SemaType.cpp revision ebaf0e6ab743394dda086a01b457838cb6e589a8
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Template.h"
16#include "clang/Basic/OpenCL.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeLocVisitor.h"
24#include "clang/AST/Expr.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/DelayedDiagnostic.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/Support/ErrorHandling.h"
32using namespace clang;
33
34/// isOmittedBlockReturnType - Return true if this declarator is missing a
35/// return type because this is a omitted return type on a block literal.
36static bool isOmittedBlockReturnType(const Declarator &D) {
37  if (D.getContext() != Declarator::BlockLiteralContext ||
38      D.getDeclSpec().hasTypeSpecifier())
39    return false;
40
41  if (D.getNumTypeObjects() == 0)
42    return true;   // ^{ ... }
43
44  if (D.getNumTypeObjects() == 1 &&
45      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
46    return true;   // ^(int X, float Y) { ... }
47
48  return false;
49}
50
51/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
52/// doesn't apply to the given type.
53static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
54                                     QualType type) {
55  bool useExpansionLoc = false;
56
57  unsigned diagID = 0;
58  switch (attr.getKind()) {
59  case AttributeList::AT_objc_gc:
60    diagID = diag::warn_pointer_attribute_wrong_type;
61    useExpansionLoc = true;
62    break;
63
64  case AttributeList::AT_objc_ownership:
65    diagID = diag::warn_objc_object_attribute_wrong_type;
66    useExpansionLoc = true;
67    break;
68
69  default:
70    // Assume everything else was a function attribute.
71    diagID = diag::warn_function_attribute_wrong_type;
72    break;
73  }
74
75  SourceLocation loc = attr.getLoc();
76  StringRef name = attr.getName()->getName();
77
78  // The GC attributes are usually written with macros;  special-case them.
79  if (useExpansionLoc && loc.isMacroID() && attr.getParameterName()) {
80    if (attr.getParameterName()->isStr("strong")) {
81      if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
82    } else if (attr.getParameterName()->isStr("weak")) {
83      if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
84    }
85  }
86
87  S.Diag(loc, diagID) << name << type;
88}
89
90// objc_gc applies to Objective-C pointers or, otherwise, to the
91// smallest available pointer type (i.e. 'void*' in 'void**').
92#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
93    case AttributeList::AT_objc_gc: \
94    case AttributeList::AT_objc_ownership
95
96// Function type attributes.
97#define FUNCTION_TYPE_ATTRS_CASELIST \
98    case AttributeList::AT_noreturn: \
99    case AttributeList::AT_cdecl: \
100    case AttributeList::AT_fastcall: \
101    case AttributeList::AT_stdcall: \
102    case AttributeList::AT_thiscall: \
103    case AttributeList::AT_pascal: \
104    case AttributeList::AT_regparm: \
105    case AttributeList::AT_pcs \
106
107namespace {
108  /// An object which stores processing state for the entire
109  /// GetTypeForDeclarator process.
110  class TypeProcessingState {
111    Sema &sema;
112
113    /// The declarator being processed.
114    Declarator &declarator;
115
116    /// The index of the declarator chunk we're currently processing.
117    /// May be the total number of valid chunks, indicating the
118    /// DeclSpec.
119    unsigned chunkIndex;
120
121    /// Whether there are non-trivial modifications to the decl spec.
122    bool trivial;
123
124    /// Whether we saved the attributes in the decl spec.
125    bool hasSavedAttrs;
126
127    /// The original set of attributes on the DeclSpec.
128    SmallVector<AttributeList*, 2> savedAttrs;
129
130    /// A list of attributes to diagnose the uselessness of when the
131    /// processing is complete.
132    SmallVector<AttributeList*, 2> ignoredTypeAttrs;
133
134  public:
135    TypeProcessingState(Sema &sema, Declarator &declarator)
136      : sema(sema), declarator(declarator),
137        chunkIndex(declarator.getNumTypeObjects()),
138        trivial(true), hasSavedAttrs(false) {}
139
140    Sema &getSema() const {
141      return sema;
142    }
143
144    Declarator &getDeclarator() const {
145      return declarator;
146    }
147
148    unsigned getCurrentChunkIndex() const {
149      return chunkIndex;
150    }
151
152    void setCurrentChunkIndex(unsigned idx) {
153      assert(idx <= declarator.getNumTypeObjects());
154      chunkIndex = idx;
155    }
156
157    AttributeList *&getCurrentAttrListRef() const {
158      assert(chunkIndex <= declarator.getNumTypeObjects());
159      if (chunkIndex == declarator.getNumTypeObjects())
160        return getMutableDeclSpec().getAttributes().getListRef();
161      return declarator.getTypeObject(chunkIndex).getAttrListRef();
162    }
163
164    /// Save the current set of attributes on the DeclSpec.
165    void saveDeclSpecAttrs() {
166      // Don't try to save them multiple times.
167      if (hasSavedAttrs) return;
168
169      DeclSpec &spec = getMutableDeclSpec();
170      for (AttributeList *attr = spec.getAttributes().getList(); attr;
171             attr = attr->getNext())
172        savedAttrs.push_back(attr);
173      trivial &= savedAttrs.empty();
174      hasSavedAttrs = true;
175    }
176
177    /// Record that we had nowhere to put the given type attribute.
178    /// We will diagnose such attributes later.
179    void addIgnoredTypeAttr(AttributeList &attr) {
180      ignoredTypeAttrs.push_back(&attr);
181    }
182
183    /// Diagnose all the ignored type attributes, given that the
184    /// declarator worked out to the given type.
185    void diagnoseIgnoredTypeAttrs(QualType type) const {
186      for (SmallVectorImpl<AttributeList*>::const_iterator
187             i = ignoredTypeAttrs.begin(), e = ignoredTypeAttrs.end();
188           i != e; ++i)
189        diagnoseBadTypeAttribute(getSema(), **i, type);
190    }
191
192    ~TypeProcessingState() {
193      if (trivial) return;
194
195      restoreDeclSpecAttrs();
196    }
197
198  private:
199    DeclSpec &getMutableDeclSpec() const {
200      return const_cast<DeclSpec&>(declarator.getDeclSpec());
201    }
202
203    void restoreDeclSpecAttrs() {
204      assert(hasSavedAttrs);
205
206      if (savedAttrs.empty()) {
207        getMutableDeclSpec().getAttributes().set(0);
208        return;
209      }
210
211      getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
212      for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
213        savedAttrs[i]->setNext(savedAttrs[i+1]);
214      savedAttrs.back()->setNext(0);
215    }
216  };
217
218  /// Basically std::pair except that we really want to avoid an
219  /// implicit operator= for safety concerns.  It's also a minor
220  /// link-time optimization for this to be a private type.
221  struct AttrAndList {
222    /// The attribute.
223    AttributeList &first;
224
225    /// The head of the list the attribute is currently in.
226    AttributeList *&second;
227
228    AttrAndList(AttributeList &attr, AttributeList *&head)
229      : first(attr), second(head) {}
230  };
231}
232
233namespace llvm {
234  template <> struct isPodLike<AttrAndList> {
235    static const bool value = true;
236  };
237}
238
239static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
240  attr.setNext(head);
241  head = &attr;
242}
243
244static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
245  if (head == &attr) {
246    head = attr.getNext();
247    return;
248  }
249
250  AttributeList *cur = head;
251  while (true) {
252    assert(cur && cur->getNext() && "ran out of attrs?");
253    if (cur->getNext() == &attr) {
254      cur->setNext(attr.getNext());
255      return;
256    }
257    cur = cur->getNext();
258  }
259}
260
261static void moveAttrFromListToList(AttributeList &attr,
262                                   AttributeList *&fromList,
263                                   AttributeList *&toList) {
264  spliceAttrOutOfList(attr, fromList);
265  spliceAttrIntoList(attr, toList);
266}
267
268static void processTypeAttrs(TypeProcessingState &state,
269                             QualType &type, bool isDeclSpec,
270                             AttributeList *attrs);
271
272static bool handleFunctionTypeAttr(TypeProcessingState &state,
273                                   AttributeList &attr,
274                                   QualType &type);
275
276static bool handleObjCGCTypeAttr(TypeProcessingState &state,
277                                 AttributeList &attr, QualType &type);
278
279static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
280                                       AttributeList &attr, QualType &type);
281
282static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
283                                      AttributeList &attr, QualType &type) {
284  if (attr.getKind() == AttributeList::AT_objc_gc)
285    return handleObjCGCTypeAttr(state, attr, type);
286  assert(attr.getKind() == AttributeList::AT_objc_ownership);
287  return handleObjCOwnershipTypeAttr(state, attr, type);
288}
289
290/// Given that an objc_gc attribute was written somewhere on a
291/// declaration *other* than on the declarator itself (for which, use
292/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
293/// didn't apply in whatever position it was written in, try to move
294/// it to a more appropriate position.
295static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
296                                          AttributeList &attr,
297                                          QualType type) {
298  Declarator &declarator = state.getDeclarator();
299  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
300    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
301    switch (chunk.Kind) {
302    case DeclaratorChunk::Pointer:
303    case DeclaratorChunk::BlockPointer:
304      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
305                             chunk.getAttrListRef());
306      return;
307
308    case DeclaratorChunk::Paren:
309    case DeclaratorChunk::Array:
310      continue;
311
312    // Don't walk through these.
313    case DeclaratorChunk::Reference:
314    case DeclaratorChunk::Function:
315    case DeclaratorChunk::MemberPointer:
316      goto error;
317    }
318  }
319 error:
320
321  diagnoseBadTypeAttribute(state.getSema(), attr, type);
322}
323
324/// Distribute an objc_gc type attribute that was written on the
325/// declarator.
326static void
327distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
328                                            AttributeList &attr,
329                                            QualType &declSpecType) {
330  Declarator &declarator = state.getDeclarator();
331
332  // objc_gc goes on the innermost pointer to something that's not a
333  // pointer.
334  unsigned innermost = -1U;
335  bool considerDeclSpec = true;
336  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = declarator.getTypeObject(i);
338    switch (chunk.Kind) {
339    case DeclaratorChunk::Pointer:
340    case DeclaratorChunk::BlockPointer:
341      innermost = i;
342      continue;
343
344    case DeclaratorChunk::Reference:
345    case DeclaratorChunk::MemberPointer:
346    case DeclaratorChunk::Paren:
347    case DeclaratorChunk::Array:
348      continue;
349
350    case DeclaratorChunk::Function:
351      considerDeclSpec = false;
352      goto done;
353    }
354  }
355 done:
356
357  // That might actually be the decl spec if we weren't blocked by
358  // anything in the declarator.
359  if (considerDeclSpec) {
360    if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
361      // Splice the attribute into the decl spec.  Prevents the
362      // attribute from being applied multiple times and gives
363      // the source-location-filler something to work with.
364      state.saveDeclSpecAttrs();
365      moveAttrFromListToList(attr, declarator.getAttrListRef(),
366               declarator.getMutableDeclSpec().getAttributes().getListRef());
367      return;
368    }
369  }
370
371  // Otherwise, if we found an appropriate chunk, splice the attribute
372  // into it.
373  if (innermost != -1U) {
374    moveAttrFromListToList(attr, declarator.getAttrListRef(),
375                       declarator.getTypeObject(innermost).getAttrListRef());
376    return;
377  }
378
379  // Otherwise, diagnose when we're done building the type.
380  spliceAttrOutOfList(attr, declarator.getAttrListRef());
381  state.addIgnoredTypeAttr(attr);
382}
383
384/// A function type attribute was written somewhere in a declaration
385/// *other* than on the declarator itself or in the decl spec.  Given
386/// that it didn't apply in whatever position it was written in, try
387/// to move it to a more appropriate position.
388static void distributeFunctionTypeAttr(TypeProcessingState &state,
389                                       AttributeList &attr,
390                                       QualType type) {
391  Declarator &declarator = state.getDeclarator();
392
393  // Try to push the attribute from the return type of a function to
394  // the function itself.
395  for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
396    DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
397    switch (chunk.Kind) {
398    case DeclaratorChunk::Function:
399      moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
400                             chunk.getAttrListRef());
401      return;
402
403    case DeclaratorChunk::Paren:
404    case DeclaratorChunk::Pointer:
405    case DeclaratorChunk::BlockPointer:
406    case DeclaratorChunk::Array:
407    case DeclaratorChunk::Reference:
408    case DeclaratorChunk::MemberPointer:
409      continue;
410    }
411  }
412
413  diagnoseBadTypeAttribute(state.getSema(), attr, type);
414}
415
416/// Try to distribute a function type attribute to the innermost
417/// function chunk or type.  Returns true if the attribute was
418/// distributed, false if no location was found.
419static bool
420distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
421                                      AttributeList &attr,
422                                      AttributeList *&attrList,
423                                      QualType &declSpecType) {
424  Declarator &declarator = state.getDeclarator();
425
426  // Put it on the innermost function chunk, if there is one.
427  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
428    DeclaratorChunk &chunk = declarator.getTypeObject(i);
429    if (chunk.Kind != DeclaratorChunk::Function) continue;
430
431    moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
432    return true;
433  }
434
435  if (handleFunctionTypeAttr(state, attr, declSpecType)) {
436    spliceAttrOutOfList(attr, attrList);
437    return true;
438  }
439
440  return false;
441}
442
443/// A function type attribute was written in the decl spec.  Try to
444/// apply it somewhere.
445static void
446distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
447                                       AttributeList &attr,
448                                       QualType &declSpecType) {
449  state.saveDeclSpecAttrs();
450
451  // Try to distribute to the innermost.
452  if (distributeFunctionTypeAttrToInnermost(state, attr,
453                                            state.getCurrentAttrListRef(),
454                                            declSpecType))
455    return;
456
457  // If that failed, diagnose the bad attribute when the declarator is
458  // fully built.
459  state.addIgnoredTypeAttr(attr);
460}
461
462/// A function type attribute was written on the declarator.  Try to
463/// apply it somewhere.
464static void
465distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
466                                         AttributeList &attr,
467                                         QualType &declSpecType) {
468  Declarator &declarator = state.getDeclarator();
469
470  // Try to distribute to the innermost.
471  if (distributeFunctionTypeAttrToInnermost(state, attr,
472                                            declarator.getAttrListRef(),
473                                            declSpecType))
474    return;
475
476  // If that failed, diagnose the bad attribute when the declarator is
477  // fully built.
478  spliceAttrOutOfList(attr, declarator.getAttrListRef());
479  state.addIgnoredTypeAttr(attr);
480}
481
482/// \brief Given that there are attributes written on the declarator
483/// itself, try to distribute any type attributes to the appropriate
484/// declarator chunk.
485///
486/// These are attributes like the following:
487///   int f ATTR;
488///   int (f ATTR)();
489/// but not necessarily this:
490///   int f() ATTR;
491static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
492                                              QualType &declSpecType) {
493  // Collect all the type attributes from the declarator itself.
494  assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
495  AttributeList *attr = state.getDeclarator().getAttributes();
496  AttributeList *next;
497  do {
498    next = attr->getNext();
499
500    switch (attr->getKind()) {
501    OBJC_POINTER_TYPE_ATTRS_CASELIST:
502      distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
503      break;
504
505    case AttributeList::AT_ns_returns_retained:
506      if (!state.getSema().getLangOptions().ObjCAutoRefCount)
507        break;
508      // fallthrough
509
510    FUNCTION_TYPE_ATTRS_CASELIST:
511      distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
512      break;
513
514    default:
515      break;
516    }
517  } while ((attr = next));
518}
519
520/// Add a synthetic '()' to a block-literal declarator if it is
521/// required, given the return type.
522static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
523                                          QualType declSpecType) {
524  Declarator &declarator = state.getDeclarator();
525
526  // First, check whether the declarator would produce a function,
527  // i.e. whether the innermost semantic chunk is a function.
528  if (declarator.isFunctionDeclarator()) {
529    // If so, make that declarator a prototyped declarator.
530    declarator.getFunctionTypeInfo().hasPrototype = true;
531    return;
532  }
533
534  // If there are any type objects, the type as written won't name a
535  // function, regardless of the decl spec type.  This is because a
536  // block signature declarator is always an abstract-declarator, and
537  // abstract-declarators can't just be parentheses chunks.  Therefore
538  // we need to build a function chunk unless there are no type
539  // objects and the decl spec type is a function.
540  if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
541    return;
542
543  // Note that there *are* cases with invalid declarators where
544  // declarators consist solely of parentheses.  In general, these
545  // occur only in failed efforts to make function declarators, so
546  // faking up the function chunk is still the right thing to do.
547
548  // Otherwise, we need to fake up a function declarator.
549  SourceLocation loc = declarator.getSourceRange().getBegin();
550
551  // ...and *prepend* it to the declarator.
552  declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
553                             /*proto*/ true,
554                             /*variadic*/ false, SourceLocation(),
555                             /*args*/ 0, 0,
556                             /*type quals*/ 0,
557                             /*ref-qualifier*/true, SourceLocation(),
558                             /*mutable qualifier*/SourceLocation(),
559                             /*EH*/ EST_None, SourceLocation(), 0, 0, 0, 0,
560                             /*parens*/ loc, loc,
561                             declarator));
562
563  // For consistency, make sure the state still has us as processing
564  // the decl spec.
565  assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
566  state.setCurrentChunkIndex(declarator.getNumTypeObjects());
567}
568
569/// \brief Convert the specified declspec to the appropriate type
570/// object.
571/// \param D  the declarator containing the declaration specifier.
572/// \returns The type described by the declaration specifiers.  This function
573/// never returns null.
574static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
575  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
576  // checking.
577
578  Sema &S = state.getSema();
579  Declarator &declarator = state.getDeclarator();
580  const DeclSpec &DS = declarator.getDeclSpec();
581  SourceLocation DeclLoc = declarator.getIdentifierLoc();
582  if (DeclLoc.isInvalid())
583    DeclLoc = DS.getSourceRange().getBegin();
584
585  ASTContext &Context = S.Context;
586
587  QualType Result;
588  switch (DS.getTypeSpecType()) {
589  case DeclSpec::TST_void:
590    Result = Context.VoidTy;
591    break;
592  case DeclSpec::TST_char:
593    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
594      Result = Context.CharTy;
595    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
596      Result = Context.SignedCharTy;
597    else {
598      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
599             "Unknown TSS value");
600      Result = Context.UnsignedCharTy;
601    }
602    break;
603  case DeclSpec::TST_wchar:
604    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
605      Result = Context.WCharTy;
606    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
607      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
608        << DS.getSpecifierName(DS.getTypeSpecType());
609      Result = Context.getSignedWCharType();
610    } else {
611      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
612        "Unknown TSS value");
613      S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
614        << DS.getSpecifierName(DS.getTypeSpecType());
615      Result = Context.getUnsignedWCharType();
616    }
617    break;
618  case DeclSpec::TST_char16:
619      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
620        "Unknown TSS value");
621      Result = Context.Char16Ty;
622    break;
623  case DeclSpec::TST_char32:
624      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
625        "Unknown TSS value");
626      Result = Context.Char32Ty;
627    break;
628  case DeclSpec::TST_unspecified:
629    // "<proto1,proto2>" is an objc qualified ID with a missing id.
