception declaration
1020      break;
1021    case Declarator::TemplateParamContext:
1022      Error = 5; // Template parameter
1023      break;
1024    case Declarator::BlockLiteralContext:
1025      Error = 6;  // Block literal
1026      break;
1027    case Declarator::FileContext:
1028    case Declarator::BlockContext:
1029    case Declarator::ForContext:
1030    case Declarator::ConditionContext:
1031    case Declarator::TypeNameContext:
1032      break;
1033    }
1034
1035    if (Error != -1) {
1036      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
1037        << Error;
1038      T = Context.IntTy;
1039      D.setInvalidType(true);
1040    }
1041  }
1042
1043  // The name we're declaring, if any.
1044  DeclarationName Name;
1045  if (D.getIdentifier())
1046    Name = D.getIdentifier();
1047
1048  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromPreviousChunk;
1049
1050  // Walk the DeclTypeInfo, building the recursive type as we go.
1051  // DeclTypeInfos are ordered from the identifier out, which is
1052  // opposite of what we want :).
1053  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1054    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
1055    switch (DeclType.Kind) {
1056    default: assert(0 && "Unknown decltype!");
1057    case DeclaratorChunk::BlockPointer:
1058      // If blocks are disabled, emit an error.
1059      if (!LangOpts.Blocks)
1060        Diag(DeclType.Loc, diag::err_blocks_disable);
1061
1062      T = BuildBlockPointerType(T, DeclType.Cls.TypeQuals, D.getIdentifierLoc(),
1063                                Name);
1064      break;
1065    case DeclaratorChunk::Pointer:
1066      // Verify that we're not building a pointer to pointer to function with
1067      // exception specification.
1068      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1069        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1070        D.setInvalidType(true);
1071        // Build the type anyway.
1072      }
1073      if (getLangOptions().ObjC1 && T->getAs<ObjCObjectType>()) {
1074        T = Context.getObjCObjectPointerType(T);
1075        T = Context.getCVRQualifiedType(T, DeclType.Ptr.TypeQuals);
1076        break;
1077      }
1078      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
1079      break;
1080    case DeclaratorChunk::Reference: {
1081      Qualifiers Quals;
1082      if (DeclType.Ref.HasRestrict) Quals.addRestrict();
1083
1084      // Verify that we're not building a reference to pointer to function with
1085      // exception specification.
1086      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1087        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1088        D.setInvalidType(true);
1089        // Build the type anyway.
1090      }
1091      T = BuildReferenceType(T, DeclType.Ref.LValueRef, Quals,
1092                             DeclType.Loc, Name);
1093      break;
1094    }
1095    case DeclaratorChunk::Array: {
1096      // Verify that we're not building an array of pointers to function with
1097      // exception specification.
1098      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1099        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1100        D.setInvalidType(true);
1101        // Build the type anyway.
1102      }
1103      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
1104      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
1105      ArrayType::ArraySizeModifier ASM;
1106      if (ATI.isStar)
1107        ASM = ArrayType::Star;
1108      else if (ATI.hasStatic)
1109        ASM = ArrayType::Static;
1110      else
1111        ASM = ArrayType::Normal;
1112      if (ASM == ArrayType::Star &&
1113          D.getContext() != Declarator::PrototypeContext) {
1114        // FIXME: This check isn't quite right: it allows star in prototypes
1115        // for function definitions, and disallows some edge cases detailed
1116        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
1117        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
1118        ASM = ArrayType::Normal;
1119        D.setInvalidType(true);
1120      }
1121      T = BuildArrayType(T, ASM, ArraySize,
1122                         Qualifiers::fromCVRMask(ATI.TypeQuals),
1123                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
1124      break;
1125    }
1126    case DeclaratorChunk::Function: {
1127      // If the function declarator has a prototype (i.e. it is not () and
1128      // does not have a K&R-style identifier list), then the arguments are part
1129      // of the type, otherwise the argument list is ().
1130      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1131
1132      // C99 6.7.5.3p1: The return type may not be a function or array type.
1133      // For conversion functions, we'll diagnose this particular error later.
1134      if ((T->isArrayType() || T->isFunctionType()) &&
1135          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
1136        Diag(DeclType.Loc, diag::err_func_returning_array_function)
1137          << T->isFunctionType() << T;
1138        T = Context.IntTy;
1139        D.setInvalidType(true);
1140      }
1141
1142      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
1143        // C++ [dcl.fct]p6:
1144        //   Types shall not be defined in return or parameter types.
1145        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
1146        if (Tag->isDefinition())
1147          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
1148            << Context.getTypeDeclType(Tag);
1149      }
1150
1151      // Exception specs are not allowed in typedefs. Complain, but add it
1152      // anyway.
1153      if (FTI.hasExceptionSpec &&
1154          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1155        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);
1156
1157      if (FTI.NumArgs == 0) {
1158        if (getLangOptions().CPlusPlus) {
1159          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
1160          // function takes no arguments.
1161          llvm::SmallVector<QualType, 4> Exceptions;
1162          Exceptions.reserve(FTI.NumExceptions);
1163          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1164            // FIXME: Preserve type source info.
1165            QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1166            // Check that the type is valid for an exception spec, and drop it
1167            // if not.
