SemaType.cpp revision ef65f06e8e440aec541442cfd73a8a836e9bc842
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/Parse/DeclSpec.h"
20using namespace clang;
21
22/// \brief Perform adjustment on the parameter type of a function.
23///
24/// This routine adjusts the given parameter type @p T to the actual
25/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
26/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
27QualType Sema::adjustParameterType(QualType T) {
28  // C99 6.7.5.3p7:
29  if (T->isArrayType()) {
30    // C99 6.7.5.3p7:
31    //   A declaration of a parameter as "array of type" shall be
32    //   adjusted to "qualified pointer to type", where the type
33    //   qualifiers (if any) are those specified within the [ and ] of
34    //   the array type derivation.
35    return Context.getArrayDecayedType(T);
36  } else if (T->isFunctionType())
37    // C99 6.7.5.3p8:
38    //   A declaration of a parameter as "function returning type"
39    //   shall be adjusted to "pointer to function returning type", as
40    //   in 6.3.2.1.
41    return Context.getPointerType(T);
42
43  return T;
44}
45
46/// \brief Convert the specified declspec to the appropriate type
47/// object.
48/// \param DS  the declaration specifiers
49/// \param DeclLoc The location of the declarator identifier or invalid if none.
50/// \returns The type described by the declaration specifiers.  This function
51/// never returns null.
52QualType Sema::ConvertDeclSpecToType(const DeclSpec &DS,
53                                     SourceLocation DeclLoc,
54                                     bool &isInvalid) {
55  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
56  // checking.
57  QualType Result;
58
59  switch (DS.getTypeSpecType()) {
60  case DeclSpec::TST_void:
61    Result = Context.VoidTy;
62    break;
63  case DeclSpec::TST_char:
64    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
65      Result = Context.CharTy;
66    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
67      Result = Context.SignedCharTy;
68    else {
69      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
70             "Unknown TSS value");
71      Result = Context.UnsignedCharTy;
72    }
73    break;
74  case DeclSpec::TST_wchar:
75    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
76      Result = Context.WCharTy;
77    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
78      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
79        << DS.getSpecifierName(DS.getTypeSpecType());
80      Result = Context.getSignedWCharType();
81    } else {
82      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
83        "Unknown TSS value");
84      Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
85        << DS.getSpecifierName(DS.getTypeSpecType());
86      Result = Context.getUnsignedWCharType();
87    }
88    break;
89  case DeclSpec::TST_unspecified:
90    // "<proto1,proto2>" is an objc qualified ID with a missing id.
91    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
92      Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
93                                              DS.getNumProtocolQualifiers());
94      break;
95    }
96
97    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
98    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
99    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
100    // Note that the one exception to this is function definitions, which are
101    // allowed to be completely missing a declspec.  This is handled in the
102    // parser already though by it pretending to have seen an 'int' in this
103    // case.
104    if (getLangOptions().ImplicitInt) {
105      // In C89 mode, we only warn if there is a completely missing declspec
106      // when one is not allowed.
107      if (DS.isEmpty()) {
108        if (DeclLoc.isInvalid())
109          DeclLoc = DS.getSourceRange().getBegin();
110        Diag(DeclLoc, diag::warn_missing_declspec)
111          << DS.getSourceRange()
112        << CodeModificationHint::CreateInsertion(DS.getSourceRange().getBegin(),
113                                                 "int");
114      }
115    } else if (!DS.hasTypeSpecifier()) {
116      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
117      // "At least one type specifier shall be given in the declaration
118      // specifiers in each declaration, and in the specifier-qualifier list in
119      // each struct declaration and type name."
120      // FIXME: Does Microsoft really have the implicit int extension in C++?
121      if (DeclLoc.isInvalid())
122        DeclLoc = DS.getSourceRange().getBegin();
123
124      if (getLangOptions().CPlusPlus && !getLangOptions().Microsoft)
125        Diag(DeclLoc, diag::err_missing_type_specifier)
126          << DS.getSourceRange();
127      else
128        Diag(DeclLoc, diag::warn_missing_type_specifier)
129          << DS.getSourceRange();
130
131      // FIXME: If we could guarantee that the result would be well-formed, it
132      // would be useful to have a code insertion hint here. However, after
133      // emitting this warning/error, we often emit other errors.
134    }
135
136    // FALL THROUGH.
137  case DeclSpec::TST_int: {
138    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
139      switch (DS.getTypeSpecWidth()) {
140      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
141      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
142      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
143      case DeclSpec::TSW_longlong:    Result = Context.LongLongTy; break;
144      }
145    } else {
146      switch (DS.getTypeSpecWidth()) {
147      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
148      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
149      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
150      case DeclSpec::TSW_longlong:    Result =Context.UnsignedLongLongTy; break;
151      }
152    }
153    break;
154  }
155  case DeclSpec::TST_float: Result = Context.FloatTy; break;
156  case DeclSpec::TST_double:
157    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
158      Result = Context.LongDoubleTy;
159    else
160      Result = Context.DoubleTy;
161    break;
162  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
163  case DeclSpec::TST_decimal32:    // _Decimal32
164  case DeclSpec::TST_decimal64:    // _Decimal64
165  case DeclSpec::TST_decimal128:   // _Decimal128
166    Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
167    Result = Context.IntTy;
168    isInvalid = true;
169    break;
170  case DeclSpec::TST_class:
171  case DeclSpec::TST_enum:
172  case DeclSpec::TST_union:
173  case DeclSpec::TST_struct: {
174    Decl *D = static_cast<Decl *>(DS.getTypeRep());
175    assert(D && "Didn't get a decl for a class/enum/union/struct?");
176    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
177           DS.getTypeSpecSign() == 0 &&
178           "Can't handle qualifiers on typedef names yet!");
179    // TypeQuals handled by caller.
180    Result = Context.getTypeDeclType(cast<TypeDecl>(D));
181
182    if (D->isInvalidDecl())
183      isInvalid = true;
184    break;
185  }
186  case DeclSpec::TST_typename: {
187    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
188           DS.getTypeSpecSign() == 0 &&
189           "Can't handle qualifiers on typedef names yet!");
190    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
191
192    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
193      // FIXME: Adding a TST_objcInterface clause doesn't seem ideal, so we have
194      // this "hack" for now...