630    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
631      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
632                                         (ObjCProtocolDecl**)PQ,
633                                         DS.getNumProtocolQualifiers());
634      Result = Context.getObjCObjectPointerType(Result);
635      break;
636    }
637
638    // If this is a missing declspec in a block literal return context, then it
639    // is inferred from the return statements inside the block.
640    if (isOmittedBlockReturnType(declarator)) {
641      Result = Context.DependentTy;
642      break;
643    }
644
645    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
646    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
647    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
648    // Note that the one exception to this is function definitions, which are
649    // allowed to be completely missing a declspec.  This is handled in the
650    // parser already though by it pretending to have seen an 'int' in this
651    // case.
652    if (S.getLangOptions().ImplicitInt) {
653      // In C89 mode, we only warn if there is a completely missing declspec
654      // when one is not allowed.
655      if (DS.isEmpty()) {
656        S.Diag(DeclLoc, diag::ext_missing_declspec)
657          << DS.getSourceRange()
658        << FixItHint::CreateInsertion(DS.getSourceRange().getBegin(), "int");
659      }
660    } else if (!DS.hasTypeSpecifier()) {
661      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
662      // "At least one type specifier shall be given in the declaration
663      // specifiers in each declaration, and in the specifier-qualifier list in
664      // each struct declaration and type name."
665      // FIXME: Does Microsoft really have the implicit int extension in C++?
666      if (S.getLangOptions().CPlusPlus &&
667          !S.getLangOptions().MicrosoftExt) {
668        S.Diag(DeclLoc, diag::err_missing_type_specifier)
669          << DS.getSourceRange();
670
671        // When this occurs in C++ code, often something is very broken with the
672        // value being declared, poison it as invalid so we don't get chains of
673        // errors.
674        declarator.setInvalidType(true);
675      } else {
676        S.Diag(DeclLoc, diag::ext_missing_type_specifier)
677          << DS.getSourceRange();
678      }
679    }
680
681    // FALL THROUGH.
682  case DeclSpec::TST_int: {
683    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
684      switch (DS.getTypeSpecWidth()) {
685      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
686      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
687      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
688      case DeclSpec::TSW_longlong:
689        Result = Context.LongLongTy;
690
691        // long long is a C99 feature.
692        if (!S.getLangOptions().C99)
693          S.Diag(DS.getTypeSpecWidthLoc(),
694                 S.getLangOptions().CPlusPlus0x ?
695                   diag::warn_cxx98_compat_longlong : diag::ext_longlong);
696        break;
697      }
698    } else {
699      switch (DS.getTypeSpecWidth()) {
700      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
701      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
702      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
703      case DeclSpec::TSW_longlong:
704        Result = Context.UnsignedLongLongTy;
705
706        // long long is a C99 feature.
707        if (!S.getLangOptions().C99)
708          S.Diag(DS.getTypeSpecWidthLoc(),
709                 S.getLangOptions().CPlusPlus0x ?
710                   diag::warn_cxx98_compat_longlong : diag::ext_longlong);
711        break;
712      }
713    }
714    break;
715  }
716  case DeclSpec::TST_half: Result = Context.HalfTy; break;
717  case DeclSpec::TST_float: Result = Context.FloatTy; break;
718  case DeclSpec::TST_double:
719    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
720      Result = Context.LongDoubleTy;
721    else
722      Result = Context.DoubleTy;
723
724    if (S.getLangOptions().OpenCL && !S.getOpenCLOptions().cl_khr_fp64) {
725      S.Diag(DS.getTypeSpecTypeLoc(), diag::err_double_requires_fp64);
726      declarator.setInvalidType(true);
727    }
728    break;
729  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
730  case DeclSpec::TST_decimal32:    // _Decimal32
731  case DeclSpec::TST_decimal64:    // _Decimal64
732  case DeclSpec::TST_decimal128:   // _Decimal128
733    S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
734    Result = Context.IntTy;
735    declarator.setInvalidType(true);
736    break;
737  case DeclSpec::TST_class:
738  case DeclSpec::TST_enum:
739  case DeclSpec::TST_union:
740  case DeclSpec::TST_struct: {
741    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
742    if (!D) {
743      // This can happen in C++ with ambiguous lookups.
744      Result = Context.IntTy;
745      declarator.setInvalidType(true);
746      break;
747    }
748
749    // If the type is deprecated or unavailable, diagnose it.
750    S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
751
752    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
753           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
754
755    // TypeQuals handled by caller.
756    Result = Context.getTypeDeclType(D);
757
758    // In both C and C++, make an ElaboratedType.
759    ElaboratedTypeKeyword Keyword
760      = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
761    Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
762
763    if (D->isInvalidDecl())
764      declarator.setInvalidType(true);
765    break;
766  }
767  case DeclSpec::TST_typename: {
768    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
769           DS.getTypeSpecSign() == 0 &&
770           "Can't handle qualifiers on typedef names yet!");
771    Result = S.GetTypeFromParser(DS.getRepAsType());
772    if (Result.isNull())
773      declarator.setInvalidType(true);
774    else if (DeclSpec::ProtocolQualifierListTy PQ
775               = DS.getProtocolQualifiers()) {
776      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
777        // Silently drop any existing protocol qualifiers.
778        // TODO: determine whether that's the right thing to do.
779        if (ObjT->getNumProtocols())
780          Result = ObjT->getBaseType();
781
782        if (DS.getNumProtocolQualifiers())
783          Result = Context.getObjCObjectType(Result,
784                                             (ObjCProtocolDecl**) PQ,
785                                             DS.getNumProtocolQualifiers());
786      } else if (Result->isObjCIdType()) {
787        // id<protocol-list>
788        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
789                                           (ObjCProtocolDecl**) PQ,
790                                           DS.getNumProtocolQualifiers());
791        Result = Context.getObjCObjectPointerType(Result);
792      } else if (Result->isObjCClassType()) {
793        // Class<protocol-list>
794        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
795                                           (ObjCProtocolDecl**) PQ,
796                                           DS.getNumProtocolQualifiers());
797        Result = Context.getObjCObjectPointerType(Result);
798      } else {
799        S.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
800          << DS.getSourceRange();
801        declarator.setInvalidType(true);
802      }
803    }
804
805    // TypeQuals handled by caller.
806    break;
807  }
808  case DeclSpec::TST_typeofType:
809    // FIXME: Preserve type source info.
810    Result = S.GetTypeFromParser(DS.getRepAsType());
811    assert(!Result.isNull() && "Didn't get a type for typeof?");
812    if (!Result->isDependentType())
813      if (const TagType *TT = Result->getAs<TagType>())
814        S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
815    // TypeQuals handled by caller.
816    Result = Context.getTypeOfType(Result);
817    break;
818  case DeclSpec::TST_typeofExpr: {
819    Expr *E = DS.getRepAsExpr();
820    assert(E && "Didn't get an expression for typeof?");
821    // TypeQuals handled by caller.
822    Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
823    if (Result.isNull()) {
824      Result = Context.IntTy;
825      declarator.setInvalidType(true);
826    }
827    break;
828  }
829  case DeclSpec::TST_decltype: {
830    Expr *E = DS.getRepAsExpr();
831    assert(E && "Didn't get an expression for decltype?");
832    // TypeQuals handled by caller.
833    Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
834    if (Result.isNull()) {
835      Result = Context.IntTy;
836      declarator.setInvalidType(true);
837    }
838    break;
839  }
840  case DeclSpec::TST_underlyingType:
841    Result = S.GetTypeFromParser(DS.getRepAsType());
842    assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
843    Result = S.BuildUnaryTransformType(Result,
844                                       UnaryTransformType::EnumUnderlyingType,
845                                       DS.getTypeSpecTypeLoc());
846    if (Result.isNull()) {
847      Result = Context.IntTy;
848      declarator.setInvalidType(true);
849    }
850    break;
851
852  case DeclSpec::TST_auto: {
853    // TypeQuals handled by caller.
854    Result = Context.getAutoType(QualType());
855    break;
856  }
857
858  case DeclSpec::TST_unknown_anytype:
859    Result = Context.UnknownAnyTy;
860    break;
861
862  case DeclSpec::TST_atomic:
863    Result = S.GetTypeFromParser(DS.getRepAsType());
864    assert(!Result.isNull() && "Didn't get a type for _Atomic?");
865    Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
866    if (Result.isNull()) {
867      Result = Context.IntTy;
868      declarator.setInvalidType(true);
869    }
870    break;
871
872  case DeclSpec::TST_error:
873    Result = Context.IntTy;
874    declarator.setInvalidType(true);
875    break;
876  }
877
878  // Handle complex types.
879  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
880    if (S.getLangOptions().Freestanding)
881      S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
882    Result = Context.getComplexType(Result);
883  } else if (DS.isTypeAltiVecVector()) {
884    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
885    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
886    VectorType::VectorKind VecKind = VectorType::AltiVecVector;
887    if (DS.isTypeAltiVecPixel())
888      VecKind = VectorType::AltiVecPixel;
889    else if (DS.isTypeAltiVecBool())
890      VecKind = VectorType::AltiVecBool;
891    Result = Context.getVectorType(Result, 128/typeSize, VecKind);
892  }
893
894  // FIXME: Imaginary.
895  if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
896    S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
897
898  // Before we process any type attributes, synthesize a block literal
899  // function declarator if necessary.
900  if (declarator.getContext() == Declarator::BlockLiteralContext)
901    maybeSynthesizeBlockSignature(state, Result);
902
903  // Apply any type attributes from the decl spec.  This may cause the
904  // list of type attributes to be temporarily saved while the type
905  // attributes are pushed around.
906  if (AttributeList *attrs = DS.getAttributes().getList())
907    processTypeAttrs(state, Result, true, attrs);
908
909  // Apply const/volatile/restrict qualifiers to T.
910  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
911
912    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
913    // or incomplete types shall not be restrict-qualified."  C++ also allows
914    // restrict-qualified references.
915    if (TypeQuals & DeclSpec::TQ_restrict) {
916      if (Result->isAnyPointerType() || Result->isReferenceType()) {
917        QualType EltTy;
918        if (Result->isObjCObjectPointerType())
919          EltTy = Result;
920        else
921          EltTy = Result->isPointerType() ?
922                    Result->getAs<PointerType>()->getPointeeType() :
923                    Result->getAs<ReferenceType>()->getPointeeType();
924
925        // If we have a pointer or reference, the pointee must have an object
926        // incomplete type.
927        if (!EltTy->isIncompleteOrObjectType()) {
928          S.Diag(DS.getRestrictSpecLoc(),
929               diag::err_typecheck_invalid_restrict_invalid_pointee)
930            << EltTy << DS.getSourceRange();
931          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
932        }
933      } else {
934        S.Diag(DS.getRestrictSpecLoc(),
935               diag::err_typecheck_invalid_restrict_not_pointer)
936          << Result << DS.getSourceRange();
937        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
938      }
939    }
940
941    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
942    // of a function type includes any type qualifiers, the behavior is
943    // undefined."
944    if (Result->isFunctionType() && TypeQuals) {
945      // Get some location to point at, either the C or V location.
946      SourceLocation Loc;
947      if (TypeQuals & DeclSpec::TQ_const)
948        Loc = DS.getConstSpecLoc();
949      else if (TypeQuals & DeclSpec::TQ_volatile)
950        Loc = DS.getVolatileSpecLoc();
951      else {
952        assert((TypeQuals & DeclSpec::TQ_restrict) &&
953               "Has CVR quals but not C, V, or R?");
954        Loc = DS.getRestrictSpecLoc();
955      }
956      S.Diag(Loc, diag::warn_typecheck_function_qualifiers)
957        << Result << DS.getSourceRange();
958    }
959
960    // C++ [dcl.ref]p1:
961    //   Cv-qualified references are ill-formed except when the
962    //   cv-qualifiers are introduced through the use of a typedef
963    //   (7.1.3) or of a template type argument (14.3), in which
964    //   case the cv-qualifiers are ignored.
965    // FIXME: Shouldn't we be checking SCS_typedef here?
966    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
967        TypeQuals && Result->isReferenceType()) {
968      TypeQuals &= ~DeclSpec::TQ_const;
969      TypeQuals &= ~DeclSpec::TQ_volatile;
970    }
971
972    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
973    Result = Context.getQualifiedType(Result, Quals);
974  }
975
976  return Result;
977}
978
979static std::string getPrintableNameForEntity(DeclarationName Entity) {
980  if (Entity)
981    return Entity.getAsString();
982
983  return "type name";
984}
985
986QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
987                                  Qualifiers Qs) {
988  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
989  // object or incomplete types shall not be restrict-qualified."
990  if (Qs.hasRestrict()) {
991    unsigned DiagID = 0;
992    QualType ProblemTy;
993
994    const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
995    if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
996      if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
997        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
998        ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
999      }
1000    } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1001      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1002        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1003        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1004      }
1005    } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
1006      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
1007        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1008        ProblemTy = T->getAs<PointerType>()->getPointeeType();
1009      }
1010    } else if (!Ty->isDependentType()) {
1011      // FIXME: this deserves a proper diagnostic
1012      DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1013      ProblemTy = T;
1014    }
1015
1016    if (DiagID) {
1017      Diag(Loc, DiagID) << ProblemTy;
1018      Qs.removeRestrict();
1019    }
1020  }
1021
1022  return Context.getQualifiedType(T, Qs);
1023}
1024
1025/// \brief Build a paren type including \p T.
1026QualType Sema::BuildParenType(QualType T) {
1027  return Context.getParenType(T);
1028}
1029
1030/// Given that we're building a pointer or reference to the given
1031static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1032                                           SourceLocation loc,
1033                                           bool isReference) {
1034  // Bail out if retention is unrequired or already specified.
1035  if (!type->isObjCLifetimeType() ||
1036      type.getObjCLifetime() != Qualifiers::OCL_None)
1037    return type;
1038
1039  Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1040
1041  // If the object type is const-qualified, we can safely use
1042  // __unsafe_unretained.  This is safe (because there are no read
1043  // barriers), and it'll be safe to coerce anything but __weak* to
1044  // the resulting type.
1045  if (type.isConstQualified()) {
1046    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1047
1048  // Otherwise, check whether the static type does not require
1049  // retaining.  This currently only triggers for Class (possibly
1050  // protocol-qualifed, and arrays thereof).
1051  } else if (type->isObjCARCImplicitlyUnretainedType()) {
1052    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1053
1054  // If we are in an unevaluated context, like sizeof, assume ExplicitNone and
1055  // don't give error.
1056  } else if (S.ExprEvalContexts.back().Context == Sema::Unevaluated) {
1057    implicitLifetime = Qualifiers::OCL_ExplicitNone;
1058
1059  // If that failed, give an error and recover using __autoreleasing.
1060  } else {
1061    // These types can show up in private ivars in system headers, so
1062    // we need this to not be an error in those cases.  Instead we
1063    // want to delay.
1064    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1065      S.DelayedDiagnostics.add(
1066          sema::DelayedDiagnostic::makeForbiddenType(loc,
1067              diag::err_arc_indirect_no_ownership, type, isReference));
1068    } else {
1069      S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1070    }
1071    implicitLifetime = Qualifiers::OCL_Autoreleasing;
1072  }
1073  assert(implicitLifetime && "didn't infer any lifetime!");
1074
1075  Qualifiers qs;
1076  qs.addObjCLifetime(implicitLifetime);
1077  return S.Context.getQualifiedType(type, qs);
1078}
1079
1080/// \brief Build a pointer type.
1081///
1082/// \param T The type to which we'll be building a pointer.
1083///
1084/// \param Loc The location of the entity whose type involves this
1085/// pointer type or, if there is no such entity, the location of the
1086/// type that will have pointer type.
1087///
1088/// \param Entity The name of the entity that involves the pointer
1089/// type, if known.
1090///
1091/// \returns A suitable pointer type, if there are no
1092/// errors. Otherwise, returns a NULL type.
1093QualType Sema::BuildPointerType(QualType T,
1094                                SourceLocation Loc, DeclarationName Entity) {
1095  if (T->isReferenceType()) {
1096    // C++ 8.3.2p4: There shall be no ... pointers to references ...
1097    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1098      << getPrintableNameForEntity(Entity) << T;
1099    return QualType();
1100  }
1101
1102  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1103
1104  // In ARC, it is forbidden to build pointers to unqualified pointers.
1105  if (getLangOptions().ObjCAutoRefCount)
1106    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1107
1108  // Build the pointer type.
1109  return Context.getPointerType(T);
1110}
1111
1112/// \brief Build a reference type.
1113///
1114/// \param T The type to which we'll be building a reference.
1115///
1116/// \param Loc The location of the entity whose type involves this
1117/// reference type or, if there is no such entity, the location of the
1118/// type that will have reference type.
1119///
1120/// \param Entity The name of the entity that involves the reference
1121/// type, if known.
1122///
1123/// \returns A suitable reference type, if there are no
1124/// errors. Otherwise, returns a NULL type.
1125QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1126                                  SourceLocation Loc,
1127                                  DeclarationName Entity) {
1128  assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1129         "Unresolved overloaded function type");
1130
1131  // C++0x [dcl.ref]p6:
1132  //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1133  //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1134  //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1135  //   the type "lvalue reference to T", while an attempt to create the type
1136  //   "rvalue reference to cv TR" creates the type TR.
1137  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1138
1139  // C++ [dcl.ref]p4: There shall be no references to references.
1140  //
1141  // According to C++ DR 106, references to references are only
1142  // diagnosed when they are written directly (e.g., "int & &"),
1143  // but not when they happen via a typedef:
1144  //
1145  //   typedef int& intref;
1146  //   typedef intref& intref2;
1147  //
1148  // Parser::ParseDeclaratorInternal diagnoses the case where
1149  // references are written directly; here, we handle the
1150  // collapsing of references-to-references as described in C++0x.
1151  // DR 106 and 540 introduce reference-collapsing into C++98/03.
1152
1153  // C++ [dcl.ref]p1:
1154  //   A declarator that specifies the type "reference to cv void"
1155  //   is ill-formed.
1156  if (T->isVoidType()) {
1157    Diag(Loc, diag::err_reference_to_void);
1158    return QualType();
1159  }
1160
1161  // In ARC, it is forbidden to build references to unqualified pointers.
1162  if (getLangOptions().ObjCAutoRefCount)
1163    T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1164
1165  // Handle restrict on references.
1166  if (LValueRef)
1167    return Context.getLValueReferenceType(T, SpelledAsLValue);
1168  return Context.getRValueReferenceType(T);
1169}
1170
1171/// Check whether the specified array size makes the array type a VLA.  If so,
1172/// return true, if not, return the size of the array in SizeVal.