1168            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1169              Exceptions.push_back(ET);
1170          }
1171          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
1172                                      FTI.hasExceptionSpec,
1173                                      FTI.hasAnyExceptionSpec,
1174                                      Exceptions.size(), Exceptions.data(),
1175                                      FunctionType::ExtInfo());
1176        } else if (FTI.isVariadic) {
1177          // We allow a zero-parameter variadic function in C if the
1178          // function is marked with the "overloadable"
1179          // attribute. Scan for this attribute now.
1180          bool Overloadable = false;
1181          for (const AttributeList *Attrs = D.getAttributes();
1182               Attrs; Attrs = Attrs->getNext()) {
1183            if (Attrs->getKind() == AttributeList::AT_overloadable) {
1184              Overloadable = true;
1185              break;
1186            }
1187          }
1188
1189          if (!Overloadable)
1190            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
1191          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0,
1192                                      false, false, 0, 0,
1193                                      FunctionType::ExtInfo());
1194        } else {
1195          // Simple void foo(), where the incoming T is the result type.
1196          T = Context.getFunctionNoProtoType(T);
1197        }
1198      } else if (FTI.ArgInfo[0].Param == 0) {
1199        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
1200        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
1201        D.setInvalidType(true);
1202      } else {
1203        // Otherwise, we have a function with an argument list that is
1204        // potentially variadic.
1205        llvm::SmallVector<QualType, 16> ArgTys;
1206
1207        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1208          ParmVarDecl *Param =
1209            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
1210          QualType ArgTy = Param->getType();
1211          assert(!ArgTy.isNull() && "Couldn't parse type?");
1212
1213          // Adjust the parameter type.
1214          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
1215
1216          // Look for 'void'.  void is allowed only as a single argument to a
1217          // function with no other parameters (C99 6.7.5.3p10).  We record
1218          // int(void) as a FunctionProtoType with an empty argument list.
1219          if (ArgTy->isVoidType()) {
1220            // If this is something like 'float(int, void)', reject it.  'void'
1221            // is an incomplete type (C99 6.2.5p19) and function decls cannot
1222            // have arguments of incomplete type.
1223            if (FTI.NumArgs != 1 || FTI.isVariadic) {
1224              Diag(DeclType.Loc, diag::err_void_only_param);
1225              ArgTy = Context.IntTy;
1226              Param->setType(ArgTy);
1227            } else if (FTI.ArgInfo[i].Ident) {
1228              // Reject, but continue to parse 'int(void abc)'.
1229              Diag(FTI.ArgInfo[i].IdentLoc,
1230                   diag::err_param_with_void_type);
1231              ArgTy = Context.IntTy;
1232              Param->setType(ArgTy);
1233            } else {
1234              // Reject, but continue to parse 'float(const void)'.
1235              if (ArgTy.hasQualifiers())
1236                Diag(DeclType.Loc, diag::err_void_param_qualified);
1237
1238              // Do not add 'void' to the ArgTys list.
1239              break;
1240            }
1241          } else if (!FTI.hasPrototype) {
1242            if (ArgTy->isPromotableIntegerType()) {
1243              ArgTy = Context.getPromotedIntegerType(ArgTy);
1244            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
1245              if (BTy->getKind() == BuiltinType::Float)
1246                ArgTy = Context.DoubleTy;
1247            }
1248          }
1249
1250          ArgTys.push_back(ArgTy);
1251        }
1252
1253        llvm::SmallVector<QualType, 4> Exceptions;
1254        Exceptions.reserve(FTI.NumExceptions);
1255        for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
1256          // FIXME: Preserve type source info.
1257          QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
1258          // Check that the type is valid for an exception spec, and drop it if
1259          // not.
1260          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
1261            Exceptions.push_back(ET);
1262        }
1263
1264        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
1265                                    FTI.isVariadic, FTI.TypeQuals,
1266                                    FTI.hasExceptionSpec,
1267                                    FTI.hasAnyExceptionSpec,
1268                                    Exceptions.size(), Exceptions.data(),
1269                                    FunctionType::ExtInfo());
1270      }
1271
1272      // For GCC compatibility, we allow attributes that apply only to
1273      // function types to be placed on a function's return type
1274      // instead (as long as that type doesn't happen to be function
1275      // or function-pointer itself).
1276      ProcessDelayedFnAttrs(*this, T, FnAttrsFromPreviousChunk);
1277
1278      break;
1279    }
1280    case DeclaratorChunk::MemberPointer:
1281      // Verify that we're not building a pointer to pointer to function with
1282      // exception specification.
1283      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
1284        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1285        D.setInvalidType(true);
1286        // Build the type anyway.
1287      }
1288      // The scope spec must refer to a class, or be dependent.
1289      QualType ClsType;
1290      if (DeclType.Mem.Scope().isInvalid()) {
1291        // Avoid emitting extra errors if we already errored on the scope.