195      if (const ObjCInterfaceType *Interface = Result->getAsObjCInterfaceType())
196        Result = Context.getObjCQualifiedInterfaceType(Interface->getDecl(),
197                                                       (ObjCProtocolDecl**)PQ,
198                                               DS.getNumProtocolQualifiers());
199      else if (Result == Context.getObjCIdType())
200        // id<protocol-list>
201        Result = Context.getObjCQualifiedIdType((ObjCProtocolDecl**)PQ,
202                                                DS.getNumProtocolQualifiers());
203      else if (Result == Context.getObjCClassType()) {
204        if (DeclLoc.isInvalid())
205          DeclLoc = DS.getSourceRange().getBegin();
206        // Class<protocol-list>
207        Diag(DeclLoc, diag::err_qualified_class_unsupported)
208          << DS.getSourceRange();
209      } else {
210        if (DeclLoc.isInvalid())
211          DeclLoc = DS.getSourceRange().getBegin();
212        Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
213          << DS.getSourceRange();
214        isInvalid = true;
215      }
216    }
217
218    // If this is a reference to an invalid typedef, propagate the invalidity.
219    if (TypedefType *TDT = dyn_cast<TypedefType>(Result))
220      if (TDT->getDecl()->isInvalidDecl())
221        isInvalid = true;
222
223    // TypeQuals handled by caller.
224    break;
225  }
226  case DeclSpec::TST_typeofType:
227    Result = QualType::getFromOpaquePtr(DS.getTypeRep());
228    assert(!Result.isNull() && "Didn't get a type for typeof?");
229    // TypeQuals handled by caller.
230    Result = Context.getTypeOfType(Result);
231    break;
232  case DeclSpec::TST_typeofExpr: {
233    Expr *E = static_cast<Expr *>(DS.getTypeRep());
234    assert(E && "Didn't get an expression for typeof?");
235    // TypeQuals handled by caller.
236    Result = Context.getTypeOfExprType(E);
237    break;
238  }
239  case DeclSpec::TST_error:
240    Result = Context.IntTy;
241    isInvalid = true;
242    break;
243  }
244
245  // Handle complex types.
246  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
247    if (getLangOptions().Freestanding)
248      Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
249    Result = Context.getComplexType(Result);
250  }
251
252  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
253         "FIXME: imaginary types not supported yet!");
254
255  // See if there are any attributes on the declspec that apply to the type (as
256  // opposed to the decl).
257  if (const AttributeList *AL = DS.getAttributes())
258    ProcessTypeAttributeList(Result, AL);
259
260  // Apply const/volatile/restrict qualifiers to T.
261  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
262
263    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
264    // or incomplete types shall not be restrict-qualified."  C++ also allows
265    // restrict-qualified references.
266    if (TypeQuals & QualType::Restrict) {
267      if (Result->isPointerType() || Result->isReferenceType()) {
268        QualType EltTy = Result->isPointerType() ?
269          Result->getAsPointerType()->getPointeeType() :
270          Result->getAsReferenceType()->getPointeeType();
271
272        // If we have a pointer or reference, the pointee must have an object
273        // incomplete type.
274        if (!EltTy->isIncompleteOrObjectType()) {
275          Diag(DS.getRestrictSpecLoc(),
276               diag::err_typecheck_invalid_restrict_invalid_pointee)
277            << EltTy << DS.getSourceRange();
278          TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
279        }
280      } else {
281        Diag(DS.getRestrictSpecLoc(),
282             diag::err_typecheck_invalid_restrict_not_pointer)
283          << Result << DS.getSourceRange();
284        TypeQuals &= ~QualType::Restrict; // Remove the restrict qualifier.
285      }
286    }
287
288    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
289    // of a function type includes any type qualifiers, the behavior is
290    // undefined."
291    if (Result->isFunctionType() && TypeQuals) {
292      // Get some location to point at, either the C or V location.
293      SourceLocation Loc;
294      if (TypeQuals & QualType::Const)
295        Loc = DS.getConstSpecLoc();
296      else {
297        assert((TypeQuals & QualType::Volatile) &&
298               "Has CV quals but not C or V?");
299        Loc = DS.getVolatileSpecLoc();
300      }
301      Diag(Loc, diag::warn_typecheck_function_qualifiers)
302        << Result << DS.getSourceRange();
303    }
304
305    // C++ [dcl.ref]p1:
306    //   Cv-qualified references are ill-formed except when the
307    //   cv-qualifiers are introduced through the use of a typedef
308    //   (7.1.3) or of a template type argument (14.3), in which
309    //   case the cv-qualifiers are ignored.
310    // FIXME: Shouldn't we be checking SCS_typedef here?
311    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
312        TypeQuals && Result->isReferenceType()) {
313      TypeQuals &= ~QualType::Const;
314      TypeQuals &= ~QualType::Volatile;
315    }
316
317    Result = Result.getQualifiedType(TypeQuals);
318  }
319  return Result;
320}
321
322static std::string getPrintableNameForEntity(DeclarationName Entity) {
323  if (Entity)
324    return Entity.getAsString();
325
326  return "type name";
327}
328
329/// \brief Build a pointer type.
330///
331/// \param T The type to which we'll be building a pointer.
332///
333/// \param Quals The cvr-qualifiers to be applied to the pointer type.
334///
335/// \param Loc The location of the entity whose type involves this
336/// pointer type or, if there is no such entity, the location of the
337/// type that will have pointer type.
338///
339/// \param Entity The name of the entity that involves the pointer
340/// type, if known.
341///
342/// \returns A suitable pointer type, if there are no
343/// errors. Otherwise, returns a NULL type.
344QualType Sema::BuildPointerType(QualType T, unsigned Quals,
345                                SourceLocation Loc, DeclarationName Entity) {
346  if (T->isReferenceType()) {
347    // C++ 8.3.2p4: There shall be no ... pointers to references ...