1173static bool isArraySizeVLA(Expr *ArraySize, llvm::APSInt &SizeVal, Sema &S) {
1174  // If the size is an ICE, it certainly isn't a VLA.
1175  if (ArraySize->isIntegerConstantExpr(SizeVal, S.Context))
1176    return false;
1177
1178  // If we're in a GNU mode (like gnu99, but not c99) accept any evaluatable
1179  // value as an extension.
1180  Expr::EvalResult Result;
1181  if (S.LangOpts.GNUMode && ArraySize->Evaluate(Result, S.Context)) {
1182    if (!Result.hasSideEffects() && Result.Val.isInt()) {
1183      SizeVal = Result.Val.getInt();
1184      S.Diag(ArraySize->getLocStart(), diag::ext_vla_folded_to_constant);
1185      return false;
1186    }
1187  }
1188
1189  return true;
1190}
1191
1192
1193/// \brief Build an array type.
1194///
1195/// \param T The type of each element in the array.
1196///
1197/// \param ASM C99 array size modifier (e.g., '*', 'static').
1198///
1199/// \param ArraySize Expression describing the size of the array.
1200///
1201/// \param Loc The location of the entity whose type involves this
1202/// array type or, if there is no such entity, the location of the
1203/// type that will have array type.
1204///
1205/// \param Entity The name of the entity that involves the array
1206/// type, if known.
1207///
1208/// \returns A suitable array type, if there are no errors. Otherwise,
1209/// returns a NULL type.
1210QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1211                              Expr *ArraySize, unsigned Quals,
1212                              SourceRange Brackets, DeclarationName Entity) {
1213
1214  SourceLocation Loc = Brackets.getBegin();
1215  if (getLangOptions().CPlusPlus) {
1216    // C++ [dcl.array]p1:
1217    //   T is called the array element type; this type shall not be a reference
1218    //   type, the (possibly cv-qualified) type void, a function type or an
1219    //   abstract class type.
1220    //
1221    // Note: function types are handled in the common path with C.
1222    if (T->isReferenceType()) {
1223      Diag(Loc, diag::err_illegal_decl_array_of_references)
1224      << getPrintableNameForEntity(Entity) << T;
1225      return QualType();
1226    }
1227
1228    if (T->isVoidType()) {
1229      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1230      return QualType();
1231    }
1232
1233    if (RequireNonAbstractType(Brackets.getBegin(), T,
1234                               diag::err_array_of_abstract_type))
1235      return QualType();
1236
1237  } else {
1238    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
1239    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
1240    if (RequireCompleteType(Loc, T,
1241                            diag::err_illegal_decl_array_incomplete_type))
1242      return QualType();
1243  }
1244
1245  if (T->isFunctionType()) {
1246    Diag(Loc, diag::err_illegal_decl_array_of_functions)
1247      << getPrintableNameForEntity(Entity) << T;
1248    return QualType();
1249  }
1250
1251  if (T->getContainedAutoType()) {
1252    Diag(Loc, diag::err_illegal_decl_array_of_auto)
1253      << getPrintableNameForEntity(Entity) << T;
1254    return QualType();
1255  }
1256
1257  if (const RecordType *EltTy = T->getAs<RecordType>()) {
1258    // If the element type is a struct or union that contains a variadic
1259    // array, accept it as a GNU extension: C99 6.7.2.1p2.
1260    if (EltTy->getDecl()->hasFlexibleArrayMember())
1261      Diag(Loc, diag::ext_flexible_array_in_array) << T;
1262  } else if (T->isObjCObjectType()) {
1263    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
1264    return QualType();
1265  }
1266
1267  // Do lvalue-to-rvalue conversions on the array size expression.
1268  if (ArraySize && !ArraySize->isRValue()) {
1269    ExprResult Result = DefaultLvalueConversion(ArraySize);
1270    if (Result.isInvalid())
1271      return QualType();
1272
1273    ArraySize = Result.take();
1274  }
1275
1276  // C99 6.7.5.2p1: The size expression shall have integer type.
1277  // TODO: in theory, if we were insane, we could allow contextual
1278  // conversions to integer type here.
1279  if (ArraySize && !ArraySize->isTypeDependent() &&
1280      !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
1281    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
1282      << ArraySize->getType() << ArraySize->getSourceRange();
1283    return QualType();
1284  }
1285  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
1286  if (!ArraySize) {
1287    if (ASM == ArrayType::Star)
1288      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
1289    else
1290      T = Context.getIncompleteArrayType(T, ASM, Quals);
1291  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
1292    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
1293  } else if (!T->isDependentType() && !T->isIncompleteType() &&
1294             !T->isConstantSizeType()) {
1295    // C99: an array with an element type that has a non-constant-size is a VLA.
1296    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1297  } else if (isArraySizeVLA(ArraySize, ConstVal, *this)) {
1298    // C99: an array with a non-ICE size is a VLA.  We accept any expression
1299    // that we can fold to a non-zero positive value as an extension.
1300    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
1301  } else {
1302    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
1303    // have a value greater than zero.
1304    if (ConstVal.isSigned() && ConstVal.isNegative()) {
1305      if (Entity)
1306        Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
1307          << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
1308      else
1309        Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
1310          << ArraySize->getSourceRange();
1311      return QualType();
1312    }
1313    if (ConstVal == 0) {
1314      // GCC accepts zero sized static arrays. We allow them when
1315      // we're not in a SFINAE context.
1316      Diag(ArraySize->getLocStart(),
1317           isSFINAEContext()? diag::err_typecheck_zero_array_size
1318                            : diag::ext_typecheck_zero_array_size)
1319        << ArraySize->getSourceRange();
1320
1321      if (ASM == ArrayType::Static) {
1322        Diag(ArraySize->getLocStart(),
1323             diag::warn_typecheck_zero_static_array_size)
1324          << ArraySize->getSourceRange();
1325        ASM = ArrayType::Normal;
1326      }
1327    } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
1328               !T->isIncompleteType()) {
1329      // Is the array too large?
1330      unsigned ActiveSizeBits
1331        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
1332      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1333        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
1334          << ConstVal.toString(10)
1335          << ArraySize->getSourceRange();
1336    }
1337
1338    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
1339  }
1340  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
1341  if (!getLangOptions().C99) {
1342    if (T->isVariableArrayType()) {
1343      // Prohibit the use of non-POD types in VLAs.
1344      QualType BaseT = Context.getBaseElementType(T);
1345      if (!T->isDependentType() &&
1346          !BaseT.isPODType(Context) &&
1347          !BaseT->isObjCLifetimeType()) {
1348        Diag(Loc, diag::err_vla_non_pod)
1349          << BaseT;
1350        return QualType();
1351      }
1352      // Prohibit the use of VLAs during template argument deduction.
1353      else if (isSFINAEContext()) {
1354        Diag(Loc, diag::err_vla_in_sfinae);
1355        return QualType();
1356      }
1357      // Just extwarn about VLAs.
1358      else
1359        Diag(Loc, diag::ext_vla);
1360    } else if (ASM != ArrayType::Normal || Quals != 0)
1361      Diag(Loc,
1362           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
1363                                     : diag::ext_c99_array_usage);
1364  }
1365
1366  return T;
1367}
1368
1369/// \brief Build an ext-vector type.
1370///
1371/// Run the required checks for the extended vector type.
1372QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
1373                                  SourceLocation AttrLoc) {
1374  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1375  // in conjunction with complex types (pointers, arrays, functions, etc.).
1376  if (!T->isDependentType() &&
1377      !T->isIntegerType() && !T->isRealFloatingType()) {
1378    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
1379    return QualType();
1380  }
1381
1382  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
1383    llvm::APSInt vecSize(32);
1384    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
1385      Diag(AttrLoc, diag::err_attribute_argument_not_int)
1386        << "ext_vector_type" << ArraySize->getSourceRange();
1387      return QualType();
1388    }
1389
1390    // unlike gcc's vector_size attribute, the size is specified as the
1391    // number of elements, not the number of bytes.
1392    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1393
1394    if (vectorSize == 0) {
1395      Diag(AttrLoc, diag::err_attribute_zero_size)
1396      << ArraySize->getSourceRange();
1397      return QualType();
1398    }
1399
1400    return Context.getExtVectorType(T, vectorSize);
1401  }
1402
1403  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
1404}
1405
1406/// \brief Build a function type.
1407///
1408/// This routine checks the function type according to C++ rules and
1409/// under the assumption that the result type and parameter types have
1410/// just been instantiated from a template. It therefore duplicates
1411/// some of the behavior of GetTypeForDeclarator, but in a much
1412/// simpler form that is only suitable for this narrow use case.
1413///
1414/// \param T The return type of the function.
1415///
1416/// \param ParamTypes The parameter types of the function. This array
1417/// will be modified to account for adjustments to the types of the
1418/// function parameters.
1419///
1420/// \param NumParamTypes The number of parameter types in ParamTypes.
1421///
1422/// \param Variadic Whether this is a variadic function type.
1423///
1424/// \param Quals The cvr-qualifiers to be applied to the function type.
1425///
1426/// \param Loc The location of the entity whose type involves this
1427/// function type or, if there is no such entity, the location of the
1428/// type that will have function type.
1429///
1430/// \param Entity The name of the entity that involves the function
1431/// type, if known.
1432///
1433/// \returns A suitable function type, if there are no
1434/// errors. Otherwise, returns a NULL type.
1435QualType Sema::BuildFunctionType(QualType T,
1436                                 QualType *ParamTypes,
1437                                 unsigned NumParamTypes,
1438                                 bool Variadic, unsigned Quals,
1439                                 RefQualifierKind RefQualifier,
1440                                 SourceLocation Loc, DeclarationName Entity,
1441                                 FunctionType::ExtInfo Info) {
1442  if (T->isArrayType() || T->isFunctionType()) {
1443    Diag(Loc, diag::err_func_returning_array_function)
1444      << T->isFunctionType() << T;
1445    return QualType();
1446  }
1447
1448  // Functions cannot return half FP.
1449  if (T->isHalfType()) {
1450    Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
1451      FixItHint::CreateInsertion(Loc, "*");
1452    return QualType();
1453  }
1454
1455  bool Invalid = false;
1456  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
1457    // FIXME: Loc is too inprecise here, should use proper locations for args.
1458    QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
1459    if (ParamType->isVoidType()) {
1460      Diag(Loc, diag::err_param_with_void_type);
1461      Invalid = true;
1462    } else if (ParamType->isHalfType()) {
1463      // Disallow half FP arguments.
1464      Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
1465        FixItHint::CreateInsertion(Loc, "*");
1466      Invalid = true;
1467    }
1468
1469    ParamTypes[Idx] = ParamType;
1470  }
1471
1472  if (Invalid)
1473    return QualType();
1474
1475  FunctionProtoType::ExtProtoInfo EPI;
1476  EPI.Variadic = Variadic;
1477  EPI.TypeQuals = Quals;
1478  EPI.RefQualifier = RefQualifier;
1479  EPI.ExtInfo = Info;
1480
1481  return Context.getFunctionType(T, ParamTypes, NumParamTypes, EPI);
1482}
1483
1484/// \brief Build a member pointer type \c T Class::*.
1485///
1486/// \param T the type to which the member pointer refers.
1487/// \param Class the class type into which the member pointer points.
1488/// \param CVR Qualifiers applied to the member pointer type
1489/// \param Loc the location where this type begins
1490/// \param Entity the name of the entity that will have this member pointer type
1491///
1492/// \returns a member pointer type, if successful, or a NULL type if there was
1493/// an error.
1494QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
1495                                      SourceLocation Loc,
1496                                      DeclarationName Entity) {
1497  // Verify that we're not building a pointer to pointer to function with
1498  // exception specification.
1499  if (CheckDistantExceptionSpec(T)) {
1500    Diag(Loc, diag::err_distant_exception_spec);
1501
1502    // FIXME: If we're doing this as part of template instantiation,
1503    // we should return immediately.
1504
1505    // Build the type anyway, but use the canonical type so that the
1506    // exception specifiers are stripped off.
1507    T = Context.getCanonicalType(T);
1508  }
1509
1510  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
1511  //   with reference type, or "cv void."
1512  if (T->isReferenceType()) {
1513    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
1514      << (Entity? Entity.getAsString() : "type name") << T;
1515    return QualType();
1516  }
1517
1518  if (T->isVoidType()) {
1519    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
1520      << (Entity? Entity.getAsString() : "type name");
1521    return QualType();
1522  }
1523
1524  if (!Class->isDependentType() && !Class->isRecordType()) {
1525    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
1526    return QualType();
1527  }
1528
1529  // In the Microsoft ABI, the class is allowed to be an incomplete
1530  // type. In such cases, the compiler makes a worst-case assumption.
1531  // We make no such assumption right now, so emit an error if the
1532  // class isn't a complete type.
1533  if (Context.getTargetInfo().getCXXABI() == CXXABI_Microsoft &&
1534      RequireCompleteType(Loc, Class, diag::err_incomplete_type))
1535    return QualType();
1536
1537  return Context.getMemberPointerType(T, Class.getTypePtr());
1538}
1539
1540/// \brief Build a block pointer type.
1541///
1542/// \param T The type to which we'll be building a block pointer.
1543///
1544/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
1545///
1546/// \param Loc The location of the entity whose type involves this
1547/// block pointer type or, if there is no such entity, the location of the
1548/// type that will have block pointer type.
1549///
1550/// \param Entity The name of the entity that involves the block pointer
1551/// type, if known.
1552///
1553/// \returns A suitable block pointer type, if there are no
1554/// errors. Otherwise, returns a NULL type.
1555QualType Sema::BuildBlockPointerType(QualType T,
1556                                     SourceLocation Loc,
1557                                     DeclarationName Entity) {
1558  if (!T->isFunctionType()) {
1559    Diag(Loc, diag::err_nonfunction_block_type);
1560    return QualType();
1561  }
1562
1563  return Context.getBlockPointerType(T);
1564}
1565
1566QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
1567  QualType QT = Ty.get();
1568  if (QT.isNull()) {
1569    if (TInfo) *TInfo = 0;
1570    return QualType();
1571  }
1572
1573  TypeSourceInfo *DI = 0;
1574  if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
1575    QT = LIT->getType();
1576    DI = LIT->getTypeSourceInfo();
1577  }
1578
1579  if (TInfo) *TInfo = DI;
1580  return QT;
1581}
1582
1583static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
1584                                            Qualifiers::ObjCLifetime ownership,
1585                                            unsigned chunkIndex);
1586
1587/// Given that this is the declaration of a parameter under ARC,
1588/// attempt to infer attributes and such for pointer-to-whatever
1589/// types.
1590static void inferARCWriteback(TypeProcessingState &state,
1591                              QualType &declSpecType) {
1592  Sema &S = state.getSema();
1593  Declarator &declarator = state.getDeclarator();
1594
1595  // TODO: should we care about decl qualifiers?
1596
1597  // Check whether the declarator has the expected form.  We walk
1598  // from the inside out in order to make the block logic work.
1599  unsigned outermostPointerIndex = 0;
1600  bool isBlockPointer = false;
1601  unsigned numPointers = 0;
1602  for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
1603    unsigned chunkIndex = i;
1604    DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
1605    switch (chunk.Kind) {
1606    case DeclaratorChunk::Paren:
1607      // Ignore parens.
1608      break;
1609
1610    case DeclaratorChunk::Reference:
1611    case DeclaratorChunk::Pointer:
1612      // Count the number of pointers.  Treat references
1613      // interchangeably as pointers; if they're mis-ordered, normal
1614      // type building will discover that.
1615      outermostPointerIndex = chunkIndex;
1616      numPointers++;
1617      break;
1618
1619    case DeclaratorChunk::BlockPointer:
1620      // If we have a pointer to block pointer, that's an acceptable
1621      // indirect reference; anything else is not an application of
1622      // the rules.
1623      if (numPointers != 1) return;
1624      numPointers++;
1625      outermostPointerIndex = chunkIndex;
1626      isBlockPointer = true;
1627
1628      // We don't care about pointer structure in return values here.
1629      goto done;
1630
1631    case DeclaratorChunk::Array: // suppress if written (id[])?
1632    case DeclaratorChunk::Function:
1633    case DeclaratorChunk::MemberPointer:
1634      return;
1635    }
1636  }
1637 done:
1638
1639  // If we have *one* pointer, then we want to throw the qualifier on
1640  // the declaration-specifiers, which means that it needs to be a
1641  // retainable object type.
1642  if (numPointers == 1) {
1643    // If it's not a retainable object type, the rule doesn't apply.
1644    if (!declSpecType->isObjCRetainableType()) return;
1645
1646    // If it already has lifetime, don't do anything.
1647    if (declSpecType.getObjCLifetime()) return;
1648
1649    // Otherwise, modify the type in-place.
1650    Qualifiers qs;
1651
1652    if (declSpecType->isObjCARCImplicitlyUnretainedType())
1653      qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
1654    else
1655      qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
1656    declSpecType = S.Context.getQualifiedType(declSpecType, qs);
1657
1658  // If we have *two* pointers, then we want to throw the qualifier on
1659  // the outermost pointer.
1660  } else if (numPointers == 2) {
1661    // If we don't have a block pointer, we need to check whether the
1662    // declaration-specifiers gave us something that will turn into a
1663    // retainable object pointer after we slap the first pointer on it.
1664    if (!isBlockPointer && !declSpecType->isObjCObjectType())
1665      return;
1666
1667    // Look for an explicit lifetime attribute there.
1668    DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
1669    if (chunk.Kind != DeclaratorChunk::Pointer &&
1670        chunk.Kind != DeclaratorChunk::BlockPointer)
1671      return;
1672    for (const AttributeList *attr = chunk.getAttrs(); attr;
1673           attr = attr->getNext())
1674      if (attr->getKind() == AttributeList::AT_objc_ownership)
1675        return;
1676
1677    transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
1678                                          outermostPointerIndex);
1679
1680  // Any other number of pointers/references does not trigger the rule.
1681  } else return;
1682
1683  // TODO: mark whether we did this inference?
1684}
1685
1686static void DiagnoseIgnoredQualifiers(unsigned Quals,
1687                                      SourceLocation ConstQualLoc,
1688                                      SourceLocation VolatileQualLoc,
1689                                      SourceLocation RestrictQualLoc,
1690                                      Sema& S) {
1691  std::string QualStr;
1692  unsigned NumQuals = 0;
1693  SourceLocation Loc;
1694
1695  FixItHint ConstFixIt;
1696  FixItHint VolatileFixIt;
1697  FixItHint RestrictFixIt;
1698
1699  const SourceManager &SM = S.getSourceManager();
1700
1701  // FIXME: The locations here are set kind of arbitrarily. It'd be nicer to
1702  // find a range and grow it to encompass all the qualifiers, regardless of
1703  // the order in which they textually appear.