1292        D.setInvalidType(true);
1293      } else if (isDependentScopeSpecifier(DeclType.Mem.Scope())
1294                 || dyn_cast_or_null<CXXRecordDecl>(
1295                                   computeDeclContext(DeclType.Mem.Scope()))) {
1296        NestedNameSpecifier *NNS
1297          = (NestedNameSpecifier *)DeclType.Mem.Scope().getScopeRep();
1298        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
1299        switch (NNS->getKind()) {
1300        case NestedNameSpecifier::Identifier:
1301          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
1302                                                 NNS->getAsIdentifier());
1303          break;
1304
1305        case NestedNameSpecifier::Namespace:
1306        case NestedNameSpecifier::Global:
1307          llvm_unreachable("Nested-name-specifier must name a type");
1308          break;
1309
1310        case NestedNameSpecifier::TypeSpec:
1311        case NestedNameSpecifier::TypeSpecWithTemplate:
1312          ClsType = QualType(NNS->getAsType(), 0);
1313          if (NNSPrefix)
1314            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
1315          break;
1316        }
1317      } else {
1318        Diag(DeclType.Mem.Scope().getBeginLoc(),
1319             diag::err_illegal_decl_mempointer_in_nonclass)
1320          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
1321          << DeclType.Mem.Scope().getRange();
1322        D.setInvalidType(true);
1323      }
1324
1325      if (!ClsType.isNull())
1326        T = BuildMemberPointerType(T, ClsType, DeclType.Mem.TypeQuals,
1327                                   DeclType.Loc, D.getIdentifier());
1328      if (T.isNull()) {
1329        T = Context.IntTy;
1330        D.setInvalidType(true);
1331      }
1332      break;
1333    }
1334
1335    if (T.isNull()) {
1336      D.setInvalidType(true);
1337      T = Context.IntTy;
1338    }
1339
1340    DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);
1341
1342    // See if there are any attributes on this declarator chunk.
1343    if (const AttributeList *AL = DeclType.getAttrs())
1344      ProcessTypeAttributeList(*this, T, false, AL, FnAttrsFromPreviousChunk);
1345  }
1346
1347  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
1348    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
1349    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
1350
1351    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
1352    // for a nonstatic member function, the function type to which a pointer
1353    // to member refers, or the top-level function type of a function typedef
1354    // declaration.
1355    if (FnTy->getTypeQuals() != 0 &&
1356        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
1357        ((D.getContext() != Declarator::MemberContext &&
1358          (!D.getCXXScopeSpec().isSet() ||
1359           !computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)
1360              ->isRecord())) ||
1361         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
1362      if (D.isFunctionDeclarator())
1363        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
1364      else
1365        Diag(D.getIdentifierLoc(),
1366             diag::err_invalid_qualified_typedef_function_type_use);
1367
1368      // Strip the cv-quals from the type.
1369      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
1370                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0,
1371                                  false, false, 0, 0, FunctionType::ExtInfo());
1372    }
1373  }
1374
1375  // Process any function attributes we might have delayed from the
1376  // declaration-specifiers.
1377  ProcessDelayedFnAttrs(*this, T, FnAttrsFromDeclSpec);
1378
1379  // If there were any type attributes applied to the decl itself, not
1380  // the type, apply them to the result type.  But don't do this for
1381  // block-literal expressions, which are parsed wierdly.
1382  if (D.getContext() != Declarator::BlockLiteralContext)
1383    if (const AttributeList *Attrs = D.getAttributes())
1384      ProcessTypeAttributeList(*this, T, false, Attrs,
1385                               FnAttrsFromPreviousChunk);
1386
1387  DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);
1388
1389  if (TInfo) {
1390    if (D.isInvalidType())
1391      *TInfo = 0;
1392    else
1393      *TInfo = GetTypeSourceInfoForDeclarator(D, T, ReturnTypeInfo);
1394  }
1395
1396  return T;
1397}
1398
1399namespace {
1400  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
1401    const DeclSpec &DS;
1402
1403  public:
1404    TypeSpecLocFiller(const DeclSpec &DS) : DS(DS) {}
1405
1406    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1407      Visit(TL.getUnqualifiedLoc());
1408    }
1409    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
1410      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1411    }
1412    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
1413      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1414    }
1415    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
1416      // Handle the base type, which might not have been written explicitly.
1417      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
1418        TL.setHasBaseTypeAsWritten(false);
1419        TL.getBaseLoc().initialize(SourceLocation());
1420      } else {
1421        TL.setHasBaseTypeAsWritten(true);
1422        Visit(TL.getBaseLoc());
1423      }
1424
1425      // Protocol qualifiers.
1426      if (DS.getProtocolQualifiers()) {
1427        assert(TL.getNumProtocols() > 0);
1428        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
1429        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
1430        TL.setRAngleLoc(DS.getSourceRange().getEnd());
1431        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
1432          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
1433      } else {
1434        assert(TL.getNumProtocols() == 0);
1435        TL.setLAngleLoc(SourceLocation());
1436        TL.setRAngleLoc(SourceLocation());
1437      }
1438    }
1439    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1440      TL.setStarLoc(SourceLocation());
1441      Visit(TL.getPointeeLoc());
1442    }
1443    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
1444      TypeSourceInfo *TInfo = 0;
1445      Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1446
1447      // If we got no declarator info from previous Sema routines,
1448      // just fill with the typespec loc.