348    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
349      << getPrintableNameForEntity(Entity);
350    return QualType();
351  }
352
353  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
354  // object or incomplete types shall not be restrict-qualified."
355  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
356    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
357      << T;
358    Quals &= ~QualType::Restrict;
359  }
360
361  // Build the pointer type.
362  return Context.getPointerType(T).getQualifiedType(Quals);
363}
364
365/// \brief Build a reference type.
366///
367/// \param T The type to which we'll be building a reference.
368///
369/// \param Quals The cvr-qualifiers to be applied to the reference type.
370///
371/// \param Loc The location of the entity whose type involves this
372/// reference type or, if there is no such entity, the location of the
373/// type that will have reference type.
374///
375/// \param Entity The name of the entity that involves the reference
376/// type, if known.
377///
378/// \returns A suitable reference type, if there are no
379/// errors. Otherwise, returns a NULL type.
380QualType Sema::BuildReferenceType(QualType T, bool LValueRef, unsigned Quals,
381                                  SourceLocation Loc, DeclarationName Entity) {
382  if (LValueRef) {
383    if (const RValueReferenceType *R = T->getAsRValueReferenceType()) {
384      // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
385      //   reference to a type T, and attempt to create the type "lvalue
386      //   reference to cv TD" creates the type "lvalue reference to T".
387      // We use the qualifiers (restrict or none) of the original reference,
388      // not the new ones. This is consistent with GCC.
389      return Context.getLValueReferenceType(R->getPointeeType()).
390               getQualifiedType(T.getCVRQualifiers());
391    }
392  }
393  if (T->isReferenceType()) {
394    // C++ [dcl.ref]p4: There shall be no references to references.
395    //
396    // According to C++ DR 106, references to references are only
397    // diagnosed when they are written directly (e.g., "int & &"),
398    // but not when they happen via a typedef:
399    //
400    //   typedef int& intref;
401    //   typedef intref& intref2;
402    //
403    // Parser::ParserDeclaratorInternal diagnoses the case where
404    // references are written directly; here, we handle the
405    // collapsing of references-to-references as described in C++
406    // DR 106 and amended by C++ DR 540.
407    return T;
408  }
409
410  // C++ [dcl.ref]p1:
411  //   A declarator that specifies the type “reference to cv void”
412  //   is ill-formed.
413  if (T->isVoidType()) {
414    Diag(Loc, diag::err_reference_to_void);
415    return QualType();
416  }
417
418  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
419  // object or incomplete types shall not be restrict-qualified."
420  if ((Quals & QualType::Restrict) && !T->isIncompleteOrObjectType()) {
421    Diag(Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
422      << T;
423    Quals &= ~QualType::Restrict;
424  }
425
426  // C++ [dcl.ref]p1:
427  //   [...] Cv-qualified references are ill-formed except when the
428  //   cv-qualifiers are introduced through the use of a typedef
429  //   (7.1.3) or of a template type argument (14.3), in which case
430  //   the cv-qualifiers are ignored.
431  //
432  // We diagnose extraneous cv-qualifiers for the non-typedef,
433  // non-template type argument case within the parser. Here, we just
434  // ignore any extraneous cv-qualifiers.
435  Quals &= ~QualType::Const;
436  Quals &= ~QualType::Volatile;
437
438  // Handle restrict on references.
439  if (LValueRef)
440    return Context.getLValueReferenceType(T).getQualifiedType(Quals);
441  return Context.getRValueReferenceType(T).getQualifiedType(Quals);
442}
443
444/// \brief Build an array type.
445///
446/// \param T The type of each element in the array.
447///
448/// \param ASM C99 array size modifier (e.g., '*', 'static').
449///
450/// \param ArraySize Expression describing the size of the array.
451///
452/// \param Quals The cvr-qualifiers to be applied to the array's
453/// element type.
454///
455/// \param Loc The location of the entity whose type involves this
456/// array type or, if there is no such entity, the location of the
457/// type that will have array type.
458///
459/// \param Entity The name of the entity that involves the array
460/// type, if known.
461///
462/// \returns A suitable array type, if there are no errors. Otherwise,
463/// returns a NULL type.
464QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
465                              Expr *ArraySize, unsigned Quals,
466                              SourceLocation Loc, DeclarationName Entity) {
467  // C99 6.7.5.2p1: If the element type is an incomplete or function type,
468  // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
469  if (RequireCompleteType(Loc, T,
470                             diag::err_illegal_decl_array_incomplete_type))
471    return QualType();
472
473  if (T->isFunctionType()) {
474    Diag(Loc, diag::err_illegal_decl_array_of_functions)
475      << getPrintableNameForEntity(Entity);
476    return QualType();
477  }
478
479  // C++ 8.3.2p4: There shall be no ... arrays of references ...
480  if (T->isReferenceType()) {
481    Diag(Loc, diag::err_illegal_decl_array_of_references)
482      << getPrintableNameForEntity(Entity);
483    return QualType();
484  }
485
486  if (const RecordType *EltTy = T->getAsRecordType()) {
487    // If the element type is a struct or union that contains a variadic
488    // array, accept it as a GNU extension: C99 6.7.2.1p2.
489    if (EltTy->getDecl()->hasFlexibleArrayMember())
490      Diag(Loc, diag::ext_flexible_array_in_array) << T;
491  } else if (T->isObjCInterfaceType()) {
492    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
493    return QualType();
494  }
495
496  // C99 6.7.5.2p1: The size expression shall have integer type.
497  if (ArraySize && !ArraySize->isTypeDependent() &&
498      !ArraySize->getType()->isIntegerType()) {
499    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
500      << ArraySize->getType() << ArraySize->getSourceRange();
501    ArraySize->Destroy(Context);
502    return QualType();
503  }
504  llvm::APSInt ConstVal(32);
505  if (!ArraySize) {
506    if (ASM == ArrayType::Star)
507      T = Context.getVariableArrayType(T, 0, ASM, Quals);
508    else
509      T = Context.getIncompleteArrayType(T, ASM, Quals);
510  } else if (ArraySize->isValueDependent()) {
511    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals);
512  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
513             (!T->isDependentType() && !T->isConstantSizeType())) {
514    // Per C99, a variable array is an array with either a non-constant
515    // size or an element type that has a non-constant-size
516    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals);
517  } else {
518    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
519    // have a value greater than zero.