1704  if (Quals & Qualifiers::Const) {
1705    ConstFixIt = FixItHint::CreateRemoval(ConstQualLoc);
1706    QualStr = "const";
1707    ++NumQuals;
1708    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(ConstQualLoc, Loc))
1709      Loc = ConstQualLoc;
1710  }
1711  if (Quals & Qualifiers::Volatile) {
1712    VolatileFixIt = FixItHint::CreateRemoval(VolatileQualLoc);
1713    QualStr += (NumQuals == 0 ? "volatile" : " volatile");
1714    ++NumQuals;
1715    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(VolatileQualLoc, Loc))
1716      Loc = VolatileQualLoc;
1717  }
1718  if (Quals & Qualifiers::Restrict) {
1719    RestrictFixIt = FixItHint::CreateRemoval(RestrictQualLoc);
1720    QualStr += (NumQuals == 0 ? "restrict" : " restrict");
1721    ++NumQuals;
1722    if (!Loc.isValid() || SM.isBeforeInTranslationUnit(RestrictQualLoc, Loc))
1723      Loc = RestrictQualLoc;
1724  }
1725
1726  assert(NumQuals > 0 && "No known qualifiers?");
1727
1728  S.Diag(Loc, diag::warn_qual_return_type)
1729    << QualStr << NumQuals << ConstFixIt << VolatileFixIt << RestrictFixIt;
1730}
1731
1732static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
1733                                             TypeSourceInfo *&ReturnTypeInfo) {
1734  Sema &SemaRef = state.getSema();
1735  Declarator &D = state.getDeclarator();
1736  QualType T;
1737  ReturnTypeInfo = 0;
1738
1739  // The TagDecl owned by the DeclSpec.
1740  TagDecl *OwnedTagDecl = 0;
1741
1742  switch (D.getName().getKind()) {
1743  case UnqualifiedId::IK_ImplicitSelfParam:
1744  case UnqualifiedId::IK_OperatorFunctionId:
1745  case UnqualifiedId::IK_Identifier:
1746  case UnqualifiedId::IK_LiteralOperatorId:
1747  case UnqualifiedId::IK_TemplateId:
1748    T = ConvertDeclSpecToType(state);
1749
1750    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
1751      OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
1752      // Owned declaration is embedded in declarator.
1753      OwnedTagDecl->setEmbeddedInDeclarator(true);
1754    }
1755    break;
1756
1757  case UnqualifiedId::IK_ConstructorName:
1758  case UnqualifiedId::IK_ConstructorTemplateId:
1759  case UnqualifiedId::IK_DestructorName:
1760    // Constructors and destructors don't have return types. Use
1761    // "void" instead.
1762    T = SemaRef.Context.VoidTy;
1763    break;
1764
1765  case UnqualifiedId::IK_ConversionFunctionId:
1766    // The result type of a conversion function is the type that it
1767    // converts to.
1768    T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
1769                                  &ReturnTypeInfo);
1770    break;
1771  }
1772
1773  if (D.getAttributes())
1774    distributeTypeAttrsFromDeclarator(state, T);
1775
1776  // C++0x [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
1777  // In C++0x, a function declarator using 'auto' must have a trailing return
1778  // type (this is checked later) and we can skip this. In other languages
1779  // using auto, we need to check regardless.
1780  if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
1781      (!SemaRef.getLangOptions().CPlusPlus0x || !D.isFunctionDeclarator())) {
1782    int Error = -1;
1783
1784    switch (D.getContext()) {
1785    case Declarator::KNRTypeListContext:
1786      llvm_unreachable("K&R type lists aren't allowed in C++");
1787      break;
1788    case Declarator::ObjCParameterContext:
1789    case Declarator::ObjCResultContext:
1790    case Declarator::PrototypeContext:
1791      Error = 0; // Function prototype
1792      break;
1793    case Declarator::MemberContext:
1794      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
1795        break;
1796      switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
1797      case TTK_Enum: llvm_unreachable("unhandled tag kind");
1798      case TTK_Struct: Error = 1; /* Struct member */ break;
1799      case TTK_Union:  Error = 2; /* Union member */ break;
1800      case TTK_Class:  Error = 3; /* Class member */ break;
1801      }
1802      break;
1803    case Declarator::CXXCatchContext:
1804    case Declarator::ObjCCatchContext:
1805      Error = 4; // Exception declaration
1806      break;
1807    case Declarator::TemplateParamContext:
1808      Error = 5; // Template parameter
1809      break;
1810    case Declarator::BlockLiteralContext:
1811      Error = 6; // Block literal
1812      break;
1813    case Declarator::TemplateTypeArgContext:
1814      Error = 7; // Template type argument
1815      break;
1816    case Declarator::AliasDeclContext:
1817    case Declarator::AliasTemplateContext:
1818      Error = 9; // Type alias
1819      break;
1820    case Declarator::TypeNameContext:
1821      Error = 11; // Generic
1822      break;
1823    case Declarator::FileContext:
1824    case Declarator::BlockContext:
1825    case Declarator::ForContext:
1826    case Declarator::ConditionContext:
1827    case Declarator::CXXNewContext:
1828      break;
1829    }
1830
1831    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1832      Error = 8;
1833
1834    // In Objective-C it is an error to use 'auto' on a function declarator.
1835    if (D.isFunctionDeclarator())
1836      Error = 10;
1837
1838    // C++0x [dcl.spec.auto]p2: 'auto' is always fine if the declarator
1839    // contains a trailing return type. That is only legal at the outermost
1840    // level. Check all declarator chunks (outermost first) anyway, to give
1841    // better diagnostics.
1842    if (SemaRef.getLangOptions().CPlusPlus0x && Error != -1) {
1843      for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1844        unsigned chunkIndex = e - i - 1;
1845        state.setCurrentChunkIndex(chunkIndex);
1846        DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1847        if (DeclType.Kind == DeclaratorChunk::Function) {
1848          const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
1849          if (FTI.TrailingReturnType) {
1850            Error = -1;
1851            break;
1852          }
1853        }
1854      }
1855    }
1856
1857    if (Error != -1) {
1858      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1859                   diag::err_auto_not_allowed)
1860        << Error;
1861      T = SemaRef.Context.IntTy;
1862      D.setInvalidType(true);
1863    } else
1864      SemaRef.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
1865                   diag::warn_cxx98_compat_auto_type_specifier);
1866  }
1867
1868  if (SemaRef.getLangOptions().CPlusPlus &&
1869      OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
1870    // Check the contexts where C++ forbids the declaration of a new class
1871    // or enumeration in a type-specifier-seq.
1872    switch (D.getContext()) {
1873    case Declarator::FileContext:
1874    case Declarator::MemberContext:
1875    case Declarator::BlockContext:
1876    case Declarator::ForContext:
1877    case Declarator::BlockLiteralContext:
1878      // C++0x [dcl.type]p3:
1879      //   A type-specifier-seq shall not define a class or enumeration unless
1880      //   it appears in the type-id of an alias-declaration (7.1.3) that is not
1881      //   the declaration of a template-declaration.
1882    case Declarator::AliasDeclContext:
1883      break;
1884    case Declarator::AliasTemplateContext:
1885      SemaRef.Diag(OwnedTagDecl->getLocation(),
1886             diag::err_type_defined_in_alias_template)
1887        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1888      break;
1889    case Declarator::TypeNameContext:
1890    case Declarator::TemplateParamContext:
1891    case Declarator::CXXNewContext:
1892    case Declarator::CXXCatchContext:
1893    case Declarator::ObjCCatchContext:
1894    case Declarator::TemplateTypeArgContext:
1895      SemaRef.Diag(OwnedTagDecl->getLocation(),
1896             diag::err_type_defined_in_type_specifier)
1897        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1898      break;
1899    case Declarator::PrototypeContext:
1900    case Declarator::ObjCParameterContext:
1901    case Declarator::ObjCResultContext:
1902    case Declarator::KNRTypeListContext:
1903      // C++ [dcl.fct]p6:
1904      //   Types shall not be defined in return or parameter types.
1905      SemaRef.Diag(OwnedTagDecl->getLocation(),
1906                   diag::err_type_defined_in_param_type)
1907        << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
1908      break;
1909    case Declarator::ConditionContext:
1910      // C++ 6.4p2:
1911      // The type-specifier-seq shall not contain typedef and shall not declare
1912      // a new class or enumeration.
1913      SemaRef.Diag(OwnedTagDecl->getLocation(),
1914                   diag::err_type_defined_in_condition);
1915      break;
1916    }
1917  }
1918
1919  return T;
1920}
1921
1922static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
1923                                                QualType declSpecType,
1924                                                TypeSourceInfo *TInfo) {
1925
1926  QualType T = declSpecType;
1927  Declarator &D = state.getDeclarator();
1928  Sema &S = state.getSema();
1929  ASTContext &Context = S.Context;
1930  const LangOptions &LangOpts = S.getLangOptions();
1931
1932  bool ImplicitlyNoexcept = false;
1933  if (D.getName().getKind() == UnqualifiedId::IK_OperatorFunctionId &&
1934      LangOpts.CPlusPlus0x) {
1935    OverloadedOperatorKind OO = D.getName().OperatorFunctionId.Operator;
1936    /// In C++0x, deallocation functions (normal and array operator delete)
1937    /// are implicitly noexcept.
1938    if (OO == OO_Delete || OO == OO_Array_Delete)
1939      ImplicitlyNoexcept = true;
1940  }
1941
1942  // The name we're declaring, if any.
1943  DeclarationName Name;
1944  if (D.getIdentifier())
1945    Name = D.getIdentifier();
1946
1947  // Does this declaration declare a typedef-name?
1948  bool IsTypedefName =
1949    D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
1950    D.getContext() == Declarator::AliasDeclContext ||
1951    D.getContext() == Declarator::AliasTemplateContext;
1952
1953  // Walk the DeclTypeInfo, building the recursive type as we go.
1954  // DeclTypeInfos are ordered from the identifier out, which is
1955  // opposite of what we want :).
1956  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
1957    unsigned chunkIndex = e - i - 1;
1958    state.setCurrentChunkIndex(chunkIndex);
1959    DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
1960    switch (DeclType.Kind) {
1961    default: llvm_unreachable("Unknown decltype!");
1962    case DeclaratorChunk::Paren:
1963      T = S.BuildParenType(T);
1964      break;
1965    case DeclaratorChunk::BlockPointer:
1966      // If blocks are disabled, emit an error.
1967      if (!LangOpts.Blocks)
1968        S.Diag(DeclType.Loc, diag::err_blocks_disable);
1969
1970      T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
1971      if (DeclType.Cls.TypeQuals)
1972        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
1973      break;
1974    case DeclaratorChunk::Pointer:
1975      // Verify that we're not building a pointer to pointer to function with
1976      // exception specification.
1977      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
1978        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1979        D.setInvalidType(true);
1980        // Build the type anyway.
1981      }
1982      if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
1983        T = Context.getObjCObjectPointerType(T);
1984        if (DeclType.Ptr.TypeQuals)
1985          T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
1986        break;
1987      }
1988      T = S.BuildPointerType(T, DeclType.Loc, Name);
1989      if (DeclType.Ptr.TypeQuals)
1990        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
1991
1992      break;
1993    case DeclaratorChunk::Reference: {
1994      // Verify that we're not building a reference to pointer to function with
1995      // exception specification.
1996      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
1997        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
1998        D.setInvalidType(true);
1999        // Build the type anyway.
2000      }
2001      T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
2002
2003      Qualifiers Quals;
2004      if (DeclType.Ref.HasRestrict)
2005        T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
2006      break;
2007    }
2008    case DeclaratorChunk::Array: {
2009      // Verify that we're not building an array of pointers to function with
2010      // exception specification.
2011      if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
2012        S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
2013        D.setInvalidType(true);
2014        // Build the type anyway.
2015      }
2016      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
2017      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
2018      ArrayType::ArraySizeModifier ASM;
2019      if (ATI.isStar)
2020        ASM = ArrayType::Star;
2021      else if (ATI.hasStatic)
2022        ASM = ArrayType::Static;
2023      else
2024        ASM = ArrayType::Normal;
2025      if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
2026        // FIXME: This check isn't quite right: it allows star in prototypes
2027        // for function definitions, and disallows some edge cases detailed
2028        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
2029        S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
2030        ASM = ArrayType::Normal;
2031        D.setInvalidType(true);
2032      }
2033      T = S.BuildArrayType(T, ASM, ArraySize,
2034                           Qualifiers::fromCVRMask(ATI.TypeQuals),
2035                           SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
2036      break;
2037    }
2038    case DeclaratorChunk::Function: {
2039      // If the function declarator has a prototype (i.e. it is not () and
2040      // does not have a K&R-style identifier list), then the arguments are part
2041      // of the type, otherwise the argument list is ().
2042      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2043
2044      // Check for auto functions and trailing return type and adjust the
2045      // return type accordingly.
2046      if (!D.isInvalidType()) {
2047        // trailing-return-type is only required if we're declaring a function,
2048        // and not, for instance, a pointer to a function.
2049        if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
2050            !FTI.TrailingReturnType && chunkIndex == 0) {
2051          S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2052               diag::err_auto_missing_trailing_return);
2053          T = Context.IntTy;
2054          D.setInvalidType(true);
2055        } else if (FTI.TrailingReturnType) {
2056          // T must be exactly 'auto' at this point. See CWG issue 681.
2057          if (isa<ParenType>(T)) {
2058            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2059                 diag::err_trailing_return_in_parens)
2060              << T << D.getDeclSpec().getSourceRange();
2061            D.setInvalidType(true);
2062          } else if (T.hasQualifiers() || !isa<AutoType>(T)) {
2063            S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
2064                 diag::err_trailing_return_without_auto)
2065              << T << D.getDeclSpec().getSourceRange();
2066            D.setInvalidType(true);
2067          }
2068
2069          T = S.GetTypeFromParser(
2070            ParsedType::getFromOpaquePtr(FTI.TrailingReturnType),
2071            &TInfo);
2072        }
2073      }
2074
2075      // C99 6.7.5.3p1: The return type may not be a function or array type.
2076      // For conversion functions, we'll diagnose this particular error later.
2077      if ((T->isArrayType() || T->isFunctionType()) &&
2078          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
2079        unsigned diagID = diag::err_func_returning_array_function;
2080        // Last processing chunk in block context means this function chunk
2081        // represents the block.
2082        if (chunkIndex == 0 &&
2083            D.getContext() == Declarator::BlockLiteralContext)
2084          diagID = diag::err_block_returning_array_function;
2085        S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
2086        T = Context.IntTy;
2087        D.setInvalidType(true);
2088      }
2089
2090      // Do not allow returning half FP value.
2091      // FIXME: This really should be in BuildFunctionType.
2092      if (T->isHalfType()) {
2093        S.Diag(D.getIdentifierLoc(),
2094             diag::err_parameters_retval_cannot_have_fp16_type) << 1
2095          << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
2096        D.setInvalidType(true);
2097      }
2098
2099      // cv-qualifiers on return types are pointless except when the type is a
2100      // class type in C++.
2101      if (isa<PointerType>(T) && T.getLocalCVRQualifiers() &&
2102          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId) &&
2103          (!LangOpts.CPlusPlus || !T->isDependentType())) {
2104        assert(chunkIndex + 1 < e && "No DeclaratorChunk for the return type?");
2105        DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
2106        assert(ReturnTypeChunk.Kind == DeclaratorChunk::Pointer);
2107
2108        DeclaratorChunk::PointerTypeInfo &PTI = ReturnTypeChunk.Ptr;
2109
2110        DiagnoseIgnoredQualifiers(PTI.TypeQuals,
2111            SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2112            SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2113            SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2114            S);
2115
2116      } else if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
2117          (!LangOpts.CPlusPlus ||
2118           (!T->isDependentType() && !T->isRecordType()))) {
2119
2120        DiagnoseIgnoredQualifiers(D.getDeclSpec().getTypeQualifiers(),
2121                                  D.getDeclSpec().getConstSpecLoc(),
2122                                  D.getDeclSpec().getVolatileSpecLoc(),
2123                                  D.getDeclSpec().getRestrictSpecLoc(),
2124                                  S);
2125      }
2126
2127      if (LangOpts.CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
2128        // C++ [dcl.fct]p6:
2129        //   Types shall not be defined in return or parameter types.
2130        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2131        if (Tag->isCompleteDefinition())
2132          S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
2133            << Context.getTypeDeclType(Tag);
2134      }
2135
2136      // Exception specs are not allowed in typedefs. Complain, but add it
2137      // anyway.
2138      if (IsTypedefName && FTI.getExceptionSpecType())
2139        S.Diag(FTI.getExceptionSpecLoc(), diag::err_exception_spec_in_typedef)
2140          << (D.getContext() == Declarator::AliasDeclContext ||
2141              D.getContext() == Declarator::AliasTemplateContext);
2142
2143      if (!FTI.NumArgs && !FTI.isVariadic && !LangOpts.CPlusPlus) {
2144        // Simple void foo(), where the incoming T is the result type.
2145        T = Context.getFunctionNoProtoType(T);
2146      } else {
2147        // We allow a zero-parameter variadic function in C if the
2148        // function is marked with the "overloadable" attribute. Scan
2149        // for this attribute now.
2150        if (!FTI.NumArgs && FTI.isVariadic && !LangOpts.CPlusPlus) {
2151          bool Overloadable = false;
2152          for (const AttributeList *Attrs = D.getAttributes();
2153               Attrs; Attrs = Attrs->getNext()) {
2154            if (Attrs->getKind() == AttributeList::AT_overloadable) {
2155              Overloadable = true;
2156              break;
2157            }
2158          }
2159
2160          if (!Overloadable)
2161            S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
2162        }
2163
2164        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
2165          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
2166          // definition.
2167          S.Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
2168          D.setInvalidType(true);
2169          break;
2170        }
2171
2172        FunctionProtoType::ExtProtoInfo EPI;
2173        EPI.Variadic = FTI.isVariadic;
2174        EPI.TypeQuals = FTI.TypeQuals;
2175        EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
2176                    : FTI.RefQualifierIsLValueRef? RQ_LValue
2177                    : RQ_RValue;
2178
2179        // Otherwise, we have a function with an argument list that is
2180        // potentially variadic.
2181        SmallVector<QualType, 16> ArgTys;
2182        ArgTys.reserve(FTI.NumArgs);
2183
2184        SmallVector<bool, 16> ConsumedArguments;
2185        ConsumedArguments.reserve(FTI.NumArgs);
2186        bool HasAnyConsumedArguments = false;
2187
2188        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2189          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
2190          QualType ArgTy = Param->getType();
2191          assert(!ArgTy.isNull() && "Couldn't parse type?");
2192
2193          // Adjust the parameter type.