1449      if (!TInfo) {
1450        TL.initialize(DS.getTypeSpecTypeLoc());
1451        return;
1452      }
1453
1454      TypeLoc OldTL = TInfo->getTypeLoc();
1455      if (TInfo->getType()->getAs<ElaboratedType>()) {
1456        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
1457        TemplateSpecializationTypeLoc NamedTL =
1458          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
1459        TL.copy(NamedTL);
1460      }
1461      else
1462        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
1463    }
1464    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
1465      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
1466      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
1467      TL.setParensRange(DS.getTypeofParensRange());
1468    }
1469    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
1470      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
1471      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
1472      TL.setParensRange(DS.getTypeofParensRange());
1473      assert(DS.getTypeRep());
1474      TypeSourceInfo *TInfo = 0;
1475      Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1476      TL.setUnderlyingTInfo(TInfo);
1477    }
1478    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
1479      // By default, use the source location of the type specifier.
1480      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
1481      if (TL.needsExtraLocalData()) {
1482        // Set info for the written builtin specifiers.
1483        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
1484        // Try to have a meaningful source location.
1485        if (TL.getWrittenSignSpec() != TSS_unspecified)
1486          // Sign spec loc overrides the others (e.g., 'unsigned long').
1487          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
1488        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
1489          // Width spec loc overrides type spec loc (e.g., 'short int').
1490          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
1491      }
1492    }
1493    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
1494      ElaboratedTypeKeyword Keyword
1495        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
1496      if (Keyword == ETK_Typename) {
1497        TypeSourceInfo *TInfo = 0;
1498        Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1499        if (TInfo) {
1500          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
1501          return;
1502        }
1503      }
1504      TL.setKeywordLoc(Keyword != ETK_None
1505                       ? DS.getTypeSpecTypeLoc()
1506                       : SourceLocation());
1507      const CXXScopeSpec& SS = DS.getTypeSpecScope();
1508      TL.setQualifierRange(SS.isEmpty() ? SourceRange(): SS.getRange());
1509      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
1510    }
1511    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
1512      ElaboratedTypeKeyword Keyword
1513        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
1514      if (Keyword == ETK_Typename) {
1515        TypeSourceInfo *TInfo = 0;
1516        Sema::GetTypeFromParser(DS.getTypeRep(), &TInfo);
1517        if (TInfo) {
1518          TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
1519          return;
1520        }
1521      }
1522      TL.setKeywordLoc(Keyword != ETK_None
1523                       ? DS.getTypeSpecTypeLoc()
1524                       : SourceLocation());
1525      const CXXScopeSpec& SS = DS.getTypeSpecScope();
1526      TL.setQualifierRange(SS.isEmpty() ? SourceRange() : SS.getRange());
1527      // FIXME: load appropriate source location.
1528      TL.setNameLoc(DS.getTypeSpecTypeLoc());
1529    }
1530
1531    void VisitTypeLoc(TypeLoc TL) {
1532      // FIXME: add other typespec types and change this to an assert.
1533      TL.initialize(DS.getTypeSpecTypeLoc());
1534    }
1535  };
1536
1537  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
1538    const DeclaratorChunk &Chunk;
1539
1540  public:
1541    DeclaratorLocFiller(const DeclaratorChunk &Chunk) : Chunk(Chunk) {}
1542
1543    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
1544      llvm_unreachable("qualified type locs not expected here!");
1545    }
1546
1547    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
1548      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
1549      TL.setCaretLoc(Chunk.Loc);
1550    }
1551    void VisitPointerTypeLoc(PointerTypeLoc TL) {
1552      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1553      TL.setStarLoc(Chunk.Loc);
1554    }
1555    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
1556      assert(Chunk.Kind == DeclaratorChunk::Pointer);
1557      TL.setStarLoc(Chunk.Loc);
1558    }
1559    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
1560      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
1561      TL.setStarLoc(Chunk.Loc);
1562      // FIXME: nested name specifier
1563    }
1564    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
1565      assert(Chunk.Kind == DeclaratorChunk::Reference);
1566      // 'Amp' is misleading: this might have been originally
1567      /// spelled with AmpAmp.
1568      TL.setAmpLoc(Chunk.Loc);
1569    }
1570    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
1571      assert(Chunk.Kind == DeclaratorChunk::Reference);
1572      assert(!Chunk.Ref.LValueRef);
1573      TL.setAmpAmpLoc(Chunk.Loc);
1574    }
1575    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
1576      assert(Chunk.Kind == DeclaratorChunk::Array);
1577      TL.setLBracketLoc(Chunk.Loc);
1578      TL.setRBracketLoc(Chunk.EndLoc);
1579      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
1580    }
1581    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
1582      assert(Chunk.Kind == DeclaratorChunk::Function);
1583      TL.setLParenLoc(Chunk.Loc);
1584      TL.setRParenLoc(Chunk.EndLoc);
1585
1586      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
1587      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
1588        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
1589        TL.setArg(tpi++, Param);
1590      }
1591      // FIXME: exception specs
1592    }
1593
1594    void VisitTypeLoc(TypeLoc TL) {
1595      llvm_unreachable("unsupported TypeLoc kind in declarator!");
1596    }
1597  };
1598}
1599
1600/// \brief Create and instantiate a TypeSourceInfo with type source information.
1601///
1602/// \param T QualType referring to the type as written in source code.