520    if (ConstVal.isSigned()) {
521      if (ConstVal.isNegative()) {
522        Diag(ArraySize->getLocStart(),
523             diag::err_typecheck_negative_array_size)
524          << ArraySize->getSourceRange();
525        return QualType();
526      } else if (ConstVal == 0) {
527        // GCC accepts zero sized static arrays.
528        Diag(ArraySize->getLocStart(), diag::ext_typecheck_zero_array_size)
529          << ArraySize->getSourceRange();
530      }
531    }
532    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
533  }
534  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
535  if (!getLangOptions().C99) {
536    if (ArraySize && !ArraySize->isTypeDependent() &&
537        !ArraySize->isValueDependent() &&
538        !ArraySize->isIntegerConstantExpr(Context))
539      Diag(Loc, diag::ext_vla);
540    else if (ASM != ArrayType::Normal || Quals != 0)
541      Diag(Loc, diag::ext_c99_array_usage);
542  }
543
544  return T;
545}
546
547/// \brief Build a function type.
548///
549/// This routine checks the function type according to C++ rules and
550/// under the assumption that the result type and parameter types have
551/// just been instantiated from a template. It therefore duplicates
552/// some of the behavior of GetTypeForDeclarator, but in a much
553/// simpler form that is only suitable for this narrow use case.
554///
555/// \param T The return type of the function.
556///
557/// \param ParamTypes The parameter types of the function. This array
558/// will be modified to account for adjustments to the types of the
559/// function parameters.
560///
561/// \param NumParamTypes The number of parameter types in ParamTypes.
562///
563/// \param Variadic Whether this is a variadic function type.
564///
565/// \param Quals The cvr-qualifiers to be applied to the function type.
566///
567/// \param Loc The location of the entity whose type involves this
568/// function type or, if there is no such entity, the location of the
569/// type that will have function type.
570///
571/// \param Entity The name of the entity that involves the function
572/// type, if known.
573///
574/// \returns A suitable function type, if there are no
575/// errors. Otherwise, returns a NULL type.
576QualType Sema::BuildFunctionType(QualType T,
577                                 QualType *ParamTypes,
578                                 unsigned NumParamTypes,
579                                 bool Variadic, unsigned Quals,
580                                 SourceLocation Loc, DeclarationName Entity) {
581  if (T->isArrayType() || T->isFunctionType()) {
582    Diag(Loc, diag::err_func_returning_array_function) << T;
583    return QualType();
584  }
585
586  bool Invalid = false;
587  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
588    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
589    if (ParamType->isVoidType()) {
590      Diag(Loc, diag::err_param_with_void_type);
591      Invalid = true;
592    }
593
594    ParamTypes[Idx] = ParamType;
595  }
596
597  if (Invalid)
598    return QualType();
599
600  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
601                                 Quals);
602}
603
604/// GetTypeForDeclarator - Convert the type for the specified
605/// declarator to Type instances. Skip the outermost Skip type
606/// objects.
607///
608/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
609/// owns the declaration of a type (e.g., the definition of a struct
610/// type), then *OwnedDecl will receive the owned declaration.
611QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S, unsigned Skip,
612                                    TagDecl **OwnedDecl) {
613  bool OmittedReturnType = false;
614
615  if (D.getContext() == Declarator::BlockLiteralContext
616      && Skip == 0
617      && !D.getDeclSpec().hasTypeSpecifier()
618      && (D.getNumTypeObjects() == 0
619          || (D.getNumTypeObjects() == 1
620              && D.getTypeObject(0).Kind == DeclaratorChunk::Function)))
621    OmittedReturnType = true;
622
623  // long long is a C99 feature.
624  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
625      D.getDeclSpec().getTypeSpecWidth() == DeclSpec::TSW_longlong)
626    Diag(D.getDeclSpec().getTypeSpecWidthLoc(), diag::ext_longlong);
627
628  // Determine the type of the declarator. Not all forms of declarator
629  // have a type.
630  QualType T;
631  switch (D.getKind()) {
632  case Declarator::DK_Abstract:
633  case Declarator::DK_Normal:
634  case Declarator::DK_Operator: {
635    const DeclSpec &DS = D.getDeclSpec();
636    if (OmittedReturnType) {
637      // We default to a dependent type initially.  Can be modified by
638      // the first return statement.
639      T = Context.DependentTy;
640    } else {
641      bool isInvalid = false;
642      T = ConvertDeclSpecToType(DS, D.getIdentifierLoc(), isInvalid);
643      if (isInvalid)
644        D.setInvalidType(true);
645      else if (OwnedDecl && DS.isTypeSpecOwned())
646        *OwnedDecl = cast<TagDecl>((Decl *)DS.getTypeRep());
647    }
648    break;
649  }
650
651  case Declarator::DK_Constructor:
652  case Declarator::DK_Destructor:
653  case Declarator::DK_Conversion:
654    // Constructors and destructors don't have return types. Use
655    // "void" instead. Conversion operators will check their return
656    // types separately.
657    T = Context.VoidTy;
658    break;
659  }
660
661  // The name we're declaring, if any.
662  DeclarationName Name;
663  if (D.getIdentifier())
664    Name = D.getIdentifier();
665
666  // Walk the DeclTypeInfo, building the recursive type as we go.
667  // DeclTypeInfos are ordered from the identifier out, which is
668  // opposite of what we want :).
669  for (unsigned i = Skip, e = D.getNumTypeObjects(); i != e; ++i) {
670    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1+Skip);
671    switch (DeclType.Kind) {
672    default: assert(0 && "Unknown decltype!");
673    case DeclaratorChunk::BlockPointer:
674      // If blocks are disabled, emit an error.