2194          assert((ArgTy == Context.getAdjustedParameterType(ArgTy)) &&
2195                 "Unadjusted type?");
2196
2197          // Look for 'void'.  void is allowed only as a single argument to a
2198          // function with no other parameters (C99 6.7.5.3p10).  We record
2199          // int(void) as a FunctionProtoType with an empty argument list.
2200          if (ArgTy->isVoidType()) {
2201            // If this is something like 'float(int, void)', reject it.  'void'
2202            // is an incomplete type (C99 6.2.5p19) and function decls cannot
2203            // have arguments of incomplete type.
2204            if (FTI.NumArgs != 1 || FTI.isVariadic) {
2205              S.Diag(DeclType.Loc, diag::err_void_only_param);
2206              ArgTy = Context.IntTy;
2207              Param->setType(ArgTy);
2208            } else if (FTI.ArgInfo[i].Ident) {
2209              // Reject, but continue to parse 'int(void abc)'.
2210              S.Diag(FTI.ArgInfo[i].IdentLoc,
2211                   diag::err_param_with_void_type);
2212              ArgTy = Context.IntTy;
2213              Param->setType(ArgTy);
2214            } else {
2215              // Reject, but continue to parse 'float(const void)'.
2216              if (ArgTy.hasQualifiers())
2217                S.Diag(DeclType.Loc, diag::err_void_param_qualified);
2218
2219              // Do not add 'void' to the ArgTys list.
2220              break;
2221            }
2222          } else if (ArgTy->isHalfType()) {
2223            // Disallow half FP arguments.
2224            // FIXME: This really should be in BuildFunctionType.
2225            S.Diag(Param->getLocation(),
2226               diag::err_parameters_retval_cannot_have_fp16_type) << 0
2227            << FixItHint::CreateInsertion(Param->getLocation(), "*");
2228            D.setInvalidType();
2229          } else if (!FTI.hasPrototype) {
2230            if (ArgTy->isPromotableIntegerType()) {
2231              ArgTy = Context.getPromotedIntegerType(ArgTy);
2232              Param->setKNRPromoted(true);
2233            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
2234              if (BTy->getKind() == BuiltinType::Float) {
2235                ArgTy = Context.DoubleTy;
2236                Param->setKNRPromoted(true);
2237              }
2238            }
2239          }
2240
2241          if (LangOpts.ObjCAutoRefCount) {
2242            bool Consumed = Param->hasAttr<NSConsumedAttr>();
2243            ConsumedArguments.push_back(Consumed);
2244            HasAnyConsumedArguments |= Consumed;
2245          }
2246
2247          ArgTys.push_back(ArgTy);
2248        }
2249
2250        if (HasAnyConsumedArguments)
2251          EPI.ConsumedArguments = ConsumedArguments.data();
2252
2253        SmallVector<QualType, 4> Exceptions;
2254        EPI.ExceptionSpecType = FTI.getExceptionSpecType();
2255        if (FTI.getExceptionSpecType() == EST_Dynamic) {
2256          Exceptions.reserve(FTI.NumExceptions);
2257          for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
2258            // FIXME: Preserve type source info.
2259            QualType ET = S.GetTypeFromParser(FTI.Exceptions[ei].Ty);
2260            // Check that the type is valid for an exception spec, and
2261            // drop it if not.
2262            if (!S.CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
2263              Exceptions.push_back(ET);
2264          }
2265          EPI.NumExceptions = Exceptions.size();
2266          EPI.Exceptions = Exceptions.data();
2267        } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
2268          // If an error occurred, there's no expression here.
2269          if (Expr *NoexceptExpr = FTI.NoexceptExpr) {
2270            assert((NoexceptExpr->isTypeDependent() ||
2271                    NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
2272                        Context.BoolTy) &&
2273                 "Parser should have made sure that the expression is boolean");
2274            SourceLocation ErrLoc;
2275            llvm::APSInt Dummy;
2276            if (!NoexceptExpr->isValueDependent() &&
2277                !NoexceptExpr->isIntegerConstantExpr(Dummy, Context, &ErrLoc,
2278                                                     /*evaluated*/false))
2279              S.Diag(ErrLoc, diag::err_noexcept_needs_constant_expression)
2280                  << NoexceptExpr->getSourceRange();
2281            else
2282              EPI.NoexceptExpr = NoexceptExpr;
2283          }
2284        } else if (FTI.getExceptionSpecType() == EST_None &&
2285                   ImplicitlyNoexcept && chunkIndex == 0) {
2286          // Only the outermost chunk is marked noexcept, of course.
2287          EPI.ExceptionSpecType = EST_BasicNoexcept;
2288        }
2289
2290        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(), EPI);
2291      }
2292
2293      break;
2294    }
2295    case DeclaratorChunk::MemberPointer:
2296      // The scope spec must refer to a class, or be dependent.
2297      CXXScopeSpec &SS = DeclType.Mem.Scope();
2298      QualType ClsType;
2299      if (SS.isInvalid()) {
2300        // Avoid emitting extra errors if we already errored on the scope.
2301        D.setInvalidType(true);
2302      } else if (S.isDependentScopeSpecifier(SS) ||
2303                 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
2304        NestedNameSpecifier *NNS
2305          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2306        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
2307        switch (NNS->getKind()) {
2308        case NestedNameSpecifier::Identifier:
2309          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
2310                                                 NNS->getAsIdentifier());
2311          break;
2312
2313        case NestedNameSpecifier::Namespace:
2314        case NestedNameSpecifier::NamespaceAlias:
2315        case NestedNameSpecifier::Global:
2316          llvm_unreachable("Nested-name-specifier must name a type");
2317          break;
2318
2319        case NestedNameSpecifier::TypeSpec:
2320        case NestedNameSpecifier::TypeSpecWithTemplate:
2321          ClsType = QualType(NNS->getAsType(), 0);
2322          // Note: if the NNS has a prefix and ClsType is a nondependent
2323          // TemplateSpecializationType, then the NNS prefix is NOT included
2324          // in ClsType; hence we wrap ClsType into an ElaboratedType.
2325          // NOTE: in particular, no wrap occurs if ClsType already is an
2326          // Elaborated, DependentName, or DependentTemplateSpecialization.
2327          if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
2328            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
2329          break;
2330        }
2331      } else {
2332        S.Diag(DeclType.Mem.Scope().getBeginLoc(),
2333             diag::err_illegal_decl_mempointer_in_nonclass)
2334          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
2335          << DeclType.Mem.Scope().getRange();
2336        D.setInvalidType(true);
2337      }
2338
2339      if (!ClsType.isNull())
2340        T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
2341      if (T.isNull()) {
2342        T = Context.IntTy;
2343        D.setInvalidType(true);
2344      } else if (DeclType.Mem.TypeQuals) {
2345        T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
2346      }
2347      break;
2348    }
2349
2350    if (T.isNull()) {
2351      D.setInvalidType(true);
2352      T = Context.IntTy;
2353    }
2354
2355    // See if there are any attributes on this declarator chunk.
2356    if (AttributeList *attrs = const_cast<AttributeList*>(DeclType.getAttrs()))
2357      processTypeAttrs(state, T, false, attrs);
2358  }
2359
2360  if (LangOpts.CPlusPlus && T->isFunctionType()) {
2361    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
2362    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
2363
2364    // C++ 8.3.5p4:
2365    //   A cv-qualifier-seq shall only be part of the function type
2366    //   for a nonstatic member function, the function type to which a pointer
2367    //   to member refers, or the top-level function type of a function typedef
2368    //   declaration.
2369    //
2370    // Core issue 547 also allows cv-qualifiers on function types that are
2371    // top-level template type arguments.
2372    bool FreeFunction;
2373    if (!D.getCXXScopeSpec().isSet()) {
2374      FreeFunction = (D.getContext() != Declarator::MemberContext ||
2375                      D.getDeclSpec().isFriendSpecified());
2376    } else {
2377      DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
2378      FreeFunction = (DC && !DC->isRecord());
2379    }
2380
2381    // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
2382    // function that is not a constructor declares that function to be const.
2383    if (D.getDeclSpec().isConstexprSpecified() && !FreeFunction &&
2384        D.getName().getKind() != UnqualifiedId::IK_ConstructorName &&
2385        D.getName().getKind() != UnqualifiedId::IK_ConstructorTemplateId &&
2386        !(FnTy->getTypeQuals() & DeclSpec::TQ_const)) {
2387      // Rebuild function type adding a 'const' qualifier.
2388      FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2389      EPI.TypeQuals |= DeclSpec::TQ_const;
2390      T = Context.getFunctionType(FnTy->getResultType(),
2391                                  FnTy->arg_type_begin(),
2392                                  FnTy->getNumArgs(), EPI);
2393    }
2394
2395    // C++0x [dcl.fct]p6:
2396    //   A ref-qualifier shall only be part of the function type for a
2397    //   non-static member function, the function type to which a pointer to
2398    //   member refers, or the top-level function type of a function typedef
2399    //   declaration.
2400    if ((FnTy->getTypeQuals() != 0 || FnTy->getRefQualifier()) &&
2401        !(D.getContext() == Declarator::TemplateTypeArgContext &&
2402          !D.isFunctionDeclarator()) && !IsTypedefName &&
2403        (FreeFunction ||
2404         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
2405      if (D.getContext() == Declarator::TemplateTypeArgContext) {
2406        // Accept qualified function types as template type arguments as a GNU
2407        // extension. This is also the subject of C++ core issue 547.
2408        std::string Quals;
2409        if (FnTy->getTypeQuals() != 0)
2410          Quals = Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
2411
2412        switch (FnTy->getRefQualifier()) {
2413        case RQ_None:
2414          break;
2415
2416        case RQ_LValue:
2417          if (!Quals.empty())
2418            Quals += ' ';
2419          Quals += '&';
2420          break;
2421
2422        case RQ_RValue:
2423          if (!Quals.empty())
2424            Quals += ' ';
2425          Quals += "&&";
2426          break;
2427        }
2428
2429        S.Diag(D.getIdentifierLoc(),
2430             diag::ext_qualified_function_type_template_arg)
2431          << Quals;
2432      } else {
2433        if (FnTy->getTypeQuals() != 0) {
2434          if (D.isFunctionDeclarator())
2435            S.Diag(D.getIdentifierLoc(),
2436                 diag::err_invalid_qualified_function_type);
2437          else
2438            S.Diag(D.getIdentifierLoc(),
2439                 diag::err_invalid_qualified_typedef_function_type_use)
2440              << FreeFunction;
2441        }
2442
2443        if (FnTy->getRefQualifier()) {
2444          if (D.isFunctionDeclarator()) {
2445            SourceLocation Loc = D.getIdentifierLoc();
2446            for (unsigned I = 0, N = D.getNumTypeObjects(); I != N; ++I) {
2447              const DeclaratorChunk &Chunk = D.getTypeObject(N-I-1);
2448              if (Chunk.Kind == DeclaratorChunk::Function &&
2449                  Chunk.Fun.hasRefQualifier()) {
2450                Loc = Chunk.Fun.getRefQualifierLoc();
2451                break;
2452              }
2453            }
2454
2455            S.Diag(Loc, diag::err_invalid_ref_qualifier_function_type)
2456              << (FnTy->getRefQualifier() == RQ_LValue)
2457              << FixItHint::CreateRemoval(Loc);
2458          } else {
2459            S.Diag(D.getIdentifierLoc(),
2460                 diag::err_invalid_ref_qualifier_typedef_function_type_use)
2461              << FreeFunction
2462              << (FnTy->getRefQualifier() == RQ_LValue);
2463          }
2464        }
2465
2466        // Strip the cv-qualifiers and ref-qualifiers from the type.
2467        FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
2468        EPI.TypeQuals = 0;
2469        EPI.RefQualifier = RQ_None;
2470
2471        T = Context.getFunctionType(FnTy->getResultType(),
2472                                    FnTy->arg_type_begin(),
2473                                    FnTy->getNumArgs(), EPI);
2474      }
2475    }
2476  }
2477
2478  // Apply any undistributed attributes from the declarator.
2479  if (!T.isNull())
2480    if (AttributeList *attrs = D.getAttributes())
2481      processTypeAttrs(state, T, false, attrs);
2482
2483  // Diagnose any ignored type attributes.
2484  if (!T.isNull()) state.diagnoseIgnoredTypeAttrs(T);
2485
2486  // C++0x [dcl.constexpr]p9:
2487  //  A constexpr specifier used in an object declaration declares the object
2488  //  as const.
2489  if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
2490    T.addConst();
2491  }
2492
2493  // If there was an ellipsis in the declarator, the declaration declares a
2494  // parameter pack whose type may be a pack expansion type.
2495  if (D.hasEllipsis() && !T.isNull()) {
2496    // C++0x [dcl.fct]p13:
2497    //   A declarator-id or abstract-declarator containing an ellipsis shall
2498    //   only be used in a parameter-declaration. Such a parameter-declaration
2499    //   is a parameter pack (14.5.3). [...]
2500    switch (D.getContext()) {
2501    case Declarator::PrototypeContext:
2502      // C++0x [dcl.fct]p13:
2503      //   [...] When it is part of a parameter-declaration-clause, the
2504      //   parameter pack is a function parameter pack (14.5.3). The type T
2505      //   of the declarator-id of the function parameter pack shall contain
2506      //   a template parameter pack; each template parameter pack in T is
2507      //   expanded by the function parameter pack.
2508      //
2509      // We represent function parameter packs as function parameters whose
2510      // type is a pack expansion.
2511      if (!T->containsUnexpandedParameterPack()) {
2512        S.Diag(D.getEllipsisLoc(),
2513             diag::err_function_parameter_pack_without_parameter_packs)
2514          << T <<  D.getSourceRange();
2515        D.setEllipsisLoc(SourceLocation());
2516      } else {
2517        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2518      }
2519      break;
2520
2521    case Declarator::TemplateParamContext:
2522      // C++0x [temp.param]p15:
2523      //   If a template-parameter is a [...] is a parameter-declaration that
2524      //   declares a parameter pack (8.3.5), then the template-parameter is a
2525      //   template parameter pack (14.5.3).
2526      //
2527      // Note: core issue 778 clarifies that, if there are any unexpanded
2528      // parameter packs in the type of the non-type template parameter, then
2529      // it expands those parameter packs.
2530      if (T->containsUnexpandedParameterPack())
2531        T = Context.getPackExpansionType(T, llvm::Optional<unsigned>());
2532      else
2533        S.Diag(D.getEllipsisLoc(),
2534               LangOpts.CPlusPlus0x
2535                 ? diag::warn_cxx98_compat_variadic_templates
2536                 : diag::ext_variadic_templates);
2537      break;
2538
2539    case Declarator::FileContext:
2540    case Declarator::KNRTypeListContext:
2541    case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
2542    case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
2543    case Declarator::TypeNameContext:
2544    case Declarator::CXXNewContext:
2545    case Declarator::AliasDeclContext:
2546    case Declarator::AliasTemplateContext:
2547    case Declarator::MemberContext:
2548    case Declarator::BlockContext:
2549    case Declarator::ForContext:
2550    case Declarator::ConditionContext:
2551    case Declarator::CXXCatchContext:
2552    case Declarator::ObjCCatchContext:
2553    case Declarator::BlockLiteralContext:
2554    case Declarator::TemplateTypeArgContext:
2555      // FIXME: We may want to allow parameter packs in block-literal contexts
2556      // in the future.
2557      S.Diag(D.getEllipsisLoc(), diag::err_ellipsis_in_declarator_not_parameter);
2558      D.setEllipsisLoc(SourceLocation());
2559      break;
2560    }
2561  }
2562
2563  if (T.isNull())
2564    return Context.getNullTypeSourceInfo();
2565  else if (D.isInvalidType())
2566    return Context.getTrivialTypeSourceInfo(T);
2567
2568  return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
2569}
2570
2571/// GetTypeForDeclarator - Convert the type for the specified
2572/// declarator to Type instances.
2573///
2574/// The result of this call will never be null, but the associated
2575/// type may be a null type if there's an unrecoverable error.
2576TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
2577  // Determine the type of the declarator. Not all forms of declarator
2578  // have a type.
2579
2580  TypeProcessingState state(*this, D);
2581
2582  TypeSourceInfo *ReturnTypeInfo = 0;
2583  QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2584  if (T.isNull())
2585    return Context.getNullTypeSourceInfo();
2586
2587  if (D.isPrototypeContext() && getLangOptions().ObjCAutoRefCount)
2588    inferARCWriteback(state, T);
2589
2590  return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
2591}
2592
2593static void transferARCOwnershipToDeclSpec(Sema &S,
2594                                           QualType &declSpecTy,
2595                                           Qualifiers::ObjCLifetime ownership) {
2596  if (declSpecTy->isObjCRetainableType() &&
2597      declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
2598    Qualifiers qs;
2599    qs.addObjCLifetime(ownership);
2600    declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
2601  }
2602}
2603
2604static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2605                                            Qualifiers::ObjCLifetime ownership,
2606                                            unsigned chunkIndex) {
2607  Sema &S = state.getSema();
2608  Declarator &D = state.getDeclarator();
2609
2610  // Look for an explicit lifetime attribute.
2611  DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
2612  for (const AttributeList *attr = chunk.getAttrs(); attr;
2613         attr = attr->getNext())
2614    if (attr->getKind() == AttributeList::AT_objc_ownership)
2615      return;
2616
2617  const char *attrStr = 0;
2618  switch (ownership) {
2619  case Qualifiers::OCL_None: llvm_unreachable("no ownership!"); break;
2620  case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
2621  case Qualifiers::OCL_Strong: attrStr = "strong"; break;
2622  case Qualifiers::OCL_Weak: attrStr = "weak"; break;
2623  case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
2624  }
2625
2626  // If there wasn't one, add one (with an invalid source location
2627  // so that we don't make an AttributedType for it).
2628  AttributeList *attr = D.getAttributePool()
2629    .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
2630            /*scope*/ 0, SourceLocation(),
2631            &S.Context.Idents.get(attrStr), SourceLocation(),
2632            /*args*/ 0, 0,
2633            /*declspec*/ false, /*C++0x*/ false);
2634  spliceAttrIntoList(*attr, chunk.getAttrListRef());
2635
2636  // TODO: mark whether we did this inference?
2637}
2638
2639static void transferARCOwnership(TypeProcessingState &state,
2640                                 QualType &declSpecTy,
2641                                 Qualifiers::ObjCLifetime ownership) {
2642  Sema &S = state.getSema();
2643  Declarator &D = state.getDeclarator();
2644
2645  int inner = -1;
2646  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2647    DeclaratorChunk &chunk = D.getTypeObject(i);
2648    switch (chunk.Kind) {
2649    case DeclaratorChunk::Paren:
2650      // Ignore parens.