1603///
1604/// \param ReturnTypeInfo For declarators whose return type does not show
1605/// up in the normal place in the declaration specifiers (such as a C++
1606/// conversion function), this pointer will refer to a type source information
1607/// for that return type.
1608TypeSourceInfo *
1609Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
1610                                     TypeSourceInfo *ReturnTypeInfo) {
1611  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
1612  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
1613
1614  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1615    DeclaratorLocFiller(D.getTypeObject(i)).Visit(CurrTL);
1616    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
1617  }
1618
1619  TypeSpecLocFiller(D.getDeclSpec()).Visit(CurrTL);
1620
1621  // We have source information for the return type that was not in the
1622  // declaration specifiers; copy that information into the current type
1623  // location so that it will be retained. This occurs, for example, with
1624  // a C++ conversion function, where the return type occurs within the
1625  // declarator-id rather than in the declaration specifiers.
1626  if (ReturnTypeInfo && D.getDeclSpec().getTypeSpecType() == TST_unspecified) {
1627    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
1628    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
1629    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
1630  }
1631
1632  return TInfo;
1633}
1634
1635/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
1636QualType Sema::CreateLocInfoType(QualType T, TypeSourceInfo *TInfo) {
1637  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
1638  // and Sema during declaration parsing. Try deallocating/caching them when
1639  // it's appropriate, instead of allocating them and keeping them around.
1640  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), 8);
1641  new (LocT) LocInfoType(T, TInfo);
1642  assert(LocT->getTypeClass() != T->getTypeClass() &&
1643         "LocInfoType's TypeClass conflicts with an existing Type class");
1644  return QualType(LocT, 0);
1645}
1646
1647void LocInfoType::getAsStringInternal(std::string &Str,
1648                                      const PrintingPolicy &Policy) const {
1649  assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
1650         " was used directly instead of getting the QualType through"
1651         " GetTypeFromParser");
1652}
1653
1654/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
1655/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
1656/// they point to and return true. If T1 and T2 aren't pointer types
1657/// or pointer-to-member types, or if they are not similar at this
1658/// level, returns false and leaves T1 and T2 unchanged. Top-level
1659/// qualifiers on T1 and T2 are ignored. This function will typically
1660/// be called in a loop that successively "unwraps" pointer and
1661/// pointer-to-member types to compare them at each level.
1662bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
1663  const PointerType *T1PtrType = T1->getAs<PointerType>(),
1664                    *T2PtrType = T2->getAs<PointerType>();
1665  if (T1PtrType && T2PtrType) {
1666    T1 = T1PtrType->getPointeeType();
1667    T2 = T2PtrType->getPointeeType();
1668    return true;
1669  }
1670
1671  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
1672                          *T2MPType = T2->getAs<MemberPointerType>();
1673  if (T1MPType && T2MPType &&
1674      Context.getCanonicalType(T1MPType->getClass()) ==
1675      Context.getCanonicalType(T2MPType->getClass())) {
1676    T1 = T1MPType->getPointeeType();
1677    T2 = T2MPType->getPointeeType();
1678    return true;
1679  }
1680
1681  if (getLangOptions().ObjC1) {
1682    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
1683                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
1684    if (T1OPType && T2OPType) {
1685      T1 = T1OPType->getPointeeType();
1686      T2 = T2OPType->getPointeeType();
1687      return true;
1688    }
1689  }
1690  return false;
1691}
1692
1693Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1694  // C99 6.7.6: Type names have no identifier.  This is already validated by
1695  // the parser.
1696  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1697
1698  TypeSourceInfo *TInfo = 0;
1699  TagDecl *OwnedTag = 0;
1700  QualType T = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
1701  if (D.isInvalidType())
1702    return true;
1703
1704  if (getLangOptions().CPlusPlus) {
1705    // Check that there are no default arguments (C++ only).
1706    CheckExtraCXXDefaultArguments(D);
1707
1708    // C++0x [dcl.type]p3:
1709    //   A type-specifier-seq shall not define a class or enumeration
1710    //   unless it appears in the type-id of an alias-declaration
1711    //   (7.1.3).
1712    if (OwnedTag && OwnedTag->isDefinition())
1713      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1714        << Context.getTypeDeclType(OwnedTag);
1715  }
1716
1717  if (TInfo)
1718    T = CreateLocInfoType(T, TInfo);
1719
1720  return T.getAsOpaquePtr();
1721}
1722
1723
1724
1725//===----------------------------------------------------------------------===//
1726// Type Attribute Processing
1727//===----------------------------------------------------------------------===//
1728
1729/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1730/// specified type.  The attribute contains 1 argument, the id of the address
1731/// space for the type.
1732static void HandleAddressSpaceTypeAttribute(QualType &Type,
1733                                            const AttributeList &Attr, Sema &S){
1734
1735  // If this type is already address space qualified, reject it.
1736  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1737  // for two or more different address spaces."
1738  if (Type.getAddressSpace()) {
1739    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1740    Attr.setInvalid();
1741    return;
1742  }
1743
1744  // Check the attribute arguments.
1745  if (Attr.getNumArgs() != 1) {
1746    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1747    Attr.setInvalid();
1748    return;
1749  }
1750  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1751  llvm::APSInt addrSpace(32);
1752  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
1753      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1754    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1755      << ASArgExpr->getSourceRange();
1756    Attr.setInvalid();
1757    return;
1758  }
1759
1760  // Bounds checking.