675      if (!LangOpts.Blocks)
676        Diag(DeclType.Loc, diag::err_blocks_disable);
677
678      if (!T.getTypePtr()->isFunctionType())
679        Diag(D.getIdentifierLoc(), diag::err_nonfunction_block_type);
680      else
681        T = (Context.getBlockPointerType(T)
682             .getQualifiedType(DeclType.Cls.TypeQuals));
683      break;
684    case DeclaratorChunk::Pointer:
685      // Verify that we're not building a pointer to pointer to function with
686      // exception specification.
687      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
688        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
689        D.setInvalidType(true);
690        // Build the type anyway.
691      }
692      T = BuildPointerType(T, DeclType.Ptr.TypeQuals, DeclType.Loc, Name);
693      break;
694    case DeclaratorChunk::Reference:
695      // Verify that we're not building a reference to pointer to function with
696      // exception specification.
697      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
698        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
699        D.setInvalidType(true);
700        // Build the type anyway.
701      }
702      T = BuildReferenceType(T, DeclType.Ref.LValueRef,
703                             DeclType.Ref.HasRestrict ? QualType::Restrict : 0,
704                             DeclType.Loc, Name);
705      break;
706    case DeclaratorChunk::Array: {
707      // Verify that we're not building an array of pointers to function with
708      // exception specification.
709      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
710        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
711        D.setInvalidType(true);
712        // Build the type anyway.
713      }
714      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
715      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
716      ArrayType::ArraySizeModifier ASM;
717      if (ATI.isStar)
718        ASM = ArrayType::Star;
719      else if (ATI.hasStatic)
720        ASM = ArrayType::Static;
721      else
722        ASM = ArrayType::Normal;
723      if (ASM == ArrayType::Star &&
724          D.getContext() != Declarator::PrototypeContext) {
725        // FIXME: This check isn't quite right: it allows star in prototypes
726        // for function definitions, and disallows some edge cases detailed
727        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
728        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
729        ASM = ArrayType::Normal;
730        D.setInvalidType(true);
731      }
732      T = BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals, DeclType.Loc, Name);
733      break;
734    }
735    case DeclaratorChunk::Function: {
736      // If the function declarator has a prototype (i.e. it is not () and
737      // does not have a K&R-style identifier list), then the arguments are part
738      // of the type, otherwise the argument list is ().
739      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
740
741      // C99 6.7.5.3p1: The return type may not be a function or array type.
742      if (T->isArrayType() || T->isFunctionType()) {
743        Diag(DeclType.Loc, diag::err_func_returning_array_function) << T;
744        T = Context.IntTy;
745        D.setInvalidType(true);
746      }
747
748      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
749        // C++ [dcl.fct]p6:
750        //   Types shall not be defined in return or parameter types.
751        TagDecl *Tag = cast<TagDecl>((Decl *)D.getDeclSpec().getTypeRep());
752        if (Tag->isDefinition())
753          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
754            << Context.getTypeDeclType(Tag);
755      }
756
757      if (FTI.NumArgs == 0) {
758        if (getLangOptions().CPlusPlus) {
759          // C++ 8.3.5p2: If the parameter-declaration-clause is empty, the
760          // function takes no arguments.
761          llvm::SmallVector<QualType, 4> Exceptions;
762          Exceptions.reserve(FTI.NumExceptions);
763          for(unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
764            QualType ET = QualType::getFromOpaquePtr(FTI.Exceptions[ei].Ty);
765            // Check that the type is valid for an exception spec, and drop it
766            // if not.
767            if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
768              Exceptions.push_back(ET);
769          }
770          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, FTI.TypeQuals,
771                                      FTI.hasExceptionSpec,
772                                      FTI.hasAnyExceptionSpec,
773                                      Exceptions.size(), Exceptions.data());
774        } else if (FTI.isVariadic) {
775          // We allow a zero-parameter variadic function in C if the
776          // function is marked with the "overloadable"
777          // attribute. Scan for this attribute now.
778          bool Overloadable = false;
779          for (const AttributeList *Attrs = D.getAttributes();
780               Attrs; Attrs = Attrs->getNext()) {
781            if (Attrs->getKind() == AttributeList::AT_overloadable) {
782              Overloadable = true;
783              break;
784            }
785          }
786
787          if (!Overloadable)
788            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
789          T = Context.getFunctionType(T, NULL, 0, FTI.isVariadic, 0);
790        } else {
791          // Simple void foo(), where the incoming T is the result type.
792          T = Context.getFunctionNoProtoType(T);
793        }
794      } else if (FTI.ArgInfo[0].Param == 0) {
795        // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
796        Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
797      } else {
798        // Otherwise, we have a function with an argument list that is
799        // potentially variadic.
800        llvm::SmallVector<QualType, 16> ArgTys;
801
802        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
803          ParmVarDecl *Param =
804            cast<ParmVarDecl>(FTI.ArgInfo[i].Param.getAs<Decl>());
805          QualType ArgTy = Param->getType();
806          assert(!ArgTy.isNull() && "Couldn't parse type?");
807
808          // Adjust the parameter type.
809          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");
810
811          // Look for 'void'.  void is allowed only as a single argument to a
812          // function with no other parameters (C99 6.7.5.3p10).  We record
813          // int(void) as a FunctionProtoType with an empty argument list.
814          if (ArgTy->isVoidType()) {
815            // If this is something like 'float(int, void)', reject it.  'void'
816            // is an incomplete type (C99 6.2.5p19) and function decls cannot
817            // have arguments of incomplete type.
818            if (FTI.NumArgs != 1 || FTI.isVariadic) {
819              Diag(DeclType.Loc, diag::err_void_only_param);
820              ArgTy = Context.IntTy;
821              Param->setType(ArgTy);
822            } else if (FTI.ArgInfo[i].Ident) {
823              // Reject, but continue to parse 'int(void abc)'.
824              Diag(FTI.ArgInfo[i].IdentLoc,
825                   diag::err_param_with_void_type);
826              ArgTy = Context.IntTy;
827              Param->setType(ArgTy);
828            } else {
829              // Reject, but continue to parse 'float(const void)'.