2651      break;
2652
2653    case DeclaratorChunk::Array:
2654    case DeclaratorChunk::Reference:
2655    case DeclaratorChunk::Pointer:
2656      inner = i;
2657      break;
2658
2659    case DeclaratorChunk::BlockPointer:
2660      return transferARCOwnershipToDeclaratorChunk(state, ownership, i);
2661
2662    case DeclaratorChunk::Function:
2663    case DeclaratorChunk::MemberPointer:
2664      return;
2665    }
2666  }
2667
2668  if (inner == -1)
2669    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2670
2671  DeclaratorChunk &chunk = D.getTypeObject(inner);
2672  if (chunk.Kind == DeclaratorChunk::Pointer) {
2673    if (declSpecTy->isObjCRetainableType())
2674      return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2675    if (declSpecTy->isObjCObjectType())
2676      return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
2677  } else {
2678    assert(chunk.Kind == DeclaratorChunk::Array ||
2679           chunk.Kind == DeclaratorChunk::Reference);
2680    return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
2681  }
2682}
2683
2684TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
2685  TypeProcessingState state(*this, D);
2686
2687  TypeSourceInfo *ReturnTypeInfo = 0;
2688  QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
2689  if (declSpecTy.isNull())
2690    return Context.getNullTypeSourceInfo();
2691
2692  if (getLangOptions().ObjCAutoRefCount) {
2693    Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
2694    if (ownership != Qualifiers::OCL_None)
2695      transferARCOwnership(state, declSpecTy, ownership);
2696  }
2697
2698  return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
2699}
2700
2701/// Map an AttributedType::Kind to an AttributeList::Kind.
2702static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
2703  switch (kind) {
2704  case AttributedType::attr_address_space:
2705    return AttributeList::AT_address_space;
2706  case AttributedType::attr_regparm:
2707    return AttributeList::AT_regparm;
2708  case AttributedType::attr_vector_size:
2709    return AttributeList::AT_vector_size;
2710  case AttributedType::attr_neon_vector_type:
2711    return AttributeList::AT_neon_vector_type;
2712  case AttributedType::attr_neon_polyvector_type:
2713    return AttributeList::AT_neon_polyvector_type;
2714  case AttributedType::attr_objc_gc:
2715    return AttributeList::AT_objc_gc;
2716  case AttributedType::attr_objc_ownership:
2717    return AttributeList::AT_objc_ownership;
2718  case AttributedType::attr_noreturn:
2719    return AttributeList::AT_noreturn;
2720  case AttributedType::attr_cdecl:
2721    return AttributeList::AT_cdecl;
2722  case AttributedType::attr_fastcall:
2723    return AttributeList::AT_fastcall;
2724  case AttributedType::attr_stdcall:
2725    return AttributeList::AT_stdcall;
2726  case AttributedType::attr_thiscall:
2727    return AttributeList::AT_thiscall;
2728  case AttributedType::attr_pascal:
2729    return AttributeList::AT_pascal;
2730  case AttributedType::attr_pcs:
2731    return AttributeList::AT_pcs;
2732  }
2733  llvm_unreachable("unexpected attribute kind!");
2734  return AttributeList::Kind();
2735}
2736
2737static void fillAttributedTypeLoc(AttributedTypeLoc TL,
2738                                  const AttributeList *attrs) {
2739  AttributedType::Kind kind = TL.getAttrKind();
2740
2741  assert(attrs && "no type attributes in the expected location!");
2742  AttributeList::Kind parsedKind = getAttrListKind(kind);
2743  while (attrs->getKind() != parsedKind) {
2744    attrs = attrs->getNext();
2745    assert(attrs && "no matching attribute in expected location!");
2746  }
2747
2748  TL.setAttrNameLoc(attrs->getLoc());
2749  if (TL.hasAttrExprOperand())
2750    TL.setAttrExprOperand(attrs->getArg(0));
2751  else if (TL.hasAttrEnumOperand())
2752    TL.setAttrEnumOperandLoc(attrs->getParameterLoc());
2753
2754  // FIXME: preserve this information to here.
2755  if (TL.hasAttrOperand())
2756    TL.setAttrOperandParensRange(SourceRange());
2757}
2758
2759namespace {
2760  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
2761    ASTContext &Context;
2762    const DeclSpec &DS;
2763
2764  public:
2765    TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
2766      : Context(Context), DS(DS) {}
2767
2768    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
2769      fillAttributedTypeLoc(TL, DS.getAttributes().getList());
2770      Visit(TL.getModifiedLoc());
2771    }
2772    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
2773      Visit(TL.getUnqualifiedLoc());
2774    }
2775    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
2776      TL.setNameLoc(DS.getTypeSpecTypeLoc());
2777    }
2778    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
2779      TL.setNameLoc(DS.getTypeSpecTypeLoc());
2780    }
2781    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
2782      // Handle the base type, which might not have been written explicitly.
2783      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
2784        TL.setHasBaseTypeAsWritten(false);
2785        TL.getBaseLoc().initialize(Context, SourceLocation());
2786      } else {
2787        TL.setHasBaseTypeAsWritten(true);
2788        Visit(TL.getBaseLoc());
2789      }
2790
2791      // Protocol qualifiers.
2792      if (DS.getProtocolQualifiers()) {
2793        assert(TL.getNumProtocols() > 0);
2794        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
2795        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
2796        TL.setRAngleLoc(DS.getSourceRange().getEnd());
2797        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
2798          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
2799      } else {
2800        assert(TL.getNumProtocols() == 0);
2801        TL.setLAngleLoc(SourceLocation());
2802        TL.setRAngleLoc(SourceLocation());
2803      }
2804    }
2805    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
2806      TL.setStarLoc(SourceLocation());
2807      Visit(TL.getPointeeLoc());
2808    }
2809    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
2810      TypeSourceInfo *TInfo = 0;
2811      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2812
2813      // If we got no declarator info from previous Sema routines,
2814      // just fill with the typespec loc.
2815      if (!TInfo) {
2816        TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
2817        return;
2818      }
2819
2820      TypeLoc OldTL = TInfo->getTypeLoc();
2821      if (TInfo->getType()->getAs<ElaboratedType>()) {
2822        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
2823        TemplateSpecializationTypeLoc NamedTL =
2824          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
2825        TL.copy(NamedTL);
2826      }
2827      else
2828        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
2829    }
2830    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
2831      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
2832      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2833      TL.setParensRange(DS.getTypeofParensRange());
2834    }
2835    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
2836      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
2837      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
2838      TL.setParensRange(DS.getTypeofParensRange());
2839      assert(DS.getRepAsType());
2840      TypeSourceInfo *TInfo = 0;
2841      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2842      TL.setUnderlyingTInfo(TInfo);
2843    }
2844    void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
2845      // FIXME: This holds only because we only have one unary transform.
2846      assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
2847      TL.setKWLoc(DS.getTypeSpecTypeLoc());
2848      TL.setParensRange(DS.getTypeofParensRange());
2849      assert(DS.getRepAsType());
2850      TypeSourceInfo *TInfo = 0;
2851      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2852      TL.setUnderlyingTInfo(TInfo);
2853    }
2854    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
2855      // By default, use the source location of the type specifier.
2856      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
2857      if (TL.needsExtraLocalData()) {
2858        // Set info for the written builtin specifiers.
2859        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
2860        // Try to have a meaningful source location.
2861        if (TL.getWrittenSignSpec() != TSS_unspecified)
2862          // Sign spec loc overrides the others (e.g., 'unsigned long').
2863          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
2864        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
2865          // Width spec loc overrides type spec loc (e.g., 'short int').
2866          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
2867      }
2868    }
2869    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
2870      ElaboratedTypeKeyword Keyword
2871        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2872      if (DS.getTypeSpecType() == TST_typename) {
2873        TypeSourceInfo *TInfo = 0;
2874        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2875        if (TInfo) {
2876          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
2877          return;
2878        }
2879      }
2880      TL.setKeywordLoc(Keyword != ETK_None
2881                       ? DS.getTypeSpecTypeLoc()
2882                       : SourceLocation());
2883      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2884      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2885      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
2886    }
2887    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
2888      ElaboratedTypeKeyword Keyword
2889        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2890      if (DS.getTypeSpecType() == TST_typename) {
2891        TypeSourceInfo *TInfo = 0;
2892        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2893        if (TInfo) {
2894          TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
2895          return;
2896        }
2897      }
2898      TL.setKeywordLoc(Keyword != ETK_None
2899                       ? DS.getTypeSpecTypeLoc()
2900                       : SourceLocation());
2901      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2902      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2903      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2904    }
2905    void VisitDependentTemplateSpecializationTypeLoc(
2906                                 DependentTemplateSpecializationTypeLoc TL) {
2907      ElaboratedTypeKeyword Keyword
2908        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
2909      if (Keyword == ETK_Typename) {
2910        TypeSourceInfo *TInfo = 0;
2911        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2912        if (TInfo) {
2913          TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
2914                    TInfo->getTypeLoc()));
2915          return;
2916        }
2917      }
2918      TL.initializeLocal(Context, SourceLocation());
2919      TL.setKeywordLoc(Keyword != ETK_None
2920                       ? DS.getTypeSpecTypeLoc()
2921                       : SourceLocation());
2922      const CXXScopeSpec& SS = DS.getTypeSpecScope();
2923      TL.setQualifierLoc(SS.getWithLocInContext(Context));
2924      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2925    }
2926    void VisitTagTypeLoc(TagTypeLoc TL) {
2927      TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
2928    }
2929    void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
2930      TL.setKWLoc(DS.getTypeSpecTypeLoc());
2931      TL.setParensRange(DS.getTypeofParensRange());
2932
2933      TypeSourceInfo *TInfo = 0;
2934      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
2935      TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
2936    }
2937
2938    void VisitTypeLoc(TypeLoc TL) {
2939      // FIXME: add other typespec types and change this to an assert.
2940      TL.initialize(Context, DS.getTypeSpecTypeLoc());
2941    }
2942  };
2943
2944  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
2945    ASTContext &Context;
2946    const DeclaratorChunk &Chunk;
2947
2948  public:
2949    DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
2950      : Context(Context), Chunk(Chunk) {}
2951
2952    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
2953      llvm_unreachable("qualified type locs not expected here!");
2954    }
2955
2956    void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
2957      fillAttributedTypeLoc(TL, Chunk.getAttrs());
2958    }
2959    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
2960      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
2961      TL.setCaretLoc(Chunk.Loc);
2962    }
2963    void VisitPointerTypeLoc(PointerTypeLoc TL) {
2964      assert(Chunk.Kind == DeclaratorChunk::Pointer);
2965      TL.setStarLoc(Chunk.Loc);
2966    }
2967    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
2968      assert(Chunk.Kind == DeclaratorChunk::Pointer);
2969      TL.setStarLoc(Chunk.Loc);
2970    }
2971    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
2972      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
2973      const CXXScopeSpec& SS = Chunk.Mem.Scope();
2974      NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
2975
2976      const Type* ClsTy = TL.getClass();
2977      QualType ClsQT = QualType(ClsTy, 0);
2978      TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
2979      // Now copy source location info into the type loc component.
2980      TypeLoc ClsTL = ClsTInfo->getTypeLoc();
2981      switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
2982      case NestedNameSpecifier::Identifier:
2983        assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
2984        {
2985          DependentNameTypeLoc DNTLoc = cast<DependentNameTypeLoc>(ClsTL);
2986          DNTLoc.setKeywordLoc(SourceLocation());
2987          DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
2988          DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
2989        }
2990        break;
2991
2992      case NestedNameSpecifier::TypeSpec:
2993      case NestedNameSpecifier::TypeSpecWithTemplate:
2994        if (isa<ElaboratedType>(ClsTy)) {
2995          ElaboratedTypeLoc ETLoc = *cast<ElaboratedTypeLoc>(&ClsTL);
2996          ETLoc.setKeywordLoc(SourceLocation());
2997          ETLoc.setQualifierLoc(NNSLoc.getPrefix());
2998          TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
2999          NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
3000        } else {
3001          ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
3002        }
3003        break;
3004
3005      case NestedNameSpecifier::Namespace:
3006      case NestedNameSpecifier::NamespaceAlias:
3007      case NestedNameSpecifier::Global:
3008        llvm_unreachable("Nested-name-specifier must name a type");
3009        break;
3010      }
3011
3012      // Finally fill in MemberPointerLocInfo fields.
3013      TL.setStarLoc(Chunk.Loc);
3014      TL.setClassTInfo(ClsTInfo);
3015    }
3016    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
3017      assert(Chunk.Kind == DeclaratorChunk::Reference);
3018      // 'Amp' is misleading: this might have been originally
3019      /// spelled with AmpAmp.
3020      TL.setAmpLoc(Chunk.Loc);
3021    }
3022    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
3023      assert(Chunk.Kind == DeclaratorChunk::Reference);
3024      assert(!Chunk.Ref.LValueRef);
3025      TL.setAmpAmpLoc(Chunk.Loc);
3026    }
3027    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
3028      assert(Chunk.Kind == DeclaratorChunk::Array);
3029      TL.setLBracketLoc(Chunk.Loc);
3030      TL.setRBracketLoc(Chunk.EndLoc);
3031      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
3032    }
3033    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
3034      assert(Chunk.Kind == DeclaratorChunk::Function);
3035      TL.setLocalRangeBegin(Chunk.Loc);
3036      TL.setLocalRangeEnd(Chunk.EndLoc);
3037      TL.setTrailingReturn(!!Chunk.Fun.TrailingReturnType);
3038
3039      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
3040      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
3041        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3042        TL.setArg(tpi++, Param);
3043      }
3044      // FIXME: exception specs
3045    }
3046    void VisitParenTypeLoc(ParenTypeLoc TL) {
3047      assert(Chunk.Kind == DeclaratorChunk::Paren);
3048      TL.setLParenLoc(Chunk.Loc);
3049      TL.setRParenLoc(Chunk.EndLoc);
3050    }
3051
3052    void VisitTypeLoc(TypeLoc TL) {
3053      llvm_unreachable("unsupported TypeLoc kind in declarator!");
3054    }
3055  };
3056}
3057
3058/// \brief Create and instantiate a TypeSourceInfo with type source information.
3059///
3060/// \param T QualType referring to the type as written in source code.
3061///
3062/// \param ReturnTypeInfo For declarators whose return type does not show
3063/// up in the normal place in the declaration specifiers (such as a C++
3064/// conversion function), this pointer will refer to a type source information
3065/// for that return type.
3066TypeSourceInfo *
3067Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
3068                                     TypeSourceInfo *ReturnTypeInfo) {
3069  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
3070  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
3071
3072  // Handle parameter packs whose type is a pack expansion.
3073  if (isa<PackExpansionType>(T)) {
3074    cast<PackExpansionTypeLoc>(CurrTL).setEllipsisLoc(D.getEllipsisLoc());
3075    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3076  }
3077
3078  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3079    while (isa<AttributedTypeLoc>(CurrTL)) {
3080      AttributedTypeLoc TL = cast<AttributedTypeLoc>(CurrTL);
3081      fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs());
3082      CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
3083    }
3084
3085    DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
3086    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
3087  }
3088
3089  // If we have different source information for the return type, use
3090  // that.  This really only applies to C++ conversion functions.
3091  if (ReturnTypeInfo) {
3092    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
3093    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
3094    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
3095  } else {
3096    TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
3097  }
3098
3099  return TInfo;
3100}
3101
3102/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
3103ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
3104  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
3105  // and Sema during declaration parsing. Try deallocating/caching them when
3106  // it's appropriate, instead of allocating them and keeping them around.
3107  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
3108                                                       TypeAlignment);
3109  new (LocT) LocInfoType(T, TInfo);
3110  assert(LocT->getTypeClass() != T->getTypeClass() &&
3111         "LocInfoType's TypeClass conflicts with an existing Type class");
3112  return ParsedType::make(QualType(LocT, 0));
3113}
3114
3115void LocInfoType::getAsStringInternal(std::string &Str,
3116                                      const PrintingPolicy &Policy) const {
3117  llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
3118         " was used directly instead of getting the QualType through"
3119         " GetTypeFromParser");
3120}
3121
3122TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
3123  // C99 6.7.6: Type names have no identifier.  This is already validated by
3124  // the parser.
3125  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
3126
3127  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3128  QualType T = TInfo->getType();
3129  if (D.isInvalidType())
3130    return true;
3131
3132  // Make sure there are no unused decl attributes on the declarator.
3133  // We don't want to do this for ObjC parameters because we're going
3134  // to apply them to the actual parameter declaration.
3135  if (D.getContext() != Declarator::ObjCParameterContext)
3136    checkUnusedDeclAttributes(D);
3137
3138  if (getLangOptions().CPlusPlus) {
3139    // Check that there are no default arguments (C++ only).
3140    CheckExtraCXXDefaultArguments(D);
3141  }
3142
3143  return CreateParsedType(T, TInfo);
3144}
3145
3146ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
3147  QualType T = Context.getObjCInstanceType();
3148  TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
3149  return CreateParsedType(T, TInfo);
3150}
3151
3152
3153//===----------------------------------------------------------------------===//
3154// Type Attribute Processing
3155//===----------------------------------------------------------------------===//
3156
3157/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
3158/// specified type.  The attribute contains 1 argument, the id of the address
3159/// space for the type.
3160static void HandleAddressSpaceTypeAttribute(QualType &Type,
3161                                            const AttributeList &Attr, Sema &S){
3162
3163  // If this type is already address space qualified, reject it.
3164  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
3165  // qualifiers for two or more different address spaces."
3166  if (Type.getAddressSpace()) {
3167    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
3168    Attr.setInvalid();
3169    return;
3170  }
3171
3172  // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
3173  // qualified by an address-space qualifier."
3174  if (Type->isFunctionType()) {
3175    S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
3176    Attr.setInvalid();
3177    return;
3178  }
3179
3180  // Check the attribute arguments.
3181  if (Attr.getNumArgs() != 1) {
3182    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3183    Attr.setInvalid();
3184    return;
3185  }
3186  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
3187  llvm::APSInt addrSpace(32);
3188  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
3189      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
3190    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
3191      << ASArgExpr->getSourceRange();
3192    Attr.setInvalid();
3193    return;
3194  }
3195
3196  // Bounds checking.
3197  if (addrSpace.isSigned()) {
3198    if (addrSpace.isNegative()) {
3199      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
3200        << ASArgExpr->getSourceRange();
3201      Attr.setInvalid();
3202      return;
3203    }
3204    addrSpace.setIsSigned(false);
3205  }
3206  llvm::APSInt max(addrSpace.getBitWidth());
3207  max = Qualifiers::MaxAddressSpace;
3208  if (addrSpace > max) {
3209    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
3210      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
3211    Attr.setInvalid();
3212    return;
3213  }
3214
3215  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
3216  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
3217}
3218
3219/// handleObjCOwnershipTypeAttr - Process an objc_ownership
3220/// attribute on the specified type.