1761  if (addrSpace.isSigned()) {
1762    if (addrSpace.isNegative()) {
1763      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
1764        << ASArgExpr->getSourceRange();
1765      Attr.setInvalid();
1766      return;
1767    }
1768    addrSpace.setIsSigned(false);
1769  }
1770  llvm::APSInt max(addrSpace.getBitWidth());
1771  max = Qualifiers::MaxAddressSpace;
1772  if (addrSpace > max) {
1773    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
1774      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
1775    Attr.setInvalid();
1776    return;
1777  }
1778
1779  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1780  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1781}
1782
1783/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1784/// specified type.  The attribute contains 1 argument, weak or strong.
1785static void HandleObjCGCTypeAttribute(QualType &Type,
1786                                      const AttributeList &Attr, Sema &S) {
1787  if (Type.getObjCGCAttr() != Qualifiers::GCNone) {
1788    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1789    Attr.setInvalid();
1790    return;
1791  }
1792
1793  // Check the attribute arguments.
1794  if (!Attr.getParameterName()) {
1795    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1796      << "objc_gc" << 1;
1797    Attr.setInvalid();
1798    return;
1799  }
1800  Qualifiers::GC GCAttr;
1801  if (Attr.getNumArgs() != 0) {
1802    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1803    Attr.setInvalid();
1804    return;
1805  }
1806  if (Attr.getParameterName()->isStr("weak"))
1807    GCAttr = Qualifiers::Weak;
1808  else if (Attr.getParameterName()->isStr("strong"))
1809    GCAttr = Qualifiers::Strong;
1810  else {
1811    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1812      << "objc_gc" << Attr.getParameterName();
1813    Attr.setInvalid();
1814    return;
1815  }
1816
1817  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1818}
1819
1820/// Process an individual function attribute.  Returns true if the
1821/// attribute does not make sense to apply to this type.
1822bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr) {
1823  if (Attr.getKind() == AttributeList::AT_noreturn) {
1824    // Complain immediately if the arg count is wrong.
1825    if (Attr.getNumArgs() != 0) {
1826      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1827      Attr.setInvalid();
1828      return false;
1829    }
1830
1831    // Delay if this is not a function or pointer to block.
1832    if (!Type->isFunctionPointerType()
1833        && !Type->isBlockPointerType()
1834        && !Type->isFunctionType())
1835      return true;
1836
1837    // Otherwise we can process right away.
1838    Type = S.Context.getNoReturnType(Type);
1839    return false;
1840  }
1841
1842  if (Attr.getKind() == AttributeList::AT_regparm) {
1843    // The warning is emitted elsewhere
1844    if (Attr.getNumArgs() != 1) {
1845      return false;
1846    }
1847
1848    // Delay if this is not a function or pointer to block.
1849    if (!Type->isFunctionPointerType()
1850        && !Type->isBlockPointerType()
1851        && !Type->isFunctionType())
1852      return true;
1853
1854    // Otherwise we can process right away.
1855    Expr *NumParamsExpr = static_cast<Expr *>(Attr.getArg(0));
1856    llvm::APSInt NumParams(32);
1857
1858    // The warning is emitted elsewhere
1859    if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() ||
1860        !NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context))
1861      return false;
1862
1863    Type = S.Context.getRegParmType(Type, NumParams.getZExtValue());
1864    return false;
1865  }
1866
1867  // Otherwise, a calling convention.
1868  if (Attr.getNumArgs() != 0) {
1869    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
1870    Attr.setInvalid();
1871    return false;
1872  }
1873
1874  QualType T = Type;
1875  if (const PointerType *PT = Type->getAs<PointerType>())
1876    T = PT->getPointeeType();
1877  const FunctionType *Fn = T->getAs<FunctionType>();
1878
1879  // Delay if the type didn't work out to a function.
1880  if (!Fn) return true;
1881
1882  // TODO: diagnose uses of these conventions on the wrong target.
1883  CallingConv CC;
1884  switch (Attr.getKind()) {
1885  case AttributeList::AT_cdecl: CC = CC_C; break;
1886  case AttributeList::AT_fastcall: CC = CC_X86FastCall; break;
1887  case AttributeList::AT_stdcall: CC = CC_X86StdCall; break;
1888  case AttributeList::AT_thiscall: CC = CC_X86ThisCall; break;
1889  default: llvm_unreachable("unexpected attribute kind"); return false;
1890  }
1891
1892  CallingConv CCOld = Fn->getCallConv();
1893  if (S.Context.getCanonicalCallConv(CC) ==
1894      S.Context.getCanonicalCallConv(CCOld)) {
1895    Attr.setInvalid();
1896    return false;
1897  }
1898
1899  if (CCOld != CC_Default) {
1900    // Should we diagnose reapplications of the same convention?