830              if (ArgTy.getCVRQualifiers())
831                Diag(DeclType.Loc, diag::err_void_param_qualified);
832
833              // Do not add 'void' to the ArgTys list.
834              break;
835            }
836          } else if (!FTI.hasPrototype) {
837            if (ArgTy->isPromotableIntegerType()) {
838              ArgTy = Context.IntTy;
839            } else if (const BuiltinType* BTy = ArgTy->getAsBuiltinType()) {
840              if (BTy->getKind() == BuiltinType::Float)
841                ArgTy = Context.DoubleTy;
842            }
843          }
844
845          ArgTys.push_back(ArgTy);
846        }
847
848        llvm::SmallVector<QualType, 4> Exceptions;
849        Exceptions.reserve(FTI.NumExceptions);
850        for(unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
851          QualType ET = QualType::getFromOpaquePtr(FTI.Exceptions[ei].Ty);
852          // Check that the type is valid for an exception spec, and drop it if
853          // not.
854          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
855            Exceptions.push_back(ET);
856        }
857
858        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
859                                    FTI.isVariadic, FTI.TypeQuals,
860                                    FTI.hasExceptionSpec,
861                                    FTI.hasAnyExceptionSpec,
862                                    Exceptions.size(), Exceptions.data());
863      }
864      break;
865    }
866    case DeclaratorChunk::MemberPointer:
867      // Verify that we're not building a pointer to pointer to function with
868      // exception specification.
869      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
870        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
871        D.setInvalidType(true);
872        // Build the type anyway.
873      }
874      // The scope spec must refer to a class, or be dependent.
875      DeclContext *DC = computeDeclContext(DeclType.Mem.Scope());
876      QualType ClsType;
877      // FIXME: Extend for dependent types when it's actually supported.
878      // See ActOnCXXNestedNameSpecifier.
879      if (CXXRecordDecl *RD = dyn_cast_or_null<CXXRecordDecl>(DC)) {
880        ClsType = Context.getTagDeclType(RD);
881      } else {
882        if (DC) {
883          Diag(DeclType.Mem.Scope().getBeginLoc(),
884               diag::err_illegal_decl_mempointer_in_nonclass)
885            << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
886            << DeclType.Mem.Scope().getRange();
887        }
888        D.setInvalidType(true);
889        ClsType = Context.IntTy;
890      }
891
892      // C++ 8.3.3p3: A pointer to member shall not pointer to ... a member
893      //   with reference type, or "cv void."
894      if (T->isReferenceType()) {
895        Diag(DeclType.Loc, diag::err_illegal_decl_pointer_to_reference)
896          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
897        D.setInvalidType(true);
898        T = Context.IntTy;
899      }
900      if (T->isVoidType()) {
901        Diag(DeclType.Loc, diag::err_illegal_decl_mempointer_to_void)
902          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name");
903        T = Context.IntTy;
904      }
905
906      // Enforce C99 6.7.3p2: "Types other than pointer types derived from
907      // object or incomplete types shall not be restrict-qualified."
908      if ((DeclType.Mem.TypeQuals & QualType::Restrict) &&
909          !T->isIncompleteOrObjectType()) {
910        Diag(DeclType.Loc, diag::err_typecheck_invalid_restrict_invalid_pointee)
911          << T;
912        DeclType.Mem.TypeQuals &= ~QualType::Restrict;
913      }
914
915      T = Context.getMemberPointerType(T, ClsType.getTypePtr()).
916                    getQualifiedType(DeclType.Mem.TypeQuals);
917
918      break;
919    }
920
921    if (T.isNull()) {
922      D.setInvalidType(true);
923      T = Context.IntTy;
924    }
925
926    // See if there are any attributes on this declarator chunk.
927    if (const AttributeList *AL = DeclType.getAttrs())
928      ProcessTypeAttributeList(T, AL);
929  }
930
931  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
932    const FunctionProtoType *FnTy = T->getAsFunctionProtoType();
933    assert(FnTy && "Why oh why is there not a FunctionProtoType here ?");
934
935    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
936    // for a nonstatic member function, the function type to which a pointer
937    // to member refers, or the top-level function type of a function typedef
938    // declaration.
939    if (FnTy->getTypeQuals() != 0 &&
940        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
941        ((D.getContext() != Declarator::MemberContext &&
942          (!D.getCXXScopeSpec().isSet() ||
943           !computeDeclContext(D.getCXXScopeSpec())->isRecord())) ||
944         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
945      if (D.isFunctionDeclarator())
946        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
947      else
948        Diag(D.getIdentifierLoc(),
949             diag::err_invalid_qualified_typedef_function_type_use);
950
951      // Strip the cv-quals from the type.
952      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
953                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0);
954    }
955  }
956
957  // If there were any type attributes applied to the decl itself (not the
958  // type, apply the type attribute to the type!)
959  if (const AttributeList *Attrs = D.getAttributes())
960    ProcessTypeAttributeList(T, Attrs);
961
962  return T;
963}
964
965/// CheckSpecifiedExceptionType - Check if the given type is valid in an
966/// exception specification. Incomplete types, or pointers to incomplete types
967/// other than void are not allowed.
968bool Sema::CheckSpecifiedExceptionType(QualType T, const SourceRange &Range) {
969  // FIXME: This may not correctly work with the fix for core issue 437,
970  // where a class's own type is considered complete within its body.
971
972  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
973  //   an incomplete type.
974  if (T->isIncompleteType())
975    return Diag(Range.getBegin(), diag::err_incomplete_in_exception_spec)
976      << Range << T << /*direct*/0;
977
978  // C++ 15.4p2: A type denoted in an exception-specification shall not denote
979  //   an incomplete type a pointer or reference to an incomplete type, other
980  //   than (cv) void*.
981  // The standard does not mention member pointers, but it has to mean them too.