3221///
3222/// Returns 'true' if the attribute was handled.
3223static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
3224                                       AttributeList &attr,
3225                                       QualType &type) {
3226  if (!type->isObjCRetainableType() && !type->isDependentType())
3227    return false;
3228
3229  Sema &S = state.getSema();
3230  SourceLocation AttrLoc = attr.getLoc();
3231  if (AttrLoc.isMacroID())
3232    AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
3233
3234  if (type.getQualifiers().getObjCLifetime()) {
3235    S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
3236      << type;
3237    return true;
3238  }
3239
3240  if (!attr.getParameterName()) {
3241    S.Diag(AttrLoc, diag::err_attribute_argument_n_not_string)
3242      << "objc_ownership" << 1;
3243    attr.setInvalid();
3244    return true;
3245  }
3246
3247  Qualifiers::ObjCLifetime lifetime;
3248  if (attr.getParameterName()->isStr("none"))
3249    lifetime = Qualifiers::OCL_ExplicitNone;
3250  else if (attr.getParameterName()->isStr("strong"))
3251    lifetime = Qualifiers::OCL_Strong;
3252  else if (attr.getParameterName()->isStr("weak"))
3253    lifetime = Qualifiers::OCL_Weak;
3254  else if (attr.getParameterName()->isStr("autoreleasing"))
3255    lifetime = Qualifiers::OCL_Autoreleasing;
3256  else {
3257    S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
3258      << "objc_ownership" << attr.getParameterName();
3259    attr.setInvalid();
3260    return true;
3261  }
3262
3263  // Consume lifetime attributes without further comment outside of
3264  // ARC mode.
3265  if (!S.getLangOptions().ObjCAutoRefCount)
3266    return true;
3267
3268  Qualifiers qs;
3269  qs.setObjCLifetime(lifetime);
3270  QualType origType = type;
3271  type = S.Context.getQualifiedType(type, qs);
3272
3273  // If we have a valid source location for the attribute, use an
3274  // AttributedType instead.
3275  if (AttrLoc.isValid())
3276    type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
3277                                       origType, type);
3278
3279  // Forbid __weak if the runtime doesn't support it.
3280  if (lifetime == Qualifiers::OCL_Weak &&
3281      !S.getLangOptions().ObjCRuntimeHasWeak) {
3282
3283    // Actually, delay this until we know what we're parsing.
3284    if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
3285      S.DelayedDiagnostics.add(
3286          sema::DelayedDiagnostic::makeForbiddenType(
3287              S.getSourceManager().getExpansionLoc(AttrLoc),
3288              diag::err_arc_weak_no_runtime, type, /*ignored*/ 0));
3289    } else {
3290      S.Diag(AttrLoc, diag::err_arc_weak_no_runtime);
3291    }
3292
3293    attr.setInvalid();
3294    return true;
3295  }
3296
3297  // Forbid __weak for class objects marked as
3298  // objc_arc_weak_reference_unavailable
3299  if (lifetime == Qualifiers::OCL_Weak) {
3300    QualType T = type;
3301    while (const PointerType *ptr = T->getAs<PointerType>())
3302      T = ptr->getPointeeType();
3303    if (const ObjCObjectPointerType *ObjT = T->getAs<ObjCObjectPointerType>()) {
3304      ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl();
3305      if (Class->isArcWeakrefUnavailable()) {
3306          S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
3307          S.Diag(ObjT->getInterfaceDecl()->getLocation(),
3308                 diag::note_class_declared);
3309      }
3310    }
3311  }
3312
3313  return true;
3314}
3315
3316/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
3317/// attribute on the specified type.  Returns true to indicate that
3318/// the attribute was handled, false to indicate that the type does
3319/// not permit the attribute.
3320static bool handleObjCGCTypeAttr(TypeProcessingState &state,
3321                                 AttributeList &attr,
3322                                 QualType &type) {
3323  Sema &S = state.getSema();
3324
3325  // Delay if this isn't some kind of pointer.
3326  if (!type->isPointerType() &&
3327      !type->isObjCObjectPointerType() &&
3328      !type->isBlockPointerType())
3329    return false;
3330
3331  if (type.getObjCGCAttr() != Qualifiers::GCNone) {
3332    S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
3333    attr.setInvalid();
3334    return true;
3335  }
3336
3337  // Check the attribute arguments.
3338  if (!attr.getParameterName()) {
3339    S.Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
3340      << "objc_gc" << 1;
3341    attr.setInvalid();
3342    return true;
3343  }
3344  Qualifiers::GC GCAttr;
3345  if (attr.getNumArgs() != 0) {
3346    S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3347    attr.setInvalid();
3348    return true;
3349  }
3350  if (attr.getParameterName()->isStr("weak"))
3351    GCAttr = Qualifiers::Weak;
3352  else if (attr.getParameterName()->isStr("strong"))
3353    GCAttr = Qualifiers::Strong;
3354  else {
3355    S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
3356      << "objc_gc" << attr.getParameterName();
3357    attr.setInvalid();
3358    return true;
3359  }
3360
3361  QualType origType = type;
3362  type = S.Context.getObjCGCQualType(origType, GCAttr);
3363
3364  // Make an attributed type to preserve the source information.
3365  if (attr.getLoc().isValid())
3366    type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
3367                                       origType, type);
3368
3369  return true;
3370}
3371
3372namespace {
3373  /// A helper class to unwrap a type down to a function for the
3374  /// purposes of applying attributes there.
3375  ///
3376  /// Use:
3377  ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
3378  ///   if (unwrapped.isFunctionType()) {
3379  ///     const FunctionType *fn = unwrapped.get();
3380  ///     // change fn somehow
3381  ///     T = unwrapped.wrap(fn);
3382  ///   }
3383  struct FunctionTypeUnwrapper {
3384    enum WrapKind {
3385      Desugar,
3386      Parens,
3387      Pointer,
3388      BlockPointer,
3389      Reference,
3390      MemberPointer
3391    };
3392
3393    QualType Original;
3394    const FunctionType *Fn;
3395    SmallVector<unsigned char /*WrapKind*/, 8> Stack;
3396
3397    FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
3398      while (true) {
3399        const Type *Ty = T.getTypePtr();
3400        if (isa<FunctionType>(Ty)) {
3401          Fn = cast<FunctionType>(Ty);
3402          return;
3403        } else if (isa<ParenType>(Ty)) {
3404          T = cast<ParenType>(Ty)->getInnerType();
3405          Stack.push_back(Parens);
3406        } else if (isa<PointerType>(Ty)) {
3407          T = cast<PointerType>(Ty)->getPointeeType();
3408          Stack.push_back(Pointer);
3409        } else if (isa<BlockPointerType>(Ty)) {
3410          T = cast<BlockPointerType>(Ty)->getPointeeType();
3411          Stack.push_back(BlockPointer);
3412        } else if (isa<MemberPointerType>(Ty)) {
3413          T = cast<MemberPointerType>(Ty)->getPointeeType();
3414          Stack.push_back(MemberPointer);
3415        } else if (isa<ReferenceType>(Ty)) {
3416          T = cast<ReferenceType>(Ty)->getPointeeType();
3417          Stack.push_back(Reference);
3418        } else {
3419          const Type *DTy = Ty->getUnqualifiedDesugaredType();
3420          if (Ty == DTy) {
3421            Fn = 0;
3422            return;
3423          }
3424
3425          T = QualType(DTy, 0);
3426          Stack.push_back(Desugar);
3427        }
3428      }
3429    }
3430
3431    bool isFunctionType() const { return (Fn != 0); }
3432    const FunctionType *get() const { return Fn; }
3433
3434    QualType wrap(Sema &S, const FunctionType *New) {
3435      // If T wasn't modified from the unwrapped type, do nothing.
3436      if (New == get()) return Original;
3437
3438      Fn = New;
3439      return wrap(S.Context, Original, 0);
3440    }
3441
3442  private:
3443    QualType wrap(ASTContext &C, QualType Old, unsigned I) {
3444      if (I == Stack.size())
3445        return C.getQualifiedType(Fn, Old.getQualifiers());
3446
3447      // Build up the inner type, applying the qualifiers from the old
3448      // type to the new type.
3449      SplitQualType SplitOld = Old.split();
3450
3451      // As a special case, tail-recurse if there are no qualifiers.
3452      if (SplitOld.second.empty())
3453        return wrap(C, SplitOld.first, I);
3454      return C.getQualifiedType(wrap(C, SplitOld.first, I), SplitOld.second);
3455    }
3456
3457    QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
3458      if (I == Stack.size()) return QualType(Fn, 0);
3459
3460      switch (static_cast<WrapKind>(Stack[I++])) {
3461      case Desugar:
3462        // This is the point at which we potentially lose source
3463        // information.
3464        return wrap(C, Old->getUnqualifiedDesugaredType(), I);
3465
3466      case Parens: {
3467        QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
3468        return C.getParenType(New);
3469      }
3470
3471      case Pointer: {
3472        QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
3473        return C.getPointerType(New);
3474      }
3475
3476      case BlockPointer: {
3477        QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
3478        return C.getBlockPointerType(New);
3479      }
3480
3481      case MemberPointer: {
3482        const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
3483        QualType New = wrap(C, OldMPT->getPointeeType(), I);
3484        return C.getMemberPointerType(New, OldMPT->getClass());
3485      }
3486
3487      case Reference: {
3488        const ReferenceType *OldRef = cast<ReferenceType>(Old);
3489        QualType New = wrap(C, OldRef->getPointeeType(), I);
3490        if (isa<LValueReferenceType>(OldRef))
3491          return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
3492        else
3493          return C.getRValueReferenceType(New);
3494      }
3495      }
3496
3497      llvm_unreachable("unknown wrapping kind");
3498      return QualType();
3499    }
3500  };
3501}
3502
3503/// Process an individual function attribute.  Returns true to
3504/// indicate that the attribute was handled, false if it wasn't.
3505static bool handleFunctionTypeAttr(TypeProcessingState &state,
3506                                   AttributeList &attr,
3507                                   QualType &type) {
3508  Sema &S = state.getSema();
3509
3510  FunctionTypeUnwrapper unwrapped(S, type);
3511
3512  if (attr.getKind() == AttributeList::AT_noreturn) {
3513    if (S.CheckNoReturnAttr(attr))
3514      return true;
3515
3516    // Delay if this is not a function type.
3517    if (!unwrapped.isFunctionType())
3518      return false;
3519
3520    // Otherwise we can process right away.
3521    FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
3522    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3523    return true;
3524  }
3525
3526  // ns_returns_retained is not always a type attribute, but if we got
3527  // here, we're treating it as one right now.
3528  if (attr.getKind() == AttributeList::AT_ns_returns_retained) {
3529    assert(S.getLangOptions().ObjCAutoRefCount &&
3530           "ns_returns_retained treated as type attribute in non-ARC");
3531    if (attr.getNumArgs()) return true;
3532
3533    // Delay if this is not a function type.
3534    if (!unwrapped.isFunctionType())
3535      return false;
3536
3537    FunctionType::ExtInfo EI
3538      = unwrapped.get()->getExtInfo().withProducesResult(true);
3539    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3540    return true;
3541  }
3542
3543  if (attr.getKind() == AttributeList::AT_regparm) {
3544    unsigned value;
3545    if (S.CheckRegparmAttr(attr, value))
3546      return true;
3547
3548    // Delay if this is not a function type.
3549    if (!unwrapped.isFunctionType())
3550      return false;
3551
3552    // Diagnose regparm with fastcall.
3553    const FunctionType *fn = unwrapped.get();
3554    CallingConv CC = fn->getCallConv();
3555    if (CC == CC_X86FastCall) {
3556      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3557        << FunctionType::getNameForCallConv(CC)
3558        << "regparm";
3559      attr.setInvalid();
3560      return true;
3561    }
3562
3563    FunctionType::ExtInfo EI =
3564      unwrapped.get()->getExtInfo().withRegParm(value);
3565    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3566    return true;
3567  }
3568
3569  // Otherwise, a calling convention.
3570  CallingConv CC;
3571  if (S.CheckCallingConvAttr(attr, CC))
3572    return true;
3573
3574  // Delay if the type didn't work out to a function.
3575  if (!unwrapped.isFunctionType()) return false;
3576
3577  const FunctionType *fn = unwrapped.get();
3578  CallingConv CCOld = fn->getCallConv();
3579  if (S.Context.getCanonicalCallConv(CC) ==
3580      S.Context.getCanonicalCallConv(CCOld)) {
3581    FunctionType::ExtInfo EI= unwrapped.get()->getExtInfo().withCallingConv(CC);
3582    type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3583    return true;
3584  }
3585
3586  if (CCOld != (S.LangOpts.MRTD ? CC_X86StdCall : CC_Default)) {
3587    // Should we diagnose reapplications of the same convention?
3588    S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3589      << FunctionType::getNameForCallConv(CC)
3590      << FunctionType::getNameForCallConv(CCOld);
3591    attr.setInvalid();
3592    return true;
3593  }
3594
3595  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
3596  if (CC == CC_X86FastCall) {
3597    if (isa<FunctionNoProtoType>(fn)) {
3598      S.Diag(attr.getLoc(), diag::err_cconv_knr)
3599        << FunctionType::getNameForCallConv(CC);
3600      attr.setInvalid();
3601      return true;
3602    }
3603
3604    const FunctionProtoType *FnP = cast<FunctionProtoType>(fn);
3605    if (FnP->isVariadic()) {
3606      S.Diag(attr.getLoc(), diag::err_cconv_varargs)
3607        << FunctionType::getNameForCallConv(CC);
3608      attr.setInvalid();
3609      return true;
3610    }
3611
3612    // Also diagnose fastcall with regparm.
3613    if (fn->getHasRegParm()) {
3614      S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
3615        << "regparm"
3616        << FunctionType::getNameForCallConv(CC);
3617      attr.setInvalid();
3618      return true;
3619    }
3620  }
3621
3622  FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
3623  type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
3624  return true;
3625}
3626
3627/// Handle OpenCL image access qualifiers: read_only, write_only, read_write
3628static void HandleOpenCLImageAccessAttribute(QualType& CurType,
3629                                             const AttributeList &Attr,
3630                                             Sema &S) {
3631  // Check the attribute arguments.
3632  if (Attr.getNumArgs() != 1) {
3633    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3634    Attr.setInvalid();
3635    return;
3636  }
3637  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3638  llvm::APSInt arg(32);
3639  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3640      !sizeExpr->isIntegerConstantExpr(arg, S.Context)) {
3641    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3642      << "opencl_image_access" << sizeExpr->getSourceRange();
3643    Attr.setInvalid();
3644    return;
3645  }
3646  unsigned iarg = static_cast<unsigned>(arg.getZExtValue());
3647  switch (iarg) {
3648  case CLIA_read_only:
3649  case CLIA_write_only:
3650  case CLIA_read_write:
3651    // Implemented in a separate patch
3652    break;
3653  default:
3654    // Implemented in a separate patch
3655    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3656      << sizeExpr->getSourceRange();
3657    Attr.setInvalid();
3658    break;
3659  }
3660}
3661
3662/// HandleVectorSizeAttribute - this attribute is only applicable to integral
3663/// and float scalars, although arrays, pointers, and function return values are
3664/// allowed in conjunction with this construct. Aggregates with this attribute
3665/// are invalid, even if they are of the same size as a corresponding scalar.
3666/// The raw attribute should contain precisely 1 argument, the vector size for
3667/// the variable, measured in bytes. If curType and rawAttr are well formed,
3668/// this routine will return a new vector type.
3669static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
3670                                 Sema &S) {
3671  // Check the attribute arguments.
3672  if (Attr.getNumArgs() != 1) {
3673    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3674    Attr.setInvalid();
3675    return;
3676  }
3677  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
3678  llvm::APSInt vecSize(32);
3679  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
3680      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
3681    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3682      << "vector_size" << sizeExpr->getSourceRange();
3683    Attr.setInvalid();
3684    return;
3685  }
3686  // the base type must be integer or float, and can't already be a vector.
3687  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
3688    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
3689    Attr.setInvalid();
3690    return;
3691  }
3692  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3693  // vecSize is specified in bytes - convert to bits.
3694  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
3695
3696  // the vector size needs to be an integral multiple of the type size.
3697  if (vectorSize % typeSize) {
3698    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
3699      << sizeExpr->getSourceRange();
3700    Attr.setInvalid();
3701    return;
3702  }
3703  if (vectorSize == 0) {
3704    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
3705      << sizeExpr->getSourceRange();
3706    Attr.setInvalid();
3707    return;
3708  }
3709
3710  // Success! Instantiate the vector type, the number of elements is > 0, and
3711  // not required to be a power of 2, unlike GCC.
3712  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
3713                                    VectorType::GenericVector);
3714}
3715
3716/// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
3717/// a type.
3718static void HandleExtVectorTypeAttr(QualType &CurType,
3719                                    const AttributeList &Attr,
3720                                    Sema &S) {
3721  Expr *sizeExpr;
3722
3723  // Special case where the argument is a template id.
3724  if (Attr.getParameterName()) {
3725    CXXScopeSpec SS;
3726    UnqualifiedId id;
3727    id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
3728
3729    ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, id, false,
3730                                          false);
3731    if (Size.isInvalid())
3732      return;
3733
3734    sizeExpr = Size.get();
3735  } else {
3736    // check the attribute arguments.
3737    if (Attr.getNumArgs() != 1) {
3738      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3739      return;
3740    }
3741    sizeExpr = Attr.getArg(0);
3742  }
3743
3744  // Create the vector type.
3745  QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
3746  if (!T.isNull())
3747    CurType = T;
3748}
3749
3750/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
3751/// "neon_polyvector_type" attributes are used to create vector types that
3752/// are mangled according to ARM's ABI.  Otherwise, these types are identical
3753/// to those created with the "vector_size" attribute.  Unlike "vector_size"
3754/// the argument to these Neon attributes is the number of vector elements,
3755/// not the vector size in bytes.  The vector width and element type must
3756/// match one of the standard Neon vector types.
3757static void HandleNeonVectorTypeAttr(QualType& CurType,
3758                                     const AttributeList &Attr, Sema &S,
3759                                     VectorType::VectorKind VecKind,
3760                                     const char *AttrName) {
3761  // Check the attribute arguments.
3762  if (Attr.getNumArgs() != 1) {
3763    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
3764    Attr.setInvalid();
3765    return;
3766  }
3767  // The number of elements must be an ICE.
3768  Expr *numEltsExpr = static_cast<Expr *>(Attr.getArg(0));
3769  llvm::APSInt numEltsInt(32);
3770  if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
3771      !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
3772    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
3773      << AttrName << numEltsExpr->getSourceRange();
3774    Attr.setInvalid();
3775    return;
3776  }
3777  // Only certain element types are supported for Neon vectors.