1901    S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
1902      << FunctionType::getNameForCallConv(CC)
1903      << FunctionType::getNameForCallConv(CCOld);
1904    Attr.setInvalid();
1905    return false;
1906  }
1907
1908  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
1909  if (CC == CC_X86FastCall) {
1910    if (isa<FunctionNoProtoType>(Fn)) {
1911      S.Diag(Attr.getLoc(), diag::err_cconv_knr)
1912        << FunctionType::getNameForCallConv(CC);
1913      Attr.setInvalid();
1914      return false;
1915    }
1916
1917    const FunctionProtoType *FnP = cast<FunctionProtoType>(Fn);
1918    if (FnP->isVariadic()) {
1919      S.Diag(Attr.getLoc(), diag::err_cconv_varargs)
1920        << FunctionType::getNameForCallConv(CC);
1921      Attr.setInvalid();
1922      return false;
1923    }
1924  }
1925
1926  Type = S.Context.getCallConvType(Type, CC);
1927  return false;
1928}
1929
1930/// HandleVectorSizeAttribute - this attribute is only applicable to integral
1931/// and float scalars, although arrays, pointers, and function return values are
1932/// allowed in conjunction with this construct. Aggregates with this attribute
1933/// are invalid, even if they are of the same size as a corresponding scalar.
1934/// The raw attribute should contain precisely 1 argument, the vector size for
1935/// the variable, measured in bytes. If curType and rawAttr are well formed,
1936/// this routine will return a new vector type.
1937static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr, Sema &S) {
1938  // Check the attribute arugments.
1939  if (Attr.getNumArgs() != 1) {
1940    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1941    Attr.setInvalid();
1942    return;
1943  }
1944  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
1945  llvm::APSInt vecSize(32);
1946  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
1947      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
1948    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
1949      << "vector_size" << sizeExpr->getSourceRange();
1950    Attr.setInvalid();
1951    return;
1952  }
1953  // the base type must be integer or float, and can't already be a vector.
1954  if (CurType->isVectorType() ||
1955      (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
1956    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
1957    Attr.setInvalid();
1958    return;
1959  }
1960  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
1961  // vecSize is specified in bytes - convert to bits.
1962  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
1963
1964  // the vector size needs to be an integral multiple of the type size.
1965  if (vectorSize % typeSize) {
1966    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
1967      << sizeExpr->getSourceRange();
1968    Attr.setInvalid();
1969    return;
1970  }
1971  if (vectorSize == 0) {
1972    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
1973      << sizeExpr->getSourceRange();
1974    Attr.setInvalid();
1975    return;
1976  }
1977
1978  // Success! Instantiate the vector type, the number of elements is > 0, and
1979  // not required to be a power of 2, unlike GCC.
1980  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize, false, false);
1981}
1982
1983void ProcessTypeAttributeList(Sema &S, QualType &Result,
1984                              bool IsDeclSpec, const AttributeList *AL,
1985                              DelayedAttributeSet &FnAttrs) {
1986  // Scan through and apply attributes to this type where it makes sense.  Some
1987  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1988  // type, but others can be present in the type specifiers even though they
1989  // apply to the decl.  Here we apply type attributes and ignore the rest.
1990  for (; AL; AL = AL->getNext()) {
1991    // Skip attributes that were marked to be invalid.
1992    if (AL->isInvalid())
1993      continue;
1994
1995    // If this is an attribute we can handle, do so now,
1996    // otherwise, add it to the FnAttrs list for rechaining.
1997    switch (AL->getKind()) {
1998    default: break;
1999
2000    case AttributeList::AT_address_space:
2001      HandleAddressSpaceTypeAttribute(Result, *AL, S);
2002      break;
2003    case AttributeList::AT_objc_gc:
2004      HandleObjCGCTypeAttribute(Result, *AL, S);
2005      break;
2006    case AttributeList::AT_vector_size:
2007      HandleVectorSizeAttr(Result, *AL, S);
2008      break;
2009
2010    case AttributeList::AT_noreturn:
2011    case AttributeList::AT_cdecl:
2012    case AttributeList::AT_fastcall:
2013    case AttributeList::AT_stdcall:
2014    case AttributeList::AT_thiscall:
2015    case AttributeList::AT_regparm:
2016      // Don't process these on the DeclSpec.
2017      if (IsDeclSpec ||
2018          ProcessFnAttr(S, Result, *AL))
2019        FnAttrs.push_back(DelayedAttribute(AL, Result));
2020      break;
2021    }
2022  }
2023}
2024
2025/// @brief Ensure that the type T is a complete type.
2026///
2027/// This routine checks whether the type @p T is complete in any
2028/// context where a complete type is required. If @p T is a complete
2029/// type, returns false. If @p T is a class template specialization,
2030/// this routine then attempts to perform class template
2031/// instantiation. If instantiation fails, or if @p T is incomplete
2032/// and cannot be completed, issues the diagnostic @p diag (giving it
2033/// the type @p T) and returns true.
2034///
2035/// @param Loc  The location in the source that the incomplete type
2036/// diagnostic should refer to.
2037///
2038/// @param T  The type that this routine is examining for completeness.
2039///
2040/// @param PD The partial diagnostic that will be printed out if T is not a
2041/// complete type.
2042///
2043/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
2044/// @c false otherwise.
2045bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2046                               const PartialDiagnostic &PD,
2047                               std::pair<SourceLocation,
2048                                         PartialDiagnostic> Note) {
2049  unsigned diag = PD.getDiagID();
2050
2051  // FIXME: Add this assertion to make sure we always get instantiation points.