982  int kind;
983  if (const PointerType* IT = T->getAsPointerType()) {
984    T = IT->getPointeeType();
985    kind = 1;
986  } else if (const MemberPointerType* IT = T->getAsMemberPointerType()) {
987    T = IT->getPointeeType();
988    kind = 2;
989  } else if (const ReferenceType* IT = T->getAsReferenceType()) {
990    T = IT->getPointeeType();
991    kind = 3;
992  } else
993    return false;
994
995  if (T->isIncompleteType() && !T->isVoidType())
996    return Diag(Range.getBegin(), diag::err_incomplete_in_exception_spec)
997      << Range << T << /*indirect*/kind;
998
999  return false;
1000}
1001
1002/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
1003/// to member to a function with an exception specification. This means that
1004/// it is invalid to add another level of indirection.
1005bool Sema::CheckDistantExceptionSpec(QualType T) {
1006  if (const PointerType *PT = T->getAsPointerType())
1007    T = PT->getPointeeType();
1008  else if (const MemberPointerType *PT = T->getAsMemberPointerType())
1009    T = PT->getPointeeType();
1010  else
1011    return false;
1012
1013  const FunctionProtoType *FnT = T->getAsFunctionProtoType();
1014  if (!FnT)
1015    return false;
1016
1017  return FnT->hasExceptionSpec();
1018}
1019
1020/// ObjCGetTypeForMethodDefinition - Builds the type for a method definition
1021/// declarator
1022QualType Sema::ObjCGetTypeForMethodDefinition(DeclPtrTy D) {
1023  ObjCMethodDecl *MDecl = cast<ObjCMethodDecl>(D.getAs<Decl>());
1024  QualType T = MDecl->getResultType();
1025  llvm::SmallVector<QualType, 16> ArgTys;
1026
1027  // Add the first two invisible argument types for self and _cmd.
1028  if (MDecl->isInstanceMethod()) {
1029    QualType selfTy = Context.getObjCInterfaceType(MDecl->getClassInterface());
1030    selfTy = Context.getPointerType(selfTy);
1031    ArgTys.push_back(selfTy);
1032  } else
1033    ArgTys.push_back(Context.getObjCIdType());
1034  ArgTys.push_back(Context.getObjCSelType());
1035
1036  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
1037       E = MDecl->param_end(); PI != E; ++PI) {
1038    QualType ArgTy = (*PI)->getType();
1039    assert(!ArgTy.isNull() && "Couldn't parse type?");
1040    ArgTy = adjustParameterType(ArgTy);
1041    ArgTys.push_back(ArgTy);
1042  }
1043  T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
1044                              MDecl->isVariadic(), 0);
1045  return T;
1046}
1047
1048/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
1049/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
1050/// they point to and return true. If T1 and T2 aren't pointer types
1051/// or pointer-to-member types, or if they are not similar at this
1052/// level, returns false and leaves T1 and T2 unchanged. Top-level
1053/// qualifiers on T1 and T2 are ignored. This function will typically
1054/// be called in a loop that successively "unwraps" pointer and
1055/// pointer-to-member types to compare them at each level.
1056bool Sema::UnwrapSimilarPointerTypes(QualType& T1, QualType& T2) {
1057  const PointerType *T1PtrType = T1->getAsPointerType(),
1058                    *T2PtrType = T2->getAsPointerType();
1059  if (T1PtrType && T2PtrType) {
1060    T1 = T1PtrType->getPointeeType();
1061    T2 = T2PtrType->getPointeeType();
1062    return true;
1063  }
1064
1065  const MemberPointerType *T1MPType = T1->getAsMemberPointerType(),
1066                          *T2MPType = T2->getAsMemberPointerType();
1067  if (T1MPType && T2MPType &&
1068      Context.getCanonicalType(T1MPType->getClass()) ==
1069      Context.getCanonicalType(T2MPType->getClass())) {
1070    T1 = T1MPType->getPointeeType();
1071    T2 = T2MPType->getPointeeType();
1072    return true;
1073  }
1074  return false;
1075}
1076
1077Sema::TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
1078  // C99 6.7.6: Type names have no identifier.  This is already validated by
1079  // the parser.
1080  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
1081
1082  TagDecl *OwnedTag = 0;
1083  QualType T = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedTag);
1084  if (D.isInvalidType())
1085    return true;
1086
1087  if (getLangOptions().CPlusPlus) {
1088    // Check that there are no default arguments (C++ only).
1089    CheckExtraCXXDefaultArguments(D);
1090
1091    // C++0x [dcl.type]p3:
1092    //   A type-specifier-seq shall not define a class or enumeration
1093    //   unless it appears in the type-id of an alias-declaration
1094    //   (7.1.3).
1095    if (OwnedTag && OwnedTag->isDefinition())
1096      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
1097        << Context.getTypeDeclType(OwnedTag);
1098  }
1099
1100  return T.getAsOpaquePtr();
1101}
1102
1103
1104
1105//===----------------------------------------------------------------------===//
1106// Type Attribute Processing
1107//===----------------------------------------------------------------------===//
1108
1109/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
1110/// specified type.  The attribute contains 1 argument, the id of the address
1111/// space for the type.
1112static void HandleAddressSpaceTypeAttribute(QualType &Type,
1113                                            const AttributeList &Attr, Sema &S){
1114  // If this type is already address space qualified, reject it.
1115  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
1116  // for two or more different address spaces."
1117  if (Type.getAddressSpace()) {
1118    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
1119    return;
1120  }
1121
1122  // Check the attribute arguments.
1123  if (Attr.getNumArgs() != 1) {
1124    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1125    return;
1126  }
1127  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
1128  llvm::APSInt addrSpace(32);
1129  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
1130    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
1131      << ASArgExpr->getSourceRange();
1132    return;
1133  }
1134
1135  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
1136  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
1137}
1138
1139/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
1140/// specified type.  The attribute contains 1 argument, weak or strong.
1141static void HandleObjCGCTypeAttribute(QualType &Type,
1142                                      const AttributeList &Attr, Sema &S) {
1143  if (Type.getObjCGCAttr() != QualType::GCNone) {
1144    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
1145    return;
1146  }
1147
1148  // Check the attribute arguments.