3778  const BuiltinType* BTy = CurType->getAs<BuiltinType>();
3779  if (!BTy ||
3780      (VecKind == VectorType::NeonPolyVector &&
3781       BTy->getKind() != BuiltinType::SChar &&
3782       BTy->getKind() != BuiltinType::Short) ||
3783      (BTy->getKind() != BuiltinType::SChar &&
3784       BTy->getKind() != BuiltinType::UChar &&
3785       BTy->getKind() != BuiltinType::Short &&
3786       BTy->getKind() != BuiltinType::UShort &&
3787       BTy->getKind() != BuiltinType::Int &&
3788       BTy->getKind() != BuiltinType::UInt &&
3789       BTy->getKind() != BuiltinType::LongLong &&
3790       BTy->getKind() != BuiltinType::ULongLong &&
3791       BTy->getKind() != BuiltinType::Float)) {
3792    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) <<CurType;
3793    Attr.setInvalid();
3794    return;
3795  }
3796  // The total size of the vector must be 64 or 128 bits.
3797  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
3798  unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
3799  unsigned vecSize = typeSize * numElts;
3800  if (vecSize != 64 && vecSize != 128) {
3801    S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
3802    Attr.setInvalid();
3803    return;
3804  }
3805
3806  CurType = S.Context.getVectorType(CurType, numElts, VecKind);
3807}
3808
3809static void processTypeAttrs(TypeProcessingState &state, QualType &type,
3810                             bool isDeclSpec, AttributeList *attrs) {
3811  // Scan through and apply attributes to this type where it makes sense.  Some
3812  // attributes (such as __address_space__, __vector_size__, etc) apply to the
3813  // type, but others can be present in the type specifiers even though they
3814  // apply to the decl.  Here we apply type attributes and ignore the rest.
3815
3816  AttributeList *next;
3817  do {
3818    AttributeList &attr = *attrs;
3819    next = attr.getNext();
3820
3821    // Skip attributes that were marked to be invalid.
3822    if (attr.isInvalid())
3823      continue;
3824
3825    // If this is an attribute we can handle, do so now,
3826    // otherwise, add it to the FnAttrs list for rechaining.
3827    switch (attr.getKind()) {
3828    default: break;
3829
3830    case AttributeList::AT_may_alias:
3831      // FIXME: This attribute needs to actually be handled, but if we ignore
3832      // it it breaks large amounts of Linux software.
3833      attr.setUsedAsTypeAttr();
3834      break;
3835    case AttributeList::AT_address_space:
3836      HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
3837      attr.setUsedAsTypeAttr();
3838      break;
3839    OBJC_POINTER_TYPE_ATTRS_CASELIST:
3840      if (!handleObjCPointerTypeAttr(state, attr, type))
3841        distributeObjCPointerTypeAttr(state, attr, type);
3842      attr.setUsedAsTypeAttr();
3843      break;
3844    case AttributeList::AT_vector_size:
3845      HandleVectorSizeAttr(type, attr, state.getSema());
3846      attr.setUsedAsTypeAttr();
3847      break;
3848    case AttributeList::AT_ext_vector_type:
3849      if (state.getDeclarator().getDeclSpec().getStorageClassSpec()
3850            != DeclSpec::SCS_typedef)
3851        HandleExtVectorTypeAttr(type, attr, state.getSema());
3852      attr.setUsedAsTypeAttr();
3853      break;
3854    case AttributeList::AT_neon_vector_type:
3855      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
3856                               VectorType::NeonVector, "neon_vector_type");
3857      attr.setUsedAsTypeAttr();
3858      break;
3859    case AttributeList::AT_neon_polyvector_type:
3860      HandleNeonVectorTypeAttr(type, attr, state.getSema(),
3861                               VectorType::NeonPolyVector,
3862                               "neon_polyvector_type");
3863      attr.setUsedAsTypeAttr();
3864      break;
3865    case AttributeList::AT_opencl_image_access:
3866      HandleOpenCLImageAccessAttribute(type, attr, state.getSema());
3867      attr.setUsedAsTypeAttr();
3868      break;
3869
3870    case AttributeList::AT_ns_returns_retained:
3871      if (!state.getSema().getLangOptions().ObjCAutoRefCount)
3872	break;
3873      // fallthrough into the function attrs
3874
3875    FUNCTION_TYPE_ATTRS_CASELIST:
3876      attr.setUsedAsTypeAttr();
3877
3878      // Never process function type attributes as part of the
3879      // declaration-specifiers.
3880      if (isDeclSpec)
3881        distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
3882
3883      // Otherwise, handle the possible delays.
3884      else if (!handleFunctionTypeAttr(state, attr, type))
3885        distributeFunctionTypeAttr(state, attr, type);
3886      break;
3887    }
3888  } while ((attrs = next));
3889}
3890
3891/// \brief Ensure that the type of the given expression is complete.
3892///
3893/// This routine checks whether the expression \p E has a complete type. If the
3894/// expression refers to an instantiable construct, that instantiation is
3895/// performed as needed to complete its type. Furthermore
3896/// Sema::RequireCompleteType is called for the expression's type (or in the
3897/// case of a reference type, the referred-to type).
3898///
3899/// \param E The expression whose type is required to be complete.
3900/// \param PD The partial diagnostic that will be printed out if the type cannot
3901/// be completed.
3902///
3903/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
3904/// otherwise.
3905bool Sema::RequireCompleteExprType(Expr *E, const PartialDiagnostic &PD,
3906                                   std::pair<SourceLocation,
3907                                             PartialDiagnostic> Note) {
3908  QualType T = E->getType();
3909
3910  // Fast path the case where the type is already complete.
3911  if (!T->isIncompleteType())
3912    return false;
3913
3914  // Incomplete array types may be completed by the initializer attached to
3915  // their definitions. For static data members of class templates we need to
3916  // instantiate the definition to get this initializer and complete the type.
3917  if (T->isIncompleteArrayType()) {
3918    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3919      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3920        if (Var->isStaticDataMember() &&
3921            Var->getInstantiatedFromStaticDataMember()) {
3922
3923          MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
3924          assert(MSInfo && "Missing member specialization information?");
3925          if (MSInfo->getTemplateSpecializationKind()
3926                != TSK_ExplicitSpecialization) {
3927            // If we don't already have a point of instantiation, this is it.
3928            if (MSInfo->getPointOfInstantiation().isInvalid()) {
3929              MSInfo->setPointOfInstantiation(E->getLocStart());
3930
3931              // This is a modification of an existing AST node. Notify
3932              // listeners.
3933              if (ASTMutationListener *L = getASTMutationListener())
3934                L->StaticDataMemberInstantiated(Var);
3935            }
3936
3937            InstantiateStaticDataMemberDefinition(E->getExprLoc(), Var);
3938
3939            // Update the type to the newly instantiated definition's type both
3940            // here and within the expression.
3941            if (VarDecl *Def = Var->getDefinition()) {
3942              DRE->setDecl(Def);
3943              T = Def->getType();
3944              DRE->setType(T);
3945              E->setType(T);
3946            }
3947          }
3948
3949          // We still go on to try to complete the type independently, as it
3950          // may also require instantiations or diagnostics if it remains
3951          // incomplete.
3952        }
3953      }
3954    }
3955  }
3956
3957  // FIXME: Are there other cases which require instantiating something other
3958  // than the type to complete the type of an expression?
3959
3960  // Look through reference types and complete the referred type.
3961  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
3962    T = Ref->getPointeeType();
3963
3964  return RequireCompleteType(E->getExprLoc(), T, PD, Note);
3965}
3966
3967/// @brief Ensure that the type T is a complete type.
3968///
3969/// This routine checks whether the type @p T is complete in any
3970/// context where a complete type is required. If @p T is a complete
3971/// type, returns false. If @p T is a class template specialization,
3972/// this routine then attempts to perform class template
3973/// instantiation. If instantiation fails, or if @p T is incomplete
3974/// and cannot be completed, issues the diagnostic @p diag (giving it
3975/// the type @p T) and returns true.
3976///
3977/// @param Loc  The location in the source that the incomplete type
3978/// diagnostic should refer to.
3979///
3980/// @param T  The type that this routine is examining for completeness.
3981///
3982/// @param PD The partial diagnostic that will be printed out if T is not a
3983/// complete type.
3984///
3985/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
3986/// @c false otherwise.
3987bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
3988                               const PartialDiagnostic &PD,
3989                               std::pair<SourceLocation,
3990                                         PartialDiagnostic> Note) {
3991  unsigned diag = PD.getDiagID();
3992
3993  // FIXME: Add this assertion to make sure we always get instantiation points.
3994  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
3995  // FIXME: Add this assertion to help us flush out problems with
3996  // checking for dependent types and type-dependent expressions.
3997  //
3998  //  assert(!T->isDependentType() &&
3999  //         "Can't ask whether a dependent type is complete");
4000
4001  // If we have a complete type, we're done.
4002  if (!T->isIncompleteType())
4003    return false;
4004
4005  // If we have a class template specialization or a class member of a
4006  // class template specialization, or an array with known size of such,
4007  // try to instantiate it.
4008  QualType MaybeTemplate = T;
4009  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
4010    MaybeTemplate = Array->getElementType();
4011  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
4012    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
4013          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
4014      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
4015        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
4016                                                      TSK_ImplicitInstantiation,
4017                                                      /*Complain=*/diag != 0);
4018    } else if (CXXRecordDecl *Rec
4019                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
4020      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
4021        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
4022        assert(MSInfo && "Missing member specialization information?");
4023        // This record was instantiated from a class within a template.
4024        if (MSInfo->getTemplateSpecializationKind()
4025                                               != TSK_ExplicitSpecialization)
4026          return InstantiateClass(Loc, Rec, Pattern,
4027                                  getTemplateInstantiationArgs(Rec),
4028                                  TSK_ImplicitInstantiation,
4029                                  /*Complain=*/diag != 0);
4030      }
4031    }
4032  }
4033
4034  if (diag == 0)
4035    return true;
4036
4037  const TagType *Tag = T->getAs<TagType>();
4038
4039  // Avoid diagnosing invalid decls as incomplete.
4040  if (Tag && Tag->getDecl()->isInvalidDecl())
4041    return true;
4042
4043  // Give the external AST source a chance to complete the type.
4044  if (Tag && Tag->getDecl()->hasExternalLexicalStorage()) {
4045    Context.getExternalSource()->CompleteType(Tag->getDecl());
4046    if (!Tag->isIncompleteType())
4047      return false;
4048  }
4049
4050  // We have an incomplete type. Produce a diagnostic.
4051  Diag(Loc, PD) << T;
4052
4053  // If we have a note, produce it.
4054  if (!Note.first.isInvalid())
4055    Diag(Note.first, Note.second);
4056
4057  // If the type was a forward declaration of a class/struct/union
4058  // type, produce a note.
4059  if (Tag && !Tag->getDecl()->isInvalidDecl())
4060    Diag(Tag->getDecl()->getLocation(),
4061         Tag->isBeingDefined() ? diag::note_type_being_defined
4062                               : diag::note_forward_declaration)
4063        << QualType(Tag, 0);
4064
4065  return true;
4066}
4067
4068bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4069                               const PartialDiagnostic &PD) {
4070  return RequireCompleteType(Loc, T, PD,
4071                             std::make_pair(SourceLocation(), PDiag(0)));
4072}
4073
4074bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
4075                               unsigned DiagID) {
4076  return RequireCompleteType(Loc, T, PDiag(DiagID),
4077                             std::make_pair(SourceLocation(), PDiag(0)));
4078}
4079
4080/// @brief Ensure that the type T is a literal type.
4081///
4082/// This routine checks whether the type @p T is a literal type. If @p T is an
4083/// incomplete type, an attempt is made to complete it. If @p T is a literal
4084/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
4085/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
4086/// it the type @p T), along with notes explaining why the type is not a
4087/// literal type, and returns true.
4088///
4089/// @param Loc  The location in the source that the non-literal type
4090/// diagnostic should refer to.
4091///
4092/// @param T  The type that this routine is examining for literalness.
4093///
4094/// @param PD The partial diagnostic that will be printed out if T is not a
4095/// literal type.
4096///
4097/// @param AllowIncompleteType If true, an incomplete type will be considered
4098/// acceptable.
4099///
4100/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
4101/// @c false otherwise.
4102bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
4103                              const PartialDiagnostic &PD,
4104                              bool AllowIncompleteType) {
4105  assert(!T->isDependentType() && "type should not be dependent");
4106
4107  bool Incomplete = RequireCompleteType(Loc, T, 0);
4108  if (T->isLiteralType() || (AllowIncompleteType && Incomplete))
4109    return false;
4110
4111  if (PD.getDiagID() == 0)
4112    return true;
4113
4114  Diag(Loc, PD) << T;
4115
4116  if (T->isVariableArrayType())
4117    return true;
4118
4119  const RecordType *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>();
4120  if (!RT)
4121    return true;
4122
4123  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4124
4125  // If the class has virtual base classes, then it's not an aggregate, and
4126  // cannot have any constexpr constructors, so is non-literal. This is better
4127  // to diagnose than the resulting absence of constexpr constructors.
4128  if (RD->getNumVBases()) {
4129    Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
4130      << RD->isStruct() << RD->getNumVBases();
4131    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
4132           E = RD->vbases_end(); I != E; ++I)
4133      Diag(I->getSourceRange().getBegin(),
4134           diag::note_constexpr_virtual_base_here) << I->getSourceRange();
4135  } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor()) {
4136    Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
4137
4138    switch (RD->getTemplateSpecializationKind()) {
4139    case TSK_Undeclared:
4140    case TSK_ExplicitSpecialization:
4141      break;
4142
4143    case TSK_ImplicitInstantiation:
4144    case TSK_ExplicitInstantiationDeclaration:
4145    case TSK_ExplicitInstantiationDefinition:
4146      // If the base template had constexpr constructors which were
4147      // instantiated as non-constexpr constructors, explain why.
4148      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
4149           E = RD->ctor_end(); I != E; ++I) {
4150        if ((*I)->isCopyConstructor() || (*I)->isMoveConstructor())
4151          continue;
4152
4153        FunctionDecl *Base = (*I)->getInstantiatedFromMemberFunction();
4154        if (Base && Base->isConstexpr())
4155          CheckConstexprFunctionDecl(*I, CCK_NoteNonConstexprInstantiation);
4156      }
4157    }
4158  } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
4159    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4160         E = RD->bases_end(); I != E; ++I) {
4161      if (!I->getType()->isLiteralType()) {
4162        Diag(I->getSourceRange().getBegin(),
4163             diag::note_non_literal_base_class)
4164          << RD << I->getType() << I->getSourceRange();
4165        return true;
4166      }
4167    }
4168    for (CXXRecordDecl::field_iterator I = RD->field_begin(),
4169         E = RD->field_end(); I != E; ++I) {
4170      if (!(*I)->getType()->isLiteralType()) {
4171        Diag((*I)->getLocation(), diag::note_non_literal_field)
4172          << RD << (*I) << (*I)->getType();
4173        return true;
4174      } else if ((*I)->isMutable()) {
4175        Diag((*I)->getLocation(), diag::note_non_literal_mutable_field) << RD;
4176        return true;
4177      }
4178    }
4179  } else if (!RD->hasTrivialDestructor()) {
4180    // All fields and bases are of literal types, so have trivial destructors.
4181    // If this class's destructor is non-trivial it must be user-declared.
4182    CXXDestructorDecl *Dtor = RD->getDestructor();
4183    assert(Dtor && "class has literal fields and bases but no dtor?");
4184    if (!Dtor)
4185      return true;
4186
4187    Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
4188         diag::note_non_literal_user_provided_dtor :
4189         diag::note_non_literal_nontrivial_dtor) << RD;
4190  }
4191
4192  return true;
4193}
4194
4195/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
4196/// and qualified by the nested-name-specifier contained in SS.
4197QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
4198                                 const CXXScopeSpec &SS, QualType T) {
4199  if (T.isNull())
4200    return T;
4201  NestedNameSpecifier *NNS;
4202  if (SS.isValid())
4203    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4204  else {
4205    if (Keyword == ETK_None)
4206      return T;
4207    NNS = 0;
4208  }
4209  return Context.getElaboratedType(Keyword, NNS, T);
4210}
4211
4212QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
4213  ExprResult ER = CheckPlaceholderExpr(E);
4214  if (ER.isInvalid()) return QualType();
4215  E = ER.take();
4216
4217  if (!E->isTypeDependent()) {
4218    QualType T = E->getType();
4219    if (const TagType *TT = T->getAs<TagType>())
4220      DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
4221  }
4222  return Context.getTypeOfExprType(E);
4223}
4224
4225QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc) {
4226  ExprResult ER = CheckPlaceholderExpr(E);
4227  if (ER.isInvalid()) return QualType();
4228  E = ER.take();
4229
4230  return Context.getDecltypeType(E);
4231}
4232
4233QualType Sema::BuildUnaryTransformType(QualType BaseType,
4234                                       UnaryTransformType::UTTKind UKind,
4235                                       SourceLocation Loc) {
4236  switch (UKind) {
4237  case UnaryTransformType::EnumUnderlyingType:
4238    if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
4239      Diag(Loc, diag::err_only_enums_have_underlying_types);
4240      return QualType();
4241    } else {
4242      QualType Underlying = BaseType;
4243      if (!BaseType->isDependentType()) {
4244        EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
4245        assert(ED && "EnumType has no EnumDecl");
4246        DiagnoseUseOfDecl(ED, Loc);
4247        Underlying = ED->getIntegerType();
4248      }
4249      assert(!Underlying.isNull());
4250      return Context.getUnaryTransformType(BaseType, Underlying,
4251                                        UnaryTransformType::EnumUnderlyingType);
4252    }
4253  }
4254  llvm_unreachable("unknown unary transform type");
4255}
4256
4257QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
4258  if (!T->isDependentType()) {
4259    int DisallowedKind = -1;
4260    if (T->isIncompleteType())
4261      // FIXME: It isn't entirely clear whether incomplete atomic types
4262      // are allowed or not; for simplicity, ban them for the moment.
4263      DisallowedKind = 0;
4264    else if (T->isArrayType())
4265      DisallowedKind = 1;
4266    else if (T->isFunctionType())
4267      DisallowedKind = 2;
4268    else if (T->isReferenceType())
4269      DisallowedKind = 3;
4270    else if (T->isAtomicType())
4271      DisallowedKind = 4;
4272    else if (T.hasQualifiers())
4273      DisallowedKind = 5;
4274    else if (!T.isTriviallyCopyableType(Context))
4275      // Some other non-trivially-copyable type (probably a C++ class)
4276      DisallowedKind = 6;
4277
4278    if (DisallowedKind != -1) {
4279      Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
4280      return QualType();
4281    }
4282
4283    // FIXME: Do we need any handling for ARC here?
4284  }
4285
4286  // Build the pointer type.
4287  return Context.getAtomicType(T);
4288}
4289