2052  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
2053  // FIXME: Add this assertion to help us flush out problems with
2054  // checking for dependent types and type-dependent expressions.
2055  //
2056  //  assert(!T->isDependentType() &&
2057  //         "Can't ask whether a dependent type is complete");
2058
2059  // If we have a complete type, we're done.
2060  if (!T->isIncompleteType())
2061    return false;
2062
2063  // If we have a class template specialization or a class member of a
2064  // class template specialization, or an array with known size of such,
2065  // try to instantiate it.
2066  QualType MaybeTemplate = T;
2067  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
2068    MaybeTemplate = Array->getElementType();
2069  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
2070    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
2071          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
2072      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
2073        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
2074                                                      TSK_ImplicitInstantiation,
2075                                                      /*Complain=*/diag != 0);
2076    } else if (CXXRecordDecl *Rec
2077                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
2078      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
2079        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
2080        assert(MSInfo && "Missing member specialization information?");
2081        // This record was instantiated from a class within a template.
2082        if (MSInfo->getTemplateSpecializationKind()
2083                                               != TSK_ExplicitSpecialization)
2084          return InstantiateClass(Loc, Rec, Pattern,
2085                                  getTemplateInstantiationArgs(Rec),
2086                                  TSK_ImplicitInstantiation,
2087                                  /*Complain=*/diag != 0);
2088      }
2089    }
2090  }
2091
2092  if (diag == 0)
2093    return true;
2094
2095  const TagType *Tag = 0;
2096  if (const RecordType *Record = T->getAs<RecordType>())
2097    Tag = Record;
2098  else if (const EnumType *Enum = T->getAs<EnumType>())
2099    Tag = Enum;
2100
2101  // Avoid diagnosing invalid decls as incomplete.
2102  if (Tag && Tag->getDecl()->isInvalidDecl())
2103    return true;
2104
2105  // We have an incomplete type. Produce a diagnostic.
2106  Diag(Loc, PD) << T;
2107
2108  // If we have a note, produce it.
2109  if (!Note.first.isInvalid())
2110    Diag(Note.first, Note.second);
2111
2112  // If the type was a forward declaration of a class/struct/union
2113  // type, produce a note.
2114  if (Tag && !Tag->getDecl()->isInvalidDecl())
2115    Diag(Tag->getDecl()->getLocation(),
2116         Tag->isBeingDefined() ? diag::note_type_being_defined
2117                               : diag::note_forward_declaration)
2118        << QualType(Tag, 0);
2119
2120  return true;
2121}
2122
2123bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2124                               const PartialDiagnostic &PD) {
2125  return RequireCompleteType(Loc, T, PD,
2126                             std::make_pair(SourceLocation(), PDiag(0)));
2127}
2128
2129bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
2130                               unsigned DiagID) {
2131  return RequireCompleteType(Loc, T, PDiag(DiagID),
2132                             std::make_pair(SourceLocation(), PDiag(0)));
2133}
2134
2135/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
2136/// and qualified by the nested-name-specifier contained in SS.
2137QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
2138                                 const CXXScopeSpec &SS, QualType T) {
2139  if (T.isNull())
2140    return T;
2141  NestedNameSpecifier *NNS;
2142  if (SS.isValid())
2143    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2144  else {
2145    if (Keyword == ETK_None)
2146      return T;
2147    NNS = 0;
2148  }
2149  return Context.getElaboratedType(Keyword, NNS, T);
2150}
2151
2152QualType Sema::BuildTypeofExprType(Expr *E) {
2153  if (E->getType() == Context.OverloadTy) {
2154    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a
2155    // function template specialization wherever deduction cannot occur.
2156    if (FunctionDecl *Specialization
2157        = ResolveSingleFunctionTemplateSpecialization(E)) {
2158      // The access doesn't really matter in this case.
2159      DeclAccessPair Found = DeclAccessPair::make(Specialization,
2160                                                  Specialization->getAccess());
2161      E = FixOverloadedFunctionReference(E, Found, Specialization);
2162      if (!E)
2163        return QualType();
2164    } else {
2165      Diag(E->getLocStart(),
2166           diag::err_cannot_determine_declared_type_of_overloaded_function)
2167        << false << E->getSourceRange();
2168      return QualType();
2169    }
2170  }
2171
2172  return Context.getTypeOfExprType(E);
2173}
2174
2175QualType Sema::BuildDecltypeType(Expr *E) {
2176  if (E->getType() == Context.OverloadTy) {
2177    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a
2178    // function template specialization wherever deduction cannot occur.
2179    if (FunctionDecl *Specialization
2180          = ResolveSingleFunctionTemplateSpecialization(E)) {
2181      // The access doesn't really matter in this case.
2182      DeclAccessPair Found = DeclAccessPair::make(Specialization,
2183                                                  Specialization->getAccess());
2184      E = FixOverloadedFunctionReference(E, Found, Specialization);
2185      if (!E)
2186        return QualType();
2187    } else {
2188      Diag(E->getLocStart(),
2189           diag::err_cannot_determine_declared_type_of_overloaded_function)
2190        << true << E->getSourceRange();
2191      return QualType();
2192    }
2193  }
2194
2195  return Context.getDecltypeType(E);
2196}
2197