1149  if (!Attr.getParameterName()) {
1150    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
1151      << "objc_gc" << 1;
1152    return;
1153  }
1154  QualType::GCAttrTypes GCAttr;
1155  if (Attr.getNumArgs() != 0) {
1156    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
1157    return;
1158  }
1159  if (Attr.getParameterName()->isStr("weak"))
1160    GCAttr = QualType::Weak;
1161  else if (Attr.getParameterName()->isStr("strong"))
1162    GCAttr = QualType::Strong;
1163  else {
1164    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
1165      << "objc_gc" << Attr.getParameterName();
1166    return;
1167  }
1168
1169  Type = S.Context.getObjCGCQualType(Type, GCAttr);
1170}
1171
1172void Sema::ProcessTypeAttributeList(QualType &Result, const AttributeList *AL) {
1173  // Scan through and apply attributes to this type where it makes sense.  Some
1174  // attributes (such as __address_space__, __vector_size__, etc) apply to the
1175  // type, but others can be present in the type specifiers even though they
1176  // apply to the decl.  Here we apply type attributes and ignore the rest.
1177  for (; AL; AL = AL->getNext()) {
1178    // If this is an attribute we can handle, do so now, otherwise, add it to
1179    // the LeftOverAttrs list for rechaining.
1180    switch (AL->getKind()) {
1181    default: break;
1182    case AttributeList::AT_address_space:
1183      HandleAddressSpaceTypeAttribute(Result, *AL, *this);
1184      break;
1185    case AttributeList::AT_objc_gc:
1186      HandleObjCGCTypeAttribute(Result, *AL, *this);
1187      break;
1188    }
1189  }
1190}
1191
1192/// @brief Ensure that the type T is a complete type.
1193///
1194/// This routine checks whether the type @p T is complete in any
1195/// context where a complete type is required. If @p T is a complete
1196/// type, returns false. If @p T is a class template specialization,
1197/// this routine then attempts to perform class template
1198/// instantiation. If instantiation fails, or if @p T is incomplete
1199/// and cannot be completed, issues the diagnostic @p diag (giving it
1200/// the type @p T) and returns true.
1201///
1202/// @param Loc  The location in the source that the incomplete type
1203/// diagnostic should refer to.
1204///
1205/// @param T  The type that this routine is examining for completeness.
1206///
1207/// @param diag The diagnostic value (e.g.,
1208/// @c diag::err_typecheck_decl_incomplete_type) that will be used
1209/// for the error message if @p T is incomplete.
1210///
1211/// @param Range1  An optional range in the source code that will be a
1212/// part of the "incomplete type" error message.
1213///
1214/// @param Range2  An optional range in the source code that will be a
1215/// part of the "incomplete type" error message.
1216///
1217/// @param PrintType If non-NULL, the type that should be printed
1218/// instead of @p T. This parameter should be used when the type that
1219/// we're checking for incompleteness isn't the type that should be
1220/// displayed to the user, e.g., when T is a type and PrintType is a
1221/// pointer to T.
1222///
1223/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
1224/// @c false otherwise.
1225bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, unsigned diag,
1226                               SourceRange Range1, SourceRange Range2,
1227                               QualType PrintType) {
1228  // FIXME: Add this assertion to help us flush out problems with
1229  // checking for dependent types and type-dependent expressions.
1230  //
1231  //  assert(!T->isDependentType() &&
1232  //         "Can't ask whether a dependent type is complete");
1233
1234  // If we have a complete type, we're done.
1235  if (!T->isIncompleteType())
1236    return false;
1237
1238  // If we have a class template specialization or a class member of a
1239  // class template specialization, try to instantiate it.
1240  if (const RecordType *Record = T->getAsRecordType()) {
1241    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
1242          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
1243      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
1244        // Update the class template specialization's location to
1245        // refer to the point of instantiation.
1246        if (Loc.isValid())
1247          ClassTemplateSpec->setLocation(Loc);
1248        return InstantiateClassTemplateSpecialization(ClassTemplateSpec,
1249                                             /*ExplicitInstantiation=*/false);
1250      }
1251    } else if (CXXRecordDecl *Rec
1252                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
1253      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
1254        // Find the class template specialization that surrounds this
1255        // member class.
1256        ClassTemplateSpecializationDecl *Spec = 0;
1257        for (DeclContext *Parent = Rec->getDeclContext();
1258             Parent && !Spec; Parent = Parent->getParent())
1259          Spec = dyn_cast<ClassTemplateSpecializationDecl>(Parent);
1260        assert(Spec && "Not a member of a class template specialization?");
1261        return InstantiateClass(Loc, Rec, Pattern, Spec->getTemplateArgs(),
1262                                /*ExplicitInstantiation=*/false);
1263      }
1264    }
1265  }
1266
1267  if (PrintType.isNull())
1268    PrintType = T;
1269
1270  // We have an incomplete type. Produce a diagnostic.
1271  Diag(Loc, diag) << PrintType << Range1 << Range2;
1272
1273  // If the type was a forward declaration of a class/struct/union
1274  // type, produce
1275  const TagType *Tag = 0;
1276  if (const RecordType *Record = T->getAsRecordType())
1277    Tag = Record;
1278  else if (const EnumType *Enum = T->getAsEnumType())
1279    Tag = Enum;
1280
1281  if (Tag && !Tag->getDecl()->isInvalidDecl())
1282    Diag(Tag->getDecl()->getLocation(),
1283         Tag->isBeingDefined() ? diag::note_type_being_defined
1284                               : diag::note_forward_declaration)
1285        << QualType(Tag, 0);
1286
1287  return true;
1288}
1289
1290/// \brief Retrieve a version of the type 'T' that is qualified by the
1291/// nested-name-specifier contained in SS.
1292QualType Sema::getQualifiedNameType(const CXXScopeSpec &SS, QualType T) {
1293  if (!SS.isSet() || SS.isInvalid() || T.isNull())
1294    return T;
1295
1296  NestedNameSpecifier *NNS
1297    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1298  return Context.getQualifiedNameType(NNS, T);
1299}
1300